[clang][bytecode][NFC] Only get expr when checking for UB (#125397)
[llvm-project.git] / llvm / lib / Analysis / VectorUtils.cpp
blobad80e458ab57ddb8e79f29bbfc6a2c385fe77cf8
1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/Analysis/DemandedBits.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/LoopIterator.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/CommandLine.h"
31 #define DEBUG_TYPE "vectorutils"
33 using namespace llvm;
34 using namespace llvm::PatternMatch;
36 /// Maximum factor for an interleaved memory access.
37 static cl::opt<unsigned> MaxInterleaveGroupFactor(
38 "max-interleave-group-factor", cl::Hidden,
39 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
40 cl::init(8));
42 /// Return true if all of the intrinsic's arguments and return type are scalars
43 /// for the scalar form of the intrinsic, and vectors for the vector form of the
44 /// intrinsic (except operands that are marked as always being scalar by
45 /// isVectorIntrinsicWithScalarOpAtArg).
46 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
47 switch (ID) {
48 case Intrinsic::abs: // Begin integer bit-manipulation.
49 case Intrinsic::bswap:
50 case Intrinsic::bitreverse:
51 case Intrinsic::ctpop:
52 case Intrinsic::ctlz:
53 case Intrinsic::cttz:
54 case Intrinsic::fshl:
55 case Intrinsic::fshr:
56 case Intrinsic::smax:
57 case Intrinsic::smin:
58 case Intrinsic::umax:
59 case Intrinsic::umin:
60 case Intrinsic::sadd_sat:
61 case Intrinsic::ssub_sat:
62 case Intrinsic::uadd_sat:
63 case Intrinsic::usub_sat:
64 case Intrinsic::smul_fix:
65 case Intrinsic::smul_fix_sat:
66 case Intrinsic::umul_fix:
67 case Intrinsic::umul_fix_sat:
68 case Intrinsic::sqrt: // Begin floating-point.
69 case Intrinsic::asin:
70 case Intrinsic::acos:
71 case Intrinsic::atan:
72 case Intrinsic::atan2:
73 case Intrinsic::sin:
74 case Intrinsic::cos:
75 case Intrinsic::tan:
76 case Intrinsic::sinh:
77 case Intrinsic::cosh:
78 case Intrinsic::tanh:
79 case Intrinsic::exp:
80 case Intrinsic::exp10:
81 case Intrinsic::exp2:
82 case Intrinsic::log:
83 case Intrinsic::log10:
84 case Intrinsic::log2:
85 case Intrinsic::fabs:
86 case Intrinsic::minnum:
87 case Intrinsic::maxnum:
88 case Intrinsic::minimum:
89 case Intrinsic::maximum:
90 case Intrinsic::copysign:
91 case Intrinsic::floor:
92 case Intrinsic::ceil:
93 case Intrinsic::trunc:
94 case Intrinsic::rint:
95 case Intrinsic::nearbyint:
96 case Intrinsic::round:
97 case Intrinsic::roundeven:
98 case Intrinsic::pow:
99 case Intrinsic::fma:
100 case Intrinsic::fmuladd:
101 case Intrinsic::is_fpclass:
102 case Intrinsic::powi:
103 case Intrinsic::canonicalize:
104 case Intrinsic::fptosi_sat:
105 case Intrinsic::fptoui_sat:
106 case Intrinsic::lrint:
107 case Intrinsic::llrint:
108 case Intrinsic::ucmp:
109 case Intrinsic::scmp:
110 return true;
111 default:
112 return false;
116 bool llvm::isTriviallyScalarizable(Intrinsic::ID ID,
117 const TargetTransformInfo *TTI) {
118 if (isTriviallyVectorizable(ID))
119 return true;
121 if (TTI && Intrinsic::isTargetIntrinsic(ID))
122 return TTI->isTargetIntrinsicTriviallyScalarizable(ID);
124 // TODO: Move frexp to isTriviallyVectorizable.
125 // https://github.com/llvm/llvm-project/issues/112408
126 switch (ID) {
127 case Intrinsic::frexp:
128 return true;
130 return false;
133 /// Identifies if the vector form of the intrinsic has a scalar operand.
134 bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID,
135 unsigned ScalarOpdIdx,
136 const TargetTransformInfo *TTI) {
138 if (TTI && Intrinsic::isTargetIntrinsic(ID))
139 return TTI->isTargetIntrinsicWithScalarOpAtArg(ID, ScalarOpdIdx);
141 switch (ID) {
142 case Intrinsic::abs:
143 case Intrinsic::vp_abs:
144 case Intrinsic::ctlz:
145 case Intrinsic::vp_ctlz:
146 case Intrinsic::cttz:
147 case Intrinsic::vp_cttz:
148 case Intrinsic::is_fpclass:
149 case Intrinsic::vp_is_fpclass:
150 case Intrinsic::powi:
151 return (ScalarOpdIdx == 1);
152 case Intrinsic::smul_fix:
153 case Intrinsic::smul_fix_sat:
154 case Intrinsic::umul_fix:
155 case Intrinsic::umul_fix_sat:
156 return (ScalarOpdIdx == 2);
157 default:
158 return false;
162 bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(
163 Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI) {
164 assert(ID != Intrinsic::not_intrinsic && "Not an intrinsic!");
166 if (TTI && Intrinsic::isTargetIntrinsic(ID))
167 return TTI->isTargetIntrinsicWithOverloadTypeAtArg(ID, OpdIdx);
169 if (VPCastIntrinsic::isVPCast(ID))
170 return OpdIdx == -1 || OpdIdx == 0;
172 switch (ID) {
173 case Intrinsic::fptosi_sat:
174 case Intrinsic::fptoui_sat:
175 case Intrinsic::lrint:
176 case Intrinsic::llrint:
177 case Intrinsic::vp_lrint:
178 case Intrinsic::vp_llrint:
179 case Intrinsic::ucmp:
180 case Intrinsic::scmp:
181 return OpdIdx == -1 || OpdIdx == 0;
182 case Intrinsic::is_fpclass:
183 case Intrinsic::vp_is_fpclass:
184 return OpdIdx == 0;
185 case Intrinsic::powi:
186 return OpdIdx == -1 || OpdIdx == 1;
187 default:
188 return OpdIdx == -1;
192 bool llvm::isVectorIntrinsicWithStructReturnOverloadAtField(
193 Intrinsic::ID ID, int RetIdx, const TargetTransformInfo *TTI) {
195 if (TTI && Intrinsic::isTargetIntrinsic(ID))
196 return TTI->isTargetIntrinsicWithStructReturnOverloadAtField(ID, RetIdx);
198 switch (ID) {
199 case Intrinsic::frexp:
200 return RetIdx == 0 || RetIdx == 1;
201 default:
202 return RetIdx == 0;
206 /// Returns intrinsic ID for call.
207 /// For the input call instruction it finds mapping intrinsic and returns
208 /// its ID, in case it does not found it return not_intrinsic.
209 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
210 const TargetLibraryInfo *TLI) {
211 Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI);
212 if (ID == Intrinsic::not_intrinsic)
213 return Intrinsic::not_intrinsic;
215 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
216 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
217 ID == Intrinsic::experimental_noalias_scope_decl ||
218 ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe)
219 return ID;
220 return Intrinsic::not_intrinsic;
223 /// Given a vector and an element number, see if the scalar value is
224 /// already around as a register, for example if it were inserted then extracted
225 /// from the vector.
226 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
227 assert(V->getType()->isVectorTy() && "Not looking at a vector?");
228 VectorType *VTy = cast<VectorType>(V->getType());
229 // For fixed-length vector, return poison for out of range access.
230 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
231 unsigned Width = FVTy->getNumElements();
232 if (EltNo >= Width)
233 return PoisonValue::get(FVTy->getElementType());
236 if (Constant *C = dyn_cast<Constant>(V))
237 return C->getAggregateElement(EltNo);
239 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
240 // If this is an insert to a variable element, we don't know what it is.
241 if (!isa<ConstantInt>(III->getOperand(2)))
242 return nullptr;
243 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
245 // If this is an insert to the element we are looking for, return the
246 // inserted value.
247 if (EltNo == IIElt)
248 return III->getOperand(1);
250 // Guard against infinite loop on malformed, unreachable IR.
251 if (III == III->getOperand(0))
252 return nullptr;
254 // Otherwise, the insertelement doesn't modify the value, recurse on its
255 // vector input.
256 return findScalarElement(III->getOperand(0), EltNo);
259 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
260 // Restrict the following transformation to fixed-length vector.
261 if (SVI && isa<FixedVectorType>(SVI->getType())) {
262 unsigned LHSWidth =
263 cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
264 int InEl = SVI->getMaskValue(EltNo);
265 if (InEl < 0)
266 return PoisonValue::get(VTy->getElementType());
267 if (InEl < (int)LHSWidth)
268 return findScalarElement(SVI->getOperand(0), InEl);
269 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
272 // Extract a value from a vector add operation with a constant zero.
273 // TODO: Use getBinOpIdentity() to generalize this.
274 Value *Val; Constant *C;
275 if (match(V, m_Add(m_Value(Val), m_Constant(C))))
276 if (Constant *Elt = C->getAggregateElement(EltNo))
277 if (Elt->isNullValue())
278 return findScalarElement(Val, EltNo);
280 // If the vector is a splat then we can trivially find the scalar element.
281 if (isa<ScalableVectorType>(VTy))
282 if (Value *Splat = getSplatValue(V))
283 if (EltNo < VTy->getElementCount().getKnownMinValue())
284 return Splat;
286 // Otherwise, we don't know.
287 return nullptr;
290 int llvm::getSplatIndex(ArrayRef<int> Mask) {
291 int SplatIndex = -1;
292 for (int M : Mask) {
293 // Ignore invalid (undefined) mask elements.
294 if (M < 0)
295 continue;
297 // There can be only 1 non-negative mask element value if this is a splat.
298 if (SplatIndex != -1 && SplatIndex != M)
299 return -1;
301 // Initialize the splat index to the 1st non-negative mask element.
302 SplatIndex = M;
304 assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
305 return SplatIndex;
308 /// Get splat value if the input is a splat vector or return nullptr.
309 /// This function is not fully general. It checks only 2 cases:
310 /// the input value is (1) a splat constant vector or (2) a sequence
311 /// of instructions that broadcasts a scalar at element 0.
312 Value *llvm::getSplatValue(const Value *V) {
313 if (isa<VectorType>(V->getType()))
314 if (auto *C = dyn_cast<Constant>(V))
315 return C->getSplatValue();
317 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
318 Value *Splat;
319 if (match(V,
320 m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()),
321 m_Value(), m_ZeroMask())))
322 return Splat;
324 return nullptr;
327 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
328 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
330 if (isa<VectorType>(V->getType())) {
331 if (isa<UndefValue>(V))
332 return true;
333 // FIXME: We can allow undefs, but if Index was specified, we may want to
334 // check that the constant is defined at that index.
335 if (auto *C = dyn_cast<Constant>(V))
336 return C->getSplatValue() != nullptr;
339 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
340 // FIXME: We can safely allow undefs here. If Index was specified, we will
341 // check that the mask elt is defined at the required index.
342 if (!all_equal(Shuf->getShuffleMask()))
343 return false;
345 // Match any index.
346 if (Index == -1)
347 return true;
349 // Match a specific element. The mask should be defined at and match the
350 // specified index.
351 return Shuf->getMaskValue(Index) == Index;
354 // The remaining tests are all recursive, so bail out if we hit the limit.
355 if (Depth++ == MaxAnalysisRecursionDepth)
356 return false;
358 // If both operands of a binop are splats, the result is a splat.
359 Value *X, *Y, *Z;
360 if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
361 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
363 // If all operands of a select are splats, the result is a splat.
364 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
365 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
366 isSplatValue(Z, Index, Depth);
368 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
370 return false;
373 bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask,
374 const APInt &DemandedElts, APInt &DemandedLHS,
375 APInt &DemandedRHS, bool AllowUndefElts) {
376 DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth);
378 // Early out if we don't demand any elements.
379 if (DemandedElts.isZero())
380 return true;
382 // Simple case of a shuffle with zeroinitializer.
383 if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
384 DemandedLHS.setBit(0);
385 return true;
388 for (unsigned I = 0, E = Mask.size(); I != E; ++I) {
389 int M = Mask[I];
390 assert((-1 <= M) && (M < (SrcWidth * 2)) &&
391 "Invalid shuffle mask constant");
393 if (!DemandedElts[I] || (AllowUndefElts && (M < 0)))
394 continue;
396 // For undef elements, we don't know anything about the common state of
397 // the shuffle result.
398 if (M < 0)
399 return false;
401 if (M < SrcWidth)
402 DemandedLHS.setBit(M);
403 else
404 DemandedRHS.setBit(M - SrcWidth);
407 return true;
410 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
411 SmallVectorImpl<int> &ScaledMask) {
412 assert(Scale > 0 && "Unexpected scaling factor");
414 // Fast-path: if no scaling, then it is just a copy.
415 if (Scale == 1) {
416 ScaledMask.assign(Mask.begin(), Mask.end());
417 return;
420 ScaledMask.clear();
421 for (int MaskElt : Mask) {
422 if (MaskElt >= 0) {
423 assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX &&
424 "Overflowed 32-bits");
426 for (int SliceElt = 0; SliceElt != Scale; ++SliceElt)
427 ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
431 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
432 SmallVectorImpl<int> &ScaledMask) {
433 assert(Scale > 0 && "Unexpected scaling factor");
435 // Fast-path: if no scaling, then it is just a copy.
436 if (Scale == 1) {
437 ScaledMask.assign(Mask.begin(), Mask.end());
438 return true;
441 // We must map the original elements down evenly to a type with less elements.
442 int NumElts = Mask.size();
443 if (NumElts % Scale != 0)
444 return false;
446 ScaledMask.clear();
447 ScaledMask.reserve(NumElts / Scale);
449 // Step through the input mask by splitting into Scale-sized slices.
450 do {
451 ArrayRef<int> MaskSlice = Mask.take_front(Scale);
452 assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice.");
454 // The first element of the slice determines how we evaluate this slice.
455 int SliceFront = MaskSlice.front();
456 if (SliceFront < 0) {
457 // Negative values (undef or other "sentinel" values) must be equal across
458 // the entire slice.
459 if (!all_equal(MaskSlice))
460 return false;
461 ScaledMask.push_back(SliceFront);
462 } else {
463 // A positive mask element must be cleanly divisible.
464 if (SliceFront % Scale != 0)
465 return false;
466 // Elements of the slice must be consecutive.
467 for (int i = 1; i < Scale; ++i)
468 if (MaskSlice[i] != SliceFront + i)
469 return false;
470 ScaledMask.push_back(SliceFront / Scale);
472 Mask = Mask.drop_front(Scale);
473 } while (!Mask.empty());
475 assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask");
477 // All elements of the original mask can be scaled down to map to the elements
478 // of a mask with wider elements.
479 return true;
482 bool llvm::widenShuffleMaskElts(ArrayRef<int> M,
483 SmallVectorImpl<int> &NewMask) {
484 unsigned NumElts = M.size();
485 if (NumElts % 2 != 0)
486 return false;
488 NewMask.clear();
489 for (unsigned i = 0; i < NumElts; i += 2) {
490 int M0 = M[i];
491 int M1 = M[i + 1];
493 // If both elements are undef, new mask is undef too.
494 if (M0 == -1 && M1 == -1) {
495 NewMask.push_back(-1);
496 continue;
499 if (M0 == -1 && M1 != -1 && (M1 % 2) == 1) {
500 NewMask.push_back(M1 / 2);
501 continue;
504 if (M0 != -1 && (M0 % 2) == 0 && ((M0 + 1) == M1 || M1 == -1)) {
505 NewMask.push_back(M0 / 2);
506 continue;
509 NewMask.clear();
510 return false;
513 assert(NewMask.size() == NumElts / 2 && "Incorrect size for mask!");
514 return true;
517 bool llvm::scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef<int> Mask,
518 SmallVectorImpl<int> &ScaledMask) {
519 unsigned NumSrcElts = Mask.size();
520 assert(NumSrcElts > 0 && NumDstElts > 0 && "Unexpected scaling factor");
522 // Fast-path: if no scaling, then it is just a copy.
523 if (NumSrcElts == NumDstElts) {
524 ScaledMask.assign(Mask.begin(), Mask.end());
525 return true;
528 // Ensure we can find a whole scale factor.
529 assert(((NumSrcElts % NumDstElts) == 0 || (NumDstElts % NumSrcElts) == 0) &&
530 "Unexpected scaling factor");
532 if (NumSrcElts > NumDstElts) {
533 int Scale = NumSrcElts / NumDstElts;
534 return widenShuffleMaskElts(Scale, Mask, ScaledMask);
537 int Scale = NumDstElts / NumSrcElts;
538 narrowShuffleMaskElts(Scale, Mask, ScaledMask);
539 return true;
542 void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask,
543 SmallVectorImpl<int> &ScaledMask) {
544 std::array<SmallVector<int, 16>, 2> TmpMasks;
545 SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1];
546 ArrayRef<int> InputMask = Mask;
547 for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) {
548 while (widenShuffleMaskElts(Scale, InputMask, *Output)) {
549 InputMask = *Output;
550 std::swap(Output, Tmp);
553 ScaledMask.assign(InputMask.begin(), InputMask.end());
556 void llvm::processShuffleMasks(
557 ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs,
558 unsigned NumOfUsedRegs, function_ref<void()> NoInputAction,
559 function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction,
560 function_ref<void(ArrayRef<int>, unsigned, unsigned, bool)>
561 ManyInputsAction) {
562 SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs);
563 // Try to perform better estimation of the permutation.
564 // 1. Split the source/destination vectors into real registers.
565 // 2. Do the mask analysis to identify which real registers are
566 // permuted.
567 int Sz = Mask.size();
568 unsigned SzDest = Sz / NumOfDestRegs;
569 unsigned SzSrc = Sz / NumOfSrcRegs;
570 for (unsigned I = 0; I < NumOfDestRegs; ++I) {
571 auto &RegMasks = Res[I];
572 RegMasks.assign(2 * NumOfSrcRegs, {});
573 // Check that the values in dest registers are in the one src
574 // register.
575 for (unsigned K = 0; K < SzDest; ++K) {
576 int Idx = I * SzDest + K;
577 if (Idx == Sz)
578 break;
579 if (Mask[Idx] >= 2 * Sz || Mask[Idx] == PoisonMaskElem)
580 continue;
581 int MaskIdx = Mask[Idx] % Sz;
582 int SrcRegIdx = MaskIdx / SzSrc + (Mask[Idx] >= Sz ? NumOfSrcRegs : 0);
583 // Add a cost of PermuteTwoSrc for each new source register permute,
584 // if we have more than one source registers.
585 if (RegMasks[SrcRegIdx].empty())
586 RegMasks[SrcRegIdx].assign(SzDest, PoisonMaskElem);
587 RegMasks[SrcRegIdx][K] = MaskIdx % SzSrc;
590 // Process split mask.
591 for (unsigned I : seq<unsigned>(NumOfUsedRegs)) {
592 auto &Dest = Res[I];
593 int NumSrcRegs =
594 count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
595 switch (NumSrcRegs) {
596 case 0:
597 // No input vectors were used!
598 NoInputAction();
599 break;
600 case 1: {
601 // Find the only mask with at least single undef mask elem.
602 auto *It =
603 find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
604 unsigned SrcReg = std::distance(Dest.begin(), It);
605 SingleInputAction(*It, SrcReg, I);
606 break;
608 default: {
609 // The first mask is a permutation of a single register. Since we have >2
610 // input registers to shuffle, we merge the masks for 2 first registers
611 // and generate a shuffle of 2 registers rather than the reordering of the
612 // first register and then shuffle with the second register. Next,
613 // generate the shuffles of the resulting register + the remaining
614 // registers from the list.
615 auto &&CombineMasks = [](MutableArrayRef<int> FirstMask,
616 ArrayRef<int> SecondMask) {
617 for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) {
618 if (SecondMask[Idx] != PoisonMaskElem) {
619 assert(FirstMask[Idx] == PoisonMaskElem &&
620 "Expected undefined mask element.");
621 FirstMask[Idx] = SecondMask[Idx] + VF;
625 auto &&NormalizeMask = [](MutableArrayRef<int> Mask) {
626 for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
627 if (Mask[Idx] != PoisonMaskElem)
628 Mask[Idx] = Idx;
631 int SecondIdx;
632 bool NewReg = true;
633 do {
634 int FirstIdx = -1;
635 SecondIdx = -1;
636 MutableArrayRef<int> FirstMask, SecondMask;
637 for (unsigned I : seq<unsigned>(2 * NumOfSrcRegs)) {
638 SmallVectorImpl<int> &RegMask = Dest[I];
639 if (RegMask.empty())
640 continue;
642 if (FirstIdx == SecondIdx) {
643 FirstIdx = I;
644 FirstMask = RegMask;
645 continue;
647 SecondIdx = I;
648 SecondMask = RegMask;
649 CombineMasks(FirstMask, SecondMask);
650 ManyInputsAction(FirstMask, FirstIdx, SecondIdx, NewReg);
651 NewReg = false;
652 NormalizeMask(FirstMask);
653 RegMask.clear();
654 SecondMask = FirstMask;
655 SecondIdx = FirstIdx;
657 if (FirstIdx != SecondIdx && SecondIdx >= 0) {
658 CombineMasks(SecondMask, FirstMask);
659 ManyInputsAction(SecondMask, SecondIdx, FirstIdx, NewReg);
660 NewReg = false;
661 Dest[FirstIdx].clear();
662 NormalizeMask(SecondMask);
664 } while (SecondIdx >= 0);
665 break;
671 void llvm::getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth,
672 const APInt &DemandedElts,
673 APInt &DemandedLHS,
674 APInt &DemandedRHS) {
675 assert(VectorBitWidth >= 128 && "Vectors smaller than 128 bit not supported");
676 int NumLanes = VectorBitWidth / 128;
677 int NumElts = DemandedElts.getBitWidth();
678 int NumEltsPerLane = NumElts / NumLanes;
679 int HalfEltsPerLane = NumEltsPerLane / 2;
681 DemandedLHS = APInt::getZero(NumElts);
682 DemandedRHS = APInt::getZero(NumElts);
684 // Map DemandedElts to the horizontal operands.
685 for (int Idx = 0; Idx != NumElts; ++Idx) {
686 if (!DemandedElts[Idx])
687 continue;
688 int LaneIdx = (Idx / NumEltsPerLane) * NumEltsPerLane;
689 int LocalIdx = Idx % NumEltsPerLane;
690 if (LocalIdx < HalfEltsPerLane) {
691 DemandedLHS.setBit(LaneIdx + 2 * LocalIdx);
692 } else {
693 LocalIdx -= HalfEltsPerLane;
694 DemandedRHS.setBit(LaneIdx + 2 * LocalIdx);
699 MapVector<Instruction *, uint64_t>
700 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
701 const TargetTransformInfo *TTI) {
703 // DemandedBits will give us every value's live-out bits. But we want
704 // to ensure no extra casts would need to be inserted, so every DAG
705 // of connected values must have the same minimum bitwidth.
706 EquivalenceClasses<Value *> ECs;
707 SmallVector<Value *, 16> Worklist;
708 SmallPtrSet<Value *, 4> Roots;
709 SmallPtrSet<Value *, 16> Visited;
710 DenseMap<Value *, uint64_t> DBits;
711 SmallPtrSet<Instruction *, 4> InstructionSet;
712 MapVector<Instruction *, uint64_t> MinBWs;
714 // Determine the roots. We work bottom-up, from truncs or icmps.
715 bool SeenExtFromIllegalType = false;
716 for (auto *BB : Blocks)
717 for (auto &I : *BB) {
718 InstructionSet.insert(&I);
720 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
721 !TTI->isTypeLegal(I.getOperand(0)->getType()))
722 SeenExtFromIllegalType = true;
724 // Only deal with non-vector integers up to 64-bits wide.
725 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
726 !I.getType()->isVectorTy() &&
727 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
728 // Don't make work for ourselves. If we know the loaded type is legal,
729 // don't add it to the worklist.
730 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
731 continue;
733 Worklist.push_back(&I);
734 Roots.insert(&I);
737 // Early exit.
738 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
739 return MinBWs;
741 // Now proceed breadth-first, unioning values together.
742 while (!Worklist.empty()) {
743 Value *Val = Worklist.pop_back_val();
744 Value *Leader = ECs.getOrInsertLeaderValue(Val);
746 if (!Visited.insert(Val).second)
747 continue;
749 // Non-instructions terminate a chain successfully.
750 if (!isa<Instruction>(Val))
751 continue;
752 Instruction *I = cast<Instruction>(Val);
754 // If we encounter a type that is larger than 64 bits, we can't represent
755 // it so bail out.
756 if (DB.getDemandedBits(I).getBitWidth() > 64)
757 return MapVector<Instruction *, uint64_t>();
759 uint64_t V = DB.getDemandedBits(I).getZExtValue();
760 DBits[Leader] |= V;
761 DBits[I] = V;
763 // Casts, loads and instructions outside of our range terminate a chain
764 // successfully.
765 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
766 !InstructionSet.count(I))
767 continue;
769 // Unsafe casts terminate a chain unsuccessfully. We can't do anything
770 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
771 // transform anything that relies on them.
772 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
773 !I->getType()->isIntegerTy()) {
774 DBits[Leader] |= ~0ULL;
775 continue;
778 // We don't modify the types of PHIs. Reductions will already have been
779 // truncated if possible, and inductions' sizes will have been chosen by
780 // indvars.
781 if (isa<PHINode>(I))
782 continue;
784 if (DBits[Leader] == ~0ULL)
785 // All bits demanded, no point continuing.
786 continue;
788 for (Value *O : cast<User>(I)->operands()) {
789 ECs.unionSets(Leader, O);
790 Worklist.push_back(O);
794 // Now we've discovered all values, walk them to see if there are
795 // any users we didn't see. If there are, we can't optimize that
796 // chain.
797 for (auto &I : DBits)
798 for (auto *U : I.first->users())
799 if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
800 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
802 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
803 uint64_t LeaderDemandedBits = 0;
804 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
805 LeaderDemandedBits |= DBits[M];
807 uint64_t MinBW = llvm::bit_width(LeaderDemandedBits);
808 // Round up to a power of 2
809 MinBW = llvm::bit_ceil(MinBW);
811 // We don't modify the types of PHIs. Reductions will already have been
812 // truncated if possible, and inductions' sizes will have been chosen by
813 // indvars.
814 // If we are required to shrink a PHI, abandon this entire equivalence class.
815 bool Abort = false;
816 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
817 if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) {
818 Abort = true;
819 break;
821 if (Abort)
822 continue;
824 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) {
825 auto *MI = dyn_cast<Instruction>(M);
826 if (!MI)
827 continue;
828 Type *Ty = M->getType();
829 if (Roots.count(M))
830 Ty = MI->getOperand(0)->getType();
832 if (MinBW >= Ty->getScalarSizeInBits())
833 continue;
835 // If any of M's operands demand more bits than MinBW then M cannot be
836 // performed safely in MinBW.
837 if (any_of(MI->operands(), [&DB, MinBW](Use &U) {
838 auto *CI = dyn_cast<ConstantInt>(U);
839 // For constants shift amounts, check if the shift would result in
840 // poison.
841 if (CI &&
842 isa<ShlOperator, LShrOperator, AShrOperator>(U.getUser()) &&
843 U.getOperandNo() == 1)
844 return CI->uge(MinBW);
845 uint64_t BW = bit_width(DB.getDemandedBits(&U).getZExtValue());
846 return bit_ceil(BW) > MinBW;
848 continue;
850 MinBWs[MI] = MinBW;
854 return MinBWs;
857 /// Add all access groups in @p AccGroups to @p List.
858 template <typename ListT>
859 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
860 // Interpret an access group as a list containing itself.
861 if (AccGroups->getNumOperands() == 0) {
862 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
863 List.insert(AccGroups);
864 return;
867 for (const auto &AccGroupListOp : AccGroups->operands()) {
868 auto *Item = cast<MDNode>(AccGroupListOp.get());
869 assert(isValidAsAccessGroup(Item) && "List item must be an access group");
870 List.insert(Item);
874 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
875 if (!AccGroups1)
876 return AccGroups2;
877 if (!AccGroups2)
878 return AccGroups1;
879 if (AccGroups1 == AccGroups2)
880 return AccGroups1;
882 SmallSetVector<Metadata *, 4> Union;
883 addToAccessGroupList(Union, AccGroups1);
884 addToAccessGroupList(Union, AccGroups2);
886 if (Union.size() == 0)
887 return nullptr;
888 if (Union.size() == 1)
889 return cast<MDNode>(Union.front());
891 LLVMContext &Ctx = AccGroups1->getContext();
892 return MDNode::get(Ctx, Union.getArrayRef());
895 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
896 const Instruction *Inst2) {
897 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
898 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
900 if (!MayAccessMem1 && !MayAccessMem2)
901 return nullptr;
902 if (!MayAccessMem1)
903 return Inst2->getMetadata(LLVMContext::MD_access_group);
904 if (!MayAccessMem2)
905 return Inst1->getMetadata(LLVMContext::MD_access_group);
907 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
908 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
909 if (!MD1 || !MD2)
910 return nullptr;
911 if (MD1 == MD2)
912 return MD1;
914 // Use set for scalable 'contains' check.
915 SmallPtrSet<Metadata *, 4> AccGroupSet2;
916 addToAccessGroupList(AccGroupSet2, MD2);
918 SmallVector<Metadata *, 4> Intersection;
919 if (MD1->getNumOperands() == 0) {
920 assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
921 if (AccGroupSet2.count(MD1))
922 Intersection.push_back(MD1);
923 } else {
924 for (const MDOperand &Node : MD1->operands()) {
925 auto *Item = cast<MDNode>(Node.get());
926 assert(isValidAsAccessGroup(Item) && "List item must be an access group");
927 if (AccGroupSet2.count(Item))
928 Intersection.push_back(Item);
932 if (Intersection.size() == 0)
933 return nullptr;
934 if (Intersection.size() == 1)
935 return cast<MDNode>(Intersection.front());
937 LLVMContext &Ctx = Inst1->getContext();
938 return MDNode::get(Ctx, Intersection);
941 /// \returns \p I after propagating metadata from \p VL.
942 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
943 if (VL.empty())
944 return Inst;
945 Instruction *I0 = cast<Instruction>(VL[0]);
946 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
947 I0->getAllMetadataOtherThanDebugLoc(Metadata);
949 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
950 LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
951 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
952 LLVMContext::MD_access_group, LLVMContext::MD_mmra}) {
953 MDNode *MD = I0->getMetadata(Kind);
954 for (int J = 1, E = VL.size(); MD && J != E; ++J) {
955 const Instruction *IJ = cast<Instruction>(VL[J]);
956 MDNode *IMD = IJ->getMetadata(Kind);
958 switch (Kind) {
959 case LLVMContext::MD_mmra: {
960 MD = MMRAMetadata::combine(Inst->getContext(), MD, IMD);
961 break;
963 case LLVMContext::MD_tbaa:
964 MD = MDNode::getMostGenericTBAA(MD, IMD);
965 break;
966 case LLVMContext::MD_alias_scope:
967 MD = MDNode::getMostGenericAliasScope(MD, IMD);
968 break;
969 case LLVMContext::MD_fpmath:
970 MD = MDNode::getMostGenericFPMath(MD, IMD);
971 break;
972 case LLVMContext::MD_noalias:
973 case LLVMContext::MD_nontemporal:
974 case LLVMContext::MD_invariant_load:
975 MD = MDNode::intersect(MD, IMD);
976 break;
977 case LLVMContext::MD_access_group:
978 MD = intersectAccessGroups(Inst, IJ);
979 break;
980 default:
981 llvm_unreachable("unhandled metadata");
985 Inst->setMetadata(Kind, MD);
988 return Inst;
991 Constant *
992 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
993 const InterleaveGroup<Instruction> &Group) {
994 // All 1's means mask is not needed.
995 if (Group.getNumMembers() == Group.getFactor())
996 return nullptr;
998 // TODO: support reversed access.
999 assert(!Group.isReverse() && "Reversed group not supported.");
1001 SmallVector<Constant *, 16> Mask;
1002 for (unsigned i = 0; i < VF; i++)
1003 for (unsigned j = 0; j < Group.getFactor(); ++j) {
1004 unsigned HasMember = Group.getMember(j) ? 1 : 0;
1005 Mask.push_back(Builder.getInt1(HasMember));
1008 return ConstantVector::get(Mask);
1011 llvm::SmallVector<int, 16>
1012 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) {
1013 SmallVector<int, 16> MaskVec;
1014 for (unsigned i = 0; i < VF; i++)
1015 for (unsigned j = 0; j < ReplicationFactor; j++)
1016 MaskVec.push_back(i);
1018 return MaskVec;
1021 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF,
1022 unsigned NumVecs) {
1023 SmallVector<int, 16> Mask;
1024 for (unsigned i = 0; i < VF; i++)
1025 for (unsigned j = 0; j < NumVecs; j++)
1026 Mask.push_back(j * VF + i);
1028 return Mask;
1031 llvm::SmallVector<int, 16>
1032 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) {
1033 SmallVector<int, 16> Mask;
1034 for (unsigned i = 0; i < VF; i++)
1035 Mask.push_back(Start + i * Stride);
1037 return Mask;
1040 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start,
1041 unsigned NumInts,
1042 unsigned NumUndefs) {
1043 SmallVector<int, 16> Mask;
1044 for (unsigned i = 0; i < NumInts; i++)
1045 Mask.push_back(Start + i);
1047 for (unsigned i = 0; i < NumUndefs; i++)
1048 Mask.push_back(-1);
1050 return Mask;
1053 llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask,
1054 unsigned NumElts) {
1055 // Avoid casts in the loop and make sure we have a reasonable number.
1056 int NumEltsSigned = NumElts;
1057 assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count");
1059 // If the mask chooses an element from operand 1, reduce it to choose from the
1060 // corresponding element of operand 0. Undef mask elements are unchanged.
1061 SmallVector<int, 16> UnaryMask;
1062 for (int MaskElt : Mask) {
1063 assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask");
1064 int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt;
1065 UnaryMask.push_back(UnaryElt);
1067 return UnaryMask;
1070 /// A helper function for concatenating vectors. This function concatenates two
1071 /// vectors having the same element type. If the second vector has fewer
1072 /// elements than the first, it is padded with undefs.
1073 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
1074 Value *V2) {
1075 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
1076 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
1077 assert(VecTy1 && VecTy2 &&
1078 VecTy1->getScalarType() == VecTy2->getScalarType() &&
1079 "Expect two vectors with the same element type");
1081 unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements();
1082 unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements();
1083 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
1085 if (NumElts1 > NumElts2) {
1086 // Extend with UNDEFs.
1087 V2 = Builder.CreateShuffleVector(
1088 V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2));
1091 return Builder.CreateShuffleVector(
1092 V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0));
1095 Value *llvm::concatenateVectors(IRBuilderBase &Builder,
1096 ArrayRef<Value *> Vecs) {
1097 unsigned NumVecs = Vecs.size();
1098 assert(NumVecs > 1 && "Should be at least two vectors");
1100 SmallVector<Value *, 8> ResList;
1101 ResList.append(Vecs.begin(), Vecs.end());
1102 do {
1103 SmallVector<Value *, 8> TmpList;
1104 for (unsigned i = 0; i < NumVecs - 1; i += 2) {
1105 Value *V0 = ResList[i], *V1 = ResList[i + 1];
1106 assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
1107 "Only the last vector may have a different type");
1109 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
1112 // Push the last vector if the total number of vectors is odd.
1113 if (NumVecs % 2 != 0)
1114 TmpList.push_back(ResList[NumVecs - 1]);
1116 ResList = TmpList;
1117 NumVecs = ResList.size();
1118 } while (NumVecs > 1);
1120 return ResList[0];
1123 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
1124 assert(isa<VectorType>(Mask->getType()) &&
1125 isa<IntegerType>(Mask->getType()->getScalarType()) &&
1126 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1127 1 &&
1128 "Mask must be a vector of i1");
1130 auto *ConstMask = dyn_cast<Constant>(Mask);
1131 if (!ConstMask)
1132 return false;
1133 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
1134 return true;
1135 if (isa<ScalableVectorType>(ConstMask->getType()))
1136 return false;
1137 for (unsigned
1138 I = 0,
1139 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1140 I != E; ++I) {
1141 if (auto *MaskElt = ConstMask->getAggregateElement(I))
1142 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
1143 continue;
1144 return false;
1146 return true;
1149 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
1150 assert(isa<VectorType>(Mask->getType()) &&
1151 isa<IntegerType>(Mask->getType()->getScalarType()) &&
1152 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1153 1 &&
1154 "Mask must be a vector of i1");
1156 auto *ConstMask = dyn_cast<Constant>(Mask);
1157 if (!ConstMask)
1158 return false;
1159 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1160 return true;
1161 if (isa<ScalableVectorType>(ConstMask->getType()))
1162 return false;
1163 for (unsigned
1164 I = 0,
1165 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1166 I != E; ++I) {
1167 if (auto *MaskElt = ConstMask->getAggregateElement(I))
1168 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1169 continue;
1170 return false;
1172 return true;
1175 bool llvm::maskContainsAllOneOrUndef(Value *Mask) {
1176 assert(isa<VectorType>(Mask->getType()) &&
1177 isa<IntegerType>(Mask->getType()->getScalarType()) &&
1178 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1179 1 &&
1180 "Mask must be a vector of i1");
1182 auto *ConstMask = dyn_cast<Constant>(Mask);
1183 if (!ConstMask)
1184 return false;
1185 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1186 return true;
1187 if (isa<ScalableVectorType>(ConstMask->getType()))
1188 return false;
1189 for (unsigned
1190 I = 0,
1191 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1192 I != E; ++I) {
1193 if (auto *MaskElt = ConstMask->getAggregateElement(I))
1194 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1195 return true;
1197 return false;
1200 /// TODO: This is a lot like known bits, but for
1201 /// vectors. Is there something we can common this with?
1202 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
1203 assert(isa<FixedVectorType>(Mask->getType()) &&
1204 isa<IntegerType>(Mask->getType()->getScalarType()) &&
1205 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1206 1 &&
1207 "Mask must be a fixed width vector of i1");
1209 const unsigned VWidth =
1210 cast<FixedVectorType>(Mask->getType())->getNumElements();
1211 APInt DemandedElts = APInt::getAllOnes(VWidth);
1212 if (auto *CV = dyn_cast<ConstantVector>(Mask))
1213 for (unsigned i = 0; i < VWidth; i++)
1214 if (CV->getAggregateElement(i)->isNullValue())
1215 DemandedElts.clearBit(i);
1216 return DemandedElts;
1219 bool InterleavedAccessInfo::isStrided(int Stride) {
1220 unsigned Factor = std::abs(Stride);
1221 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
1224 void InterleavedAccessInfo::collectConstStrideAccesses(
1225 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
1226 const DenseMap<Value*, const SCEV*> &Strides) {
1227 auto &DL = TheLoop->getHeader()->getDataLayout();
1229 // Since it's desired that the load/store instructions be maintained in
1230 // "program order" for the interleaved access analysis, we have to visit the
1231 // blocks in the loop in reverse postorder (i.e., in a topological order).
1232 // Such an ordering will ensure that any load/store that may be executed
1233 // before a second load/store will precede the second load/store in
1234 // AccessStrideInfo.
1235 LoopBlocksDFS DFS(TheLoop);
1236 DFS.perform(LI);
1237 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
1238 for (auto &I : *BB) {
1239 Value *Ptr = getLoadStorePointerOperand(&I);
1240 if (!Ptr)
1241 continue;
1242 Type *ElementTy = getLoadStoreType(&I);
1244 // Currently, codegen doesn't support cases where the type size doesn't
1245 // match the alloc size. Skip them for now.
1246 uint64_t Size = DL.getTypeAllocSize(ElementTy);
1247 if (Size * 8 != DL.getTypeSizeInBits(ElementTy))
1248 continue;
1250 // We don't check wrapping here because we don't know yet if Ptr will be
1251 // part of a full group or a group with gaps. Checking wrapping for all
1252 // pointers (even those that end up in groups with no gaps) will be overly
1253 // conservative. For full groups, wrapping should be ok since if we would
1254 // wrap around the address space we would do a memory access at nullptr
1255 // even without the transformation. The wrapping checks are therefore
1256 // deferred until after we've formed the interleaved groups.
1257 int64_t Stride =
1258 getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides,
1259 /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0);
1261 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
1262 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
1263 getLoadStoreAlignment(&I));
1267 // Analyze interleaved accesses and collect them into interleaved load and
1268 // store groups.
1270 // When generating code for an interleaved load group, we effectively hoist all
1271 // loads in the group to the location of the first load in program order. When
1272 // generating code for an interleaved store group, we sink all stores to the
1273 // location of the last store. This code motion can change the order of load
1274 // and store instructions and may break dependences.
1276 // The code generation strategy mentioned above ensures that we won't violate
1277 // any write-after-read (WAR) dependences.
1279 // E.g., for the WAR dependence: a = A[i]; // (1)
1280 // A[i] = b; // (2)
1282 // The store group of (2) is always inserted at or below (2), and the load
1283 // group of (1) is always inserted at or above (1). Thus, the instructions will
1284 // never be reordered. All other dependences are checked to ensure the
1285 // correctness of the instruction reordering.
1287 // The algorithm visits all memory accesses in the loop in bottom-up program
1288 // order. Program order is established by traversing the blocks in the loop in
1289 // reverse postorder when collecting the accesses.
1291 // We visit the memory accesses in bottom-up order because it can simplify the
1292 // construction of store groups in the presence of write-after-write (WAW)
1293 // dependences.
1295 // E.g., for the WAW dependence: A[i] = a; // (1)
1296 // A[i] = b; // (2)
1297 // A[i + 1] = c; // (3)
1299 // We will first create a store group with (3) and (2). (1) can't be added to
1300 // this group because it and (2) are dependent. However, (1) can be grouped
1301 // with other accesses that may precede it in program order. Note that a
1302 // bottom-up order does not imply that WAW dependences should not be checked.
1303 void InterleavedAccessInfo::analyzeInterleaving(
1304 bool EnablePredicatedInterleavedMemAccesses) {
1305 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
1306 const auto &Strides = LAI->getSymbolicStrides();
1308 // Holds all accesses with a constant stride.
1309 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
1310 collectConstStrideAccesses(AccessStrideInfo, Strides);
1312 if (AccessStrideInfo.empty())
1313 return;
1315 // Collect the dependences in the loop.
1316 collectDependences();
1318 // Holds all interleaved store groups temporarily.
1319 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
1320 // Holds all interleaved load groups temporarily.
1321 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
1322 // Groups added to this set cannot have new members added.
1323 SmallPtrSet<InterleaveGroup<Instruction> *, 4> CompletedLoadGroups;
1325 // Search in bottom-up program order for pairs of accesses (A and B) that can
1326 // form interleaved load or store groups. In the algorithm below, access A
1327 // precedes access B in program order. We initialize a group for B in the
1328 // outer loop of the algorithm, and then in the inner loop, we attempt to
1329 // insert each A into B's group if:
1331 // 1. A and B have the same stride,
1332 // 2. A and B have the same memory object size, and
1333 // 3. A belongs in B's group according to its distance from B.
1335 // Special care is taken to ensure group formation will not break any
1336 // dependences.
1337 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
1338 BI != E; ++BI) {
1339 Instruction *B = BI->first;
1340 StrideDescriptor DesB = BI->second;
1342 // Initialize a group for B if it has an allowable stride. Even if we don't
1343 // create a group for B, we continue with the bottom-up algorithm to ensure
1344 // we don't break any of B's dependences.
1345 InterleaveGroup<Instruction> *GroupB = nullptr;
1346 if (isStrided(DesB.Stride) &&
1347 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
1348 GroupB = getInterleaveGroup(B);
1349 if (!GroupB) {
1350 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
1351 << '\n');
1352 GroupB = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
1353 if (B->mayWriteToMemory())
1354 StoreGroups.insert(GroupB);
1355 else
1356 LoadGroups.insert(GroupB);
1360 for (auto AI = std::next(BI); AI != E; ++AI) {
1361 Instruction *A = AI->first;
1362 StrideDescriptor DesA = AI->second;
1364 // Our code motion strategy implies that we can't have dependences
1365 // between accesses in an interleaved group and other accesses located
1366 // between the first and last member of the group. Note that this also
1367 // means that a group can't have more than one member at a given offset.
1368 // The accesses in a group can have dependences with other accesses, but
1369 // we must ensure we don't extend the boundaries of the group such that
1370 // we encompass those dependent accesses.
1372 // For example, assume we have the sequence of accesses shown below in a
1373 // stride-2 loop:
1375 // (1, 2) is a group | A[i] = a; // (1)
1376 // | A[i-1] = b; // (2) |
1377 // A[i-3] = c; // (3)
1378 // A[i] = d; // (4) | (2, 4) is not a group
1380 // Because accesses (2) and (3) are dependent, we can group (2) with (1)
1381 // but not with (4). If we did, the dependent access (3) would be within
1382 // the boundaries of the (2, 4) group.
1383 auto DependentMember = [&](InterleaveGroup<Instruction> *Group,
1384 StrideEntry *A) -> Instruction * {
1385 for (uint32_t Index = 0; Index < Group->getFactor(); ++Index) {
1386 Instruction *MemberOfGroupB = Group->getMember(Index);
1387 if (MemberOfGroupB && !canReorderMemAccessesForInterleavedGroups(
1388 A, &*AccessStrideInfo.find(MemberOfGroupB)))
1389 return MemberOfGroupB;
1391 return nullptr;
1394 auto GroupA = getInterleaveGroup(A);
1395 // If A is a load, dependencies are tolerable, there's nothing to do here.
1396 // If both A and B belong to the same (store) group, they are independent,
1397 // even if dependencies have not been recorded.
1398 // If both GroupA and GroupB are null, there's nothing to do here.
1399 if (A->mayWriteToMemory() && GroupA != GroupB) {
1400 Instruction *DependentInst = nullptr;
1401 // If GroupB is a load group, we have to compare AI against all
1402 // members of GroupB because if any load within GroupB has a dependency
1403 // on AI, we need to mark GroupB as complete and also release the
1404 // store GroupA (if A belongs to one). The former prevents incorrect
1405 // hoisting of load B above store A while the latter prevents incorrect
1406 // sinking of store A below load B.
1407 if (GroupB && LoadGroups.contains(GroupB))
1408 DependentInst = DependentMember(GroupB, &*AI);
1409 else if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI))
1410 DependentInst = B;
1412 if (DependentInst) {
1413 // A has a store dependence on B (or on some load within GroupB) and
1414 // is part of a store group. Release A's group to prevent illegal
1415 // sinking of A below B. A will then be free to form another group
1416 // with instructions that precede it.
1417 if (GroupA && StoreGroups.contains(GroupA)) {
1418 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
1419 "dependence between "
1420 << *A << " and " << *DependentInst << '\n');
1421 StoreGroups.remove(GroupA);
1422 releaseGroup(GroupA);
1424 // If B is a load and part of an interleave group, no earlier loads
1425 // can be added to B's interleave group, because this would mean the
1426 // DependentInst would move across store A. Mark the interleave group
1427 // as complete.
1428 if (GroupB && LoadGroups.contains(GroupB)) {
1429 LLVM_DEBUG(dbgs() << "LV: Marking interleave group for " << *B
1430 << " as complete.\n");
1431 CompletedLoadGroups.insert(GroupB);
1435 if (CompletedLoadGroups.contains(GroupB)) {
1436 // Skip trying to add A to B, continue to look for other conflicting A's
1437 // in groups to be released.
1438 continue;
1441 // At this point, we've checked for illegal code motion. If either A or B
1442 // isn't strided, there's nothing left to do.
1443 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1444 continue;
1446 // Ignore A if it's already in a group or isn't the same kind of memory
1447 // operation as B.
1448 // Note that mayReadFromMemory() isn't mutually exclusive to
1449 // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1450 // here, canVectorizeMemory() should have returned false - except for the
1451 // case we asked for optimization remarks.
1452 if (isInterleaved(A) ||
1453 (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1454 (A->mayWriteToMemory() != B->mayWriteToMemory()))
1455 continue;
1457 // Check rules 1 and 2. Ignore A if its stride or size is different from
1458 // that of B.
1459 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1460 continue;
1462 // Ignore A if the memory object of A and B don't belong to the same
1463 // address space
1464 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1465 continue;
1467 // Calculate the distance from A to B.
1468 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1469 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1470 if (!DistToB)
1471 continue;
1472 int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1474 // Check rule 3. Ignore A if its distance to B is not a multiple of the
1475 // size.
1476 if (DistanceToB % static_cast<int64_t>(DesB.Size))
1477 continue;
1479 // All members of a predicated interleave-group must have the same predicate,
1480 // and currently must reside in the same BB.
1481 BasicBlock *BlockA = A->getParent();
1482 BasicBlock *BlockB = B->getParent();
1483 if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1484 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1485 continue;
1487 // The index of A is the index of B plus A's distance to B in multiples
1488 // of the size.
1489 int IndexA =
1490 GroupB->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1492 // Try to insert A into B's group.
1493 if (GroupB->insertMember(A, IndexA, DesA.Alignment)) {
1494 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1495 << " into the interleave group with" << *B
1496 << '\n');
1497 InterleaveGroupMap[A] = GroupB;
1499 // Set the first load in program order as the insert position.
1500 if (A->mayReadFromMemory())
1501 GroupB->setInsertPos(A);
1503 } // Iteration over A accesses.
1504 } // Iteration over B accesses.
1506 auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group,
1507 int Index,
1508 const char *FirstOrLast) -> bool {
1509 Instruction *Member = Group->getMember(Index);
1510 assert(Member && "Group member does not exist");
1511 Value *MemberPtr = getLoadStorePointerOperand(Member);
1512 Type *AccessTy = getLoadStoreType(Member);
1513 if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides,
1514 /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0))
1515 return false;
1516 LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
1517 << FirstOrLast
1518 << " group member potentially pointer-wrapping.\n");
1519 releaseGroup(Group);
1520 return true;
1523 // Remove interleaved groups with gaps whose memory
1524 // accesses may wrap around. We have to revisit the getPtrStride analysis,
1525 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1526 // not check wrapping (see documentation there).
1527 // FORNOW we use Assume=false;
1528 // TODO: Change to Assume=true but making sure we don't exceed the threshold
1529 // of runtime SCEV assumptions checks (thereby potentially failing to
1530 // vectorize altogether).
1531 // Additional optional optimizations:
1532 // TODO: If we are peeling the loop and we know that the first pointer doesn't
1533 // wrap then we can deduce that all pointers in the group don't wrap.
1534 // This means that we can forcefully peel the loop in order to only have to
1535 // check the first pointer for no-wrap. When we'll change to use Assume=true
1536 // we'll only need at most one runtime check per interleaved group.
1537 for (auto *Group : LoadGroups) {
1538 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1539 // load would wrap around the address space we would do a memory access at
1540 // nullptr even without the transformation.
1541 if (Group->getNumMembers() == Group->getFactor())
1542 continue;
1544 // Case 2: If first and last members of the group don't wrap this implies
1545 // that all the pointers in the group don't wrap.
1546 // So we check only group member 0 (which is always guaranteed to exist),
1547 // and group member Factor - 1; If the latter doesn't exist we rely on
1548 // peeling (if it is a non-reversed access -- see Case 3).
1549 if (InvalidateGroupIfMemberMayWrap(Group, 0, "first"))
1550 continue;
1551 if (Group->getMember(Group->getFactor() - 1))
1552 InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1, "last");
1553 else {
1554 // Case 3: A non-reversed interleaved load group with gaps: We need
1555 // to execute at least one scalar epilogue iteration. This will ensure
1556 // we don't speculatively access memory out-of-bounds. We only need
1557 // to look for a member at index factor - 1, since every group must have
1558 // a member at index zero.
1559 if (Group->isReverse()) {
1560 LLVM_DEBUG(
1561 dbgs() << "LV: Invalidate candidate interleaved group due to "
1562 "a reverse access with gaps.\n");
1563 releaseGroup(Group);
1564 continue;
1566 LLVM_DEBUG(
1567 dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1568 RequiresScalarEpilogue = true;
1572 for (auto *Group : StoreGroups) {
1573 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1574 // store would wrap around the address space we would do a memory access at
1575 // nullptr even without the transformation.
1576 if (Group->getNumMembers() == Group->getFactor())
1577 continue;
1579 // Interleave-store-group with gaps is implemented using masked wide store.
1580 // Remove interleaved store groups with gaps if
1581 // masked-interleaved-accesses are not enabled by the target.
1582 if (!EnablePredicatedInterleavedMemAccesses) {
1583 LLVM_DEBUG(
1584 dbgs() << "LV: Invalidate candidate interleaved store group due "
1585 "to gaps.\n");
1586 releaseGroup(Group);
1587 continue;
1590 // Case 2: If first and last members of the group don't wrap this implies
1591 // that all the pointers in the group don't wrap.
1592 // So we check only group member 0 (which is always guaranteed to exist),
1593 // and the last group member. Case 3 (scalar epilog) is not relevant for
1594 // stores with gaps, which are implemented with masked-store (rather than
1595 // speculative access, as in loads).
1596 if (InvalidateGroupIfMemberMayWrap(Group, 0, "first"))
1597 continue;
1598 for (int Index = Group->getFactor() - 1; Index > 0; Index--)
1599 if (Group->getMember(Index)) {
1600 InvalidateGroupIfMemberMayWrap(Group, Index, "last");
1601 break;
1606 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1607 // If no group had triggered the requirement to create an epilogue loop,
1608 // there is nothing to do.
1609 if (!requiresScalarEpilogue())
1610 return;
1612 // Release groups requiring scalar epilogues. Note that this also removes them
1613 // from InterleaveGroups.
1614 bool ReleasedGroup = InterleaveGroups.remove_if([&](auto *Group) {
1615 if (!Group->requiresScalarEpilogue())
1616 return false;
1617 LLVM_DEBUG(
1618 dbgs()
1619 << "LV: Invalidate candidate interleaved group due to gaps that "
1620 "require a scalar epilogue (not allowed under optsize) and cannot "
1621 "be masked (not enabled). \n");
1622 releaseGroupWithoutRemovingFromSet(Group);
1623 return true;
1625 assert(ReleasedGroup && "At least one group must be invalidated, as a "
1626 "scalar epilogue was required");
1627 (void)ReleasedGroup;
1628 RequiresScalarEpilogue = false;
1631 template <typename InstT>
1632 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1633 llvm_unreachable("addMetadata can only be used for Instruction");
1636 namespace llvm {
1637 template <>
1638 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1639 SmallVector<Value *, 4> VL;
1640 std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1641 [](std::pair<int, Instruction *> p) { return p.second; });
1642 propagateMetadata(NewInst, VL);
1644 } // namespace llvm