[clang][bytecode][NFC] Only get expr when checking for UB (#125397)
[llvm-project.git] / llvm / lib / Analysis / MemoryProfileInfo.cpp
bloba22344e19d04507d405bc2aa8537485e9608635d
1 //===-- MemoryProfileInfo.cpp - memory profile info ------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains utilities to analyze memory profile information.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/MemoryProfileInfo.h"
14 #include "llvm/IR/Constants.h"
15 #include "llvm/Support/CommandLine.h"
17 using namespace llvm;
18 using namespace llvm::memprof;
20 #define DEBUG_TYPE "memory-profile-info"
22 // Upper bound on lifetime access density (accesses per byte per lifetime sec)
23 // for marking an allocation cold.
24 cl::opt<float> MemProfLifetimeAccessDensityColdThreshold(
25 "memprof-lifetime-access-density-cold-threshold", cl::init(0.05),
26 cl::Hidden,
27 cl::desc("The threshold the lifetime access density (accesses per byte per "
28 "lifetime sec) must be under to consider an allocation cold"));
30 // Lower bound on lifetime to mark an allocation cold (in addition to accesses
31 // per byte per sec above). This is to avoid pessimizing short lived objects.
32 cl::opt<unsigned> MemProfAveLifetimeColdThreshold(
33 "memprof-ave-lifetime-cold-threshold", cl::init(200), cl::Hidden,
34 cl::desc("The average lifetime (s) for an allocation to be considered "
35 "cold"));
37 // Lower bound on average lifetime accesses density (total life time access
38 // density / alloc count) for marking an allocation hot.
39 cl::opt<unsigned> MemProfMinAveLifetimeAccessDensityHotThreshold(
40 "memprof-min-ave-lifetime-access-density-hot-threshold", cl::init(1000),
41 cl::Hidden,
42 cl::desc("The minimum TotalLifetimeAccessDensity / AllocCount for an "
43 "allocation to be considered hot"));
45 cl::opt<bool>
46 MemProfUseHotHints("memprof-use-hot-hints", cl::init(false), cl::Hidden,
47 cl::desc("Enable use of hot hints (only supported for "
48 "unambigously hot allocations)"));
50 cl::opt<bool> MemProfReportHintedSizes(
51 "memprof-report-hinted-sizes", cl::init(false), cl::Hidden,
52 cl::desc("Report total allocation sizes of hinted allocations"));
54 // This is useful if we have enabled reporting of hinted sizes, and want to get
55 // information from the indexing step for all contexts (especially for testing),
56 // or have specified a value less than 100% for -memprof-cloning-cold-threshold.
57 cl::opt<bool> MemProfKeepAllNotColdContexts(
58 "memprof-keep-all-not-cold-contexts", cl::init(false), cl::Hidden,
59 cl::desc("Keep all non-cold contexts (increases cloning overheads)"));
61 AllocationType llvm::memprof::getAllocType(uint64_t TotalLifetimeAccessDensity,
62 uint64_t AllocCount,
63 uint64_t TotalLifetime) {
64 // The access densities are multiplied by 100 to hold 2 decimal places of
65 // precision, so need to divide by 100.
66 if (((float)TotalLifetimeAccessDensity) / AllocCount / 100 <
67 MemProfLifetimeAccessDensityColdThreshold
68 // Lifetime is expected to be in ms, so convert the threshold to ms.
69 && ((float)TotalLifetime) / AllocCount >=
70 MemProfAveLifetimeColdThreshold * 1000)
71 return AllocationType::Cold;
73 // The access densities are multiplied by 100 to hold 2 decimal places of
74 // precision, so need to divide by 100.
75 if (MemProfUseHotHints &&
76 ((float)TotalLifetimeAccessDensity) / AllocCount / 100 >
77 MemProfMinAveLifetimeAccessDensityHotThreshold)
78 return AllocationType::Hot;
80 return AllocationType::NotCold;
83 MDNode *llvm::memprof::buildCallstackMetadata(ArrayRef<uint64_t> CallStack,
84 LLVMContext &Ctx) {
85 SmallVector<Metadata *, 8> StackVals;
86 StackVals.reserve(CallStack.size());
87 for (auto Id : CallStack) {
88 auto *StackValMD =
89 ValueAsMetadata::get(ConstantInt::get(Type::getInt64Ty(Ctx), Id));
90 StackVals.push_back(StackValMD);
92 return MDNode::get(Ctx, StackVals);
95 MDNode *llvm::memprof::getMIBStackNode(const MDNode *MIB) {
96 assert(MIB->getNumOperands() >= 2);
97 // The stack metadata is the first operand of each memprof MIB metadata.
98 return cast<MDNode>(MIB->getOperand(0));
101 AllocationType llvm::memprof::getMIBAllocType(const MDNode *MIB) {
102 assert(MIB->getNumOperands() >= 2);
103 // The allocation type is currently the second operand of each memprof
104 // MIB metadata. This will need to change as we add additional allocation
105 // types that can be applied based on the allocation profile data.
106 auto *MDS = dyn_cast<MDString>(MIB->getOperand(1));
107 assert(MDS);
108 if (MDS->getString() == "cold") {
109 return AllocationType::Cold;
110 } else if (MDS->getString() == "hot") {
111 return AllocationType::Hot;
113 return AllocationType::NotCold;
116 std::string llvm::memprof::getAllocTypeAttributeString(AllocationType Type) {
117 switch (Type) {
118 case AllocationType::NotCold:
119 return "notcold";
120 break;
121 case AllocationType::Cold:
122 return "cold";
123 break;
124 case AllocationType::Hot:
125 return "hot";
126 break;
127 default:
128 assert(false && "Unexpected alloc type");
130 llvm_unreachable("invalid alloc type");
133 static void addAllocTypeAttribute(LLVMContext &Ctx, CallBase *CI,
134 AllocationType AllocType) {
135 auto AllocTypeString = getAllocTypeAttributeString(AllocType);
136 auto A = llvm::Attribute::get(Ctx, "memprof", AllocTypeString);
137 CI->addFnAttr(A);
140 bool llvm::memprof::hasSingleAllocType(uint8_t AllocTypes) {
141 const unsigned NumAllocTypes = llvm::popcount(AllocTypes);
142 assert(NumAllocTypes != 0);
143 return NumAllocTypes == 1;
146 void CallStackTrie::addCallStack(
147 AllocationType AllocType, ArrayRef<uint64_t> StackIds,
148 std::vector<ContextTotalSize> ContextSizeInfo) {
149 bool First = true;
150 CallStackTrieNode *Curr = nullptr;
151 for (auto StackId : StackIds) {
152 // If this is the first stack frame, add or update alloc node.
153 if (First) {
154 First = false;
155 if (Alloc) {
156 assert(AllocStackId == StackId);
157 Alloc->addAllocType(AllocType);
158 } else {
159 AllocStackId = StackId;
160 Alloc = new CallStackTrieNode(AllocType);
162 Curr = Alloc;
163 continue;
165 // Update existing caller node if it exists.
166 CallStackTrieNode *Prev = nullptr;
167 auto Next = Curr->Callers.find(StackId);
168 if (Next != Curr->Callers.end()) {
169 Prev = Curr;
170 Curr = Next->second;
171 Curr->addAllocType(AllocType);
172 // If this node has an ambiguous alloc type, its callee is not the deepest
173 // point where we have an ambigous allocation type.
174 if (!hasSingleAllocType(Curr->AllocTypes))
175 Prev->DeepestAmbiguousAllocType = false;
176 continue;
178 // Otherwise add a new caller node.
179 auto *New = new CallStackTrieNode(AllocType);
180 Curr->Callers[StackId] = New;
181 Curr = New;
183 assert(Curr);
184 Curr->ContextSizeInfo.insert(Curr->ContextSizeInfo.end(),
185 ContextSizeInfo.begin(), ContextSizeInfo.end());
188 void CallStackTrie::addCallStack(MDNode *MIB) {
189 MDNode *StackMD = getMIBStackNode(MIB);
190 assert(StackMD);
191 std::vector<uint64_t> CallStack;
192 CallStack.reserve(StackMD->getNumOperands());
193 for (const auto &MIBStackIter : StackMD->operands()) {
194 auto *StackId = mdconst::dyn_extract<ConstantInt>(MIBStackIter);
195 assert(StackId);
196 CallStack.push_back(StackId->getZExtValue());
198 std::vector<ContextTotalSize> ContextSizeInfo;
199 // Collect the context size information if it exists.
200 if (MIB->getNumOperands() > 2) {
201 for (unsigned I = 2; I < MIB->getNumOperands(); I++) {
202 MDNode *ContextSizePair = dyn_cast<MDNode>(MIB->getOperand(I));
203 assert(ContextSizePair->getNumOperands() == 2);
204 uint64_t FullStackId =
205 mdconst::dyn_extract<ConstantInt>(ContextSizePair->getOperand(0))
206 ->getZExtValue();
207 uint64_t TotalSize =
208 mdconst::dyn_extract<ConstantInt>(ContextSizePair->getOperand(1))
209 ->getZExtValue();
210 ContextSizeInfo.push_back({FullStackId, TotalSize});
213 addCallStack(getMIBAllocType(MIB), CallStack, std::move(ContextSizeInfo));
216 static MDNode *createMIBNode(LLVMContext &Ctx, ArrayRef<uint64_t> MIBCallStack,
217 AllocationType AllocType,
218 ArrayRef<ContextTotalSize> ContextSizeInfo) {
219 SmallVector<Metadata *> MIBPayload(
220 {buildCallstackMetadata(MIBCallStack, Ctx)});
221 MIBPayload.push_back(
222 MDString::get(Ctx, getAllocTypeAttributeString(AllocType)));
223 if (!ContextSizeInfo.empty()) {
224 for (const auto &[FullStackId, TotalSize] : ContextSizeInfo) {
225 auto *FullStackIdMD = ValueAsMetadata::get(
226 ConstantInt::get(Type::getInt64Ty(Ctx), FullStackId));
227 auto *TotalSizeMD = ValueAsMetadata::get(
228 ConstantInt::get(Type::getInt64Ty(Ctx), TotalSize));
229 auto *ContextSizeMD = MDNode::get(Ctx, {FullStackIdMD, TotalSizeMD});
230 MIBPayload.push_back(ContextSizeMD);
233 return MDNode::get(Ctx, MIBPayload);
236 void CallStackTrie::collectContextSizeInfo(
237 CallStackTrieNode *Node, std::vector<ContextTotalSize> &ContextSizeInfo) {
238 ContextSizeInfo.insert(ContextSizeInfo.end(), Node->ContextSizeInfo.begin(),
239 Node->ContextSizeInfo.end());
240 for (auto &Caller : Node->Callers)
241 collectContextSizeInfo(Caller.second, ContextSizeInfo);
244 void CallStackTrie::convertHotToNotCold(CallStackTrieNode *Node) {
245 if (Node->hasAllocType(AllocationType::Hot)) {
246 Node->removeAllocType(AllocationType::Hot);
247 Node->addAllocType(AllocationType::NotCold);
249 for (auto &Caller : Node->Callers)
250 convertHotToNotCold(Caller.second);
253 // Recursive helper to trim contexts and create metadata nodes.
254 // Caller should have pushed Node's loc to MIBCallStack. Doing this in the
255 // caller makes it simpler to handle the many early returns in this method.
256 bool CallStackTrie::buildMIBNodes(CallStackTrieNode *Node, LLVMContext &Ctx,
257 std::vector<uint64_t> &MIBCallStack,
258 std::vector<Metadata *> &MIBNodes,
259 bool CalleeHasAmbiguousCallerContext,
260 bool &CalleeDeepestAmbiguousAllocType) {
261 // Trim context below the first node in a prefix with a single alloc type.
262 // Add an MIB record for the current call stack prefix.
263 if (hasSingleAllocType(Node->AllocTypes)) {
264 // Because we only clone cold contexts (we don't clone for exposing NotCold
265 // contexts as that is the default allocation behavior), we create MIB
266 // metadata for this context if any of the following are true:
267 // 1) It is cold.
268 // 2) The immediate callee is the deepest point where we have an ambiguous
269 // allocation type (i.e. the other callers that are cold need to know
270 // that we have a not cold context overlapping to this point so that we
271 // know how deep to clone).
272 // 3) MemProfKeepAllNotColdContexts is enabled, which is useful if we are
273 // reporting hinted sizes, and want to get information from the indexing
274 // step for all contexts, or have specified a value less than 100% for
275 // -memprof-cloning-cold-threshold.
276 if (Node->hasAllocType(AllocationType::Cold) ||
277 CalleeDeepestAmbiguousAllocType || MemProfKeepAllNotColdContexts) {
278 std::vector<ContextTotalSize> ContextSizeInfo;
279 collectContextSizeInfo(Node, ContextSizeInfo);
280 MIBNodes.push_back(createMIBNode(Ctx, MIBCallStack,
281 (AllocationType)Node->AllocTypes,
282 ContextSizeInfo));
283 // If we just emitted an MIB for a not cold caller, don't need to emit
284 // another one for the callee to correctly disambiguate its cold callers.
285 if (!Node->hasAllocType(AllocationType::Cold))
286 CalleeDeepestAmbiguousAllocType = false;
288 return true;
291 // We don't have a single allocation for all the contexts sharing this prefix,
292 // so recursively descend into callers in trie.
293 if (!Node->Callers.empty()) {
294 bool NodeHasAmbiguousCallerContext = Node->Callers.size() > 1;
295 bool AddedMIBNodesForAllCallerContexts = true;
296 for (auto &Caller : Node->Callers) {
297 MIBCallStack.push_back(Caller.first);
298 AddedMIBNodesForAllCallerContexts &= buildMIBNodes(
299 Caller.second, Ctx, MIBCallStack, MIBNodes,
300 NodeHasAmbiguousCallerContext, Node->DeepestAmbiguousAllocType);
301 // Remove Caller.
302 MIBCallStack.pop_back();
304 if (AddedMIBNodesForAllCallerContexts)
305 return true;
306 // We expect that the callers should be forced to add MIBs to disambiguate
307 // the context in this case (see below).
308 assert(!NodeHasAmbiguousCallerContext);
311 // If we reached here, then this node does not have a single allocation type,
312 // and we didn't add metadata for a longer call stack prefix including any of
313 // Node's callers. That means we never hit a single allocation type along all
314 // call stacks with this prefix. This can happen due to recursion collapsing
315 // or the stack being deeper than tracked by the profiler runtime, leading to
316 // contexts with different allocation types being merged. In that case, we
317 // trim the context just below the deepest context split, which is this
318 // node if the callee has an ambiguous caller context (multiple callers),
319 // since the recursive calls above returned false. Conservatively give it
320 // non-cold allocation type.
321 if (!CalleeHasAmbiguousCallerContext)
322 return false;
323 std::vector<ContextTotalSize> ContextSizeInfo;
324 collectContextSizeInfo(Node, ContextSizeInfo);
325 MIBNodes.push_back(createMIBNode(Ctx, MIBCallStack, AllocationType::NotCold,
326 ContextSizeInfo));
327 return true;
330 void CallStackTrie::addSingleAllocTypeAttribute(CallBase *CI, AllocationType AT,
331 StringRef Descriptor) {
332 addAllocTypeAttribute(CI->getContext(), CI, AT);
333 if (MemProfReportHintedSizes) {
334 std::vector<ContextTotalSize> ContextSizeInfo;
335 collectContextSizeInfo(Alloc, ContextSizeInfo);
336 for (const auto &[FullStackId, TotalSize] : ContextSizeInfo) {
337 errs() << "MemProf hinting: Total size for full allocation context hash "
338 << FullStackId << " and " << Descriptor << " alloc type "
339 << getAllocTypeAttributeString(AT) << ": " << TotalSize << "\n";
344 // Build and attach the minimal necessary MIB metadata. If the alloc has a
345 // single allocation type, add a function attribute instead. Returns true if
346 // memprof metadata attached, false if not (attribute added).
347 bool CallStackTrie::buildAndAttachMIBMetadata(CallBase *CI) {
348 if (hasSingleAllocType(Alloc->AllocTypes)) {
349 addSingleAllocTypeAttribute(CI, (AllocationType)Alloc->AllocTypes,
350 "single");
351 return false;
353 // If there were any hot allocation contexts, the Alloc trie node would have
354 // the Hot type set. If so, because we don't currently support cloning for hot
355 // contexts, they should be converted to NotCold. This happens in the cloning
356 // support anyway, however, doing this now enables more aggressive context
357 // trimming when building the MIB metadata (and possibly may make the
358 // allocation have a single NotCold allocation type), greatly reducing
359 // overheads in bitcode, cloning memory and cloning time.
360 if (Alloc->hasAllocType(AllocationType::Hot)) {
361 convertHotToNotCold(Alloc);
362 // Check whether we now have a single alloc type.
363 if (hasSingleAllocType(Alloc->AllocTypes)) {
364 addSingleAllocTypeAttribute(CI, (AllocationType)Alloc->AllocTypes,
365 "single");
366 return false;
369 auto &Ctx = CI->getContext();
370 std::vector<uint64_t> MIBCallStack;
371 MIBCallStack.push_back(AllocStackId);
372 std::vector<Metadata *> MIBNodes;
373 assert(!Alloc->Callers.empty() && "addCallStack has not been called yet");
374 // The CalleeHasAmbiguousCallerContext flag is meant to say whether the
375 // callee of the given node has more than one caller. Here the node being
376 // passed in is the alloc and it has no callees. So it's false.
377 // Similarly, the last parameter is meant to say whether the callee of the
378 // given node is the deepest point where we have ambiguous alloc types, which
379 // is also false as the alloc has no callees.
380 bool DeepestAmbiguousAllocType = true;
381 if (buildMIBNodes(Alloc, Ctx, MIBCallStack, MIBNodes,
382 /*CalleeHasAmbiguousCallerContext=*/false,
383 DeepestAmbiguousAllocType)) {
384 assert(MIBCallStack.size() == 1 &&
385 "Should only be left with Alloc's location in stack");
386 CI->setMetadata(LLVMContext::MD_memprof, MDNode::get(Ctx, MIBNodes));
387 return true;
389 // If there exists corner case that CallStackTrie has one chain to leaf
390 // and all node in the chain have multi alloc type, conservatively give
391 // it non-cold allocation type.
392 // FIXME: Avoid this case before memory profile created. Alternatively, select
393 // hint based on fraction cold.
394 addSingleAllocTypeAttribute(CI, AllocationType::NotCold, "indistinguishable");
395 return false;
398 template <>
399 CallStack<MDNode, MDNode::op_iterator>::CallStackIterator::CallStackIterator(
400 const MDNode *N, bool End)
401 : N(N) {
402 if (!N)
403 return;
404 Iter = End ? N->op_end() : N->op_begin();
407 template <>
408 uint64_t
409 CallStack<MDNode, MDNode::op_iterator>::CallStackIterator::operator*() {
410 assert(Iter != N->op_end());
411 ConstantInt *StackIdCInt = mdconst::dyn_extract<ConstantInt>(*Iter);
412 assert(StackIdCInt);
413 return StackIdCInt->getZExtValue();
416 template <> uint64_t CallStack<MDNode, MDNode::op_iterator>::back() const {
417 assert(N);
418 return mdconst::dyn_extract<ConstantInt>(N->operands().back())
419 ->getZExtValue();
422 MDNode *MDNode::getMergedMemProfMetadata(MDNode *A, MDNode *B) {
423 // TODO: Support more sophisticated merging, such as selecting the one with
424 // more bytes allocated, or implement support for carrying multiple allocation
425 // leaf contexts. For now, keep the first one.
426 if (A)
427 return A;
428 return B;
431 MDNode *MDNode::getMergedCallsiteMetadata(MDNode *A, MDNode *B) {
432 // TODO: Support more sophisticated merging, which will require support for
433 // carrying multiple contexts. For now, keep the first one.
434 if (A)
435 return A;
436 return B;