[clang][bytecode][NFC] Only get expr when checking for UB (#125397)
[llvm-project.git] / llvm / lib / Analysis / Loads.cpp
blob733a7988e5a730aadae667b11773ab2947c99758
1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/AssumeBundleQueries.h"
16 #include "llvm/Analysis/LoopAccessAnalysis.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/MemoryBuiltins.h"
19 #include "llvm/Analysis/MemoryLocation.h"
20 #include "llvm/Analysis/ScalarEvolution.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/Operator.h"
27 using namespace llvm;
29 extern cl::opt<bool> UseDerefAtPointSemantics;
31 static bool isAligned(const Value *Base, Align Alignment,
32 const DataLayout &DL) {
33 return Base->getPointerAlignment(DL) >= Alignment;
36 /// Test if V is always a pointer to allocated and suitably aligned memory for
37 /// a simple load or store.
38 static bool isDereferenceableAndAlignedPointer(
39 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
40 const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
41 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited,
42 unsigned MaxDepth) {
43 assert(V->getType()->isPointerTy() && "Base must be pointer");
45 // Recursion limit.
46 if (MaxDepth-- == 0)
47 return false;
49 // Already visited? Bail out, we've likely hit unreachable code.
50 if (!Visited.insert(V).second)
51 return false;
53 // Note that it is not safe to speculate into a malloc'd region because
54 // malloc may return null.
56 // For GEPs, determine if the indexing lands within the allocated object.
57 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
58 const Value *Base = GEP->getPointerOperand();
60 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
61 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
62 !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value()))
63 .isMinValue())
64 return false;
66 // If the base pointer is dereferenceable for Offset+Size bytes, then the
67 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base
68 // pointer is aligned to Align bytes, and the Offset is divisible by Align
69 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
70 // aligned to Align bytes.
72 // Offset and Size may have different bit widths if we have visited an
73 // addrspacecast, so we can't do arithmetic directly on the APInt values.
74 return isDereferenceableAndAlignedPointer(
75 Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL,
76 CtxI, AC, DT, TLI, Visited, MaxDepth);
79 // bitcast instructions are no-ops as far as dereferenceability is concerned.
80 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
81 if (BC->getSrcTy()->isPointerTy())
82 return isDereferenceableAndAlignedPointer(
83 BC->getOperand(0), Alignment, Size, DL, CtxI, AC, DT, TLI,
84 Visited, MaxDepth);
87 // Recurse into both hands of select.
88 if (const SelectInst *Sel = dyn_cast<SelectInst>(V)) {
89 return isDereferenceableAndAlignedPointer(Sel->getTrueValue(), Alignment,
90 Size, DL, CtxI, AC, DT, TLI,
91 Visited, MaxDepth) &&
92 isDereferenceableAndAlignedPointer(Sel->getFalseValue(), Alignment,
93 Size, DL, CtxI, AC, DT, TLI,
94 Visited, MaxDepth);
97 auto IsKnownDeref = [&]() {
98 bool CheckForNonNull, CheckForFreed;
99 if (!Size.ule(V->getPointerDereferenceableBytes(DL, CheckForNonNull,
100 CheckForFreed)) ||
101 CheckForFreed)
102 return false;
103 if (CheckForNonNull &&
104 !isKnownNonZero(V, SimplifyQuery(DL, DT, AC, CtxI)))
105 return false;
106 // When using something like !dereferenceable on a load, the
107 // dereferenceability may only be valid on a specific control-flow path.
108 // If the instruction doesn't dominate the context instruction, we're
109 // asking about dereferenceability under the assumption that the
110 // instruction has been speculated to the point of the context instruction,
111 // in which case we don't know if the dereferenceability info still holds.
112 // We don't bother handling allocas here, as they aren't speculatable
113 // anyway.
114 auto *I = dyn_cast<Instruction>(V);
115 if (I && !isa<AllocaInst>(I))
116 return CtxI && isValidAssumeForContext(I, CtxI, DT);
117 return true;
119 if (IsKnownDeref()) {
120 // As we recursed through GEPs to get here, we've incrementally checked
121 // that each step advanced by a multiple of the alignment. If our base is
122 // properly aligned, then the original offset accessed must also be.
123 return isAligned(V, Alignment, DL);
126 /// TODO refactor this function to be able to search independently for
127 /// Dereferencability and Alignment requirements.
130 if (const auto *Call = dyn_cast<CallBase>(V)) {
131 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
132 return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI,
133 AC, DT, TLI, Visited, MaxDepth);
135 // If we have a call we can't recurse through, check to see if this is an
136 // allocation function for which we can establish an minimum object size.
137 // Such a minimum object size is analogous to a deref_or_null attribute in
138 // that we still need to prove the result non-null at point of use.
139 // NOTE: We can only use the object size as a base fact as we a) need to
140 // prove alignment too, and b) don't want the compile time impact of a
141 // separate recursive walk.
142 ObjectSizeOpts Opts;
143 // TODO: It may be okay to round to align, but that would imply that
144 // accessing slightly out of bounds was legal, and we're currently
145 // inconsistent about that. For the moment, be conservative.
146 Opts.RoundToAlign = false;
147 Opts.NullIsUnknownSize = true;
148 uint64_t ObjSize;
149 if (getObjectSize(V, ObjSize, DL, TLI, Opts)) {
150 APInt KnownDerefBytes(Size.getBitWidth(), ObjSize);
151 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
152 isKnownNonZero(V, SimplifyQuery(DL, DT, AC, CtxI)) &&
153 !V->canBeFreed()) {
154 // As we recursed through GEPs to get here, we've incrementally
155 // checked that each step advanced by a multiple of the alignment. If
156 // our base is properly aligned, then the original offset accessed
157 // must also be.
158 return isAligned(V, Alignment, DL);
163 // For gc.relocate, look through relocations
164 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
165 return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(),
166 Alignment, Size, DL, CtxI, AC, DT,
167 TLI, Visited, MaxDepth);
169 if (const AddrSpaceCastOperator *ASC = dyn_cast<AddrSpaceCastOperator>(V))
170 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment,
171 Size, DL, CtxI, AC, DT, TLI,
172 Visited, MaxDepth);
174 if (CtxI && (!UseDerefAtPointSemantics || !V->canBeFreed())) {
175 /// Look through assumes to see if both dereferencability and alignment can
176 /// be proven by an assume if needed.
177 RetainedKnowledge AlignRK;
178 RetainedKnowledge DerefRK;
179 bool IsAligned = V->getPointerAlignment(DL) >= Alignment;
180 if (getKnowledgeForValue(
181 V, {Attribute::Dereferenceable, Attribute::Alignment}, AC,
182 [&](RetainedKnowledge RK, Instruction *Assume, auto) {
183 if (!isValidAssumeForContext(Assume, CtxI, DT))
184 return false;
185 if (RK.AttrKind == Attribute::Alignment)
186 AlignRK = std::max(AlignRK, RK);
187 if (RK.AttrKind == Attribute::Dereferenceable)
188 DerefRK = std::max(DerefRK, RK);
189 IsAligned |= AlignRK && AlignRK.ArgValue >= Alignment.value();
190 if (IsAligned && DerefRK &&
191 DerefRK.ArgValue >= Size.getZExtValue())
192 return true; // We have found what we needed so we stop looking
193 return false; // Other assumes may have better information. so
194 // keep looking
196 return true;
199 // If we don't know, assume the worst.
200 return false;
203 bool llvm::isDereferenceableAndAlignedPointer(
204 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
205 const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
206 const TargetLibraryInfo *TLI) {
207 // Note: At the moment, Size can be zero. This ends up being interpreted as
208 // a query of whether [Base, V] is dereferenceable and V is aligned (since
209 // that's what the implementation happened to do). It's unclear if this is
210 // the desired semantic, but at least SelectionDAG does exercise this case.
212 SmallPtrSet<const Value *, 32> Visited;
213 return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC,
214 DT, TLI, Visited, 16);
217 bool llvm::isDereferenceableAndAlignedPointer(
218 const Value *V, Type *Ty, Align Alignment, const DataLayout &DL,
219 const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
220 const TargetLibraryInfo *TLI) {
221 // For unsized types or scalable vectors we don't know exactly how many bytes
222 // are dereferenced, so bail out.
223 if (!Ty->isSized() || Ty->isScalableTy())
224 return false;
226 // When dereferenceability information is provided by a dereferenceable
227 // attribute, we know exactly how many bytes are dereferenceable. If we can
228 // determine the exact offset to the attributed variable, we can use that
229 // information here.
231 APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()),
232 DL.getTypeStoreSize(Ty));
233 return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI,
234 AC, DT, TLI);
237 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
238 const DataLayout &DL,
239 const Instruction *CtxI,
240 AssumptionCache *AC,
241 const DominatorTree *DT,
242 const TargetLibraryInfo *TLI) {
243 return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, AC, DT,
244 TLI);
247 /// Test if A and B will obviously have the same value.
249 /// This includes recognizing that %t0 and %t1 will have the same
250 /// value in code like this:
251 /// \code
252 /// %t0 = getelementptr \@a, 0, 3
253 /// store i32 0, i32* %t0
254 /// %t1 = getelementptr \@a, 0, 3
255 /// %t2 = load i32* %t1
256 /// \endcode
258 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
259 // Test if the values are trivially equivalent.
260 if (A == B)
261 return true;
263 // Test if the values come from identical arithmetic instructions.
264 // Use isIdenticalToWhenDefined instead of isIdenticalTo because
265 // this function is only used when one address use dominates the
266 // other, which means that they'll always either have the same
267 // value or one of them will have an undefined value.
268 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
269 isa<GetElementPtrInst>(A))
270 if (const Instruction *BI = dyn_cast<Instruction>(B))
271 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
272 return true;
274 // Otherwise they may not be equivalent.
275 return false;
278 bool llvm::isDereferenceableAndAlignedInLoop(
279 LoadInst *LI, Loop *L, ScalarEvolution &SE, DominatorTree &DT,
280 AssumptionCache *AC, SmallVectorImpl<const SCEVPredicate *> *Predicates) {
281 const Align Alignment = LI->getAlign();
282 auto &DL = LI->getDataLayout();
283 Value *Ptr = LI->getPointerOperand();
284 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
285 DL.getTypeStoreSize(LI->getType()).getFixedValue());
287 // If given a uniform (i.e. non-varying) address, see if we can prove the
288 // access is safe within the loop w/o needing predication.
289 if (L->isLoopInvariant(Ptr))
290 return isDereferenceableAndAlignedPointer(
291 Ptr, Alignment, EltSize, DL, &*L->getHeader()->getFirstNonPHIIt(), AC,
292 &DT);
294 const SCEV *PtrScev = SE.getSCEV(Ptr);
295 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PtrScev);
297 // Check to see if we have a repeating access pattern and it's possible
298 // to prove all accesses are well aligned.
299 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
300 return false;
302 auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
303 if (!Step)
304 return false;
306 // For the moment, restrict ourselves to the case where the access size is a
307 // multiple of the requested alignment and the base is aligned.
308 // TODO: generalize if a case found which warrants
309 if (EltSize.urem(Alignment.value()) != 0)
310 return false;
312 // TODO: Handle overlapping accesses.
313 if (EltSize.ugt(Step->getAPInt().abs()))
314 return false;
316 const SCEV *MaxBECount =
317 Predicates ? SE.getPredicatedConstantMaxBackedgeTakenCount(L, *Predicates)
318 : SE.getConstantMaxBackedgeTakenCount(L);
319 if (isa<SCEVCouldNotCompute>(MaxBECount))
320 return false;
322 const auto &[AccessStart, AccessEnd] = getStartAndEndForAccess(
323 L, PtrScev, LI->getType(), MaxBECount, &SE, nullptr);
324 if (isa<SCEVCouldNotCompute>(AccessStart) ||
325 isa<SCEVCouldNotCompute>(AccessEnd))
326 return false;
328 // Try to get the access size.
329 const SCEV *PtrDiff = SE.getMinusSCEV(AccessEnd, AccessStart);
330 APInt MaxPtrDiff = SE.getUnsignedRangeMax(PtrDiff);
332 Value *Base = nullptr;
333 APInt AccessSize;
334 if (const SCEVUnknown *NewBase = dyn_cast<SCEVUnknown>(AccessStart)) {
335 Base = NewBase->getValue();
336 AccessSize = MaxPtrDiff;
337 } else if (auto *MinAdd = dyn_cast<SCEVAddExpr>(AccessStart)) {
338 if (MinAdd->getNumOperands() != 2)
339 return false;
341 const auto *Offset = dyn_cast<SCEVConstant>(MinAdd->getOperand(0));
342 const auto *NewBase = dyn_cast<SCEVUnknown>(MinAdd->getOperand(1));
343 if (!Offset || !NewBase)
344 return false;
346 // The following code below assumes the offset is unsigned, but GEP
347 // offsets are treated as signed so we can end up with a signed value
348 // here too. For example, suppose the initial PHI value is (i8 255),
349 // the offset will be treated as (i8 -1) and sign-extended to (i64 -1).
350 if (Offset->getAPInt().isNegative())
351 return false;
353 // For the moment, restrict ourselves to the case where the offset is a
354 // multiple of the requested alignment and the base is aligned.
355 // TODO: generalize if a case found which warrants
356 if (Offset->getAPInt().urem(Alignment.value()) != 0)
357 return false;
359 AccessSize = MaxPtrDiff + Offset->getAPInt();
360 Base = NewBase->getValue();
361 } else
362 return false;
364 Instruction *HeaderFirstNonPHI = &*L->getHeader()->getFirstNonPHIIt();
365 return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL,
366 HeaderFirstNonPHI, AC, &DT);
369 static bool suppressSpeculativeLoadForSanitizers(const Instruction &CtxI) {
370 const Function &F = *CtxI.getFunction();
371 // Speculative load may create a race that did not exist in the source.
372 return F.hasFnAttribute(Attribute::SanitizeThread) ||
373 // Speculative load may load data from dirty regions.
374 F.hasFnAttribute(Attribute::SanitizeAddress) ||
375 F.hasFnAttribute(Attribute::SanitizeHWAddress);
378 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
379 return !LI.isUnordered() || suppressSpeculativeLoadForSanitizers(LI);
382 /// Check if executing a load of this pointer value cannot trap.
384 /// If DT and ScanFrom are specified this method performs context-sensitive
385 /// analysis and returns true if it is safe to load immediately before ScanFrom.
387 /// If it is not obviously safe to load from the specified pointer, we do
388 /// a quick local scan of the basic block containing \c ScanFrom, to determine
389 /// if the address is already accessed.
391 /// This uses the pointee type to determine how many bytes need to be safe to
392 /// load from the pointer.
393 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, const APInt &Size,
394 const DataLayout &DL,
395 Instruction *ScanFrom,
396 AssumptionCache *AC,
397 const DominatorTree *DT,
398 const TargetLibraryInfo *TLI) {
399 // If DT is not specified we can't make context-sensitive query
400 const Instruction* CtxI = DT ? ScanFrom : nullptr;
401 if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC, DT,
402 TLI)) {
403 // With sanitizers `Dereferenceable` is not always enough for unconditional
404 // load.
405 if (!ScanFrom || !suppressSpeculativeLoadForSanitizers(*ScanFrom))
406 return true;
409 if (!ScanFrom)
410 return false;
412 if (Size.getBitWidth() > 64)
413 return false;
414 const TypeSize LoadSize = TypeSize::getFixed(Size.getZExtValue());
416 // Otherwise, be a little bit aggressive by scanning the local block where we
417 // want to check to see if the pointer is already being loaded or stored
418 // from/to. If so, the previous load or store would have already trapped,
419 // so there is no harm doing an extra load (also, CSE will later eliminate
420 // the load entirely).
421 BasicBlock::iterator BBI = ScanFrom->getIterator(),
422 E = ScanFrom->getParent()->begin();
424 // We can at least always strip pointer casts even though we can't use the
425 // base here.
426 V = V->stripPointerCasts();
428 while (BBI != E) {
429 --BBI;
431 // If we see a free or a call which may write to memory (i.e. which might do
432 // a free) the pointer could be marked invalid.
433 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
434 !isa<LifetimeIntrinsic>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
435 return false;
437 Value *AccessedPtr;
438 Type *AccessedTy;
439 Align AccessedAlign;
440 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
441 // Ignore volatile loads. The execution of a volatile load cannot
442 // be used to prove an address is backed by regular memory; it can,
443 // for example, point to an MMIO register.
444 if (LI->isVolatile())
445 continue;
446 AccessedPtr = LI->getPointerOperand();
447 AccessedTy = LI->getType();
448 AccessedAlign = LI->getAlign();
449 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
450 // Ignore volatile stores (see comment for loads).
451 if (SI->isVolatile())
452 continue;
453 AccessedPtr = SI->getPointerOperand();
454 AccessedTy = SI->getValueOperand()->getType();
455 AccessedAlign = SI->getAlign();
456 } else
457 continue;
459 if (AccessedAlign < Alignment)
460 continue;
462 // Handle trivial cases.
463 if (AccessedPtr == V &&
464 TypeSize::isKnownLE(LoadSize, DL.getTypeStoreSize(AccessedTy)))
465 return true;
467 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
468 TypeSize::isKnownLE(LoadSize, DL.getTypeStoreSize(AccessedTy)))
469 return true;
471 return false;
474 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment,
475 const DataLayout &DL,
476 Instruction *ScanFrom,
477 AssumptionCache *AC,
478 const DominatorTree *DT,
479 const TargetLibraryInfo *TLI) {
480 TypeSize TySize = DL.getTypeStoreSize(Ty);
481 if (TySize.isScalable())
482 return false;
483 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), TySize.getFixedValue());
484 return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, AC, DT,
485 TLI);
488 /// DefMaxInstsToScan - the default number of maximum instructions
489 /// to scan in the block, used by FindAvailableLoadedValue().
490 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
491 /// threading in part by eliminating partially redundant loads.
492 /// At that point, the value of MaxInstsToScan was already set to '6'
493 /// without documented explanation.
494 cl::opt<unsigned>
495 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
496 cl::desc("Use this to specify the default maximum number of instructions "
497 "to scan backward from a given instruction, when searching for "
498 "available loaded value"));
500 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB,
501 BasicBlock::iterator &ScanFrom,
502 unsigned MaxInstsToScan,
503 BatchAAResults *AA, bool *IsLoad,
504 unsigned *NumScanedInst) {
505 // Don't CSE load that is volatile or anything stronger than unordered.
506 if (!Load->isUnordered())
507 return nullptr;
509 MemoryLocation Loc = MemoryLocation::get(Load);
510 return findAvailablePtrLoadStore(Loc, Load->getType(), Load->isAtomic(),
511 ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoad,
512 NumScanedInst);
515 // Check if the load and the store have the same base, constant offsets and
516 // non-overlapping access ranges.
517 static bool areNonOverlapSameBaseLoadAndStore(const Value *LoadPtr,
518 Type *LoadTy,
519 const Value *StorePtr,
520 Type *StoreTy,
521 const DataLayout &DL) {
522 APInt LoadOffset(DL.getIndexTypeSizeInBits(LoadPtr->getType()), 0);
523 APInt StoreOffset(DL.getIndexTypeSizeInBits(StorePtr->getType()), 0);
524 const Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets(
525 DL, LoadOffset, /* AllowNonInbounds */ false);
526 const Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets(
527 DL, StoreOffset, /* AllowNonInbounds */ false);
528 if (LoadBase != StoreBase)
529 return false;
530 auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy));
531 auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy));
532 ConstantRange LoadRange(LoadOffset,
533 LoadOffset + LoadAccessSize.toRaw());
534 ConstantRange StoreRange(StoreOffset,
535 StoreOffset + StoreAccessSize.toRaw());
536 return LoadRange.intersectWith(StoreRange).isEmptySet();
539 static Value *getAvailableLoadStore(Instruction *Inst, const Value *Ptr,
540 Type *AccessTy, bool AtLeastAtomic,
541 const DataLayout &DL, bool *IsLoadCSE) {
542 // If this is a load of Ptr, the loaded value is available.
543 // (This is true even if the load is volatile or atomic, although
544 // those cases are unlikely.)
545 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
546 // We can value forward from an atomic to a non-atomic, but not the
547 // other way around.
548 if (LI->isAtomic() < AtLeastAtomic)
549 return nullptr;
551 Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts();
552 if (!AreEquivalentAddressValues(LoadPtr, Ptr))
553 return nullptr;
555 if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
556 if (IsLoadCSE)
557 *IsLoadCSE = true;
558 return LI;
562 // If this is a store through Ptr, the value is available!
563 // (This is true even if the store is volatile or atomic, although
564 // those cases are unlikely.)
565 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
566 // We can value forward from an atomic to a non-atomic, but not the
567 // other way around.
568 if (SI->isAtomic() < AtLeastAtomic)
569 return nullptr;
571 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
572 if (!AreEquivalentAddressValues(StorePtr, Ptr))
573 return nullptr;
575 if (IsLoadCSE)
576 *IsLoadCSE = false;
578 Value *Val = SI->getValueOperand();
579 if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL))
580 return Val;
582 TypeSize StoreSize = DL.getTypeSizeInBits(Val->getType());
583 TypeSize LoadSize = DL.getTypeSizeInBits(AccessTy);
584 if (TypeSize::isKnownLE(LoadSize, StoreSize))
585 if (auto *C = dyn_cast<Constant>(Val))
586 return ConstantFoldLoadFromConst(C, AccessTy, DL);
589 if (auto *MSI = dyn_cast<MemSetInst>(Inst)) {
590 // Don't forward from (non-atomic) memset to atomic load.
591 if (AtLeastAtomic)
592 return nullptr;
594 // Only handle constant memsets.
595 auto *Val = dyn_cast<ConstantInt>(MSI->getValue());
596 auto *Len = dyn_cast<ConstantInt>(MSI->getLength());
597 if (!Val || !Len)
598 return nullptr;
600 // TODO: Handle offsets.
601 Value *Dst = MSI->getDest();
602 if (!AreEquivalentAddressValues(Dst, Ptr))
603 return nullptr;
605 if (IsLoadCSE)
606 *IsLoadCSE = false;
608 TypeSize LoadTypeSize = DL.getTypeSizeInBits(AccessTy);
609 if (LoadTypeSize.isScalable())
610 return nullptr;
612 // Make sure the read bytes are contained in the memset.
613 uint64_t LoadSize = LoadTypeSize.getFixedValue();
614 if ((Len->getValue() * 8).ult(LoadSize))
615 return nullptr;
617 APInt Splat = LoadSize >= 8 ? APInt::getSplat(LoadSize, Val->getValue())
618 : Val->getValue().trunc(LoadSize);
619 ConstantInt *SplatC = ConstantInt::get(MSI->getContext(), Splat);
620 if (CastInst::isBitOrNoopPointerCastable(SplatC->getType(), AccessTy, DL))
621 return SplatC;
623 return nullptr;
626 return nullptr;
629 Value *llvm::findAvailablePtrLoadStore(
630 const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic,
631 BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan,
632 BatchAAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst) {
633 if (MaxInstsToScan == 0)
634 MaxInstsToScan = ~0U;
636 const DataLayout &DL = ScanBB->getDataLayout();
637 const Value *StrippedPtr = Loc.Ptr->stripPointerCasts();
639 while (ScanFrom != ScanBB->begin()) {
640 // We must ignore debug info directives when counting (otherwise they
641 // would affect codegen).
642 Instruction *Inst = &*--ScanFrom;
643 if (Inst->isDebugOrPseudoInst())
644 continue;
646 // Restore ScanFrom to expected value in case next test succeeds
647 ScanFrom++;
649 if (NumScanedInst)
650 ++(*NumScanedInst);
652 // Don't scan huge blocks.
653 if (MaxInstsToScan-- == 0)
654 return nullptr;
656 --ScanFrom;
658 if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy,
659 AtLeastAtomic, DL, IsLoadCSE))
660 return Available;
662 // Try to get the store size for the type.
663 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
664 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
666 // If both StrippedPtr and StorePtr reach all the way to an alloca or
667 // global and they are different, ignore the store. This is a trivial form
668 // of alias analysis that is important for reg2mem'd code.
669 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
670 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
671 StrippedPtr != StorePtr)
672 continue;
674 if (!AA) {
675 // When AA isn't available, but if the load and the store have the same
676 // base, constant offsets and non-overlapping access ranges, ignore the
677 // store. This is a simple form of alias analysis that is used by the
678 // inliner. FIXME: use BasicAA if possible.
679 if (areNonOverlapSameBaseLoadAndStore(
680 Loc.Ptr, AccessTy, SI->getPointerOperand(),
681 SI->getValueOperand()->getType(), DL))
682 continue;
683 } else {
684 // If we have alias analysis and it says the store won't modify the
685 // loaded value, ignore the store.
686 if (!isModSet(AA->getModRefInfo(SI, Loc)))
687 continue;
690 // Otherwise the store that may or may not alias the pointer, bail out.
691 ++ScanFrom;
692 return nullptr;
695 // If this is some other instruction that may clobber Ptr, bail out.
696 if (Inst->mayWriteToMemory()) {
697 // If alias analysis claims that it really won't modify the load,
698 // ignore it.
699 if (AA && !isModSet(AA->getModRefInfo(Inst, Loc)))
700 continue;
702 // May modify the pointer, bail out.
703 ++ScanFrom;
704 return nullptr;
708 // Got to the start of the block, we didn't find it, but are done for this
709 // block.
710 return nullptr;
713 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BatchAAResults &AA,
714 bool *IsLoadCSE,
715 unsigned MaxInstsToScan) {
716 const DataLayout &DL = Load->getDataLayout();
717 Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts();
718 BasicBlock *ScanBB = Load->getParent();
719 Type *AccessTy = Load->getType();
720 bool AtLeastAtomic = Load->isAtomic();
722 if (!Load->isUnordered())
723 return nullptr;
725 // Try to find an available value first, and delay expensive alias analysis
726 // queries until later.
727 Value *Available = nullptr;
728 SmallVector<Instruction *> MustNotAliasInsts;
729 for (Instruction &Inst : make_range(++Load->getReverseIterator(),
730 ScanBB->rend())) {
731 if (Inst.isDebugOrPseudoInst())
732 continue;
734 if (MaxInstsToScan-- == 0)
735 return nullptr;
737 Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy,
738 AtLeastAtomic, DL, IsLoadCSE);
739 if (Available)
740 break;
742 if (Inst.mayWriteToMemory())
743 MustNotAliasInsts.push_back(&Inst);
746 // If we found an available value, ensure that the instructions in between
747 // did not modify the memory location.
748 if (Available) {
749 MemoryLocation Loc = MemoryLocation::get(Load);
750 for (Instruction *Inst : MustNotAliasInsts)
751 if (isModSet(AA.getModRefInfo(Inst, Loc)))
752 return nullptr;
755 return Available;
758 // Returns true if a use is either in an ICmp/PtrToInt or a Phi/Select that only
759 // feeds into them.
760 static bool isPointerUseReplacable(const Use &U) {
761 unsigned Limit = 40;
762 SmallVector<const User *> Worklist({U.getUser()});
763 SmallPtrSet<const User *, 8> Visited;
765 while (!Worklist.empty() && --Limit) {
766 auto *User = Worklist.pop_back_val();
767 if (!Visited.insert(User).second)
768 continue;
769 if (isa<ICmpInst, PtrToIntInst>(User))
770 continue;
771 if (isa<PHINode, SelectInst>(User))
772 Worklist.append(User->user_begin(), User->user_end());
773 else
774 return false;
777 return Limit != 0;
780 // Returns true if `To` is a null pointer, constant dereferenceable pointer or
781 // both pointers have the same underlying objects.
782 static bool isPointerAlwaysReplaceable(const Value *From, const Value *To,
783 const DataLayout &DL) {
784 // This is not strictly correct, but we do it for now to retain important
785 // optimizations.
786 if (isa<ConstantPointerNull>(To))
787 return true;
788 if (isa<Constant>(To) &&
789 isDereferenceablePointer(To, Type::getInt8Ty(To->getContext()), DL))
790 return true;
791 return getUnderlyingObjectAggressive(From) ==
792 getUnderlyingObjectAggressive(To);
795 bool llvm::canReplacePointersInUseIfEqual(const Use &U, const Value *To,
796 const DataLayout &DL) {
797 assert(U->getType() == To->getType() && "values must have matching types");
798 // Not a pointer, just return true.
799 if (!To->getType()->isPointerTy())
800 return true;
802 if (isPointerAlwaysReplaceable(&*U, To, DL))
803 return true;
804 return isPointerUseReplacable(U);
807 bool llvm::canReplacePointersIfEqual(const Value *From, const Value *To,
808 const DataLayout &DL) {
809 assert(From->getType() == To->getType() && "values must have matching types");
810 // Not a pointer, just return true.
811 if (!From->getType()->isPointerTy())
812 return true;
814 return isPointerAlwaysReplaceable(From, To, DL);
817 bool llvm::isDereferenceableReadOnlyLoop(
818 Loop *L, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
819 SmallVectorImpl<const SCEVPredicate *> *Predicates) {
820 for (BasicBlock *BB : L->blocks()) {
821 for (Instruction &I : *BB) {
822 if (auto *LI = dyn_cast<LoadInst>(&I)) {
823 if (!isDereferenceableAndAlignedInLoop(LI, L, *SE, *DT, AC, Predicates))
824 return false;
825 } else if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow())
826 return false;
829 return true;