1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/MustExecute.h"
10 #include "llvm/ADT/PostOrderIterator.h"
11 #include "llvm/ADT/StringExtras.h"
12 #include "llvm/Analysis/CFG.h"
13 #include "llvm/Analysis/InstructionSimplify.h"
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/Analysis/PostDominators.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/AssemblyAnnotationWriter.h"
18 #include "llvm/IR/Dominators.h"
19 #include "llvm/IR/InstIterator.h"
20 #include "llvm/IR/Module.h"
21 #include "llvm/IR/PassManager.h"
22 #include "llvm/Support/FormattedStream.h"
23 #include "llvm/Support/raw_ostream.h"
27 #define DEBUG_TYPE "must-execute"
29 const DenseMap
<BasicBlock
*, ColorVector
> &
30 LoopSafetyInfo::getBlockColors() const {
34 void LoopSafetyInfo::copyColors(BasicBlock
*New
, BasicBlock
*Old
) {
35 ColorVector
&ColorsForNewBlock
= BlockColors
[New
];
36 ColorVector
&ColorsForOldBlock
= BlockColors
[Old
];
37 ColorsForNewBlock
= ColorsForOldBlock
;
40 bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock
*BB
) const {
42 return anyBlockMayThrow();
45 bool SimpleLoopSafetyInfo::anyBlockMayThrow() const {
49 void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop
*CurLoop
) {
50 assert(CurLoop
!= nullptr && "CurLoop can't be null");
51 BasicBlock
*Header
= CurLoop
->getHeader();
52 // Iterate over header and compute safety info.
53 HeaderMayThrow
= !isGuaranteedToTransferExecutionToSuccessor(Header
);
54 MayThrow
= HeaderMayThrow
;
55 // Iterate over loop instructions and compute safety info.
56 // Skip header as it has been computed and stored in HeaderMayThrow.
57 // The first block in loopinfo.Blocks is guaranteed to be the header.
58 assert(Header
== *CurLoop
->getBlocks().begin() &&
59 "First block must be header");
60 for (const BasicBlock
*BB
: llvm::drop_begin(CurLoop
->blocks())) {
61 MayThrow
|= !isGuaranteedToTransferExecutionToSuccessor(BB
);
66 computeBlockColors(CurLoop
);
69 bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock
*BB
) const {
70 return ICF
.hasICF(BB
);
73 bool ICFLoopSafetyInfo::anyBlockMayThrow() const {
77 void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop
*CurLoop
) {
78 assert(CurLoop
!= nullptr && "CurLoop can't be null");
82 // Figure out the fact that at least one block may throw.
83 for (const auto &BB
: CurLoop
->blocks())
84 if (ICF
.hasICF(&*BB
)) {
88 computeBlockColors(CurLoop
);
91 void ICFLoopSafetyInfo::insertInstructionTo(const Instruction
*Inst
,
92 const BasicBlock
*BB
) {
93 ICF
.insertInstructionTo(Inst
, BB
);
94 MW
.insertInstructionTo(Inst
, BB
);
97 void ICFLoopSafetyInfo::removeInstruction(const Instruction
*Inst
) {
98 ICF
.removeInstruction(Inst
);
99 MW
.removeInstruction(Inst
);
102 void LoopSafetyInfo::computeBlockColors(const Loop
*CurLoop
) {
103 // Compute funclet colors if we might sink/hoist in a function with a funclet
104 // personality routine.
105 Function
*Fn
= CurLoop
->getHeader()->getParent();
106 if (Fn
->hasPersonalityFn())
107 if (Constant
*PersonalityFn
= Fn
->getPersonalityFn())
108 if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn
)))
109 BlockColors
= colorEHFunclets(*Fn
);
112 /// Return true if we can prove that the given ExitBlock is not reached on the
113 /// first iteration of the given loop. That is, the backedge of the loop must
114 /// be executed before the ExitBlock is executed in any dynamic execution trace.
115 static bool CanProveNotTakenFirstIteration(const BasicBlock
*ExitBlock
,
116 const DominatorTree
*DT
,
117 const Loop
*CurLoop
) {
118 auto *CondExitBlock
= ExitBlock
->getSinglePredecessor();
120 // expect unique exits
122 assert(CurLoop
->contains(CondExitBlock
) && "meaning of exit block");
123 auto *BI
= dyn_cast
<BranchInst
>(CondExitBlock
->getTerminator());
124 if (!BI
|| !BI
->isConditional())
126 // If condition is constant and false leads to ExitBlock then we always
127 // execute the true branch.
128 if (auto *Cond
= dyn_cast
<ConstantInt
>(BI
->getCondition()))
129 return BI
->getSuccessor(Cond
->getZExtValue() ? 1 : 0) == ExitBlock
;
130 auto *Cond
= dyn_cast
<CmpInst
>(BI
->getCondition());
133 // todo: this would be a lot more powerful if we used scev, but all the
134 // plumbing is currently missing to pass a pointer in from the pass
135 // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
136 ICmpInst::Predicate Pred
= Cond
->getPredicate();
137 auto *LHS
= dyn_cast
<PHINode
>(Cond
->getOperand(0));
138 auto *RHS
= Cond
->getOperand(1);
139 if (!LHS
|| LHS
->getParent() != CurLoop
->getHeader()) {
140 Pred
= Cond
->getSwappedPredicate();
141 LHS
= dyn_cast
<PHINode
>(Cond
->getOperand(1));
142 RHS
= Cond
->getOperand(0);
143 if (!LHS
|| LHS
->getParent() != CurLoop
->getHeader())
147 auto DL
= ExitBlock
->getModule()->getDataLayout();
148 auto *IVStart
= LHS
->getIncomingValueForBlock(CurLoop
->getLoopPreheader());
149 auto *SimpleValOrNull
= simplifyCmpInst(
150 Pred
, IVStart
, RHS
, {DL
, /*TLI*/ nullptr, DT
, /*AC*/ nullptr, BI
});
151 auto *SimpleCst
= dyn_cast_or_null
<Constant
>(SimpleValOrNull
);
154 if (ExitBlock
== BI
->getSuccessor(0))
155 return SimpleCst
->isZeroValue();
156 assert(ExitBlock
== BI
->getSuccessor(1) && "implied by above");
157 return SimpleCst
->isAllOnesValue();
160 /// Collect all blocks from \p CurLoop which lie on all possible paths from
161 /// the header of \p CurLoop (inclusive) to BB (exclusive) into the set
162 /// \p Predecessors. If \p BB is the header, \p Predecessors will be empty.
163 /// Note: It's possible that we encounter Irreducible control flow, due to
164 /// which, we may find that a few predecessors of \p BB are not a part of the
165 /// \p CurLoop. We only return Predecessors that are a part of \p CurLoop.
166 static void collectTransitivePredecessors(
167 const Loop
*CurLoop
, const BasicBlock
*BB
,
168 SmallPtrSetImpl
<const BasicBlock
*> &Predecessors
) {
169 assert(Predecessors
.empty() && "Garbage in predecessors set?");
170 assert(CurLoop
->contains(BB
) && "Should only be called for loop blocks!");
171 if (BB
== CurLoop
->getHeader())
173 SmallVector
<const BasicBlock
*, 4> WorkList
;
174 for (const auto *Pred
: predecessors(BB
)) {
175 if (!CurLoop
->contains(Pred
))
177 Predecessors
.insert(Pred
);
178 WorkList
.push_back(Pred
);
180 while (!WorkList
.empty()) {
181 auto *Pred
= WorkList
.pop_back_val();
182 assert(CurLoop
->contains(Pred
) && "Should only reach loop blocks!");
183 // We are not interested in backedges and we don't want to leave loop.
184 if (Pred
== CurLoop
->getHeader())
186 // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all
187 // blocks of this inner loop, even those that are always executed AFTER the
188 // BB. It may make our analysis more conservative than it could be, see test
189 // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll.
190 // We can ignore backedge of all loops containing BB to get a sligtly more
191 // optimistic result.
192 for (const auto *PredPred
: predecessors(Pred
))
193 if (CurLoop
->contains(PredPred
) && Predecessors
.insert(PredPred
).second
)
194 WorkList
.push_back(PredPred
);
198 bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop
*CurLoop
,
199 const BasicBlock
*BB
,
200 const DominatorTree
*DT
) const {
201 assert(CurLoop
->contains(BB
) && "Should only be called for loop blocks!");
203 // Fast path: header is always reached once the loop is entered.
204 if (BB
== CurLoop
->getHeader())
207 // Collect all transitive predecessors of BB in the same loop. This set will
208 // be a subset of the blocks within the loop.
209 SmallPtrSet
<const BasicBlock
*, 4> Predecessors
;
210 collectTransitivePredecessors(CurLoop
, BB
, Predecessors
);
212 // Bail out if a latch block is part of the predecessor set. In this case
213 // we may take the backedge to the header and not execute other latch
215 for (const BasicBlock
*Pred
: predecessors(CurLoop
->getHeader()))
216 // Predecessors only contains loop blocks, so we don't have to worry about
217 // preheader predecessors here.
218 if (Predecessors
.contains(Pred
))
221 // Make sure that all successors of, all predecessors of BB which are not
222 // dominated by BB, are either:
224 // 2) Also predecessors of BB,
225 // 3) Exit blocks which are not taken on 1st iteration.
226 // Memoize blocks we've already checked.
227 SmallPtrSet
<const BasicBlock
*, 4> CheckedSuccessors
;
228 for (const auto *Pred
: Predecessors
) {
229 // Predecessor block may throw, so it has a side exit.
230 if (blockMayThrow(Pred
))
233 // BB dominates Pred, so if Pred runs, BB must run.
234 // This is true when Pred is a loop latch.
235 if (DT
->dominates(BB
, Pred
))
238 for (const auto *Succ
: successors(Pred
))
239 if (CheckedSuccessors
.insert(Succ
).second
&&
240 Succ
!= BB
&& !Predecessors
.count(Succ
))
241 // By discharging conditions that are not executed on the 1st iteration,
242 // we guarantee that *at least* on the first iteration all paths from
243 // header that *may* execute will lead us to the block of interest. So
244 // that if we had virtually peeled one iteration away, in this peeled
245 // iteration the set of predecessors would contain only paths from
246 // header to BB without any exiting edges that may execute.
248 // TODO: We only do it for exiting edges currently. We could use the
249 // same function to skip some of the edges within the loop if we know
250 // that they will not be taken on the 1st iteration.
252 // TODO: If we somehow know the number of iterations in loop, the same
253 // check may be done for any arbitrary N-th iteration as long as N is
254 // not greater than minimum number of iterations in this loop.
255 if (CurLoop
->contains(Succ
) ||
256 !CanProveNotTakenFirstIteration(Succ
, DT
, CurLoop
))
260 // All predecessors can only lead us to BB.
264 /// Returns true if the instruction in a loop is guaranteed to execute at least
266 bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction
&Inst
,
267 const DominatorTree
*DT
,
268 const Loop
*CurLoop
) const {
269 // If the instruction is in the header block for the loop (which is very
270 // common), it is always guaranteed to dominate the exit blocks. Since this
271 // is a common case, and can save some work, check it now.
272 if (Inst
.getParent() == CurLoop
->getHeader())
273 // If there's a throw in the header block, we can't guarantee we'll reach
274 // Inst unless we can prove that Inst comes before the potential implicit
275 // exit. At the moment, we use a (cheap) hack for the common case where
276 // the instruction of interest is the first one in the block.
277 return !HeaderMayThrow
||
278 &*Inst
.getParent()->getFirstNonPHIOrDbg() == &Inst
;
280 // If there is a path from header to exit or latch that doesn't lead to our
281 // instruction's block, return false.
282 return allLoopPathsLeadToBlock(CurLoop
, Inst
.getParent(), DT
);
285 bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction
&Inst
,
286 const DominatorTree
*DT
,
287 const Loop
*CurLoop
) const {
288 return !ICF
.isDominatedByICFIFromSameBlock(&Inst
) &&
289 allLoopPathsLeadToBlock(CurLoop
, Inst
.getParent(), DT
);
292 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock
*BB
,
293 const Loop
*CurLoop
) const {
294 assert(CurLoop
->contains(BB
) && "Should only be called for loop blocks!");
296 // Fast path: there are no instructions before header.
297 if (BB
== CurLoop
->getHeader())
300 // Collect all transitive predecessors of BB in the same loop. This set will
301 // be a subset of the blocks within the loop.
302 SmallPtrSet
<const BasicBlock
*, 4> Predecessors
;
303 collectTransitivePredecessors(CurLoop
, BB
, Predecessors
);
304 // Find if there any instruction in either predecessor that could write
306 for (const auto *Pred
: Predecessors
)
307 if (MW
.mayWriteToMemory(Pred
))
312 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction
&I
,
313 const Loop
*CurLoop
) const {
314 auto *BB
= I
.getParent();
315 assert(CurLoop
->contains(BB
) && "Should only be called for loop blocks!");
316 return !MW
.isDominatedByMemoryWriteFromSameBlock(&I
) &&
317 doesNotWriteMemoryBefore(BB
, CurLoop
);
320 static bool isMustExecuteIn(const Instruction
&I
, Loop
*L
, DominatorTree
*DT
) {
321 // TODO: merge these two routines. For the moment, we display the best
322 // result obtained by *either* implementation. This is a bit unfair since no
323 // caller actually gets the full power at the moment.
324 SimpleLoopSafetyInfo LSI
;
325 LSI
.computeLoopSafetyInfo(L
);
326 return LSI
.isGuaranteedToExecute(I
, DT
, L
) ||
327 isGuaranteedToExecuteForEveryIteration(&I
, L
);
331 /// An assembly annotator class to print must execute information in
333 class MustExecuteAnnotatedWriter
: public AssemblyAnnotationWriter
{
334 DenseMap
<const Value
*, SmallVector
<Loop
*, 4> > MustExec
;
337 MustExecuteAnnotatedWriter(const Function
&F
,
338 DominatorTree
&DT
, LoopInfo
&LI
) {
339 for (const auto &I
: instructions(F
)) {
340 Loop
*L
= LI
.getLoopFor(I
.getParent());
342 if (isMustExecuteIn(I
, L
, &DT
)) {
343 MustExec
[&I
].push_back(L
);
345 L
= L
->getParentLoop();
349 MustExecuteAnnotatedWriter(const Module
&M
,
350 DominatorTree
&DT
, LoopInfo
&LI
) {
351 for (const auto &F
: M
)
352 for (const auto &I
: instructions(F
)) {
353 Loop
*L
= LI
.getLoopFor(I
.getParent());
355 if (isMustExecuteIn(I
, L
, &DT
)) {
356 MustExec
[&I
].push_back(L
);
358 L
= L
->getParentLoop();
364 void printInfoComment(const Value
&V
, formatted_raw_ostream
&OS
) override
{
365 if (!MustExec
.count(&V
))
368 const auto &Loops
= MustExec
.lookup(&V
);
369 const auto NumLoops
= Loops
.size();
371 OS
<< " ; (mustexec in " << NumLoops
<< " loops: ";
373 OS
<< " ; (mustexec in: ";
376 for (const Loop
*L
: Loops
)
377 OS
<< LS
<< L
->getHeader()->getName();
383 /// Return true if \p L might be an endless loop.
384 static bool maybeEndlessLoop(const Loop
&L
) {
385 if (L
.getHeader()->getParent()->hasFnAttribute(Attribute::WillReturn
))
387 // TODO: Actually try to prove it is not.
388 // TODO: If maybeEndlessLoop is going to be expensive, cache it.
392 bool llvm::mayContainIrreducibleControl(const Function
&F
, const LoopInfo
*LI
) {
395 using RPOTraversal
= ReversePostOrderTraversal
<const Function
*>;
396 RPOTraversal
FuncRPOT(&F
);
397 return containsIrreducibleCFG
<const BasicBlock
*, const RPOTraversal
,
398 const LoopInfo
>(FuncRPOT
, *LI
);
401 /// Lookup \p Key in \p Map and return the result, potentially after
402 /// initializing the optional through \p Fn(\p args).
403 template <typename K
, typename V
, typename FnTy
, typename
... ArgsTy
>
404 static V
getOrCreateCachedOptional(K Key
, DenseMap
<K
, std::optional
<V
>> &Map
,
405 FnTy
&&Fn
, ArgsTy
&&...args
) {
406 std::optional
<V
> &OptVal
= Map
[Key
];
408 OptVal
= Fn(std::forward
<ArgsTy
>(args
)...);
413 MustBeExecutedContextExplorer::findForwardJoinPoint(const BasicBlock
*InitBB
) {
414 const LoopInfo
*LI
= LIGetter(*InitBB
->getParent());
415 const PostDominatorTree
*PDT
= PDTGetter(*InitBB
->getParent());
417 LLVM_DEBUG(dbgs() << "\tFind forward join point for " << InitBB
->getName()
418 << (LI
? " [LI]" : "") << (PDT
? " [PDT]" : ""));
420 const Function
&F
= *InitBB
->getParent();
421 const Loop
*L
= LI
? LI
->getLoopFor(InitBB
) : nullptr;
422 const BasicBlock
*HeaderBB
= L
? L
->getHeader() : InitBB
;
423 bool WillReturnAndNoThrow
= (F
.hasFnAttribute(Attribute::WillReturn
) ||
424 (L
&& !maybeEndlessLoop(*L
))) &&
426 LLVM_DEBUG(dbgs() << (L
? " [in loop]" : "")
427 << (WillReturnAndNoThrow
? " [WillReturn] [NoUnwind]" : "")
430 // Determine the adjacent blocks in the given direction but exclude (self)
431 // loops under certain circumstances.
432 SmallVector
<const BasicBlock
*, 8> Worklist
;
433 for (const BasicBlock
*SuccBB
: successors(InitBB
)) {
434 bool IsLatch
= SuccBB
== HeaderBB
;
435 // Loop latches are ignored in forward propagation if the loop cannot be
436 // endless and may not throw: control has to go somewhere.
437 if (!WillReturnAndNoThrow
|| !IsLatch
)
438 Worklist
.push_back(SuccBB
);
440 LLVM_DEBUG(dbgs() << "\t\t#Worklist: " << Worklist
.size() << "\n");
442 // If there are no other adjacent blocks, there is no join point.
443 if (Worklist
.empty())
446 // If there is one adjacent block, it is the join point.
447 if (Worklist
.size() == 1)
450 // Try to determine a join block through the help of the post-dominance
451 // tree. If no tree was provided, we perform simple pattern matching for one
452 // block conditionals and one block loops only.
453 const BasicBlock
*JoinBB
= nullptr;
455 if (const auto *InitNode
= PDT
->getNode(InitBB
))
456 if (const auto *IDomNode
= InitNode
->getIDom())
457 JoinBB
= IDomNode
->getBlock();
459 if (!JoinBB
&& Worklist
.size() == 2) {
460 const BasicBlock
*Succ0
= Worklist
[0];
461 const BasicBlock
*Succ1
= Worklist
[1];
462 const BasicBlock
*Succ0UniqueSucc
= Succ0
->getUniqueSuccessor();
463 const BasicBlock
*Succ1UniqueSucc
= Succ1
->getUniqueSuccessor();
464 if (Succ0UniqueSucc
== InitBB
) {
465 // InitBB -> Succ0 -> InitBB
466 // InitBB -> Succ1 = JoinBB
468 } else if (Succ1UniqueSucc
== InitBB
) {
469 // InitBB -> Succ1 -> InitBB
470 // InitBB -> Succ0 = JoinBB
472 } else if (Succ0
== Succ1UniqueSucc
) {
473 // InitBB -> Succ0 = JoinBB
474 // InitBB -> Succ1 -> Succ0 = JoinBB
476 } else if (Succ1
== Succ0UniqueSucc
) {
477 // InitBB -> Succ0 -> Succ1 = JoinBB
478 // InitBB -> Succ1 = JoinBB
480 } else if (Succ0UniqueSucc
== Succ1UniqueSucc
) {
481 // InitBB -> Succ0 -> JoinBB
482 // InitBB -> Succ1 -> JoinBB
483 JoinBB
= Succ0UniqueSucc
;
488 JoinBB
= L
->getUniqueExitBlock();
493 LLVM_DEBUG(dbgs() << "\t\tJoin block candidate: " << JoinBB
->getName() << "\n");
495 // In forward direction we check if control will for sure reach JoinBB from
496 // InitBB, thus it can not be "stopped" along the way. Ways to "stop" control
497 // are: infinite loops and instructions that do not necessarily transfer
498 // execution to their successor. To check for them we traverse the CFG from
499 // the adjacent blocks to the JoinBB, looking at all intermediate blocks.
501 // If we know the function is "will-return" and "no-throw" there is no need
502 // for futher checks.
503 if (!F
.hasFnAttribute(Attribute::WillReturn
) || !F
.doesNotThrow()) {
505 auto BlockTransfersExecutionToSuccessor
= [](const BasicBlock
*BB
) {
506 return isGuaranteedToTransferExecutionToSuccessor(BB
);
509 SmallPtrSet
<const BasicBlock
*, 16> Visited
;
510 while (!Worklist
.empty()) {
511 const BasicBlock
*ToBB
= Worklist
.pop_back_val();
515 // Make sure all loops in-between are finite.
516 if (!Visited
.insert(ToBB
).second
) {
517 if (!F
.hasFnAttribute(Attribute::WillReturn
)) {
521 bool MayContainIrreducibleControl
= getOrCreateCachedOptional(
522 &F
, IrreducibleControlMap
, mayContainIrreducibleControl
, F
, LI
);
523 if (MayContainIrreducibleControl
)
526 const Loop
*L
= LI
->getLoopFor(ToBB
);
527 if (L
&& maybeEndlessLoop(*L
))
534 // Make sure the block has no instructions that could stop control
536 bool TransfersExecution
= getOrCreateCachedOptional(
537 ToBB
, BlockTransferMap
, BlockTransfersExecutionToSuccessor
, ToBB
);
538 if (!TransfersExecution
)
541 append_range(Worklist
, successors(ToBB
));
545 LLVM_DEBUG(dbgs() << "\tJoin block: " << JoinBB
->getName() << "\n");
549 MustBeExecutedContextExplorer::findBackwardJoinPoint(const BasicBlock
*InitBB
) {
550 const LoopInfo
*LI
= LIGetter(*InitBB
->getParent());
551 const DominatorTree
*DT
= DTGetter(*InitBB
->getParent());
552 LLVM_DEBUG(dbgs() << "\tFind backward join point for " << InitBB
->getName()
553 << (LI
? " [LI]" : "") << (DT
? " [DT]" : ""));
555 // Try to determine a join block through the help of the dominance tree. If no
556 // tree was provided, we perform simple pattern matching for one block
557 // conditionals only.
559 if (const auto *InitNode
= DT
->getNode(InitBB
))
560 if (const auto *IDomNode
= InitNode
->getIDom())
561 return IDomNode
->getBlock();
563 const Loop
*L
= LI
? LI
->getLoopFor(InitBB
) : nullptr;
564 const BasicBlock
*HeaderBB
= L
? L
->getHeader() : nullptr;
566 // Determine the predecessor blocks but ignore backedges.
567 SmallVector
<const BasicBlock
*, 8> Worklist
;
568 for (const BasicBlock
*PredBB
: predecessors(InitBB
)) {
570 (PredBB
== InitBB
) || (HeaderBB
== InitBB
&& L
->contains(PredBB
));
571 // Loop backedges are ignored in backwards propagation: control has to come
574 Worklist
.push_back(PredBB
);
577 // If there are no other predecessor blocks, there is no join point.
578 if (Worklist
.empty())
581 // If there is one predecessor block, it is the join point.
582 if (Worklist
.size() == 1)
585 const BasicBlock
*JoinBB
= nullptr;
586 if (Worklist
.size() == 2) {
587 const BasicBlock
*Pred0
= Worklist
[0];
588 const BasicBlock
*Pred1
= Worklist
[1];
589 const BasicBlock
*Pred0UniquePred
= Pred0
->getUniquePredecessor();
590 const BasicBlock
*Pred1UniquePred
= Pred1
->getUniquePredecessor();
591 if (Pred0
== Pred1UniquePred
) {
592 // InitBB <- Pred0 = JoinBB
593 // InitBB <- Pred1 <- Pred0 = JoinBB
595 } else if (Pred1
== Pred0UniquePred
) {
596 // InitBB <- Pred0 <- Pred1 = JoinBB
597 // InitBB <- Pred1 = JoinBB
599 } else if (Pred0UniquePred
== Pred1UniquePred
) {
600 // InitBB <- Pred0 <- JoinBB
601 // InitBB <- Pred1 <- JoinBB
602 JoinBB
= Pred0UniquePred
;
607 JoinBB
= L
->getHeader();
609 // In backwards direction there is no need to show termination of previous
610 // instructions. If they do not terminate, the code afterward is dead, making
611 // any information/transformation correct anyway.
616 MustBeExecutedContextExplorer::getMustBeExecutedNextInstruction(
617 MustBeExecutedIterator
&It
, const Instruction
*PP
) {
620 LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP
<< "\n");
622 // If we explore only inside a given basic block we stop at terminators.
623 if (!ExploreInterBlock
&& PP
->isTerminator()) {
624 LLVM_DEBUG(dbgs() << "\tReached terminator in intra-block mode, done\n");
628 // If we do not traverse the call graph we check if we can make progress in
629 // the current function. First, check if the instruction is guaranteed to
630 // transfer execution to the successor.
631 bool TransfersExecution
= isGuaranteedToTransferExecutionToSuccessor(PP
);
632 if (!TransfersExecution
)
635 // If this is not a terminator we know that there is a single instruction
636 // after this one that is executed next if control is transfered. If not,
637 // we can try to go back to a call site we entered earlier. If none exists, we
638 // do not know any instruction that has to be executd next.
639 if (!PP
->isTerminator()) {
640 const Instruction
*NextPP
= PP
->getNextNode();
641 LLVM_DEBUG(dbgs() << "\tIntermediate instruction does transfer control\n");
645 // Finally, we have to handle terminators, trivial ones first.
646 assert(PP
->isTerminator() && "Expected a terminator!");
648 // A terminator without a successor is not handled yet.
649 if (PP
->getNumSuccessors() == 0) {
650 LLVM_DEBUG(dbgs() << "\tUnhandled terminator\n");
654 // A terminator with a single successor, we will continue at the beginning of
656 if (PP
->getNumSuccessors() == 1) {
658 dbgs() << "\tUnconditional terminator, continue with successor\n");
659 return &PP
->getSuccessor(0)->front();
662 // Multiple successors mean we need to find the join point where control flow
663 // converges again. We use the findForwardJoinPoint helper function with
664 // information about the function and helper analyses, if available.
665 if (const BasicBlock
*JoinBB
= findForwardJoinPoint(PP
->getParent()))
666 return &JoinBB
->front();
668 LLVM_DEBUG(dbgs() << "\tNo join point found\n");
673 MustBeExecutedContextExplorer::getMustBeExecutedPrevInstruction(
674 MustBeExecutedIterator
&It
, const Instruction
*PP
) {
678 bool IsFirst
= !(PP
->getPrevNode());
679 LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP
680 << (IsFirst
? " [IsFirst]" : "") << "\n");
682 // If we explore only inside a given basic block we stop at the first
684 if (!ExploreInterBlock
&& IsFirst
) {
685 LLVM_DEBUG(dbgs() << "\tReached block front in intra-block mode, done\n");
689 // The block and function that contains the current position.
690 const BasicBlock
*PPBlock
= PP
->getParent();
692 // If we are inside a block we know what instruction was executed before, the
695 const Instruction
*PrevPP
= PP
->getPrevNode();
697 dbgs() << "\tIntermediate instruction, continue with previous\n");
698 // We did not enter a callee so we simply return the previous instruction.
702 // Finally, we have to handle the case where the program point is the first in
703 // a block but not in the function. We use the findBackwardJoinPoint helper
704 // function with information about the function and helper analyses, if
706 if (const BasicBlock
*JoinBB
= findBackwardJoinPoint(PPBlock
))
707 return &JoinBB
->back();
709 LLVM_DEBUG(dbgs() << "\tNo join point found\n");
713 MustBeExecutedIterator::MustBeExecutedIterator(
714 MustBeExecutedContextExplorer
&Explorer
, const Instruction
*I
)
715 : Explorer(Explorer
), CurInst(I
) {
719 void MustBeExecutedIterator::reset(const Instruction
*I
) {
724 void MustBeExecutedIterator::resetInstruction(const Instruction
*I
) {
726 Head
= Tail
= nullptr;
727 Visited
.insert({I
, ExplorationDirection::FORWARD
});
728 Visited
.insert({I
, ExplorationDirection::BACKWARD
});
729 if (Explorer
.ExploreCFGForward
)
731 if (Explorer
.ExploreCFGBackward
)
735 const Instruction
*MustBeExecutedIterator::advance() {
736 assert(CurInst
&& "Cannot advance an end iterator!");
737 Head
= Explorer
.getMustBeExecutedNextInstruction(*this, Head
);
738 if (Head
&& Visited
.insert({Head
, ExplorationDirection ::FORWARD
}).second
)
742 Tail
= Explorer
.getMustBeExecutedPrevInstruction(*this, Tail
);
743 if (Tail
&& Visited
.insert({Tail
, ExplorationDirection ::BACKWARD
}).second
)
749 PreservedAnalyses
MustExecutePrinterPass::run(Function
&F
,
750 FunctionAnalysisManager
&AM
) {
751 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
752 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
754 MustExecuteAnnotatedWriter
Writer(F
, DT
, LI
);
755 F
.print(OS
, &Writer
);
756 return PreservedAnalyses::all();
760 MustBeExecutedContextPrinterPass::run(Module
&M
, ModuleAnalysisManager
&AM
) {
761 FunctionAnalysisManager
&FAM
=
762 AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
763 GetterTy
<const LoopInfo
> LIGetter
= [&](const Function
&F
) {
764 return &FAM
.getResult
<LoopAnalysis
>(const_cast<Function
&>(F
));
766 GetterTy
<const DominatorTree
> DTGetter
= [&](const Function
&F
) {
767 return &FAM
.getResult
<DominatorTreeAnalysis
>(const_cast<Function
&>(F
));
769 GetterTy
<const PostDominatorTree
> PDTGetter
= [&](const Function
&F
) {
770 return &FAM
.getResult
<PostDominatorTreeAnalysis
>(const_cast<Function
&>(F
));
773 MustBeExecutedContextExplorer
Explorer(
774 /* ExploreInterBlock */ true,
775 /* ExploreCFGForward */ true,
776 /* ExploreCFGBackward */ true, LIGetter
, DTGetter
, PDTGetter
);
778 for (Function
&F
: M
) {
779 for (Instruction
&I
: instructions(F
)) {
780 OS
<< "-- Explore context of: " << I
<< "\n";
781 for (const Instruction
*CI
: Explorer
.range(&I
))
782 OS
<< " [F: " << CI
->getFunction()->getName() << "] " << *CI
<< "\n";
785 return PreservedAnalyses::all();