1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file is part of the X86 Disassembler Emitter.
10 // It contains the implementation of a single recognizable instruction.
11 // Documentation for the disassembler emitter in general can be found in
12 // X86DisassemblerEmitter.h.
14 //===----------------------------------------------------------------------===//
16 #include "X86RecognizableInstr.h"
17 #include "X86DisassemblerShared.h"
18 #include "X86DisassemblerTables.h"
19 #include "X86ModRMFilters.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/TableGen/Record.h"
25 using namespace X86Disassembler
;
27 std::string
X86Disassembler::getMnemonic(const CodeGenInstruction
*I
,
29 std::string AsmString
= I
->FlattenAsmStringVariants(I
->AsmString
, Variant
);
30 StringRef
Mnemonic(AsmString
);
31 // Extract a mnemonic assuming it's separated by \t
32 Mnemonic
= Mnemonic
.take_until([](char C
) { return C
== '\t'; });
34 // Special case: CMOVCC, JCC, SETCC have "${cond}" in mnemonic.
35 // Replace it with "CC" in-place.
36 size_t CondPos
= Mnemonic
.find("${cond}");
37 if (CondPos
!= StringRef::npos
)
38 Mnemonic
= AsmString
.replace(CondPos
, StringRef::npos
, "CC");
39 return Mnemonic
.upper();
42 bool X86Disassembler::isRegisterOperand(const Record
*Rec
) {
43 return Rec
->isSubClassOf("RegisterClass") ||
44 Rec
->isSubClassOf("RegisterOperand");
47 bool X86Disassembler::isMemoryOperand(const Record
*Rec
) {
48 return Rec
->isSubClassOf("Operand") &&
49 Rec
->getValueAsString("OperandType") == "OPERAND_MEMORY";
52 bool X86Disassembler::isImmediateOperand(const Record
*Rec
) {
53 return Rec
->isSubClassOf("Operand") &&
54 Rec
->getValueAsString("OperandType") == "OPERAND_IMMEDIATE";
57 unsigned X86Disassembler::getRegOperandSize(const Record
*RegRec
) {
58 if (RegRec
->isSubClassOf("RegisterClass"))
59 return RegRec
->getValueAsInt("Alignment");
60 if (RegRec
->isSubClassOf("RegisterOperand"))
61 return RegRec
->getValueAsDef("RegClass")->getValueAsInt("Alignment");
63 llvm_unreachable("Register operand's size not known!");
66 unsigned X86Disassembler::getMemOperandSize(const Record
*MemRec
) {
67 if (MemRec
->isSubClassOf("X86MemOperand"))
68 return MemRec
->getValueAsInt("Size");
70 llvm_unreachable("Memory operand's size not known!");
73 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
74 /// Useful for switch statements and the like.
76 /// @param init - A reference to the BitsInit to be decoded.
77 /// @return - The field, with the first bit in the BitsInit as the lowest
79 static uint8_t byteFromBitsInit(BitsInit
&init
) {
80 int width
= init
.getNumBits();
82 assert(width
<= 8 && "Field is too large for uint8_t!");
89 for (index
= 0; index
< width
; index
++) {
90 if (cast
<BitInit
>(init
.getBit(index
))->getValue())
99 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
100 /// name of the field.
102 /// @param rec - The record from which to extract the value.
103 /// @param name - The name of the field in the record.
104 /// @return - The field, as translated by byteFromBitsInit().
105 static uint8_t byteFromRec(const Record
*rec
, StringRef name
) {
106 BitsInit
*bits
= rec
->getValueAsBitsInit(name
);
107 return byteFromBitsInit(*bits
);
110 RecognizableInstrBase::RecognizableInstrBase(const CodeGenInstruction
&insn
) {
111 const Record
*Rec
= insn
.TheDef
;
112 assert(Rec
->isSubClassOf("X86Inst") && "Not a X86 Instruction");
113 OpPrefix
= byteFromRec(Rec
, "OpPrefixBits");
114 OpMap
= byteFromRec(Rec
, "OpMapBits");
115 Opcode
= byteFromRec(Rec
, "Opcode");
116 Form
= byteFromRec(Rec
, "FormBits");
117 Encoding
= byteFromRec(Rec
, "OpEncBits");
118 OpSize
= byteFromRec(Rec
, "OpSizeBits");
119 AdSize
= byteFromRec(Rec
, "AdSizeBits");
120 HasREX_W
= Rec
->getValueAsBit("hasREX_W");
121 HasVEX_4V
= Rec
->getValueAsBit("hasVEX_4V");
122 IgnoresW
= Rec
->getValueAsBit("IgnoresW");
123 IgnoresVEX_L
= Rec
->getValueAsBit("ignoresVEX_L");
124 HasEVEX_L2
= Rec
->getValueAsBit("hasEVEX_L2");
125 HasEVEX_K
= Rec
->getValueAsBit("hasEVEX_K");
126 HasEVEX_KZ
= Rec
->getValueAsBit("hasEVEX_Z");
127 HasEVEX_B
= Rec
->getValueAsBit("hasEVEX_B");
128 IsCodeGenOnly
= Rec
->getValueAsBit("isCodeGenOnly");
129 IsAsmParserOnly
= Rec
->getValueAsBit("isAsmParserOnly");
130 ForceDisassemble
= Rec
->getValueAsBit("ForceDisassemble");
131 CD8_Scale
= byteFromRec(Rec
, "CD8_Scale");
132 HasVEX_L
= Rec
->getValueAsBit("hasVEX_L");
134 byteFromRec(Rec
, "explicitOpPrefixBits") == X86Local::ExplicitREX2
;
136 EncodeRC
= HasEVEX_B
&&
137 (Form
== X86Local::MRMDestReg
|| Form
== X86Local::MRMSrcReg
);
140 bool RecognizableInstrBase::shouldBeEmitted() const {
141 return Form
!= X86Local::Pseudo
&& (!IsCodeGenOnly
|| ForceDisassemble
) &&
145 RecognizableInstr::RecognizableInstr(DisassemblerTables
&tables
,
146 const CodeGenInstruction
&insn
,
148 : RecognizableInstrBase(insn
), Rec(insn
.TheDef
), Name(Rec
->getName().str()),
149 Is32Bit(false), Is64Bit(false), Operands(&insn
.Operands
.OperandList
),
150 UID(uid
), Spec(&tables
.specForUID(uid
)) {
151 // Check for 64-bit inst which does not require REX
152 // FIXME: Is there some better way to check for In64BitMode?
153 std::vector
<Record
*> Predicates
= Rec
->getValueAsListOfDefs("Predicates");
154 for (unsigned i
= 0, e
= Predicates
.size(); i
!= e
; ++i
) {
155 if (Predicates
[i
]->getName().contains("Not64Bit") ||
156 Predicates
[i
]->getName().contains("In32Bit")) {
160 if (Predicates
[i
]->getName().contains("In64Bit")) {
167 void RecognizableInstr::processInstr(DisassemblerTables
&tables
,
168 const CodeGenInstruction
&insn
,
170 if (!insn
.TheDef
->isSubClassOf("X86Inst"))
172 RecognizableInstr
recogInstr(tables
, insn
, uid
);
174 if (!recogInstr
.shouldBeEmitted())
176 recogInstr
.emitInstructionSpecifier();
177 recogInstr
.emitDecodePath(tables
);
181 (HasEVEX_KZ && HasEVEX_B \
183 : (HasEVEX_K && HasEVEX_B \
185 : (HasEVEX_KZ ? n##_KZ \
186 : (HasEVEX_K ? n##_K : (HasEVEX_B ? n##_B : n)))))
188 InstructionContext
RecognizableInstr::insnContext() const {
189 InstructionContext insnContext
;
191 if (Encoding
== X86Local::EVEX
) {
192 if (HasVEX_L
&& HasEVEX_L2
) {
193 errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name
<< "\n";
194 llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
197 if (!EncodeRC
&& HasVEX_L
&& HasREX_W
) {
198 if (OpPrefix
== X86Local::PD
)
199 insnContext
= EVEX_KB(IC_EVEX_L_W_OPSIZE
);
200 else if (OpPrefix
== X86Local::XS
)
201 insnContext
= EVEX_KB(IC_EVEX_L_W_XS
);
202 else if (OpPrefix
== X86Local::XD
)
203 insnContext
= EVEX_KB(IC_EVEX_L_W_XD
);
204 else if (OpPrefix
== X86Local::PS
)
205 insnContext
= EVEX_KB(IC_EVEX_L_W
);
207 errs() << "Instruction does not use a prefix: " << Name
<< "\n";
208 llvm_unreachable("Invalid prefix");
210 } else if (!EncodeRC
&& HasVEX_L
) {
212 if (OpPrefix
== X86Local::PD
)
213 insnContext
= EVEX_KB(IC_EVEX_L_OPSIZE
);
214 else if (OpPrefix
== X86Local::XS
)
215 insnContext
= EVEX_KB(IC_EVEX_L_XS
);
216 else if (OpPrefix
== X86Local::XD
)
217 insnContext
= EVEX_KB(IC_EVEX_L_XD
);
218 else if (OpPrefix
== X86Local::PS
)
219 insnContext
= EVEX_KB(IC_EVEX_L
);
221 errs() << "Instruction does not use a prefix: " << Name
<< "\n";
222 llvm_unreachable("Invalid prefix");
224 } else if (!EncodeRC
&& HasEVEX_L2
&& HasREX_W
) {
226 if (OpPrefix
== X86Local::PD
)
227 insnContext
= EVEX_KB(IC_EVEX_L2_W_OPSIZE
);
228 else if (OpPrefix
== X86Local::XS
)
229 insnContext
= EVEX_KB(IC_EVEX_L2_W_XS
);
230 else if (OpPrefix
== X86Local::XD
)
231 insnContext
= EVEX_KB(IC_EVEX_L2_W_XD
);
232 else if (OpPrefix
== X86Local::PS
)
233 insnContext
= EVEX_KB(IC_EVEX_L2_W
);
235 errs() << "Instruction does not use a prefix: " << Name
<< "\n";
236 llvm_unreachable("Invalid prefix");
238 } else if (!EncodeRC
&& HasEVEX_L2
) {
240 if (OpPrefix
== X86Local::PD
)
241 insnContext
= EVEX_KB(IC_EVEX_L2_OPSIZE
);
242 else if (OpPrefix
== X86Local::XD
)
243 insnContext
= EVEX_KB(IC_EVEX_L2_XD
);
244 else if (OpPrefix
== X86Local::XS
)
245 insnContext
= EVEX_KB(IC_EVEX_L2_XS
);
246 else if (OpPrefix
== X86Local::PS
)
247 insnContext
= EVEX_KB(IC_EVEX_L2
);
249 errs() << "Instruction does not use a prefix: " << Name
<< "\n";
250 llvm_unreachable("Invalid prefix");
252 } else if (HasREX_W
) {
254 if (OpPrefix
== X86Local::PD
)
255 insnContext
= EVEX_KB(IC_EVEX_W_OPSIZE
);
256 else if (OpPrefix
== X86Local::XS
)
257 insnContext
= EVEX_KB(IC_EVEX_W_XS
);
258 else if (OpPrefix
== X86Local::XD
)
259 insnContext
= EVEX_KB(IC_EVEX_W_XD
);
260 else if (OpPrefix
== X86Local::PS
)
261 insnContext
= EVEX_KB(IC_EVEX_W
);
263 errs() << "Instruction does not use a prefix: " << Name
<< "\n";
264 llvm_unreachable("Invalid prefix");
268 else if (OpPrefix
== X86Local::PD
) {
269 if (AdSize
== X86Local::AdSize32
)
270 insnContext
= IC_EVEX_OPSIZE_ADSIZE
;
272 insnContext
= EVEX_KB(IC_EVEX_OPSIZE
);
273 } else if (OpPrefix
== X86Local::XD
)
274 insnContext
= EVEX_KB(IC_EVEX_XD
);
275 else if (OpPrefix
== X86Local::XS
)
276 insnContext
= EVEX_KB(IC_EVEX_XS
);
277 else if (OpPrefix
== X86Local::PS
)
278 insnContext
= EVEX_KB(IC_EVEX
);
280 errs() << "Instruction does not use a prefix: " << Name
<< "\n";
281 llvm_unreachable("Invalid prefix");
284 } else if (Encoding
== X86Local::VEX
|| Encoding
== X86Local::XOP
) {
285 if (HasVEX_L
&& HasREX_W
) {
286 if (OpPrefix
== X86Local::PD
)
287 insnContext
= IC_VEX_L_W_OPSIZE
;
288 else if (OpPrefix
== X86Local::XS
)
289 insnContext
= IC_VEX_L_W_XS
;
290 else if (OpPrefix
== X86Local::XD
)
291 insnContext
= IC_VEX_L_W_XD
;
292 else if (OpPrefix
== X86Local::PS
)
293 insnContext
= IC_VEX_L_W
;
295 errs() << "Instruction does not use a prefix: " << Name
<< "\n";
296 llvm_unreachable("Invalid prefix");
298 } else if (OpPrefix
== X86Local::PD
&& HasVEX_L
)
299 insnContext
= IC_VEX_L_OPSIZE
;
300 else if (OpPrefix
== X86Local::PD
&& HasREX_W
)
301 insnContext
= IC_VEX_W_OPSIZE
;
302 else if (OpPrefix
== X86Local::PD
)
303 insnContext
= IC_VEX_OPSIZE
;
304 else if (HasVEX_L
&& OpPrefix
== X86Local::XS
)
305 insnContext
= IC_VEX_L_XS
;
306 else if (HasVEX_L
&& OpPrefix
== X86Local::XD
)
307 insnContext
= IC_VEX_L_XD
;
308 else if (HasREX_W
&& OpPrefix
== X86Local::XS
)
309 insnContext
= IC_VEX_W_XS
;
310 else if (HasREX_W
&& OpPrefix
== X86Local::XD
)
311 insnContext
= IC_VEX_W_XD
;
312 else if (HasREX_W
&& OpPrefix
== X86Local::PS
)
313 insnContext
= IC_VEX_W
;
314 else if (HasVEX_L
&& OpPrefix
== X86Local::PS
)
315 insnContext
= IC_VEX_L
;
316 else if (OpPrefix
== X86Local::XD
)
317 insnContext
= IC_VEX_XD
;
318 else if (OpPrefix
== X86Local::XS
)
319 insnContext
= IC_VEX_XS
;
320 else if (OpPrefix
== X86Local::PS
)
321 insnContext
= IC_VEX
;
323 errs() << "Instruction does not use a prefix: " << Name
<< "\n";
324 llvm_unreachable("Invalid prefix");
326 } else if (Is64Bit
|| HasREX_W
|| AdSize
== X86Local::AdSize64
) {
327 if (HasREX_W
&& (OpSize
== X86Local::OpSize16
|| OpPrefix
== X86Local::PD
))
328 insnContext
= IC_64BIT_REXW_OPSIZE
;
329 else if (HasREX_W
&& AdSize
== X86Local::AdSize32
)
330 insnContext
= IC_64BIT_REXW_ADSIZE
;
331 else if (OpSize
== X86Local::OpSize16
&& OpPrefix
== X86Local::XD
)
332 insnContext
= IC_64BIT_XD_OPSIZE
;
333 else if (OpSize
== X86Local::OpSize16
&& OpPrefix
== X86Local::XS
)
334 insnContext
= IC_64BIT_XS_OPSIZE
;
335 else if (AdSize
== X86Local::AdSize32
&& OpPrefix
== X86Local::PD
)
336 insnContext
= IC_64BIT_OPSIZE_ADSIZE
;
337 else if (OpSize
== X86Local::OpSize16
&& AdSize
== X86Local::AdSize32
)
338 insnContext
= IC_64BIT_OPSIZE_ADSIZE
;
339 else if (OpSize
== X86Local::OpSize16
|| OpPrefix
== X86Local::PD
)
340 insnContext
= IC_64BIT_OPSIZE
;
341 else if (AdSize
== X86Local::AdSize32
)
342 insnContext
= IC_64BIT_ADSIZE
;
343 else if (HasREX_W
&& OpPrefix
== X86Local::XS
)
344 insnContext
= IC_64BIT_REXW_XS
;
345 else if (HasREX_W
&& OpPrefix
== X86Local::XD
)
346 insnContext
= IC_64BIT_REXW_XD
;
347 else if (OpPrefix
== X86Local::XD
)
348 insnContext
= IC_64BIT_XD
;
349 else if (OpPrefix
== X86Local::XS
)
350 insnContext
= IC_64BIT_XS
;
351 else if (ExplicitREX2Prefix
)
352 insnContext
= IC_64BIT_REX2
;
354 insnContext
= IC_64BIT_REXW
;
356 insnContext
= IC_64BIT
;
358 if (OpSize
== X86Local::OpSize16
&& OpPrefix
== X86Local::XD
)
359 insnContext
= IC_XD_OPSIZE
;
360 else if (OpSize
== X86Local::OpSize16
&& OpPrefix
== X86Local::XS
)
361 insnContext
= IC_XS_OPSIZE
;
362 else if (AdSize
== X86Local::AdSize16
&& OpPrefix
== X86Local::XD
)
363 insnContext
= IC_XD_ADSIZE
;
364 else if (AdSize
== X86Local::AdSize16
&& OpPrefix
== X86Local::XS
)
365 insnContext
= IC_XS_ADSIZE
;
366 else if (AdSize
== X86Local::AdSize16
&& OpPrefix
== X86Local::PD
)
367 insnContext
= IC_OPSIZE_ADSIZE
;
368 else if (OpSize
== X86Local::OpSize16
&& AdSize
== X86Local::AdSize16
)
369 insnContext
= IC_OPSIZE_ADSIZE
;
370 else if (OpSize
== X86Local::OpSize16
|| OpPrefix
== X86Local::PD
)
371 insnContext
= IC_OPSIZE
;
372 else if (AdSize
== X86Local::AdSize16
)
373 insnContext
= IC_ADSIZE
;
374 else if (OpPrefix
== X86Local::XD
)
376 else if (OpPrefix
== X86Local::XS
)
385 void RecognizableInstr::adjustOperandEncoding(OperandEncoding
&encoding
) {
386 // The scaling factor for AVX512 compressed displacement encoding is an
387 // instruction attribute. Adjust the ModRM encoding type to include the
388 // scale for compressed displacement.
389 if ((encoding
!= ENCODING_RM
&& encoding
!= ENCODING_VSIB
&&
390 encoding
!= ENCODING_SIB
) ||
393 encoding
= (OperandEncoding
)(encoding
+ Log2_32(CD8_Scale
));
394 assert(((encoding
>= ENCODING_RM
&& encoding
<= ENCODING_RM_CD64
) ||
395 (encoding
== ENCODING_SIB
) ||
396 (encoding
>= ENCODING_VSIB
&& encoding
<= ENCODING_VSIB_CD64
)) &&
397 "Invalid CDisp scaling");
400 void RecognizableInstr::handleOperand(
401 bool optional
, unsigned &operandIndex
, unsigned &physicalOperandIndex
,
402 unsigned numPhysicalOperands
, const unsigned *operandMapping
,
403 OperandEncoding (*encodingFromString
)(const std::string
&,
406 if (physicalOperandIndex
>= numPhysicalOperands
)
409 assert(physicalOperandIndex
< numPhysicalOperands
);
412 while (operandMapping
[operandIndex
] != operandIndex
) {
413 Spec
->operands
[operandIndex
].encoding
= ENCODING_DUP
;
414 Spec
->operands
[operandIndex
].type
=
415 (OperandType
)(TYPE_DUP0
+ operandMapping
[operandIndex
]);
419 StringRef typeName
= (*Operands
)[operandIndex
].Rec
->getName();
421 OperandEncoding encoding
= encodingFromString(std::string(typeName
), OpSize
);
422 // Adjust the encoding type for an operand based on the instruction.
423 adjustOperandEncoding(encoding
);
424 Spec
->operands
[operandIndex
].encoding
= encoding
;
425 Spec
->operands
[operandIndex
].type
=
426 typeFromString(std::string(typeName
), HasREX_W
, OpSize
);
429 ++physicalOperandIndex
;
432 void RecognizableInstr::emitInstructionSpecifier() {
435 Spec
->insnContext
= insnContext();
437 const std::vector
<CGIOperandList::OperandInfo
> &OperandList
= *Operands
;
439 unsigned numOperands
= OperandList
.size();
440 unsigned numPhysicalOperands
= 0;
442 // operandMapping maps from operands in OperandList to their originals.
443 // If operandMapping[i] != i, then the entry is a duplicate.
444 unsigned operandMapping
[X86_MAX_OPERANDS
];
445 assert(numOperands
<= X86_MAX_OPERANDS
&&
446 "X86_MAX_OPERANDS is not large enough");
448 for (unsigned operandIndex
= 0; operandIndex
< numOperands
; ++operandIndex
) {
449 if (!OperandList
[operandIndex
].Constraints
.empty()) {
450 const CGIOperandList::ConstraintInfo
&Constraint
=
451 OperandList
[operandIndex
].Constraints
[0];
452 if (Constraint
.isTied()) {
453 operandMapping
[operandIndex
] = operandIndex
;
454 operandMapping
[Constraint
.getTiedOperand()] = operandIndex
;
456 ++numPhysicalOperands
;
457 operandMapping
[operandIndex
] = operandIndex
;
460 ++numPhysicalOperands
;
461 operandMapping
[operandIndex
] = operandIndex
;
465 #define HANDLE_OPERAND(class) \
466 handleOperand(false, operandIndex, physicalOperandIndex, \
467 numPhysicalOperands, operandMapping, \
468 class##EncodingFromString);
470 #define HANDLE_OPTIONAL(class) \
471 handleOperand(true, operandIndex, physicalOperandIndex, numPhysicalOperands, \
472 operandMapping, class##EncodingFromString);
474 // operandIndex should always be < numOperands
475 unsigned operandIndex
= 0;
476 // physicalOperandIndex should always be < numPhysicalOperands
477 unsigned physicalOperandIndex
= 0;
480 // Given the set of prefix bits, how many additional operands does the
482 unsigned additionalOperands
= 0;
484 ++additionalOperands
;
486 ++additionalOperands
;
491 llvm_unreachable("Unhandled form");
492 case X86Local::PrefixByte
:
494 case X86Local::RawFrmSrc
:
495 HANDLE_OPERAND(relocation
);
497 case X86Local::RawFrmDst
:
498 HANDLE_OPERAND(relocation
);
500 case X86Local::RawFrmDstSrc
:
501 HANDLE_OPERAND(relocation
);
502 HANDLE_OPERAND(relocation
);
504 case X86Local::RawFrm
:
505 // Operand 1 (optional) is an address or immediate.
506 assert(numPhysicalOperands
<= 1 &&
507 "Unexpected number of operands for RawFrm");
508 HANDLE_OPTIONAL(relocation
)
510 case X86Local::RawFrmMemOffs
:
511 // Operand 1 is an address.
512 HANDLE_OPERAND(relocation
);
514 case X86Local::AddRegFrm
:
515 // Operand 1 is added to the opcode.
516 // Operand 2 (optional) is an address.
517 assert(numPhysicalOperands
>= 1 && numPhysicalOperands
<= 2 &&
518 "Unexpected number of operands for AddRegFrm");
519 HANDLE_OPERAND(opcodeModifier
)
520 HANDLE_OPTIONAL(relocation
)
522 case X86Local::AddCCFrm
:
523 // Operand 1 (optional) is an address or immediate.
524 assert(numPhysicalOperands
== 2 &&
525 "Unexpected number of operands for AddCCFrm");
526 HANDLE_OPERAND(relocation
)
527 HANDLE_OPERAND(opcodeModifier
)
529 case X86Local::MRMDestReg
:
530 // Operand 1 is a register operand in the R/M field.
531 // - In AVX512 there may be a mask operand here -
532 // Operand 2 is a register operand in the Reg/Opcode field.
533 // - In AVX, there is a register operand in the VEX.vvvv field here -
534 // Operand 3 (optional) is an immediate.
535 assert(numPhysicalOperands
>= 2 + additionalOperands
&&
536 numPhysicalOperands
<= 3 + additionalOperands
&&
537 "Unexpected number of operands for MRMDestReg");
539 HANDLE_OPERAND(rmRegister
)
541 HANDLE_OPERAND(writemaskRegister
)
544 // FIXME: In AVX, the register below becomes the one encoded
545 // in ModRMVEX and the one above the one in the VEX.VVVV field
546 HANDLE_OPERAND(vvvvRegister
)
548 HANDLE_OPERAND(roRegister
)
549 HANDLE_OPTIONAL(immediate
)
551 case X86Local::MRMDestMem4VOp3CC
:
552 // Operand 1 is a register operand in the Reg/Opcode field.
553 // Operand 2 is a register operand in the R/M field.
554 // Operand 3 is VEX.vvvv
555 // Operand 4 is condition code.
556 assert(numPhysicalOperands
== 4 &&
557 "Unexpected number of operands for MRMDestMem4VOp3CC");
558 HANDLE_OPERAND(roRegister
)
559 HANDLE_OPERAND(memory
)
560 HANDLE_OPERAND(vvvvRegister
)
561 HANDLE_OPERAND(opcodeModifier
)
563 case X86Local::MRMDestMem
:
564 case X86Local::MRMDestMemFSIB
:
565 // Operand 1 is a memory operand (possibly SIB-extended)
566 // Operand 2 is a register operand in the Reg/Opcode field.
567 // - In AVX, there is a register operand in the VEX.vvvv field here -
568 // Operand 3 (optional) is an immediate.
569 assert(numPhysicalOperands
>= 2 + additionalOperands
&&
570 numPhysicalOperands
<= 3 + additionalOperands
&&
571 "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
573 HANDLE_OPERAND(memory
)
576 HANDLE_OPERAND(writemaskRegister
)
579 // FIXME: In AVX, the register below becomes the one encoded
580 // in ModRMVEX and the one above the one in the VEX.VVVV field
581 HANDLE_OPERAND(vvvvRegister
)
583 HANDLE_OPERAND(roRegister
)
584 HANDLE_OPTIONAL(immediate
)
586 case X86Local::MRMSrcReg
:
587 // Operand 1 is a register operand in the Reg/Opcode field.
588 // Operand 2 is a register operand in the R/M field.
589 // - In AVX, there is a register operand in the VEX.vvvv field here -
590 // Operand 3 (optional) is an immediate.
591 // Operand 4 (optional) is an immediate.
593 assert(numPhysicalOperands
>= 2 + additionalOperands
&&
594 numPhysicalOperands
<= 4 + additionalOperands
&&
595 "Unexpected number of operands for MRMSrcRegFrm");
597 HANDLE_OPERAND(roRegister
)
600 HANDLE_OPERAND(writemaskRegister
)
603 // FIXME: In AVX, the register below becomes the one encoded
604 // in ModRMVEX and the one above the one in the VEX.VVVV field
605 HANDLE_OPERAND(vvvvRegister
)
607 HANDLE_OPERAND(rmRegister
)
608 HANDLE_OPTIONAL(immediate
)
609 HANDLE_OPTIONAL(immediate
) // above might be a register in 7:4
611 case X86Local::MRMSrcReg4VOp3
:
612 assert(numPhysicalOperands
== 3 &&
613 "Unexpected number of operands for MRMSrcReg4VOp3Frm");
614 HANDLE_OPERAND(roRegister
)
615 HANDLE_OPERAND(rmRegister
)
616 HANDLE_OPERAND(vvvvRegister
)
618 case X86Local::MRMSrcRegOp4
:
619 assert(numPhysicalOperands
>= 4 && numPhysicalOperands
<= 5 &&
620 "Unexpected number of operands for MRMSrcRegOp4Frm");
621 HANDLE_OPERAND(roRegister
)
622 HANDLE_OPERAND(vvvvRegister
)
623 HANDLE_OPERAND(immediate
) // Register in imm[7:4]
624 HANDLE_OPERAND(rmRegister
)
625 HANDLE_OPTIONAL(immediate
)
627 case X86Local::MRMSrcRegCC
:
628 assert(numPhysicalOperands
== 3 &&
629 "Unexpected number of operands for MRMSrcRegCC");
630 HANDLE_OPERAND(roRegister
)
631 HANDLE_OPERAND(rmRegister
)
632 HANDLE_OPERAND(opcodeModifier
)
634 case X86Local::MRMSrcMem
:
635 case X86Local::MRMSrcMemFSIB
:
636 // Operand 1 is a register operand in the Reg/Opcode field.
637 // Operand 2 is a memory operand (possibly SIB-extended)
638 // - In AVX, there is a register operand in the VEX.vvvv field here -
639 // Operand 3 (optional) is an immediate.
641 assert(numPhysicalOperands
>= 2 + additionalOperands
&&
642 numPhysicalOperands
<= 4 + additionalOperands
&&
643 "Unexpected number of operands for MRMSrcMemFrm");
645 HANDLE_OPERAND(roRegister
)
648 HANDLE_OPERAND(writemaskRegister
)
651 // FIXME: In AVX, the register below becomes the one encoded
652 // in ModRMVEX and the one above the one in the VEX.VVVV field
653 HANDLE_OPERAND(vvvvRegister
)
655 HANDLE_OPERAND(memory
)
656 HANDLE_OPTIONAL(immediate
)
657 HANDLE_OPTIONAL(immediate
) // above might be a register in 7:4
659 case X86Local::MRMSrcMem4VOp3
:
660 assert(numPhysicalOperands
== 3 &&
661 "Unexpected number of operands for MRMSrcMem4VOp3Frm");
662 HANDLE_OPERAND(roRegister
)
663 HANDLE_OPERAND(memory
)
664 HANDLE_OPERAND(vvvvRegister
)
666 case X86Local::MRMSrcMemOp4
:
667 assert(numPhysicalOperands
>= 4 && numPhysicalOperands
<= 5 &&
668 "Unexpected number of operands for MRMSrcMemOp4Frm");
669 HANDLE_OPERAND(roRegister
)
670 HANDLE_OPERAND(vvvvRegister
)
671 HANDLE_OPERAND(immediate
) // Register in imm[7:4]
672 HANDLE_OPERAND(memory
)
673 HANDLE_OPTIONAL(immediate
)
675 case X86Local::MRMSrcMemCC
:
676 assert(numPhysicalOperands
== 3 &&
677 "Unexpected number of operands for MRMSrcMemCC");
678 HANDLE_OPERAND(roRegister
)
679 HANDLE_OPERAND(memory
)
680 HANDLE_OPERAND(opcodeModifier
)
682 case X86Local::MRMXrCC
:
683 assert(numPhysicalOperands
== 2 &&
684 "Unexpected number of operands for MRMXrCC");
685 HANDLE_OPERAND(rmRegister
)
686 HANDLE_OPERAND(opcodeModifier
)
688 case X86Local::MRMr0
:
689 // Operand 1 is a register operand in the R/M field.
690 HANDLE_OPERAND(roRegister
)
692 case X86Local::MRMXr
:
693 case X86Local::MRM0r
:
694 case X86Local::MRM1r
:
695 case X86Local::MRM2r
:
696 case X86Local::MRM3r
:
697 case X86Local::MRM4r
:
698 case X86Local::MRM5r
:
699 case X86Local::MRM6r
:
700 case X86Local::MRM7r
:
701 // Operand 1 is a register operand in the R/M field.
702 // Operand 2 (optional) is an immediate or relocation.
703 // Operand 3 (optional) is an immediate.
704 assert(numPhysicalOperands
>= 0 + additionalOperands
&&
705 numPhysicalOperands
<= 3 + additionalOperands
&&
706 "Unexpected number of operands for MRMnr");
709 HANDLE_OPERAND(vvvvRegister
)
712 HANDLE_OPERAND(writemaskRegister
)
713 HANDLE_OPTIONAL(rmRegister
)
714 HANDLE_OPTIONAL(relocation
)
715 HANDLE_OPTIONAL(immediate
)
717 case X86Local::MRMXmCC
:
718 assert(numPhysicalOperands
== 2 &&
719 "Unexpected number of operands for MRMXm");
720 HANDLE_OPERAND(memory
)
721 HANDLE_OPERAND(opcodeModifier
)
723 case X86Local::MRMXm
:
724 case X86Local::MRM0m
:
725 case X86Local::MRM1m
:
726 case X86Local::MRM2m
:
727 case X86Local::MRM3m
:
728 case X86Local::MRM4m
:
729 case X86Local::MRM5m
:
730 case X86Local::MRM6m
:
731 case X86Local::MRM7m
:
732 // Operand 1 is a memory operand (possibly SIB-extended)
733 // Operand 2 (optional) is an immediate or relocation.
734 assert(numPhysicalOperands
>= 1 + additionalOperands
&&
735 numPhysicalOperands
<= 2 + additionalOperands
&&
736 "Unexpected number of operands for MRMnm");
739 HANDLE_OPERAND(vvvvRegister
)
741 HANDLE_OPERAND(writemaskRegister
)
742 HANDLE_OPERAND(memory
)
743 HANDLE_OPTIONAL(relocation
)
745 case X86Local::RawFrmImm8
:
746 // operand 1 is a 16-bit immediate
747 // operand 2 is an 8-bit immediate
748 assert(numPhysicalOperands
== 2 &&
749 "Unexpected number of operands for X86Local::RawFrmImm8");
750 HANDLE_OPERAND(immediate
)
751 HANDLE_OPERAND(immediate
)
753 case X86Local::RawFrmImm16
:
754 // operand 1 is a 16-bit immediate
755 // operand 2 is a 16-bit immediate
756 HANDLE_OPERAND(immediate
)
757 HANDLE_OPERAND(immediate
)
759 case X86Local::MRM0X
:
760 case X86Local::MRM1X
:
761 case X86Local::MRM2X
:
762 case X86Local::MRM3X
:
763 case X86Local::MRM4X
:
764 case X86Local::MRM5X
:
765 case X86Local::MRM6X
:
766 case X86Local::MRM7X
:
767 #define MAP(from, to) case X86Local::MRM_##from:
768 X86_INSTR_MRM_MAPPING
770 HANDLE_OPTIONAL(relocation
)
774 #undef HANDLE_OPERAND
775 #undef HANDLE_OPTIONAL
778 void RecognizableInstr::emitDecodePath(DisassemblerTables
&tables
) const {
779 // Special cases where the LLVM tables are not complete
781 #define MAP(from, to) case X86Local::MRM_##from:
783 std::optional
<OpcodeType
> opcodeType
;
786 llvm_unreachable("Invalid map!");
788 opcodeType
= ONEBYTE
;
791 opcodeType
= TWOBYTE
;
794 opcodeType
= THREEBYTE_38
;
797 opcodeType
= THREEBYTE_3A
;
800 opcodeType
= XOP8_MAP
;
803 opcodeType
= XOP9_MAP
;
806 opcodeType
= XOPA_MAP
;
808 case X86Local::ThreeDNow
:
809 opcodeType
= THREEDNOW_MAP
;
811 case X86Local::T_MAP4
:
814 case X86Local::T_MAP5
:
817 case X86Local::T_MAP6
:
820 case X86Local::T_MAP7
:
825 std::unique_ptr
<ModRMFilter
> filter
;
828 llvm_unreachable("Invalid form!");
829 case X86Local::Pseudo
:
830 llvm_unreachable("Pseudo should not be emitted!");
831 case X86Local::RawFrm
:
832 case X86Local::AddRegFrm
:
833 case X86Local::RawFrmMemOffs
:
834 case X86Local::RawFrmSrc
:
835 case X86Local::RawFrmDst
:
836 case X86Local::RawFrmDstSrc
:
837 case X86Local::RawFrmImm8
:
838 case X86Local::RawFrmImm16
:
839 case X86Local::AddCCFrm
:
840 case X86Local::PrefixByte
:
841 filter
= std::make_unique
<DumbFilter
>();
843 case X86Local::MRMDestReg
:
844 case X86Local::MRMSrcReg
:
845 case X86Local::MRMSrcReg4VOp3
:
846 case X86Local::MRMSrcRegOp4
:
847 case X86Local::MRMSrcRegCC
:
848 case X86Local::MRMXrCC
:
849 case X86Local::MRMXr
:
850 filter
= std::make_unique
<ModFilter
>(true);
852 case X86Local::MRMDestMem
:
853 case X86Local::MRMDestMem4VOp3CC
:
854 case X86Local::MRMDestMemFSIB
:
855 case X86Local::MRMSrcMem
:
856 case X86Local::MRMSrcMemFSIB
:
857 case X86Local::MRMSrcMem4VOp3
:
858 case X86Local::MRMSrcMemOp4
:
859 case X86Local::MRMSrcMemCC
:
860 case X86Local::MRMXmCC
:
861 case X86Local::MRMXm
:
862 filter
= std::make_unique
<ModFilter
>(false);
864 case X86Local::MRM0r
:
865 case X86Local::MRM1r
:
866 case X86Local::MRM2r
:
867 case X86Local::MRM3r
:
868 case X86Local::MRM4r
:
869 case X86Local::MRM5r
:
870 case X86Local::MRM6r
:
871 case X86Local::MRM7r
:
872 filter
= std::make_unique
<ExtendedFilter
>(true, Form
- X86Local::MRM0r
);
874 case X86Local::MRM0X
:
875 case X86Local::MRM1X
:
876 case X86Local::MRM2X
:
877 case X86Local::MRM3X
:
878 case X86Local::MRM4X
:
879 case X86Local::MRM5X
:
880 case X86Local::MRM6X
:
881 case X86Local::MRM7X
:
882 filter
= std::make_unique
<ExtendedFilter
>(true, Form
- X86Local::MRM0X
);
884 case X86Local::MRMr0
:
885 filter
= std::make_unique
<ExtendedRMFilter
>(true, Form
- X86Local::MRMr0
);
887 case X86Local::MRM0m
:
888 case X86Local::MRM1m
:
889 case X86Local::MRM2m
:
890 case X86Local::MRM3m
:
891 case X86Local::MRM4m
:
892 case X86Local::MRM5m
:
893 case X86Local::MRM6m
:
894 case X86Local::MRM7m
:
895 filter
= std::make_unique
<ExtendedFilter
>(false, Form
- X86Local::MRM0m
);
897 X86_INSTR_MRM_MAPPING
898 filter
= std::make_unique
<ExactFilter
>(0xC0 + Form
- X86Local::MRM_C0
);
902 uint8_t opcodeToSet
= Opcode
;
904 unsigned AddressSize
= 0;
906 case X86Local::AdSize16
:
909 case X86Local::AdSize32
:
912 case X86Local::AdSize64
:
917 assert(opcodeType
&& "Opcode type not set");
918 assert(filter
&& "Filter not set");
920 if (Form
== X86Local::AddRegFrm
|| Form
== X86Local::MRMSrcRegCC
||
921 Form
== X86Local::MRMSrcMemCC
|| Form
== X86Local::MRMXrCC
||
922 Form
== X86Local::MRMXmCC
|| Form
== X86Local::AddCCFrm
||
923 Form
== X86Local::MRMDestMem4VOp3CC
) {
924 uint8_t Count
= Form
== X86Local::AddRegFrm
? 8 : 16;
925 assert(((opcodeToSet
% Count
) == 0) && "ADDREG_FRM opcode not aligned");
927 uint8_t currentOpcode
;
929 for (currentOpcode
= opcodeToSet
;
930 currentOpcode
< (uint8_t)(opcodeToSet
+ Count
); ++currentOpcode
)
931 tables
.setTableFields(*opcodeType
, insnContext(), currentOpcode
, *filter
,
932 UID
, Is32Bit
, OpPrefix
== 0,
933 IgnoresVEX_L
|| EncodeRC
, IgnoresW
, AddressSize
);
935 tables
.setTableFields(*opcodeType
, insnContext(), opcodeToSet
, *filter
, UID
,
936 Is32Bit
, OpPrefix
== 0, IgnoresVEX_L
|| EncodeRC
,
937 IgnoresW
, AddressSize
);
943 #define TYPE(str, type) \
946 OperandType
RecognizableInstr::typeFromString(const std::string
&s
,
947 bool hasREX_W
, uint8_t OpSize
) {
949 // For instructions with a REX_W prefix, a declared 32-bit register encoding
951 TYPE("GR32", TYPE_R32
)
953 if (OpSize
== X86Local::OpSize16
) {
954 // For OpSize16 instructions, a declared 16-bit register or
955 // immediate encoding is special.
956 TYPE("GR16", TYPE_Rv
)
957 } else if (OpSize
== X86Local::OpSize32
) {
958 // For OpSize32 instructions, a declared 32-bit register or
959 // immediate encoding is special.
960 TYPE("GR32", TYPE_Rv
)
962 TYPE("i16mem", TYPE_M
)
963 TYPE("i16imm", TYPE_IMM
)
964 TYPE("i16i8imm", TYPE_IMM
)
965 TYPE("GR16", TYPE_R16
)
966 TYPE("GR16orGR32orGR64", TYPE_R16
)
967 TYPE("i32mem", TYPE_M
)
968 TYPE("i32imm", TYPE_IMM
)
969 TYPE("i32i8imm", TYPE_IMM
)
970 TYPE("GR32", TYPE_R32
)
971 TYPE("GR32orGR64", TYPE_R32
)
972 TYPE("i64mem", TYPE_M
)
973 TYPE("i64i32imm", TYPE_IMM
)
974 TYPE("i64i8imm", TYPE_IMM
)
975 TYPE("GR64", TYPE_R64
)
976 TYPE("i8mem", TYPE_M
)
977 TYPE("i8imm", TYPE_IMM
)
978 TYPE("u4imm", TYPE_UIMM8
)
979 TYPE("u8imm", TYPE_UIMM8
)
980 TYPE("i16u8imm", TYPE_UIMM8
)
981 TYPE("i32u8imm", TYPE_UIMM8
)
982 TYPE("i64u8imm", TYPE_UIMM8
)
984 TYPE("VR128", TYPE_XMM
)
985 TYPE("VR128X", TYPE_XMM
)
986 TYPE("f128mem", TYPE_M
)
987 TYPE("f256mem", TYPE_M
)
988 TYPE("f512mem", TYPE_M
)
989 TYPE("FR128", TYPE_XMM
)
990 TYPE("FR64", TYPE_XMM
)
991 TYPE("FR64X", TYPE_XMM
)
992 TYPE("f64mem", TYPE_M
)
993 TYPE("sdmem", TYPE_M
)
994 TYPE("FR16X", TYPE_XMM
)
995 TYPE("FR32", TYPE_XMM
)
996 TYPE("FR32X", TYPE_XMM
)
997 TYPE("f32mem", TYPE_M
)
998 TYPE("f16mem", TYPE_M
)
999 TYPE("ssmem", TYPE_M
)
1000 TYPE("shmem", TYPE_M
)
1001 TYPE("RST", TYPE_ST
)
1002 TYPE("RSTi", TYPE_ST
)
1003 TYPE("i128mem", TYPE_M
)
1004 TYPE("i256mem", TYPE_M
)
1005 TYPE("i512mem", TYPE_M
)
1006 TYPE("i512mem_GR16", TYPE_M
)
1007 TYPE("i512mem_GR32", TYPE_M
)
1008 TYPE("i512mem_GR64", TYPE_M
)
1009 TYPE("i64i32imm_brtarget", TYPE_REL
)
1010 TYPE("i16imm_brtarget", TYPE_REL
)
1011 TYPE("i32imm_brtarget", TYPE_REL
)
1012 TYPE("ccode", TYPE_IMM
)
1013 TYPE("AVX512RC", TYPE_IMM
)
1014 TYPE("brtarget32", TYPE_REL
)
1015 TYPE("brtarget16", TYPE_REL
)
1016 TYPE("brtarget8", TYPE_REL
)
1017 TYPE("f80mem", TYPE_M
)
1018 TYPE("lea64_32mem", TYPE_M
)
1019 TYPE("lea64mem", TYPE_M
)
1020 TYPE("VR64", TYPE_MM64
)
1021 TYPE("i64imm", TYPE_IMM
)
1022 TYPE("anymem", TYPE_M
)
1023 TYPE("opaquemem", TYPE_M
)
1024 TYPE("sibmem", TYPE_MSIB
)
1025 TYPE("SEGMENT_REG", TYPE_SEGMENTREG
)
1026 TYPE("DEBUG_REG", TYPE_DEBUGREG
)
1027 TYPE("CONTROL_REG", TYPE_CONTROLREG
)
1028 TYPE("srcidx8", TYPE_SRCIDX
)
1029 TYPE("srcidx16", TYPE_SRCIDX
)
1030 TYPE("srcidx32", TYPE_SRCIDX
)
1031 TYPE("srcidx64", TYPE_SRCIDX
)
1032 TYPE("dstidx8", TYPE_DSTIDX
)
1033 TYPE("dstidx16", TYPE_DSTIDX
)
1034 TYPE("dstidx32", TYPE_DSTIDX
)
1035 TYPE("dstidx64", TYPE_DSTIDX
)
1036 TYPE("offset16_8", TYPE_MOFFS
)
1037 TYPE("offset16_16", TYPE_MOFFS
)
1038 TYPE("offset16_32", TYPE_MOFFS
)
1039 TYPE("offset32_8", TYPE_MOFFS
)
1040 TYPE("offset32_16", TYPE_MOFFS
)
1041 TYPE("offset32_32", TYPE_MOFFS
)
1042 TYPE("offset32_64", TYPE_MOFFS
)
1043 TYPE("offset64_8", TYPE_MOFFS
)
1044 TYPE("offset64_16", TYPE_MOFFS
)
1045 TYPE("offset64_32", TYPE_MOFFS
)
1046 TYPE("offset64_64", TYPE_MOFFS
)
1047 TYPE("VR256", TYPE_YMM
)
1048 TYPE("VR256X", TYPE_YMM
)
1049 TYPE("VR512", TYPE_ZMM
)
1050 TYPE("VK1", TYPE_VK
)
1051 TYPE("VK1WM", TYPE_VK
)
1052 TYPE("VK2", TYPE_VK
)
1053 TYPE("VK2WM", TYPE_VK
)
1054 TYPE("VK4", TYPE_VK
)
1055 TYPE("VK4WM", TYPE_VK
)
1056 TYPE("VK8", TYPE_VK
)
1057 TYPE("VK8WM", TYPE_VK
)
1058 TYPE("VK16", TYPE_VK
)
1059 TYPE("VK16WM", TYPE_VK
)
1060 TYPE("VK32", TYPE_VK
)
1061 TYPE("VK32WM", TYPE_VK
)
1062 TYPE("VK64", TYPE_VK
)
1063 TYPE("VK64WM", TYPE_VK
)
1064 TYPE("VK1Pair", TYPE_VK_PAIR
)
1065 TYPE("VK2Pair", TYPE_VK_PAIR
)
1066 TYPE("VK4Pair", TYPE_VK_PAIR
)
1067 TYPE("VK8Pair", TYPE_VK_PAIR
)
1068 TYPE("VK16Pair", TYPE_VK_PAIR
)
1069 TYPE("vx64mem", TYPE_MVSIBX
)
1070 TYPE("vx128mem", TYPE_MVSIBX
)
1071 TYPE("vx256mem", TYPE_MVSIBX
)
1072 TYPE("vy128mem", TYPE_MVSIBY
)
1073 TYPE("vy256mem", TYPE_MVSIBY
)
1074 TYPE("vx64xmem", TYPE_MVSIBX
)
1075 TYPE("vx128xmem", TYPE_MVSIBX
)
1076 TYPE("vx256xmem", TYPE_MVSIBX
)
1077 TYPE("vy128xmem", TYPE_MVSIBY
)
1078 TYPE("vy256xmem", TYPE_MVSIBY
)
1079 TYPE("vy512xmem", TYPE_MVSIBY
)
1080 TYPE("vz256mem", TYPE_MVSIBZ
)
1081 TYPE("vz512mem", TYPE_MVSIBZ
)
1082 TYPE("BNDR", TYPE_BNDR
)
1083 TYPE("TILE", TYPE_TMM
)
1084 errs() << "Unhandled type string " << s
<< "\n";
1085 llvm_unreachable("Unhandled type string");
1089 #define ENCODING(str, encoding) \
1093 RecognizableInstr::immediateEncodingFromString(const std::string
&s
,
1095 if (OpSize
!= X86Local::OpSize16
) {
1096 // For instructions without an OpSize prefix, a declared 16-bit register or
1097 // immediate encoding is special.
1098 ENCODING("i16imm", ENCODING_IW
)
1100 ENCODING("i32i8imm", ENCODING_IB
)
1101 ENCODING("AVX512RC", ENCODING_IRC
)
1102 ENCODING("i16imm", ENCODING_Iv
)
1103 ENCODING("i16i8imm", ENCODING_IB
)
1104 ENCODING("i32imm", ENCODING_Iv
)
1105 ENCODING("i64i32imm", ENCODING_ID
)
1106 ENCODING("i64i8imm", ENCODING_IB
)
1107 ENCODING("i8imm", ENCODING_IB
)
1108 ENCODING("u4imm", ENCODING_IB
)
1109 ENCODING("u8imm", ENCODING_IB
)
1110 ENCODING("i16u8imm", ENCODING_IB
)
1111 ENCODING("i32u8imm", ENCODING_IB
)
1112 ENCODING("i64u8imm", ENCODING_IB
)
1113 // This is not a typo. Instructions like BLENDVPD put
1114 // register IDs in 8-bit immediates nowadays.
1115 ENCODING("FR32", ENCODING_IB
)
1116 ENCODING("FR64", ENCODING_IB
)
1117 ENCODING("FR128", ENCODING_IB
)
1118 ENCODING("VR128", ENCODING_IB
)
1119 ENCODING("VR256", ENCODING_IB
)
1120 ENCODING("FR16X", ENCODING_IB
)
1121 ENCODING("FR32X", ENCODING_IB
)
1122 ENCODING("FR64X", ENCODING_IB
)
1123 ENCODING("VR128X", ENCODING_IB
)
1124 ENCODING("VR256X", ENCODING_IB
)
1125 ENCODING("VR512", ENCODING_IB
)
1126 ENCODING("TILE", ENCODING_IB
)
1127 errs() << "Unhandled immediate encoding " << s
<< "\n";
1128 llvm_unreachable("Unhandled immediate encoding");
1132 RecognizableInstr::rmRegisterEncodingFromString(const std::string
&s
,
1134 ENCODING("RST", ENCODING_FP
)
1135 ENCODING("RSTi", ENCODING_FP
)
1136 ENCODING("GR16", ENCODING_RM
)
1137 ENCODING("GR16orGR32orGR64", ENCODING_RM
)
1138 ENCODING("GR32", ENCODING_RM
)
1139 ENCODING("GR32orGR64", ENCODING_RM
)
1140 ENCODING("GR64", ENCODING_RM
)
1141 ENCODING("GR8", ENCODING_RM
)
1142 ENCODING("VR128", ENCODING_RM
)
1143 ENCODING("VR128X", ENCODING_RM
)
1144 ENCODING("FR128", ENCODING_RM
)
1145 ENCODING("FR64", ENCODING_RM
)
1146 ENCODING("FR32", ENCODING_RM
)
1147 ENCODING("FR64X", ENCODING_RM
)
1148 ENCODING("FR32X", ENCODING_RM
)
1149 ENCODING("FR16X", ENCODING_RM
)
1150 ENCODING("VR64", ENCODING_RM
)
1151 ENCODING("VR256", ENCODING_RM
)
1152 ENCODING("VR256X", ENCODING_RM
)
1153 ENCODING("VR512", ENCODING_RM
)
1154 ENCODING("VK1", ENCODING_RM
)
1155 ENCODING("VK2", ENCODING_RM
)
1156 ENCODING("VK4", ENCODING_RM
)
1157 ENCODING("VK8", ENCODING_RM
)
1158 ENCODING("VK16", ENCODING_RM
)
1159 ENCODING("VK32", ENCODING_RM
)
1160 ENCODING("VK64", ENCODING_RM
)
1161 ENCODING("BNDR", ENCODING_RM
)
1162 ENCODING("TILE", ENCODING_RM
)
1163 errs() << "Unhandled R/M register encoding " << s
<< "\n";
1164 llvm_unreachable("Unhandled R/M register encoding");
1168 RecognizableInstr::roRegisterEncodingFromString(const std::string
&s
,
1170 ENCODING("GR16", ENCODING_REG
)
1171 ENCODING("GR16orGR32orGR64", ENCODING_REG
)
1172 ENCODING("GR32", ENCODING_REG
)
1173 ENCODING("GR32orGR64", ENCODING_REG
)
1174 ENCODING("GR64", ENCODING_REG
)
1175 ENCODING("GR8", ENCODING_REG
)
1176 ENCODING("VR128", ENCODING_REG
)
1177 ENCODING("FR128", ENCODING_REG
)
1178 ENCODING("FR64", ENCODING_REG
)
1179 ENCODING("FR32", ENCODING_REG
)
1180 ENCODING("VR64", ENCODING_REG
)
1181 ENCODING("SEGMENT_REG", ENCODING_REG
)
1182 ENCODING("DEBUG_REG", ENCODING_REG
)
1183 ENCODING("CONTROL_REG", ENCODING_REG
)
1184 ENCODING("VR256", ENCODING_REG
)
1185 ENCODING("VR256X", ENCODING_REG
)
1186 ENCODING("VR128X", ENCODING_REG
)
1187 ENCODING("FR64X", ENCODING_REG
)
1188 ENCODING("FR32X", ENCODING_REG
)
1189 ENCODING("FR16X", ENCODING_REG
)
1190 ENCODING("VR512", ENCODING_REG
)
1191 ENCODING("VK1", ENCODING_REG
)
1192 ENCODING("VK2", ENCODING_REG
)
1193 ENCODING("VK4", ENCODING_REG
)
1194 ENCODING("VK8", ENCODING_REG
)
1195 ENCODING("VK16", ENCODING_REG
)
1196 ENCODING("VK32", ENCODING_REG
)
1197 ENCODING("VK64", ENCODING_REG
)
1198 ENCODING("VK1Pair", ENCODING_REG
)
1199 ENCODING("VK2Pair", ENCODING_REG
)
1200 ENCODING("VK4Pair", ENCODING_REG
)
1201 ENCODING("VK8Pair", ENCODING_REG
)
1202 ENCODING("VK16Pair", ENCODING_REG
)
1203 ENCODING("VK1WM", ENCODING_REG
)
1204 ENCODING("VK2WM", ENCODING_REG
)
1205 ENCODING("VK4WM", ENCODING_REG
)
1206 ENCODING("VK8WM", ENCODING_REG
)
1207 ENCODING("VK16WM", ENCODING_REG
)
1208 ENCODING("VK32WM", ENCODING_REG
)
1209 ENCODING("VK64WM", ENCODING_REG
)
1210 ENCODING("BNDR", ENCODING_REG
)
1211 ENCODING("TILE", ENCODING_REG
)
1212 errs() << "Unhandled reg/opcode register encoding " << s
<< "\n";
1213 llvm_unreachable("Unhandled reg/opcode register encoding");
1217 RecognizableInstr::vvvvRegisterEncodingFromString(const std::string
&s
,
1219 ENCODING("GR32", ENCODING_VVVV
)
1220 ENCODING("GR64", ENCODING_VVVV
)
1221 ENCODING("FR32", ENCODING_VVVV
)
1222 ENCODING("FR128", ENCODING_VVVV
)
1223 ENCODING("FR64", ENCODING_VVVV
)
1224 ENCODING("VR128", ENCODING_VVVV
)
1225 ENCODING("VR256", ENCODING_VVVV
)
1226 ENCODING("FR16X", ENCODING_VVVV
)
1227 ENCODING("FR32X", ENCODING_VVVV
)
1228 ENCODING("FR64X", ENCODING_VVVV
)
1229 ENCODING("VR128X", ENCODING_VVVV
)
1230 ENCODING("VR256X", ENCODING_VVVV
)
1231 ENCODING("VR512", ENCODING_VVVV
)
1232 ENCODING("VK1", ENCODING_VVVV
)
1233 ENCODING("VK2", ENCODING_VVVV
)
1234 ENCODING("VK4", ENCODING_VVVV
)
1235 ENCODING("VK8", ENCODING_VVVV
)
1236 ENCODING("VK16", ENCODING_VVVV
)
1237 ENCODING("VK32", ENCODING_VVVV
)
1238 ENCODING("VK64", ENCODING_VVVV
)
1239 ENCODING("TILE", ENCODING_VVVV
)
1240 errs() << "Unhandled VEX.vvvv register encoding " << s
<< "\n";
1241 llvm_unreachable("Unhandled VEX.vvvv register encoding");
1245 RecognizableInstr::writemaskRegisterEncodingFromString(const std::string
&s
,
1247 ENCODING("VK1WM", ENCODING_WRITEMASK
)
1248 ENCODING("VK2WM", ENCODING_WRITEMASK
)
1249 ENCODING("VK4WM", ENCODING_WRITEMASK
)
1250 ENCODING("VK8WM", ENCODING_WRITEMASK
)
1251 ENCODING("VK16WM", ENCODING_WRITEMASK
)
1252 ENCODING("VK32WM", ENCODING_WRITEMASK
)
1253 ENCODING("VK64WM", ENCODING_WRITEMASK
)
1254 errs() << "Unhandled mask register encoding " << s
<< "\n";
1255 llvm_unreachable("Unhandled mask register encoding");
1259 RecognizableInstr::memoryEncodingFromString(const std::string
&s
,
1261 ENCODING("i16mem", ENCODING_RM
)
1262 ENCODING("i32mem", ENCODING_RM
)
1263 ENCODING("i64mem", ENCODING_RM
)
1264 ENCODING("i8mem", ENCODING_RM
)
1265 ENCODING("shmem", ENCODING_RM
)
1266 ENCODING("ssmem", ENCODING_RM
)
1267 ENCODING("sdmem", ENCODING_RM
)
1268 ENCODING("f128mem", ENCODING_RM
)
1269 ENCODING("f256mem", ENCODING_RM
)
1270 ENCODING("f512mem", ENCODING_RM
)
1271 ENCODING("f64mem", ENCODING_RM
)
1272 ENCODING("f32mem", ENCODING_RM
)
1273 ENCODING("f16mem", ENCODING_RM
)
1274 ENCODING("i128mem", ENCODING_RM
)
1275 ENCODING("i256mem", ENCODING_RM
)
1276 ENCODING("i512mem", ENCODING_RM
)
1277 ENCODING("i512mem_GR16", ENCODING_RM
)
1278 ENCODING("i512mem_GR32", ENCODING_RM
)
1279 ENCODING("i512mem_GR64", ENCODING_RM
)
1280 ENCODING("f80mem", ENCODING_RM
)
1281 ENCODING("lea64_32mem", ENCODING_RM
)
1282 ENCODING("lea64mem", ENCODING_RM
)
1283 ENCODING("anymem", ENCODING_RM
)
1284 ENCODING("opaquemem", ENCODING_RM
)
1285 ENCODING("sibmem", ENCODING_SIB
)
1286 ENCODING("vx64mem", ENCODING_VSIB
)
1287 ENCODING("vx128mem", ENCODING_VSIB
)
1288 ENCODING("vx256mem", ENCODING_VSIB
)
1289 ENCODING("vy128mem", ENCODING_VSIB
)
1290 ENCODING("vy256mem", ENCODING_VSIB
)
1291 ENCODING("vx64xmem", ENCODING_VSIB
)
1292 ENCODING("vx128xmem", ENCODING_VSIB
)
1293 ENCODING("vx256xmem", ENCODING_VSIB
)
1294 ENCODING("vy128xmem", ENCODING_VSIB
)
1295 ENCODING("vy256xmem", ENCODING_VSIB
)
1296 ENCODING("vy512xmem", ENCODING_VSIB
)
1297 ENCODING("vz256mem", ENCODING_VSIB
)
1298 ENCODING("vz512mem", ENCODING_VSIB
)
1299 errs() << "Unhandled memory encoding " << s
<< "\n";
1300 llvm_unreachable("Unhandled memory encoding");
1304 RecognizableInstr::relocationEncodingFromString(const std::string
&s
,
1306 if (OpSize
!= X86Local::OpSize16
) {
1307 // For instructions without an OpSize prefix, a declared 16-bit register or
1308 // immediate encoding is special.
1309 ENCODING("i16imm", ENCODING_IW
)
1311 ENCODING("i16imm", ENCODING_Iv
)
1312 ENCODING("i16i8imm", ENCODING_IB
)
1313 ENCODING("i32imm", ENCODING_Iv
)
1314 ENCODING("i32i8imm", ENCODING_IB
)
1315 ENCODING("i64i32imm", ENCODING_ID
)
1316 ENCODING("i64i8imm", ENCODING_IB
)
1317 ENCODING("i8imm", ENCODING_IB
)
1318 ENCODING("u8imm", ENCODING_IB
)
1319 ENCODING("i16u8imm", ENCODING_IB
)
1320 ENCODING("i32u8imm", ENCODING_IB
)
1321 ENCODING("i64u8imm", ENCODING_IB
)
1322 ENCODING("i64i32imm_brtarget", ENCODING_ID
)
1323 ENCODING("i16imm_brtarget", ENCODING_IW
)
1324 ENCODING("i32imm_brtarget", ENCODING_ID
)
1325 ENCODING("brtarget32", ENCODING_ID
)
1326 ENCODING("brtarget16", ENCODING_IW
)
1327 ENCODING("brtarget8", ENCODING_IB
)
1328 ENCODING("i64imm", ENCODING_IO
)
1329 ENCODING("offset16_8", ENCODING_Ia
)
1330 ENCODING("offset16_16", ENCODING_Ia
)
1331 ENCODING("offset16_32", ENCODING_Ia
)
1332 ENCODING("offset32_8", ENCODING_Ia
)
1333 ENCODING("offset32_16", ENCODING_Ia
)
1334 ENCODING("offset32_32", ENCODING_Ia
)
1335 ENCODING("offset32_64", ENCODING_Ia
)
1336 ENCODING("offset64_8", ENCODING_Ia
)
1337 ENCODING("offset64_16", ENCODING_Ia
)
1338 ENCODING("offset64_32", ENCODING_Ia
)
1339 ENCODING("offset64_64", ENCODING_Ia
)
1340 ENCODING("srcidx8", ENCODING_SI
)
1341 ENCODING("srcidx16", ENCODING_SI
)
1342 ENCODING("srcidx32", ENCODING_SI
)
1343 ENCODING("srcidx64", ENCODING_SI
)
1344 ENCODING("dstidx8", ENCODING_DI
)
1345 ENCODING("dstidx16", ENCODING_DI
)
1346 ENCODING("dstidx32", ENCODING_DI
)
1347 ENCODING("dstidx64", ENCODING_DI
)
1348 errs() << "Unhandled relocation encoding " << s
<< "\n";
1349 llvm_unreachable("Unhandled relocation encoding");
1353 RecognizableInstr::opcodeModifierEncodingFromString(const std::string
&s
,
1355 ENCODING("GR32", ENCODING_Rv
)
1356 ENCODING("GR64", ENCODING_RO
)
1357 ENCODING("GR16", ENCODING_Rv
)
1358 ENCODING("GR8", ENCODING_RB
)
1359 ENCODING("ccode", ENCODING_CC
)
1360 errs() << "Unhandled opcode modifier encoding " << s
<< "\n";
1361 llvm_unreachable("Unhandled opcode modifier encoding");