[clang][bytecode][NFC] Only get expr when checking for UB (#125397)
[llvm-project.git] / llvm / lib / Analysis / Lint.cpp
blobe9d96a0c2972ad6734ccc76d857d906cb2f67ca3
1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass statically checks for common and easily-identified constructs
10 // which produce undefined or likely unintended behavior in LLVM IR.
12 // It is not a guarantee of correctness, in two ways. First, it isn't
13 // comprehensive. There are checks which could be done statically which are
14 // not yet implemented. Some of these are indicated by TODO comments, but
15 // those aren't comprehensive either. Second, many conditions cannot be
16 // checked statically. This pass does no dynamic instrumentation, so it
17 // can't check for all possible problems.
19 // Another limitation is that it assumes all code will be executed. A store
20 // through a null pointer in a basic block which is never reached is harmless,
21 // but this pass will warn about it anyway. This is the main reason why most
22 // of these checks live here instead of in the Verifier pass.
24 // Optimization passes may make conditions that this pass checks for more or
25 // less obvious. If an optimization pass appears to be introducing a warning,
26 // it may be that the optimization pass is merely exposing an existing
27 // condition in the code.
29 // This code may be run before instcombine. In many cases, instcombine checks
30 // for the same kinds of things and turns instructions with undefined behavior
31 // into unreachable (or equivalent). Because of this, this pass makes some
32 // effort to look through bitcasts and so on.
34 //===----------------------------------------------------------------------===//
36 #include "llvm/Analysis/Lint.h"
37 #include "llvm/ADT/APInt.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/BasicAliasAnalysis.h"
44 #include "llvm/Analysis/ConstantFolding.h"
45 #include "llvm/Analysis/InstructionSimplify.h"
46 #include "llvm/Analysis/Loads.h"
47 #include "llvm/Analysis/MemoryLocation.h"
48 #include "llvm/Analysis/ScopedNoAliasAA.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
51 #include "llvm/Analysis/ValueTracking.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/Constant.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/GlobalVariable.h"
61 #include "llvm/IR/InstVisitor.h"
62 #include "llvm/IR/InstrTypes.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/IntrinsicInst.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/PassManager.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/Support/AMDGPUAddrSpace.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/KnownBits.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <cassert>
75 #include <cstdint>
76 #include <iterator>
77 #include <string>
79 using namespace llvm;
81 static const char LintAbortOnErrorArgName[] = "lint-abort-on-error";
82 static cl::opt<bool>
83 LintAbortOnError(LintAbortOnErrorArgName, cl::init(false),
84 cl::desc("In the Lint pass, abort on errors."));
86 namespace {
87 namespace MemRef {
88 static const unsigned Read = 1;
89 static const unsigned Write = 2;
90 static const unsigned Callee = 4;
91 static const unsigned Branchee = 8;
92 } // end namespace MemRef
94 class Lint : public InstVisitor<Lint> {
95 friend class InstVisitor<Lint>;
97 void visitFunction(Function &F);
99 void visitCallBase(CallBase &CB);
100 void visitMemoryReference(Instruction &I, const MemoryLocation &Loc,
101 MaybeAlign Alignment, Type *Ty, unsigned Flags);
103 void visitReturnInst(ReturnInst &I);
104 void visitLoadInst(LoadInst &I);
105 void visitStoreInst(StoreInst &I);
106 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I);
107 void visitAtomicRMWInst(AtomicRMWInst &I);
108 void visitXor(BinaryOperator &I);
109 void visitSub(BinaryOperator &I);
110 void visitLShr(BinaryOperator &I);
111 void visitAShr(BinaryOperator &I);
112 void visitShl(BinaryOperator &I);
113 void visitSDiv(BinaryOperator &I);
114 void visitUDiv(BinaryOperator &I);
115 void visitSRem(BinaryOperator &I);
116 void visitURem(BinaryOperator &I);
117 void visitAllocaInst(AllocaInst &I);
118 void visitVAArgInst(VAArgInst &I);
119 void visitIndirectBrInst(IndirectBrInst &I);
120 void visitExtractElementInst(ExtractElementInst &I);
121 void visitInsertElementInst(InsertElementInst &I);
122 void visitUnreachableInst(UnreachableInst &I);
124 Value *findValue(Value *V, bool OffsetOk) const;
125 Value *findValueImpl(Value *V, bool OffsetOk,
126 SmallPtrSetImpl<Value *> &Visited) const;
128 public:
129 Module *Mod;
130 Triple TT;
131 const DataLayout *DL;
132 AliasAnalysis *AA;
133 AssumptionCache *AC;
134 DominatorTree *DT;
135 TargetLibraryInfo *TLI;
137 std::string Messages;
138 raw_string_ostream MessagesStr;
140 Lint(Module *Mod, const DataLayout *DL, AliasAnalysis *AA,
141 AssumptionCache *AC, DominatorTree *DT, TargetLibraryInfo *TLI)
142 : Mod(Mod), TT(Triple::normalize(Mod->getTargetTriple())), DL(DL), AA(AA),
143 AC(AC), DT(DT), TLI(TLI), MessagesStr(Messages) {}
145 void WriteValues(ArrayRef<const Value *> Vs) {
146 for (const Value *V : Vs) {
147 if (!V)
148 continue;
149 if (isa<Instruction>(V)) {
150 MessagesStr << *V << '\n';
151 } else {
152 V->printAsOperand(MessagesStr, true, Mod);
153 MessagesStr << '\n';
158 /// A check failed, so printout out the condition and the message.
160 /// This provides a nice place to put a breakpoint if you want to see why
161 /// something is not correct.
162 void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
164 /// A check failed (with values to print).
166 /// This calls the Message-only version so that the above is easier to set
167 /// a breakpoint on.
168 template <typename T1, typename... Ts>
169 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
170 CheckFailed(Message);
171 WriteValues({V1, Vs...});
174 } // end anonymous namespace
176 // Check - We know that cond should be true, if not print an error message.
177 #define Check(C, ...) \
178 do { \
179 if (!(C)) { \
180 CheckFailed(__VA_ARGS__); \
181 return; \
183 } while (false)
185 void Lint::visitFunction(Function &F) {
186 // This isn't undefined behavior, it's just a little unusual, and it's a
187 // fairly common mistake to neglect to name a function.
188 Check(F.hasName() || F.hasLocalLinkage(),
189 "Unusual: Unnamed function with non-local linkage", &F);
191 // TODO: Check for irreducible control flow.
194 void Lint::visitCallBase(CallBase &I) {
195 Value *Callee = I.getCalledOperand();
197 visitMemoryReference(I, MemoryLocation::getAfter(Callee), std::nullopt,
198 nullptr, MemRef::Callee);
200 if (Function *F = dyn_cast<Function>(findValue(Callee,
201 /*OffsetOk=*/false))) {
202 Check(I.getCallingConv() == F->getCallingConv(),
203 "Undefined behavior: Caller and callee calling convention differ",
204 &I);
206 FunctionType *FT = F->getFunctionType();
207 unsigned NumActualArgs = I.arg_size();
209 Check(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
210 : FT->getNumParams() == NumActualArgs,
211 "Undefined behavior: Call argument count mismatches callee "
212 "argument count",
213 &I);
215 Check(FT->getReturnType() == I.getType(),
216 "Undefined behavior: Call return type mismatches "
217 "callee return type",
218 &I);
220 // Check argument types (in case the callee was casted) and attributes.
221 // TODO: Verify that caller and callee attributes are compatible.
222 Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
223 auto AI = I.arg_begin(), AE = I.arg_end();
224 for (; AI != AE; ++AI) {
225 Value *Actual = *AI;
226 if (PI != PE) {
227 Argument *Formal = &*PI++;
228 Check(Formal->getType() == Actual->getType(),
229 "Undefined behavior: Call argument type mismatches "
230 "callee parameter type",
231 &I);
233 // Check that noalias arguments don't alias other arguments. This is
234 // not fully precise because we don't know the sizes of the dereferenced
235 // memory regions.
236 if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) {
237 AttributeList PAL = I.getAttributes();
238 unsigned ArgNo = 0;
239 for (auto *BI = I.arg_begin(); BI != AE; ++BI, ++ArgNo) {
240 // Skip ByVal arguments since they will be memcpy'd to the callee's
241 // stack so we're not really passing the pointer anyway.
242 if (PAL.hasParamAttr(ArgNo, Attribute::ByVal))
243 continue;
244 // If both arguments are readonly, they have no dependence.
245 if (Formal->onlyReadsMemory() && I.onlyReadsMemory(ArgNo))
246 continue;
247 // Skip readnone arguments since those are guaranteed not to be
248 // dereferenced anyway.
249 if (I.doesNotAccessMemory(ArgNo))
250 continue;
251 if (AI != BI && (*BI)->getType()->isPointerTy() &&
252 !isa<ConstantPointerNull>(*BI)) {
253 AliasResult Result = AA->alias(*AI, *BI);
254 Check(Result != AliasResult::MustAlias &&
255 Result != AliasResult::PartialAlias,
256 "Unusual: noalias argument aliases another argument", &I);
261 // Check that an sret argument points to valid memory.
262 if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
263 Type *Ty = Formal->getParamStructRetType();
264 MemoryLocation Loc(
265 Actual, LocationSize::precise(DL->getTypeStoreSize(Ty)));
266 visitMemoryReference(I, Loc, DL->getABITypeAlign(Ty), Ty,
267 MemRef::Read | MemRef::Write);
270 // Check that ABI attributes for the function and call-site match.
271 unsigned ArgNo = AI->getOperandNo();
272 Attribute::AttrKind ABIAttributes[] = {
273 Attribute::ZExt, Attribute::SExt, Attribute::InReg,
274 Attribute::ByVal, Attribute::ByRef, Attribute::InAlloca,
275 Attribute::Preallocated, Attribute::StructRet};
276 AttributeList CallAttrs = I.getAttributes();
277 for (Attribute::AttrKind Attr : ABIAttributes) {
278 Attribute CallAttr = CallAttrs.getParamAttr(ArgNo, Attr);
279 Attribute FnAttr = F->getParamAttribute(ArgNo, Attr);
280 Check(CallAttr.isValid() == FnAttr.isValid(),
281 Twine("Undefined behavior: ABI attribute ") +
282 Attribute::getNameFromAttrKind(Attr) +
283 " not present on both function and call-site",
284 &I);
285 if (CallAttr.isValid() && FnAttr.isValid()) {
286 Check(CallAttr == FnAttr,
287 Twine("Undefined behavior: ABI attribute ") +
288 Attribute::getNameFromAttrKind(Attr) +
289 " does not have same argument for function and call-site",
290 &I);
297 if (const auto *CI = dyn_cast<CallInst>(&I)) {
298 if (CI->isTailCall()) {
299 const AttributeList &PAL = CI->getAttributes();
300 unsigned ArgNo = 0;
301 for (Value *Arg : I.args()) {
302 // Skip ByVal arguments since they will be memcpy'd to the callee's
303 // stack anyway.
304 if (PAL.hasParamAttr(ArgNo++, Attribute::ByVal))
305 continue;
306 Value *Obj = findValue(Arg, /*OffsetOk=*/true);
307 Check(!isa<AllocaInst>(Obj),
308 "Undefined behavior: Call with \"tail\" keyword references "
309 "alloca",
310 &I);
315 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
316 switch (II->getIntrinsicID()) {
317 default:
318 break;
320 // TODO: Check more intrinsics
322 case Intrinsic::memcpy:
323 case Intrinsic::memcpy_inline: {
324 MemCpyInst *MCI = cast<MemCpyInst>(&I);
325 visitMemoryReference(I, MemoryLocation::getForDest(MCI),
326 MCI->getDestAlign(), nullptr, MemRef::Write);
327 visitMemoryReference(I, MemoryLocation::getForSource(MCI),
328 MCI->getSourceAlign(), nullptr, MemRef::Read);
330 // Check that the memcpy arguments don't overlap. The AliasAnalysis API
331 // isn't expressive enough for what we really want to do. Known partial
332 // overlap is not distinguished from the case where nothing is known.
333 auto Size = LocationSize::afterPointer();
334 if (const ConstantInt *Len =
335 dyn_cast<ConstantInt>(findValue(MCI->getLength(),
336 /*OffsetOk=*/false)))
337 if (Len->getValue().isIntN(32))
338 Size = LocationSize::precise(Len->getValue().getZExtValue());
339 Check(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
340 AliasResult::MustAlias,
341 "Undefined behavior: memcpy source and destination overlap", &I);
342 break;
344 case Intrinsic::memmove: {
345 MemMoveInst *MMI = cast<MemMoveInst>(&I);
346 visitMemoryReference(I, MemoryLocation::getForDest(MMI),
347 MMI->getDestAlign(), nullptr, MemRef::Write);
348 visitMemoryReference(I, MemoryLocation::getForSource(MMI),
349 MMI->getSourceAlign(), nullptr, MemRef::Read);
350 break;
352 case Intrinsic::memset: {
353 MemSetInst *MSI = cast<MemSetInst>(&I);
354 visitMemoryReference(I, MemoryLocation::getForDest(MSI),
355 MSI->getDestAlign(), nullptr, MemRef::Write);
356 break;
358 case Intrinsic::memset_inline: {
359 MemSetInlineInst *MSII = cast<MemSetInlineInst>(&I);
360 visitMemoryReference(I, MemoryLocation::getForDest(MSII),
361 MSII->getDestAlign(), nullptr, MemRef::Write);
362 break;
365 case Intrinsic::vastart:
366 // vastart in non-varargs function is rejected by the verifier
367 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
368 std::nullopt, nullptr, MemRef::Read | MemRef::Write);
369 break;
370 case Intrinsic::vacopy:
371 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
372 std::nullopt, nullptr, MemRef::Write);
373 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 1, TLI),
374 std::nullopt, nullptr, MemRef::Read);
375 break;
376 case Intrinsic::vaend:
377 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
378 std::nullopt, nullptr, MemRef::Read | MemRef::Write);
379 break;
381 case Intrinsic::stackrestore:
382 // Stackrestore doesn't read or write memory, but it sets the
383 // stack pointer, which the compiler may read from or write to
384 // at any time, so check it for both readability and writeability.
385 visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
386 std::nullopt, nullptr, MemRef::Read | MemRef::Write);
387 break;
388 case Intrinsic::get_active_lane_mask:
389 if (auto *TripCount = dyn_cast<ConstantInt>(I.getArgOperand(1)))
390 Check(!TripCount->isZero(),
391 "get_active_lane_mask: operand #2 "
392 "must be greater than 0",
393 &I);
394 break;
398 void Lint::visitReturnInst(ReturnInst &I) {
399 Function *F = I.getParent()->getParent();
400 Check(!F->doesNotReturn(),
401 "Unusual: Return statement in function with noreturn attribute", &I);
403 if (Value *V = I.getReturnValue()) {
404 Value *Obj = findValue(V, /*OffsetOk=*/true);
405 Check(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
409 // TODO: Check that the reference is in bounds.
410 // TODO: Check readnone/readonly function attributes.
411 void Lint::visitMemoryReference(Instruction &I, const MemoryLocation &Loc,
412 MaybeAlign Align, Type *Ty, unsigned Flags) {
413 // If no memory is being referenced, it doesn't matter if the pointer
414 // is valid.
415 if (Loc.Size.isZero())
416 return;
418 Value *Ptr = const_cast<Value *>(Loc.Ptr);
419 Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
420 Check(!isa<ConstantPointerNull>(UnderlyingObject),
421 "Undefined behavior: Null pointer dereference", &I);
422 Check(!isa<UndefValue>(UnderlyingObject),
423 "Undefined behavior: Undef pointer dereference", &I);
424 Check(!isa<ConstantInt>(UnderlyingObject) ||
425 !cast<ConstantInt>(UnderlyingObject)->isMinusOne(),
426 "Unusual: All-ones pointer dereference", &I);
427 Check(!isa<ConstantInt>(UnderlyingObject) ||
428 !cast<ConstantInt>(UnderlyingObject)->isOne(),
429 "Unusual: Address one pointer dereference", &I);
431 if (Flags & MemRef::Write) {
432 if (TT.isAMDGPU())
433 Check(!AMDGPU::isConstantAddressSpace(
434 UnderlyingObject->getType()->getPointerAddressSpace()),
435 "Undefined behavior: Write to memory in const addrspace", &I);
437 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
438 Check(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
439 &I);
440 Check(!isa<Function>(UnderlyingObject) &&
441 !isa<BlockAddress>(UnderlyingObject),
442 "Undefined behavior: Write to text section", &I);
444 if (Flags & MemRef::Read) {
445 Check(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
446 &I);
447 Check(!isa<BlockAddress>(UnderlyingObject),
448 "Undefined behavior: Load from block address", &I);
450 if (Flags & MemRef::Callee) {
451 Check(!isa<BlockAddress>(UnderlyingObject),
452 "Undefined behavior: Call to block address", &I);
454 if (Flags & MemRef::Branchee) {
455 Check(!isa<Constant>(UnderlyingObject) ||
456 isa<BlockAddress>(UnderlyingObject),
457 "Undefined behavior: Branch to non-blockaddress", &I);
460 // Check for buffer overflows and misalignment.
461 // Only handles memory references that read/write something simple like an
462 // alloca instruction or a global variable.
463 int64_t Offset = 0;
464 if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
465 // OK, so the access is to a constant offset from Ptr. Check that Ptr is
466 // something we can handle and if so extract the size of this base object
467 // along with its alignment.
468 uint64_t BaseSize = MemoryLocation::UnknownSize;
469 MaybeAlign BaseAlign;
471 if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
472 Type *ATy = AI->getAllocatedType();
473 if (!AI->isArrayAllocation() && ATy->isSized() && !ATy->isScalableTy())
474 BaseSize = DL->getTypeAllocSize(ATy).getFixedValue();
475 BaseAlign = AI->getAlign();
476 } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
477 // If the global may be defined differently in another compilation unit
478 // then don't warn about funky memory accesses.
479 if (GV->hasDefinitiveInitializer()) {
480 Type *GTy = GV->getValueType();
481 if (GTy->isSized())
482 BaseSize = DL->getTypeAllocSize(GTy);
483 BaseAlign = GV->getAlign();
484 if (!BaseAlign && GTy->isSized())
485 BaseAlign = DL->getABITypeAlign(GTy);
489 // Accesses from before the start or after the end of the object are not
490 // defined.
491 Check(!Loc.Size.hasValue() || Loc.Size.isScalable() ||
492 BaseSize == MemoryLocation::UnknownSize ||
493 (Offset >= 0 && Offset + Loc.Size.getValue() <= BaseSize),
494 "Undefined behavior: Buffer overflow", &I);
496 // Accesses that say that the memory is more aligned than it is are not
497 // defined.
498 if (!Align && Ty && Ty->isSized())
499 Align = DL->getABITypeAlign(Ty);
500 if (BaseAlign && Align)
501 Check(*Align <= commonAlignment(*BaseAlign, Offset),
502 "Undefined behavior: Memory reference address is misaligned", &I);
506 void Lint::visitLoadInst(LoadInst &I) {
507 visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), I.getType(),
508 MemRef::Read);
511 void Lint::visitStoreInst(StoreInst &I) {
512 visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(),
513 I.getOperand(0)->getType(), MemRef::Write);
516 void Lint::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
517 visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(),
518 I.getOperand(0)->getType(), MemRef::Write);
521 void Lint::visitAtomicRMWInst(AtomicRMWInst &I) {
522 visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(),
523 I.getOperand(0)->getType(), MemRef::Write);
526 void Lint::visitXor(BinaryOperator &I) {
527 Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
528 "Undefined result: xor(undef, undef)", &I);
531 void Lint::visitSub(BinaryOperator &I) {
532 Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
533 "Undefined result: sub(undef, undef)", &I);
536 void Lint::visitLShr(BinaryOperator &I) {
537 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
538 /*OffsetOk=*/false)))
539 Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
540 "Undefined result: Shift count out of range", &I);
543 void Lint::visitAShr(BinaryOperator &I) {
544 if (ConstantInt *CI =
545 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
546 Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
547 "Undefined result: Shift count out of range", &I);
550 void Lint::visitShl(BinaryOperator &I) {
551 if (ConstantInt *CI =
552 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
553 Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
554 "Undefined result: Shift count out of range", &I);
557 static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
558 AssumptionCache *AC) {
559 // Assume undef could be zero.
560 if (isa<UndefValue>(V))
561 return true;
563 VectorType *VecTy = dyn_cast<VectorType>(V->getType());
564 if (!VecTy) {
565 KnownBits Known =
566 computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT);
567 return Known.isZero();
570 // Per-component check doesn't work with zeroinitializer
571 Constant *C = dyn_cast<Constant>(V);
572 if (!C)
573 return false;
575 if (C->isZeroValue())
576 return true;
578 // For a vector, KnownZero will only be true if all values are zero, so check
579 // this per component
580 for (unsigned I = 0, N = cast<FixedVectorType>(VecTy)->getNumElements();
581 I != N; ++I) {
582 Constant *Elem = C->getAggregateElement(I);
583 if (isa<UndefValue>(Elem))
584 return true;
586 KnownBits Known = computeKnownBits(Elem, DL);
587 if (Known.isZero())
588 return true;
591 return false;
594 void Lint::visitSDiv(BinaryOperator &I) {
595 Check(!isZero(I.getOperand(1), I.getDataLayout(), DT, AC),
596 "Undefined behavior: Division by zero", &I);
599 void Lint::visitUDiv(BinaryOperator &I) {
600 Check(!isZero(I.getOperand(1), I.getDataLayout(), DT, AC),
601 "Undefined behavior: Division by zero", &I);
604 void Lint::visitSRem(BinaryOperator &I) {
605 Check(!isZero(I.getOperand(1), I.getDataLayout(), DT, AC),
606 "Undefined behavior: Division by zero", &I);
609 void Lint::visitURem(BinaryOperator &I) {
610 Check(!isZero(I.getOperand(1), I.getDataLayout(), DT, AC),
611 "Undefined behavior: Division by zero", &I);
614 void Lint::visitAllocaInst(AllocaInst &I) {
615 if (isa<ConstantInt>(I.getArraySize()))
616 // This isn't undefined behavior, it's just an obvious pessimization.
617 Check(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
618 "Pessimization: Static alloca outside of entry block", &I);
620 // TODO: Check for an unusual size (MSB set?)
623 void Lint::visitVAArgInst(VAArgInst &I) {
624 visitMemoryReference(I, MemoryLocation::get(&I), std::nullopt, nullptr,
625 MemRef::Read | MemRef::Write);
628 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
629 visitMemoryReference(I, MemoryLocation::getAfter(I.getAddress()),
630 std::nullopt, nullptr, MemRef::Branchee);
632 Check(I.getNumDestinations() != 0,
633 "Undefined behavior: indirectbr with no destinations", &I);
636 void Lint::visitExtractElementInst(ExtractElementInst &I) {
637 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
638 /*OffsetOk=*/false))) {
639 ElementCount EC = I.getVectorOperandType()->getElementCount();
640 Check(EC.isScalable() || CI->getValue().ult(EC.getFixedValue()),
641 "Undefined result: extractelement index out of range", &I);
645 void Lint::visitInsertElementInst(InsertElementInst &I) {
646 if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
647 /*OffsetOk=*/false))) {
648 ElementCount EC = I.getType()->getElementCount();
649 Check(EC.isScalable() || CI->getValue().ult(EC.getFixedValue()),
650 "Undefined result: insertelement index out of range", &I);
654 void Lint::visitUnreachableInst(UnreachableInst &I) {
655 // This isn't undefined behavior, it's merely suspicious.
656 Check(&I == &I.getParent()->front() ||
657 std::prev(I.getIterator())->mayHaveSideEffects(),
658 "Unusual: unreachable immediately preceded by instruction without "
659 "side effects",
660 &I);
663 /// findValue - Look through bitcasts and simple memory reference patterns
664 /// to identify an equivalent, but more informative, value. If OffsetOk
665 /// is true, look through getelementptrs with non-zero offsets too.
667 /// Most analysis passes don't require this logic, because instcombine
668 /// will simplify most of these kinds of things away. But it's a goal of
669 /// this Lint pass to be useful even on non-optimized IR.
670 Value *Lint::findValue(Value *V, bool OffsetOk) const {
671 SmallPtrSet<Value *, 4> Visited;
672 return findValueImpl(V, OffsetOk, Visited);
675 /// findValueImpl - Implementation helper for findValue.
676 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
677 SmallPtrSetImpl<Value *> &Visited) const {
678 // Detect self-referential values.
679 if (!Visited.insert(V).second)
680 return PoisonValue::get(V->getType());
682 // TODO: Look through sext or zext cast, when the result is known to
683 // be interpreted as signed or unsigned, respectively.
684 // TODO: Look through eliminable cast pairs.
685 // TODO: Look through calls with unique return values.
686 // TODO: Look through vector insert/extract/shuffle.
687 V = OffsetOk ? getUnderlyingObject(V) : V->stripPointerCasts();
688 if (LoadInst *L = dyn_cast<LoadInst>(V)) {
689 BasicBlock::iterator BBI = L->getIterator();
690 BasicBlock *BB = L->getParent();
691 SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
692 BatchAAResults BatchAA(*AA);
693 for (;;) {
694 if (!VisitedBlocks.insert(BB).second)
695 break;
696 if (Value *U =
697 FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, &BatchAA))
698 return findValueImpl(U, OffsetOk, Visited);
699 if (BBI != BB->begin())
700 break;
701 BB = BB->getUniquePredecessor();
702 if (!BB)
703 break;
704 BBI = BB->end();
706 } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
707 if (Value *W = PN->hasConstantValue())
708 return findValueImpl(W, OffsetOk, Visited);
709 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
710 if (CI->isNoopCast(*DL))
711 return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
712 } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
713 if (Value *W =
714 FindInsertedValue(Ex->getAggregateOperand(), Ex->getIndices()))
715 if (W != V)
716 return findValueImpl(W, OffsetOk, Visited);
717 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
718 // Same as above, but for ConstantExpr instead of Instruction.
719 if (Instruction::isCast(CE->getOpcode())) {
720 if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
721 CE->getOperand(0)->getType(), CE->getType(),
722 *DL))
723 return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
727 // As a last resort, try SimplifyInstruction or constant folding.
728 if (Instruction *Inst = dyn_cast<Instruction>(V)) {
729 if (Value *W = simplifyInstruction(Inst, {*DL, TLI, DT, AC}))
730 return findValueImpl(W, OffsetOk, Visited);
731 } else if (auto *C = dyn_cast<Constant>(V)) {
732 Value *W = ConstantFoldConstant(C, *DL, TLI);
733 if (W != V)
734 return findValueImpl(W, OffsetOk, Visited);
737 return V;
740 PreservedAnalyses LintPass::run(Function &F, FunctionAnalysisManager &AM) {
741 auto *Mod = F.getParent();
742 auto *DL = &F.getDataLayout();
743 auto *AA = &AM.getResult<AAManager>(F);
744 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
745 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
746 auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
747 Lint L(Mod, DL, AA, AC, DT, TLI);
748 L.visit(F);
749 dbgs() << L.MessagesStr.str();
750 if (LintAbortOnError && !L.MessagesStr.str().empty())
751 report_fatal_error(Twine("Linter found errors, aborting. (enabled by --") +
752 LintAbortOnErrorArgName + ")",
753 false);
754 return PreservedAnalyses::all();
757 //===----------------------------------------------------------------------===//
758 // Implement the public interfaces to this file...
759 //===----------------------------------------------------------------------===//
761 /// lintFunction - Check a function for errors, printing messages on stderr.
763 void llvm::lintFunction(const Function &f) {
764 Function &F = const_cast<Function &>(f);
765 assert(!F.isDeclaration() && "Cannot lint external functions");
767 FunctionAnalysisManager FAM;
768 FAM.registerPass([&] { return TargetLibraryAnalysis(); });
769 FAM.registerPass([&] { return DominatorTreeAnalysis(); });
770 FAM.registerPass([&] { return AssumptionAnalysis(); });
771 FAM.registerPass([&] {
772 AAManager AA;
773 AA.registerFunctionAnalysis<BasicAA>();
774 AA.registerFunctionAnalysis<ScopedNoAliasAA>();
775 AA.registerFunctionAnalysis<TypeBasedAA>();
776 return AA;
778 LintPass().run(F, FAM);
781 /// lintModule - Check a module for errors, printing messages on stderr.
783 void llvm::lintModule(const Module &M) {
784 for (const Function &F : M) {
785 if (!F.isDeclaration())
786 lintFunction(F);