1 //===- Type.cpp - Implement the Type class --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Type class for the IR library.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Type.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Value.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/Error.h"
27 #include "llvm/Support/TypeSize.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/TargetParser/RISCVTargetParser.h"
35 //===----------------------------------------------------------------------===//
36 // Type Class Implementation
37 //===----------------------------------------------------------------------===//
39 Type
*Type::getPrimitiveType(LLVMContext
&C
, TypeID IDNumber
) {
41 case VoidTyID
: return getVoidTy(C
);
42 case HalfTyID
: return getHalfTy(C
);
43 case BFloatTyID
: return getBFloatTy(C
);
44 case FloatTyID
: return getFloatTy(C
);
45 case DoubleTyID
: return getDoubleTy(C
);
46 case X86_FP80TyID
: return getX86_FP80Ty(C
);
47 case FP128TyID
: return getFP128Ty(C
);
48 case PPC_FP128TyID
: return getPPC_FP128Ty(C
);
49 case LabelTyID
: return getLabelTy(C
);
50 case MetadataTyID
: return getMetadataTy(C
);
51 case X86_AMXTyID
: return getX86_AMXTy(C
);
52 case TokenTyID
: return getTokenTy(C
);
58 bool Type::isIntegerTy(unsigned Bitwidth
) const {
59 return isIntegerTy() && cast
<IntegerType
>(this)->getBitWidth() == Bitwidth
;
62 bool Type::isScalableTy(SmallPtrSetImpl
<const Type
*> &Visited
) const {
63 if (const auto *ATy
= dyn_cast
<ArrayType
>(this))
64 return ATy
->getElementType()->isScalableTy(Visited
);
65 if (const auto *STy
= dyn_cast
<StructType
>(this))
66 return STy
->isScalableTy(Visited
);
67 return getTypeID() == ScalableVectorTyID
|| isScalableTargetExtTy();
70 bool Type::isScalableTy() const {
71 SmallPtrSet
<const Type
*, 4> Visited
;
72 return isScalableTy(Visited
);
75 bool Type::containsNonGlobalTargetExtType(
76 SmallPtrSetImpl
<const Type
*> &Visited
) const {
77 if (const auto *ATy
= dyn_cast
<ArrayType
>(this))
78 return ATy
->getElementType()->containsNonGlobalTargetExtType(Visited
);
79 if (const auto *STy
= dyn_cast
<StructType
>(this))
80 return STy
->containsNonGlobalTargetExtType(Visited
);
81 if (auto *TT
= dyn_cast
<TargetExtType
>(this))
82 return !TT
->hasProperty(TargetExtType::CanBeGlobal
);
86 bool Type::containsNonGlobalTargetExtType() const {
87 SmallPtrSet
<const Type
*, 4> Visited
;
88 return containsNonGlobalTargetExtType(Visited
);
91 bool Type::containsNonLocalTargetExtType(
92 SmallPtrSetImpl
<const Type
*> &Visited
) const {
93 if (const auto *ATy
= dyn_cast
<ArrayType
>(this))
94 return ATy
->getElementType()->containsNonLocalTargetExtType(Visited
);
95 if (const auto *STy
= dyn_cast
<StructType
>(this))
96 return STy
->containsNonLocalTargetExtType(Visited
);
97 if (auto *TT
= dyn_cast
<TargetExtType
>(this))
98 return !TT
->hasProperty(TargetExtType::CanBeLocal
);
102 bool Type::containsNonLocalTargetExtType() const {
103 SmallPtrSet
<const Type
*, 4> Visited
;
104 return containsNonLocalTargetExtType(Visited
);
107 const fltSemantics
&Type::getFltSemantics() const {
108 switch (getTypeID()) {
109 case HalfTyID
: return APFloat::IEEEhalf();
110 case BFloatTyID
: return APFloat::BFloat();
111 case FloatTyID
: return APFloat::IEEEsingle();
112 case DoubleTyID
: return APFloat::IEEEdouble();
113 case X86_FP80TyID
: return APFloat::x87DoubleExtended();
114 case FP128TyID
: return APFloat::IEEEquad();
115 case PPC_FP128TyID
: return APFloat::PPCDoubleDouble();
116 default: llvm_unreachable("Invalid floating type");
120 bool Type::isIEEE() const {
121 return APFloat::getZero(getFltSemantics()).isIEEE();
124 bool Type::isScalableTargetExtTy() const {
125 if (auto *TT
= dyn_cast
<TargetExtType
>(this))
126 return isa
<ScalableVectorType
>(TT
->getLayoutType());
130 Type
*Type::getFloatingPointTy(LLVMContext
&C
, const fltSemantics
&S
) {
132 if (&S
== &APFloat::IEEEhalf())
133 Ty
= Type::getHalfTy(C
);
134 else if (&S
== &APFloat::BFloat())
135 Ty
= Type::getBFloatTy(C
);
136 else if (&S
== &APFloat::IEEEsingle())
137 Ty
= Type::getFloatTy(C
);
138 else if (&S
== &APFloat::IEEEdouble())
139 Ty
= Type::getDoubleTy(C
);
140 else if (&S
== &APFloat::x87DoubleExtended())
141 Ty
= Type::getX86_FP80Ty(C
);
142 else if (&S
== &APFloat::IEEEquad())
143 Ty
= Type::getFP128Ty(C
);
145 assert(&S
== &APFloat::PPCDoubleDouble() && "Unknown FP format");
146 Ty
= Type::getPPC_FP128Ty(C
);
151 bool Type::isRISCVVectorTupleTy() const {
152 if (!isTargetExtTy())
155 return cast
<TargetExtType
>(this)->getName() == "riscv.vector.tuple";
158 bool Type::canLosslesslyBitCastTo(Type
*Ty
) const {
159 // Identity cast means no change so return true
163 // They are not convertible unless they are at least first class types
164 if (!this->isFirstClassType() || !Ty
->isFirstClassType())
167 // Vector -> Vector conversions are always lossless if the two vector types
168 // have the same size, otherwise not.
169 if (isa
<VectorType
>(this) && isa
<VectorType
>(Ty
))
170 return getPrimitiveSizeInBits() == Ty
->getPrimitiveSizeInBits();
172 // 8192-bit fixed width vector types can be losslessly converted to x86amx.
173 if (((isa
<FixedVectorType
>(this)) && Ty
->isX86_AMXTy()) &&
174 getPrimitiveSizeInBits().getFixedValue() == 8192)
176 if ((isX86_AMXTy() && isa
<FixedVectorType
>(Ty
)) &&
177 Ty
->getPrimitiveSizeInBits().getFixedValue() == 8192)
180 // Conservatively assume we can't losslessly convert between pointers with
181 // different address spaces.
185 bool Type::isEmptyTy() const {
186 if (auto *ATy
= dyn_cast
<ArrayType
>(this)) {
187 unsigned NumElements
= ATy
->getNumElements();
188 return NumElements
== 0 || ATy
->getElementType()->isEmptyTy();
191 if (auto *STy
= dyn_cast
<StructType
>(this)) {
192 unsigned NumElements
= STy
->getNumElements();
193 for (unsigned i
= 0; i
< NumElements
; ++i
)
194 if (!STy
->getElementType(i
)->isEmptyTy())
202 TypeSize
Type::getPrimitiveSizeInBits() const {
203 switch (getTypeID()) {
205 return TypeSize::getFixed(16);
206 case Type::BFloatTyID
:
207 return TypeSize::getFixed(16);
208 case Type::FloatTyID
:
209 return TypeSize::getFixed(32);
210 case Type::DoubleTyID
:
211 return TypeSize::getFixed(64);
212 case Type::X86_FP80TyID
:
213 return TypeSize::getFixed(80);
214 case Type::FP128TyID
:
215 return TypeSize::getFixed(128);
216 case Type::PPC_FP128TyID
:
217 return TypeSize::getFixed(128);
218 case Type::X86_AMXTyID
:
219 return TypeSize::getFixed(8192);
220 case Type::IntegerTyID
:
221 return TypeSize::getFixed(cast
<IntegerType
>(this)->getBitWidth());
222 case Type::FixedVectorTyID
:
223 case Type::ScalableVectorTyID
: {
224 const VectorType
*VTy
= cast
<VectorType
>(this);
225 ElementCount EC
= VTy
->getElementCount();
226 TypeSize ETS
= VTy
->getElementType()->getPrimitiveSizeInBits();
227 assert(!ETS
.isScalable() && "Vector type should have fixed-width elements");
228 return {ETS
.getFixedValue() * EC
.getKnownMinValue(), EC
.isScalable()};
231 return TypeSize::getFixed(0);
235 unsigned Type::getScalarSizeInBits() const {
236 // It is safe to assume that the scalar types have a fixed size.
237 return getScalarType()->getPrimitiveSizeInBits().getFixedValue();
240 int Type::getFPMantissaWidth() const {
241 if (auto *VTy
= dyn_cast
<VectorType
>(this))
242 return VTy
->getElementType()->getFPMantissaWidth();
243 assert(isFloatingPointTy() && "Not a floating point type!");
244 if (getTypeID() == HalfTyID
) return 11;
245 if (getTypeID() == BFloatTyID
) return 8;
246 if (getTypeID() == FloatTyID
) return 24;
247 if (getTypeID() == DoubleTyID
) return 53;
248 if (getTypeID() == X86_FP80TyID
) return 64;
249 if (getTypeID() == FP128TyID
) return 113;
250 assert(getTypeID() == PPC_FP128TyID
&& "unknown fp type");
254 bool Type::isSizedDerivedType(SmallPtrSetImpl
<Type
*> *Visited
) const {
255 if (auto *ATy
= dyn_cast
<ArrayType
>(this))
256 return ATy
->getElementType()->isSized(Visited
);
258 if (auto *VTy
= dyn_cast
<VectorType
>(this))
259 return VTy
->getElementType()->isSized(Visited
);
261 if (auto *TTy
= dyn_cast
<TargetExtType
>(this))
262 return TTy
->getLayoutType()->isSized(Visited
);
264 return cast
<StructType
>(this)->isSized(Visited
);
267 //===----------------------------------------------------------------------===//
268 // Primitive 'Type' data
269 //===----------------------------------------------------------------------===//
271 Type
*Type::getVoidTy(LLVMContext
&C
) { return &C
.pImpl
->VoidTy
; }
272 Type
*Type::getLabelTy(LLVMContext
&C
) { return &C
.pImpl
->LabelTy
; }
273 Type
*Type::getHalfTy(LLVMContext
&C
) { return &C
.pImpl
->HalfTy
; }
274 Type
*Type::getBFloatTy(LLVMContext
&C
) { return &C
.pImpl
->BFloatTy
; }
275 Type
*Type::getFloatTy(LLVMContext
&C
) { return &C
.pImpl
->FloatTy
; }
276 Type
*Type::getDoubleTy(LLVMContext
&C
) { return &C
.pImpl
->DoubleTy
; }
277 Type
*Type::getMetadataTy(LLVMContext
&C
) { return &C
.pImpl
->MetadataTy
; }
278 Type
*Type::getTokenTy(LLVMContext
&C
) { return &C
.pImpl
->TokenTy
; }
279 Type
*Type::getX86_FP80Ty(LLVMContext
&C
) { return &C
.pImpl
->X86_FP80Ty
; }
280 Type
*Type::getFP128Ty(LLVMContext
&C
) { return &C
.pImpl
->FP128Ty
; }
281 Type
*Type::getPPC_FP128Ty(LLVMContext
&C
) { return &C
.pImpl
->PPC_FP128Ty
; }
282 Type
*Type::getX86_AMXTy(LLVMContext
&C
) { return &C
.pImpl
->X86_AMXTy
; }
284 IntegerType
*Type::getInt1Ty(LLVMContext
&C
) { return &C
.pImpl
->Int1Ty
; }
285 IntegerType
*Type::getInt8Ty(LLVMContext
&C
) { return &C
.pImpl
->Int8Ty
; }
286 IntegerType
*Type::getInt16Ty(LLVMContext
&C
) { return &C
.pImpl
->Int16Ty
; }
287 IntegerType
*Type::getInt32Ty(LLVMContext
&C
) { return &C
.pImpl
->Int32Ty
; }
288 IntegerType
*Type::getInt64Ty(LLVMContext
&C
) { return &C
.pImpl
->Int64Ty
; }
289 IntegerType
*Type::getInt128Ty(LLVMContext
&C
) { return &C
.pImpl
->Int128Ty
; }
291 IntegerType
*Type::getIntNTy(LLVMContext
&C
, unsigned N
) {
292 return IntegerType::get(C
, N
);
295 Type
*Type::getWasm_ExternrefTy(LLVMContext
&C
) {
296 // opaque pointer in addrspace(10)
297 static PointerType
*Ty
= PointerType::get(C
, 10);
301 Type
*Type::getWasm_FuncrefTy(LLVMContext
&C
) {
302 // opaque pointer in addrspace(20)
303 static PointerType
*Ty
= PointerType::get(C
, 20);
307 //===----------------------------------------------------------------------===//
308 // IntegerType Implementation
309 //===----------------------------------------------------------------------===//
311 IntegerType
*IntegerType::get(LLVMContext
&C
, unsigned NumBits
) {
312 assert(NumBits
>= MIN_INT_BITS
&& "bitwidth too small");
313 assert(NumBits
<= MAX_INT_BITS
&& "bitwidth too large");
315 // Check for the built-in integer types
317 case 1: return cast
<IntegerType
>(Type::getInt1Ty(C
));
318 case 8: return cast
<IntegerType
>(Type::getInt8Ty(C
));
319 case 16: return cast
<IntegerType
>(Type::getInt16Ty(C
));
320 case 32: return cast
<IntegerType
>(Type::getInt32Ty(C
));
321 case 64: return cast
<IntegerType
>(Type::getInt64Ty(C
));
322 case 128: return cast
<IntegerType
>(Type::getInt128Ty(C
));
327 IntegerType
*&Entry
= C
.pImpl
->IntegerTypes
[NumBits
];
330 Entry
= new (C
.pImpl
->Alloc
) IntegerType(C
, NumBits
);
335 APInt
IntegerType::getMask() const { return APInt::getAllOnes(getBitWidth()); }
337 //===----------------------------------------------------------------------===//
338 // FunctionType Implementation
339 //===----------------------------------------------------------------------===//
341 FunctionType::FunctionType(Type
*Result
, ArrayRef
<Type
*> Params
,
343 : Type(Result
->getContext(), FunctionTyID
) {
344 Type
**SubTys
= reinterpret_cast<Type
**>(this+1);
345 assert(isValidReturnType(Result
) && "invalid return type for function");
346 setSubclassData(IsVarArgs
);
350 for (unsigned i
= 0, e
= Params
.size(); i
!= e
; ++i
) {
351 assert(isValidArgumentType(Params
[i
]) &&
352 "Not a valid type for function argument!");
353 SubTys
[i
+1] = Params
[i
];
356 ContainedTys
= SubTys
;
357 NumContainedTys
= Params
.size() + 1; // + 1 for result type
360 // This is the factory function for the FunctionType class.
361 FunctionType
*FunctionType::get(Type
*ReturnType
,
362 ArrayRef
<Type
*> Params
, bool isVarArg
) {
363 LLVMContextImpl
*pImpl
= ReturnType
->getContext().pImpl
;
364 const FunctionTypeKeyInfo::KeyTy
Key(ReturnType
, Params
, isVarArg
);
366 // Since we only want to allocate a fresh function type in case none is found
367 // and we don't want to perform two lookups (one for checking if existent and
368 // one for inserting the newly allocated one), here we instead lookup based on
369 // Key and update the reference to the function type in-place to a newly
370 // allocated one if not found.
371 auto Insertion
= pImpl
->FunctionTypes
.insert_as(nullptr, Key
);
372 if (Insertion
.second
) {
373 // The function type was not found. Allocate one and update FunctionTypes
375 FT
= (FunctionType
*)pImpl
->Alloc
.Allocate(
376 sizeof(FunctionType
) + sizeof(Type
*) * (Params
.size() + 1),
377 alignof(FunctionType
));
378 new (FT
) FunctionType(ReturnType
, Params
, isVarArg
);
379 *Insertion
.first
= FT
;
381 // The function type was found. Just return it.
382 FT
= *Insertion
.first
;
387 FunctionType
*FunctionType::get(Type
*Result
, bool isVarArg
) {
388 return get(Result
, {}, isVarArg
);
391 bool FunctionType::isValidReturnType(Type
*RetTy
) {
392 return !RetTy
->isFunctionTy() && !RetTy
->isLabelTy() &&
393 !RetTy
->isMetadataTy();
396 bool FunctionType::isValidArgumentType(Type
*ArgTy
) {
397 return ArgTy
->isFirstClassType();
400 //===----------------------------------------------------------------------===//
401 // StructType Implementation
402 //===----------------------------------------------------------------------===//
404 // Primitive Constructors.
406 StructType
*StructType::get(LLVMContext
&Context
, ArrayRef
<Type
*> ETypes
,
408 LLVMContextImpl
*pImpl
= Context
.pImpl
;
409 const AnonStructTypeKeyInfo::KeyTy
Key(ETypes
, isPacked
);
412 // Since we only want to allocate a fresh struct type in case none is found
413 // and we don't want to perform two lookups (one for checking if existent and
414 // one for inserting the newly allocated one), here we instead lookup based on
415 // Key and update the reference to the struct type in-place to a newly
416 // allocated one if not found.
417 auto Insertion
= pImpl
->AnonStructTypes
.insert_as(nullptr, Key
);
418 if (Insertion
.second
) {
419 // The struct type was not found. Allocate one and update AnonStructTypes
421 ST
= new (Context
.pImpl
->Alloc
) StructType(Context
);
422 ST
->setSubclassData(SCDB_IsLiteral
); // Literal struct.
423 ST
->setBody(ETypes
, isPacked
);
424 *Insertion
.first
= ST
;
426 // The struct type was found. Just return it.
427 ST
= *Insertion
.first
;
433 bool StructType::isScalableTy(SmallPtrSetImpl
<const Type
*> &Visited
) const {
434 if ((getSubclassData() & SCDB_ContainsScalableVector
) != 0)
437 if ((getSubclassData() & SCDB_NotContainsScalableVector
) != 0)
440 if (!Visited
.insert(this).second
)
443 for (Type
*Ty
: elements()) {
444 if (Ty
->isScalableTy(Visited
)) {
445 const_cast<StructType
*>(this)->setSubclassData(
446 getSubclassData() | SCDB_ContainsScalableVector
);
451 // For structures that are opaque, return false but do not set the
452 // SCDB_NotContainsScalableVector flag since it may gain scalable vector type
453 // when it becomes non-opaque.
455 const_cast<StructType
*>(this)->setSubclassData(
456 getSubclassData() | SCDB_NotContainsScalableVector
);
460 bool StructType::containsNonGlobalTargetExtType(
461 SmallPtrSetImpl
<const Type
*> &Visited
) const {
462 if ((getSubclassData() & SCDB_ContainsNonGlobalTargetExtType
) != 0)
465 if ((getSubclassData() & SCDB_NotContainsNonGlobalTargetExtType
) != 0)
468 if (!Visited
.insert(this).second
)
471 for (Type
*Ty
: elements()) {
472 if (Ty
->containsNonGlobalTargetExtType(Visited
)) {
473 const_cast<StructType
*>(this)->setSubclassData(
474 getSubclassData() | SCDB_ContainsNonGlobalTargetExtType
);
479 // For structures that are opaque, return false but do not set the
480 // SCDB_NotContainsNonGlobalTargetExtType flag since it may gain non-global
481 // target extension types when it becomes non-opaque.
483 const_cast<StructType
*>(this)->setSubclassData(
484 getSubclassData() | SCDB_NotContainsNonGlobalTargetExtType
);
488 bool StructType::containsNonLocalTargetExtType(
489 SmallPtrSetImpl
<const Type
*> &Visited
) const {
490 if ((getSubclassData() & SCDB_ContainsNonLocalTargetExtType
) != 0)
493 if ((getSubclassData() & SCDB_NotContainsNonLocalTargetExtType
) != 0)
496 if (!Visited
.insert(this).second
)
499 for (Type
*Ty
: elements()) {
500 if (Ty
->containsNonLocalTargetExtType(Visited
)) {
501 const_cast<StructType
*>(this)->setSubclassData(
502 getSubclassData() | SCDB_ContainsNonLocalTargetExtType
);
507 // For structures that are opaque, return false but do not set the
508 // SCDB_NotContainsNonLocalTargetExtType flag since it may gain non-local
509 // target extension types when it becomes non-opaque.
511 const_cast<StructType
*>(this)->setSubclassData(
512 getSubclassData() | SCDB_NotContainsNonLocalTargetExtType
);
516 bool StructType::containsHomogeneousScalableVectorTypes() const {
517 if (getNumElements() <= 0 || !isa
<ScalableVectorType
>(elements().front()))
519 return containsHomogeneousTypes();
522 bool StructType::containsHomogeneousTypes() const {
523 ArrayRef
<Type
*> ElementTys
= elements();
524 return !ElementTys
.empty() && all_equal(ElementTys
);
527 void StructType::setBody(ArrayRef
<Type
*> Elements
, bool isPacked
) {
528 cantFail(setBodyOrError(Elements
, isPacked
));
531 Error
StructType::setBodyOrError(ArrayRef
<Type
*> Elements
, bool isPacked
) {
532 assert(isOpaque() && "Struct body already set!");
534 if (auto E
= checkBody(Elements
))
537 setSubclassData(getSubclassData() | SCDB_HasBody
);
539 setSubclassData(getSubclassData() | SCDB_Packed
);
541 NumContainedTys
= Elements
.size();
542 ContainedTys
= Elements
.empty()
544 : Elements
.copy(getContext().pImpl
->Alloc
).data();
546 return Error::success();
549 Error
StructType::checkBody(ArrayRef
<Type
*> Elements
) {
550 SmallSetVector
<Type
*, 4> Worklist(Elements
.begin(), Elements
.end());
551 for (unsigned I
= 0; I
< Worklist
.size(); ++I
) {
552 Type
*Ty
= Worklist
[I
];
554 return createStringError(Twine("identified structure type '") +
555 getName() + "' is recursive");
556 Worklist
.insert(Ty
->subtype_begin(), Ty
->subtype_end());
558 return Error::success();
561 void StructType::setName(StringRef Name
) {
562 if (Name
== getName()) return;
564 StringMap
<StructType
*> &SymbolTable
= getContext().pImpl
->NamedStructTypes
;
566 using EntryTy
= StringMap
<StructType
*>::MapEntryTy
;
568 // If this struct already had a name, remove its symbol table entry. Don't
569 // delete the data yet because it may be part of the new name.
570 if (SymbolTableEntry
)
571 SymbolTable
.remove((EntryTy
*)SymbolTableEntry
);
573 // If this is just removing the name, we're done.
575 if (SymbolTableEntry
) {
576 // Delete the old string data.
577 ((EntryTy
*)SymbolTableEntry
)->Destroy(SymbolTable
.getAllocator());
578 SymbolTableEntry
= nullptr;
583 // Look up the entry for the name.
585 getContext().pImpl
->NamedStructTypes
.insert(std::make_pair(Name
, this));
587 // While we have a name collision, try a random rename.
588 if (!IterBool
.second
) {
589 SmallString
<64> TempStr(Name
);
590 TempStr
.push_back('.');
591 raw_svector_ostream
TmpStream(TempStr
);
592 unsigned NameSize
= Name
.size();
595 TempStr
.resize(NameSize
+ 1);
596 TmpStream
<< getContext().pImpl
->NamedStructTypesUniqueID
++;
598 IterBool
= getContext().pImpl
->NamedStructTypes
.insert(
599 std::make_pair(TmpStream
.str(), this));
600 } while (!IterBool
.second
);
603 // Delete the old string data.
604 if (SymbolTableEntry
)
605 ((EntryTy
*)SymbolTableEntry
)->Destroy(SymbolTable
.getAllocator());
606 SymbolTableEntry
= &*IterBool
.first
;
609 //===----------------------------------------------------------------------===//
610 // StructType Helper functions.
612 StructType
*StructType::create(LLVMContext
&Context
, StringRef Name
) {
613 StructType
*ST
= new (Context
.pImpl
->Alloc
) StructType(Context
);
619 StructType
*StructType::get(LLVMContext
&Context
, bool isPacked
) {
620 return get(Context
, {}, isPacked
);
623 StructType
*StructType::create(LLVMContext
&Context
, ArrayRef
<Type
*> Elements
,
624 StringRef Name
, bool isPacked
) {
625 StructType
*ST
= create(Context
, Name
);
626 ST
->setBody(Elements
, isPacked
);
630 StructType
*StructType::create(LLVMContext
&Context
, ArrayRef
<Type
*> Elements
) {
631 return create(Context
, Elements
, StringRef());
634 StructType
*StructType::create(LLVMContext
&Context
) {
635 return create(Context
, StringRef());
638 StructType
*StructType::create(ArrayRef
<Type
*> Elements
, StringRef Name
,
640 assert(!Elements
.empty() &&
641 "This method may not be invoked with an empty list");
642 return create(Elements
[0]->getContext(), Elements
, Name
, isPacked
);
645 StructType
*StructType::create(ArrayRef
<Type
*> Elements
) {
646 assert(!Elements
.empty() &&
647 "This method may not be invoked with an empty list");
648 return create(Elements
[0]->getContext(), Elements
, StringRef());
651 bool StructType::isSized(SmallPtrSetImpl
<Type
*> *Visited
) const {
652 if ((getSubclassData() & SCDB_IsSized
) != 0)
657 if (Visited
&& !Visited
->insert(const_cast<StructType
*>(this)).second
)
660 // Okay, our struct is sized if all of the elements are, but if one of the
661 // elements is opaque, the struct isn't sized *yet*, but may become sized in
662 // the future, so just bail out without caching.
663 // The ONLY special case inside a struct that is considered sized is when the
664 // elements are homogeneous of a scalable vector type.
665 if (containsHomogeneousScalableVectorTypes()) {
666 const_cast<StructType
*>(this)->setSubclassData(getSubclassData() |
670 for (Type
*Ty
: elements()) {
671 // If the struct contains a scalable vector type, don't consider it sized.
672 // This prevents it from being used in loads/stores/allocas/GEPs. The ONLY
673 // special case right now is a structure of homogenous scalable vector
674 // types and is handled by the if-statement before this for-loop.
675 if (Ty
->isScalableTy())
677 if (!Ty
->isSized(Visited
))
681 // Here we cheat a bit and cast away const-ness. The goal is to memoize when
682 // we find a sized type, as types can only move from opaque to sized, not the
684 const_cast<StructType
*>(this)->setSubclassData(
685 getSubclassData() | SCDB_IsSized
);
689 StringRef
StructType::getName() const {
690 assert(!isLiteral() && "Literal structs never have names");
691 if (!SymbolTableEntry
) return StringRef();
693 return ((StringMapEntry
<StructType
*> *)SymbolTableEntry
)->getKey();
696 bool StructType::isValidElementType(Type
*ElemTy
) {
697 return !ElemTy
->isVoidTy() && !ElemTy
->isLabelTy() &&
698 !ElemTy
->isMetadataTy() && !ElemTy
->isFunctionTy() &&
699 !ElemTy
->isTokenTy();
702 bool StructType::isLayoutIdentical(StructType
*Other
) const {
703 if (this == Other
) return true;
705 if (isPacked() != Other
->isPacked())
708 return elements() == Other
->elements();
711 Type
*StructType::getTypeAtIndex(const Value
*V
) const {
712 unsigned Idx
= (unsigned)cast
<Constant
>(V
)->getUniqueInteger().getZExtValue();
713 assert(indexValid(Idx
) && "Invalid structure index!");
714 return getElementType(Idx
);
717 bool StructType::indexValid(const Value
*V
) const {
718 // Structure indexes require (vectors of) 32-bit integer constants. In the
719 // vector case all of the indices must be equal.
720 if (!V
->getType()->isIntOrIntVectorTy(32))
722 if (isa
<ScalableVectorType
>(V
->getType()))
724 const Constant
*C
= dyn_cast
<Constant
>(V
);
725 if (C
&& V
->getType()->isVectorTy())
726 C
= C
->getSplatValue();
727 const ConstantInt
*CU
= dyn_cast_or_null
<ConstantInt
>(C
);
728 return CU
&& CU
->getZExtValue() < getNumElements();
731 StructType
*StructType::getTypeByName(LLVMContext
&C
, StringRef Name
) {
732 return C
.pImpl
->NamedStructTypes
.lookup(Name
);
735 //===----------------------------------------------------------------------===//
736 // ArrayType Implementation
737 //===----------------------------------------------------------------------===//
739 ArrayType::ArrayType(Type
*ElType
, uint64_t NumEl
)
740 : Type(ElType
->getContext(), ArrayTyID
), ContainedType(ElType
),
742 ContainedTys
= &ContainedType
;
746 ArrayType
*ArrayType::get(Type
*ElementType
, uint64_t NumElements
) {
747 assert(isValidElementType(ElementType
) && "Invalid type for array element!");
749 LLVMContextImpl
*pImpl
= ElementType
->getContext().pImpl
;
751 pImpl
->ArrayTypes
[std::make_pair(ElementType
, NumElements
)];
754 Entry
= new (pImpl
->Alloc
) ArrayType(ElementType
, NumElements
);
758 bool ArrayType::isValidElementType(Type
*ElemTy
) {
759 return !ElemTy
->isVoidTy() && !ElemTy
->isLabelTy() &&
760 !ElemTy
->isMetadataTy() && !ElemTy
->isFunctionTy() &&
761 !ElemTy
->isTokenTy() && !ElemTy
->isX86_AMXTy();
764 //===----------------------------------------------------------------------===//
765 // VectorType Implementation
766 //===----------------------------------------------------------------------===//
768 VectorType::VectorType(Type
*ElType
, unsigned EQ
, Type::TypeID TID
)
769 : Type(ElType
->getContext(), TID
), ContainedType(ElType
),
770 ElementQuantity(EQ
) {
771 ContainedTys
= &ContainedType
;
775 VectorType
*VectorType::get(Type
*ElementType
, ElementCount EC
) {
777 return ScalableVectorType::get(ElementType
, EC
.getKnownMinValue());
779 return FixedVectorType::get(ElementType
, EC
.getKnownMinValue());
782 bool VectorType::isValidElementType(Type
*ElemTy
) {
783 return ElemTy
->isIntegerTy() || ElemTy
->isFloatingPointTy() ||
784 ElemTy
->isPointerTy() || ElemTy
->getTypeID() == TypedPointerTyID
;
787 //===----------------------------------------------------------------------===//
788 // FixedVectorType Implementation
789 //===----------------------------------------------------------------------===//
791 FixedVectorType
*FixedVectorType::get(Type
*ElementType
, unsigned NumElts
) {
792 assert(NumElts
> 0 && "#Elements of a VectorType must be greater than 0");
793 assert(isValidElementType(ElementType
) && "Element type of a VectorType must "
794 "be an integer, floating point, or "
797 auto EC
= ElementCount::getFixed(NumElts
);
799 LLVMContextImpl
*pImpl
= ElementType
->getContext().pImpl
;
800 VectorType
*&Entry
= ElementType
->getContext()
801 .pImpl
->VectorTypes
[std::make_pair(ElementType
, EC
)];
804 Entry
= new (pImpl
->Alloc
) FixedVectorType(ElementType
, NumElts
);
805 return cast
<FixedVectorType
>(Entry
);
808 //===----------------------------------------------------------------------===//
809 // ScalableVectorType Implementation
810 //===----------------------------------------------------------------------===//
812 ScalableVectorType
*ScalableVectorType::get(Type
*ElementType
,
813 unsigned MinNumElts
) {
814 assert(MinNumElts
> 0 && "#Elements of a VectorType must be greater than 0");
815 assert(isValidElementType(ElementType
) && "Element type of a VectorType must "
816 "be an integer, floating point, or "
819 auto EC
= ElementCount::getScalable(MinNumElts
);
821 LLVMContextImpl
*pImpl
= ElementType
->getContext().pImpl
;
822 VectorType
*&Entry
= ElementType
->getContext()
823 .pImpl
->VectorTypes
[std::make_pair(ElementType
, EC
)];
826 Entry
= new (pImpl
->Alloc
) ScalableVectorType(ElementType
, MinNumElts
);
827 return cast
<ScalableVectorType
>(Entry
);
830 //===----------------------------------------------------------------------===//
831 // PointerType Implementation
832 //===----------------------------------------------------------------------===//
834 PointerType
*PointerType::get(Type
*EltTy
, unsigned AddressSpace
) {
835 assert(EltTy
&& "Can't get a pointer to <null> type!");
836 assert(isValidElementType(EltTy
) && "Invalid type for pointer element!");
838 // Automatically convert typed pointers to opaque pointers.
839 return get(EltTy
->getContext(), AddressSpace
);
842 PointerType
*PointerType::get(LLVMContext
&C
, unsigned AddressSpace
) {
843 LLVMContextImpl
*CImpl
= C
.pImpl
;
845 // Since AddressSpace #0 is the common case, we special case it.
846 PointerType
*&Entry
= AddressSpace
== 0 ? CImpl
->AS0PointerType
847 : CImpl
->PointerTypes
[AddressSpace
];
850 Entry
= new (CImpl
->Alloc
) PointerType(C
, AddressSpace
);
854 PointerType::PointerType(LLVMContext
&C
, unsigned AddrSpace
)
855 : Type(C
, PointerTyID
) {
856 setSubclassData(AddrSpace
);
859 PointerType
*Type::getPointerTo(unsigned AddrSpace
) const {
860 return PointerType::get(getContext(), AddrSpace
);
863 bool PointerType::isValidElementType(Type
*ElemTy
) {
864 return !ElemTy
->isVoidTy() && !ElemTy
->isLabelTy() &&
865 !ElemTy
->isMetadataTy() && !ElemTy
->isTokenTy() &&
866 !ElemTy
->isX86_AMXTy();
869 bool PointerType::isLoadableOrStorableType(Type
*ElemTy
) {
870 return isValidElementType(ElemTy
) && !ElemTy
->isFunctionTy();
873 //===----------------------------------------------------------------------===//
874 // TargetExtType Implementation
875 //===----------------------------------------------------------------------===//
877 TargetExtType::TargetExtType(LLVMContext
&C
, StringRef Name
,
878 ArrayRef
<Type
*> Types
, ArrayRef
<unsigned> Ints
)
879 : Type(C
, TargetExtTyID
), Name(C
.pImpl
->Saver
.save(Name
)) {
880 NumContainedTys
= Types
.size();
882 // Parameter storage immediately follows the class in allocation.
883 Type
**Params
= reinterpret_cast<Type
**>(this + 1);
884 ContainedTys
= Params
;
885 for (Type
*T
: Types
)
888 setSubclassData(Ints
.size());
889 unsigned *IntParamSpace
= reinterpret_cast<unsigned *>(Params
);
890 IntParams
= IntParamSpace
;
891 for (unsigned IntParam
: Ints
)
892 *IntParamSpace
++ = IntParam
;
895 TargetExtType
*TargetExtType::get(LLVMContext
&C
, StringRef Name
,
896 ArrayRef
<Type
*> Types
,
897 ArrayRef
<unsigned> Ints
) {
898 return cantFail(getOrError(C
, Name
, Types
, Ints
));
901 Expected
<TargetExtType
*> TargetExtType::getOrError(LLVMContext
&C
,
903 ArrayRef
<Type
*> Types
,
904 ArrayRef
<unsigned> Ints
) {
905 const TargetExtTypeKeyInfo::KeyTy
Key(Name
, Types
, Ints
);
907 // Since we only want to allocate a fresh target type in case none is found
908 // and we don't want to perform two lookups (one for checking if existent and
909 // one for inserting the newly allocated one), here we instead lookup based on
910 // Key and update the reference to the target type in-place to a newly
911 // allocated one if not found.
912 auto [Iter
, Inserted
] = C
.pImpl
->TargetExtTypes
.insert_as(nullptr, Key
);
914 // The target type was not found. Allocate one and update TargetExtTypes
916 TT
= (TargetExtType
*)C
.pImpl
->Alloc
.Allocate(
917 sizeof(TargetExtType
) + sizeof(Type
*) * Types
.size() +
918 sizeof(unsigned) * Ints
.size(),
919 alignof(TargetExtType
));
920 new (TT
) TargetExtType(C
, Name
, Types
, Ints
);
922 return checkParams(TT
);
925 // The target type was found. Just return it.
929 Expected
<TargetExtType
*> TargetExtType::checkParams(TargetExtType
*TTy
) {
930 // Opaque types in the AArch64 name space.
931 if (TTy
->Name
== "aarch64.svcount" &&
932 (TTy
->getNumTypeParameters() != 0 || TTy
->getNumIntParameters() != 0))
933 return createStringError(
934 "target extension type aarch64.svcount should have no parameters");
936 // Opaque types in the RISC-V name space.
937 if (TTy
->Name
== "riscv.vector.tuple" &&
938 (TTy
->getNumTypeParameters() != 1 || TTy
->getNumIntParameters() != 1))
939 return createStringError(
940 "target extension type riscv.vector.tuple should have one "
941 "type parameter and one integer parameter");
943 // Opaque types in the AMDGPU name space.
944 if (TTy
->Name
== "amdgcn.named.barrier" &&
945 (TTy
->getNumTypeParameters() != 0 || TTy
->getNumIntParameters() != 1)) {
946 return createStringError("target extension type amdgcn.named.barrier "
947 "should have no type parameters "
948 "and one integer parameter");
955 struct TargetTypeInfo
{
959 template <typename
... ArgTys
>
960 TargetTypeInfo(Type
*LayoutType
, ArgTys
... Properties
)
961 : LayoutType(LayoutType
), Properties((0 | ... | Properties
)) {}
963 } // anonymous namespace
965 static TargetTypeInfo
getTargetTypeInfo(const TargetExtType
*Ty
) {
966 LLVMContext
&C
= Ty
->getContext();
967 StringRef Name
= Ty
->getName();
968 if (Name
== "spirv.Image")
969 return TargetTypeInfo(PointerType::get(C
, 0), TargetExtType::CanBeGlobal
,
970 TargetExtType::CanBeLocal
);
971 if (Name
.starts_with("spirv."))
972 return TargetTypeInfo(PointerType::get(C
, 0), TargetExtType::HasZeroInit
,
973 TargetExtType::CanBeGlobal
,
974 TargetExtType::CanBeLocal
);
976 // Opaque types in the AArch64 name space.
977 if (Name
== "aarch64.svcount")
978 return TargetTypeInfo(ScalableVectorType::get(Type::getInt1Ty(C
), 16),
979 TargetExtType::HasZeroInit
,
980 TargetExtType::CanBeLocal
);
982 // RISC-V vector tuple type. The layout is represented as the type that needs
983 // the same number of vector registers(VREGS) as this tuple type, represented
984 // as <vscale x (RVVBitsPerBlock * VREGS / 8) x i8>.
985 if (Name
== "riscv.vector.tuple") {
986 unsigned TotalNumElts
=
987 std::max(cast
<ScalableVectorType
>(Ty
->getTypeParameter(0))
988 ->getMinNumElements(),
989 RISCV::RVVBitsPerBlock
/ 8) *
990 Ty
->getIntParameter(0);
991 return TargetTypeInfo(
992 ScalableVectorType::get(Type::getInt8Ty(C
), TotalNumElts
),
993 TargetExtType::CanBeLocal
, TargetExtType::HasZeroInit
);
997 if (Name
.starts_with("dx."))
998 return TargetTypeInfo(PointerType::get(C
, 0), TargetExtType::CanBeGlobal
,
999 TargetExtType::CanBeLocal
);
1001 // Opaque types in the AMDGPU name space.
1002 if (Name
== "amdgcn.named.barrier") {
1003 return TargetTypeInfo(FixedVectorType::get(Type::getInt32Ty(C
), 4),
1004 TargetExtType::CanBeGlobal
);
1007 return TargetTypeInfo(Type::getVoidTy(C
));
1010 Type
*TargetExtType::getLayoutType() const {
1011 return getTargetTypeInfo(this).LayoutType
;
1014 bool TargetExtType::hasProperty(Property Prop
) const {
1015 uint64_t Properties
= getTargetTypeInfo(this).Properties
;
1016 return (Properties
& Prop
) == Prop
;