[llvm-objdump] --disassemble-symbols: skip inline relocs from symbols that are not...
[llvm-project.git] / llvm / utils / TableGen / CodeGenSchedule.cpp
blob54463da1982147658110c72c175b52eb54e73f6c
1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate the machine model as described in
10 // the target description.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenSchedule.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Support/Casting.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/Regex.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/TableGen/Error.h"
26 #include <algorithm>
27 #include <iterator>
28 #include <utility>
30 using namespace llvm;
32 #define DEBUG_TYPE "subtarget-emitter"
34 #ifndef NDEBUG
35 static void dumpIdxVec(ArrayRef<unsigned> V) {
36 for (unsigned Idx : V)
37 dbgs() << Idx << ", ";
39 #endif
41 namespace {
43 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
44 struct InstrsOp : public SetTheory::Operator {
45 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
46 ArrayRef<SMLoc> Loc) override {
47 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
51 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
52 struct InstRegexOp : public SetTheory::Operator {
53 const CodeGenTarget &Target;
54 InstRegexOp(const CodeGenTarget &t): Target(t) {}
56 /// Remove any text inside of parentheses from S.
57 static std::string removeParens(llvm::StringRef S) {
58 std::string Result;
59 unsigned Paren = 0;
60 // NB: We don't care about escaped parens here.
61 for (char C : S) {
62 switch (C) {
63 case '(':
64 ++Paren;
65 break;
66 case ')':
67 --Paren;
68 break;
69 default:
70 if (Paren == 0)
71 Result += C;
74 return Result;
77 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
78 ArrayRef<SMLoc> Loc) override {
79 ArrayRef<const CodeGenInstruction *> Instructions =
80 Target.getInstructionsByEnumValue();
82 unsigned NumGeneric = Target.getNumFixedInstructions();
83 unsigned NumPseudos = Target.getNumPseudoInstructions();
84 auto Generics = Instructions.slice(0, NumGeneric);
85 auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
86 auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
88 for (Init *Arg : Expr->getArgs()) {
89 StringInit *SI = dyn_cast<StringInit>(Arg);
90 if (!SI)
91 PrintFatalError(Loc, "instregex requires pattern string: " +
92 Expr->getAsString());
93 StringRef Original = SI->getValue();
94 // Drop an explicit ^ anchor to not interfere with prefix search.
95 bool HadAnchor = Original.consume_front("^");
97 // Extract a prefix that we can binary search on.
98 static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
99 auto FirstMeta = Original.find_first_of(RegexMetachars);
100 if (FirstMeta != StringRef::npos && FirstMeta > 0) {
101 // If we have a regex like ABC* we can only use AB as the prefix, as
102 // the * acts on C.
103 switch (Original[FirstMeta]) {
104 case '+':
105 case '*':
106 case '?':
107 --FirstMeta;
108 break;
109 default:
110 break;
114 // Look for top-level | or ?. We cannot optimize them to binary search.
115 if (removeParens(Original).find_first_of("|?") != std::string::npos)
116 FirstMeta = 0;
118 std::optional<Regex> Regexpr;
119 StringRef Prefix = Original.substr(0, FirstMeta);
120 StringRef PatStr = Original.substr(FirstMeta);
121 if (!PatStr.empty()) {
122 // For the rest use a python-style prefix match.
123 std::string pat = std::string(PatStr);
124 // Add ^ anchor. If we had one originally, don't need the group.
125 if (HadAnchor) {
126 pat.insert(0, "^");
127 } else {
128 pat.insert(0, "^(");
129 pat.insert(pat.end(), ')');
131 Regexpr = Regex(pat);
134 int NumMatches = 0;
136 // The generic opcodes are unsorted, handle them manually.
137 for (auto *Inst : Generics) {
138 StringRef InstName = Inst->TheDef->getName();
139 if (InstName.starts_with(Prefix) &&
140 (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
141 Elts.insert(Inst->TheDef);
142 NumMatches++;
146 // Target instructions are split into two ranges: pseudo instructions
147 // first, than non-pseudos. Each range is in lexicographical order
148 // sorted by name. Find the sub-ranges that start with our prefix.
149 struct Comp {
150 bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
151 return LHS->TheDef->getName() < RHS;
153 bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
154 return LHS < RHS->TheDef->getName() &&
155 !RHS->TheDef->getName().starts_with(LHS);
158 auto Range1 =
159 std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
160 auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
161 Prefix, Comp());
163 // For these ranges we know that instruction names start with the prefix.
164 // Check if there's a regex that needs to be checked.
165 const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
166 StringRef InstName = Inst->TheDef->getName();
167 if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
168 Elts.insert(Inst->TheDef);
169 NumMatches++;
172 std::for_each(Range1.first, Range1.second, HandleNonGeneric);
173 std::for_each(Range2.first, Range2.second, HandleNonGeneric);
175 if (0 == NumMatches)
176 PrintFatalError(Loc, "instregex has no matches: " + Original);
181 } // end anonymous namespace
183 /// CodeGenModels ctor interprets machine model records and populates maps.
184 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
185 const CodeGenTarget &TGT):
186 Records(RK), Target(TGT) {
188 Sets.addFieldExpander("InstRW", "Instrs");
190 // Allow Set evaluation to recognize the dags used in InstRW records:
191 // (instrs Op1, Op1...)
192 Sets.addOperator("instrs", std::make_unique<InstrsOp>());
193 Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target));
195 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values
196 // that are explicitly referenced in tablegen records. Resources associated
197 // with each processor will be derived later. Populate ProcModelMap with the
198 // CodeGenProcModel instances.
199 collectProcModels();
201 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
202 // defined, and populate SchedReads and SchedWrites vectors. Implicit
203 // SchedReadWrites that represent sequences derived from expanded variant will
204 // be inferred later.
205 collectSchedRW();
207 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
208 // required by an instruction definition, and populate SchedClassIdxMap. Set
209 // NumItineraryClasses to the number of explicit itinerary classes referenced
210 // by instructions. Set NumInstrSchedClasses to the number of itinerary
211 // classes plus any classes implied by instructions that derive from class
212 // Sched and provide SchedRW list. This does not infer any new classes from
213 // SchedVariant.
214 collectSchedClasses();
216 // Find instruction itineraries for each processor. Sort and populate
217 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
218 // all itinerary classes to be discovered.
219 collectProcItins();
221 // Find ItinRW records for each processor and itinerary class.
222 // (For per-operand resources mapped to itinerary classes).
223 collectProcItinRW();
225 // Find UnsupportedFeatures records for each processor.
226 // (For per-operand resources mapped to itinerary classes).
227 collectProcUnsupportedFeatures();
229 // Infer new SchedClasses from SchedVariant.
230 inferSchedClasses();
232 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
233 // ProcResourceDefs.
234 LLVM_DEBUG(
235 dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
236 collectProcResources();
238 // Collect optional processor description.
239 collectOptionalProcessorInfo();
241 // Check MCInstPredicate definitions.
242 checkMCInstPredicates();
244 // Check STIPredicate definitions.
245 checkSTIPredicates();
247 // Find STIPredicate definitions for each processor model, and construct
248 // STIPredicateFunction objects.
249 collectSTIPredicates();
251 checkCompleteness();
254 void CodeGenSchedModels::checkSTIPredicates() const {
255 DenseMap<StringRef, const Record *> Declarations;
257 // There cannot be multiple declarations with the same name.
258 const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
259 for (const Record *R : Decls) {
260 StringRef Name = R->getValueAsString("Name");
261 const auto It = Declarations.find(Name);
262 if (It == Declarations.end()) {
263 Declarations[Name] = R;
264 continue;
267 PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
268 PrintFatalNote(It->second->getLoc(), "Previous declaration was here.");
271 // Disallow InstructionEquivalenceClasses with an empty instruction list.
272 const RecVec Defs =
273 Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
274 for (const Record *R : Defs) {
275 RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
276 if (Opcodes.empty()) {
277 PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
278 "defined with an empty opcode list.");
283 // Used by function `processSTIPredicate` to construct a mask of machine
284 // instruction operands.
285 static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
286 APInt OperandMask;
287 if (Indices.empty())
288 return OperandMask;
290 int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
291 assert(MaxIndex >= 0 && "Invalid negative indices in input!");
292 OperandMask = OperandMask.zext(MaxIndex + 1);
293 for (const int64_t Index : Indices) {
294 assert(Index >= 0 && "Invalid negative indices!");
295 OperandMask.setBit(Index);
298 return OperandMask;
301 static void
302 processSTIPredicate(STIPredicateFunction &Fn,
303 const ProcModelMapTy &ProcModelMap) {
304 DenseMap<const Record *, unsigned> Opcode2Index;
305 using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
306 std::vector<OpcodeMapPair> OpcodeMappings;
307 std::vector<std::pair<APInt, APInt>> OpcodeMasks;
309 DenseMap<const Record *, unsigned> Predicate2Index;
310 unsigned NumUniquePredicates = 0;
312 // Number unique predicates and opcodes used by InstructionEquivalenceClass
313 // definitions. Each unique opcode will be associated with an OpcodeInfo
314 // object.
315 for (const Record *Def : Fn.getDefinitions()) {
316 RecVec Classes = Def->getValueAsListOfDefs("Classes");
317 for (const Record *EC : Classes) {
318 const Record *Pred = EC->getValueAsDef("Predicate");
319 if (!Predicate2Index.contains(Pred))
320 Predicate2Index[Pred] = NumUniquePredicates++;
322 RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
323 for (const Record *Opcode : Opcodes) {
324 if (!Opcode2Index.contains(Opcode)) {
325 Opcode2Index[Opcode] = OpcodeMappings.size();
326 OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
332 // Initialize vector `OpcodeMasks` with default values. We want to keep track
333 // of which processors "use" which opcodes. We also want to be able to
334 // identify predicates that are used by different processors for a same
335 // opcode.
336 // This information is used later on by this algorithm to sort OpcodeMapping
337 // elements based on their processor and predicate sets.
338 OpcodeMasks.resize(OpcodeMappings.size());
339 APInt DefaultProcMask(ProcModelMap.size(), 0);
340 APInt DefaultPredMask(NumUniquePredicates, 0);
341 for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
342 MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);
344 // Construct a OpcodeInfo object for every unique opcode declared by an
345 // InstructionEquivalenceClass definition.
346 for (const Record *Def : Fn.getDefinitions()) {
347 RecVec Classes = Def->getValueAsListOfDefs("Classes");
348 const Record *SchedModel = Def->getValueAsDef("SchedModel");
349 unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
350 APInt ProcMask(ProcModelMap.size(), 0);
351 ProcMask.setBit(ProcIndex);
353 for (const Record *EC : Classes) {
354 RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
356 std::vector<int64_t> OpIndices =
357 EC->getValueAsListOfInts("OperandIndices");
358 APInt OperandMask = constructOperandMask(OpIndices);
360 const Record *Pred = EC->getValueAsDef("Predicate");
361 APInt PredMask(NumUniquePredicates, 0);
362 PredMask.setBit(Predicate2Index[Pred]);
364 for (const Record *Opcode : Opcodes) {
365 unsigned OpcodeIdx = Opcode2Index[Opcode];
366 if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
367 std::string Message =
368 "Opcode " + Opcode->getName().str() +
369 " used by multiple InstructionEquivalenceClass definitions.";
370 PrintFatalError(EC->getLoc(), Message);
372 OpcodeMasks[OpcodeIdx].first |= ProcMask;
373 OpcodeMasks[OpcodeIdx].second |= PredMask;
374 OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
376 OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
381 // Sort OpcodeMappings elements based on their CPU and predicate masks.
382 // As a last resort, order elements by opcode identifier.
383 llvm::sort(OpcodeMappings,
384 [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
385 unsigned LhsIdx = Opcode2Index[Lhs.first];
386 unsigned RhsIdx = Opcode2Index[Rhs.first];
387 const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
388 const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
390 auto PopulationCountAndLeftBit =
391 [](const APInt &Other) -> std::pair<int, int> {
392 return std::pair<int, int>(Other.popcount(),
393 -Other.countl_zero());
395 auto lhsmask_first = PopulationCountAndLeftBit(LhsMasks.first);
396 auto rhsmask_first = PopulationCountAndLeftBit(RhsMasks.first);
397 if (lhsmask_first != rhsmask_first)
398 return lhsmask_first < rhsmask_first;
400 auto lhsmask_second = PopulationCountAndLeftBit(LhsMasks.second);
401 auto rhsmask_second = PopulationCountAndLeftBit(RhsMasks.second);
402 if (lhsmask_second != rhsmask_second)
403 return lhsmask_second < rhsmask_second;
405 return LhsIdx < RhsIdx;
408 // Now construct opcode groups. Groups are used by the SubtargetEmitter when
409 // expanding the body of a STIPredicate function. In particular, each opcode
410 // group is expanded into a sequence of labels in a switch statement.
411 // It identifies opcodes for which different processors define same predicates
412 // and same opcode masks.
413 for (OpcodeMapPair &Info : OpcodeMappings)
414 Fn.addOpcode(Info.first, std::move(Info.second));
417 void CodeGenSchedModels::collectSTIPredicates() {
418 // Map STIPredicateDecl records to elements of vector
419 // CodeGenSchedModels::STIPredicates.
420 DenseMap<const Record *, unsigned> Decl2Index;
422 RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
423 for (const Record *R : RV) {
424 const Record *Decl = R->getValueAsDef("Declaration");
426 const auto It = Decl2Index.find(Decl);
427 if (It == Decl2Index.end()) {
428 Decl2Index[Decl] = STIPredicates.size();
429 STIPredicateFunction Predicate(Decl);
430 Predicate.addDefinition(R);
431 STIPredicates.emplace_back(std::move(Predicate));
432 continue;
435 STIPredicateFunction &PreviousDef = STIPredicates[It->second];
436 PreviousDef.addDefinition(R);
439 for (STIPredicateFunction &Fn : STIPredicates)
440 processSTIPredicate(Fn, ProcModelMap);
443 void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
444 const llvm::APInt &OperandMask,
445 const Record *Predicate) {
446 auto It = llvm::find_if(
447 Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
448 return P.Predicate == Predicate && P.OperandMask == OperandMask;
450 if (It == Predicates.end()) {
451 Predicates.emplace_back(CpuMask, OperandMask, Predicate);
452 return;
454 It->ProcModelMask |= CpuMask;
457 void CodeGenSchedModels::checkMCInstPredicates() const {
458 RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
459 if (MCPredicates.empty())
460 return;
462 // A target cannot have multiple TIIPredicate definitions with a same name.
463 llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
464 for (const Record *TIIPred : MCPredicates) {
465 StringRef Name = TIIPred->getValueAsString("FunctionName");
466 StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
467 if (It == TIIPredicates.end()) {
468 TIIPredicates[Name] = TIIPred;
469 continue;
472 PrintError(TIIPred->getLoc(),
473 "TIIPredicate " + Name + " is multiply defined.");
474 PrintFatalNote(It->second->getLoc(),
475 " Previous definition of " + Name + " was here.");
479 void CodeGenSchedModels::collectRetireControlUnits() {
480 RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");
482 for (Record *RCU : Units) {
483 CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
484 if (PM.RetireControlUnit) {
485 PrintError(RCU->getLoc(),
486 "Expected a single RetireControlUnit definition");
487 PrintNote(PM.RetireControlUnit->getLoc(),
488 "Previous definition of RetireControlUnit was here");
490 PM.RetireControlUnit = RCU;
494 void CodeGenSchedModels::collectLoadStoreQueueInfo() {
495 RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue");
497 for (Record *Queue : Queues) {
498 CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
499 if (Queue->isSubClassOf("LoadQueue")) {
500 if (PM.LoadQueue) {
501 PrintError(Queue->getLoc(),
502 "Expected a single LoadQueue definition");
503 PrintNote(PM.LoadQueue->getLoc(),
504 "Previous definition of LoadQueue was here");
507 PM.LoadQueue = Queue;
510 if (Queue->isSubClassOf("StoreQueue")) {
511 if (PM.StoreQueue) {
512 PrintError(Queue->getLoc(),
513 "Expected a single StoreQueue definition");
514 PrintNote(PM.StoreQueue->getLoc(),
515 "Previous definition of StoreQueue was here");
518 PM.StoreQueue = Queue;
523 /// Collect optional processor information.
524 void CodeGenSchedModels::collectOptionalProcessorInfo() {
525 // Find register file definitions for each processor.
526 collectRegisterFiles();
528 // Collect processor RetireControlUnit descriptors if available.
529 collectRetireControlUnits();
531 // Collect information about load/store queues.
532 collectLoadStoreQueueInfo();
534 checkCompleteness();
537 /// Gather all processor models.
538 void CodeGenSchedModels::collectProcModels() {
539 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
540 llvm::sort(ProcRecords, LessRecordFieldName());
542 // Check for duplicated names.
543 auto I = std::adjacent_find(ProcRecords.begin(), ProcRecords.end(),
544 [](const Record *Rec1, const Record *Rec2) {
545 return Rec1->getValueAsString("Name") == Rec2->getValueAsString("Name");
547 if (I != ProcRecords.end())
548 PrintFatalError((*I)->getLoc(), "Duplicate processor name " +
549 (*I)->getValueAsString("Name"));
551 // Reserve space because we can. Reallocation would be ok.
552 ProcModels.reserve(ProcRecords.size()+1);
554 // Use idx=0 for NoModel/NoItineraries.
555 Record *NoModelDef = Records.getDef("NoSchedModel");
556 Record *NoItinsDef = Records.getDef("NoItineraries");
557 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
558 ProcModelMap[NoModelDef] = 0;
560 // For each processor, find a unique machine model.
561 LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
562 for (Record *ProcRecord : ProcRecords)
563 addProcModel(ProcRecord);
566 /// Get a unique processor model based on the defined MachineModel and
567 /// ProcessorItineraries.
568 void CodeGenSchedModels::addProcModel(Record *ProcDef) {
569 Record *ModelKey = getModelOrItinDef(ProcDef);
570 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
571 return;
573 std::string Name = std::string(ModelKey->getName());
574 if (ModelKey->isSubClassOf("SchedMachineModel")) {
575 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
576 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
578 else {
579 // An itinerary is defined without a machine model. Infer a new model.
580 if (!ModelKey->getValueAsListOfDefs("IID").empty())
581 Name = Name + "Model";
582 ProcModels.emplace_back(ProcModels.size(), Name,
583 ProcDef->getValueAsDef("SchedModel"), ModelKey);
585 LLVM_DEBUG(ProcModels.back().dump());
588 // Recursively find all reachable SchedReadWrite records.
589 static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
590 SmallPtrSet<Record*, 16> &RWSet) {
591 if (!RWSet.insert(RWDef).second)
592 return;
593 RWDefs.push_back(RWDef);
594 // Reads don't currently have sequence records, but it can be added later.
595 if (RWDef->isSubClassOf("WriteSequence")) {
596 RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
597 for (Record *WSRec : Seq)
598 scanSchedRW(WSRec, RWDefs, RWSet);
600 else if (RWDef->isSubClassOf("SchedVariant")) {
601 // Visit each variant (guarded by a different predicate).
602 RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
603 for (Record *Variant : Vars) {
604 // Visit each RW in the sequence selected by the current variant.
605 RecVec Selected = Variant->getValueAsListOfDefs("Selected");
606 for (Record *SelDef : Selected)
607 scanSchedRW(SelDef, RWDefs, RWSet);
612 // Collect and sort all SchedReadWrites reachable via tablegen records.
613 // More may be inferred later when inferring new SchedClasses from variants.
614 void CodeGenSchedModels::collectSchedRW() {
615 // Reserve idx=0 for invalid writes/reads.
616 SchedWrites.resize(1);
617 SchedReads.resize(1);
619 SmallPtrSet<Record*, 16> RWSet;
621 // Find all SchedReadWrites referenced by instruction defs.
622 RecVec SWDefs, SRDefs;
623 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
624 Record *SchedDef = Inst->TheDef;
625 if (SchedDef->isValueUnset("SchedRW"))
626 continue;
627 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
628 for (Record *RW : RWs) {
629 if (RW->isSubClassOf("SchedWrite"))
630 scanSchedRW(RW, SWDefs, RWSet);
631 else {
632 assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
633 scanSchedRW(RW, SRDefs, RWSet);
637 // Find all ReadWrites referenced by InstRW.
638 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
639 for (Record *InstRWDef : InstRWDefs) {
640 // For all OperandReadWrites.
641 RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
642 for (Record *RWDef : RWDefs) {
643 if (RWDef->isSubClassOf("SchedWrite"))
644 scanSchedRW(RWDef, SWDefs, RWSet);
645 else {
646 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
647 scanSchedRW(RWDef, SRDefs, RWSet);
651 // Find all ReadWrites referenced by ItinRW.
652 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
653 for (Record *ItinRWDef : ItinRWDefs) {
654 // For all OperandReadWrites.
655 RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
656 for (Record *RWDef : RWDefs) {
657 if (RWDef->isSubClassOf("SchedWrite"))
658 scanSchedRW(RWDef, SWDefs, RWSet);
659 else {
660 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
661 scanSchedRW(RWDef, SRDefs, RWSet);
665 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
666 // for the loop below that initializes Alias vectors.
667 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
668 llvm::sort(AliasDefs, LessRecord());
669 for (Record *ADef : AliasDefs) {
670 Record *MatchDef = ADef->getValueAsDef("MatchRW");
671 Record *AliasDef = ADef->getValueAsDef("AliasRW");
672 if (MatchDef->isSubClassOf("SchedWrite")) {
673 if (!AliasDef->isSubClassOf("SchedWrite"))
674 PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
675 scanSchedRW(AliasDef, SWDefs, RWSet);
677 else {
678 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
679 if (!AliasDef->isSubClassOf("SchedRead"))
680 PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
681 scanSchedRW(AliasDef, SRDefs, RWSet);
684 // Sort and add the SchedReadWrites directly referenced by instructions or
685 // itinerary resources. Index reads and writes in separate domains.
686 llvm::sort(SWDefs, LessRecord());
687 for (Record *SWDef : SWDefs) {
688 assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
689 SchedWrites.emplace_back(SchedWrites.size(), SWDef);
691 llvm::sort(SRDefs, LessRecord());
692 for (Record *SRDef : SRDefs) {
693 assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
694 SchedReads.emplace_back(SchedReads.size(), SRDef);
696 // Initialize WriteSequence vectors.
697 for (CodeGenSchedRW &CGRW : SchedWrites) {
698 if (!CGRW.IsSequence)
699 continue;
700 findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
701 /*IsRead=*/false);
703 // Initialize Aliases vectors.
704 for (Record *ADef : AliasDefs) {
705 Record *AliasDef = ADef->getValueAsDef("AliasRW");
706 getSchedRW(AliasDef).IsAlias = true;
707 Record *MatchDef = ADef->getValueAsDef("MatchRW");
708 CodeGenSchedRW &RW = getSchedRW(MatchDef);
709 if (RW.IsAlias)
710 PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
711 RW.Aliases.push_back(ADef);
713 LLVM_DEBUG(
714 dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
715 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
716 dbgs() << WIdx << ": ";
717 SchedWrites[WIdx].dump();
718 dbgs() << '\n';
719 } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
720 ++RIdx) {
721 dbgs() << RIdx << ": ";
722 SchedReads[RIdx].dump();
723 dbgs() << '\n';
724 } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
725 for (Record *RWDef
726 : RWDefs) {
727 if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
728 StringRef Name = RWDef->getName();
729 if (Name != "NoWrite" && Name != "ReadDefault")
730 dbgs() << "Unused SchedReadWrite " << Name << '\n';
735 /// Compute a SchedWrite name from a sequence of writes.
736 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
737 std::string Name("(");
738 ListSeparator LS("_");
739 for (unsigned I : Seq) {
740 Name += LS;
741 Name += getSchedRW(I, IsRead).Name;
743 Name += ')';
744 return Name;
747 unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
748 bool IsRead) const {
749 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
750 const auto I = find_if(
751 RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
752 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
755 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
756 for (auto& ProcModel : ProcModels) {
757 const RecVec &RADefs = ProcModel.ReadAdvanceDefs;
758 for (auto& RADef : RADefs) {
759 RecVec ValidWrites = RADef->getValueAsListOfDefs("ValidWrites");
760 if (is_contained(ValidWrites, WriteDef))
761 return true;
764 return false;
767 static void splitSchedReadWrites(const RecVec &RWDefs,
768 RecVec &WriteDefs, RecVec &ReadDefs) {
769 for (Record *RWDef : RWDefs) {
770 if (RWDef->isSubClassOf("SchedWrite"))
771 WriteDefs.push_back(RWDef);
772 else {
773 assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
774 ReadDefs.push_back(RWDef);
779 // Split the SchedReadWrites defs and call findRWs for each list.
780 void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
781 IdxVec &Writes, IdxVec &Reads) const {
782 RecVec WriteDefs;
783 RecVec ReadDefs;
784 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
785 findRWs(WriteDefs, Writes, false);
786 findRWs(ReadDefs, Reads, true);
789 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
790 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
791 bool IsRead) const {
792 for (Record *RWDef : RWDefs) {
793 unsigned Idx = getSchedRWIdx(RWDef, IsRead);
794 assert(Idx && "failed to collect SchedReadWrite");
795 RWs.push_back(Idx);
799 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
800 bool IsRead) const {
801 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
802 if (!SchedRW.IsSequence) {
803 RWSeq.push_back(RWIdx);
804 return;
806 int Repeat =
807 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
808 for (int i = 0; i < Repeat; ++i) {
809 for (unsigned I : SchedRW.Sequence) {
810 expandRWSequence(I, RWSeq, IsRead);
815 // Expand a SchedWrite as a sequence following any aliases that coincide with
816 // the given processor model.
817 void CodeGenSchedModels::expandRWSeqForProc(
818 unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
819 const CodeGenProcModel &ProcModel) const {
821 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
822 Record *AliasDef = nullptr;
823 for (const Record *Rec : SchedWrite.Aliases) {
824 const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
825 if (Rec->getValueInit("SchedModel")->isComplete()) {
826 Record *ModelDef = Rec->getValueAsDef("SchedModel");
827 if (&getProcModel(ModelDef) != &ProcModel)
828 continue;
830 if (AliasDef)
831 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
832 "defined for processor " + ProcModel.ModelName +
833 " Ensure only one SchedAlias exists per RW.");
834 AliasDef = AliasRW.TheDef;
836 if (AliasDef) {
837 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
838 RWSeq, IsRead,ProcModel);
839 return;
841 if (!SchedWrite.IsSequence) {
842 RWSeq.push_back(RWIdx);
843 return;
845 int Repeat =
846 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
847 for (int I = 0, E = Repeat; I < E; ++I) {
848 for (unsigned Idx : SchedWrite.Sequence) {
849 expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
854 // Find the existing SchedWrite that models this sequence of writes.
855 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
856 bool IsRead) {
857 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
859 auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
860 return ArrayRef(RW.Sequence) == Seq;
862 // Index zero reserved for invalid RW.
863 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
866 /// Add this ReadWrite if it doesn't already exist.
867 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
868 bool IsRead) {
869 assert(!Seq.empty() && "cannot insert empty sequence");
870 if (Seq.size() == 1)
871 return Seq.back();
873 unsigned Idx = findRWForSequence(Seq, IsRead);
874 if (Idx)
875 return Idx;
877 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
878 unsigned RWIdx = RWVec.size();
879 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
880 RWVec.push_back(SchedRW);
881 return RWIdx;
884 /// Visit all the instruction definitions for this target to gather and
885 /// enumerate the itinerary classes. These are the explicitly specified
886 /// SchedClasses. More SchedClasses may be inferred.
887 void CodeGenSchedModels::collectSchedClasses() {
889 // NoItinerary is always the first class at Idx=0
890 assert(SchedClasses.empty() && "Expected empty sched class");
891 SchedClasses.emplace_back(0, "NoInstrModel",
892 Records.getDef("NoItinerary"));
893 SchedClasses.back().ProcIndices.push_back(0);
895 // Create a SchedClass for each unique combination of itinerary class and
896 // SchedRW list.
897 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
898 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
899 IdxVec Writes, Reads;
900 if (!Inst->TheDef->isValueUnset("SchedRW"))
901 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
903 // ProcIdx == 0 indicates the class applies to all processors.
904 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
905 InstrClassMap[Inst->TheDef] = SCIdx;
907 // Create classes for InstRW defs.
908 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
909 llvm::sort(InstRWDefs, LessRecord());
910 LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
911 for (Record *RWDef : InstRWDefs)
912 createInstRWClass(RWDef);
914 NumInstrSchedClasses = SchedClasses.size();
916 bool EnableDump = false;
917 LLVM_DEBUG(EnableDump = true);
918 if (!EnableDump)
919 return;
921 LLVM_DEBUG(
922 dbgs()
923 << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
924 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
925 StringRef InstName = Inst->TheDef->getName();
926 unsigned SCIdx = getSchedClassIdx(*Inst);
927 if (!SCIdx) {
928 LLVM_DEBUG({
929 if (!Inst->hasNoSchedulingInfo)
930 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
932 continue;
934 CodeGenSchedClass &SC = getSchedClass(SCIdx);
935 if (SC.ProcIndices[0] != 0)
936 PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
937 "must not be subtarget specific.");
939 IdxVec ProcIndices;
940 if (SC.ItinClassDef->getName() != "NoItinerary") {
941 ProcIndices.push_back(0);
942 dbgs() << "Itinerary for " << InstName << ": "
943 << SC.ItinClassDef->getName() << '\n';
945 if (!SC.Writes.empty()) {
946 ProcIndices.push_back(0);
947 LLVM_DEBUG({
948 dbgs() << "SchedRW machine model for " << InstName;
949 for (unsigned int Write : SC.Writes)
950 dbgs() << " " << SchedWrites[Write].Name;
951 for (unsigned int Read : SC.Reads)
952 dbgs() << " " << SchedReads[Read].Name;
953 dbgs() << '\n';
956 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
957 for (Record *RWDef : RWDefs) {
958 const CodeGenProcModel &ProcModel =
959 getProcModel(RWDef->getValueAsDef("SchedModel"));
960 ProcIndices.push_back(ProcModel.Index);
961 LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
962 << InstName);
963 IdxVec Writes;
964 IdxVec Reads;
965 findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
966 Writes, Reads);
967 LLVM_DEBUG({
968 for (unsigned WIdx : Writes)
969 dbgs() << " " << SchedWrites[WIdx].Name;
970 for (unsigned RIdx : Reads)
971 dbgs() << " " << SchedReads[RIdx].Name;
972 dbgs() << '\n';
975 // If ProcIndices contains zero, the class applies to all processors.
976 LLVM_DEBUG({
977 if (!llvm::is_contained(ProcIndices, 0)) {
978 for (const CodeGenProcModel &PM : ProcModels) {
979 if (!llvm::is_contained(ProcIndices, PM.Index))
980 dbgs() << "No machine model for " << Inst->TheDef->getName()
981 << " on processor " << PM.ModelName << '\n';
988 // Get the SchedClass index for an instruction.
989 unsigned
990 CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
991 return InstrClassMap.lookup(Inst.TheDef);
994 std::string
995 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
996 ArrayRef<unsigned> OperWrites,
997 ArrayRef<unsigned> OperReads) {
999 std::string Name;
1000 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
1001 Name = std::string(ItinClassDef->getName());
1002 for (unsigned Idx : OperWrites) {
1003 if (!Name.empty())
1004 Name += '_';
1005 Name += SchedWrites[Idx].Name;
1007 for (unsigned Idx : OperReads) {
1008 Name += '_';
1009 Name += SchedReads[Idx].Name;
1011 return Name;
1014 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
1016 std::string Name;
1017 ListSeparator LS("_");
1018 for (const Record *InstDef : InstDefs) {
1019 Name += LS;
1020 Name += InstDef->getName();
1022 return Name;
1025 /// Add an inferred sched class from an itinerary class and per-operand list of
1026 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
1027 /// processors that may utilize this class.
1028 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
1029 ArrayRef<unsigned> OperWrites,
1030 ArrayRef<unsigned> OperReads,
1031 ArrayRef<unsigned> ProcIndices) {
1032 assert(!ProcIndices.empty() && "expect at least one ProcIdx");
1034 auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
1035 return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
1038 auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
1039 unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
1040 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
1041 IdxVec PI;
1042 std::set_union(SchedClasses[Idx].ProcIndices.begin(),
1043 SchedClasses[Idx].ProcIndices.end(),
1044 ProcIndices.begin(), ProcIndices.end(),
1045 std::back_inserter(PI));
1046 SchedClasses[Idx].ProcIndices = std::move(PI);
1047 return Idx;
1049 Idx = SchedClasses.size();
1050 SchedClasses.emplace_back(Idx,
1051 createSchedClassName(ItinClassDef, OperWrites,
1052 OperReads),
1053 ItinClassDef);
1054 CodeGenSchedClass &SC = SchedClasses.back();
1055 SC.Writes = OperWrites;
1056 SC.Reads = OperReads;
1057 SC.ProcIndices = ProcIndices;
1059 return Idx;
1062 // Create classes for each set of opcodes that are in the same InstReadWrite
1063 // definition across all processors.
1064 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
1065 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
1066 // intersects with an existing class via a previous InstRWDef. Instrs that do
1067 // not intersect with an existing class refer back to their former class as
1068 // determined from ItinDef or SchedRW.
1069 SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
1070 // Sort Instrs into sets.
1071 const RecVec *InstDefs = Sets.expand(InstRWDef);
1072 if (InstDefs->empty())
1073 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
1075 for (Record *InstDef : *InstDefs) {
1076 InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
1077 if (Pos == InstrClassMap.end())
1078 PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
1079 unsigned SCIdx = Pos->second;
1080 ClassInstrs[SCIdx].push_back(InstDef);
1082 // For each set of Instrs, create a new class if necessary, and map or remap
1083 // the Instrs to it.
1084 for (auto &Entry : ClassInstrs) {
1085 unsigned OldSCIdx = Entry.first;
1086 ArrayRef<Record*> InstDefs = Entry.second;
1087 // If the all instrs in the current class are accounted for, then leave
1088 // them mapped to their old class.
1089 if (OldSCIdx) {
1090 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
1091 if (!RWDefs.empty()) {
1092 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
1093 unsigned OrigNumInstrs =
1094 count_if(*OrigInstDefs, [&](Record *OIDef) {
1095 return InstrClassMap[OIDef] == OldSCIdx;
1097 if (OrigNumInstrs == InstDefs.size()) {
1098 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
1099 "expected a generic SchedClass");
1100 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1101 // Make sure we didn't already have a InstRW containing this
1102 // instruction on this model.
1103 for (Record *RWD : RWDefs) {
1104 if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
1105 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
1106 assert(!InstDefs.empty()); // Checked at function start.
1107 PrintError(
1108 InstRWDef->getLoc(),
1109 "Overlapping InstRW definition for \"" +
1110 InstDefs.front()->getName() +
1111 "\" also matches previous \"" +
1112 RWD->getValue("Instrs")->getValue()->getAsString() +
1113 "\".");
1114 PrintFatalNote(RWD->getLoc(), "Previous match was here.");
1117 LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
1118 << SchedClasses[OldSCIdx].Name << " on "
1119 << RWModelDef->getName() << "\n");
1120 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
1121 continue;
1125 unsigned SCIdx = SchedClasses.size();
1126 SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
1127 CodeGenSchedClass &SC = SchedClasses.back();
1128 LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
1129 << InstRWDef->getValueAsDef("SchedModel")->getName()
1130 << "\n");
1132 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
1133 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
1134 SC.Writes = SchedClasses[OldSCIdx].Writes;
1135 SC.Reads = SchedClasses[OldSCIdx].Reads;
1136 SC.ProcIndices.push_back(0);
1137 // If we had an old class, copy it's InstRWs to this new class.
1138 if (OldSCIdx) {
1139 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1140 for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
1141 if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
1142 assert(!InstDefs.empty()); // Checked at function start.
1143 PrintError(
1144 InstRWDef->getLoc(),
1145 "Overlapping InstRW definition for \"" +
1146 InstDefs.front()->getName() + "\" also matches previous \"" +
1147 OldRWDef->getValue("Instrs")->getValue()->getAsString() +
1148 "\".");
1149 PrintFatalNote(OldRWDef->getLoc(), "Previous match was here.");
1151 assert(OldRWDef != InstRWDef &&
1152 "SchedClass has duplicate InstRW def");
1153 SC.InstRWs.push_back(OldRWDef);
1156 // Map each Instr to this new class.
1157 for (Record *InstDef : InstDefs)
1158 InstrClassMap[InstDef] = SCIdx;
1159 SC.InstRWs.push_back(InstRWDef);
1163 // True if collectProcItins found anything.
1164 bool CodeGenSchedModels::hasItineraries() const {
1165 for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
1166 if (PM.hasItineraries())
1167 return true;
1168 return false;
1171 // Gather the processor itineraries.
1172 void CodeGenSchedModels::collectProcItins() {
1173 LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
1174 for (CodeGenProcModel &ProcModel : ProcModels) {
1175 if (!ProcModel.hasItineraries())
1176 continue;
1178 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
1179 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
1181 // Populate ItinDefList with Itinerary records.
1182 ProcModel.ItinDefList.resize(NumInstrSchedClasses);
1184 // Insert each itinerary data record in the correct position within
1185 // the processor model's ItinDefList.
1186 for (Record *ItinData : ItinRecords) {
1187 const Record *ItinDef = ItinData->getValueAsDef("TheClass");
1188 bool FoundClass = false;
1190 for (const CodeGenSchedClass &SC :
1191 make_range(schedClassBegin(), schedClassEnd())) {
1192 // Multiple SchedClasses may share an itinerary. Update all of them.
1193 if (SC.ItinClassDef == ItinDef) {
1194 ProcModel.ItinDefList[SC.Index] = ItinData;
1195 FoundClass = true;
1198 if (!FoundClass) {
1199 LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
1200 << " missing class for itinerary "
1201 << ItinDef->getName() << '\n');
1204 // Check for missing itinerary entries.
1205 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
1206 LLVM_DEBUG(
1207 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
1208 if (!ProcModel.ItinDefList[i])
1209 dbgs() << ProcModel.ItinsDef->getName()
1210 << " missing itinerary for class " << SchedClasses[i].Name
1211 << '\n';
1216 // Gather the read/write types for each itinerary class.
1217 void CodeGenSchedModels::collectProcItinRW() {
1218 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
1219 llvm::sort(ItinRWDefs, LessRecord());
1220 for (Record *RWDef : ItinRWDefs) {
1221 if (!RWDef->getValueInit("SchedModel")->isComplete())
1222 PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
1223 Record *ModelDef = RWDef->getValueAsDef("SchedModel");
1224 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
1225 if (I == ProcModelMap.end()) {
1226 PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
1227 + ModelDef->getName());
1229 ProcModels[I->second].ItinRWDefs.push_back(RWDef);
1233 // Gather the unsupported features for processor models.
1234 void CodeGenSchedModels::collectProcUnsupportedFeatures() {
1235 for (CodeGenProcModel &ProcModel : ProcModels)
1236 append_range(
1237 ProcModel.UnsupportedFeaturesDefs,
1238 ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures"));
1241 /// Infer new classes from existing classes. In the process, this may create new
1242 /// SchedWrites from sequences of existing SchedWrites.
1243 void CodeGenSchedModels::inferSchedClasses() {
1244 LLVM_DEBUG(
1245 dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
1246 LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
1248 // Visit all existing classes and newly created classes.
1249 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
1250 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
1252 if (SchedClasses[Idx].ItinClassDef)
1253 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
1254 if (!SchedClasses[Idx].InstRWs.empty())
1255 inferFromInstRWs(Idx);
1256 if (!SchedClasses[Idx].Writes.empty()) {
1257 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
1258 Idx, SchedClasses[Idx].ProcIndices);
1260 assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
1261 "too many SchedVariants");
1265 /// Infer classes from per-processor itinerary resources.
1266 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
1267 unsigned FromClassIdx) {
1268 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1269 const CodeGenProcModel &PM = ProcModels[PIdx];
1270 // For all ItinRW entries.
1271 bool HasMatch = false;
1272 for (const Record *Rec : PM.ItinRWDefs) {
1273 RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
1274 if (!llvm::is_contained(Matched, ItinClassDef))
1275 continue;
1276 if (HasMatch)
1277 PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
1278 + ItinClassDef->getName()
1279 + " in ItinResources for " + PM.ModelName);
1280 HasMatch = true;
1281 IdxVec Writes, Reads;
1282 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1283 inferFromRW(Writes, Reads, FromClassIdx, PIdx);
1288 /// Infer classes from per-processor InstReadWrite definitions.
1289 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
1290 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
1291 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
1292 Record *Rec = SchedClasses[SCIdx].InstRWs[I];
1293 const RecVec *InstDefs = Sets.expand(Rec);
1294 RecIter II = InstDefs->begin(), IE = InstDefs->end();
1295 for (; II != IE; ++II) {
1296 if (InstrClassMap[*II] == SCIdx)
1297 break;
1299 // If this class no longer has any instructions mapped to it, it has become
1300 // irrelevant.
1301 if (II == IE)
1302 continue;
1303 IdxVec Writes, Reads;
1304 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1305 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
1306 inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
1307 SchedClasses[SCIdx].InstRWProcIndices.insert(PIdx);
1311 namespace {
1313 // Helper for substituteVariantOperand.
1314 struct TransVariant {
1315 Record *VarOrSeqDef; // Variant or sequence.
1316 unsigned RWIdx; // Index of this variant or sequence's matched type.
1317 unsigned ProcIdx; // Processor model index or zero for any.
1318 unsigned TransVecIdx; // Index into PredTransitions::TransVec.
1320 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
1321 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
1324 // Associate a predicate with the SchedReadWrite that it guards.
1325 // RWIdx is the index of the read/write variant.
1326 struct PredCheck {
1327 bool IsRead;
1328 unsigned RWIdx;
1329 Record *Predicate;
1331 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
1334 // A Predicate transition is a list of RW sequences guarded by a PredTerm.
1335 struct PredTransition {
1336 // A predicate term is a conjunction of PredChecks.
1337 SmallVector<PredCheck, 4> PredTerm;
1338 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
1339 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
1340 unsigned ProcIndex = 0;
1342 PredTransition() = default;
1343 PredTransition(ArrayRef<PredCheck> PT, unsigned ProcId) {
1344 PredTerm.assign(PT.begin(), PT.end());
1345 ProcIndex = ProcId;
1349 // Encapsulate a set of partially constructed transitions.
1350 // The results are built by repeated calls to substituteVariants.
1351 class PredTransitions {
1352 CodeGenSchedModels &SchedModels;
1354 public:
1355 std::vector<PredTransition> TransVec;
1357 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
1359 bool substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
1360 bool IsRead, unsigned StartIdx);
1362 bool substituteVariants(const PredTransition &Trans);
1364 #ifndef NDEBUG
1365 void dump() const;
1366 #endif
1368 private:
1369 bool mutuallyExclusive(Record *PredDef, ArrayRef<Record *> Preds,
1370 ArrayRef<PredCheck> Term);
1371 void getIntersectingVariants(
1372 const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1373 std::vector<TransVariant> &IntersectingVariants);
1374 void pushVariant(const TransVariant &VInfo, bool IsRead);
1377 } // end anonymous namespace
1379 // Return true if this predicate is mutually exclusive with a PredTerm. This
1380 // degenerates into checking if the predicate is mutually exclusive with any
1381 // predicate in the Term's conjunction.
1383 // All predicates associated with a given SchedRW are considered mutually
1384 // exclusive. This should work even if the conditions expressed by the
1385 // predicates are not exclusive because the predicates for a given SchedWrite
1386 // are always checked in the order they are defined in the .td file. Later
1387 // conditions implicitly negate any prior condition.
1388 bool PredTransitions::mutuallyExclusive(Record *PredDef,
1389 ArrayRef<Record *> Preds,
1390 ArrayRef<PredCheck> Term) {
1391 for (const PredCheck &PC: Term) {
1392 if (PC.Predicate == PredDef)
1393 return false;
1395 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
1396 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
1397 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1398 if (any_of(Variants, [PredDef](const Record *R) {
1399 return R->getValueAsDef("Predicate") == PredDef;
1400 })) {
1401 // To check if PredDef is mutually exclusive with PC we also need to
1402 // check that PC.Predicate is exclusive with all predicates from variant
1403 // we're expanding. Consider following RW sequence with two variants
1404 // (1 & 2), where A, B and C are predicates from corresponding SchedVars:
1406 // 1:A/B - 2:C/B
1408 // Here C is not mutually exclusive with variant (1), because A doesn't
1409 // exist in variant (2). This means we have possible transitions from A
1410 // to C and from A to B, and fully expanded sequence would look like:
1412 // if (A & C) return ...;
1413 // if (A & B) return ...;
1414 // if (B) return ...;
1416 // Now let's consider another sequence:
1418 // 1:A/B - 2:A/B
1420 // Here A in variant (2) is mutually exclusive with variant (1), because
1421 // A also exists in (2). This means A->B transition is impossible and
1422 // expanded sequence would look like:
1424 // if (A) return ...;
1425 // if (B) return ...;
1426 if (!llvm::is_contained(Preds, PC.Predicate))
1427 continue;
1428 return true;
1431 return false;
1434 static std::vector<Record *> getAllPredicates(ArrayRef<TransVariant> Variants,
1435 unsigned ProcId) {
1436 std::vector<Record *> Preds;
1437 for (auto &Variant : Variants) {
1438 if (!Variant.VarOrSeqDef->isSubClassOf("SchedVar"))
1439 continue;
1440 Preds.push_back(Variant.VarOrSeqDef->getValueAsDef("Predicate"));
1442 return Preds;
1445 // Populate IntersectingVariants with any variants or aliased sequences of the
1446 // given SchedRW whose processor indices and predicates are not mutually
1447 // exclusive with the given transition.
1448 void PredTransitions::getIntersectingVariants(
1449 const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1450 std::vector<TransVariant> &IntersectingVariants) {
1452 bool GenericRW = false;
1454 std::vector<TransVariant> Variants;
1455 if (SchedRW.HasVariants) {
1456 unsigned VarProcIdx = 0;
1457 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
1458 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
1459 VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
1461 if (VarProcIdx == 0 || VarProcIdx == TransVec[TransIdx].ProcIndex) {
1462 // Push each variant. Assign TransVecIdx later.
1463 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1464 for (Record *VarDef : VarDefs)
1465 Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
1466 if (VarProcIdx == 0)
1467 GenericRW = true;
1470 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
1471 AI != AE; ++AI) {
1472 // If either the SchedAlias itself or the SchedReadWrite that it aliases
1473 // to is defined within a processor model, constrain all variants to
1474 // that processor.
1475 unsigned AliasProcIdx = 0;
1476 if ((*AI)->getValueInit("SchedModel")->isComplete()) {
1477 Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
1478 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
1480 if (AliasProcIdx && AliasProcIdx != TransVec[TransIdx].ProcIndex)
1481 continue;
1482 if (!Variants.empty()) {
1483 const CodeGenProcModel &PM =
1484 *(SchedModels.procModelBegin() + AliasProcIdx);
1485 PrintFatalError((*AI)->getLoc(),
1486 "Multiple variants defined for processor " +
1487 PM.ModelName +
1488 " Ensure only one SchedAlias exists per RW.");
1491 const CodeGenSchedRW &AliasRW =
1492 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
1494 if (AliasRW.HasVariants) {
1495 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
1496 for (Record *VD : VarDefs)
1497 Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
1499 if (AliasRW.IsSequence)
1500 Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
1501 if (AliasProcIdx == 0)
1502 GenericRW = true;
1504 std::vector<Record *> AllPreds =
1505 getAllPredicates(Variants, TransVec[TransIdx].ProcIndex);
1506 for (TransVariant &Variant : Variants) {
1507 // Don't expand variants if the processor models don't intersect.
1508 // A zero processor index means any processor.
1509 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
1510 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
1511 if (mutuallyExclusive(PredDef, AllPreds, TransVec[TransIdx].PredTerm))
1512 continue;
1515 if (IntersectingVariants.empty()) {
1516 // The first variant builds on the existing transition.
1517 Variant.TransVecIdx = TransIdx;
1518 IntersectingVariants.push_back(Variant);
1520 else {
1521 // Push another copy of the current transition for more variants.
1522 Variant.TransVecIdx = TransVec.size();
1523 IntersectingVariants.push_back(Variant);
1524 TransVec.push_back(TransVec[TransIdx]);
1527 if (GenericRW && IntersectingVariants.empty()) {
1528 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
1529 "a matching predicate on any processor");
1533 // Push the Reads/Writes selected by this variant onto the PredTransition
1534 // specified by VInfo.
1535 void PredTransitions::
1536 pushVariant(const TransVariant &VInfo, bool IsRead) {
1537 PredTransition &Trans = TransVec[VInfo.TransVecIdx];
1539 // If this operand transition is reached through a processor-specific alias,
1540 // then the whole transition is specific to this processor.
1541 IdxVec SelectedRWs;
1542 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
1543 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
1544 Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
1545 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
1546 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
1548 else {
1549 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
1550 "variant must be a SchedVariant or aliased WriteSequence");
1551 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
1554 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
1556 SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
1557 ? Trans.ReadSequences : Trans.WriteSequences;
1558 if (SchedRW.IsVariadic) {
1559 unsigned OperIdx = RWSequences.size()-1;
1560 // Make N-1 copies of this transition's last sequence.
1561 RWSequences.reserve(RWSequences.size() + SelectedRWs.size() - 1);
1562 RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
1563 RWSequences[OperIdx]);
1564 // Push each of the N elements of the SelectedRWs onto a copy of the last
1565 // sequence (split the current operand into N operands).
1566 // Note that write sequences should be expanded within this loop--the entire
1567 // sequence belongs to a single operand.
1568 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1569 RWI != RWE; ++RWI, ++OperIdx) {
1570 IdxVec ExpandedRWs;
1571 if (IsRead)
1572 ExpandedRWs.push_back(*RWI);
1573 else
1574 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1575 llvm::append_range(RWSequences[OperIdx], ExpandedRWs);
1577 assert(OperIdx == RWSequences.size() && "missed a sequence");
1579 else {
1580 // Push this transition's expanded sequence onto this transition's last
1581 // sequence (add to the current operand's sequence).
1582 SmallVectorImpl<unsigned> &Seq = RWSequences.back();
1583 IdxVec ExpandedRWs;
1584 for (unsigned int SelectedRW : SelectedRWs) {
1585 if (IsRead)
1586 ExpandedRWs.push_back(SelectedRW);
1587 else
1588 SchedModels.expandRWSequence(SelectedRW, ExpandedRWs, IsRead);
1590 llvm::append_range(Seq, ExpandedRWs);
1594 // RWSeq is a sequence of all Reads or all Writes for the next read or write
1595 // operand. StartIdx is an index into TransVec where partial results
1596 // starts. RWSeq must be applied to all transitions between StartIdx and the end
1597 // of TransVec.
1598 bool PredTransitions::substituteVariantOperand(
1599 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
1600 bool Subst = false;
1601 // Visit each original RW within the current sequence.
1602 for (unsigned int RWI : RWSeq) {
1603 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(RWI, IsRead);
1604 // Push this RW on all partial PredTransitions or distribute variants.
1605 // New PredTransitions may be pushed within this loop which should not be
1606 // revisited (TransEnd must be loop invariant).
1607 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
1608 TransIdx != TransEnd; ++TransIdx) {
1609 // Distribute this partial PredTransition across intersecting variants.
1610 // This will push a copies of TransVec[TransIdx] on the back of TransVec.
1611 std::vector<TransVariant> IntersectingVariants;
1612 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
1613 // Now expand each variant on top of its copy of the transition.
1614 for (const TransVariant &IV : IntersectingVariants)
1615 pushVariant(IV, IsRead);
1616 if (IntersectingVariants.empty()) {
1617 if (IsRead)
1618 TransVec[TransIdx].ReadSequences.back().push_back(RWI);
1619 else
1620 TransVec[TransIdx].WriteSequences.back().push_back(RWI);
1621 continue;
1622 } else {
1623 Subst = true;
1627 return Subst;
1630 // For each variant of a Read/Write in Trans, substitute the sequence of
1631 // Read/Writes guarded by the variant. This is exponential in the number of
1632 // variant Read/Writes, but in practice detection of mutually exclusive
1633 // predicates should result in linear growth in the total number variants.
1635 // This is one step in a breadth-first search of nested variants.
1636 bool PredTransitions::substituteVariants(const PredTransition &Trans) {
1637 // Build up a set of partial results starting at the back of
1638 // PredTransitions. Remember the first new transition.
1639 unsigned StartIdx = TransVec.size();
1640 bool Subst = false;
1641 assert(Trans.ProcIndex != 0);
1642 TransVec.emplace_back(Trans.PredTerm, Trans.ProcIndex);
1644 // Visit each original write sequence.
1645 for (const auto &WriteSequence : Trans.WriteSequences) {
1646 // Push a new (empty) write sequence onto all partial Transitions.
1647 for (std::vector<PredTransition>::iterator I =
1648 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1649 I->WriteSequences.emplace_back();
1651 Subst |=
1652 substituteVariantOperand(WriteSequence, /*IsRead=*/false, StartIdx);
1654 // Visit each original read sequence.
1655 for (const auto &ReadSequence : Trans.ReadSequences) {
1656 // Push a new (empty) read sequence onto all partial Transitions.
1657 for (std::vector<PredTransition>::iterator I =
1658 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1659 I->ReadSequences.emplace_back();
1661 Subst |= substituteVariantOperand(ReadSequence, /*IsRead=*/true, StartIdx);
1663 return Subst;
1666 static void addSequences(CodeGenSchedModels &SchedModels,
1667 const SmallVectorImpl<SmallVector<unsigned, 4>> &Seqs,
1668 IdxVec &Result, bool IsRead) {
1669 for (const auto &S : Seqs)
1670 if (!S.empty())
1671 Result.push_back(SchedModels.findOrInsertRW(S, IsRead));
1674 #ifndef NDEBUG
1675 static void dumpRecVec(const RecVec &RV) {
1676 for (const Record *R : RV)
1677 dbgs() << R->getName() << ", ";
1679 #endif
1681 static void dumpTransition(const CodeGenSchedModels &SchedModels,
1682 const CodeGenSchedClass &FromSC,
1683 const CodeGenSchedTransition &SCTrans,
1684 const RecVec &Preds) {
1685 LLVM_DEBUG(dbgs() << "Adding transition from " << FromSC.Name << "("
1686 << FromSC.Index << ") to "
1687 << SchedModels.getSchedClass(SCTrans.ToClassIdx).Name << "("
1688 << SCTrans.ToClassIdx << ") on pred term: (";
1689 dumpRecVec(Preds);
1690 dbgs() << ") on processor (" << SCTrans.ProcIndex << ")\n");
1692 // Create a new SchedClass for each variant found by inferFromRW. Pass
1693 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
1694 unsigned FromClassIdx,
1695 CodeGenSchedModels &SchedModels) {
1696 // For each PredTransition, create a new CodeGenSchedTransition, which usually
1697 // requires creating a new SchedClass.
1698 for (const auto &LastTransition : LastTransitions) {
1699 // Variant expansion (substituteVariants) may create unconditional
1700 // transitions. We don't need to build sched classes for them.
1701 if (LastTransition.PredTerm.empty())
1702 continue;
1703 IdxVec OperWritesVariant, OperReadsVariant;
1704 addSequences(SchedModels, LastTransition.WriteSequences, OperWritesVariant,
1705 false);
1706 addSequences(SchedModels, LastTransition.ReadSequences, OperReadsVariant,
1707 true);
1708 CodeGenSchedTransition SCTrans;
1710 // Transition should not contain processor indices already assigned to
1711 // InstRWs in this scheduling class.
1712 const CodeGenSchedClass &FromSC = SchedModels.getSchedClass(FromClassIdx);
1713 if (FromSC.InstRWProcIndices.count(LastTransition.ProcIndex))
1714 continue;
1715 SCTrans.ProcIndex = LastTransition.ProcIndex;
1716 SCTrans.ToClassIdx =
1717 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
1718 OperReadsVariant, LastTransition.ProcIndex);
1720 // The final PredTerm is unique set of predicates guarding the transition.
1721 RecVec Preds;
1722 transform(LastTransition.PredTerm, std::back_inserter(Preds),
1723 [](const PredCheck &P) { return P.Predicate; });
1724 Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
1725 dumpTransition(SchedModels, FromSC, SCTrans, Preds);
1726 SCTrans.PredTerm = std::move(Preds);
1727 SchedModels.getSchedClass(FromClassIdx)
1728 .Transitions.push_back(std::move(SCTrans));
1732 std::vector<unsigned> CodeGenSchedModels::getAllProcIndices() const {
1733 std::vector<unsigned> ProcIdVec;
1734 for (const auto &PM : ProcModelMap)
1735 if (PM.second != 0)
1736 ProcIdVec.push_back(PM.second);
1737 // The order of the keys (Record pointers) of ProcModelMap are not stable.
1738 // Sort to stabalize the values.
1739 llvm::sort(ProcIdVec);
1740 return ProcIdVec;
1743 static std::vector<PredTransition>
1744 makePerProcessorTransitions(const PredTransition &Trans,
1745 ArrayRef<unsigned> ProcIndices) {
1746 std::vector<PredTransition> PerCpuTransVec;
1747 for (unsigned ProcId : ProcIndices) {
1748 assert(ProcId != 0);
1749 PerCpuTransVec.push_back(Trans);
1750 PerCpuTransVec.back().ProcIndex = ProcId;
1752 return PerCpuTransVec;
1755 // Create new SchedClasses for the given ReadWrite list. If any of the
1756 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
1757 // of the ReadWrite list, following Aliases if necessary.
1758 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
1759 ArrayRef<unsigned> OperReads,
1760 unsigned FromClassIdx,
1761 ArrayRef<unsigned> ProcIndices) {
1762 LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
1763 dbgs() << ") ");
1764 // Create a seed transition with an empty PredTerm and the expanded sequences
1765 // of SchedWrites for the current SchedClass.
1766 std::vector<PredTransition> LastTransitions;
1767 LastTransitions.emplace_back();
1769 for (unsigned WriteIdx : OperWrites) {
1770 IdxVec WriteSeq;
1771 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
1772 LastTransitions[0].WriteSequences.emplace_back();
1773 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
1774 Seq.append(WriteSeq.begin(), WriteSeq.end());
1775 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1777 LLVM_DEBUG(dbgs() << " Reads: ");
1778 for (unsigned ReadIdx : OperReads) {
1779 IdxVec ReadSeq;
1780 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
1781 LastTransitions[0].ReadSequences.emplace_back();
1782 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
1783 Seq.append(ReadSeq.begin(), ReadSeq.end());
1784 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1786 LLVM_DEBUG(dbgs() << '\n');
1788 LastTransitions = makePerProcessorTransitions(
1789 LastTransitions[0], llvm::is_contained(ProcIndices, 0)
1790 ? ArrayRef<unsigned>(getAllProcIndices())
1791 : ProcIndices);
1792 // Collect all PredTransitions for individual operands.
1793 // Iterate until no variant writes remain.
1794 bool SubstitutedAny;
1795 do {
1796 SubstitutedAny = false;
1797 PredTransitions Transitions(*this);
1798 for (const PredTransition &Trans : LastTransitions)
1799 SubstitutedAny |= Transitions.substituteVariants(Trans);
1800 LLVM_DEBUG(Transitions.dump());
1801 LastTransitions.swap(Transitions.TransVec);
1802 } while (SubstitutedAny);
1804 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to
1805 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
1806 inferFromTransitions(LastTransitions, FromClassIdx, *this);
1809 // Check if any processor resource group contains all resource records in
1810 // SubUnits.
1811 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
1812 for (Record *ProcResourceDef : PM.ProcResourceDefs) {
1813 if (!ProcResourceDef->isSubClassOf("ProcResGroup"))
1814 continue;
1815 RecVec SuperUnits = ProcResourceDef->getValueAsListOfDefs("Resources");
1816 RecIter RI = SubUnits.begin(), RE = SubUnits.end();
1817 for ( ; RI != RE; ++RI) {
1818 if (!is_contained(SuperUnits, *RI)) {
1819 break;
1822 if (RI == RE)
1823 return true;
1825 return false;
1828 // Verify that overlapping groups have a common supergroup.
1829 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
1830 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1831 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1832 continue;
1833 RecVec CheckUnits =
1834 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1835 for (unsigned j = i+1; j < e; ++j) {
1836 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
1837 continue;
1838 RecVec OtherUnits =
1839 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
1840 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
1841 OtherUnits.begin(), OtherUnits.end())
1842 != CheckUnits.end()) {
1843 // CheckUnits and OtherUnits overlap
1844 llvm::append_range(OtherUnits, CheckUnits);
1845 if (!hasSuperGroup(OtherUnits, PM)) {
1846 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
1847 "proc resource group overlaps with "
1848 + PM.ProcResourceDefs[j]->getName()
1849 + " but no supergroup contains both.");
1856 // Collect all the RegisterFile definitions available in this target.
1857 void CodeGenSchedModels::collectRegisterFiles() {
1858 RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");
1860 // RegisterFiles is the vector of CodeGenRegisterFile.
1861 for (Record *RF : RegisterFileDefs) {
1862 // For each register file definition, construct a CodeGenRegisterFile object
1863 // and add it to the appropriate scheduling model.
1864 CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
1865 PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
1866 CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
1867 CGRF.MaxMovesEliminatedPerCycle =
1868 RF->getValueAsInt("MaxMovesEliminatedPerCycle");
1869 CGRF.AllowZeroMoveEliminationOnly =
1870 RF->getValueAsBit("AllowZeroMoveEliminationOnly");
1872 // Now set the number of physical registers as well as the cost of registers
1873 // in each register class.
1874 CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
1875 if (!CGRF.NumPhysRegs) {
1876 PrintFatalError(RF->getLoc(),
1877 "Invalid RegisterFile with zero physical registers");
1880 RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
1881 std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
1882 ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination");
1883 for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
1884 int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
1886 bool AllowMoveElim = false;
1887 if (MoveElimInfo->size() > I) {
1888 BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
1889 AllowMoveElim = Val->getValue();
1892 CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
1897 // Collect and sort WriteRes, ReadAdvance, and ProcResources.
1898 void CodeGenSchedModels::collectProcResources() {
1899 ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
1900 ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1902 // Add any subtarget-specific SchedReadWrites that are directly associated
1903 // with processor resources. Refer to the parent SchedClass's ProcIndices to
1904 // determine which processors they apply to.
1905 for (const CodeGenSchedClass &SC :
1906 make_range(schedClassBegin(), schedClassEnd())) {
1907 if (SC.ItinClassDef) {
1908 collectItinProcResources(SC.ItinClassDef);
1909 continue;
1912 // This class may have a default ReadWrite list which can be overriden by
1913 // InstRW definitions.
1914 for (Record *RW : SC.InstRWs) {
1915 Record *RWModelDef = RW->getValueAsDef("SchedModel");
1916 unsigned PIdx = getProcModel(RWModelDef).Index;
1917 IdxVec Writes, Reads;
1918 findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1919 collectRWResources(Writes, Reads, PIdx);
1922 collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
1924 // Add resources separately defined by each subtarget.
1925 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
1926 for (Record *WR : WRDefs) {
1927 Record *ModelDef = WR->getValueAsDef("SchedModel");
1928 addWriteRes(WR, getProcModel(ModelDef).Index);
1930 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
1931 for (Record *SWR : SWRDefs) {
1932 Record *ModelDef = SWR->getValueAsDef("SchedModel");
1933 addWriteRes(SWR, getProcModel(ModelDef).Index);
1935 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
1936 for (Record *RA : RADefs) {
1937 Record *ModelDef = RA->getValueAsDef("SchedModel");
1938 addReadAdvance(RA, getProcModel(ModelDef).Index);
1940 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
1941 for (Record *SRA : SRADefs) {
1942 if (SRA->getValueInit("SchedModel")->isComplete()) {
1943 Record *ModelDef = SRA->getValueAsDef("SchedModel");
1944 addReadAdvance(SRA, getProcModel(ModelDef).Index);
1947 // Add ProcResGroups that are defined within this processor model, which may
1948 // not be directly referenced but may directly specify a buffer size.
1949 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1950 for (Record *PRG : ProcResGroups) {
1951 if (!PRG->getValueInit("SchedModel")->isComplete())
1952 continue;
1953 CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
1954 if (!is_contained(PM.ProcResourceDefs, PRG))
1955 PM.ProcResourceDefs.push_back(PRG);
1957 // Add ProcResourceUnits unconditionally.
1958 for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
1959 if (!PRU->getValueInit("SchedModel")->isComplete())
1960 continue;
1961 CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
1962 if (!is_contained(PM.ProcResourceDefs, PRU))
1963 PM.ProcResourceDefs.push_back(PRU);
1965 // Finalize each ProcModel by sorting the record arrays.
1966 for (CodeGenProcModel &PM : ProcModels) {
1967 llvm::sort(PM.WriteResDefs, LessRecord());
1968 llvm::sort(PM.ReadAdvanceDefs, LessRecord());
1969 llvm::sort(PM.ProcResourceDefs, LessRecord());
1970 LLVM_DEBUG(
1971 PM.dump(); dbgs() << "WriteResDefs: "; for (auto WriteResDef
1972 : PM.WriteResDefs) {
1973 if (WriteResDef->isSubClassOf("WriteRes"))
1974 dbgs() << WriteResDef->getValueAsDef("WriteType")->getName() << " ";
1975 else
1976 dbgs() << WriteResDef->getName() << " ";
1977 } dbgs() << "\nReadAdvanceDefs: ";
1978 for (Record *ReadAdvanceDef
1979 : PM.ReadAdvanceDefs) {
1980 if (ReadAdvanceDef->isSubClassOf("ReadAdvance"))
1981 dbgs() << ReadAdvanceDef->getValueAsDef("ReadType")->getName()
1982 << " ";
1983 else
1984 dbgs() << ReadAdvanceDef->getName() << " ";
1985 } dbgs()
1986 << "\nProcResourceDefs: ";
1987 for (Record *ProcResourceDef
1988 : PM.ProcResourceDefs) {
1989 dbgs() << ProcResourceDef->getName() << " ";
1990 } dbgs()
1991 << '\n');
1992 verifyProcResourceGroups(PM);
1995 ProcResourceDefs.clear();
1996 ProcResGroups.clear();
1999 void CodeGenSchedModels::checkCompleteness() {
2000 bool Complete = true;
2001 for (const CodeGenProcModel &ProcModel : procModels()) {
2002 const bool HasItineraries = ProcModel.hasItineraries();
2003 if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
2004 continue;
2005 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
2006 if (Inst->hasNoSchedulingInfo)
2007 continue;
2008 if (ProcModel.isUnsupported(*Inst))
2009 continue;
2010 unsigned SCIdx = getSchedClassIdx(*Inst);
2011 if (!SCIdx) {
2012 if (Inst->TheDef->isValueUnset("SchedRW")) {
2013 PrintError(Inst->TheDef->getLoc(),
2014 "No schedule information for instruction '" +
2015 Inst->TheDef->getName() + "' in SchedMachineModel '" +
2016 ProcModel.ModelDef->getName() + "'");
2017 Complete = false;
2019 continue;
2022 const CodeGenSchedClass &SC = getSchedClass(SCIdx);
2023 if (!SC.Writes.empty())
2024 continue;
2025 if (HasItineraries && SC.ItinClassDef != nullptr &&
2026 SC.ItinClassDef->getName() != "NoItinerary")
2027 continue;
2029 const RecVec &InstRWs = SC.InstRWs;
2030 auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
2031 return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
2033 if (I == InstRWs.end()) {
2034 PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName +
2035 "' lacks information for '" +
2036 Inst->TheDef->getName() + "'");
2037 Complete = false;
2041 if (!Complete) {
2042 errs() << "\n\nIncomplete schedule models found.\n"
2043 << "- Consider setting 'CompleteModel = 0' while developing new models.\n"
2044 << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
2045 << "- Instructions should usually have Sched<[...]> as a superclass, "
2046 "you may temporarily use an empty list.\n"
2047 << "- Instructions related to unsupported features can be excluded with "
2048 "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
2049 "processor model.\n\n";
2050 PrintFatalError("Incomplete schedule model");
2054 // Collect itinerary class resources for each processor.
2055 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
2056 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
2057 const CodeGenProcModel &PM = ProcModels[PIdx];
2058 // For all ItinRW entries.
2059 bool HasMatch = false;
2060 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
2061 II != IE; ++II) {
2062 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
2063 if (!llvm::is_contained(Matched, ItinClassDef))
2064 continue;
2065 if (HasMatch)
2066 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
2067 + ItinClassDef->getName()
2068 + " in ItinResources for " + PM.ModelName);
2069 HasMatch = true;
2070 IdxVec Writes, Reads;
2071 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
2072 collectRWResources(Writes, Reads, PIdx);
2077 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
2078 ArrayRef<unsigned> ProcIndices) {
2079 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
2080 if (SchedRW.TheDef) {
2081 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
2082 for (unsigned Idx : ProcIndices)
2083 addWriteRes(SchedRW.TheDef, Idx);
2085 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
2086 for (unsigned Idx : ProcIndices)
2087 addReadAdvance(SchedRW.TheDef, Idx);
2090 for (auto *Alias : SchedRW.Aliases) {
2091 IdxVec AliasProcIndices;
2092 if (Alias->getValueInit("SchedModel")->isComplete()) {
2093 AliasProcIndices.push_back(
2094 getProcModel(Alias->getValueAsDef("SchedModel")).Index);
2095 } else
2096 AliasProcIndices = ProcIndices;
2097 const CodeGenSchedRW &AliasRW = getSchedRW(Alias->getValueAsDef("AliasRW"));
2098 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
2100 IdxVec ExpandedRWs;
2101 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
2102 for (unsigned int ExpandedRW : ExpandedRWs) {
2103 collectRWResources(ExpandedRW, IsRead, AliasProcIndices);
2108 // Collect resources for a set of read/write types and processor indices.
2109 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
2110 ArrayRef<unsigned> Reads,
2111 ArrayRef<unsigned> ProcIndices) {
2112 for (unsigned Idx : Writes)
2113 collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
2115 for (unsigned Idx : Reads)
2116 collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
2119 // Find the processor's resource units for this kind of resource.
2120 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
2121 const CodeGenProcModel &PM,
2122 ArrayRef<SMLoc> Loc) const {
2123 if (ProcResKind->isSubClassOf("ProcResourceUnits"))
2124 return ProcResKind;
2126 Record *ProcUnitDef = nullptr;
2127 assert(!ProcResourceDefs.empty());
2128 assert(!ProcResGroups.empty());
2130 for (Record *ProcResDef : ProcResourceDefs) {
2131 if (ProcResDef->getValueAsDef("Kind") == ProcResKind
2132 && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
2133 if (ProcUnitDef) {
2134 PrintFatalError(Loc,
2135 "Multiple ProcessorResourceUnits associated with "
2136 + ProcResKind->getName());
2138 ProcUnitDef = ProcResDef;
2141 for (Record *ProcResGroup : ProcResGroups) {
2142 if (ProcResGroup == ProcResKind
2143 && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
2144 if (ProcUnitDef) {
2145 PrintFatalError(Loc,
2146 "Multiple ProcessorResourceUnits associated with "
2147 + ProcResKind->getName());
2149 ProcUnitDef = ProcResGroup;
2152 if (!ProcUnitDef) {
2153 PrintFatalError(Loc,
2154 "No ProcessorResources associated with "
2155 + ProcResKind->getName());
2157 return ProcUnitDef;
2160 // Iteratively add a resource and its super resources.
2161 void CodeGenSchedModels::addProcResource(Record *ProcResKind,
2162 CodeGenProcModel &PM,
2163 ArrayRef<SMLoc> Loc) {
2164 while (true) {
2165 Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
2167 // See if this ProcResource is already associated with this processor.
2168 if (is_contained(PM.ProcResourceDefs, ProcResUnits))
2169 return;
2171 PM.ProcResourceDefs.push_back(ProcResUnits);
2172 if (ProcResUnits->isSubClassOf("ProcResGroup"))
2173 return;
2175 if (!ProcResUnits->getValueInit("Super")->isComplete())
2176 return;
2178 ProcResKind = ProcResUnits->getValueAsDef("Super");
2182 // Add resources for a SchedWrite to this processor if they don't exist.
2183 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
2184 assert(PIdx && "don't add resources to an invalid Processor model");
2186 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
2187 if (is_contained(WRDefs, ProcWriteResDef))
2188 return;
2189 WRDefs.push_back(ProcWriteResDef);
2191 // Visit ProcResourceKinds referenced by the newly discovered WriteRes.
2192 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
2193 for (auto *ProcResDef : ProcResDefs) {
2194 addProcResource(ProcResDef, ProcModels[PIdx], ProcWriteResDef->getLoc());
2198 // Add resources for a ReadAdvance to this processor if they don't exist.
2199 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
2200 unsigned PIdx) {
2201 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
2202 if (is_contained(RADefs, ProcReadAdvanceDef))
2203 return;
2204 RADefs.push_back(ProcReadAdvanceDef);
2207 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
2208 RecIter PRPos = find(ProcResourceDefs, PRDef);
2209 if (PRPos == ProcResourceDefs.end())
2210 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
2211 "the ProcResources list for " + ModelName);
2212 // Idx=0 is reserved for invalid.
2213 return 1 + (PRPos - ProcResourceDefs.begin());
2216 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
2217 for (const Record *TheDef : UnsupportedFeaturesDefs) {
2218 for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
2219 if (TheDef->getName() == PredDef->getName())
2220 return true;
2223 return false;
2226 #ifndef NDEBUG
2227 void CodeGenProcModel::dump() const {
2228 dbgs() << Index << ": " << ModelName << " "
2229 << (ModelDef ? ModelDef->getName() : "inferred") << " "
2230 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
2233 void CodeGenSchedRW::dump() const {
2234 dbgs() << Name << (IsVariadic ? " (V) " : " ");
2235 if (IsSequence) {
2236 dbgs() << "(";
2237 dumpIdxVec(Sequence);
2238 dbgs() << ")";
2242 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
2243 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
2244 << " Writes: ";
2245 for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
2246 SchedModels->getSchedWrite(Writes[i]).dump();
2247 if (i < N-1) {
2248 dbgs() << '\n';
2249 dbgs().indent(10);
2252 dbgs() << "\n Reads: ";
2253 for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
2254 SchedModels->getSchedRead(Reads[i]).dump();
2255 if (i < N-1) {
2256 dbgs() << '\n';
2257 dbgs().indent(10);
2260 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices);
2261 if (!Transitions.empty()) {
2262 dbgs() << "\n Transitions for Proc ";
2263 for (const CodeGenSchedTransition &Transition : Transitions) {
2264 dbgs() << Transition.ProcIndex << ", ";
2267 dbgs() << '\n';
2270 void PredTransitions::dump() const {
2271 dbgs() << "Expanded Variants:\n";
2272 for (const auto &TI : TransVec) {
2273 dbgs() << "{";
2274 ListSeparator LS;
2275 for (const PredCheck &PC : TI.PredTerm)
2276 dbgs() << LS << SchedModels.getSchedRW(PC.RWIdx, PC.IsRead).Name << ":"
2277 << PC.Predicate->getName();
2278 dbgs() << "},\n => {";
2279 for (SmallVectorImpl<SmallVector<unsigned, 4>>::const_iterator
2280 WSI = TI.WriteSequences.begin(),
2281 WSE = TI.WriteSequences.end();
2282 WSI != WSE; ++WSI) {
2283 dbgs() << "(";
2284 ListSeparator LS;
2285 for (unsigned N : *WSI)
2286 dbgs() << LS << SchedModels.getSchedWrite(N).Name;
2287 dbgs() << "),";
2289 dbgs() << "}\n";
2292 #endif // NDEBUG