[clang][bytecode][NFC] Only get expr when checking for UB (#125397)
[llvm-project.git] / llvm / lib / Object / COFFObjectFile.cpp
blob242c123665f76322be437d7082147f63ebcfa423
1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the COFFObjectFile class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/StringSwitch.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Object/Binary.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Object/Error.h"
20 #include "llvm/Object/ObjectFile.h"
21 #include "llvm/Object/WindowsMachineFlag.h"
22 #include "llvm/Support/BinaryStreamReader.h"
23 #include "llvm/Support/Endian.h"
24 #include "llvm/Support/Error.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/MemoryBufferRef.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <cinttypes>
31 #include <cstddef>
32 #include <cstring>
33 #include <limits>
34 #include <memory>
35 #include <system_error>
37 using namespace llvm;
38 using namespace object;
40 using support::ulittle16_t;
41 using support::ulittle32_t;
42 using support::ulittle64_t;
43 using support::little16_t;
45 // Returns false if size is greater than the buffer size. And sets ec.
46 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
47 if (M.getBufferSize() < Size) {
48 EC = object_error::unexpected_eof;
49 return false;
51 return true;
54 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
55 // Returns unexpected_eof if error.
56 template <typename T>
57 static Error getObject(const T *&Obj, MemoryBufferRef M, const void *Ptr,
58 const uint64_t Size = sizeof(T)) {
59 uintptr_t Addr = reinterpret_cast<uintptr_t>(Ptr);
60 if (Error E = Binary::checkOffset(M, Addr, Size))
61 return E;
62 Obj = reinterpret_cast<const T *>(Addr);
63 return Error::success();
66 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
67 // prefixed slashes.
68 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
69 assert(Str.size() <= 6 && "String too long, possible overflow.");
70 if (Str.size() > 6)
71 return true;
73 uint64_t Value = 0;
74 while (!Str.empty()) {
75 unsigned CharVal;
76 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
77 CharVal = Str[0] - 'A';
78 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
79 CharVal = Str[0] - 'a' + 26;
80 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
81 CharVal = Str[0] - '0' + 52;
82 else if (Str[0] == '+') // 62
83 CharVal = 62;
84 else if (Str[0] == '/') // 63
85 CharVal = 63;
86 else
87 return true;
89 Value = (Value * 64) + CharVal;
90 Str = Str.substr(1);
93 if (Value > std::numeric_limits<uint32_t>::max())
94 return true;
96 Result = static_cast<uint32_t>(Value);
97 return false;
100 template <typename coff_symbol_type>
101 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
102 const coff_symbol_type *Addr =
103 reinterpret_cast<const coff_symbol_type *>(Ref.p);
105 assert(!checkOffset(Data, reinterpret_cast<uintptr_t>(Addr), sizeof(*Addr)));
106 #ifndef NDEBUG
107 // Verify that the symbol points to a valid entry in the symbol table.
108 uintptr_t Offset =
109 reinterpret_cast<uintptr_t>(Addr) - reinterpret_cast<uintptr_t>(base());
111 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
112 "Symbol did not point to the beginning of a symbol");
113 #endif
115 return Addr;
118 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
119 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
121 #ifndef NDEBUG
122 // Verify that the section points to a valid entry in the section table.
123 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
124 report_fatal_error("Section was outside of section table.");
126 uintptr_t Offset = reinterpret_cast<uintptr_t>(Addr) -
127 reinterpret_cast<uintptr_t>(SectionTable);
128 assert(Offset % sizeof(coff_section) == 0 &&
129 "Section did not point to the beginning of a section");
130 #endif
132 return Addr;
135 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
136 auto End = reinterpret_cast<uintptr_t>(StringTable);
137 if (SymbolTable16) {
138 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
139 Symb += 1 + Symb->NumberOfAuxSymbols;
140 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
141 } else if (SymbolTable32) {
142 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
143 Symb += 1 + Symb->NumberOfAuxSymbols;
144 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
145 } else {
146 llvm_unreachable("no symbol table pointer!");
150 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
151 return getSymbolName(getCOFFSymbol(Ref));
154 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
155 return getCOFFSymbol(Ref).getValue();
158 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const {
159 // MSVC/link.exe seems to align symbols to the next-power-of-2
160 // up to 32 bytes.
161 COFFSymbolRef Symb = getCOFFSymbol(Ref);
162 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue()));
165 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
166 uint64_t Result = cantFail(getSymbolValue(Ref));
167 COFFSymbolRef Symb = getCOFFSymbol(Ref);
168 int32_t SectionNumber = Symb.getSectionNumber();
170 if (Symb.isAnyUndefined() || Symb.isCommon() ||
171 COFF::isReservedSectionNumber(SectionNumber))
172 return Result;
174 Expected<const coff_section *> Section = getSection(SectionNumber);
175 if (!Section)
176 return Section.takeError();
177 Result += (*Section)->VirtualAddress;
179 // The section VirtualAddress does not include ImageBase, and we want to
180 // return virtual addresses.
181 Result += getImageBase();
183 return Result;
186 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
187 COFFSymbolRef Symb = getCOFFSymbol(Ref);
188 int32_t SectionNumber = Symb.getSectionNumber();
190 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
191 return SymbolRef::ST_Function;
192 if (Symb.isAnyUndefined())
193 return SymbolRef::ST_Unknown;
194 if (Symb.isCommon())
195 return SymbolRef::ST_Data;
196 if (Symb.isFileRecord())
197 return SymbolRef::ST_File;
199 // TODO: perhaps we need a new symbol type ST_Section.
200 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
201 return SymbolRef::ST_Debug;
203 if (!COFF::isReservedSectionNumber(SectionNumber))
204 return SymbolRef::ST_Data;
206 return SymbolRef::ST_Other;
209 Expected<uint32_t> COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
210 COFFSymbolRef Symb = getCOFFSymbol(Ref);
211 uint32_t Result = SymbolRef::SF_None;
213 if (Symb.isExternal() || Symb.isWeakExternal())
214 Result |= SymbolRef::SF_Global;
216 if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) {
217 Result |= SymbolRef::SF_Weak;
218 if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS)
219 Result |= SymbolRef::SF_Undefined;
222 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
223 Result |= SymbolRef::SF_Absolute;
225 if (Symb.isFileRecord())
226 Result |= SymbolRef::SF_FormatSpecific;
228 if (Symb.isSectionDefinition())
229 Result |= SymbolRef::SF_FormatSpecific;
231 if (Symb.isCommon())
232 Result |= SymbolRef::SF_Common;
234 if (Symb.isUndefined())
235 Result |= SymbolRef::SF_Undefined;
237 return Result;
240 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
241 COFFSymbolRef Symb = getCOFFSymbol(Ref);
242 return Symb.getValue();
245 Expected<section_iterator>
246 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
247 COFFSymbolRef Symb = getCOFFSymbol(Ref);
248 if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
249 return section_end();
250 Expected<const coff_section *> Sec = getSection(Symb.getSectionNumber());
251 if (!Sec)
252 return Sec.takeError();
253 DataRefImpl Ret;
254 Ret.p = reinterpret_cast<uintptr_t>(*Sec);
255 return section_iterator(SectionRef(Ret, this));
258 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
259 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
260 return Symb.getSectionNumber();
263 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
264 const coff_section *Sec = toSec(Ref);
265 Sec += 1;
266 Ref.p = reinterpret_cast<uintptr_t>(Sec);
269 Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const {
270 const coff_section *Sec = toSec(Ref);
271 return getSectionName(Sec);
274 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
275 const coff_section *Sec = toSec(Ref);
276 uint64_t Result = Sec->VirtualAddress;
278 // The section VirtualAddress does not include ImageBase, and we want to
279 // return virtual addresses.
280 Result += getImageBase();
281 return Result;
284 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const {
285 return toSec(Sec) - SectionTable;
288 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
289 return getSectionSize(toSec(Ref));
292 Expected<ArrayRef<uint8_t>>
293 COFFObjectFile::getSectionContents(DataRefImpl Ref) const {
294 const coff_section *Sec = toSec(Ref);
295 ArrayRef<uint8_t> Res;
296 if (Error E = getSectionContents(Sec, Res))
297 return E;
298 return Res;
301 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
302 const coff_section *Sec = toSec(Ref);
303 return Sec->getAlignment();
306 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const {
307 return false;
310 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
311 const coff_section *Sec = toSec(Ref);
312 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
315 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
316 const coff_section *Sec = toSec(Ref);
317 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
320 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
321 const coff_section *Sec = toSec(Ref);
322 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
323 COFF::IMAGE_SCN_MEM_READ |
324 COFF::IMAGE_SCN_MEM_WRITE;
325 return (Sec->Characteristics & BssFlags) == BssFlags;
328 // The .debug sections are the only debug sections for COFF
329 // (\see MCObjectFileInfo.cpp).
330 bool COFFObjectFile::isDebugSection(DataRefImpl Ref) const {
331 Expected<StringRef> SectionNameOrErr = getSectionName(Ref);
332 if (!SectionNameOrErr) {
333 // TODO: Report the error message properly.
334 consumeError(SectionNameOrErr.takeError());
335 return false;
337 StringRef SectionName = SectionNameOrErr.get();
338 return SectionName.starts_with(".debug");
341 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
342 uintptr_t Offset =
343 Sec.getRawDataRefImpl().p - reinterpret_cast<uintptr_t>(SectionTable);
344 assert((Offset % sizeof(coff_section)) == 0);
345 return (Offset / sizeof(coff_section)) + 1;
348 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
349 const coff_section *Sec = toSec(Ref);
350 // In COFF, a virtual section won't have any in-file
351 // content, so the file pointer to the content will be zero.
352 return Sec->PointerToRawData == 0;
355 static uint32_t getNumberOfRelocations(const coff_section *Sec,
356 MemoryBufferRef M, const uint8_t *base) {
357 // The field for the number of relocations in COFF section table is only
358 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
359 // NumberOfRelocations field, and the actual relocation count is stored in the
360 // VirtualAddress field in the first relocation entry.
361 if (Sec->hasExtendedRelocations()) {
362 const coff_relocation *FirstReloc;
363 if (Error E = getObject(FirstReloc, M,
364 reinterpret_cast<const coff_relocation *>(
365 base + Sec->PointerToRelocations))) {
366 consumeError(std::move(E));
367 return 0;
369 // -1 to exclude this first relocation entry.
370 return FirstReloc->VirtualAddress - 1;
372 return Sec->NumberOfRelocations;
375 static const coff_relocation *
376 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
377 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
378 if (!NumRelocs)
379 return nullptr;
380 auto begin = reinterpret_cast<const coff_relocation *>(
381 Base + Sec->PointerToRelocations);
382 if (Sec->hasExtendedRelocations()) {
383 // Skip the first relocation entry repurposed to store the number of
384 // relocations.
385 begin++;
387 if (auto E = Binary::checkOffset(M, reinterpret_cast<uintptr_t>(begin),
388 sizeof(coff_relocation) * NumRelocs)) {
389 consumeError(std::move(E));
390 return nullptr;
392 return begin;
395 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
396 const coff_section *Sec = toSec(Ref);
397 const coff_relocation *begin = getFirstReloc(Sec, Data, base());
398 if (begin && Sec->VirtualAddress != 0)
399 report_fatal_error("Sections with relocations should have an address of 0");
400 DataRefImpl Ret;
401 Ret.p = reinterpret_cast<uintptr_t>(begin);
402 return relocation_iterator(RelocationRef(Ret, this));
405 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
406 const coff_section *Sec = toSec(Ref);
407 const coff_relocation *I = getFirstReloc(Sec, Data, base());
408 if (I)
409 I += getNumberOfRelocations(Sec, Data, base());
410 DataRefImpl Ret;
411 Ret.p = reinterpret_cast<uintptr_t>(I);
412 return relocation_iterator(RelocationRef(Ret, this));
415 // Initialize the pointer to the symbol table.
416 Error COFFObjectFile::initSymbolTablePtr() {
417 if (COFFHeader)
418 if (Error E = getObject(
419 SymbolTable16, Data, base() + getPointerToSymbolTable(),
420 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
421 return E;
423 if (COFFBigObjHeader)
424 if (Error E = getObject(
425 SymbolTable32, Data, base() + getPointerToSymbolTable(),
426 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
427 return E;
429 // Find string table. The first four byte of the string table contains the
430 // total size of the string table, including the size field itself. If the
431 // string table is empty, the value of the first four byte would be 4.
432 uint32_t StringTableOffset = getPointerToSymbolTable() +
433 getNumberOfSymbols() * getSymbolTableEntrySize();
434 const uint8_t *StringTableAddr = base() + StringTableOffset;
435 const ulittle32_t *StringTableSizePtr;
436 if (Error E = getObject(StringTableSizePtr, Data, StringTableAddr))
437 return E;
438 StringTableSize = *StringTableSizePtr;
439 if (Error E = getObject(StringTable, Data, StringTableAddr, StringTableSize))
440 return E;
442 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
443 // tools like cvtres write a size of 0 for an empty table instead of 4.
444 if (StringTableSize < 4)
445 StringTableSize = 4;
447 // Check that the string table is null terminated if has any in it.
448 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
449 return createStringError(object_error::parse_failed,
450 "string table missing null terminator");
451 return Error::success();
454 uint64_t COFFObjectFile::getImageBase() const {
455 if (PE32Header)
456 return PE32Header->ImageBase;
457 else if (PE32PlusHeader)
458 return PE32PlusHeader->ImageBase;
459 // This actually comes up in practice.
460 return 0;
463 // Returns the file offset for the given VA.
464 Error COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
465 uint64_t ImageBase = getImageBase();
466 uint64_t Rva = Addr - ImageBase;
467 assert(Rva <= UINT32_MAX);
468 return getRvaPtr((uint32_t)Rva, Res);
471 // Returns the file offset for the given RVA.
472 Error COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res,
473 const char *ErrorContext) const {
474 for (const SectionRef &S : sections()) {
475 const coff_section *Section = getCOFFSection(S);
476 uint32_t SectionStart = Section->VirtualAddress;
477 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
478 if (SectionStart <= Addr && Addr < SectionEnd) {
479 // A table/directory entry can be pointing to somewhere in a stripped
480 // section, in an object that went through `objcopy --only-keep-debug`.
481 // In this case we don't want to cause the parsing of the object file to
482 // fail, otherwise it will be impossible to use this object as debug info
483 // in LLDB. Return SectionStrippedError here so that
484 // COFFObjectFile::initialize can ignore the error.
485 // Somewhat common binaries may have RVAs pointing outside of the
486 // provided raw data. Instead of rejecting the binaries, just
487 // treat the section as stripped for these purposes.
488 if (Section->SizeOfRawData < Section->VirtualSize &&
489 Addr >= SectionStart + Section->SizeOfRawData) {
490 return make_error<SectionStrippedError>();
492 uint32_t Offset = Addr - SectionStart;
493 Res = reinterpret_cast<uintptr_t>(base()) + Section->PointerToRawData +
494 Offset;
495 return Error::success();
498 if (ErrorContext)
499 return createStringError(object_error::parse_failed,
500 "RVA 0x%" PRIx32 " for %s not found", Addr,
501 ErrorContext);
502 return createStringError(object_error::parse_failed,
503 "RVA 0x%" PRIx32 " not found", Addr);
506 Error COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size,
507 ArrayRef<uint8_t> &Contents,
508 const char *ErrorContext) const {
509 for (const SectionRef &S : sections()) {
510 const coff_section *Section = getCOFFSection(S);
511 uint32_t SectionStart = Section->VirtualAddress;
512 // Check if this RVA is within the section bounds. Be careful about integer
513 // overflow.
514 uint32_t OffsetIntoSection = RVA - SectionStart;
515 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize &&
516 Size <= Section->VirtualSize - OffsetIntoSection) {
517 uintptr_t Begin = reinterpret_cast<uintptr_t>(base()) +
518 Section->PointerToRawData + OffsetIntoSection;
519 Contents =
520 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size);
521 return Error::success();
524 if (ErrorContext)
525 return createStringError(object_error::parse_failed,
526 "RVA 0x%" PRIx32 " for %s not found", RVA,
527 ErrorContext);
528 return createStringError(object_error::parse_failed,
529 "RVA 0x%" PRIx32 " not found", RVA);
532 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
533 // table entry.
534 Error COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
535 StringRef &Name) const {
536 uintptr_t IntPtr = 0;
537 if (Error E = getRvaPtr(Rva, IntPtr))
538 return E;
539 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
540 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
541 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
542 return Error::success();
545 Error COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir,
546 const codeview::DebugInfo *&PDBInfo,
547 StringRef &PDBFileName) const {
548 ArrayRef<uint8_t> InfoBytes;
549 if (Error E =
550 getRvaAndSizeAsBytes(DebugDir->AddressOfRawData, DebugDir->SizeOfData,
551 InfoBytes, "PDB info"))
552 return E;
553 if (InfoBytes.size() < sizeof(*PDBInfo) + 1)
554 return createStringError(object_error::parse_failed, "PDB info too small");
555 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data());
556 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo));
557 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()),
558 InfoBytes.size());
559 // Truncate the name at the first null byte. Ignore any padding.
560 PDBFileName = PDBFileName.split('\0').first;
561 return Error::success();
564 Error COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo,
565 StringRef &PDBFileName) const {
566 for (const debug_directory &D : debug_directories())
567 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW)
568 return getDebugPDBInfo(&D, PDBInfo, PDBFileName);
569 // If we get here, there is no PDB info to return.
570 PDBInfo = nullptr;
571 PDBFileName = StringRef();
572 return Error::success();
575 // Find the import table.
576 Error COFFObjectFile::initImportTablePtr() {
577 // First, we get the RVA of the import table. If the file lacks a pointer to
578 // the import table, do nothing.
579 const data_directory *DataEntry = getDataDirectory(COFF::IMPORT_TABLE);
580 if (!DataEntry)
581 return Error::success();
583 // Do nothing if the pointer to import table is NULL.
584 if (DataEntry->RelativeVirtualAddress == 0)
585 return Error::success();
587 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
589 // Find the section that contains the RVA. This is needed because the RVA is
590 // the import table's memory address which is different from its file offset.
591 uintptr_t IntPtr = 0;
592 if (Error E = getRvaPtr(ImportTableRva, IntPtr, "import table"))
593 return E;
594 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
595 return E;
596 ImportDirectory = reinterpret_cast<
597 const coff_import_directory_table_entry *>(IntPtr);
598 return Error::success();
601 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
602 Error COFFObjectFile::initDelayImportTablePtr() {
603 const data_directory *DataEntry =
604 getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR);
605 if (!DataEntry)
606 return Error::success();
607 if (DataEntry->RelativeVirtualAddress == 0)
608 return Error::success();
610 uint32_t RVA = DataEntry->RelativeVirtualAddress;
611 NumberOfDelayImportDirectory = DataEntry->Size /
612 sizeof(delay_import_directory_table_entry) - 1;
614 uintptr_t IntPtr = 0;
615 if (Error E = getRvaPtr(RVA, IntPtr, "delay import table"))
616 return E;
617 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
618 return E;
620 DelayImportDirectory = reinterpret_cast<
621 const delay_import_directory_table_entry *>(IntPtr);
622 return Error::success();
625 // Find the export table.
626 Error COFFObjectFile::initExportTablePtr() {
627 // First, we get the RVA of the export table. If the file lacks a pointer to
628 // the export table, do nothing.
629 const data_directory *DataEntry = getDataDirectory(COFF::EXPORT_TABLE);
630 if (!DataEntry)
631 return Error::success();
633 // Do nothing if the pointer to export table is NULL.
634 if (DataEntry->RelativeVirtualAddress == 0)
635 return Error::success();
637 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
638 uintptr_t IntPtr = 0;
639 if (Error E = getRvaPtr(ExportTableRva, IntPtr, "export table"))
640 return E;
641 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
642 return E;
644 ExportDirectory =
645 reinterpret_cast<const export_directory_table_entry *>(IntPtr);
646 return Error::success();
649 Error COFFObjectFile::initBaseRelocPtr() {
650 const data_directory *DataEntry =
651 getDataDirectory(COFF::BASE_RELOCATION_TABLE);
652 if (!DataEntry)
653 return Error::success();
654 if (DataEntry->RelativeVirtualAddress == 0)
655 return Error::success();
657 uintptr_t IntPtr = 0;
658 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr,
659 "base reloc table"))
660 return E;
661 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
662 return E;
664 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
665 IntPtr);
666 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
667 IntPtr + DataEntry->Size);
668 // FIXME: Verify the section containing BaseRelocHeader has at least
669 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
670 return Error::success();
673 Error COFFObjectFile::initDebugDirectoryPtr() {
674 // Get the RVA of the debug directory. Do nothing if it does not exist.
675 const data_directory *DataEntry = getDataDirectory(COFF::DEBUG_DIRECTORY);
676 if (!DataEntry)
677 return Error::success();
679 // Do nothing if the RVA is NULL.
680 if (DataEntry->RelativeVirtualAddress == 0)
681 return Error::success();
683 // Check that the size is a multiple of the entry size.
684 if (DataEntry->Size % sizeof(debug_directory) != 0)
685 return createStringError(object_error::parse_failed,
686 "debug directory has uneven size");
688 uintptr_t IntPtr = 0;
689 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr,
690 "debug directory"))
691 return E;
692 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
693 return E;
695 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr);
696 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(
697 IntPtr + DataEntry->Size);
698 // FIXME: Verify the section containing DebugDirectoryBegin has at least
699 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
700 return Error::success();
703 Error COFFObjectFile::initTLSDirectoryPtr() {
704 // Get the RVA of the TLS directory. Do nothing if it does not exist.
705 const data_directory *DataEntry = getDataDirectory(COFF::TLS_TABLE);
706 if (!DataEntry)
707 return Error::success();
709 // Do nothing if the RVA is NULL.
710 if (DataEntry->RelativeVirtualAddress == 0)
711 return Error::success();
713 uint64_t DirSize =
714 is64() ? sizeof(coff_tls_directory64) : sizeof(coff_tls_directory32);
716 // Check that the size is correct.
717 if (DataEntry->Size != DirSize)
718 return createStringError(
719 object_error::parse_failed,
720 "TLS Directory size (%u) is not the expected size (%" PRIu64 ").",
721 static_cast<uint32_t>(DataEntry->Size), DirSize);
723 uintptr_t IntPtr = 0;
724 if (Error E =
725 getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, "TLS directory"))
726 return E;
727 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
728 return E;
730 if (is64())
731 TLSDirectory64 = reinterpret_cast<const coff_tls_directory64 *>(IntPtr);
732 else
733 TLSDirectory32 = reinterpret_cast<const coff_tls_directory32 *>(IntPtr);
735 return Error::success();
738 Error COFFObjectFile::initLoadConfigPtr() {
739 // Get the RVA of the debug directory. Do nothing if it does not exist.
740 const data_directory *DataEntry = getDataDirectory(COFF::LOAD_CONFIG_TABLE);
741 if (!DataEntry)
742 return Error::success();
744 // Do nothing if the RVA is NULL.
745 if (DataEntry->RelativeVirtualAddress == 0)
746 return Error::success();
747 uintptr_t IntPtr = 0;
748 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr,
749 "load config table"))
750 return E;
751 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
752 return E;
754 LoadConfig = (const void *)IntPtr;
756 if (is64()) {
757 auto Config = getLoadConfig64();
758 if (Config->Size >=
759 offsetof(coff_load_configuration64, CHPEMetadataPointer) +
760 sizeof(Config->CHPEMetadataPointer) &&
761 Config->CHPEMetadataPointer) {
762 uint64_t ChpeOff = Config->CHPEMetadataPointer;
763 if (Error E =
764 getRvaPtr(ChpeOff - getImageBase(), IntPtr, "CHPE metadata"))
765 return E;
766 if (Error E = checkOffset(Data, IntPtr, sizeof(*CHPEMetadata)))
767 return E;
769 CHPEMetadata = reinterpret_cast<const chpe_metadata *>(IntPtr);
771 // Validate CHPE metadata
772 if (CHPEMetadata->CodeMapCount) {
773 if (Error E = getRvaPtr(CHPEMetadata->CodeMap, IntPtr, "CHPE code map"))
774 return E;
775 if (Error E = checkOffset(Data, IntPtr,
776 CHPEMetadata->CodeMapCount *
777 sizeof(chpe_range_entry)))
778 return E;
781 if (CHPEMetadata->CodeRangesToEntryPointsCount) {
782 if (Error E = getRvaPtr(CHPEMetadata->CodeRangesToEntryPoints, IntPtr,
783 "CHPE entry point ranges"))
784 return E;
785 if (Error E = checkOffset(Data, IntPtr,
786 CHPEMetadata->CodeRangesToEntryPointsCount *
787 sizeof(chpe_code_range_entry)))
788 return E;
791 if (CHPEMetadata->RedirectionMetadataCount) {
792 if (Error E = getRvaPtr(CHPEMetadata->RedirectionMetadata, IntPtr,
793 "CHPE redirection metadata"))
794 return E;
795 if (Error E = checkOffset(Data, IntPtr,
796 CHPEMetadata->RedirectionMetadataCount *
797 sizeof(chpe_redirection_entry)))
798 return E;
802 if (Config->Size >=
803 offsetof(coff_load_configuration64, DynamicValueRelocTableSection) +
804 sizeof(Config->DynamicValueRelocTableSection))
805 if (Error E = initDynamicRelocPtr(Config->DynamicValueRelocTableSection,
806 Config->DynamicValueRelocTableOffset))
807 return E;
808 } else {
809 auto Config = getLoadConfig32();
810 if (Config->Size >=
811 offsetof(coff_load_configuration32, DynamicValueRelocTableSection) +
812 sizeof(Config->DynamicValueRelocTableSection)) {
813 if (Error E = initDynamicRelocPtr(Config->DynamicValueRelocTableSection,
814 Config->DynamicValueRelocTableOffset))
815 return E;
818 return Error::success();
821 Error COFFObjectFile::initDynamicRelocPtr(uint32_t SectionIndex,
822 uint32_t SectionOffset) {
823 Expected<const coff_section *> Section = getSection(SectionIndex);
824 if (!Section)
825 return Section.takeError();
826 if (!*Section)
827 return Error::success();
829 // Interpret and validate dynamic relocations.
830 ArrayRef<uint8_t> Contents;
831 if (Error E = getSectionContents(*Section, Contents))
832 return E;
834 Contents = Contents.drop_front(SectionOffset);
835 if (Contents.size() < sizeof(coff_dynamic_reloc_table))
836 return createStringError(object_error::parse_failed,
837 "Too large DynamicValueRelocTableOffset (" +
838 Twine(SectionOffset) + ")");
840 DynamicRelocTable =
841 reinterpret_cast<const coff_dynamic_reloc_table *>(Contents.data());
843 if (DynamicRelocTable->Version != 1 && DynamicRelocTable->Version != 2)
844 return createStringError(object_error::parse_failed,
845 "Unsupported dynamic relocations table version (" +
846 Twine(DynamicRelocTable->Version) + ")");
847 if (DynamicRelocTable->Size > Contents.size() - sizeof(*DynamicRelocTable))
848 return createStringError(object_error::parse_failed,
849 "Indvalid dynamic relocations directory size (" +
850 Twine(DynamicRelocTable->Size) + ")");
852 for (auto DynReloc : dynamic_relocs()) {
853 if (Error e = DynReloc.validate())
854 return e;
857 return Error::success();
860 Expected<std::unique_ptr<COFFObjectFile>>
861 COFFObjectFile::create(MemoryBufferRef Object) {
862 std::unique_ptr<COFFObjectFile> Obj(new COFFObjectFile(std::move(Object)));
863 if (Error E = Obj->initialize())
864 return E;
865 return std::move(Obj);
868 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object)
869 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
870 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
871 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
872 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
873 ImportDirectory(nullptr), DelayImportDirectory(nullptr),
874 NumberOfDelayImportDirectory(0), ExportDirectory(nullptr),
875 BaseRelocHeader(nullptr), BaseRelocEnd(nullptr),
876 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr),
877 TLSDirectory32(nullptr), TLSDirectory64(nullptr) {}
879 static Error ignoreStrippedErrors(Error E) {
880 if (E.isA<SectionStrippedError>()) {
881 consumeError(std::move(E));
882 return Error::success();
884 return E;
887 Error COFFObjectFile::initialize() {
888 // Check that we at least have enough room for a header.
889 std::error_code EC;
890 if (!checkSize(Data, EC, sizeof(coff_file_header)))
891 return errorCodeToError(EC);
893 // The current location in the file where we are looking at.
894 uint64_t CurPtr = 0;
896 // PE header is optional and is present only in executables. If it exists,
897 // it is placed right after COFF header.
898 bool HasPEHeader = false;
900 // Check if this is a PE/COFF file.
901 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
902 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte
903 // PE signature to find 'normal' COFF header.
904 const auto *DH = reinterpret_cast<const dos_header *>(base());
905 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
906 CurPtr = DH->AddressOfNewExeHeader;
907 // Check the PE magic bytes. ("PE\0\0")
908 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
909 return createStringError(object_error::parse_failed,
910 "incorrect PE magic");
912 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
913 HasPEHeader = true;
917 if (Error E = getObject(COFFHeader, Data, base() + CurPtr))
918 return E;
920 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF
921 // import libraries share a common prefix but bigobj is more restrictive.
922 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
923 COFFHeader->NumberOfSections == uint16_t(0xffff) &&
924 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
925 if (Error E = getObject(COFFBigObjHeader, Data, base() + CurPtr))
926 return E;
928 // Verify that we are dealing with bigobj.
929 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
930 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
931 sizeof(COFF::BigObjMagic)) == 0) {
932 COFFHeader = nullptr;
933 CurPtr += sizeof(coff_bigobj_file_header);
934 } else {
935 // It's not a bigobj.
936 COFFBigObjHeader = nullptr;
939 if (COFFHeader) {
940 // The prior checkSize call may have failed. This isn't a hard error
941 // because we were just trying to sniff out bigobj.
942 EC = std::error_code();
943 CurPtr += sizeof(coff_file_header);
945 if (COFFHeader->isImportLibrary())
946 return errorCodeToError(EC);
949 if (HasPEHeader) {
950 const pe32_header *Header;
951 if (Error E = getObject(Header, Data, base() + CurPtr))
952 return E;
954 const uint8_t *DataDirAddr;
955 uint64_t DataDirSize;
956 if (Header->Magic == COFF::PE32Header::PE32) {
957 PE32Header = Header;
958 DataDirAddr = base() + CurPtr + sizeof(pe32_header);
959 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
960 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
961 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
962 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
963 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
964 } else {
965 // It's neither PE32 nor PE32+.
966 return createStringError(object_error::parse_failed,
967 "incorrect PE magic");
969 if (Error E = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))
970 return E;
973 if (COFFHeader)
974 CurPtr += COFFHeader->SizeOfOptionalHeader;
976 assert(COFFHeader || COFFBigObjHeader);
978 if (Error E =
979 getObject(SectionTable, Data, base() + CurPtr,
980 (uint64_t)getNumberOfSections() * sizeof(coff_section)))
981 return E;
983 // Initialize the pointer to the symbol table.
984 if (getPointerToSymbolTable() != 0) {
985 if (Error E = initSymbolTablePtr()) {
986 // Recover from errors reading the symbol table.
987 consumeError(std::move(E));
988 SymbolTable16 = nullptr;
989 SymbolTable32 = nullptr;
990 StringTable = nullptr;
991 StringTableSize = 0;
993 } else {
994 // We had better not have any symbols if we don't have a symbol table.
995 if (getNumberOfSymbols() != 0) {
996 return createStringError(object_error::parse_failed,
997 "symbol table missing");
1001 // Initialize the pointer to the beginning of the import table.
1002 if (Error E = ignoreStrippedErrors(initImportTablePtr()))
1003 return E;
1004 if (Error E = ignoreStrippedErrors(initDelayImportTablePtr()))
1005 return E;
1007 // Initialize the pointer to the export table.
1008 if (Error E = ignoreStrippedErrors(initExportTablePtr()))
1009 return E;
1011 // Initialize the pointer to the base relocation table.
1012 if (Error E = ignoreStrippedErrors(initBaseRelocPtr()))
1013 return E;
1015 // Initialize the pointer to the debug directory.
1016 if (Error E = ignoreStrippedErrors(initDebugDirectoryPtr()))
1017 return E;
1019 // Initialize the pointer to the TLS directory.
1020 if (Error E = ignoreStrippedErrors(initTLSDirectoryPtr()))
1021 return E;
1023 if (Error E = ignoreStrippedErrors(initLoadConfigPtr()))
1024 return E;
1026 return Error::success();
1029 basic_symbol_iterator COFFObjectFile::symbol_begin() const {
1030 DataRefImpl Ret;
1031 Ret.p = getSymbolTable();
1032 return basic_symbol_iterator(SymbolRef(Ret, this));
1035 basic_symbol_iterator COFFObjectFile::symbol_end() const {
1036 // The symbol table ends where the string table begins.
1037 DataRefImpl Ret;
1038 Ret.p = reinterpret_cast<uintptr_t>(StringTable);
1039 return basic_symbol_iterator(SymbolRef(Ret, this));
1042 import_directory_iterator COFFObjectFile::import_directory_begin() const {
1043 if (!ImportDirectory)
1044 return import_directory_end();
1045 if (ImportDirectory->isNull())
1046 return import_directory_end();
1047 return import_directory_iterator(
1048 ImportDirectoryEntryRef(ImportDirectory, 0, this));
1051 import_directory_iterator COFFObjectFile::import_directory_end() const {
1052 return import_directory_iterator(
1053 ImportDirectoryEntryRef(nullptr, -1, this));
1056 delay_import_directory_iterator
1057 COFFObjectFile::delay_import_directory_begin() const {
1058 return delay_import_directory_iterator(
1059 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
1062 delay_import_directory_iterator
1063 COFFObjectFile::delay_import_directory_end() const {
1064 return delay_import_directory_iterator(
1065 DelayImportDirectoryEntryRef(
1066 DelayImportDirectory, NumberOfDelayImportDirectory, this));
1069 export_directory_iterator COFFObjectFile::export_directory_begin() const {
1070 return export_directory_iterator(
1071 ExportDirectoryEntryRef(ExportDirectory, 0, this));
1074 export_directory_iterator COFFObjectFile::export_directory_end() const {
1075 if (!ExportDirectory)
1076 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
1077 ExportDirectoryEntryRef Ref(ExportDirectory,
1078 ExportDirectory->AddressTableEntries, this);
1079 return export_directory_iterator(Ref);
1082 section_iterator COFFObjectFile::section_begin() const {
1083 DataRefImpl Ret;
1084 Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
1085 return section_iterator(SectionRef(Ret, this));
1088 section_iterator COFFObjectFile::section_end() const {
1089 DataRefImpl Ret;
1090 int NumSections =
1091 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
1092 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
1093 return section_iterator(SectionRef(Ret, this));
1096 base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
1097 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
1100 base_reloc_iterator COFFObjectFile::base_reloc_end() const {
1101 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
1104 dynamic_reloc_iterator COFFObjectFile::dynamic_reloc_begin() const {
1105 const void *Header = DynamicRelocTable ? DynamicRelocTable + 1 : nullptr;
1106 return dynamic_reloc_iterator(DynamicRelocRef(Header, this));
1109 dynamic_reloc_iterator COFFObjectFile::dynamic_reloc_end() const {
1110 const void *Header = nullptr;
1111 if (DynamicRelocTable)
1112 Header = reinterpret_cast<const uint8_t *>(DynamicRelocTable + 1) +
1113 DynamicRelocTable->Size;
1114 return dynamic_reloc_iterator(DynamicRelocRef(Header, this));
1117 uint8_t COFFObjectFile::getBytesInAddress() const {
1118 return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4;
1121 StringRef COFFObjectFile::getFileFormatName() const {
1122 switch(getMachine()) {
1123 case COFF::IMAGE_FILE_MACHINE_I386:
1124 return "COFF-i386";
1125 case COFF::IMAGE_FILE_MACHINE_AMD64:
1126 return "COFF-x86-64";
1127 case COFF::IMAGE_FILE_MACHINE_ARMNT:
1128 return "COFF-ARM";
1129 case COFF::IMAGE_FILE_MACHINE_ARM64:
1130 return "COFF-ARM64";
1131 case COFF::IMAGE_FILE_MACHINE_ARM64EC:
1132 return "COFF-ARM64EC";
1133 case COFF::IMAGE_FILE_MACHINE_ARM64X:
1134 return "COFF-ARM64X";
1135 case COFF::IMAGE_FILE_MACHINE_R4000:
1136 return "COFF-MIPS";
1137 default:
1138 return "COFF-<unknown arch>";
1142 Triple::ArchType COFFObjectFile::getArch() const {
1143 return getMachineArchType(getMachine());
1146 Expected<uint64_t> COFFObjectFile::getStartAddress() const {
1147 if (PE32Header)
1148 return PE32Header->AddressOfEntryPoint;
1149 return 0;
1152 iterator_range<import_directory_iterator>
1153 COFFObjectFile::import_directories() const {
1154 return make_range(import_directory_begin(), import_directory_end());
1157 iterator_range<delay_import_directory_iterator>
1158 COFFObjectFile::delay_import_directories() const {
1159 return make_range(delay_import_directory_begin(),
1160 delay_import_directory_end());
1163 iterator_range<export_directory_iterator>
1164 COFFObjectFile::export_directories() const {
1165 return make_range(export_directory_begin(), export_directory_end());
1168 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
1169 return make_range(base_reloc_begin(), base_reloc_end());
1172 iterator_range<dynamic_reloc_iterator> COFFObjectFile::dynamic_relocs() const {
1173 return make_range(dynamic_reloc_begin(), dynamic_reloc_end());
1176 const data_directory *COFFObjectFile::getDataDirectory(uint32_t Index) const {
1177 if (!DataDirectory)
1178 return nullptr;
1179 assert(PE32Header || PE32PlusHeader);
1180 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
1181 : PE32PlusHeader->NumberOfRvaAndSize;
1182 if (Index >= NumEnt)
1183 return nullptr;
1184 return &DataDirectory[Index];
1187 Expected<const coff_section *> COFFObjectFile::getSection(int32_t Index) const {
1188 // Perhaps getting the section of a reserved section index should be an error,
1189 // but callers rely on this to return null.
1190 if (COFF::isReservedSectionNumber(Index))
1191 return (const coff_section *)nullptr;
1192 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
1193 // We already verified the section table data, so no need to check again.
1194 return SectionTable + (Index - 1);
1196 return createStringError(object_error::parse_failed,
1197 "section index out of bounds");
1200 Expected<StringRef> COFFObjectFile::getString(uint32_t Offset) const {
1201 if (StringTableSize <= 4)
1202 // Tried to get a string from an empty string table.
1203 return createStringError(object_error::parse_failed, "string table empty");
1204 if (Offset >= StringTableSize)
1205 return errorCodeToError(object_error::unexpected_eof);
1206 return StringRef(StringTable + Offset);
1209 Expected<StringRef> COFFObjectFile::getSymbolName(COFFSymbolRef Symbol) const {
1210 return getSymbolName(Symbol.getGeneric());
1213 Expected<StringRef>
1214 COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol) const {
1215 // Check for string table entry. First 4 bytes are 0.
1216 if (Symbol->Name.Offset.Zeroes == 0)
1217 return getString(Symbol->Name.Offset.Offset);
1219 // Null terminated, let ::strlen figure out the length.
1220 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
1221 return StringRef(Symbol->Name.ShortName);
1223 // Not null terminated, use all 8 bytes.
1224 return StringRef(Symbol->Name.ShortName, COFF::NameSize);
1227 ArrayRef<uint8_t>
1228 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
1229 const uint8_t *Aux = nullptr;
1231 size_t SymbolSize = getSymbolTableEntrySize();
1232 if (Symbol.getNumberOfAuxSymbols() > 0) {
1233 // AUX data comes immediately after the symbol in COFF
1234 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
1235 #ifndef NDEBUG
1236 // Verify that the Aux symbol points to a valid entry in the symbol table.
1237 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
1238 if (Offset < getPointerToSymbolTable() ||
1239 Offset >=
1240 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
1241 report_fatal_error("Aux Symbol data was outside of symbol table.");
1243 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
1244 "Aux Symbol data did not point to the beginning of a symbol");
1245 #endif
1247 return ArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
1250 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const {
1251 uintptr_t Offset =
1252 reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable();
1253 assert(Offset % getSymbolTableEntrySize() == 0 &&
1254 "Symbol did not point to the beginning of a symbol");
1255 size_t Index = Offset / getSymbolTableEntrySize();
1256 assert(Index < getNumberOfSymbols());
1257 return Index;
1260 Expected<StringRef>
1261 COFFObjectFile::getSectionName(const coff_section *Sec) const {
1262 StringRef Name = StringRef(Sec->Name, COFF::NameSize).split('\0').first;
1264 // Check for string table entry. First byte is '/'.
1265 if (Name.starts_with("/")) {
1266 uint32_t Offset;
1267 if (Name.starts_with("//")) {
1268 if (decodeBase64StringEntry(Name.substr(2), Offset))
1269 return createStringError(object_error::parse_failed,
1270 "invalid section name");
1271 } else {
1272 if (Name.substr(1).getAsInteger(10, Offset))
1273 return createStringError(object_error::parse_failed,
1274 "invalid section name");
1276 return getString(Offset);
1279 return Name;
1282 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
1283 // SizeOfRawData and VirtualSize change what they represent depending on
1284 // whether or not we have an executable image.
1286 // For object files, SizeOfRawData contains the size of section's data;
1287 // VirtualSize should be zero but isn't due to buggy COFF writers.
1289 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
1290 // actual section size is in VirtualSize. It is possible for VirtualSize to
1291 // be greater than SizeOfRawData; the contents past that point should be
1292 // considered to be zero.
1293 if (getDOSHeader())
1294 return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
1295 return Sec->SizeOfRawData;
1298 Error COFFObjectFile::getSectionContents(const coff_section *Sec,
1299 ArrayRef<uint8_t> &Res) const {
1300 // In COFF, a virtual section won't have any in-file
1301 // content, so the file pointer to the content will be zero.
1302 if (Sec->PointerToRawData == 0)
1303 return Error::success();
1304 // The only thing that we need to verify is that the contents is contained
1305 // within the file bounds. We don't need to make sure it doesn't cover other
1306 // data, as there's nothing that says that is not allowed.
1307 uintptr_t ConStart =
1308 reinterpret_cast<uintptr_t>(base()) + Sec->PointerToRawData;
1309 uint32_t SectionSize = getSectionSize(Sec);
1310 if (Error E = checkOffset(Data, ConStart, SectionSize))
1311 return E;
1312 Res = ArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
1313 return Error::success();
1316 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
1317 return reinterpret_cast<const coff_relocation*>(Rel.p);
1320 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
1321 Rel.p = reinterpret_cast<uintptr_t>(
1322 reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
1325 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
1326 const coff_relocation *R = toRel(Rel);
1327 return R->VirtualAddress;
1330 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
1331 const coff_relocation *R = toRel(Rel);
1332 DataRefImpl Ref;
1333 if (R->SymbolTableIndex >= getNumberOfSymbols())
1334 return symbol_end();
1335 if (SymbolTable16)
1336 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
1337 else if (SymbolTable32)
1338 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
1339 else
1340 llvm_unreachable("no symbol table pointer!");
1341 return symbol_iterator(SymbolRef(Ref, this));
1344 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
1345 const coff_relocation* R = toRel(Rel);
1346 return R->Type;
1349 const coff_section *
1350 COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
1351 return toSec(Section.getRawDataRefImpl());
1354 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
1355 if (SymbolTable16)
1356 return toSymb<coff_symbol16>(Ref);
1357 if (SymbolTable32)
1358 return toSymb<coff_symbol32>(Ref);
1359 llvm_unreachable("no symbol table pointer!");
1362 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
1363 return getCOFFSymbol(Symbol.getRawDataRefImpl());
1366 const coff_relocation *
1367 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
1368 return toRel(Reloc.getRawDataRefImpl());
1371 ArrayRef<coff_relocation>
1372 COFFObjectFile::getRelocations(const coff_section *Sec) const {
1373 return {getFirstReloc(Sec, Data, base()),
1374 getNumberOfRelocations(Sec, Data, base())};
1377 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \
1378 case COFF::reloc_type: \
1379 return #reloc_type;
1381 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const {
1382 switch (getArch()) {
1383 case Triple::x86_64:
1384 switch (Type) {
1385 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
1386 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
1387 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
1388 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
1389 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
1390 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
1391 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
1392 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
1393 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
1394 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
1395 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
1396 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
1397 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
1398 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
1399 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
1400 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
1401 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
1402 default:
1403 return "Unknown";
1405 break;
1406 case Triple::thumb:
1407 switch (Type) {
1408 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
1409 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
1410 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
1411 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
1412 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
1413 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
1414 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
1415 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
1416 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32);
1417 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
1418 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
1419 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
1420 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
1421 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
1422 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
1423 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
1424 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR);
1425 default:
1426 return "Unknown";
1428 break;
1429 case Triple::aarch64:
1430 switch (Type) {
1431 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE);
1432 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32);
1433 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB);
1434 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26);
1435 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21);
1436 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21);
1437 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A);
1438 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L);
1439 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL);
1440 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A);
1441 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A);
1442 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L);
1443 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN);
1444 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION);
1445 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64);
1446 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19);
1447 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14);
1448 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32);
1449 default:
1450 return "Unknown";
1452 break;
1453 case Triple::x86:
1454 switch (Type) {
1455 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
1456 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
1457 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
1458 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
1459 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
1460 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
1461 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
1462 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
1463 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
1464 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
1465 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
1466 default:
1467 return "Unknown";
1469 break;
1470 case Triple::mipsel:
1471 switch (Type) {
1472 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_MIPS_ABSOLUTE);
1473 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_MIPS_REFHALF);
1474 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_MIPS_REFWORD);
1475 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_MIPS_JMPADDR);
1476 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_MIPS_REFHI);
1477 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_MIPS_REFLO);
1478 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_MIPS_GPREL);
1479 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_MIPS_LITERAL);
1480 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_MIPS_SECTION);
1481 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_MIPS_SECREL);
1482 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_MIPS_SECRELLO);
1483 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_MIPS_SECRELHI);
1484 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_MIPS_JMPADDR16);
1485 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_MIPS_REFWORDNB);
1486 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_MIPS_PAIR);
1487 default:
1488 return "Unknown";
1490 break;
1491 default:
1492 return "Unknown";
1496 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
1498 void COFFObjectFile::getRelocationTypeName(
1499 DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1500 const coff_relocation *Reloc = toRel(Rel);
1501 StringRef Res = getRelocationTypeName(Reloc->Type);
1502 Result.append(Res.begin(), Res.end());
1505 bool COFFObjectFile::isRelocatableObject() const {
1506 return !DataDirectory;
1509 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const {
1510 return StringSwitch<StringRef>(Name)
1511 .Case("eh_fram", "eh_frame")
1512 .Default(Name);
1515 std::unique_ptr<MemoryBuffer> COFFObjectFile::getHybridObjectView() const {
1516 if (getMachine() != COFF::IMAGE_FILE_MACHINE_ARM64X)
1517 return nullptr;
1519 std::unique_ptr<WritableMemoryBuffer> HybridView;
1521 for (auto DynReloc : dynamic_relocs()) {
1522 if (DynReloc.getType() != COFF::IMAGE_DYNAMIC_RELOCATION_ARM64X)
1523 continue;
1525 for (auto reloc : DynReloc.arm64x_relocs()) {
1526 if (!HybridView) {
1527 HybridView =
1528 WritableMemoryBuffer::getNewUninitMemBuffer(Data.getBufferSize());
1529 memcpy(HybridView->getBufferStart(), Data.getBufferStart(),
1530 Data.getBufferSize());
1533 uint32_t RVA = reloc.getRVA();
1534 void *Ptr;
1535 uintptr_t IntPtr;
1536 if (RVA & ~0xfff) {
1537 cantFail(getRvaPtr(RVA, IntPtr));
1538 Ptr = HybridView->getBufferStart() + IntPtr -
1539 reinterpret_cast<uintptr_t>(base());
1540 } else {
1541 // PE header relocation.
1542 Ptr = HybridView->getBufferStart() + RVA;
1545 switch (reloc.getType()) {
1546 case COFF::IMAGE_DVRT_ARM64X_FIXUP_TYPE_ZEROFILL:
1547 memset(Ptr, 0, reloc.getSize());
1548 break;
1549 case COFF::IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE: {
1550 auto Value = static_cast<ulittle64_t>(reloc.getValue());
1551 memcpy(Ptr, &Value, reloc.getSize());
1552 break;
1554 case COFF::IMAGE_DVRT_ARM64X_FIXUP_TYPE_DELTA:
1555 *reinterpret_cast<ulittle32_t *>(Ptr) += reloc.getValue();
1556 break;
1560 return HybridView;
1563 bool ImportDirectoryEntryRef::
1564 operator==(const ImportDirectoryEntryRef &Other) const {
1565 return ImportTable == Other.ImportTable && Index == Other.Index;
1568 void ImportDirectoryEntryRef::moveNext() {
1569 ++Index;
1570 if (ImportTable[Index].isNull()) {
1571 Index = -1;
1572 ImportTable = nullptr;
1576 Error ImportDirectoryEntryRef::getImportTableEntry(
1577 const coff_import_directory_table_entry *&Result) const {
1578 return getObject(Result, OwningObject->Data, ImportTable + Index);
1581 static imported_symbol_iterator
1582 makeImportedSymbolIterator(const COFFObjectFile *Object,
1583 uintptr_t Ptr, int Index) {
1584 if (Object->getBytesInAddress() == 4) {
1585 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
1586 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1588 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
1589 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1592 static imported_symbol_iterator
1593 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
1594 uintptr_t IntPtr = 0;
1595 // FIXME: Handle errors.
1596 cantFail(Object->getRvaPtr(RVA, IntPtr));
1597 return makeImportedSymbolIterator(Object, IntPtr, 0);
1600 static imported_symbol_iterator
1601 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
1602 uintptr_t IntPtr = 0;
1603 // FIXME: Handle errors.
1604 cantFail(Object->getRvaPtr(RVA, IntPtr));
1605 // Forward the pointer to the last entry which is null.
1606 int Index = 0;
1607 if (Object->getBytesInAddress() == 4) {
1608 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
1609 while (*Entry++)
1610 ++Index;
1611 } else {
1612 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
1613 while (*Entry++)
1614 ++Index;
1616 return makeImportedSymbolIterator(Object, IntPtr, Index);
1619 imported_symbol_iterator
1620 ImportDirectoryEntryRef::imported_symbol_begin() const {
1621 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA,
1622 OwningObject);
1625 imported_symbol_iterator
1626 ImportDirectoryEntryRef::imported_symbol_end() const {
1627 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA,
1628 OwningObject);
1631 iterator_range<imported_symbol_iterator>
1632 ImportDirectoryEntryRef::imported_symbols() const {
1633 return make_range(imported_symbol_begin(), imported_symbol_end());
1636 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const {
1637 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
1638 OwningObject);
1641 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const {
1642 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
1643 OwningObject);
1646 iterator_range<imported_symbol_iterator>
1647 ImportDirectoryEntryRef::lookup_table_symbols() const {
1648 return make_range(lookup_table_begin(), lookup_table_end());
1651 Error ImportDirectoryEntryRef::getName(StringRef &Result) const {
1652 uintptr_t IntPtr = 0;
1653 if (Error E = OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr,
1654 "import directory name"))
1655 return E;
1656 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1657 return Error::success();
1660 Error
1661 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const {
1662 Result = ImportTable[Index].ImportLookupTableRVA;
1663 return Error::success();
1666 Error ImportDirectoryEntryRef::getImportAddressTableRVA(
1667 uint32_t &Result) const {
1668 Result = ImportTable[Index].ImportAddressTableRVA;
1669 return Error::success();
1672 bool DelayImportDirectoryEntryRef::
1673 operator==(const DelayImportDirectoryEntryRef &Other) const {
1674 return Table == Other.Table && Index == Other.Index;
1677 void DelayImportDirectoryEntryRef::moveNext() {
1678 ++Index;
1681 imported_symbol_iterator
1682 DelayImportDirectoryEntryRef::imported_symbol_begin() const {
1683 return importedSymbolBegin(Table[Index].DelayImportNameTable,
1684 OwningObject);
1687 imported_symbol_iterator
1688 DelayImportDirectoryEntryRef::imported_symbol_end() const {
1689 return importedSymbolEnd(Table[Index].DelayImportNameTable,
1690 OwningObject);
1693 iterator_range<imported_symbol_iterator>
1694 DelayImportDirectoryEntryRef::imported_symbols() const {
1695 return make_range(imported_symbol_begin(), imported_symbol_end());
1698 Error DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
1699 uintptr_t IntPtr = 0;
1700 if (Error E = OwningObject->getRvaPtr(Table[Index].Name, IntPtr,
1701 "delay import directory name"))
1702 return E;
1703 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1704 return Error::success();
1707 Error DelayImportDirectoryEntryRef::getDelayImportTable(
1708 const delay_import_directory_table_entry *&Result) const {
1709 Result = &Table[Index];
1710 return Error::success();
1713 Error DelayImportDirectoryEntryRef::getImportAddress(int AddrIndex,
1714 uint64_t &Result) const {
1715 uint32_t RVA = Table[Index].DelayImportAddressTable +
1716 AddrIndex * (OwningObject->is64() ? 8 : 4);
1717 uintptr_t IntPtr = 0;
1718 if (Error E = OwningObject->getRvaPtr(RVA, IntPtr, "import address"))
1719 return E;
1720 if (OwningObject->is64())
1721 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
1722 else
1723 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
1724 return Error::success();
1727 bool ExportDirectoryEntryRef::
1728 operator==(const ExportDirectoryEntryRef &Other) const {
1729 return ExportTable == Other.ExportTable && Index == Other.Index;
1732 void ExportDirectoryEntryRef::moveNext() {
1733 ++Index;
1736 // Returns the name of the current export symbol. If the symbol is exported only
1737 // by ordinal, the empty string is set as a result.
1738 Error ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
1739 uintptr_t IntPtr = 0;
1740 if (Error E =
1741 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr, "dll name"))
1742 return E;
1743 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1744 return Error::success();
1747 // Returns the starting ordinal number.
1748 Error ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
1749 Result = ExportTable->OrdinalBase;
1750 return Error::success();
1753 // Returns the export ordinal of the current export symbol.
1754 Error ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
1755 Result = ExportTable->OrdinalBase + Index;
1756 return Error::success();
1759 // Returns the address of the current export symbol.
1760 Error ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
1761 uintptr_t IntPtr = 0;
1762 if (Error EC = OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA,
1763 IntPtr, "export address"))
1764 return EC;
1765 const export_address_table_entry *entry =
1766 reinterpret_cast<const export_address_table_entry *>(IntPtr);
1767 Result = entry[Index].ExportRVA;
1768 return Error::success();
1771 // Returns the name of the current export symbol. If the symbol is exported only
1772 // by ordinal, the empty string is set as a result.
1773 Error
1774 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
1775 uintptr_t IntPtr = 0;
1776 if (Error EC = OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr,
1777 "export ordinal table"))
1778 return EC;
1779 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
1781 uint32_t NumEntries = ExportTable->NumberOfNamePointers;
1782 int Offset = 0;
1783 for (const ulittle16_t *I = Start, *E = Start + NumEntries;
1784 I < E; ++I, ++Offset) {
1785 if (*I != Index)
1786 continue;
1787 if (Error EC = OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr,
1788 "export table entry"))
1789 return EC;
1790 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
1791 if (Error EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr,
1792 "export symbol name"))
1793 return EC;
1794 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1795 return Error::success();
1797 Result = "";
1798 return Error::success();
1801 Error ExportDirectoryEntryRef::isForwarder(bool &Result) const {
1802 const data_directory *DataEntry =
1803 OwningObject->getDataDirectory(COFF::EXPORT_TABLE);
1804 if (!DataEntry)
1805 return createStringError(object_error::parse_failed,
1806 "export table missing");
1807 uint32_t RVA;
1808 if (auto EC = getExportRVA(RVA))
1809 return EC;
1810 uint32_t Begin = DataEntry->RelativeVirtualAddress;
1811 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size;
1812 Result = (Begin <= RVA && RVA < End);
1813 return Error::success();
1816 Error ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const {
1817 uint32_t RVA;
1818 if (auto EC = getExportRVA(RVA))
1819 return EC;
1820 uintptr_t IntPtr = 0;
1821 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr, "export forward target"))
1822 return EC;
1823 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1824 return Error::success();
1827 bool ImportedSymbolRef::
1828 operator==(const ImportedSymbolRef &Other) const {
1829 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
1830 && Index == Other.Index;
1833 void ImportedSymbolRef::moveNext() {
1834 ++Index;
1837 Error ImportedSymbolRef::getSymbolName(StringRef &Result) const {
1838 uint32_t RVA;
1839 if (Entry32) {
1840 // If a symbol is imported only by ordinal, it has no name.
1841 if (Entry32[Index].isOrdinal())
1842 return Error::success();
1843 RVA = Entry32[Index].getHintNameRVA();
1844 } else {
1845 if (Entry64[Index].isOrdinal())
1846 return Error::success();
1847 RVA = Entry64[Index].getHintNameRVA();
1849 uintptr_t IntPtr = 0;
1850 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol name"))
1851 return EC;
1852 // +2 because the first two bytes is hint.
1853 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
1854 return Error::success();
1857 Error ImportedSymbolRef::isOrdinal(bool &Result) const {
1858 if (Entry32)
1859 Result = Entry32[Index].isOrdinal();
1860 else
1861 Result = Entry64[Index].isOrdinal();
1862 return Error::success();
1865 Error ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const {
1866 if (Entry32)
1867 Result = Entry32[Index].getHintNameRVA();
1868 else
1869 Result = Entry64[Index].getHintNameRVA();
1870 return Error::success();
1873 Error ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
1874 uint32_t RVA;
1875 if (Entry32) {
1876 if (Entry32[Index].isOrdinal()) {
1877 Result = Entry32[Index].getOrdinal();
1878 return Error::success();
1880 RVA = Entry32[Index].getHintNameRVA();
1881 } else {
1882 if (Entry64[Index].isOrdinal()) {
1883 Result = Entry64[Index].getOrdinal();
1884 return Error::success();
1886 RVA = Entry64[Index].getHintNameRVA();
1888 uintptr_t IntPtr = 0;
1889 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol ordinal"))
1890 return EC;
1891 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
1892 return Error::success();
1895 Expected<std::unique_ptr<COFFObjectFile>>
1896 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
1897 return COFFObjectFile::create(Object);
1900 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
1901 return Header == Other.Header && Index == Other.Index;
1904 void BaseRelocRef::moveNext() {
1905 // Header->BlockSize is the size of the current block, including the
1906 // size of the header itself.
1907 uint32_t Size = sizeof(*Header) +
1908 sizeof(coff_base_reloc_block_entry) * (Index + 1);
1909 if (Size == Header->BlockSize) {
1910 // .reloc contains a list of base relocation blocks. Each block
1911 // consists of the header followed by entries. The header contains
1912 // how many entories will follow. When we reach the end of the
1913 // current block, proceed to the next block.
1914 Header = reinterpret_cast<const coff_base_reloc_block_header *>(
1915 reinterpret_cast<const uint8_t *>(Header) + Size);
1916 Index = 0;
1917 } else {
1918 ++Index;
1922 Error BaseRelocRef::getType(uint8_t &Type) const {
1923 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1924 Type = Entry[Index].getType();
1925 return Error::success();
1928 Error BaseRelocRef::getRVA(uint32_t &Result) const {
1929 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1930 Result = Header->PageRVA + Entry[Index].getOffset();
1931 return Error::success();
1934 bool DynamicRelocRef::operator==(const DynamicRelocRef &Other) const {
1935 return Header == Other.Header;
1938 void DynamicRelocRef::moveNext() {
1939 switch (Obj->getDynamicRelocTable()->Version) {
1940 case 1:
1941 if (Obj->is64()) {
1942 auto H = reinterpret_cast<const coff_dynamic_relocation64 *>(Header);
1943 Header += sizeof(*H) + H->BaseRelocSize;
1944 } else {
1945 auto H = reinterpret_cast<const coff_dynamic_relocation32 *>(Header);
1946 Header += sizeof(*H) + H->BaseRelocSize;
1948 break;
1949 case 2:
1950 if (Obj->is64()) {
1951 auto H = reinterpret_cast<const coff_dynamic_relocation64_v2 *>(Header);
1952 Header += H->HeaderSize + H->FixupInfoSize;
1953 } else {
1954 auto H = reinterpret_cast<const coff_dynamic_relocation32_v2 *>(Header);
1955 Header += H->HeaderSize + H->FixupInfoSize;
1957 break;
1961 uint32_t DynamicRelocRef::getType() const {
1962 switch (Obj->getDynamicRelocTable()->Version) {
1963 case 1:
1964 if (Obj->is64()) {
1965 auto H = reinterpret_cast<const coff_dynamic_relocation64 *>(Header);
1966 return H->Symbol;
1967 } else {
1968 auto H = reinterpret_cast<const coff_dynamic_relocation32 *>(Header);
1969 return H->Symbol;
1971 break;
1972 case 2:
1973 if (Obj->is64()) {
1974 auto H = reinterpret_cast<const coff_dynamic_relocation64_v2 *>(Header);
1975 return H->Symbol;
1976 } else {
1977 auto H = reinterpret_cast<const coff_dynamic_relocation32_v2 *>(Header);
1978 return H->Symbol;
1980 break;
1981 default:
1982 llvm_unreachable("invalid version");
1986 void DynamicRelocRef::getContents(ArrayRef<uint8_t> &Ref) const {
1987 switch (Obj->getDynamicRelocTable()->Version) {
1988 case 1:
1989 if (Obj->is64()) {
1990 auto H = reinterpret_cast<const coff_dynamic_relocation64 *>(Header);
1991 Ref = ArrayRef(Header + sizeof(*H), H->BaseRelocSize);
1992 } else {
1993 auto H = reinterpret_cast<const coff_dynamic_relocation32 *>(Header);
1994 Ref = ArrayRef(Header + sizeof(*H), H->BaseRelocSize);
1996 break;
1997 case 2:
1998 if (Obj->is64()) {
1999 auto H = reinterpret_cast<const coff_dynamic_relocation64_v2 *>(Header);
2000 Ref = ArrayRef(Header + H->HeaderSize, H->FixupInfoSize);
2001 } else {
2002 auto H = reinterpret_cast<const coff_dynamic_relocation32_v2 *>(Header);
2003 Ref = ArrayRef(Header + H->HeaderSize, H->FixupInfoSize);
2005 break;
2009 Error DynamicRelocRef::validate() const {
2010 const coff_dynamic_reloc_table *Table = Obj->getDynamicRelocTable();
2011 size_t ContentsSize =
2012 reinterpret_cast<const uint8_t *>(Table + 1) + Table->Size - Header;
2013 size_t HeaderSize;
2014 if (Table->Version == 1)
2015 HeaderSize = Obj->is64() ? sizeof(coff_dynamic_relocation64)
2016 : sizeof(coff_dynamic_relocation32);
2017 else
2018 HeaderSize = Obj->is64() ? sizeof(coff_dynamic_relocation64_v2)
2019 : sizeof(coff_dynamic_relocation32_v2);
2020 if (HeaderSize > ContentsSize)
2021 return createStringError(object_error::parse_failed,
2022 "Unexpected end of dynamic relocations data");
2024 if (Table->Version == 2) {
2025 size_t Size =
2026 Obj->is64()
2027 ? reinterpret_cast<const coff_dynamic_relocation64_v2 *>(Header)
2028 ->HeaderSize
2029 : reinterpret_cast<const coff_dynamic_relocation32_v2 *>(Header)
2030 ->HeaderSize;
2031 if (Size < HeaderSize || Size > ContentsSize)
2032 return createStringError(object_error::parse_failed,
2033 "Invalid dynamic relocation header size (" +
2034 Twine(Size) + ")");
2035 HeaderSize = Size;
2038 ArrayRef<uint8_t> Contents;
2039 getContents(Contents);
2040 if (Contents.size() > ContentsSize - HeaderSize)
2041 return createStringError(object_error::parse_failed,
2042 "Too large dynamic relocation size (" +
2043 Twine(Contents.size()) + ")");
2045 switch (getType()) {
2046 case COFF::IMAGE_DYNAMIC_RELOCATION_ARM64X:
2047 for (auto Reloc : arm64x_relocs()) {
2048 if (Error E = Reloc.validate(Obj))
2049 return E;
2051 break;
2054 return Error::success();
2057 arm64x_reloc_iterator DynamicRelocRef::arm64x_reloc_begin() const {
2058 assert(getType() == COFF::IMAGE_DYNAMIC_RELOCATION_ARM64X);
2059 ArrayRef<uint8_t> Content;
2060 getContents(Content);
2061 auto Header =
2062 reinterpret_cast<const coff_base_reloc_block_header *>(Content.begin());
2063 return arm64x_reloc_iterator(Arm64XRelocRef(Header));
2066 arm64x_reloc_iterator DynamicRelocRef::arm64x_reloc_end() const {
2067 assert(getType() == COFF::IMAGE_DYNAMIC_RELOCATION_ARM64X);
2068 ArrayRef<uint8_t> Content;
2069 getContents(Content);
2070 auto Header =
2071 reinterpret_cast<const coff_base_reloc_block_header *>(Content.end());
2072 return arm64x_reloc_iterator(Arm64XRelocRef(Header, 0));
2075 iterator_range<arm64x_reloc_iterator> DynamicRelocRef::arm64x_relocs() const {
2076 return make_range(arm64x_reloc_begin(), arm64x_reloc_end());
2079 bool Arm64XRelocRef::operator==(const Arm64XRelocRef &Other) const {
2080 return Header == Other.Header && Index == Other.Index;
2083 uint8_t Arm64XRelocRef::getEntrySize() const {
2084 switch (getType()) {
2085 case COFF::IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE:
2086 return (1ull << getArg()) / sizeof(uint16_t) + 1;
2087 case COFF::IMAGE_DVRT_ARM64X_FIXUP_TYPE_DELTA:
2088 return 2;
2089 default:
2090 return 1;
2094 void Arm64XRelocRef::moveNext() {
2095 Index += getEntrySize();
2096 if (sizeof(*Header) + Index * sizeof(uint16_t) < Header->BlockSize &&
2097 !getReloc())
2098 ++Index; // Skip padding
2099 if (sizeof(*Header) + Index * sizeof(uint16_t) == Header->BlockSize) {
2100 // The end of the block, move to the next one.
2101 Header =
2102 reinterpret_cast<const coff_base_reloc_block_header *>(&getReloc());
2103 Index = 0;
2107 uint8_t Arm64XRelocRef::getSize() const {
2108 switch (getType()) {
2109 case COFF::IMAGE_DVRT_ARM64X_FIXUP_TYPE_ZEROFILL:
2110 case COFF::IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE:
2111 return 1 << getArg();
2112 case COFF::IMAGE_DVRT_ARM64X_FIXUP_TYPE_DELTA:
2113 return sizeof(uint32_t);
2115 llvm_unreachable("Unknown Arm64XFixupType enum");
2118 uint64_t Arm64XRelocRef::getValue() const {
2119 auto Ptr = reinterpret_cast<const ulittle16_t *>(Header + 1) + Index + 1;
2121 switch (getType()) {
2122 case COFF::IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE: {
2123 ulittle64_t Value(0);
2124 memcpy(&Value, Ptr, getSize());
2125 return Value;
2127 case COFF::IMAGE_DVRT_ARM64X_FIXUP_TYPE_DELTA: {
2128 uint16_t arg = getArg();
2129 int delta = *Ptr;
2131 if (arg & 1)
2132 delta = -delta;
2133 delta *= (arg & 2) ? 8 : 4;
2134 return delta;
2136 default:
2137 return 0;
2141 Error Arm64XRelocRef::validate(const COFFObjectFile *Obj) const {
2142 if (!Index) {
2143 const coff_dynamic_reloc_table *Table = Obj->getDynamicRelocTable();
2144 size_t ContentsSize = reinterpret_cast<const uint8_t *>(Table + 1) +
2145 Table->Size -
2146 reinterpret_cast<const uint8_t *>(Header);
2147 if (ContentsSize < sizeof(coff_base_reloc_block_header))
2148 return createStringError(object_error::parse_failed,
2149 "Unexpected end of ARM64X relocations data");
2150 if (Header->BlockSize <= sizeof(*Header))
2151 return createStringError(object_error::parse_failed,
2152 "ARM64X relocations block size (" +
2153 Twine(Header->BlockSize) + ") is too small");
2154 if (Header->BlockSize % sizeof(uint32_t))
2155 return createStringError(object_error::parse_failed,
2156 "Unaligned ARM64X relocations block size (" +
2157 Twine(Header->BlockSize) + ")");
2158 if (Header->BlockSize > ContentsSize)
2159 return createStringError(object_error::parse_failed,
2160 "ARM64X relocations block size (" +
2161 Twine(Header->BlockSize) + ") is too large");
2162 if (Header->PageRVA & 0xfff)
2163 return createStringError(object_error::parse_failed,
2164 "Unaligned ARM64X relocations page RVA (" +
2165 Twine(Header->PageRVA) + ")");
2168 switch ((getReloc() >> 12) & 3) {
2169 case COFF::IMAGE_DVRT_ARM64X_FIXUP_TYPE_ZEROFILL:
2170 case COFF::IMAGE_DVRT_ARM64X_FIXUP_TYPE_DELTA:
2171 break;
2172 case COFF::IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE:
2173 if (!getArg())
2174 return createStringError(object_error::parse_failed,
2175 "Invalid ARM64X relocation value size (0)");
2176 break;
2177 default:
2178 return createStringError(object_error::parse_failed,
2179 "Invalid relocation type");
2182 uint32_t RelocsSize =
2183 (Header->BlockSize - sizeof(*Header)) / sizeof(uint16_t);
2184 uint16_t EntrySize = getEntrySize();
2185 if (!getReloc() ||
2186 (Index + EntrySize + 1 < RelocsSize && !getReloc(EntrySize)))
2187 return createStringError(object_error::parse_failed,
2188 "Unexpected ARM64X relocations terminator");
2189 if (Index + EntrySize > RelocsSize)
2190 return createStringError(object_error::parse_failed,
2191 "Unexpected end of ARM64X relocations");
2192 if (getRVA() % getSize())
2193 return createStringError(object_error::parse_failed,
2194 "Unaligned ARM64X relocation RVA (" +
2195 Twine(getRVA()) + ")");
2196 if (Header->PageRVA) {
2197 uintptr_t IntPtr;
2198 return Obj->getRvaPtr(getRVA() + getSize(), IntPtr, "ARM64X reloc");
2200 return Error::success();
2203 #define RETURN_IF_ERROR(Expr) \
2204 do { \
2205 Error E = (Expr); \
2206 if (E) \
2207 return std::move(E); \
2208 } while (0)
2210 Expected<ArrayRef<UTF16>>
2211 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) {
2212 BinaryStreamReader Reader = BinaryStreamReader(BBS);
2213 Reader.setOffset(Offset);
2214 uint16_t Length;
2215 RETURN_IF_ERROR(Reader.readInteger(Length));
2216 ArrayRef<UTF16> RawDirString;
2217 RETURN_IF_ERROR(Reader.readArray(RawDirString, Length));
2218 return RawDirString;
2221 Expected<ArrayRef<UTF16>>
2222 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) {
2223 return getDirStringAtOffset(Entry.Identifier.getNameOffset());
2226 Expected<const coff_resource_dir_table &>
2227 ResourceSectionRef::getTableAtOffset(uint32_t Offset) {
2228 const coff_resource_dir_table *Table = nullptr;
2230 BinaryStreamReader Reader(BBS);
2231 Reader.setOffset(Offset);
2232 RETURN_IF_ERROR(Reader.readObject(Table));
2233 assert(Table != nullptr);
2234 return *Table;
2237 Expected<const coff_resource_dir_entry &>
2238 ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) {
2239 const coff_resource_dir_entry *Entry = nullptr;
2241 BinaryStreamReader Reader(BBS);
2242 Reader.setOffset(Offset);
2243 RETURN_IF_ERROR(Reader.readObject(Entry));
2244 assert(Entry != nullptr);
2245 return *Entry;
2248 Expected<const coff_resource_data_entry &>
2249 ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) {
2250 const coff_resource_data_entry *Entry = nullptr;
2252 BinaryStreamReader Reader(BBS);
2253 Reader.setOffset(Offset);
2254 RETURN_IF_ERROR(Reader.readObject(Entry));
2255 assert(Entry != nullptr);
2256 return *Entry;
2259 Expected<const coff_resource_dir_table &>
2260 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) {
2261 assert(Entry.Offset.isSubDir());
2262 return getTableAtOffset(Entry.Offset.value());
2265 Expected<const coff_resource_data_entry &>
2266 ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) {
2267 assert(!Entry.Offset.isSubDir());
2268 return getDataEntryAtOffset(Entry.Offset.value());
2271 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() {
2272 return getTableAtOffset(0);
2275 Expected<const coff_resource_dir_entry &>
2276 ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table,
2277 uint32_t Index) {
2278 if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries))
2279 return createStringError(object_error::parse_failed, "index out of range");
2280 const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table);
2281 ptrdiff_t TableOffset = TablePtr - BBS.data().data();
2282 return getTableEntryAtOffset(TableOffset + sizeof(Table) +
2283 Index * sizeof(coff_resource_dir_entry));
2286 Error ResourceSectionRef::load(const COFFObjectFile *O) {
2287 for (const SectionRef &S : O->sections()) {
2288 Expected<StringRef> Name = S.getName();
2289 if (!Name)
2290 return Name.takeError();
2292 if (*Name == ".rsrc" || *Name == ".rsrc$01")
2293 return load(O, S);
2295 return createStringError(object_error::parse_failed,
2296 "no resource section found");
2299 Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) {
2300 Obj = O;
2301 Section = S;
2302 Expected<StringRef> Contents = Section.getContents();
2303 if (!Contents)
2304 return Contents.takeError();
2305 BBS = BinaryByteStream(*Contents, llvm::endianness::little);
2306 const coff_section *COFFSect = Obj->getCOFFSection(Section);
2307 ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect);
2308 Relocs.reserve(OrigRelocs.size());
2309 for (const coff_relocation &R : OrigRelocs)
2310 Relocs.push_back(&R);
2311 llvm::sort(Relocs, [](const coff_relocation *A, const coff_relocation *B) {
2312 return A->VirtualAddress < B->VirtualAddress;
2314 return Error::success();
2317 Expected<StringRef>
2318 ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) {
2319 if (!Obj)
2320 return createStringError(object_error::parse_failed, "no object provided");
2322 // Find a potential relocation at the DataRVA field (first member of
2323 // the coff_resource_data_entry struct).
2324 const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry);
2325 ptrdiff_t EntryOffset = EntryPtr - BBS.data().data();
2326 coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0),
2327 ulittle16_t(0)};
2328 auto RelocsForOffset =
2329 std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget,
2330 [](const coff_relocation *A, const coff_relocation *B) {
2331 return A->VirtualAddress < B->VirtualAddress;
2334 if (RelocsForOffset.first != RelocsForOffset.second) {
2335 // We found a relocation with the right offset. Check that it does have
2336 // the expected type.
2337 const coff_relocation &R = **RelocsForOffset.first;
2338 uint16_t RVAReloc;
2339 switch (Obj->getArch()) {
2340 case Triple::x86:
2341 RVAReloc = COFF::IMAGE_REL_I386_DIR32NB;
2342 break;
2343 case Triple::x86_64:
2344 RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB;
2345 break;
2346 case Triple::thumb:
2347 RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB;
2348 break;
2349 case Triple::aarch64:
2350 RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB;
2351 break;
2352 default:
2353 return createStringError(object_error::parse_failed,
2354 "unsupported architecture");
2356 if (R.Type != RVAReloc)
2357 return createStringError(object_error::parse_failed,
2358 "unexpected relocation type");
2359 // Get the relocation's symbol
2360 Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex);
2361 if (!Sym)
2362 return Sym.takeError();
2363 // And the symbol's section
2364 Expected<const coff_section *> Section =
2365 Obj->getSection(Sym->getSectionNumber());
2366 if (!Section)
2367 return Section.takeError();
2368 // Add the initial value of DataRVA to the symbol's offset to find the
2369 // data it points at.
2370 uint64_t Offset = Entry.DataRVA + Sym->getValue();
2371 ArrayRef<uint8_t> Contents;
2372 if (Error E = Obj->getSectionContents(*Section, Contents))
2373 return E;
2374 if (Offset + Entry.DataSize > Contents.size())
2375 return createStringError(object_error::parse_failed,
2376 "data outside of section");
2377 // Return a reference to the data inside the section.
2378 return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset,
2379 Entry.DataSize);
2380 } else {
2381 // Relocatable objects need a relocation for the DataRVA field.
2382 if (Obj->isRelocatableObject())
2383 return createStringError(object_error::parse_failed,
2384 "no relocation found for DataRVA");
2386 // Locate the section that contains the address that DataRVA points at.
2387 uint64_t VA = Entry.DataRVA + Obj->getImageBase();
2388 for (const SectionRef &S : Obj->sections()) {
2389 if (VA >= S.getAddress() &&
2390 VA + Entry.DataSize <= S.getAddress() + S.getSize()) {
2391 uint64_t Offset = VA - S.getAddress();
2392 Expected<StringRef> Contents = S.getContents();
2393 if (!Contents)
2394 return Contents.takeError();
2395 return Contents->substr(Offset, Entry.DataSize);
2398 return createStringError(object_error::parse_failed,
2399 "address not found in image");