1 #include "llvm/ADT/APFloat.h"
2 #include "llvm/ADT/Optional.h"
3 #include "llvm/ADT/STLExtras.h"
4 #include "llvm/IR/BasicBlock.h"
5 #include "llvm/IR/Constants.h"
6 #include "llvm/IR/DerivedTypes.h"
7 #include "llvm/IR/Function.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/Instructions.h"
10 #include "llvm/IR/LLVMContext.h"
11 #include "llvm/IR/LegacyPassManager.h"
12 #include "llvm/IR/Module.h"
13 #include "llvm/IR/Type.h"
14 #include "llvm/IR/Verifier.h"
15 #include "llvm/MC/TargetRegistry.h"
16 #include "llvm/Support/FileSystem.h"
17 #include "llvm/Support/Host.h"
18 #include "llvm/Support/TargetSelect.h"
19 #include "llvm/Support/raw_ostream.h"
20 #include "llvm/Target/TargetMachine.h"
21 #include "llvm/Target/TargetOptions.h"
30 #include <system_error>
35 using namespace llvm::sys
;
37 //===----------------------------------------------------------------------===//
39 //===----------------------------------------------------------------------===//
41 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
42 // of these for known things.
69 static std::string IdentifierStr
; // Filled in if tok_identifier
70 static double NumVal
; // Filled in if tok_number
72 /// gettok - Return the next token from standard input.
74 static int LastChar
= ' ';
76 // Skip any whitespace.
77 while (isspace(LastChar
))
80 if (isalpha(LastChar
)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
81 IdentifierStr
= LastChar
;
82 while (isalnum((LastChar
= getchar())))
83 IdentifierStr
+= LastChar
;
85 if (IdentifierStr
== "def")
87 if (IdentifierStr
== "extern")
89 if (IdentifierStr
== "if")
91 if (IdentifierStr
== "then")
93 if (IdentifierStr
== "else")
95 if (IdentifierStr
== "for")
97 if (IdentifierStr
== "in")
99 if (IdentifierStr
== "binary")
101 if (IdentifierStr
== "unary")
103 if (IdentifierStr
== "var")
105 return tok_identifier
;
108 if (isdigit(LastChar
) || LastChar
== '.') { // Number: [0-9.]+
112 LastChar
= getchar();
113 } while (isdigit(LastChar
) || LastChar
== '.');
115 NumVal
= strtod(NumStr
.c_str(), nullptr);
119 if (LastChar
== '#') {
120 // Comment until end of line.
122 LastChar
= getchar();
123 while (LastChar
!= EOF
&& LastChar
!= '\n' && LastChar
!= '\r');
129 // Check for end of file. Don't eat the EOF.
133 // Otherwise, just return the character as its ascii value.
134 int ThisChar
= LastChar
;
135 LastChar
= getchar();
139 //===----------------------------------------------------------------------===//
140 // Abstract Syntax Tree (aka Parse Tree)
141 //===----------------------------------------------------------------------===//
145 /// ExprAST - Base class for all expression nodes.
148 virtual ~ExprAST() = default;
150 virtual Value
*codegen() = 0;
153 /// NumberExprAST - Expression class for numeric literals like "1.0".
154 class NumberExprAST
: public ExprAST
{
158 NumberExprAST(double Val
) : Val(Val
) {}
160 Value
*codegen() override
;
163 /// VariableExprAST - Expression class for referencing a variable, like "a".
164 class VariableExprAST
: public ExprAST
{
168 VariableExprAST(const std::string
&Name
) : Name(Name
) {}
170 Value
*codegen() override
;
171 const std::string
&getName() const { return Name
; }
174 /// UnaryExprAST - Expression class for a unary operator.
175 class UnaryExprAST
: public ExprAST
{
177 std::unique_ptr
<ExprAST
> Operand
;
180 UnaryExprAST(char Opcode
, std::unique_ptr
<ExprAST
> Operand
)
181 : Opcode(Opcode
), Operand(std::move(Operand
)) {}
183 Value
*codegen() override
;
186 /// BinaryExprAST - Expression class for a binary operator.
187 class BinaryExprAST
: public ExprAST
{
189 std::unique_ptr
<ExprAST
> LHS
, RHS
;
192 BinaryExprAST(char Op
, std::unique_ptr
<ExprAST
> LHS
,
193 std::unique_ptr
<ExprAST
> RHS
)
194 : Op(Op
), LHS(std::move(LHS
)), RHS(std::move(RHS
)) {}
196 Value
*codegen() override
;
199 /// CallExprAST - Expression class for function calls.
200 class CallExprAST
: public ExprAST
{
202 std::vector
<std::unique_ptr
<ExprAST
>> Args
;
205 CallExprAST(const std::string
&Callee
,
206 std::vector
<std::unique_ptr
<ExprAST
>> Args
)
207 : Callee(Callee
), Args(std::move(Args
)) {}
209 Value
*codegen() override
;
212 /// IfExprAST - Expression class for if/then/else.
213 class IfExprAST
: public ExprAST
{
214 std::unique_ptr
<ExprAST
> Cond
, Then
, Else
;
217 IfExprAST(std::unique_ptr
<ExprAST
> Cond
, std::unique_ptr
<ExprAST
> Then
,
218 std::unique_ptr
<ExprAST
> Else
)
219 : Cond(std::move(Cond
)), Then(std::move(Then
)), Else(std::move(Else
)) {}
221 Value
*codegen() override
;
224 /// ForExprAST - Expression class for for/in.
225 class ForExprAST
: public ExprAST
{
227 std::unique_ptr
<ExprAST
> Start
, End
, Step
, Body
;
230 ForExprAST(const std::string
&VarName
, std::unique_ptr
<ExprAST
> Start
,
231 std::unique_ptr
<ExprAST
> End
, std::unique_ptr
<ExprAST
> Step
,
232 std::unique_ptr
<ExprAST
> Body
)
233 : VarName(VarName
), Start(std::move(Start
)), End(std::move(End
)),
234 Step(std::move(Step
)), Body(std::move(Body
)) {}
236 Value
*codegen() override
;
239 /// VarExprAST - Expression class for var/in
240 class VarExprAST
: public ExprAST
{
241 std::vector
<std::pair
<std::string
, std::unique_ptr
<ExprAST
>>> VarNames
;
242 std::unique_ptr
<ExprAST
> Body
;
246 std::vector
<std::pair
<std::string
, std::unique_ptr
<ExprAST
>>> VarNames
,
247 std::unique_ptr
<ExprAST
> Body
)
248 : VarNames(std::move(VarNames
)), Body(std::move(Body
)) {}
250 Value
*codegen() override
;
253 /// PrototypeAST - This class represents the "prototype" for a function,
254 /// which captures its name, and its argument names (thus implicitly the number
255 /// of arguments the function takes), as well as if it is an operator.
258 std::vector
<std::string
> Args
;
260 unsigned Precedence
; // Precedence if a binary op.
263 PrototypeAST(const std::string
&Name
, std::vector
<std::string
> Args
,
264 bool IsOperator
= false, unsigned Prec
= 0)
265 : Name(Name
), Args(std::move(Args
)), IsOperator(IsOperator
),
269 const std::string
&getName() const { return Name
; }
271 bool isUnaryOp() const { return IsOperator
&& Args
.size() == 1; }
272 bool isBinaryOp() const { return IsOperator
&& Args
.size() == 2; }
274 char getOperatorName() const {
275 assert(isUnaryOp() || isBinaryOp());
276 return Name
[Name
.size() - 1];
279 unsigned getBinaryPrecedence() const { return Precedence
; }
282 /// FunctionAST - This class represents a function definition itself.
284 std::unique_ptr
<PrototypeAST
> Proto
;
285 std::unique_ptr
<ExprAST
> Body
;
288 FunctionAST(std::unique_ptr
<PrototypeAST
> Proto
,
289 std::unique_ptr
<ExprAST
> Body
)
290 : Proto(std::move(Proto
)), Body(std::move(Body
)) {}
295 } // end anonymous namespace
297 //===----------------------------------------------------------------------===//
299 //===----------------------------------------------------------------------===//
301 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
302 /// token the parser is looking at. getNextToken reads another token from the
303 /// lexer and updates CurTok with its results.
305 static int getNextToken() { return CurTok
= gettok(); }
307 /// BinopPrecedence - This holds the precedence for each binary operator that is
309 static std::map
<char, int> BinopPrecedence
;
311 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
312 static int GetTokPrecedence() {
313 if (!isascii(CurTok
))
316 // Make sure it's a declared binop.
317 int TokPrec
= BinopPrecedence
[CurTok
];
323 /// LogError* - These are little helper functions for error handling.
324 std::unique_ptr
<ExprAST
> LogError(const char *Str
) {
325 fprintf(stderr
, "Error: %s\n", Str
);
329 std::unique_ptr
<PrototypeAST
> LogErrorP(const char *Str
) {
334 static std::unique_ptr
<ExprAST
> ParseExpression();
336 /// numberexpr ::= number
337 static std::unique_ptr
<ExprAST
> ParseNumberExpr() {
338 auto Result
= std::make_unique
<NumberExprAST
>(NumVal
);
339 getNextToken(); // consume the number
340 return std::move(Result
);
343 /// parenexpr ::= '(' expression ')'
344 static std::unique_ptr
<ExprAST
> ParseParenExpr() {
345 getNextToken(); // eat (.
346 auto V
= ParseExpression();
351 return LogError("expected ')'");
352 getNextToken(); // eat ).
358 /// ::= identifier '(' expression* ')'
359 static std::unique_ptr
<ExprAST
> ParseIdentifierExpr() {
360 std::string IdName
= IdentifierStr
;
362 getNextToken(); // eat identifier.
364 if (CurTok
!= '(') // Simple variable ref.
365 return std::make_unique
<VariableExprAST
>(IdName
);
368 getNextToken(); // eat (
369 std::vector
<std::unique_ptr
<ExprAST
>> Args
;
372 if (auto Arg
= ParseExpression())
373 Args
.push_back(std::move(Arg
));
381 return LogError("Expected ')' or ',' in argument list");
389 return std::make_unique
<CallExprAST
>(IdName
, std::move(Args
));
392 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
393 static std::unique_ptr
<ExprAST
> ParseIfExpr() {
394 getNextToken(); // eat the if.
397 auto Cond
= ParseExpression();
401 if (CurTok
!= tok_then
)
402 return LogError("expected then");
403 getNextToken(); // eat the then
405 auto Then
= ParseExpression();
409 if (CurTok
!= tok_else
)
410 return LogError("expected else");
414 auto Else
= ParseExpression();
418 return std::make_unique
<IfExprAST
>(std::move(Cond
), std::move(Then
),
422 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
423 static std::unique_ptr
<ExprAST
> ParseForExpr() {
424 getNextToken(); // eat the for.
426 if (CurTok
!= tok_identifier
)
427 return LogError("expected identifier after for");
429 std::string IdName
= IdentifierStr
;
430 getNextToken(); // eat identifier.
433 return LogError("expected '=' after for");
434 getNextToken(); // eat '='.
436 auto Start
= ParseExpression();
440 return LogError("expected ',' after for start value");
443 auto End
= ParseExpression();
447 // The step value is optional.
448 std::unique_ptr
<ExprAST
> Step
;
451 Step
= ParseExpression();
456 if (CurTok
!= tok_in
)
457 return LogError("expected 'in' after for");
458 getNextToken(); // eat 'in'.
460 auto Body
= ParseExpression();
464 return std::make_unique
<ForExprAST
>(IdName
, std::move(Start
), std::move(End
),
465 std::move(Step
), std::move(Body
));
468 /// varexpr ::= 'var' identifier ('=' expression)?
469 // (',' identifier ('=' expression)?)* 'in' expression
470 static std::unique_ptr
<ExprAST
> ParseVarExpr() {
471 getNextToken(); // eat the var.
473 std::vector
<std::pair
<std::string
, std::unique_ptr
<ExprAST
>>> VarNames
;
475 // At least one variable name is required.
476 if (CurTok
!= tok_identifier
)
477 return LogError("expected identifier after var");
480 std::string Name
= IdentifierStr
;
481 getNextToken(); // eat identifier.
483 // Read the optional initializer.
484 std::unique_ptr
<ExprAST
> Init
= nullptr;
486 getNextToken(); // eat the '='.
488 Init
= ParseExpression();
493 VarNames
.push_back(std::make_pair(Name
, std::move(Init
)));
495 // End of var list, exit loop.
498 getNextToken(); // eat the ','.
500 if (CurTok
!= tok_identifier
)
501 return LogError("expected identifier list after var");
504 // At this point, we have to have 'in'.
505 if (CurTok
!= tok_in
)
506 return LogError("expected 'in' keyword after 'var'");
507 getNextToken(); // eat 'in'.
509 auto Body
= ParseExpression();
513 return std::make_unique
<VarExprAST
>(std::move(VarNames
), std::move(Body
));
517 /// ::= identifierexpr
523 static std::unique_ptr
<ExprAST
> ParsePrimary() {
526 return LogError("unknown token when expecting an expression");
528 return ParseIdentifierExpr();
530 return ParseNumberExpr();
532 return ParseParenExpr();
534 return ParseIfExpr();
536 return ParseForExpr();
538 return ParseVarExpr();
545 static std::unique_ptr
<ExprAST
> ParseUnary() {
546 // If the current token is not an operator, it must be a primary expr.
547 if (!isascii(CurTok
) || CurTok
== '(' || CurTok
== ',')
548 return ParsePrimary();
550 // If this is a unary operator, read it.
553 if (auto Operand
= ParseUnary())
554 return std::make_unique
<UnaryExprAST
>(Opc
, std::move(Operand
));
560 static std::unique_ptr
<ExprAST
> ParseBinOpRHS(int ExprPrec
,
561 std::unique_ptr
<ExprAST
> LHS
) {
562 // If this is a binop, find its precedence.
564 int TokPrec
= GetTokPrecedence();
566 // If this is a binop that binds at least as tightly as the current binop,
567 // consume it, otherwise we are done.
568 if (TokPrec
< ExprPrec
)
571 // Okay, we know this is a binop.
573 getNextToken(); // eat binop
575 // Parse the unary expression after the binary operator.
576 auto RHS
= ParseUnary();
580 // If BinOp binds less tightly with RHS than the operator after RHS, let
581 // the pending operator take RHS as its LHS.
582 int NextPrec
= GetTokPrecedence();
583 if (TokPrec
< NextPrec
) {
584 RHS
= ParseBinOpRHS(TokPrec
+ 1, std::move(RHS
));
591 std::make_unique
<BinaryExprAST
>(BinOp
, std::move(LHS
), std::move(RHS
));
596 /// ::= unary binoprhs
598 static std::unique_ptr
<ExprAST
> ParseExpression() {
599 auto LHS
= ParseUnary();
603 return ParseBinOpRHS(0, std::move(LHS
));
607 /// ::= id '(' id* ')'
608 /// ::= binary LETTER number? (id, id)
609 /// ::= unary LETTER (id)
610 static std::unique_ptr
<PrototypeAST
> ParsePrototype() {
613 unsigned Kind
= 0; // 0 = identifier, 1 = unary, 2 = binary.
614 unsigned BinaryPrecedence
= 30;
618 return LogErrorP("Expected function name in prototype");
620 FnName
= IdentifierStr
;
626 if (!isascii(CurTok
))
627 return LogErrorP("Expected unary operator");
629 FnName
+= (char)CurTok
;
635 if (!isascii(CurTok
))
636 return LogErrorP("Expected binary operator");
638 FnName
+= (char)CurTok
;
642 // Read the precedence if present.
643 if (CurTok
== tok_number
) {
644 if (NumVal
< 1 || NumVal
> 100)
645 return LogErrorP("Invalid precedence: must be 1..100");
646 BinaryPrecedence
= (unsigned)NumVal
;
653 return LogErrorP("Expected '(' in prototype");
655 std::vector
<std::string
> ArgNames
;
656 while (getNextToken() == tok_identifier
)
657 ArgNames
.push_back(IdentifierStr
);
659 return LogErrorP("Expected ')' in prototype");
662 getNextToken(); // eat ')'.
664 // Verify right number of names for operator.
665 if (Kind
&& ArgNames
.size() != Kind
)
666 return LogErrorP("Invalid number of operands for operator");
668 return std::make_unique
<PrototypeAST
>(FnName
, ArgNames
, Kind
!= 0,
672 /// definition ::= 'def' prototype expression
673 static std::unique_ptr
<FunctionAST
> ParseDefinition() {
674 getNextToken(); // eat def.
675 auto Proto
= ParsePrototype();
679 if (auto E
= ParseExpression())
680 return std::make_unique
<FunctionAST
>(std::move(Proto
), std::move(E
));
684 /// toplevelexpr ::= expression
685 static std::unique_ptr
<FunctionAST
> ParseTopLevelExpr() {
686 if (auto E
= ParseExpression()) {
687 // Make an anonymous proto.
688 auto Proto
= std::make_unique
<PrototypeAST
>("__anon_expr",
689 std::vector
<std::string
>());
690 return std::make_unique
<FunctionAST
>(std::move(Proto
), std::move(E
));
695 /// external ::= 'extern' prototype
696 static std::unique_ptr
<PrototypeAST
> ParseExtern() {
697 getNextToken(); // eat extern.
698 return ParsePrototype();
701 //===----------------------------------------------------------------------===//
703 //===----------------------------------------------------------------------===//
705 static std::unique_ptr
<LLVMContext
> TheContext
;
706 static std::unique_ptr
<Module
> TheModule
;
707 static std::unique_ptr
<IRBuilder
<>> Builder
;
708 static std::map
<std::string
, AllocaInst
*> NamedValues
;
709 static std::map
<std::string
, std::unique_ptr
<PrototypeAST
>> FunctionProtos
;
710 static ExitOnError ExitOnErr
;
712 Value
*LogErrorV(const char *Str
) {
717 Function
*getFunction(std::string Name
) {
718 // First, see if the function has already been added to the current module.
719 if (auto *F
= TheModule
->getFunction(Name
))
722 // If not, check whether we can codegen the declaration from some existing
724 auto FI
= FunctionProtos
.find(Name
);
725 if (FI
!= FunctionProtos
.end())
726 return FI
->second
->codegen();
728 // If no existing prototype exists, return null.
732 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
733 /// the function. This is used for mutable variables etc.
734 static AllocaInst
*CreateEntryBlockAlloca(Function
*TheFunction
,
736 IRBuilder
<> TmpB(&TheFunction
->getEntryBlock(),
737 TheFunction
->getEntryBlock().begin());
738 return TmpB
.CreateAlloca(Type::getDoubleTy(*TheContext
), nullptr, VarName
);
741 Value
*NumberExprAST::codegen() {
742 return ConstantFP::get(*TheContext
, APFloat(Val
));
745 Value
*VariableExprAST::codegen() {
746 // Look this variable up in the function.
747 Value
*V
= NamedValues
[Name
];
749 return LogErrorV("Unknown variable name");
752 return Builder
->CreateLoad(Type::getDoubleTy(*TheContext
), V
, Name
.c_str());
755 Value
*UnaryExprAST::codegen() {
756 Value
*OperandV
= Operand
->codegen();
760 Function
*F
= getFunction(std::string("unary") + Opcode
);
762 return LogErrorV("Unknown unary operator");
764 return Builder
->CreateCall(F
, OperandV
, "unop");
767 Value
*BinaryExprAST::codegen() {
768 // Special case '=' because we don't want to emit the LHS as an expression.
770 // Assignment requires the LHS to be an identifier.
771 // This assume we're building without RTTI because LLVM builds that way by
772 // default. If you build LLVM with RTTI this can be changed to a
773 // dynamic_cast for automatic error checking.
774 VariableExprAST
*LHSE
= static_cast<VariableExprAST
*>(LHS
.get());
776 return LogErrorV("destination of '=' must be a variable");
778 Value
*Val
= RHS
->codegen();
783 Value
*Variable
= NamedValues
[LHSE
->getName()];
785 return LogErrorV("Unknown variable name");
787 Builder
->CreateStore(Val
, Variable
);
791 Value
*L
= LHS
->codegen();
792 Value
*R
= RHS
->codegen();
798 return Builder
->CreateFAdd(L
, R
, "addtmp");
800 return Builder
->CreateFSub(L
, R
, "subtmp");
802 return Builder
->CreateFMul(L
, R
, "multmp");
804 L
= Builder
->CreateFCmpULT(L
, R
, "cmptmp");
805 // Convert bool 0/1 to double 0.0 or 1.0
806 return Builder
->CreateUIToFP(L
, Type::getDoubleTy(*TheContext
), "booltmp");
811 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
813 Function
*F
= getFunction(std::string("binary") + Op
);
814 assert(F
&& "binary operator not found!");
816 Value
*Ops
[] = {L
, R
};
817 return Builder
->CreateCall(F
, Ops
, "binop");
820 Value
*CallExprAST::codegen() {
821 // Look up the name in the global module table.
822 Function
*CalleeF
= getFunction(Callee
);
824 return LogErrorV("Unknown function referenced");
826 // If argument mismatch error.
827 if (CalleeF
->arg_size() != Args
.size())
828 return LogErrorV("Incorrect # arguments passed");
830 std::vector
<Value
*> ArgsV
;
831 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
832 ArgsV
.push_back(Args
[i
]->codegen());
837 return Builder
->CreateCall(CalleeF
, ArgsV
, "calltmp");
840 Value
*IfExprAST::codegen() {
841 Value
*CondV
= Cond
->codegen();
845 // Convert condition to a bool by comparing non-equal to 0.0.
846 CondV
= Builder
->CreateFCmpONE(
847 CondV
, ConstantFP::get(*TheContext
, APFloat(0.0)), "ifcond");
849 Function
*TheFunction
= Builder
->GetInsertBlock()->getParent();
851 // Create blocks for the then and else cases. Insert the 'then' block at the
852 // end of the function.
853 BasicBlock
*ThenBB
= BasicBlock::Create(*TheContext
, "then", TheFunction
);
854 BasicBlock
*ElseBB
= BasicBlock::Create(*TheContext
, "else");
855 BasicBlock
*MergeBB
= BasicBlock::Create(*TheContext
, "ifcont");
857 Builder
->CreateCondBr(CondV
, ThenBB
, ElseBB
);
860 Builder
->SetInsertPoint(ThenBB
);
862 Value
*ThenV
= Then
->codegen();
866 Builder
->CreateBr(MergeBB
);
867 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
868 ThenBB
= Builder
->GetInsertBlock();
871 TheFunction
->getBasicBlockList().push_back(ElseBB
);
872 Builder
->SetInsertPoint(ElseBB
);
874 Value
*ElseV
= Else
->codegen();
878 Builder
->CreateBr(MergeBB
);
879 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
880 ElseBB
= Builder
->GetInsertBlock();
883 TheFunction
->getBasicBlockList().push_back(MergeBB
);
884 Builder
->SetInsertPoint(MergeBB
);
885 PHINode
*PN
= Builder
->CreatePHI(Type::getDoubleTy(*TheContext
), 2, "iftmp");
887 PN
->addIncoming(ThenV
, ThenBB
);
888 PN
->addIncoming(ElseV
, ElseBB
);
892 // Output for-loop as:
893 // var = alloca double
896 // store start -> var
907 // nextvar = curvar + step
908 // store nextvar -> var
909 // br endcond, loop, endloop
911 Value
*ForExprAST::codegen() {
912 Function
*TheFunction
= Builder
->GetInsertBlock()->getParent();
914 // Create an alloca for the variable in the entry block.
915 AllocaInst
*Alloca
= CreateEntryBlockAlloca(TheFunction
, VarName
);
917 // Emit the start code first, without 'variable' in scope.
918 Value
*StartVal
= Start
->codegen();
922 // Store the value into the alloca.
923 Builder
->CreateStore(StartVal
, Alloca
);
925 // Make the new basic block for the loop header, inserting after current
927 BasicBlock
*LoopBB
= BasicBlock::Create(*TheContext
, "loop", TheFunction
);
929 // Insert an explicit fall through from the current block to the LoopBB.
930 Builder
->CreateBr(LoopBB
);
932 // Start insertion in LoopBB.
933 Builder
->SetInsertPoint(LoopBB
);
935 // Within the loop, the variable is defined equal to the PHI node. If it
936 // shadows an existing variable, we have to restore it, so save it now.
937 AllocaInst
*OldVal
= NamedValues
[VarName
];
938 NamedValues
[VarName
] = Alloca
;
940 // Emit the body of the loop. This, like any other expr, can change the
941 // current BB. Note that we ignore the value computed by the body, but don't
943 if (!Body
->codegen())
946 // Emit the step value.
947 Value
*StepVal
= nullptr;
949 StepVal
= Step
->codegen();
953 // If not specified, use 1.0.
954 StepVal
= ConstantFP::get(*TheContext
, APFloat(1.0));
957 // Compute the end condition.
958 Value
*EndCond
= End
->codegen();
962 // Reload, increment, and restore the alloca. This handles the case where
963 // the body of the loop mutates the variable.
964 Value
*CurVar
= Builder
->CreateLoad(Type::getDoubleTy(*TheContext
), Alloca
,
966 Value
*NextVar
= Builder
->CreateFAdd(CurVar
, StepVal
, "nextvar");
967 Builder
->CreateStore(NextVar
, Alloca
);
969 // Convert condition to a bool by comparing non-equal to 0.0.
970 EndCond
= Builder
->CreateFCmpONE(
971 EndCond
, ConstantFP::get(*TheContext
, APFloat(0.0)), "loopcond");
973 // Create the "after loop" block and insert it.
974 BasicBlock
*AfterBB
=
975 BasicBlock::Create(*TheContext
, "afterloop", TheFunction
);
977 // Insert the conditional branch into the end of LoopEndBB.
978 Builder
->CreateCondBr(EndCond
, LoopBB
, AfterBB
);
980 // Any new code will be inserted in AfterBB.
981 Builder
->SetInsertPoint(AfterBB
);
983 // Restore the unshadowed variable.
985 NamedValues
[VarName
] = OldVal
;
987 NamedValues
.erase(VarName
);
989 // for expr always returns 0.0.
990 return Constant::getNullValue(Type::getDoubleTy(*TheContext
));
993 Value
*VarExprAST::codegen() {
994 std::vector
<AllocaInst
*> OldBindings
;
996 Function
*TheFunction
= Builder
->GetInsertBlock()->getParent();
998 // Register all variables and emit their initializer.
999 for (unsigned i
= 0, e
= VarNames
.size(); i
!= e
; ++i
) {
1000 const std::string
&VarName
= VarNames
[i
].first
;
1001 ExprAST
*Init
= VarNames
[i
].second
.get();
1003 // Emit the initializer before adding the variable to scope, this prevents
1004 // the initializer from referencing the variable itself, and permits stuff
1007 // var a = a in ... # refers to outer 'a'.
1010 InitVal
= Init
->codegen();
1013 } else { // If not specified, use 0.0.
1014 InitVal
= ConstantFP::get(*TheContext
, APFloat(0.0));
1017 AllocaInst
*Alloca
= CreateEntryBlockAlloca(TheFunction
, VarName
);
1018 Builder
->CreateStore(InitVal
, Alloca
);
1020 // Remember the old variable binding so that we can restore the binding when
1022 OldBindings
.push_back(NamedValues
[VarName
]);
1024 // Remember this binding.
1025 NamedValues
[VarName
] = Alloca
;
1028 // Codegen the body, now that all vars are in scope.
1029 Value
*BodyVal
= Body
->codegen();
1033 // Pop all our variables from scope.
1034 for (unsigned i
= 0, e
= VarNames
.size(); i
!= e
; ++i
)
1035 NamedValues
[VarNames
[i
].first
] = OldBindings
[i
];
1037 // Return the body computation.
1041 Function
*PrototypeAST::codegen() {
1042 // Make the function type: double(double,double) etc.
1043 std::vector
<Type
*> Doubles(Args
.size(), Type::getDoubleTy(*TheContext
));
1045 FunctionType::get(Type::getDoubleTy(*TheContext
), Doubles
, false);
1048 Function::Create(FT
, Function::ExternalLinkage
, Name
, TheModule
.get());
1050 // Set names for all arguments.
1052 for (auto &Arg
: F
->args())
1053 Arg
.setName(Args
[Idx
++]);
1058 Function
*FunctionAST::codegen() {
1059 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
1060 // reference to it for use below.
1062 FunctionProtos
[Proto
->getName()] = std::move(Proto
);
1063 Function
*TheFunction
= getFunction(P
.getName());
1067 // If this is an operator, install it.
1069 BinopPrecedence
[P
.getOperatorName()] = P
.getBinaryPrecedence();
1071 // Create a new basic block to start insertion into.
1072 BasicBlock
*BB
= BasicBlock::Create(*TheContext
, "entry", TheFunction
);
1073 Builder
->SetInsertPoint(BB
);
1075 // Record the function arguments in the NamedValues map.
1076 NamedValues
.clear();
1077 for (auto &Arg
: TheFunction
->args()) {
1078 // Create an alloca for this variable.
1079 AllocaInst
*Alloca
= CreateEntryBlockAlloca(TheFunction
, Arg
.getName());
1081 // Store the initial value into the alloca.
1082 Builder
->CreateStore(&Arg
, Alloca
);
1084 // Add arguments to variable symbol table.
1085 NamedValues
[std::string(Arg
.getName())] = Alloca
;
1088 if (Value
*RetVal
= Body
->codegen()) {
1089 // Finish off the function.
1090 Builder
->CreateRet(RetVal
);
1092 // Validate the generated code, checking for consistency.
1093 verifyFunction(*TheFunction
);
1098 // Error reading body, remove function.
1099 TheFunction
->eraseFromParent();
1102 BinopPrecedence
.erase(P
.getOperatorName());
1106 //===----------------------------------------------------------------------===//
1107 // Top-Level parsing and JIT Driver
1108 //===----------------------------------------------------------------------===//
1110 static void InitializeModuleAndPassManager() {
1111 // Open a new module.
1112 TheContext
= std::make_unique
<LLVMContext
>();
1113 TheModule
= std::make_unique
<Module
>("my cool jit", *TheContext
);
1115 // Create a new builder for the module.
1116 Builder
= std::make_unique
<IRBuilder
<>>(*TheContext
);
1119 static void HandleDefinition() {
1120 if (auto FnAST
= ParseDefinition()) {
1121 if (auto *FnIR
= FnAST
->codegen()) {
1122 fprintf(stderr
, "Read function definition:");
1123 FnIR
->print(errs());
1124 fprintf(stderr
, "\n");
1127 // Skip token for error recovery.
1132 static void HandleExtern() {
1133 if (auto ProtoAST
= ParseExtern()) {
1134 if (auto *FnIR
= ProtoAST
->codegen()) {
1135 fprintf(stderr
, "Read extern: ");
1136 FnIR
->print(errs());
1137 fprintf(stderr
, "\n");
1138 FunctionProtos
[ProtoAST
->getName()] = std::move(ProtoAST
);
1141 // Skip token for error recovery.
1146 static void HandleTopLevelExpression() {
1147 // Evaluate a top-level expression into an anonymous function.
1148 if (auto FnAST
= ParseTopLevelExpr()) {
1151 // Skip token for error recovery.
1156 /// top ::= definition | external | expression | ';'
1157 static void MainLoop() {
1162 case ';': // ignore top-level semicolons.
1172 HandleTopLevelExpression();
1178 //===----------------------------------------------------------------------===//
1179 // "Library" functions that can be "extern'd" from user code.
1180 //===----------------------------------------------------------------------===//
1183 #define DLLEXPORT __declspec(dllexport)
1188 /// putchard - putchar that takes a double and returns 0.
1189 extern "C" DLLEXPORT
double putchard(double X
) {
1190 fputc((char)X
, stderr
);
1194 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1195 extern "C" DLLEXPORT
double printd(double X
) {
1196 fprintf(stderr
, "%f\n", X
);
1200 //===----------------------------------------------------------------------===//
1201 // Main driver code.
1202 //===----------------------------------------------------------------------===//
1205 // Install standard binary operators.
1206 // 1 is lowest precedence.
1207 BinopPrecedence
['<'] = 10;
1208 BinopPrecedence
['+'] = 20;
1209 BinopPrecedence
['-'] = 20;
1210 BinopPrecedence
['*'] = 40; // highest.
1212 // Prime the first token.
1213 fprintf(stderr
, "ready> ");
1216 InitializeModuleAndPassManager();
1218 // Run the main "interpreter loop" now.
1221 // Initialize the target registry etc.
1222 InitializeAllTargetInfos();
1223 InitializeAllTargets();
1224 InitializeAllTargetMCs();
1225 InitializeAllAsmParsers();
1226 InitializeAllAsmPrinters();
1228 auto TargetTriple
= sys::getDefaultTargetTriple();
1229 TheModule
->setTargetTriple(TargetTriple
);
1232 auto Target
= TargetRegistry::lookupTarget(TargetTriple
, Error
);
1234 // Print an error and exit if we couldn't find the requested target.
1235 // This generally occurs if we've forgotten to initialise the
1236 // TargetRegistry or we have a bogus target triple.
1242 auto CPU
= "generic";
1246 auto RM
= Optional
<Reloc::Model
>();
1247 auto TheTargetMachine
=
1248 Target
->createTargetMachine(TargetTriple
, CPU
, Features
, opt
, RM
);
1250 TheModule
->setDataLayout(TheTargetMachine
->createDataLayout());
1252 auto Filename
= "output.o";
1254 raw_fd_ostream
dest(Filename
, EC
, sys::fs::OF_None
);
1257 errs() << "Could not open file: " << EC
.message();
1261 legacy::PassManager pass
;
1262 auto FileType
= CGFT_ObjectFile
;
1264 if (TheTargetMachine
->addPassesToEmitFile(pass
, dest
, nullptr, FileType
)) {
1265 errs() << "TheTargetMachine can't emit a file of this type";
1269 pass
.run(*TheModule
);
1272 outs() << "Wrote " << Filename
<< "\n";