1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Linker/IRMover.h"
10 #include "LinkDiagnosticInfo.h"
11 #include "llvm/ADT/ScopeExit.h"
12 #include "llvm/ADT/SetVector.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallString.h"
15 #include "llvm/IR/AutoUpgrade.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/DebugInfoMetadata.h"
18 #include "llvm/IR/DiagnosticPrinter.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/GVMaterializer.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Intrinsics.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/PseudoProbe.h"
27 #include "llvm/IR/TypeFinder.h"
28 #include "llvm/Object/ModuleSymbolTable.h"
29 #include "llvm/Support/Error.h"
30 #include "llvm/Support/Path.h"
31 #include "llvm/TargetParser/Triple.h"
32 #include "llvm/Transforms/Utils/ValueMapper.h"
37 /// Most of the errors produced by this module are inconvertible StringErrors.
38 /// This convenience function lets us return one of those more easily.
39 static Error
stringErr(const Twine
&T
) {
40 return make_error
<StringError
>(T
, inconvertibleErrorCode());
43 //===----------------------------------------------------------------------===//
44 // TypeMap implementation.
45 //===----------------------------------------------------------------------===//
48 class TypeMapTy
: public ValueMapTypeRemapper
{
49 /// This is a mapping from a source type to a destination type to use.
50 DenseMap
<Type
*, Type
*> MappedTypes
;
52 /// When checking to see if two subgraphs are isomorphic, we speculatively
53 /// add types to MappedTypes, but keep track of them here in case we need to
55 SmallVector
<Type
*, 16> SpeculativeTypes
;
57 SmallVector
<StructType
*, 16> SpeculativeDstOpaqueTypes
;
59 /// This is a list of non-opaque structs in the source module that are mapped
60 /// to an opaque struct in the destination module.
61 SmallVector
<StructType
*, 16> SrcDefinitionsToResolve
;
63 /// This is the set of opaque types in the destination modules who are
64 /// getting a body from the source module.
65 SmallPtrSet
<StructType
*, 16> DstResolvedOpaqueTypes
;
68 TypeMapTy(IRMover::IdentifiedStructTypeSet
&DstStructTypesSet
)
69 : DstStructTypesSet(DstStructTypesSet
) {}
71 IRMover::IdentifiedStructTypeSet
&DstStructTypesSet
;
72 /// Indicate that the specified type in the destination module is conceptually
73 /// equivalent to the specified type in the source module.
74 void addTypeMapping(Type
*DstTy
, Type
*SrcTy
);
76 /// Produce a body for an opaque type in the dest module from a type
77 /// definition in the source module.
78 Error
linkDefinedTypeBodies();
80 /// Return the mapped type to use for the specified input type from the
82 Type
*get(Type
*SrcTy
);
83 Type
*get(Type
*SrcTy
, SmallPtrSet
<StructType
*, 8> &Visited
);
85 FunctionType
*get(FunctionType
*T
) {
86 return cast
<FunctionType
>(get((Type
*)T
));
90 Type
*remapType(Type
*SrcTy
) override
{ return get(SrcTy
); }
92 bool areTypesIsomorphic(Type
*DstTy
, Type
*SrcTy
);
96 void TypeMapTy::addTypeMapping(Type
*DstTy
, Type
*SrcTy
) {
97 assert(SpeculativeTypes
.empty());
98 assert(SpeculativeDstOpaqueTypes
.empty());
100 // Check to see if these types are recursively isomorphic and establish a
101 // mapping between them if so.
102 if (!areTypesIsomorphic(DstTy
, SrcTy
)) {
103 // Oops, they aren't isomorphic. Just discard this request by rolling out
104 // any speculative mappings we've established.
105 for (Type
*Ty
: SpeculativeTypes
)
106 MappedTypes
.erase(Ty
);
108 SrcDefinitionsToResolve
.resize(SrcDefinitionsToResolve
.size() -
109 SpeculativeDstOpaqueTypes
.size());
110 for (StructType
*Ty
: SpeculativeDstOpaqueTypes
)
111 DstResolvedOpaqueTypes
.erase(Ty
);
113 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
114 // and all its descendants to lower amount of renaming in LLVM context
115 // Renaming occurs because we load all source modules to the same context
116 // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
117 // As a result we may get several different types in the destination
118 // module, which are in fact the same.
119 for (Type
*Ty
: SpeculativeTypes
)
120 if (auto *STy
= dyn_cast
<StructType
>(Ty
))
124 SpeculativeTypes
.clear();
125 SpeculativeDstOpaqueTypes
.clear();
128 /// Recursively walk this pair of types, returning true if they are isomorphic,
129 /// false if they are not.
130 bool TypeMapTy::areTypesIsomorphic(Type
*DstTy
, Type
*SrcTy
) {
131 // Two types with differing kinds are clearly not isomorphic.
132 if (DstTy
->getTypeID() != SrcTy
->getTypeID())
135 // If we have an entry in the MappedTypes table, then we have our answer.
136 Type
*&Entry
= MappedTypes
[SrcTy
];
138 return Entry
== DstTy
;
140 // Two identical types are clearly isomorphic. Remember this
141 // non-speculatively.
142 if (DstTy
== SrcTy
) {
147 // Okay, we have two types with identical kinds that we haven't seen before.
149 // If this is an opaque struct type, special case it.
150 if (StructType
*SSTy
= dyn_cast
<StructType
>(SrcTy
)) {
151 // Mapping an opaque type to any struct, just keep the dest struct.
152 if (SSTy
->isOpaque()) {
154 SpeculativeTypes
.push_back(SrcTy
);
158 // Mapping a non-opaque source type to an opaque dest. If this is the first
159 // type that we're mapping onto this destination type then we succeed. Keep
160 // the dest, but fill it in later. If this is the second (different) type
161 // that we're trying to map onto the same opaque type then we fail.
162 if (cast
<StructType
>(DstTy
)->isOpaque()) {
163 // We can only map one source type onto the opaque destination type.
164 if (!DstResolvedOpaqueTypes
.insert(cast
<StructType
>(DstTy
)).second
)
166 SrcDefinitionsToResolve
.push_back(SSTy
);
167 SpeculativeTypes
.push_back(SrcTy
);
168 SpeculativeDstOpaqueTypes
.push_back(cast
<StructType
>(DstTy
));
174 // If the number of subtypes disagree between the two types, then we fail.
175 if (SrcTy
->getNumContainedTypes() != DstTy
->getNumContainedTypes())
178 // Fail if any of the extra properties (e.g. array size) of the type disagree.
179 if (isa
<IntegerType
>(DstTy
))
180 return false; // bitwidth disagrees.
181 if (PointerType
*PT
= dyn_cast
<PointerType
>(DstTy
)) {
182 if (PT
->getAddressSpace() != cast
<PointerType
>(SrcTy
)->getAddressSpace())
184 } else if (FunctionType
*FT
= dyn_cast
<FunctionType
>(DstTy
)) {
185 if (FT
->isVarArg() != cast
<FunctionType
>(SrcTy
)->isVarArg())
187 } else if (StructType
*DSTy
= dyn_cast
<StructType
>(DstTy
)) {
188 StructType
*SSTy
= cast
<StructType
>(SrcTy
);
189 if (DSTy
->isLiteral() != SSTy
->isLiteral() ||
190 DSTy
->isPacked() != SSTy
->isPacked())
192 } else if (auto *DArrTy
= dyn_cast
<ArrayType
>(DstTy
)) {
193 if (DArrTy
->getNumElements() != cast
<ArrayType
>(SrcTy
)->getNumElements())
195 } else if (auto *DVecTy
= dyn_cast
<VectorType
>(DstTy
)) {
196 if (DVecTy
->getElementCount() != cast
<VectorType
>(SrcTy
)->getElementCount())
200 // Otherwise, we speculate that these two types will line up and recursively
201 // check the subelements.
203 SpeculativeTypes
.push_back(SrcTy
);
205 for (unsigned I
= 0, E
= SrcTy
->getNumContainedTypes(); I
!= E
; ++I
)
206 if (!areTypesIsomorphic(DstTy
->getContainedType(I
),
207 SrcTy
->getContainedType(I
)))
210 // If everything seems to have lined up, then everything is great.
214 Error
TypeMapTy::linkDefinedTypeBodies() {
215 SmallVector
<Type
*, 16> Elements
;
216 for (StructType
*SrcSTy
: SrcDefinitionsToResolve
) {
217 StructType
*DstSTy
= cast
<StructType
>(MappedTypes
[SrcSTy
]);
218 assert(DstSTy
->isOpaque());
220 // Map the body of the source type over to a new body for the dest type.
221 Elements
.resize(SrcSTy
->getNumElements());
222 for (unsigned I
= 0, E
= Elements
.size(); I
!= E
; ++I
)
223 Elements
[I
] = get(SrcSTy
->getElementType(I
));
225 if (auto E
= DstSTy
->setBodyOrError(Elements
, SrcSTy
->isPacked()))
227 DstStructTypesSet
.switchToNonOpaque(DstSTy
);
229 SrcDefinitionsToResolve
.clear();
230 DstResolvedOpaqueTypes
.clear();
231 return Error::success();
234 Type
*TypeMapTy::get(Type
*Ty
) {
235 SmallPtrSet
<StructType
*, 8> Visited
;
236 return get(Ty
, Visited
);
239 Type
*TypeMapTy::get(Type
*Ty
, SmallPtrSet
<StructType
*, 8> &Visited
) {
240 // If we already have an entry for this type, return it.
241 Type
**Entry
= &MappedTypes
[Ty
];
245 // These are types that LLVM itself will unique.
246 bool IsUniqued
= !isa
<StructType
>(Ty
) || cast
<StructType
>(Ty
)->isLiteral();
250 for (auto &Pair
: MappedTypes
) {
251 assert(!(Pair
.first
!= Ty
&& Pair
.second
== Ty
) &&
252 "mapping to a source type");
256 if (!Visited
.insert(cast
<StructType
>(Ty
)).second
) {
257 StructType
*DTy
= StructType::create(Ty
->getContext());
262 // If this is not a recursive type, then just map all of the elements and
263 // then rebuild the type from inside out.
264 SmallVector
<Type
*, 4> ElementTypes
;
266 // If there are no element types to map, then the type is itself. This is
267 // true for the anonymous {} struct, things like 'float', integers, etc.
268 if (Ty
->getNumContainedTypes() == 0 && IsUniqued
)
271 // Remap all of the elements, keeping track of whether any of them change.
272 bool AnyChange
= false;
273 ElementTypes
.resize(Ty
->getNumContainedTypes());
274 for (unsigned I
= 0, E
= Ty
->getNumContainedTypes(); I
!= E
; ++I
) {
275 ElementTypes
[I
] = get(Ty
->getContainedType(I
), Visited
);
276 AnyChange
|= ElementTypes
[I
] != Ty
->getContainedType(I
);
279 // Refresh Entry after recursively processing stuff.
280 Entry
= &MappedTypes
[Ty
];
281 assert(!*Entry
&& "Recursive type!");
283 // If all of the element types mapped directly over and the type is not
284 // a named struct, then the type is usable as-is.
285 if (!AnyChange
&& IsUniqued
)
288 // Otherwise, rebuild a modified type.
289 switch (Ty
->getTypeID()) {
291 llvm_unreachable("unknown derived type to remap");
292 case Type::ArrayTyID
:
293 return *Entry
= ArrayType::get(ElementTypes
[0],
294 cast
<ArrayType
>(Ty
)->getNumElements());
295 case Type::ScalableVectorTyID
:
296 case Type::FixedVectorTyID
:
297 return *Entry
= VectorType::get(ElementTypes
[0],
298 cast
<VectorType
>(Ty
)->getElementCount());
299 case Type::FunctionTyID
:
300 return *Entry
= FunctionType::get(ElementTypes
[0],
301 ArrayRef(ElementTypes
).slice(1),
302 cast
<FunctionType
>(Ty
)->isVarArg());
303 case Type::StructTyID
: {
304 auto *STy
= cast
<StructType
>(Ty
);
305 bool IsPacked
= STy
->isPacked();
307 return *Entry
= StructType::get(Ty
->getContext(), ElementTypes
, IsPacked
);
309 // If the type is opaque, we can just use it directly.
310 if (STy
->isOpaque()) {
311 DstStructTypesSet
.addOpaque(STy
);
315 if (StructType
*OldT
=
316 DstStructTypesSet
.findNonOpaque(ElementTypes
, IsPacked
)) {
318 return *Entry
= OldT
;
322 DstStructTypesSet
.addNonOpaque(STy
);
327 StructType::create(Ty
->getContext(), ElementTypes
, "", STy
->isPacked());
330 if (STy
->hasName()) {
331 SmallString
<16> TmpName
= STy
->getName();
333 DTy
->setName(TmpName
);
336 DstStructTypesSet
.addNonOpaque(DTy
);
342 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity
,
344 : DiagnosticInfo(DK_Linker
, Severity
), Msg(Msg
) {}
345 void LinkDiagnosticInfo::print(DiagnosticPrinter
&DP
) const { DP
<< Msg
; }
347 //===----------------------------------------------------------------------===//
348 // IRLinker implementation.
349 //===----------------------------------------------------------------------===//
354 /// Creates prototypes for functions that are lazily linked on the fly. This
355 /// speeds up linking for modules with many/ lazily linked functions of which
357 class GlobalValueMaterializer final
: public ValueMaterializer
{
358 IRLinker
&TheIRLinker
;
361 GlobalValueMaterializer(IRLinker
&TheIRLinker
) : TheIRLinker(TheIRLinker
) {}
362 Value
*materialize(Value
*V
) override
;
365 class LocalValueMaterializer final
: public ValueMaterializer
{
366 IRLinker
&TheIRLinker
;
369 LocalValueMaterializer(IRLinker
&TheIRLinker
) : TheIRLinker(TheIRLinker
) {}
370 Value
*materialize(Value
*V
) override
;
373 /// Type of the Metadata map in \a ValueToValueMapTy.
374 typedef DenseMap
<const Metadata
*, TrackingMDRef
> MDMapT
;
376 /// This is responsible for keeping track of the state used for moving data
377 /// from SrcM to DstM.
380 std::unique_ptr
<Module
> SrcM
;
382 /// See IRMover::move().
383 IRMover::LazyCallback AddLazyFor
;
386 GlobalValueMaterializer GValMaterializer
;
387 LocalValueMaterializer LValMaterializer
;
389 /// A metadata map that's shared between IRLinker instances.
392 /// Mapping of values from what they used to be in Src, to what they are now
393 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
394 /// due to the use of Value handles which the Linker doesn't actually need,
395 /// but this allows us to reuse the ValueMapper code.
396 ValueToValueMapTy ValueMap
;
397 ValueToValueMapTy IndirectSymbolValueMap
;
399 DenseSet
<GlobalValue
*> ValuesToLink
;
400 std::vector
<GlobalValue
*> Worklist
;
401 std::vector
<std::pair
<GlobalValue
*, Value
*>> RAUWWorklist
;
403 /// Set of globals with eagerly copied metadata that may require remapping.
404 /// This remapping is performed after metadata linking.
405 DenseSet
<GlobalObject
*> UnmappedMetadata
;
407 void maybeAdd(GlobalValue
*GV
) {
408 if (ValuesToLink
.insert(GV
).second
)
409 Worklist
.push_back(GV
);
412 /// Whether we are importing globals for ThinLTO, as opposed to linking the
413 /// source module. If this flag is set, it means that we can rely on some
414 /// other object file to define any non-GlobalValue entities defined by the
415 /// source module. This currently causes us to not link retained types in
416 /// debug info metadata and module inline asm.
417 bool IsPerformingImport
;
419 /// Set to true when all global value body linking is complete (including
420 /// lazy linking). Used to prevent metadata linking from creating new
422 bool DoneLinkingBodies
= false;
424 /// The Error encountered during materialization. We use an Optional here to
425 /// avoid needing to manage an unconsumed success value.
426 std::optional
<Error
> FoundError
;
427 void setError(Error E
) {
429 FoundError
= std::move(E
);
432 /// Entry point for mapping values and alternate context for mapping aliases.
434 unsigned IndirectSymbolMCID
;
436 /// Handles cloning of a global values from the source module into
437 /// the destination module, including setting the attributes and visibility.
438 GlobalValue
*copyGlobalValueProto(const GlobalValue
*SGV
, bool ForDefinition
);
440 void emitWarning(const Twine
&Message
) {
441 SrcM
->getContext().diagnose(LinkDiagnosticInfo(DS_Warning
, Message
));
444 /// Given a global in the source module, return the global in the
445 /// destination module that is being linked to, if any.
446 GlobalValue
*getLinkedToGlobal(const GlobalValue
*SrcGV
) {
447 // If the source has no name it can't link. If it has local linkage,
448 // there is no name match-up going on.
449 if (!SrcGV
->hasName() || SrcGV
->hasLocalLinkage())
452 // Otherwise see if we have a match in the destination module's symtab.
453 GlobalValue
*DGV
= DstM
.getNamedValue(SrcGV
->getName());
457 // If we found a global with the same name in the dest module, but it has
458 // internal linkage, we are really not doing any linkage here.
459 if (DGV
->hasLocalLinkage())
462 // If we found an intrinsic declaration with mismatching prototypes, we
463 // probably had a nameclash. Don't use that version.
464 if (auto *FDGV
= dyn_cast
<Function
>(DGV
))
465 if (FDGV
->isIntrinsic())
466 if (const auto *FSrcGV
= dyn_cast
<Function
>(SrcGV
))
467 if (FDGV
->getFunctionType() != TypeMap
.get(FSrcGV
->getFunctionType()))
470 // Otherwise, we do in fact link to the destination global.
474 void computeTypeMapping();
476 Expected
<Constant
*> linkAppendingVarProto(GlobalVariable
*DstGV
,
477 const GlobalVariable
*SrcGV
);
479 /// Given the GlobaValue \p SGV in the source module, and the matching
480 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
481 /// into the destination module.
483 /// Note this code may call the client-provided \p AddLazyFor.
484 bool shouldLink(GlobalValue
*DGV
, GlobalValue
&SGV
);
485 Expected
<Constant
*> linkGlobalValueProto(GlobalValue
*GV
,
486 bool ForIndirectSymbol
);
488 Error
linkModuleFlagsMetadata();
490 void linkGlobalVariable(GlobalVariable
&Dst
, GlobalVariable
&Src
);
491 Error
linkFunctionBody(Function
&Dst
, Function
&Src
);
492 void linkAliasAliasee(GlobalAlias
&Dst
, GlobalAlias
&Src
);
493 void linkIFuncResolver(GlobalIFunc
&Dst
, GlobalIFunc
&Src
);
494 Error
linkGlobalValueBody(GlobalValue
&Dst
, GlobalValue
&Src
);
496 /// Replace all types in the source AttributeList with the
497 /// corresponding destination type.
498 AttributeList
mapAttributeTypes(LLVMContext
&C
, AttributeList Attrs
);
500 /// Functions that take care of cloning a specific global value type
501 /// into the destination module.
502 GlobalVariable
*copyGlobalVariableProto(const GlobalVariable
*SGVar
);
503 Function
*copyFunctionProto(const Function
*SF
);
504 GlobalValue
*copyIndirectSymbolProto(const GlobalValue
*SGV
);
506 /// Perform "replace all uses with" operations. These work items need to be
507 /// performed as part of materialization, but we postpone them to happen after
508 /// materialization is done. The materializer called by ValueMapper is not
509 /// expected to delete constants, as ValueMapper is holding pointers to some
510 /// of them, but constant destruction may be indirectly triggered by RAUW.
511 /// Hence, the need to move this out of the materialization call chain.
512 void flushRAUWWorklist();
514 /// When importing for ThinLTO, prevent importing of types listed on
515 /// the DICompileUnit that we don't need a copy of in the importing
517 void prepareCompileUnitsForImport();
518 void linkNamedMDNodes();
520 /// Update attributes while linking.
521 void updateAttributes(GlobalValue
&GV
);
524 IRLinker(Module
&DstM
, MDMapT
&SharedMDs
,
525 IRMover::IdentifiedStructTypeSet
&Set
, std::unique_ptr
<Module
> SrcM
,
526 ArrayRef
<GlobalValue
*> ValuesToLink
,
527 IRMover::LazyCallback AddLazyFor
, bool IsPerformingImport
)
528 : DstM(DstM
), SrcM(std::move(SrcM
)), AddLazyFor(std::move(AddLazyFor
)),
529 TypeMap(Set
), GValMaterializer(*this), LValMaterializer(*this),
530 SharedMDs(SharedMDs
), IsPerformingImport(IsPerformingImport
),
531 Mapper(ValueMap
, RF_ReuseAndMutateDistinctMDs
| RF_IgnoreMissingLocals
,
532 &TypeMap
, &GValMaterializer
),
533 IndirectSymbolMCID(Mapper
.registerAlternateMappingContext(
534 IndirectSymbolValueMap
, &LValMaterializer
)) {
535 ValueMap
.getMDMap() = std::move(SharedMDs
);
536 for (GlobalValue
*GV
: ValuesToLink
)
538 if (IsPerformingImport
)
539 prepareCompileUnitsForImport();
541 ~IRLinker() { SharedMDs
= std::move(*ValueMap
.getMDMap()); }
544 Value
*materialize(Value
*V
, bool ForIndirectSymbol
);
548 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
549 /// table. This is good for all clients except for us. Go through the trouble
550 /// to force this back.
551 static void forceRenaming(GlobalValue
*GV
, StringRef Name
) {
552 // If the global doesn't force its name or if it already has the right name,
553 // there is nothing for us to do.
554 if (GV
->hasLocalLinkage() || GV
->getName() == Name
)
557 Module
*M
= GV
->getParent();
559 // If there is a conflict, rename the conflict.
560 if (GlobalValue
*ConflictGV
= M
->getNamedValue(Name
)) {
561 GV
->takeName(ConflictGV
);
562 ConflictGV
->setName(Name
); // This will cause ConflictGV to get renamed
563 assert(ConflictGV
->getName() != Name
&& "forceRenaming didn't work");
565 GV
->setName(Name
); // Force the name back
569 Value
*GlobalValueMaterializer::materialize(Value
*SGV
) {
570 return TheIRLinker
.materialize(SGV
, false);
573 Value
*LocalValueMaterializer::materialize(Value
*SGV
) {
574 return TheIRLinker
.materialize(SGV
, true);
577 Value
*IRLinker::materialize(Value
*V
, bool ForIndirectSymbol
) {
578 auto *SGV
= dyn_cast
<GlobalValue
>(V
);
582 // If SGV is from dest, it was already materialized when dest was loaded.
583 if (SGV
->getParent() == &DstM
)
586 // When linking a global from other modules than source & dest, skip
587 // materializing it because it would be mapped later when its containing
588 // module is linked. Linking it now would potentially pull in many types that
589 // may not be mapped properly.
590 if (SGV
->getParent() != SrcM
.get())
593 Expected
<Constant
*> NewProto
= linkGlobalValueProto(SGV
, ForIndirectSymbol
);
595 setError(NewProto
.takeError());
601 GlobalValue
*New
= dyn_cast
<GlobalValue
>(*NewProto
);
605 // If we already created the body, just return.
606 if (auto *F
= dyn_cast
<Function
>(New
)) {
607 if (!F
->isDeclaration())
609 } else if (auto *V
= dyn_cast
<GlobalVariable
>(New
)) {
610 if (V
->hasInitializer() || V
->hasAppendingLinkage())
612 } else if (auto *GA
= dyn_cast
<GlobalAlias
>(New
)) {
613 if (GA
->getAliasee())
615 } else if (auto *GI
= dyn_cast
<GlobalIFunc
>(New
)) {
616 if (GI
->getResolver())
619 llvm_unreachable("Invalid GlobalValue type");
622 // If the global is being linked for an indirect symbol, it may have already
623 // been scheduled to satisfy a regular symbol. Similarly, a global being linked
624 // for a regular symbol may have already been scheduled for an indirect
625 // symbol. Check for these cases by looking in the other value map and
626 // confirming the same value has been scheduled. If there is an entry in the
627 // ValueMap but the value is different, it means that the value already had a
628 // definition in the destination module (linkonce for instance), but we need a
629 // new definition for the indirect symbol ("New" will be different).
630 if ((ForIndirectSymbol
&& ValueMap
.lookup(SGV
) == New
) ||
631 (!ForIndirectSymbol
&& IndirectSymbolValueMap
.lookup(SGV
) == New
))
634 if (ForIndirectSymbol
|| shouldLink(New
, *SGV
))
635 setError(linkGlobalValueBody(*New
, *SGV
));
637 updateAttributes(*New
);
641 /// Loop through the global variables in the src module and merge them into the
643 GlobalVariable
*IRLinker::copyGlobalVariableProto(const GlobalVariable
*SGVar
) {
644 // No linking to be performed or linking from the source: simply create an
645 // identical version of the symbol over in the dest module... the
646 // initializer will be filled in later by LinkGlobalInits.
647 GlobalVariable
*NewDGV
=
648 new GlobalVariable(DstM
, TypeMap
.get(SGVar
->getValueType()),
649 SGVar
->isConstant(), GlobalValue::ExternalLinkage
,
650 /*init*/ nullptr, SGVar
->getName(),
651 /*insertbefore*/ nullptr, SGVar
->getThreadLocalMode(),
652 SGVar
->getAddressSpace());
653 NewDGV
->setAlignment(SGVar
->getAlign());
654 NewDGV
->copyAttributesFrom(SGVar
);
658 AttributeList
IRLinker::mapAttributeTypes(LLVMContext
&C
, AttributeList Attrs
) {
659 for (unsigned i
= 0; i
< Attrs
.getNumAttrSets(); ++i
) {
660 for (int AttrIdx
= Attribute::FirstTypeAttr
;
661 AttrIdx
<= Attribute::LastTypeAttr
; AttrIdx
++) {
662 Attribute::AttrKind TypedAttr
= (Attribute::AttrKind
)AttrIdx
;
663 if (Attrs
.hasAttributeAtIndex(i
, TypedAttr
)) {
665 Attrs
.getAttributeAtIndex(i
, TypedAttr
).getValueAsType()) {
666 Attrs
= Attrs
.replaceAttributeTypeAtIndex(C
, i
, TypedAttr
,
676 /// Link the function in the source module into the destination module if
677 /// needed, setting up mapping information.
678 Function
*IRLinker::copyFunctionProto(const Function
*SF
) {
679 // If there is no linkage to be performed or we are linking from the source,
681 auto *F
= Function::Create(TypeMap
.get(SF
->getFunctionType()),
682 GlobalValue::ExternalLinkage
,
683 SF
->getAddressSpace(), SF
->getName(), &DstM
);
684 F
->copyAttributesFrom(SF
);
685 F
->setAttributes(mapAttributeTypes(F
->getContext(), F
->getAttributes()));
686 F
->IsNewDbgInfoFormat
= SF
->IsNewDbgInfoFormat
;
690 /// Set up prototypes for any indirect symbols that come over from the source
692 GlobalValue
*IRLinker::copyIndirectSymbolProto(const GlobalValue
*SGV
) {
693 // If there is no linkage to be performed or we're linking from the source,
695 auto *Ty
= TypeMap
.get(SGV
->getValueType());
697 if (auto *GA
= dyn_cast
<GlobalAlias
>(SGV
)) {
698 auto *DGA
= GlobalAlias::create(Ty
, SGV
->getAddressSpace(),
699 GlobalValue::ExternalLinkage
,
700 SGV
->getName(), &DstM
);
701 DGA
->copyAttributesFrom(GA
);
705 if (auto *GI
= dyn_cast
<GlobalIFunc
>(SGV
)) {
706 auto *DGI
= GlobalIFunc::create(Ty
, SGV
->getAddressSpace(),
707 GlobalValue::ExternalLinkage
,
708 SGV
->getName(), nullptr, &DstM
);
709 DGI
->copyAttributesFrom(GI
);
713 llvm_unreachable("Invalid source global value type");
716 GlobalValue
*IRLinker::copyGlobalValueProto(const GlobalValue
*SGV
,
717 bool ForDefinition
) {
719 if (auto *SGVar
= dyn_cast
<GlobalVariable
>(SGV
)) {
720 NewGV
= copyGlobalVariableProto(SGVar
);
721 } else if (auto *SF
= dyn_cast
<Function
>(SGV
)) {
722 NewGV
= copyFunctionProto(SF
);
725 NewGV
= copyIndirectSymbolProto(SGV
);
726 else if (SGV
->getValueType()->isFunctionTy())
728 Function::Create(cast
<FunctionType
>(TypeMap
.get(SGV
->getValueType())),
729 GlobalValue::ExternalLinkage
, SGV
->getAddressSpace(),
730 SGV
->getName(), &DstM
);
733 new GlobalVariable(DstM
, TypeMap
.get(SGV
->getValueType()),
734 /*isConstant*/ false, GlobalValue::ExternalLinkage
,
735 /*init*/ nullptr, SGV
->getName(),
736 /*insertbefore*/ nullptr,
737 SGV
->getThreadLocalMode(), SGV
->getAddressSpace());
741 NewGV
->setLinkage(SGV
->getLinkage());
742 else if (SGV
->hasExternalWeakLinkage())
743 NewGV
->setLinkage(GlobalValue::ExternalWeakLinkage
);
745 if (auto *NewGO
= dyn_cast
<GlobalObject
>(NewGV
)) {
746 // Metadata for global variables and function declarations is copied eagerly.
747 if (isa
<GlobalVariable
>(SGV
) || SGV
->isDeclaration()) {
748 NewGO
->copyMetadata(cast
<GlobalObject
>(SGV
), 0);
749 if (SGV
->isDeclaration() && NewGO
->hasMetadata())
750 UnmappedMetadata
.insert(NewGO
);
754 // Remove these copied constants in case this stays a declaration, since
755 // they point to the source module. If the def is linked the values will
756 // be mapped in during linkFunctionBody.
757 if (auto *NewF
= dyn_cast
<Function
>(NewGV
)) {
758 NewF
->setPersonalityFn(nullptr);
759 NewF
->setPrefixData(nullptr);
760 NewF
->setPrologueData(nullptr);
766 static StringRef
getTypeNamePrefix(StringRef Name
) {
767 size_t DotPos
= Name
.rfind('.');
768 return (DotPos
== 0 || DotPos
== StringRef::npos
|| Name
.back() == '.' ||
769 !isdigit(static_cast<unsigned char>(Name
[DotPos
+ 1])))
771 : Name
.substr(0, DotPos
);
774 /// Loop over all of the linked values to compute type mappings. For example,
775 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
776 /// types 'Foo' but one got renamed when the module was loaded into the same
778 void IRLinker::computeTypeMapping() {
779 for (GlobalValue
&SGV
: SrcM
->globals()) {
780 GlobalValue
*DGV
= getLinkedToGlobal(&SGV
);
784 if (!DGV
->hasAppendingLinkage() || !SGV
.hasAppendingLinkage()) {
785 TypeMap
.addTypeMapping(DGV
->getType(), SGV
.getType());
789 // Unify the element type of appending arrays.
790 ArrayType
*DAT
= cast
<ArrayType
>(DGV
->getValueType());
791 ArrayType
*SAT
= cast
<ArrayType
>(SGV
.getValueType());
792 TypeMap
.addTypeMapping(DAT
->getElementType(), SAT
->getElementType());
795 for (GlobalValue
&SGV
: *SrcM
)
796 if (GlobalValue
*DGV
= getLinkedToGlobal(&SGV
)) {
797 if (DGV
->getType() == SGV
.getType()) {
798 // If the types of DGV and SGV are the same, it means that DGV is from
799 // the source module and got added to DstM from a shared metadata. We
800 // shouldn't map this type to itself in case the type's components get
801 // remapped to a new type from DstM (for instance, during the loop over
802 // SrcM->getIdentifiedStructTypes() below).
806 TypeMap
.addTypeMapping(DGV
->getType(), SGV
.getType());
809 for (GlobalValue
&SGV
: SrcM
->aliases())
810 if (GlobalValue
*DGV
= getLinkedToGlobal(&SGV
))
811 TypeMap
.addTypeMapping(DGV
->getType(), SGV
.getType());
813 // Incorporate types by name, scanning all the types in the source module.
814 // At this point, the destination module may have a type "%foo = { i32 }" for
815 // example. When the source module got loaded into the same LLVMContext, if
816 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
817 std::vector
<StructType
*> Types
= SrcM
->getIdentifiedStructTypes();
818 for (StructType
*ST
: Types
) {
822 if (TypeMap
.DstStructTypesSet
.hasType(ST
)) {
823 // This is actually a type from the destination module.
824 // getIdentifiedStructTypes() can have found it by walking debug info
825 // metadata nodes, some of which get linked by name when ODR Type Uniquing
826 // is enabled on the Context, from the source to the destination module.
830 auto STTypePrefix
= getTypeNamePrefix(ST
->getName());
831 if (STTypePrefix
.size() == ST
->getName().size())
834 // Check to see if the destination module has a struct with the prefix name.
835 StructType
*DST
= StructType::getTypeByName(ST
->getContext(), STTypePrefix
);
839 // Don't use it if this actually came from the source module. They're in
840 // the same LLVMContext after all. Also don't use it unless the type is
841 // actually used in the destination module. This can happen in situations
846 // %Z = type { %A } %B = type { %C.1 }
847 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
848 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
849 // %C = type { i8* } %B.3 = type { %C.1 }
851 // When we link Module B with Module A, the '%B' in Module B is
852 // used. However, that would then use '%C.1'. But when we process '%C.1',
853 // we prefer to take the '%C' version. So we are then left with both
854 // '%C.1' and '%C' being used for the same types. This leads to some
855 // variables using one type and some using the other.
856 if (TypeMap
.DstStructTypesSet
.hasType(DST
))
857 TypeMap
.addTypeMapping(DST
, ST
);
860 // Now that we have discovered all of the type equivalences, get a body for
861 // any 'opaque' types in the dest module that are now resolved.
862 setError(TypeMap
.linkDefinedTypeBodies());
865 static void getArrayElements(const Constant
*C
,
866 SmallVectorImpl
<Constant
*> &Dest
) {
867 unsigned NumElements
= cast
<ArrayType
>(C
->getType())->getNumElements();
869 for (unsigned i
= 0; i
!= NumElements
; ++i
)
870 Dest
.push_back(C
->getAggregateElement(i
));
873 /// If there were any appending global variables, link them together now.
875 IRLinker::linkAppendingVarProto(GlobalVariable
*DstGV
,
876 const GlobalVariable
*SrcGV
) {
877 // Check that both variables have compatible properties.
878 if (DstGV
&& !DstGV
->isDeclaration() && !SrcGV
->isDeclaration()) {
879 if (!SrcGV
->hasAppendingLinkage() || !DstGV
->hasAppendingLinkage())
881 "Linking globals named '" + SrcGV
->getName() +
882 "': can only link appending global with another appending "
885 if (DstGV
->isConstant() != SrcGV
->isConstant())
886 return stringErr("Appending variables linked with different const'ness!");
888 if (DstGV
->getAlign() != SrcGV
->getAlign())
890 "Appending variables with different alignment need to be linked!");
892 if (DstGV
->getVisibility() != SrcGV
->getVisibility())
894 "Appending variables with different visibility need to be linked!");
896 if (DstGV
->hasGlobalUnnamedAddr() != SrcGV
->hasGlobalUnnamedAddr())
898 "Appending variables with different unnamed_addr need to be linked!");
900 if (DstGV
->getSection() != SrcGV
->getSection())
902 "Appending variables with different section name need to be linked!");
904 if (DstGV
->getAddressSpace() != SrcGV
->getAddressSpace())
905 return stringErr("Appending variables with different address spaces need "
909 // Do not need to do anything if source is a declaration.
910 if (SrcGV
->isDeclaration())
913 Type
*EltTy
= cast
<ArrayType
>(TypeMap
.get(SrcGV
->getValueType()))
916 // FIXME: This upgrade is done during linking to support the C API. Once the
917 // old form is deprecated, we should move this upgrade to
918 // llvm::UpgradeGlobalVariable() and simplify the logic here and in
919 // Mapper::mapAppendingVariable() in ValueMapper.cpp.
920 StringRef Name
= SrcGV
->getName();
921 bool IsNewStructor
= false;
922 bool IsOldStructor
= false;
923 if (Name
== "llvm.global_ctors" || Name
== "llvm.global_dtors") {
924 if (cast
<StructType
>(EltTy
)->getNumElements() == 3)
925 IsNewStructor
= true;
927 IsOldStructor
= true;
930 PointerType
*VoidPtrTy
= PointerType::get(SrcGV
->getContext(), 0);
932 auto &ST
= *cast
<StructType
>(EltTy
);
933 Type
*Tys
[3] = {ST
.getElementType(0), ST
.getElementType(1), VoidPtrTy
};
934 EltTy
= StructType::get(SrcGV
->getContext(), Tys
, false);
937 uint64_t DstNumElements
= 0;
938 if (DstGV
&& !DstGV
->isDeclaration()) {
939 ArrayType
*DstTy
= cast
<ArrayType
>(DstGV
->getValueType());
940 DstNumElements
= DstTy
->getNumElements();
942 // Check to see that they two arrays agree on type.
943 if (EltTy
!= DstTy
->getElementType())
944 return stringErr("Appending variables with different element types!");
947 SmallVector
<Constant
*, 16> SrcElements
;
948 getArrayElements(SrcGV
->getInitializer(), SrcElements
);
951 erase_if(SrcElements
, [this](Constant
*E
) {
953 dyn_cast
<GlobalValue
>(E
->getAggregateElement(2)->stripPointerCasts());
956 GlobalValue
*DGV
= getLinkedToGlobal(Key
);
957 return !shouldLink(DGV
, *Key
);
960 uint64_t NewSize
= DstNumElements
+ SrcElements
.size();
961 ArrayType
*NewType
= ArrayType::get(EltTy
, NewSize
);
963 // Create the new global variable.
964 GlobalVariable
*NG
= new GlobalVariable(
965 DstM
, NewType
, SrcGV
->isConstant(), SrcGV
->getLinkage(),
966 /*init*/ nullptr, /*name*/ "", DstGV
, SrcGV
->getThreadLocalMode(),
967 SrcGV
->getAddressSpace());
969 NG
->copyAttributesFrom(SrcGV
);
970 forceRenaming(NG
, SrcGV
->getName());
972 Constant
*Ret
= ConstantExpr::getBitCast(NG
, TypeMap
.get(SrcGV
->getType()));
974 Mapper
.scheduleMapAppendingVariable(
976 (DstGV
&& !DstGV
->isDeclaration()) ? DstGV
->getInitializer() : nullptr,
977 IsOldStructor
, SrcElements
);
979 // Replace any uses of the two global variables with uses of the new
982 RAUWWorklist
.push_back(std::make_pair(DstGV
, NG
));
988 bool IRLinker::shouldLink(GlobalValue
*DGV
, GlobalValue
&SGV
) {
989 if (ValuesToLink
.count(&SGV
) || SGV
.hasLocalLinkage())
992 if (DGV
&& !DGV
->isDeclarationForLinker())
995 if (SGV
.isDeclaration() || DoneLinkingBodies
)
998 // Callback to the client to give a chance to lazily add the Global to the
999 // list of value to link.
1000 bool LazilyAdded
= false;
1002 AddLazyFor(SGV
, [this, &LazilyAdded
](GlobalValue
&GV
) {
1009 Expected
<Constant
*> IRLinker::linkGlobalValueProto(GlobalValue
*SGV
,
1010 bool ForIndirectSymbol
) {
1011 GlobalValue
*DGV
= getLinkedToGlobal(SGV
);
1013 bool ShouldLink
= shouldLink(DGV
, *SGV
);
1015 // just missing from map
1017 auto I
= ValueMap
.find(SGV
);
1018 if (I
!= ValueMap
.end())
1019 return cast
<Constant
>(I
->second
);
1021 I
= IndirectSymbolValueMap
.find(SGV
);
1022 if (I
!= IndirectSymbolValueMap
.end())
1023 return cast
<Constant
>(I
->second
);
1026 if (!ShouldLink
&& ForIndirectSymbol
)
1029 // Handle the ultra special appending linkage case first.
1030 if (SGV
->hasAppendingLinkage() || (DGV
&& DGV
->hasAppendingLinkage()))
1031 return linkAppendingVarProto(cast_or_null
<GlobalVariable
>(DGV
),
1032 cast
<GlobalVariable
>(SGV
));
1034 bool NeedsRenaming
= false;
1036 if (DGV
&& !ShouldLink
) {
1039 // If we are done linking global value bodies (i.e. we are performing
1040 // metadata linking), don't link in the global value due to this
1041 // reference, simply map it to null.
1042 if (DoneLinkingBodies
)
1045 NewGV
= copyGlobalValueProto(SGV
, ShouldLink
|| ForIndirectSymbol
);
1046 if (ShouldLink
|| !ForIndirectSymbol
)
1047 NeedsRenaming
= true;
1050 // Overloaded intrinsics have overloaded types names as part of their
1051 // names. If we renamed overloaded types we should rename the intrinsic
1053 if (Function
*F
= dyn_cast
<Function
>(NewGV
))
1054 if (auto Remangled
= Intrinsic::remangleIntrinsicFunction(F
)) {
1055 // Note: remangleIntrinsicFunction does not copy metadata and as such
1056 // F should not occur in the set of objects with unmapped metadata.
1057 // If this assertion fails then remangleIntrinsicFunction needs updating.
1058 assert(!UnmappedMetadata
.count(F
) && "intrinsic has unmapped metadata");
1059 NewGV
->eraseFromParent();
1061 NeedsRenaming
= false;
1065 forceRenaming(NewGV
, SGV
->getName());
1067 if (ShouldLink
|| ForIndirectSymbol
) {
1068 if (const Comdat
*SC
= SGV
->getComdat()) {
1069 if (auto *GO
= dyn_cast
<GlobalObject
>(NewGV
)) {
1070 Comdat
*DC
= DstM
.getOrInsertComdat(SC
->getName());
1071 DC
->setSelectionKind(SC
->getSelectionKind());
1077 if (!ShouldLink
&& ForIndirectSymbol
)
1078 NewGV
->setLinkage(GlobalValue::InternalLinkage
);
1080 Constant
*C
= NewGV
;
1081 // Only create a bitcast if necessary. In particular, with
1082 // DebugTypeODRUniquing we may reach metadata in the destination module
1083 // containing a GV from the source module, in which case SGV will be
1084 // the same as DGV and NewGV, and TypeMap.get() will assert since it
1085 // assumes it is being invoked on a type in the source module.
1086 if (DGV
&& NewGV
!= SGV
) {
1087 C
= ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1088 NewGV
, TypeMap
.get(SGV
->getType()));
1091 if (DGV
&& NewGV
!= DGV
) {
1092 // Schedule "replace all uses with" to happen after materializing is
1093 // done. It is not safe to do it now, since ValueMapper may be holding
1094 // pointers to constants that will get deleted if RAUW runs.
1095 RAUWWorklist
.push_back(std::make_pair(
1097 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV
, DGV
->getType())));
1103 /// Update the initializers in the Dest module now that all globals that may be
1104 /// referenced are in Dest.
1105 void IRLinker::linkGlobalVariable(GlobalVariable
&Dst
, GlobalVariable
&Src
) {
1106 // Figure out what the initializer looks like in the dest module.
1107 Mapper
.scheduleMapGlobalInitializer(Dst
, *Src
.getInitializer());
1110 /// Copy the source function over into the dest function and fix up references
1111 /// to values. At this point we know that Dest is an external function, and
1112 /// that Src is not.
1113 Error
IRLinker::linkFunctionBody(Function
&Dst
, Function
&Src
) {
1114 assert(Dst
.isDeclaration() && !Src
.isDeclaration());
1116 // Materialize if needed.
1117 if (Error Err
= Src
.materialize())
1120 // Link in the operands without remapping.
1121 if (Src
.hasPrefixData())
1122 Dst
.setPrefixData(Src
.getPrefixData());
1123 if (Src
.hasPrologueData())
1124 Dst
.setPrologueData(Src
.getPrologueData());
1125 if (Src
.hasPersonalityFn())
1126 Dst
.setPersonalityFn(Src
.getPersonalityFn());
1127 assert(Src
.IsNewDbgInfoFormat
== Dst
.IsNewDbgInfoFormat
);
1129 // Copy over the metadata attachments without remapping.
1130 Dst
.copyMetadata(&Src
, 0);
1132 // Steal arguments and splice the body of Src into Dst.
1133 Dst
.stealArgumentListFrom(Src
);
1134 Dst
.splice(Dst
.end(), &Src
);
1136 // Everything has been moved over. Remap it.
1137 Mapper
.scheduleRemapFunction(Dst
);
1138 return Error::success();
1141 void IRLinker::linkAliasAliasee(GlobalAlias
&Dst
, GlobalAlias
&Src
) {
1142 Mapper
.scheduleMapGlobalAlias(Dst
, *Src
.getAliasee(), IndirectSymbolMCID
);
1145 void IRLinker::linkIFuncResolver(GlobalIFunc
&Dst
, GlobalIFunc
&Src
) {
1146 Mapper
.scheduleMapGlobalIFunc(Dst
, *Src
.getResolver(), IndirectSymbolMCID
);
1149 Error
IRLinker::linkGlobalValueBody(GlobalValue
&Dst
, GlobalValue
&Src
) {
1150 if (auto *F
= dyn_cast
<Function
>(&Src
))
1151 return linkFunctionBody(cast
<Function
>(Dst
), *F
);
1152 if (auto *GVar
= dyn_cast
<GlobalVariable
>(&Src
)) {
1153 linkGlobalVariable(cast
<GlobalVariable
>(Dst
), *GVar
);
1154 return Error::success();
1156 if (auto *GA
= dyn_cast
<GlobalAlias
>(&Src
)) {
1157 linkAliasAliasee(cast
<GlobalAlias
>(Dst
), *GA
);
1158 return Error::success();
1160 linkIFuncResolver(cast
<GlobalIFunc
>(Dst
), cast
<GlobalIFunc
>(Src
));
1161 return Error::success();
1164 void IRLinker::flushRAUWWorklist() {
1165 for (const auto &Elem
: RAUWWorklist
) {
1168 std::tie(Old
, New
) = Elem
;
1170 Old
->replaceAllUsesWith(New
);
1171 Old
->eraseFromParent();
1173 RAUWWorklist
.clear();
1176 void IRLinker::prepareCompileUnitsForImport() {
1177 NamedMDNode
*SrcCompileUnits
= SrcM
->getNamedMetadata("llvm.dbg.cu");
1178 if (!SrcCompileUnits
)
1180 // When importing for ThinLTO, prevent importing of types listed on
1181 // the DICompileUnit that we don't need a copy of in the importing
1182 // module. They will be emitted by the originating module.
1183 for (MDNode
*N
: SrcCompileUnits
->operands()) {
1184 auto *CU
= cast
<DICompileUnit
>(N
);
1185 assert(CU
&& "Expected valid compile unit");
1186 // Enums, macros, and retained types don't need to be listed on the
1187 // imported DICompileUnit. This means they will only be imported
1188 // if reached from the mapped IR.
1189 CU
->replaceEnumTypes(nullptr);
1190 CU
->replaceMacros(nullptr);
1191 CU
->replaceRetainedTypes(nullptr);
1193 // The original definition (or at least its debug info - if the variable is
1194 // internalized and optimized away) will remain in the source module, so
1195 // there's no need to import them.
1196 // If LLVM ever does more advanced optimizations on global variables
1197 // (removing/localizing write operations, for instance) that can track
1198 // through debug info, this decision may need to be revisited - but do so
1199 // with care when it comes to debug info size. Emitting small CUs containing
1200 // only a few imported entities into every destination module may be very
1201 // size inefficient.
1202 CU
->replaceGlobalVariables(nullptr);
1204 CU
->replaceImportedEntities(nullptr);
1208 /// Insert all of the named MDNodes in Src into the Dest module.
1209 void IRLinker::linkNamedMDNodes() {
1210 const NamedMDNode
*SrcModFlags
= SrcM
->getModuleFlagsMetadata();
1211 for (const NamedMDNode
&NMD
: SrcM
->named_metadata()) {
1212 // Don't link module flags here. Do them separately.
1213 if (&NMD
== SrcModFlags
)
1215 // Don't import pseudo probe descriptors here for thinLTO. They will be
1216 // emitted by the originating module.
1217 if (IsPerformingImport
&& NMD
.getName() == PseudoProbeDescMetadataName
) {
1218 if (!DstM
.getNamedMetadata(NMD
.getName()))
1219 emitWarning("Pseudo-probe ignored: source module '" +
1220 SrcM
->getModuleIdentifier() +
1221 "' is compiled with -fpseudo-probe-for-profiling while "
1222 "destination module '" +
1223 DstM
.getModuleIdentifier() + "' is not\n");
1226 // The stats are computed per module and will all be merged in the binary.
1227 // Importing the metadata will cause duplication of the stats.
1228 if (IsPerformingImport
&& NMD
.getName() == "llvm.stats")
1231 NamedMDNode
*DestNMD
= DstM
.getOrInsertNamedMetadata(NMD
.getName());
1232 // Add Src elements into Dest node.
1233 for (const MDNode
*Op
: NMD
.operands())
1234 DestNMD
->addOperand(Mapper
.mapMDNode(*Op
));
1238 /// Merge the linker flags in Src into the Dest module.
1239 Error
IRLinker::linkModuleFlagsMetadata() {
1240 // If the source module has no module flags, we are done.
1241 const NamedMDNode
*SrcModFlags
= SrcM
->getModuleFlagsMetadata();
1243 return Error::success();
1245 // Check for module flag for updates before do anything.
1246 UpgradeModuleFlags(*SrcM
);
1247 UpgradeNVVMAnnotations(*SrcM
);
1249 // If the destination module doesn't have module flags yet, then just copy
1250 // over the source module's flags.
1251 NamedMDNode
*DstModFlags
= DstM
.getOrInsertModuleFlagsMetadata();
1252 if (DstModFlags
->getNumOperands() == 0) {
1253 for (unsigned I
= 0, E
= SrcModFlags
->getNumOperands(); I
!= E
; ++I
)
1254 DstModFlags
->addOperand(SrcModFlags
->getOperand(I
));
1256 return Error::success();
1259 // First build a map of the existing module flags and requirements.
1260 DenseMap
<MDString
*, std::pair
<MDNode
*, unsigned>> Flags
;
1261 SmallSetVector
<MDNode
*, 16> Requirements
;
1262 SmallVector
<unsigned, 0> Mins
;
1263 DenseSet
<MDString
*> SeenMin
;
1264 for (unsigned I
= 0, E
= DstModFlags
->getNumOperands(); I
!= E
; ++I
) {
1265 MDNode
*Op
= DstModFlags
->getOperand(I
);
1267 mdconst::extract
<ConstantInt
>(Op
->getOperand(0))->getZExtValue();
1268 MDString
*ID
= cast
<MDString
>(Op
->getOperand(1));
1270 if (Behavior
== Module::Require
) {
1271 Requirements
.insert(cast
<MDNode
>(Op
->getOperand(2)));
1273 if (Behavior
== Module::Min
)
1275 Flags
[ID
] = std::make_pair(Op
, I
);
1279 // Merge in the flags from the source module, and also collect its set of
1281 for (unsigned I
= 0, E
= SrcModFlags
->getNumOperands(); I
!= E
; ++I
) {
1282 MDNode
*SrcOp
= SrcModFlags
->getOperand(I
);
1283 ConstantInt
*SrcBehavior
=
1284 mdconst::extract
<ConstantInt
>(SrcOp
->getOperand(0));
1285 MDString
*ID
= cast
<MDString
>(SrcOp
->getOperand(1));
1288 std::tie(DstOp
, DstIndex
) = Flags
.lookup(ID
);
1289 unsigned SrcBehaviorValue
= SrcBehavior
->getZExtValue();
1292 // If this is a requirement, add it and continue.
1293 if (SrcBehaviorValue
== Module::Require
) {
1294 // If the destination module does not already have this requirement, add
1296 if (Requirements
.insert(cast
<MDNode
>(SrcOp
->getOperand(2)))) {
1297 DstModFlags
->addOperand(SrcOp
);
1302 // If there is no existing flag with this ID, just add it.
1304 if (SrcBehaviorValue
== Module::Min
) {
1305 Mins
.push_back(DstModFlags
->getNumOperands());
1308 Flags
[ID
] = std::make_pair(SrcOp
, DstModFlags
->getNumOperands());
1309 DstModFlags
->addOperand(SrcOp
);
1313 // Otherwise, perform a merge.
1314 ConstantInt
*DstBehavior
=
1315 mdconst::extract
<ConstantInt
>(DstOp
->getOperand(0));
1316 unsigned DstBehaviorValue
= DstBehavior
->getZExtValue();
1318 auto overrideDstValue
= [&]() {
1319 DstModFlags
->setOperand(DstIndex
, SrcOp
);
1320 Flags
[ID
].first
= SrcOp
;
1323 // If either flag has override behavior, handle it first.
1324 if (DstBehaviorValue
== Module::Override
) {
1325 // Diagnose inconsistent flags which both have override behavior.
1326 if (SrcBehaviorValue
== Module::Override
&&
1327 SrcOp
->getOperand(2) != DstOp
->getOperand(2))
1328 return stringErr("linking module flags '" + ID
->getString() +
1329 "': IDs have conflicting override values in '" +
1330 SrcM
->getModuleIdentifier() + "' and '" +
1331 DstM
.getModuleIdentifier() + "'");
1333 } else if (SrcBehaviorValue
== Module::Override
) {
1334 // Update the destination flag to that of the source.
1339 // Diagnose inconsistent merge behavior types.
1340 if (SrcBehaviorValue
!= DstBehaviorValue
) {
1341 bool MinAndWarn
= (SrcBehaviorValue
== Module::Min
&&
1342 DstBehaviorValue
== Module::Warning
) ||
1343 (DstBehaviorValue
== Module::Min
&&
1344 SrcBehaviorValue
== Module::Warning
);
1345 bool MaxAndWarn
= (SrcBehaviorValue
== Module::Max
&&
1346 DstBehaviorValue
== Module::Warning
) ||
1347 (DstBehaviorValue
== Module::Max
&&
1348 SrcBehaviorValue
== Module::Warning
);
1349 if (!(MaxAndWarn
|| MinAndWarn
))
1350 return stringErr("linking module flags '" + ID
->getString() +
1351 "': IDs have conflicting behaviors in '" +
1352 SrcM
->getModuleIdentifier() + "' and '" +
1353 DstM
.getModuleIdentifier() + "'");
1356 auto ensureDistinctOp
= [&](MDNode
*DstValue
) {
1357 assert(isa
<MDTuple
>(DstValue
) &&
1358 "Expected MDTuple when appending module flags");
1359 if (DstValue
->isDistinct())
1360 return dyn_cast
<MDTuple
>(DstValue
);
1361 ArrayRef
<MDOperand
> DstOperands
= DstValue
->operands();
1362 MDTuple
*New
= MDTuple::getDistinct(
1363 DstM
.getContext(), SmallVector
<Metadata
*, 4>(DstOperands
));
1364 Metadata
*FlagOps
[] = {DstOp
->getOperand(0), ID
, New
};
1365 MDNode
*Flag
= MDTuple::getDistinct(DstM
.getContext(), FlagOps
);
1366 DstModFlags
->setOperand(DstIndex
, Flag
);
1367 Flags
[ID
].first
= Flag
;
1371 // Emit a warning if the values differ and either source or destination
1372 // request Warning behavior.
1373 if ((DstBehaviorValue
== Module::Warning
||
1374 SrcBehaviorValue
== Module::Warning
) &&
1375 SrcOp
->getOperand(2) != DstOp
->getOperand(2)) {
1377 raw_string_ostream(Str
)
1378 << "linking module flags '" << ID
->getString()
1379 << "': IDs have conflicting values ('" << *SrcOp
->getOperand(2)
1380 << "' from " << SrcM
->getModuleIdentifier() << " with '"
1381 << *DstOp
->getOperand(2) << "' from " << DstM
.getModuleIdentifier()
1386 // Choose the minimum if either source or destination request Min behavior.
1387 if (DstBehaviorValue
== Module::Min
|| SrcBehaviorValue
== Module::Min
) {
1388 ConstantInt
*DstValue
=
1389 mdconst::extract
<ConstantInt
>(DstOp
->getOperand(2));
1390 ConstantInt
*SrcValue
=
1391 mdconst::extract
<ConstantInt
>(SrcOp
->getOperand(2));
1393 // The resulting flag should have a Min behavior, and contain the minimum
1394 // value from between the source and destination values.
1395 Metadata
*FlagOps
[] = {
1396 (DstBehaviorValue
!= Module::Min
? SrcOp
: DstOp
)->getOperand(0), ID
,
1397 (SrcValue
->getZExtValue() < DstValue
->getZExtValue() ? SrcOp
: DstOp
)
1399 MDNode
*Flag
= MDNode::get(DstM
.getContext(), FlagOps
);
1400 DstModFlags
->setOperand(DstIndex
, Flag
);
1401 Flags
[ID
].first
= Flag
;
1405 // Choose the maximum if either source or destination request Max behavior.
1406 if (DstBehaviorValue
== Module::Max
|| SrcBehaviorValue
== Module::Max
) {
1407 ConstantInt
*DstValue
=
1408 mdconst::extract
<ConstantInt
>(DstOp
->getOperand(2));
1409 ConstantInt
*SrcValue
=
1410 mdconst::extract
<ConstantInt
>(SrcOp
->getOperand(2));
1412 // The resulting flag should have a Max behavior, and contain the maximum
1413 // value from between the source and destination values.
1414 Metadata
*FlagOps
[] = {
1415 (DstBehaviorValue
!= Module::Max
? SrcOp
: DstOp
)->getOperand(0), ID
,
1416 (SrcValue
->getZExtValue() > DstValue
->getZExtValue() ? SrcOp
: DstOp
)
1418 MDNode
*Flag
= MDNode::get(DstM
.getContext(), FlagOps
);
1419 DstModFlags
->setOperand(DstIndex
, Flag
);
1420 Flags
[ID
].first
= Flag
;
1424 // Perform the merge for standard behavior types.
1425 switch (SrcBehaviorValue
) {
1426 case Module::Require
:
1427 case Module::Override
:
1428 llvm_unreachable("not possible");
1429 case Module::Error
: {
1430 // Emit an error if the values differ.
1431 if (SrcOp
->getOperand(2) != DstOp
->getOperand(2)) {
1433 raw_string_ostream(Str
)
1434 << "linking module flags '" << ID
->getString()
1435 << "': IDs have conflicting values: '" << *SrcOp
->getOperand(2)
1436 << "' from " << SrcM
->getModuleIdentifier() << ", and '"
1437 << *DstOp
->getOperand(2) << "' from " + DstM
.getModuleIdentifier();
1438 return stringErr(Str
);
1442 case Module::Warning
: {
1448 case Module::Append
: {
1449 MDTuple
*DstValue
= ensureDistinctOp(cast
<MDNode
>(DstOp
->getOperand(2)));
1450 MDNode
*SrcValue
= cast
<MDNode
>(SrcOp
->getOperand(2));
1451 for (const auto &O
: SrcValue
->operands())
1452 DstValue
->push_back(O
);
1455 case Module::AppendUnique
: {
1456 SmallSetVector
<Metadata
*, 16> Elts
;
1457 MDTuple
*DstValue
= ensureDistinctOp(cast
<MDNode
>(DstOp
->getOperand(2)));
1458 MDNode
*SrcValue
= cast
<MDNode
>(SrcOp
->getOperand(2));
1459 Elts
.insert(DstValue
->op_begin(), DstValue
->op_end());
1460 Elts
.insert(SrcValue
->op_begin(), SrcValue
->op_end());
1461 for (auto I
= DstValue
->getNumOperands(); I
< Elts
.size(); I
++)
1462 DstValue
->push_back(Elts
[I
]);
1469 // For the Min behavior, set the value to 0 if either module does not have the
1471 for (auto Idx
: Mins
) {
1472 MDNode
*Op
= DstModFlags
->getOperand(Idx
);
1473 MDString
*ID
= cast
<MDString
>(Op
->getOperand(1));
1474 if (!SeenMin
.count(ID
)) {
1475 ConstantInt
*V
= mdconst::extract
<ConstantInt
>(Op
->getOperand(2));
1476 Metadata
*FlagOps
[] = {
1477 Op
->getOperand(0), ID
,
1478 ConstantAsMetadata::get(ConstantInt::get(V
->getType(), 0))};
1479 DstModFlags
->setOperand(Idx
, MDNode::get(DstM
.getContext(), FlagOps
));
1483 // Check all of the requirements.
1484 for (MDNode
*Requirement
: Requirements
) {
1485 MDString
*Flag
= cast
<MDString
>(Requirement
->getOperand(0));
1486 Metadata
*ReqValue
= Requirement
->getOperand(1);
1488 MDNode
*Op
= Flags
[Flag
].first
;
1489 if (!Op
|| Op
->getOperand(2) != ReqValue
)
1490 return stringErr("linking module flags '" + Flag
->getString() +
1491 "': does not have the required value");
1493 return Error::success();
1496 /// Return InlineAsm adjusted with target-specific directives if required.
1497 /// For ARM and Thumb, we have to add directives to select the appropriate ISA
1498 /// to support mixing module-level inline assembly from ARM and Thumb modules.
1499 static std::string
adjustInlineAsm(const std::string
&InlineAsm
,
1500 const Triple
&Triple
) {
1501 if (Triple
.getArch() == Triple::thumb
|| Triple
.getArch() == Triple::thumbeb
)
1502 return ".text\n.balign 2\n.thumb\n" + InlineAsm
;
1503 if (Triple
.getArch() == Triple::arm
|| Triple
.getArch() == Triple::armeb
)
1504 return ".text\n.balign 4\n.arm\n" + InlineAsm
;
1508 void IRLinker::updateAttributes(GlobalValue
&GV
) {
1509 /// Remove nocallback attribute while linking, because nocallback attribute
1510 /// indicates that the function is only allowed to jump back into caller's
1511 /// module only by a return or an exception. When modules are linked, this
1512 /// property cannot be guaranteed anymore. For example, the nocallback
1513 /// function may contain a call to another module. But if we merge its caller
1514 /// and callee module here, and not the module containing the nocallback
1515 /// function definition itself, the nocallback property will be violated
1516 /// (since the nocallback function will call back into the newly merged module
1517 /// containing both its caller and callee). This could happen if the module
1518 /// containing the nocallback function definition is native code, so it does
1519 /// not participate in the LTO link. Note if the nocallback function does
1520 /// participate in the LTO link, and thus ends up in the merged module
1521 /// containing its caller and callee, removing the attribute doesn't hurt as
1522 /// it has no effect on definitions in the same module.
1523 if (auto *F
= dyn_cast
<Function
>(&GV
)) {
1524 if (!F
->isIntrinsic())
1525 F
->removeFnAttr(llvm::Attribute::NoCallback
);
1527 // Remove nocallback attribute when it is on a call-site.
1528 for (BasicBlock
&BB
: *F
)
1529 for (Instruction
&I
: BB
)
1530 if (CallBase
*CI
= dyn_cast
<CallBase
>(&I
))
1531 CI
->removeFnAttr(Attribute::NoCallback
);
1535 Error
IRLinker::run() {
1536 // Ensure metadata materialized before value mapping.
1537 if (SrcM
->getMaterializer())
1538 if (Error Err
= SrcM
->getMaterializer()->materializeMetadata())
1541 // Convert source module to match dest for the duration of the link.
1542 ScopedDbgInfoFormatSetter
FormatSetter(*SrcM
, DstM
.IsNewDbgInfoFormat
);
1544 // Inherit the target data from the source module if the destination
1545 // module doesn't have one already.
1546 if (DstM
.getDataLayout().isDefault())
1547 DstM
.setDataLayout(SrcM
->getDataLayout());
1549 // Copy the target triple from the source to dest if the dest's is empty.
1550 if (DstM
.getTargetTriple().empty() && !SrcM
->getTargetTriple().empty())
1551 DstM
.setTargetTriple(SrcM
->getTargetTriple());
1553 Triple
SrcTriple(SrcM
->getTargetTriple()), DstTriple(DstM
.getTargetTriple());
1555 // During CUDA compilation we have to link with the bitcode supplied with
1556 // CUDA. libdevice bitcode either has no data layout set (pre-CUDA-11), or has
1557 // the layout that is different from the one used by LLVM/clang (it does not
1558 // include i128). Issuing a warning is not very helpful as there's not much
1559 // the user can do about it.
1560 bool EnableDLWarning
= true;
1561 bool EnableTripleWarning
= true;
1562 if (SrcTriple
.isNVPTX() && DstTriple
.isNVPTX()) {
1563 bool SrcHasLibDeviceDL
=
1564 (SrcM
->getDataLayoutStr().empty() ||
1565 SrcM
->getDataLayoutStr() == "e-i64:64-v16:16-v32:32-n16:32:64");
1566 // libdevice bitcode uses nvptx64-nvidia-gpulibs or just
1567 // 'nvptx-unknown-unknown' triple (before CUDA-10.x) and is compatible with
1568 // all NVPTX variants.
1569 bool SrcHasLibDeviceTriple
= (SrcTriple
.getVendor() == Triple::NVIDIA
&&
1570 SrcTriple
.getOSName() == "gpulibs") ||
1571 (SrcTriple
.getVendorName() == "unknown" &&
1572 SrcTriple
.getOSName() == "unknown");
1573 EnableTripleWarning
= !SrcHasLibDeviceTriple
;
1574 EnableDLWarning
= !(SrcHasLibDeviceTriple
&& SrcHasLibDeviceDL
);
1577 if (EnableDLWarning
&& (SrcM
->getDataLayout() != DstM
.getDataLayout())) {
1578 emitWarning("Linking two modules of different data layouts: '" +
1579 SrcM
->getModuleIdentifier() + "' is '" +
1580 SrcM
->getDataLayoutStr() + "' whereas '" +
1581 DstM
.getModuleIdentifier() + "' is '" +
1582 DstM
.getDataLayoutStr() + "'\n");
1585 if (EnableTripleWarning
&& !SrcM
->getTargetTriple().empty() &&
1586 !SrcTriple
.isCompatibleWith(DstTriple
))
1587 emitWarning("Linking two modules of different target triples: '" +
1588 SrcM
->getModuleIdentifier() + "' is '" +
1589 SrcM
->getTargetTriple() + "' whereas '" +
1590 DstM
.getModuleIdentifier() + "' is '" + DstM
.getTargetTriple() +
1593 DstM
.setTargetTriple(SrcTriple
.merge(DstTriple
));
1595 // Loop over all of the linked values to compute type mappings.
1596 computeTypeMapping();
1598 std::reverse(Worklist
.begin(), Worklist
.end());
1599 while (!Worklist
.empty()) {
1600 GlobalValue
*GV
= Worklist
.back();
1601 Worklist
.pop_back();
1604 if (ValueMap
.find(GV
) != ValueMap
.end() ||
1605 IndirectSymbolValueMap
.find(GV
) != IndirectSymbolValueMap
.end())
1608 assert(!GV
->isDeclaration());
1609 Mapper
.mapValue(*GV
);
1611 return std::move(*FoundError
);
1612 flushRAUWWorklist();
1615 // Note that we are done linking global value bodies. This prevents
1616 // metadata linking from creating new references.
1617 DoneLinkingBodies
= true;
1618 Mapper
.addFlags(RF_NullMapMissingGlobalValues
);
1620 // Remap all of the named MDNodes in Src into the DstM module. We do this
1621 // after linking GlobalValues so that MDNodes that reference GlobalValues
1622 // are properly remapped.
1625 // Clean up any global objects with potentially unmapped metadata.
1626 // Specifically declarations which did not become definitions.
1627 for (GlobalObject
*NGO
: UnmappedMetadata
) {
1628 if (NGO
->isDeclaration())
1629 Mapper
.remapGlobalObjectMetadata(*NGO
);
1632 if (!IsPerformingImport
&& !SrcM
->getModuleInlineAsm().empty()) {
1633 // Append the module inline asm string.
1634 DstM
.appendModuleInlineAsm(adjustInlineAsm(SrcM
->getModuleInlineAsm(),
1636 } else if (IsPerformingImport
) {
1637 // Import any symver directives for symbols in DstM.
1638 ModuleSymbolTable::CollectAsmSymvers(*SrcM
,
1639 [&](StringRef Name
, StringRef Alias
) {
1640 if (DstM
.getNamedValue(Name
)) {
1641 SmallString
<256> S(".symver ");
1645 DstM
.appendModuleInlineAsm(S
);
1650 // Reorder the globals just added to the destination module to match their
1651 // original order in the source module.
1652 for (GlobalVariable
&GV
: SrcM
->globals()) {
1653 if (GV
.hasAppendingLinkage())
1655 Value
*NewValue
= Mapper
.mapValue(GV
);
1657 auto *NewGV
= dyn_cast
<GlobalVariable
>(NewValue
->stripPointerCasts());
1659 NewGV
->removeFromParent();
1660 DstM
.insertGlobalVariable(NewGV
);
1665 // Merge the module flags into the DstM module.
1666 return linkModuleFlagsMetadata();
1669 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef
<Type
*> E
, bool P
)
1670 : ETypes(E
), IsPacked(P
) {}
1672 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType
*ST
)
1673 : ETypes(ST
->elements()), IsPacked(ST
->isPacked()) {}
1675 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy
&That
) const {
1676 return IsPacked
== That
.IsPacked
&& ETypes
== That
.ETypes
;
1679 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy
&That
) const {
1680 return !this->operator==(That
);
1683 StructType
*IRMover::StructTypeKeyInfo::getEmptyKey() {
1684 return DenseMapInfo
<StructType
*>::getEmptyKey();
1687 StructType
*IRMover::StructTypeKeyInfo::getTombstoneKey() {
1688 return DenseMapInfo
<StructType
*>::getTombstoneKey();
1691 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy
&Key
) {
1692 return hash_combine(hash_combine_range(Key
.ETypes
.begin(), Key
.ETypes
.end()),
1696 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType
*ST
) {
1697 return getHashValue(KeyTy(ST
));
1700 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy
&LHS
,
1701 const StructType
*RHS
) {
1702 if (RHS
== getEmptyKey() || RHS
== getTombstoneKey())
1704 return LHS
== KeyTy(RHS
);
1707 bool IRMover::StructTypeKeyInfo::isEqual(const StructType
*LHS
,
1708 const StructType
*RHS
) {
1709 if (RHS
== getEmptyKey() || RHS
== getTombstoneKey())
1711 return KeyTy(LHS
) == KeyTy(RHS
);
1714 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType
*Ty
) {
1715 assert(!Ty
->isOpaque());
1716 NonOpaqueStructTypes
.insert(Ty
);
1719 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType
*Ty
) {
1720 assert(!Ty
->isOpaque());
1721 NonOpaqueStructTypes
.insert(Ty
);
1722 bool Removed
= OpaqueStructTypes
.erase(Ty
);
1727 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType
*Ty
) {
1728 assert(Ty
->isOpaque());
1729 OpaqueStructTypes
.insert(Ty
);
1733 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef
<Type
*> ETypes
,
1735 IRMover::StructTypeKeyInfo::KeyTy
Key(ETypes
, IsPacked
);
1736 auto I
= NonOpaqueStructTypes
.find_as(Key
);
1737 return I
== NonOpaqueStructTypes
.end() ? nullptr : *I
;
1740 bool IRMover::IdentifiedStructTypeSet::hasType(StructType
*Ty
) {
1742 return OpaqueStructTypes
.count(Ty
);
1743 auto I
= NonOpaqueStructTypes
.find(Ty
);
1744 return I
== NonOpaqueStructTypes
.end() ? false : *I
== Ty
;
1747 IRMover::IRMover(Module
&M
) : Composite(M
) {
1748 TypeFinder StructTypes
;
1749 StructTypes
.run(M
, /* OnlyNamed */ false);
1750 for (StructType
*Ty
: StructTypes
) {
1752 IdentifiedStructTypes
.addOpaque(Ty
);
1754 IdentifiedStructTypes
.addNonOpaque(Ty
);
1756 // Self-map metadatas in the destination module. This is needed when
1757 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
1758 // destination module may be reached from the source module.
1759 for (const auto *MD
: StructTypes
.getVisitedMetadata()) {
1760 SharedMDs
[MD
].reset(const_cast<MDNode
*>(MD
));
1764 Error
IRMover::move(std::unique_ptr
<Module
> Src
,
1765 ArrayRef
<GlobalValue
*> ValuesToLink
,
1766 LazyCallback AddLazyFor
, bool IsPerformingImport
) {
1767 IRLinker
TheIRLinker(Composite
, SharedMDs
, IdentifiedStructTypes
,
1768 std::move(Src
), ValuesToLink
, std::move(AddLazyFor
),
1769 IsPerformingImport
);
1770 Error E
= TheIRLinker
.run();
1771 Composite
.dropTriviallyDeadConstantArrays();