[llvm-objdump] --disassemble-symbols: skip inline relocs from symbols that are not...
[llvm-project.git] / llvm / utils / TableGen / X86RecognizableInstr.cpp
blob47ee9544f32337c1eb8327a39b0dce6f378e76ff
1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler Emitter.
10 // It contains the implementation of a single recognizable instruction.
11 // Documentation for the disassembler emitter in general can be found in
12 // X86DisassemblerEmitter.h.
14 //===----------------------------------------------------------------------===//
16 #include "X86RecognizableInstr.h"
17 #include "X86DisassemblerShared.h"
18 #include "X86DisassemblerTables.h"
19 #include "X86ModRMFilters.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/TableGen/Record.h"
22 #include <string>
24 using namespace llvm;
25 using namespace X86Disassembler;
27 std::string X86Disassembler::getMnemonic(const CodeGenInstruction *I,
28 unsigned Variant) {
29 std::string AsmString = I->FlattenAsmStringVariants(I->AsmString, Variant);
30 StringRef Mnemonic(AsmString);
31 // Extract a mnemonic assuming it's separated by \t
32 Mnemonic = Mnemonic.take_until([](char C) { return C == '\t'; });
34 // Special case: CMOVCC, JCC, SETCC have "${cond}" in mnemonic.
35 // Replace it with "CC" in-place.
36 size_t CondPos = Mnemonic.find("${cond}");
37 if (CondPos != StringRef::npos)
38 Mnemonic = AsmString.replace(CondPos, StringRef::npos, "CC");
39 return Mnemonic.upper();
42 bool X86Disassembler::isRegisterOperand(const Record *Rec) {
43 return Rec->isSubClassOf("RegisterClass") ||
44 Rec->isSubClassOf("RegisterOperand");
47 bool X86Disassembler::isMemoryOperand(const Record *Rec) {
48 return Rec->isSubClassOf("Operand") &&
49 Rec->getValueAsString("OperandType") == "OPERAND_MEMORY";
52 bool X86Disassembler::isImmediateOperand(const Record *Rec) {
53 return Rec->isSubClassOf("Operand") &&
54 Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE";
57 unsigned X86Disassembler::getRegOperandSize(const Record *RegRec) {
58 if (RegRec->isSubClassOf("RegisterClass"))
59 return RegRec->getValueAsInt("Alignment");
60 if (RegRec->isSubClassOf("RegisterOperand"))
61 return RegRec->getValueAsDef("RegClass")->getValueAsInt("Alignment");
63 llvm_unreachable("Register operand's size not known!");
66 unsigned X86Disassembler::getMemOperandSize(const Record *MemRec) {
67 if (MemRec->isSubClassOf("X86MemOperand"))
68 return MemRec->getValueAsInt("Size");
70 llvm_unreachable("Memory operand's size not known!");
73 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
74 /// Useful for switch statements and the like.
75 ///
76 /// @param init - A reference to the BitsInit to be decoded.
77 /// @return - The field, with the first bit in the BitsInit as the lowest
78 /// order bit.
79 static uint8_t byteFromBitsInit(BitsInit &init) {
80 int width = init.getNumBits();
82 assert(width <= 8 && "Field is too large for uint8_t!");
84 int index;
85 uint8_t mask = 0x01;
87 uint8_t ret = 0;
89 for (index = 0; index < width; index++) {
90 if (cast<BitInit>(init.getBit(index))->getValue())
91 ret |= mask;
93 mask <<= 1;
96 return ret;
99 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
100 /// name of the field.
102 /// @param rec - The record from which to extract the value.
103 /// @param name - The name of the field in the record.
104 /// @return - The field, as translated by byteFromBitsInit().
105 static uint8_t byteFromRec(const Record *rec, StringRef name) {
106 BitsInit *bits = rec->getValueAsBitsInit(name);
107 return byteFromBitsInit(*bits);
110 RecognizableInstrBase::RecognizableInstrBase(const CodeGenInstruction &insn) {
111 const Record *Rec = insn.TheDef;
112 assert(Rec->isSubClassOf("X86Inst") && "Not a X86 Instruction");
113 OpPrefix = byteFromRec(Rec, "OpPrefixBits");
114 OpMap = byteFromRec(Rec, "OpMapBits");
115 Opcode = byteFromRec(Rec, "Opcode");
116 Form = byteFromRec(Rec, "FormBits");
117 Encoding = byteFromRec(Rec, "OpEncBits");
118 OpSize = byteFromRec(Rec, "OpSizeBits");
119 AdSize = byteFromRec(Rec, "AdSizeBits");
120 HasREX_W = Rec->getValueAsBit("hasREX_W");
121 HasVEX_4V = Rec->getValueAsBit("hasVEX_4V");
122 IgnoresW = Rec->getValueAsBit("IgnoresW");
123 IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L");
124 HasEVEX_L2 = Rec->getValueAsBit("hasEVEX_L2");
125 HasEVEX_K = Rec->getValueAsBit("hasEVEX_K");
126 HasEVEX_KZ = Rec->getValueAsBit("hasEVEX_Z");
127 HasEVEX_B = Rec->getValueAsBit("hasEVEX_B");
128 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly");
129 IsAsmParserOnly = Rec->getValueAsBit("isAsmParserOnly");
130 ForceDisassemble = Rec->getValueAsBit("ForceDisassemble");
131 CD8_Scale = byteFromRec(Rec, "CD8_Scale");
132 HasVEX_L = Rec->getValueAsBit("hasVEX_L");
133 ExplicitREX2Prefix =
134 byteFromRec(Rec, "explicitOpPrefixBits") == X86Local::ExplicitREX2;
136 EncodeRC = HasEVEX_B &&
137 (Form == X86Local::MRMDestReg || Form == X86Local::MRMSrcReg);
140 bool RecognizableInstrBase::shouldBeEmitted() const {
141 return Form != X86Local::Pseudo && (!IsCodeGenOnly || ForceDisassemble) &&
142 !IsAsmParserOnly;
145 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
146 const CodeGenInstruction &insn,
147 InstrUID uid)
148 : RecognizableInstrBase(insn), Rec(insn.TheDef), Name(Rec->getName().str()),
149 Is32Bit(false), Is64Bit(false), Operands(&insn.Operands.OperandList),
150 UID(uid), Spec(&tables.specForUID(uid)) {
151 // Check for 64-bit inst which does not require REX
152 // FIXME: Is there some better way to check for In64BitMode?
153 std::vector<Record *> Predicates = Rec->getValueAsListOfDefs("Predicates");
154 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
155 if (Predicates[i]->getName().contains("Not64Bit") ||
156 Predicates[i]->getName().contains("In32Bit")) {
157 Is32Bit = true;
158 break;
160 if (Predicates[i]->getName().contains("In64Bit")) {
161 Is64Bit = true;
162 break;
167 void RecognizableInstr::processInstr(DisassemblerTables &tables,
168 const CodeGenInstruction &insn,
169 InstrUID uid) {
170 if (!insn.TheDef->isSubClassOf("X86Inst"))
171 return;
172 RecognizableInstr recogInstr(tables, insn, uid);
174 if (!recogInstr.shouldBeEmitted())
175 return;
176 recogInstr.emitInstructionSpecifier();
177 recogInstr.emitDecodePath(tables);
180 #define EVEX_KB(n) \
181 (HasEVEX_KZ && HasEVEX_B \
182 ? n##_KZ_B \
183 : (HasEVEX_K && HasEVEX_B \
184 ? n##_K_B \
185 : (HasEVEX_KZ ? n##_KZ \
186 : (HasEVEX_K ? n##_K : (HasEVEX_B ? n##_B : n)))))
188 InstructionContext RecognizableInstr::insnContext() const {
189 InstructionContext insnContext;
191 if (Encoding == X86Local::EVEX) {
192 if (HasVEX_L && HasEVEX_L2) {
193 errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
194 llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
196 // VEX_L & VEX_W
197 if (!EncodeRC && HasVEX_L && HasREX_W) {
198 if (OpPrefix == X86Local::PD)
199 insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE);
200 else if (OpPrefix == X86Local::XS)
201 insnContext = EVEX_KB(IC_EVEX_L_W_XS);
202 else if (OpPrefix == X86Local::XD)
203 insnContext = EVEX_KB(IC_EVEX_L_W_XD);
204 else if (OpPrefix == X86Local::PS)
205 insnContext = EVEX_KB(IC_EVEX_L_W);
206 else {
207 errs() << "Instruction does not use a prefix: " << Name << "\n";
208 llvm_unreachable("Invalid prefix");
210 } else if (!EncodeRC && HasVEX_L) {
211 // VEX_L
212 if (OpPrefix == X86Local::PD)
213 insnContext = EVEX_KB(IC_EVEX_L_OPSIZE);
214 else if (OpPrefix == X86Local::XS)
215 insnContext = EVEX_KB(IC_EVEX_L_XS);
216 else if (OpPrefix == X86Local::XD)
217 insnContext = EVEX_KB(IC_EVEX_L_XD);
218 else if (OpPrefix == X86Local::PS)
219 insnContext = EVEX_KB(IC_EVEX_L);
220 else {
221 errs() << "Instruction does not use a prefix: " << Name << "\n";
222 llvm_unreachable("Invalid prefix");
224 } else if (!EncodeRC && HasEVEX_L2 && HasREX_W) {
225 // EVEX_L2 & VEX_W
226 if (OpPrefix == X86Local::PD)
227 insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE);
228 else if (OpPrefix == X86Local::XS)
229 insnContext = EVEX_KB(IC_EVEX_L2_W_XS);
230 else if (OpPrefix == X86Local::XD)
231 insnContext = EVEX_KB(IC_EVEX_L2_W_XD);
232 else if (OpPrefix == X86Local::PS)
233 insnContext = EVEX_KB(IC_EVEX_L2_W);
234 else {
235 errs() << "Instruction does not use a prefix: " << Name << "\n";
236 llvm_unreachable("Invalid prefix");
238 } else if (!EncodeRC && HasEVEX_L2) {
239 // EVEX_L2
240 if (OpPrefix == X86Local::PD)
241 insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE);
242 else if (OpPrefix == X86Local::XD)
243 insnContext = EVEX_KB(IC_EVEX_L2_XD);
244 else if (OpPrefix == X86Local::XS)
245 insnContext = EVEX_KB(IC_EVEX_L2_XS);
246 else if (OpPrefix == X86Local::PS)
247 insnContext = EVEX_KB(IC_EVEX_L2);
248 else {
249 errs() << "Instruction does not use a prefix: " << Name << "\n";
250 llvm_unreachable("Invalid prefix");
252 } else if (HasREX_W) {
253 // VEX_W
254 if (OpPrefix == X86Local::PD)
255 insnContext = EVEX_KB(IC_EVEX_W_OPSIZE);
256 else if (OpPrefix == X86Local::XS)
257 insnContext = EVEX_KB(IC_EVEX_W_XS);
258 else if (OpPrefix == X86Local::XD)
259 insnContext = EVEX_KB(IC_EVEX_W_XD);
260 else if (OpPrefix == X86Local::PS)
261 insnContext = EVEX_KB(IC_EVEX_W);
262 else {
263 errs() << "Instruction does not use a prefix: " << Name << "\n";
264 llvm_unreachable("Invalid prefix");
267 // No L, no W
268 else if (OpPrefix == X86Local::PD) {
269 if (AdSize == X86Local::AdSize32)
270 insnContext = IC_EVEX_OPSIZE_ADSIZE;
271 else
272 insnContext = EVEX_KB(IC_EVEX_OPSIZE);
273 } else if (OpPrefix == X86Local::XD)
274 insnContext = EVEX_KB(IC_EVEX_XD);
275 else if (OpPrefix == X86Local::XS)
276 insnContext = EVEX_KB(IC_EVEX_XS);
277 else if (OpPrefix == X86Local::PS)
278 insnContext = EVEX_KB(IC_EVEX);
279 else {
280 errs() << "Instruction does not use a prefix: " << Name << "\n";
281 llvm_unreachable("Invalid prefix");
283 /// eof EVEX
284 } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
285 if (HasVEX_L && HasREX_W) {
286 if (OpPrefix == X86Local::PD)
287 insnContext = IC_VEX_L_W_OPSIZE;
288 else if (OpPrefix == X86Local::XS)
289 insnContext = IC_VEX_L_W_XS;
290 else if (OpPrefix == X86Local::XD)
291 insnContext = IC_VEX_L_W_XD;
292 else if (OpPrefix == X86Local::PS)
293 insnContext = IC_VEX_L_W;
294 else {
295 errs() << "Instruction does not use a prefix: " << Name << "\n";
296 llvm_unreachable("Invalid prefix");
298 } else if (OpPrefix == X86Local::PD && HasVEX_L)
299 insnContext = IC_VEX_L_OPSIZE;
300 else if (OpPrefix == X86Local::PD && HasREX_W)
301 insnContext = IC_VEX_W_OPSIZE;
302 else if (OpPrefix == X86Local::PD)
303 insnContext = IC_VEX_OPSIZE;
304 else if (HasVEX_L && OpPrefix == X86Local::XS)
305 insnContext = IC_VEX_L_XS;
306 else if (HasVEX_L && OpPrefix == X86Local::XD)
307 insnContext = IC_VEX_L_XD;
308 else if (HasREX_W && OpPrefix == X86Local::XS)
309 insnContext = IC_VEX_W_XS;
310 else if (HasREX_W && OpPrefix == X86Local::XD)
311 insnContext = IC_VEX_W_XD;
312 else if (HasREX_W && OpPrefix == X86Local::PS)
313 insnContext = IC_VEX_W;
314 else if (HasVEX_L && OpPrefix == X86Local::PS)
315 insnContext = IC_VEX_L;
316 else if (OpPrefix == X86Local::XD)
317 insnContext = IC_VEX_XD;
318 else if (OpPrefix == X86Local::XS)
319 insnContext = IC_VEX_XS;
320 else if (OpPrefix == X86Local::PS)
321 insnContext = IC_VEX;
322 else {
323 errs() << "Instruction does not use a prefix: " << Name << "\n";
324 llvm_unreachable("Invalid prefix");
326 } else if (Is64Bit || HasREX_W || AdSize == X86Local::AdSize64) {
327 if (HasREX_W && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD))
328 insnContext = IC_64BIT_REXW_OPSIZE;
329 else if (HasREX_W && AdSize == X86Local::AdSize32)
330 insnContext = IC_64BIT_REXW_ADSIZE;
331 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
332 insnContext = IC_64BIT_XD_OPSIZE;
333 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
334 insnContext = IC_64BIT_XS_OPSIZE;
335 else if (AdSize == X86Local::AdSize32 && OpPrefix == X86Local::PD)
336 insnContext = IC_64BIT_OPSIZE_ADSIZE;
337 else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32)
338 insnContext = IC_64BIT_OPSIZE_ADSIZE;
339 else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
340 insnContext = IC_64BIT_OPSIZE;
341 else if (AdSize == X86Local::AdSize32)
342 insnContext = IC_64BIT_ADSIZE;
343 else if (HasREX_W && OpPrefix == X86Local::XS)
344 insnContext = IC_64BIT_REXW_XS;
345 else if (HasREX_W && OpPrefix == X86Local::XD)
346 insnContext = IC_64BIT_REXW_XD;
347 else if (OpPrefix == X86Local::XD)
348 insnContext = IC_64BIT_XD;
349 else if (OpPrefix == X86Local::XS)
350 insnContext = IC_64BIT_XS;
351 else if (ExplicitREX2Prefix)
352 insnContext = IC_64BIT_REX2;
353 else if (HasREX_W)
354 insnContext = IC_64BIT_REXW;
355 else
356 insnContext = IC_64BIT;
357 } else {
358 if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
359 insnContext = IC_XD_OPSIZE;
360 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
361 insnContext = IC_XS_OPSIZE;
362 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XD)
363 insnContext = IC_XD_ADSIZE;
364 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XS)
365 insnContext = IC_XS_ADSIZE;
366 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::PD)
367 insnContext = IC_OPSIZE_ADSIZE;
368 else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16)
369 insnContext = IC_OPSIZE_ADSIZE;
370 else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
371 insnContext = IC_OPSIZE;
372 else if (AdSize == X86Local::AdSize16)
373 insnContext = IC_ADSIZE;
374 else if (OpPrefix == X86Local::XD)
375 insnContext = IC_XD;
376 else if (OpPrefix == X86Local::XS)
377 insnContext = IC_XS;
378 else
379 insnContext = IC;
382 return insnContext;
385 void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) {
386 // The scaling factor for AVX512 compressed displacement encoding is an
387 // instruction attribute. Adjust the ModRM encoding type to include the
388 // scale for compressed displacement.
389 if ((encoding != ENCODING_RM && encoding != ENCODING_VSIB &&
390 encoding != ENCODING_SIB) ||
391 CD8_Scale == 0)
392 return;
393 encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale));
394 assert(((encoding >= ENCODING_RM && encoding <= ENCODING_RM_CD64) ||
395 (encoding == ENCODING_SIB) ||
396 (encoding >= ENCODING_VSIB && encoding <= ENCODING_VSIB_CD64)) &&
397 "Invalid CDisp scaling");
400 void RecognizableInstr::handleOperand(
401 bool optional, unsigned &operandIndex, unsigned &physicalOperandIndex,
402 unsigned numPhysicalOperands, const unsigned *operandMapping,
403 OperandEncoding (*encodingFromString)(const std::string &,
404 uint8_t OpSize)) {
405 if (optional) {
406 if (physicalOperandIndex >= numPhysicalOperands)
407 return;
408 } else {
409 assert(physicalOperandIndex < numPhysicalOperands);
412 while (operandMapping[operandIndex] != operandIndex) {
413 Spec->operands[operandIndex].encoding = ENCODING_DUP;
414 Spec->operands[operandIndex].type =
415 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
416 ++operandIndex;
419 StringRef typeName = (*Operands)[operandIndex].Rec->getName();
421 OperandEncoding encoding = encodingFromString(std::string(typeName), OpSize);
422 // Adjust the encoding type for an operand based on the instruction.
423 adjustOperandEncoding(encoding);
424 Spec->operands[operandIndex].encoding = encoding;
425 Spec->operands[operandIndex].type =
426 typeFromString(std::string(typeName), HasREX_W, OpSize);
428 ++operandIndex;
429 ++physicalOperandIndex;
432 void RecognizableInstr::emitInstructionSpecifier() {
433 Spec->name = Name;
435 Spec->insnContext = insnContext();
437 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
439 unsigned numOperands = OperandList.size();
440 unsigned numPhysicalOperands = 0;
442 // operandMapping maps from operands in OperandList to their originals.
443 // If operandMapping[i] != i, then the entry is a duplicate.
444 unsigned operandMapping[X86_MAX_OPERANDS];
445 assert(numOperands <= X86_MAX_OPERANDS &&
446 "X86_MAX_OPERANDS is not large enough");
448 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
449 if (!OperandList[operandIndex].Constraints.empty()) {
450 const CGIOperandList::ConstraintInfo &Constraint =
451 OperandList[operandIndex].Constraints[0];
452 if (Constraint.isTied()) {
453 operandMapping[operandIndex] = operandIndex;
454 operandMapping[Constraint.getTiedOperand()] = operandIndex;
455 } else {
456 ++numPhysicalOperands;
457 operandMapping[operandIndex] = operandIndex;
459 } else {
460 ++numPhysicalOperands;
461 operandMapping[operandIndex] = operandIndex;
465 #define HANDLE_OPERAND(class) \
466 handleOperand(false, operandIndex, physicalOperandIndex, \
467 numPhysicalOperands, operandMapping, \
468 class##EncodingFromString);
470 #define HANDLE_OPTIONAL(class) \
471 handleOperand(true, operandIndex, physicalOperandIndex, numPhysicalOperands, \
472 operandMapping, class##EncodingFromString);
474 // operandIndex should always be < numOperands
475 unsigned operandIndex = 0;
476 // physicalOperandIndex should always be < numPhysicalOperands
477 unsigned physicalOperandIndex = 0;
479 #ifndef NDEBUG
480 // Given the set of prefix bits, how many additional operands does the
481 // instruction have?
482 unsigned additionalOperands = 0;
483 if (HasVEX_4V)
484 ++additionalOperands;
485 if (HasEVEX_K)
486 ++additionalOperands;
487 #endif
489 switch (Form) {
490 default:
491 llvm_unreachable("Unhandled form");
492 case X86Local::PrefixByte:
493 return;
494 case X86Local::RawFrmSrc:
495 HANDLE_OPERAND(relocation);
496 return;
497 case X86Local::RawFrmDst:
498 HANDLE_OPERAND(relocation);
499 return;
500 case X86Local::RawFrmDstSrc:
501 HANDLE_OPERAND(relocation);
502 HANDLE_OPERAND(relocation);
503 return;
504 case X86Local::RawFrm:
505 // Operand 1 (optional) is an address or immediate.
506 assert(numPhysicalOperands <= 1 &&
507 "Unexpected number of operands for RawFrm");
508 HANDLE_OPTIONAL(relocation)
509 break;
510 case X86Local::RawFrmMemOffs:
511 // Operand 1 is an address.
512 HANDLE_OPERAND(relocation);
513 break;
514 case X86Local::AddRegFrm:
515 // Operand 1 is added to the opcode.
516 // Operand 2 (optional) is an address.
517 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
518 "Unexpected number of operands for AddRegFrm");
519 HANDLE_OPERAND(opcodeModifier)
520 HANDLE_OPTIONAL(relocation)
521 break;
522 case X86Local::AddCCFrm:
523 // Operand 1 (optional) is an address or immediate.
524 assert(numPhysicalOperands == 2 &&
525 "Unexpected number of operands for AddCCFrm");
526 HANDLE_OPERAND(relocation)
527 HANDLE_OPERAND(opcodeModifier)
528 break;
529 case X86Local::MRMDestReg:
530 // Operand 1 is a register operand in the R/M field.
531 // - In AVX512 there may be a mask operand here -
532 // Operand 2 is a register operand in the Reg/Opcode field.
533 // - In AVX, there is a register operand in the VEX.vvvv field here -
534 // Operand 3 (optional) is an immediate.
535 assert(numPhysicalOperands >= 2 + additionalOperands &&
536 numPhysicalOperands <= 3 + additionalOperands &&
537 "Unexpected number of operands for MRMDestReg");
539 HANDLE_OPERAND(rmRegister)
540 if (HasEVEX_K)
541 HANDLE_OPERAND(writemaskRegister)
543 if (HasVEX_4V)
544 // FIXME: In AVX, the register below becomes the one encoded
545 // in ModRMVEX and the one above the one in the VEX.VVVV field
546 HANDLE_OPERAND(vvvvRegister)
548 HANDLE_OPERAND(roRegister)
549 HANDLE_OPTIONAL(immediate)
550 break;
551 case X86Local::MRMDestMem4VOp3CC:
552 // Operand 1 is a register operand in the Reg/Opcode field.
553 // Operand 2 is a register operand in the R/M field.
554 // Operand 3 is VEX.vvvv
555 // Operand 4 is condition code.
556 assert(numPhysicalOperands == 4 &&
557 "Unexpected number of operands for MRMDestMem4VOp3CC");
558 HANDLE_OPERAND(roRegister)
559 HANDLE_OPERAND(memory)
560 HANDLE_OPERAND(vvvvRegister)
561 HANDLE_OPERAND(opcodeModifier)
562 break;
563 case X86Local::MRMDestMem:
564 case X86Local::MRMDestMemFSIB:
565 // Operand 1 is a memory operand (possibly SIB-extended)
566 // Operand 2 is a register operand in the Reg/Opcode field.
567 // - In AVX, there is a register operand in the VEX.vvvv field here -
568 // Operand 3 (optional) is an immediate.
569 assert(numPhysicalOperands >= 2 + additionalOperands &&
570 numPhysicalOperands <= 3 + additionalOperands &&
571 "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
573 HANDLE_OPERAND(memory)
575 if (HasEVEX_K)
576 HANDLE_OPERAND(writemaskRegister)
578 if (HasVEX_4V)
579 // FIXME: In AVX, the register below becomes the one encoded
580 // in ModRMVEX and the one above the one in the VEX.VVVV field
581 HANDLE_OPERAND(vvvvRegister)
583 HANDLE_OPERAND(roRegister)
584 HANDLE_OPTIONAL(immediate)
585 break;
586 case X86Local::MRMSrcReg:
587 // Operand 1 is a register operand in the Reg/Opcode field.
588 // Operand 2 is a register operand in the R/M field.
589 // - In AVX, there is a register operand in the VEX.vvvv field here -
590 // Operand 3 (optional) is an immediate.
591 // Operand 4 (optional) is an immediate.
593 assert(numPhysicalOperands >= 2 + additionalOperands &&
594 numPhysicalOperands <= 4 + additionalOperands &&
595 "Unexpected number of operands for MRMSrcRegFrm");
597 HANDLE_OPERAND(roRegister)
599 if (HasEVEX_K)
600 HANDLE_OPERAND(writemaskRegister)
602 if (HasVEX_4V)
603 // FIXME: In AVX, the register below becomes the one encoded
604 // in ModRMVEX and the one above the one in the VEX.VVVV field
605 HANDLE_OPERAND(vvvvRegister)
607 HANDLE_OPERAND(rmRegister)
608 HANDLE_OPTIONAL(immediate)
609 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
610 break;
611 case X86Local::MRMSrcReg4VOp3:
612 assert(numPhysicalOperands == 3 &&
613 "Unexpected number of operands for MRMSrcReg4VOp3Frm");
614 HANDLE_OPERAND(roRegister)
615 HANDLE_OPERAND(rmRegister)
616 HANDLE_OPERAND(vvvvRegister)
617 break;
618 case X86Local::MRMSrcRegOp4:
619 assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
620 "Unexpected number of operands for MRMSrcRegOp4Frm");
621 HANDLE_OPERAND(roRegister)
622 HANDLE_OPERAND(vvvvRegister)
623 HANDLE_OPERAND(immediate) // Register in imm[7:4]
624 HANDLE_OPERAND(rmRegister)
625 HANDLE_OPTIONAL(immediate)
626 break;
627 case X86Local::MRMSrcRegCC:
628 assert(numPhysicalOperands == 3 &&
629 "Unexpected number of operands for MRMSrcRegCC");
630 HANDLE_OPERAND(roRegister)
631 HANDLE_OPERAND(rmRegister)
632 HANDLE_OPERAND(opcodeModifier)
633 break;
634 case X86Local::MRMSrcMem:
635 case X86Local::MRMSrcMemFSIB:
636 // Operand 1 is a register operand in the Reg/Opcode field.
637 // Operand 2 is a memory operand (possibly SIB-extended)
638 // - In AVX, there is a register operand in the VEX.vvvv field here -
639 // Operand 3 (optional) is an immediate.
641 assert(numPhysicalOperands >= 2 + additionalOperands &&
642 numPhysicalOperands <= 4 + additionalOperands &&
643 "Unexpected number of operands for MRMSrcMemFrm");
645 HANDLE_OPERAND(roRegister)
647 if (HasEVEX_K)
648 HANDLE_OPERAND(writemaskRegister)
650 if (HasVEX_4V)
651 // FIXME: In AVX, the register below becomes the one encoded
652 // in ModRMVEX and the one above the one in the VEX.VVVV field
653 HANDLE_OPERAND(vvvvRegister)
655 HANDLE_OPERAND(memory)
656 HANDLE_OPTIONAL(immediate)
657 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
658 break;
659 case X86Local::MRMSrcMem4VOp3:
660 assert(numPhysicalOperands == 3 &&
661 "Unexpected number of operands for MRMSrcMem4VOp3Frm");
662 HANDLE_OPERAND(roRegister)
663 HANDLE_OPERAND(memory)
664 HANDLE_OPERAND(vvvvRegister)
665 break;
666 case X86Local::MRMSrcMemOp4:
667 assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
668 "Unexpected number of operands for MRMSrcMemOp4Frm");
669 HANDLE_OPERAND(roRegister)
670 HANDLE_OPERAND(vvvvRegister)
671 HANDLE_OPERAND(immediate) // Register in imm[7:4]
672 HANDLE_OPERAND(memory)
673 HANDLE_OPTIONAL(immediate)
674 break;
675 case X86Local::MRMSrcMemCC:
676 assert(numPhysicalOperands == 3 &&
677 "Unexpected number of operands for MRMSrcMemCC");
678 HANDLE_OPERAND(roRegister)
679 HANDLE_OPERAND(memory)
680 HANDLE_OPERAND(opcodeModifier)
681 break;
682 case X86Local::MRMXrCC:
683 assert(numPhysicalOperands == 2 &&
684 "Unexpected number of operands for MRMXrCC");
685 HANDLE_OPERAND(rmRegister)
686 HANDLE_OPERAND(opcodeModifier)
687 break;
688 case X86Local::MRMr0:
689 // Operand 1 is a register operand in the R/M field.
690 HANDLE_OPERAND(roRegister)
691 break;
692 case X86Local::MRMXr:
693 case X86Local::MRM0r:
694 case X86Local::MRM1r:
695 case X86Local::MRM2r:
696 case X86Local::MRM3r:
697 case X86Local::MRM4r:
698 case X86Local::MRM5r:
699 case X86Local::MRM6r:
700 case X86Local::MRM7r:
701 // Operand 1 is a register operand in the R/M field.
702 // Operand 2 (optional) is an immediate or relocation.
703 // Operand 3 (optional) is an immediate.
704 assert(numPhysicalOperands >= 0 + additionalOperands &&
705 numPhysicalOperands <= 3 + additionalOperands &&
706 "Unexpected number of operands for MRMnr");
708 if (HasVEX_4V)
709 HANDLE_OPERAND(vvvvRegister)
711 if (HasEVEX_K)
712 HANDLE_OPERAND(writemaskRegister)
713 HANDLE_OPTIONAL(rmRegister)
714 HANDLE_OPTIONAL(relocation)
715 HANDLE_OPTIONAL(immediate)
716 break;
717 case X86Local::MRMXmCC:
718 assert(numPhysicalOperands == 2 &&
719 "Unexpected number of operands for MRMXm");
720 HANDLE_OPERAND(memory)
721 HANDLE_OPERAND(opcodeModifier)
722 break;
723 case X86Local::MRMXm:
724 case X86Local::MRM0m:
725 case X86Local::MRM1m:
726 case X86Local::MRM2m:
727 case X86Local::MRM3m:
728 case X86Local::MRM4m:
729 case X86Local::MRM5m:
730 case X86Local::MRM6m:
731 case X86Local::MRM7m:
732 // Operand 1 is a memory operand (possibly SIB-extended)
733 // Operand 2 (optional) is an immediate or relocation.
734 assert(numPhysicalOperands >= 1 + additionalOperands &&
735 numPhysicalOperands <= 2 + additionalOperands &&
736 "Unexpected number of operands for MRMnm");
738 if (HasVEX_4V)
739 HANDLE_OPERAND(vvvvRegister)
740 if (HasEVEX_K)
741 HANDLE_OPERAND(writemaskRegister)
742 HANDLE_OPERAND(memory)
743 HANDLE_OPTIONAL(relocation)
744 break;
745 case X86Local::RawFrmImm8:
746 // operand 1 is a 16-bit immediate
747 // operand 2 is an 8-bit immediate
748 assert(numPhysicalOperands == 2 &&
749 "Unexpected number of operands for X86Local::RawFrmImm8");
750 HANDLE_OPERAND(immediate)
751 HANDLE_OPERAND(immediate)
752 break;
753 case X86Local::RawFrmImm16:
754 // operand 1 is a 16-bit immediate
755 // operand 2 is a 16-bit immediate
756 HANDLE_OPERAND(immediate)
757 HANDLE_OPERAND(immediate)
758 break;
759 case X86Local::MRM0X:
760 case X86Local::MRM1X:
761 case X86Local::MRM2X:
762 case X86Local::MRM3X:
763 case X86Local::MRM4X:
764 case X86Local::MRM5X:
765 case X86Local::MRM6X:
766 case X86Local::MRM7X:
767 #define MAP(from, to) case X86Local::MRM_##from:
768 X86_INSTR_MRM_MAPPING
769 #undef MAP
770 HANDLE_OPTIONAL(relocation)
771 break;
774 #undef HANDLE_OPERAND
775 #undef HANDLE_OPTIONAL
778 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
779 // Special cases where the LLVM tables are not complete
781 #define MAP(from, to) case X86Local::MRM_##from:
783 std::optional<OpcodeType> opcodeType;
784 switch (OpMap) {
785 default:
786 llvm_unreachable("Invalid map!");
787 case X86Local::OB:
788 opcodeType = ONEBYTE;
789 break;
790 case X86Local::TB:
791 opcodeType = TWOBYTE;
792 break;
793 case X86Local::T8:
794 opcodeType = THREEBYTE_38;
795 break;
796 case X86Local::TA:
797 opcodeType = THREEBYTE_3A;
798 break;
799 case X86Local::XOP8:
800 opcodeType = XOP8_MAP;
801 break;
802 case X86Local::XOP9:
803 opcodeType = XOP9_MAP;
804 break;
805 case X86Local::XOPA:
806 opcodeType = XOPA_MAP;
807 break;
808 case X86Local::ThreeDNow:
809 opcodeType = THREEDNOW_MAP;
810 break;
811 case X86Local::T_MAP4:
812 opcodeType = MAP4;
813 break;
814 case X86Local::T_MAP5:
815 opcodeType = MAP5;
816 break;
817 case X86Local::T_MAP6:
818 opcodeType = MAP6;
819 break;
820 case X86Local::T_MAP7:
821 opcodeType = MAP7;
822 break;
825 std::unique_ptr<ModRMFilter> filter;
826 switch (Form) {
827 default:
828 llvm_unreachable("Invalid form!");
829 case X86Local::Pseudo:
830 llvm_unreachable("Pseudo should not be emitted!");
831 case X86Local::RawFrm:
832 case X86Local::AddRegFrm:
833 case X86Local::RawFrmMemOffs:
834 case X86Local::RawFrmSrc:
835 case X86Local::RawFrmDst:
836 case X86Local::RawFrmDstSrc:
837 case X86Local::RawFrmImm8:
838 case X86Local::RawFrmImm16:
839 case X86Local::AddCCFrm:
840 case X86Local::PrefixByte:
841 filter = std::make_unique<DumbFilter>();
842 break;
843 case X86Local::MRMDestReg:
844 case X86Local::MRMSrcReg:
845 case X86Local::MRMSrcReg4VOp3:
846 case X86Local::MRMSrcRegOp4:
847 case X86Local::MRMSrcRegCC:
848 case X86Local::MRMXrCC:
849 case X86Local::MRMXr:
850 filter = std::make_unique<ModFilter>(true);
851 break;
852 case X86Local::MRMDestMem:
853 case X86Local::MRMDestMem4VOp3CC:
854 case X86Local::MRMDestMemFSIB:
855 case X86Local::MRMSrcMem:
856 case X86Local::MRMSrcMemFSIB:
857 case X86Local::MRMSrcMem4VOp3:
858 case X86Local::MRMSrcMemOp4:
859 case X86Local::MRMSrcMemCC:
860 case X86Local::MRMXmCC:
861 case X86Local::MRMXm:
862 filter = std::make_unique<ModFilter>(false);
863 break;
864 case X86Local::MRM0r:
865 case X86Local::MRM1r:
866 case X86Local::MRM2r:
867 case X86Local::MRM3r:
868 case X86Local::MRM4r:
869 case X86Local::MRM5r:
870 case X86Local::MRM6r:
871 case X86Local::MRM7r:
872 filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0r);
873 break;
874 case X86Local::MRM0X:
875 case X86Local::MRM1X:
876 case X86Local::MRM2X:
877 case X86Local::MRM3X:
878 case X86Local::MRM4X:
879 case X86Local::MRM5X:
880 case X86Local::MRM6X:
881 case X86Local::MRM7X:
882 filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0X);
883 break;
884 case X86Local::MRMr0:
885 filter = std::make_unique<ExtendedRMFilter>(true, Form - X86Local::MRMr0);
886 break;
887 case X86Local::MRM0m:
888 case X86Local::MRM1m:
889 case X86Local::MRM2m:
890 case X86Local::MRM3m:
891 case X86Local::MRM4m:
892 case X86Local::MRM5m:
893 case X86Local::MRM6m:
894 case X86Local::MRM7m:
895 filter = std::make_unique<ExtendedFilter>(false, Form - X86Local::MRM0m);
896 break;
897 X86_INSTR_MRM_MAPPING
898 filter = std::make_unique<ExactFilter>(0xC0 + Form - X86Local::MRM_C0);
899 break;
900 } // switch (Form)
902 uint8_t opcodeToSet = Opcode;
904 unsigned AddressSize = 0;
905 switch (AdSize) {
906 case X86Local::AdSize16:
907 AddressSize = 16;
908 break;
909 case X86Local::AdSize32:
910 AddressSize = 32;
911 break;
912 case X86Local::AdSize64:
913 AddressSize = 64;
914 break;
917 assert(opcodeType && "Opcode type not set");
918 assert(filter && "Filter not set");
920 if (Form == X86Local::AddRegFrm || Form == X86Local::MRMSrcRegCC ||
921 Form == X86Local::MRMSrcMemCC || Form == X86Local::MRMXrCC ||
922 Form == X86Local::MRMXmCC || Form == X86Local::AddCCFrm ||
923 Form == X86Local::MRMDestMem4VOp3CC) {
924 uint8_t Count = Form == X86Local::AddRegFrm ? 8 : 16;
925 assert(((opcodeToSet % Count) == 0) && "ADDREG_FRM opcode not aligned");
927 uint8_t currentOpcode;
929 for (currentOpcode = opcodeToSet;
930 currentOpcode < (uint8_t)(opcodeToSet + Count); ++currentOpcode)
931 tables.setTableFields(*opcodeType, insnContext(), currentOpcode, *filter,
932 UID, Is32Bit, OpPrefix == 0,
933 IgnoresVEX_L || EncodeRC, IgnoresW, AddressSize);
934 } else {
935 tables.setTableFields(*opcodeType, insnContext(), opcodeToSet, *filter, UID,
936 Is32Bit, OpPrefix == 0, IgnoresVEX_L || EncodeRC,
937 IgnoresW, AddressSize);
940 #undef MAP
943 #define TYPE(str, type) \
944 if (s == str) \
945 return type;
946 OperandType RecognizableInstr::typeFromString(const std::string &s,
947 bool hasREX_W, uint8_t OpSize) {
948 if (hasREX_W) {
949 // For instructions with a REX_W prefix, a declared 32-bit register encoding
950 // is special.
951 TYPE("GR32", TYPE_R32)
953 if (OpSize == X86Local::OpSize16) {
954 // For OpSize16 instructions, a declared 16-bit register or
955 // immediate encoding is special.
956 TYPE("GR16", TYPE_Rv)
957 } else if (OpSize == X86Local::OpSize32) {
958 // For OpSize32 instructions, a declared 32-bit register or
959 // immediate encoding is special.
960 TYPE("GR32", TYPE_Rv)
962 TYPE("i16mem", TYPE_M)
963 TYPE("i16imm", TYPE_IMM)
964 TYPE("i16i8imm", TYPE_IMM)
965 TYPE("GR16", TYPE_R16)
966 TYPE("GR16orGR32orGR64", TYPE_R16)
967 TYPE("i32mem", TYPE_M)
968 TYPE("i32imm", TYPE_IMM)
969 TYPE("i32i8imm", TYPE_IMM)
970 TYPE("GR32", TYPE_R32)
971 TYPE("GR32orGR64", TYPE_R32)
972 TYPE("i64mem", TYPE_M)
973 TYPE("i64i32imm", TYPE_IMM)
974 TYPE("i64i8imm", TYPE_IMM)
975 TYPE("GR64", TYPE_R64)
976 TYPE("i8mem", TYPE_M)
977 TYPE("i8imm", TYPE_IMM)
978 TYPE("u4imm", TYPE_UIMM8)
979 TYPE("u8imm", TYPE_UIMM8)
980 TYPE("i16u8imm", TYPE_UIMM8)
981 TYPE("i32u8imm", TYPE_UIMM8)
982 TYPE("i64u8imm", TYPE_UIMM8)
983 TYPE("GR8", TYPE_R8)
984 TYPE("VR128", TYPE_XMM)
985 TYPE("VR128X", TYPE_XMM)
986 TYPE("f128mem", TYPE_M)
987 TYPE("f256mem", TYPE_M)
988 TYPE("f512mem", TYPE_M)
989 TYPE("FR128", TYPE_XMM)
990 TYPE("FR64", TYPE_XMM)
991 TYPE("FR64X", TYPE_XMM)
992 TYPE("f64mem", TYPE_M)
993 TYPE("sdmem", TYPE_M)
994 TYPE("FR16X", TYPE_XMM)
995 TYPE("FR32", TYPE_XMM)
996 TYPE("FR32X", TYPE_XMM)
997 TYPE("f32mem", TYPE_M)
998 TYPE("f16mem", TYPE_M)
999 TYPE("ssmem", TYPE_M)
1000 TYPE("shmem", TYPE_M)
1001 TYPE("RST", TYPE_ST)
1002 TYPE("RSTi", TYPE_ST)
1003 TYPE("i128mem", TYPE_M)
1004 TYPE("i256mem", TYPE_M)
1005 TYPE("i512mem", TYPE_M)
1006 TYPE("i512mem_GR16", TYPE_M)
1007 TYPE("i512mem_GR32", TYPE_M)
1008 TYPE("i512mem_GR64", TYPE_M)
1009 TYPE("i64i32imm_brtarget", TYPE_REL)
1010 TYPE("i16imm_brtarget", TYPE_REL)
1011 TYPE("i32imm_brtarget", TYPE_REL)
1012 TYPE("ccode", TYPE_IMM)
1013 TYPE("AVX512RC", TYPE_IMM)
1014 TYPE("brtarget32", TYPE_REL)
1015 TYPE("brtarget16", TYPE_REL)
1016 TYPE("brtarget8", TYPE_REL)
1017 TYPE("f80mem", TYPE_M)
1018 TYPE("lea64_32mem", TYPE_M)
1019 TYPE("lea64mem", TYPE_M)
1020 TYPE("VR64", TYPE_MM64)
1021 TYPE("i64imm", TYPE_IMM)
1022 TYPE("anymem", TYPE_M)
1023 TYPE("opaquemem", TYPE_M)
1024 TYPE("sibmem", TYPE_MSIB)
1025 TYPE("SEGMENT_REG", TYPE_SEGMENTREG)
1026 TYPE("DEBUG_REG", TYPE_DEBUGREG)
1027 TYPE("CONTROL_REG", TYPE_CONTROLREG)
1028 TYPE("srcidx8", TYPE_SRCIDX)
1029 TYPE("srcidx16", TYPE_SRCIDX)
1030 TYPE("srcidx32", TYPE_SRCIDX)
1031 TYPE("srcidx64", TYPE_SRCIDX)
1032 TYPE("dstidx8", TYPE_DSTIDX)
1033 TYPE("dstidx16", TYPE_DSTIDX)
1034 TYPE("dstidx32", TYPE_DSTIDX)
1035 TYPE("dstidx64", TYPE_DSTIDX)
1036 TYPE("offset16_8", TYPE_MOFFS)
1037 TYPE("offset16_16", TYPE_MOFFS)
1038 TYPE("offset16_32", TYPE_MOFFS)
1039 TYPE("offset32_8", TYPE_MOFFS)
1040 TYPE("offset32_16", TYPE_MOFFS)
1041 TYPE("offset32_32", TYPE_MOFFS)
1042 TYPE("offset32_64", TYPE_MOFFS)
1043 TYPE("offset64_8", TYPE_MOFFS)
1044 TYPE("offset64_16", TYPE_MOFFS)
1045 TYPE("offset64_32", TYPE_MOFFS)
1046 TYPE("offset64_64", TYPE_MOFFS)
1047 TYPE("VR256", TYPE_YMM)
1048 TYPE("VR256X", TYPE_YMM)
1049 TYPE("VR512", TYPE_ZMM)
1050 TYPE("VK1", TYPE_VK)
1051 TYPE("VK1WM", TYPE_VK)
1052 TYPE("VK2", TYPE_VK)
1053 TYPE("VK2WM", TYPE_VK)
1054 TYPE("VK4", TYPE_VK)
1055 TYPE("VK4WM", TYPE_VK)
1056 TYPE("VK8", TYPE_VK)
1057 TYPE("VK8WM", TYPE_VK)
1058 TYPE("VK16", TYPE_VK)
1059 TYPE("VK16WM", TYPE_VK)
1060 TYPE("VK32", TYPE_VK)
1061 TYPE("VK32WM", TYPE_VK)
1062 TYPE("VK64", TYPE_VK)
1063 TYPE("VK64WM", TYPE_VK)
1064 TYPE("VK1Pair", TYPE_VK_PAIR)
1065 TYPE("VK2Pair", TYPE_VK_PAIR)
1066 TYPE("VK4Pair", TYPE_VK_PAIR)
1067 TYPE("VK8Pair", TYPE_VK_PAIR)
1068 TYPE("VK16Pair", TYPE_VK_PAIR)
1069 TYPE("vx64mem", TYPE_MVSIBX)
1070 TYPE("vx128mem", TYPE_MVSIBX)
1071 TYPE("vx256mem", TYPE_MVSIBX)
1072 TYPE("vy128mem", TYPE_MVSIBY)
1073 TYPE("vy256mem", TYPE_MVSIBY)
1074 TYPE("vx64xmem", TYPE_MVSIBX)
1075 TYPE("vx128xmem", TYPE_MVSIBX)
1076 TYPE("vx256xmem", TYPE_MVSIBX)
1077 TYPE("vy128xmem", TYPE_MVSIBY)
1078 TYPE("vy256xmem", TYPE_MVSIBY)
1079 TYPE("vy512xmem", TYPE_MVSIBY)
1080 TYPE("vz256mem", TYPE_MVSIBZ)
1081 TYPE("vz512mem", TYPE_MVSIBZ)
1082 TYPE("BNDR", TYPE_BNDR)
1083 TYPE("TILE", TYPE_TMM)
1084 errs() << "Unhandled type string " << s << "\n";
1085 llvm_unreachable("Unhandled type string");
1087 #undef TYPE
1089 #define ENCODING(str, encoding) \
1090 if (s == str) \
1091 return encoding;
1092 OperandEncoding
1093 RecognizableInstr::immediateEncodingFromString(const std::string &s,
1094 uint8_t OpSize) {
1095 if (OpSize != X86Local::OpSize16) {
1096 // For instructions without an OpSize prefix, a declared 16-bit register or
1097 // immediate encoding is special.
1098 ENCODING("i16imm", ENCODING_IW)
1100 ENCODING("i32i8imm", ENCODING_IB)
1101 ENCODING("AVX512RC", ENCODING_IRC)
1102 ENCODING("i16imm", ENCODING_Iv)
1103 ENCODING("i16i8imm", ENCODING_IB)
1104 ENCODING("i32imm", ENCODING_Iv)
1105 ENCODING("i64i32imm", ENCODING_ID)
1106 ENCODING("i64i8imm", ENCODING_IB)
1107 ENCODING("i8imm", ENCODING_IB)
1108 ENCODING("u4imm", ENCODING_IB)
1109 ENCODING("u8imm", ENCODING_IB)
1110 ENCODING("i16u8imm", ENCODING_IB)
1111 ENCODING("i32u8imm", ENCODING_IB)
1112 ENCODING("i64u8imm", ENCODING_IB)
1113 // This is not a typo. Instructions like BLENDVPD put
1114 // register IDs in 8-bit immediates nowadays.
1115 ENCODING("FR32", ENCODING_IB)
1116 ENCODING("FR64", ENCODING_IB)
1117 ENCODING("FR128", ENCODING_IB)
1118 ENCODING("VR128", ENCODING_IB)
1119 ENCODING("VR256", ENCODING_IB)
1120 ENCODING("FR16X", ENCODING_IB)
1121 ENCODING("FR32X", ENCODING_IB)
1122 ENCODING("FR64X", ENCODING_IB)
1123 ENCODING("VR128X", ENCODING_IB)
1124 ENCODING("VR256X", ENCODING_IB)
1125 ENCODING("VR512", ENCODING_IB)
1126 ENCODING("TILE", ENCODING_IB)
1127 errs() << "Unhandled immediate encoding " << s << "\n";
1128 llvm_unreachable("Unhandled immediate encoding");
1131 OperandEncoding
1132 RecognizableInstr::rmRegisterEncodingFromString(const std::string &s,
1133 uint8_t OpSize) {
1134 ENCODING("RST", ENCODING_FP)
1135 ENCODING("RSTi", ENCODING_FP)
1136 ENCODING("GR16", ENCODING_RM)
1137 ENCODING("GR16orGR32orGR64", ENCODING_RM)
1138 ENCODING("GR32", ENCODING_RM)
1139 ENCODING("GR32orGR64", ENCODING_RM)
1140 ENCODING("GR64", ENCODING_RM)
1141 ENCODING("GR8", ENCODING_RM)
1142 ENCODING("VR128", ENCODING_RM)
1143 ENCODING("VR128X", ENCODING_RM)
1144 ENCODING("FR128", ENCODING_RM)
1145 ENCODING("FR64", ENCODING_RM)
1146 ENCODING("FR32", ENCODING_RM)
1147 ENCODING("FR64X", ENCODING_RM)
1148 ENCODING("FR32X", ENCODING_RM)
1149 ENCODING("FR16X", ENCODING_RM)
1150 ENCODING("VR64", ENCODING_RM)
1151 ENCODING("VR256", ENCODING_RM)
1152 ENCODING("VR256X", ENCODING_RM)
1153 ENCODING("VR512", ENCODING_RM)
1154 ENCODING("VK1", ENCODING_RM)
1155 ENCODING("VK2", ENCODING_RM)
1156 ENCODING("VK4", ENCODING_RM)
1157 ENCODING("VK8", ENCODING_RM)
1158 ENCODING("VK16", ENCODING_RM)
1159 ENCODING("VK32", ENCODING_RM)
1160 ENCODING("VK64", ENCODING_RM)
1161 ENCODING("BNDR", ENCODING_RM)
1162 ENCODING("TILE", ENCODING_RM)
1163 errs() << "Unhandled R/M register encoding " << s << "\n";
1164 llvm_unreachable("Unhandled R/M register encoding");
1167 OperandEncoding
1168 RecognizableInstr::roRegisterEncodingFromString(const std::string &s,
1169 uint8_t OpSize) {
1170 ENCODING("GR16", ENCODING_REG)
1171 ENCODING("GR16orGR32orGR64", ENCODING_REG)
1172 ENCODING("GR32", ENCODING_REG)
1173 ENCODING("GR32orGR64", ENCODING_REG)
1174 ENCODING("GR64", ENCODING_REG)
1175 ENCODING("GR8", ENCODING_REG)
1176 ENCODING("VR128", ENCODING_REG)
1177 ENCODING("FR128", ENCODING_REG)
1178 ENCODING("FR64", ENCODING_REG)
1179 ENCODING("FR32", ENCODING_REG)
1180 ENCODING("VR64", ENCODING_REG)
1181 ENCODING("SEGMENT_REG", ENCODING_REG)
1182 ENCODING("DEBUG_REG", ENCODING_REG)
1183 ENCODING("CONTROL_REG", ENCODING_REG)
1184 ENCODING("VR256", ENCODING_REG)
1185 ENCODING("VR256X", ENCODING_REG)
1186 ENCODING("VR128X", ENCODING_REG)
1187 ENCODING("FR64X", ENCODING_REG)
1188 ENCODING("FR32X", ENCODING_REG)
1189 ENCODING("FR16X", ENCODING_REG)
1190 ENCODING("VR512", ENCODING_REG)
1191 ENCODING("VK1", ENCODING_REG)
1192 ENCODING("VK2", ENCODING_REG)
1193 ENCODING("VK4", ENCODING_REG)
1194 ENCODING("VK8", ENCODING_REG)
1195 ENCODING("VK16", ENCODING_REG)
1196 ENCODING("VK32", ENCODING_REG)
1197 ENCODING("VK64", ENCODING_REG)
1198 ENCODING("VK1Pair", ENCODING_REG)
1199 ENCODING("VK2Pair", ENCODING_REG)
1200 ENCODING("VK4Pair", ENCODING_REG)
1201 ENCODING("VK8Pair", ENCODING_REG)
1202 ENCODING("VK16Pair", ENCODING_REG)
1203 ENCODING("VK1WM", ENCODING_REG)
1204 ENCODING("VK2WM", ENCODING_REG)
1205 ENCODING("VK4WM", ENCODING_REG)
1206 ENCODING("VK8WM", ENCODING_REG)
1207 ENCODING("VK16WM", ENCODING_REG)
1208 ENCODING("VK32WM", ENCODING_REG)
1209 ENCODING("VK64WM", ENCODING_REG)
1210 ENCODING("BNDR", ENCODING_REG)
1211 ENCODING("TILE", ENCODING_REG)
1212 errs() << "Unhandled reg/opcode register encoding " << s << "\n";
1213 llvm_unreachable("Unhandled reg/opcode register encoding");
1216 OperandEncoding
1217 RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s,
1218 uint8_t OpSize) {
1219 ENCODING("GR32", ENCODING_VVVV)
1220 ENCODING("GR64", ENCODING_VVVV)
1221 ENCODING("FR32", ENCODING_VVVV)
1222 ENCODING("FR128", ENCODING_VVVV)
1223 ENCODING("FR64", ENCODING_VVVV)
1224 ENCODING("VR128", ENCODING_VVVV)
1225 ENCODING("VR256", ENCODING_VVVV)
1226 ENCODING("FR16X", ENCODING_VVVV)
1227 ENCODING("FR32X", ENCODING_VVVV)
1228 ENCODING("FR64X", ENCODING_VVVV)
1229 ENCODING("VR128X", ENCODING_VVVV)
1230 ENCODING("VR256X", ENCODING_VVVV)
1231 ENCODING("VR512", ENCODING_VVVV)
1232 ENCODING("VK1", ENCODING_VVVV)
1233 ENCODING("VK2", ENCODING_VVVV)
1234 ENCODING("VK4", ENCODING_VVVV)
1235 ENCODING("VK8", ENCODING_VVVV)
1236 ENCODING("VK16", ENCODING_VVVV)
1237 ENCODING("VK32", ENCODING_VVVV)
1238 ENCODING("VK64", ENCODING_VVVV)
1239 ENCODING("TILE", ENCODING_VVVV)
1240 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
1241 llvm_unreachable("Unhandled VEX.vvvv register encoding");
1244 OperandEncoding
1245 RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s,
1246 uint8_t OpSize) {
1247 ENCODING("VK1WM", ENCODING_WRITEMASK)
1248 ENCODING("VK2WM", ENCODING_WRITEMASK)
1249 ENCODING("VK4WM", ENCODING_WRITEMASK)
1250 ENCODING("VK8WM", ENCODING_WRITEMASK)
1251 ENCODING("VK16WM", ENCODING_WRITEMASK)
1252 ENCODING("VK32WM", ENCODING_WRITEMASK)
1253 ENCODING("VK64WM", ENCODING_WRITEMASK)
1254 errs() << "Unhandled mask register encoding " << s << "\n";
1255 llvm_unreachable("Unhandled mask register encoding");
1258 OperandEncoding
1259 RecognizableInstr::memoryEncodingFromString(const std::string &s,
1260 uint8_t OpSize) {
1261 ENCODING("i16mem", ENCODING_RM)
1262 ENCODING("i32mem", ENCODING_RM)
1263 ENCODING("i64mem", ENCODING_RM)
1264 ENCODING("i8mem", ENCODING_RM)
1265 ENCODING("shmem", ENCODING_RM)
1266 ENCODING("ssmem", ENCODING_RM)
1267 ENCODING("sdmem", ENCODING_RM)
1268 ENCODING("f128mem", ENCODING_RM)
1269 ENCODING("f256mem", ENCODING_RM)
1270 ENCODING("f512mem", ENCODING_RM)
1271 ENCODING("f64mem", ENCODING_RM)
1272 ENCODING("f32mem", ENCODING_RM)
1273 ENCODING("f16mem", ENCODING_RM)
1274 ENCODING("i128mem", ENCODING_RM)
1275 ENCODING("i256mem", ENCODING_RM)
1276 ENCODING("i512mem", ENCODING_RM)
1277 ENCODING("i512mem_GR16", ENCODING_RM)
1278 ENCODING("i512mem_GR32", ENCODING_RM)
1279 ENCODING("i512mem_GR64", ENCODING_RM)
1280 ENCODING("f80mem", ENCODING_RM)
1281 ENCODING("lea64_32mem", ENCODING_RM)
1282 ENCODING("lea64mem", ENCODING_RM)
1283 ENCODING("anymem", ENCODING_RM)
1284 ENCODING("opaquemem", ENCODING_RM)
1285 ENCODING("sibmem", ENCODING_SIB)
1286 ENCODING("vx64mem", ENCODING_VSIB)
1287 ENCODING("vx128mem", ENCODING_VSIB)
1288 ENCODING("vx256mem", ENCODING_VSIB)
1289 ENCODING("vy128mem", ENCODING_VSIB)
1290 ENCODING("vy256mem", ENCODING_VSIB)
1291 ENCODING("vx64xmem", ENCODING_VSIB)
1292 ENCODING("vx128xmem", ENCODING_VSIB)
1293 ENCODING("vx256xmem", ENCODING_VSIB)
1294 ENCODING("vy128xmem", ENCODING_VSIB)
1295 ENCODING("vy256xmem", ENCODING_VSIB)
1296 ENCODING("vy512xmem", ENCODING_VSIB)
1297 ENCODING("vz256mem", ENCODING_VSIB)
1298 ENCODING("vz512mem", ENCODING_VSIB)
1299 errs() << "Unhandled memory encoding " << s << "\n";
1300 llvm_unreachable("Unhandled memory encoding");
1303 OperandEncoding
1304 RecognizableInstr::relocationEncodingFromString(const std::string &s,
1305 uint8_t OpSize) {
1306 if (OpSize != X86Local::OpSize16) {
1307 // For instructions without an OpSize prefix, a declared 16-bit register or
1308 // immediate encoding is special.
1309 ENCODING("i16imm", ENCODING_IW)
1311 ENCODING("i16imm", ENCODING_Iv)
1312 ENCODING("i16i8imm", ENCODING_IB)
1313 ENCODING("i32imm", ENCODING_Iv)
1314 ENCODING("i32i8imm", ENCODING_IB)
1315 ENCODING("i64i32imm", ENCODING_ID)
1316 ENCODING("i64i8imm", ENCODING_IB)
1317 ENCODING("i8imm", ENCODING_IB)
1318 ENCODING("u8imm", ENCODING_IB)
1319 ENCODING("i16u8imm", ENCODING_IB)
1320 ENCODING("i32u8imm", ENCODING_IB)
1321 ENCODING("i64u8imm", ENCODING_IB)
1322 ENCODING("i64i32imm_brtarget", ENCODING_ID)
1323 ENCODING("i16imm_brtarget", ENCODING_IW)
1324 ENCODING("i32imm_brtarget", ENCODING_ID)
1325 ENCODING("brtarget32", ENCODING_ID)
1326 ENCODING("brtarget16", ENCODING_IW)
1327 ENCODING("brtarget8", ENCODING_IB)
1328 ENCODING("i64imm", ENCODING_IO)
1329 ENCODING("offset16_8", ENCODING_Ia)
1330 ENCODING("offset16_16", ENCODING_Ia)
1331 ENCODING("offset16_32", ENCODING_Ia)
1332 ENCODING("offset32_8", ENCODING_Ia)
1333 ENCODING("offset32_16", ENCODING_Ia)
1334 ENCODING("offset32_32", ENCODING_Ia)
1335 ENCODING("offset32_64", ENCODING_Ia)
1336 ENCODING("offset64_8", ENCODING_Ia)
1337 ENCODING("offset64_16", ENCODING_Ia)
1338 ENCODING("offset64_32", ENCODING_Ia)
1339 ENCODING("offset64_64", ENCODING_Ia)
1340 ENCODING("srcidx8", ENCODING_SI)
1341 ENCODING("srcidx16", ENCODING_SI)
1342 ENCODING("srcidx32", ENCODING_SI)
1343 ENCODING("srcidx64", ENCODING_SI)
1344 ENCODING("dstidx8", ENCODING_DI)
1345 ENCODING("dstidx16", ENCODING_DI)
1346 ENCODING("dstidx32", ENCODING_DI)
1347 ENCODING("dstidx64", ENCODING_DI)
1348 errs() << "Unhandled relocation encoding " << s << "\n";
1349 llvm_unreachable("Unhandled relocation encoding");
1352 OperandEncoding
1353 RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s,
1354 uint8_t OpSize) {
1355 ENCODING("GR32", ENCODING_Rv)
1356 ENCODING("GR64", ENCODING_RO)
1357 ENCODING("GR16", ENCODING_Rv)
1358 ENCODING("GR8", ENCODING_RB)
1359 ENCODING("ccode", ENCODING_CC)
1360 errs() << "Unhandled opcode modifier encoding " << s << "\n";
1361 llvm_unreachable("Unhandled opcode modifier encoding");
1363 #undef ENCODING