1 #include "llvm/Analysis/Passes.h"
2 #include "llvm/ExecutionEngine/ExecutionEngine.h"
3 #include "llvm/ExecutionEngine/MCJIT.h"
4 #include "llvm/ExecutionEngine/ObjectCache.h"
5 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
6 #include "llvm/IR/DataLayout.h"
7 #include "llvm/IR/DerivedTypes.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/LLVMContext.h"
10 #include "llvm/IR/LegacyPassManager.h"
11 #include "llvm/IR/Module.h"
12 #include "llvm/IR/Verifier.h"
13 #include "llvm/IRReader/IRReader.h"
14 #include "llvm/Support/CommandLine.h"
15 #include "llvm/Support/FileSystem.h"
16 #include "llvm/Support/Path.h"
17 #include "llvm/Support/SourceMgr.h"
18 #include "llvm/Support/TargetSelect.h"
19 #include "llvm/Support/raw_ostream.h"
20 #include "llvm/Transforms/Scalar.h"
29 //===----------------------------------------------------------------------===//
30 // Command-line options
31 //===----------------------------------------------------------------------===//
36 cl::desc("Specify the name of an IR file to load for function definitions"),
37 cl::value_desc("input IR file name"));
40 VerboseOutput("verbose",
41 cl::desc("Enable verbose output (results, IR, etc.) to stderr"),
45 SuppressPrompts("suppress-prompts",
46 cl::desc("Disable printing the 'ready' prompt"),
50 DumpModulesOnExit("dump-modules",
51 cl::desc("Dump IR from modules to stderr on shutdown"),
54 cl::opt
<bool> EnableLazyCompilation(
55 "enable-lazy-compilation", cl::desc("Enable lazy compilation when using the MCJIT engine"),
58 cl::opt
<bool> UseObjectCache(
59 "use-object-cache", cl::desc("Enable use of the MCJIT object caching"),
63 //===----------------------------------------------------------------------===//
65 //===----------------------------------------------------------------------===//
67 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
68 // of these for known things.
73 tok_def
= -2, tok_extern
= -3,
76 tok_identifier
= -4, tok_number
= -5,
79 tok_if
= -6, tok_then
= -7, tok_else
= -8,
80 tok_for
= -9, tok_in
= -10,
83 tok_binary
= -11, tok_unary
= -12,
89 static std::string IdentifierStr
; // Filled in if tok_identifier
90 static double NumVal
; // Filled in if tok_number
92 /// gettok - Return the next token from standard input.
94 static int LastChar
= ' ';
96 // Skip any whitespace.
97 while (isspace(LastChar
))
100 if (isalpha(LastChar
)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
101 IdentifierStr
= LastChar
;
102 while (isalnum((LastChar
= getchar())))
103 IdentifierStr
+= LastChar
;
105 if (IdentifierStr
== "def") return tok_def
;
106 if (IdentifierStr
== "extern") return tok_extern
;
107 if (IdentifierStr
== "if") return tok_if
;
108 if (IdentifierStr
== "then") return tok_then
;
109 if (IdentifierStr
== "else") return tok_else
;
110 if (IdentifierStr
== "for") return tok_for
;
111 if (IdentifierStr
== "in") return tok_in
;
112 if (IdentifierStr
== "binary") return tok_binary
;
113 if (IdentifierStr
== "unary") return tok_unary
;
114 if (IdentifierStr
== "var") return tok_var
;
115 return tok_identifier
;
118 if (isdigit(LastChar
) || LastChar
== '.') { // Number: [0-9.]+
122 LastChar
= getchar();
123 } while (isdigit(LastChar
) || LastChar
== '.');
125 NumVal
= strtod(NumStr
.c_str(), 0);
129 if (LastChar
== '#') {
130 // Comment until end of line.
131 do LastChar
= getchar();
132 while (LastChar
!= EOF
&& LastChar
!= '\n' && LastChar
!= '\r');
138 // Check for end of file. Don't eat the EOF.
142 // Otherwise, just return the character as its ascii value.
143 int ThisChar
= LastChar
;
144 LastChar
= getchar();
148 //===----------------------------------------------------------------------===//
149 // Abstract Syntax Tree (aka Parse Tree)
150 //===----------------------------------------------------------------------===//
152 /// ExprAST - Base class for all expression nodes.
155 virtual ~ExprAST() {}
156 virtual Value
*Codegen() = 0;
159 /// NumberExprAST - Expression class for numeric literals like "1.0".
160 class NumberExprAST
: public ExprAST
{
163 NumberExprAST(double val
) : Val(val
) {}
164 virtual Value
*Codegen();
167 /// VariableExprAST - Expression class for referencing a variable, like "a".
168 class VariableExprAST
: public ExprAST
{
171 VariableExprAST(const std::string
&name
) : Name(name
) {}
172 const std::string
&getName() const { return Name
; }
173 virtual Value
*Codegen();
176 /// UnaryExprAST - Expression class for a unary operator.
177 class UnaryExprAST
: public ExprAST
{
181 UnaryExprAST(char opcode
, ExprAST
*operand
)
182 : Opcode(opcode
), Operand(operand
) {}
183 virtual Value
*Codegen();
186 /// BinaryExprAST - Expression class for a binary operator.
187 class BinaryExprAST
: public ExprAST
{
191 BinaryExprAST(char op
, ExprAST
*lhs
, ExprAST
*rhs
)
192 : Op(op
), LHS(lhs
), RHS(rhs
) {}
193 virtual Value
*Codegen();
196 /// CallExprAST - Expression class for function calls.
197 class CallExprAST
: public ExprAST
{
199 std::vector
<ExprAST
*> Args
;
201 CallExprAST(const std::string
&callee
, std::vector
<ExprAST
*> &args
)
202 : Callee(callee
), Args(args
) {}
203 virtual Value
*Codegen();
206 /// IfExprAST - Expression class for if/then/else.
207 class IfExprAST
: public ExprAST
{
208 ExprAST
*Cond
, *Then
, *Else
;
210 IfExprAST(ExprAST
*cond
, ExprAST
*then
, ExprAST
*_else
)
211 : Cond(cond
), Then(then
), Else(_else
) {}
212 virtual Value
*Codegen();
215 /// ForExprAST - Expression class for for/in.
216 class ForExprAST
: public ExprAST
{
218 ExprAST
*Start
, *End
, *Step
, *Body
;
220 ForExprAST(const std::string
&varname
, ExprAST
*start
, ExprAST
*end
,
221 ExprAST
*step
, ExprAST
*body
)
222 : VarName(varname
), Start(start
), End(end
), Step(step
), Body(body
) {}
223 virtual Value
*Codegen();
226 /// VarExprAST - Expression class for var/in
227 class VarExprAST
: public ExprAST
{
228 std::vector
<std::pair
<std::string
, ExprAST
*> > VarNames
;
231 VarExprAST(const std::vector
<std::pair
<std::string
, ExprAST
*> > &varnames
,
233 : VarNames(varnames
), Body(body
) {}
235 virtual Value
*Codegen();
238 /// PrototypeAST - This class represents the "prototype" for a function,
239 /// which captures its argument names as well as if it is an operator.
242 std::vector
<std::string
> Args
;
244 unsigned Precedence
; // Precedence if a binary op.
246 PrototypeAST(const std::string
&name
, const std::vector
<std::string
> &args
,
247 bool isoperator
= false, unsigned prec
= 0)
248 : Name(name
), Args(args
), isOperator(isoperator
), Precedence(prec
) {}
250 bool isUnaryOp() const { return isOperator
&& Args
.size() == 1; }
251 bool isBinaryOp() const { return isOperator
&& Args
.size() == 2; }
253 char getOperatorName() const {
254 assert(isUnaryOp() || isBinaryOp());
255 return Name
[Name
.size()-1];
258 unsigned getBinaryPrecedence() const { return Precedence
; }
262 void CreateArgumentAllocas(Function
*F
);
265 /// FunctionAST - This class represents a function definition itself.
270 FunctionAST(PrototypeAST
*proto
, ExprAST
*body
)
271 : Proto(proto
), Body(body
) {}
276 //===----------------------------------------------------------------------===//
278 //===----------------------------------------------------------------------===//
280 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
281 /// token the parser is looking at. getNextToken reads another token from the
282 /// lexer and updates CurTok with its results.
284 static int getNextToken() {
285 return CurTok
= gettok();
288 /// BinopPrecedence - This holds the precedence for each binary operator that is
290 static std::map
<char, int> BinopPrecedence
;
292 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
293 static int GetTokPrecedence() {
294 if (!isascii(CurTok
))
297 // Make sure it's a declared binop.
298 int TokPrec
= BinopPrecedence
[CurTok
];
299 if (TokPrec
<= 0) return -1;
303 /// Error* - These are little helper functions for error handling.
304 ExprAST
*Error(const char *Str
) { fprintf(stderr
, "Error: %s\n", Str
);return 0;}
305 PrototypeAST
*ErrorP(const char *Str
) { Error(Str
); return 0; }
306 FunctionAST
*ErrorF(const char *Str
) { Error(Str
); return 0; }
308 static ExprAST
*ParseExpression();
312 /// ::= identifier '(' expression* ')'
313 static ExprAST
*ParseIdentifierExpr() {
314 std::string IdName
= IdentifierStr
;
316 getNextToken(); // eat identifier.
318 if (CurTok
!= '(') // Simple variable ref.
319 return new VariableExprAST(IdName
);
322 getNextToken(); // eat (
323 std::vector
<ExprAST
*> Args
;
326 ExprAST
*Arg
= ParseExpression();
330 if (CurTok
== ')') break;
333 return Error("Expected ')' or ',' in argument list");
341 return new CallExprAST(IdName
, Args
);
344 /// numberexpr ::= number
345 static ExprAST
*ParseNumberExpr() {
346 ExprAST
*Result
= new NumberExprAST(NumVal
);
347 getNextToken(); // consume the number
351 /// parenexpr ::= '(' expression ')'
352 static ExprAST
*ParseParenExpr() {
353 getNextToken(); // eat (.
354 ExprAST
*V
= ParseExpression();
358 return Error("expected ')'");
359 getNextToken(); // eat ).
363 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
364 static ExprAST
*ParseIfExpr() {
365 getNextToken(); // eat the if.
368 ExprAST
*Cond
= ParseExpression();
371 if (CurTok
!= tok_then
)
372 return Error("expected then");
373 getNextToken(); // eat the then
375 ExprAST
*Then
= ParseExpression();
376 if (Then
== 0) return 0;
378 if (CurTok
!= tok_else
)
379 return Error("expected else");
383 ExprAST
*Else
= ParseExpression();
386 return new IfExprAST(Cond
, Then
, Else
);
389 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
390 static ExprAST
*ParseForExpr() {
391 getNextToken(); // eat the for.
393 if (CurTok
!= tok_identifier
)
394 return Error("expected identifier after for");
396 std::string IdName
= IdentifierStr
;
397 getNextToken(); // eat identifier.
400 return Error("expected '=' after for");
401 getNextToken(); // eat '='.
404 ExprAST
*Start
= ParseExpression();
405 if (Start
== 0) return 0;
407 return Error("expected ',' after for start value");
410 ExprAST
*End
= ParseExpression();
411 if (End
== 0) return 0;
413 // The step value is optional.
417 Step
= ParseExpression();
418 if (Step
== 0) return 0;
421 if (CurTok
!= tok_in
)
422 return Error("expected 'in' after for");
423 getNextToken(); // eat 'in'.
425 ExprAST
*Body
= ParseExpression();
426 if (Body
== 0) return 0;
428 return new ForExprAST(IdName
, Start
, End
, Step
, Body
);
431 /// varexpr ::= 'var' identifier ('=' expression)?
432 // (',' identifier ('=' expression)?)* 'in' expression
433 static ExprAST
*ParseVarExpr() {
434 getNextToken(); // eat the var.
436 std::vector
<std::pair
<std::string
, ExprAST
*> > VarNames
;
438 // At least one variable name is required.
439 if (CurTok
!= tok_identifier
)
440 return Error("expected identifier after var");
443 std::string Name
= IdentifierStr
;
444 getNextToken(); // eat identifier.
446 // Read the optional initializer.
449 getNextToken(); // eat the '='.
451 Init
= ParseExpression();
452 if (Init
== 0) return 0;
455 VarNames
.push_back(std::make_pair(Name
, Init
));
457 // End of var list, exit loop.
458 if (CurTok
!= ',') break;
459 getNextToken(); // eat the ','.
461 if (CurTok
!= tok_identifier
)
462 return Error("expected identifier list after var");
465 // At this point, we have to have 'in'.
466 if (CurTok
!= tok_in
)
467 return Error("expected 'in' keyword after 'var'");
468 getNextToken(); // eat 'in'.
470 ExprAST
*Body
= ParseExpression();
471 if (Body
== 0) return 0;
473 return new VarExprAST(VarNames
, Body
);
477 /// ::= identifierexpr
483 static ExprAST
*ParsePrimary() {
485 default: return Error("unknown token when expecting an expression");
486 case tok_identifier
: return ParseIdentifierExpr();
487 case tok_number
: return ParseNumberExpr();
488 case '(': return ParseParenExpr();
489 case tok_if
: return ParseIfExpr();
490 case tok_for
: return ParseForExpr();
491 case tok_var
: return ParseVarExpr();
498 static ExprAST
*ParseUnary() {
499 // If the current token is not an operator, it must be a primary expr.
500 if (!isascii(CurTok
) || CurTok
== '(' || CurTok
== ',')
501 return ParsePrimary();
503 // If this is a unary operator, read it.
506 if (ExprAST
*Operand
= ParseUnary())
507 return new UnaryExprAST(Opc
, Operand
);
513 static ExprAST
*ParseBinOpRHS(int ExprPrec
, ExprAST
*LHS
) {
514 // If this is a binop, find its precedence.
516 int TokPrec
= GetTokPrecedence();
518 // If this is a binop that binds at least as tightly as the current binop,
519 // consume it, otherwise we are done.
520 if (TokPrec
< ExprPrec
)
523 // Okay, we know this is a binop.
525 getNextToken(); // eat binop
527 // Parse the unary expression after the binary operator.
528 ExprAST
*RHS
= ParseUnary();
531 // If BinOp binds less tightly with RHS than the operator after RHS, let
532 // the pending operator take RHS as its LHS.
533 int NextPrec
= GetTokPrecedence();
534 if (TokPrec
< NextPrec
) {
535 RHS
= ParseBinOpRHS(TokPrec
+1, RHS
);
536 if (RHS
== 0) return 0;
540 LHS
= new BinaryExprAST(BinOp
, LHS
, RHS
);
545 /// ::= unary binoprhs
547 static ExprAST
*ParseExpression() {
548 ExprAST
*LHS
= ParseUnary();
551 return ParseBinOpRHS(0, LHS
);
555 /// ::= id '(' id* ')'
556 /// ::= binary LETTER number? (id, id)
557 /// ::= unary LETTER (id)
558 static PrototypeAST
*ParsePrototype() {
561 unsigned Kind
= 0; // 0 = identifier, 1 = unary, 2 = binary.
562 unsigned BinaryPrecedence
= 30;
566 return ErrorP("Expected function name in prototype");
568 FnName
= IdentifierStr
;
574 if (!isascii(CurTok
))
575 return ErrorP("Expected unary operator");
577 FnName
+= (char)CurTok
;
583 if (!isascii(CurTok
))
584 return ErrorP("Expected binary operator");
586 FnName
+= (char)CurTok
;
590 // Read the precedence if present.
591 if (CurTok
== tok_number
) {
592 if (NumVal
< 1 || NumVal
> 100)
593 return ErrorP("Invalid precedecnce: must be 1..100");
594 BinaryPrecedence
= (unsigned)NumVal
;
601 return ErrorP("Expected '(' in prototype");
603 std::vector
<std::string
> ArgNames
;
604 while (getNextToken() == tok_identifier
)
605 ArgNames
.push_back(IdentifierStr
);
607 return ErrorP("Expected ')' in prototype");
610 getNextToken(); // eat ')'.
612 // Verify right number of names for operator.
613 if (Kind
&& ArgNames
.size() != Kind
)
614 return ErrorP("Invalid number of operands for operator");
616 return new PrototypeAST(FnName
, ArgNames
, Kind
!= 0, BinaryPrecedence
);
619 /// definition ::= 'def' prototype expression
620 static FunctionAST
*ParseDefinition() {
621 getNextToken(); // eat def.
622 PrototypeAST
*Proto
= ParsePrototype();
623 if (Proto
== 0) return 0;
625 if (ExprAST
*E
= ParseExpression())
626 return new FunctionAST(Proto
, E
);
630 /// toplevelexpr ::= expression
631 static FunctionAST
*ParseTopLevelExpr() {
632 if (ExprAST
*E
= ParseExpression()) {
633 // Make an anonymous proto.
634 PrototypeAST
*Proto
= new PrototypeAST("", std::vector
<std::string
>());
635 return new FunctionAST(Proto
, E
);
640 /// external ::= 'extern' prototype
641 static PrototypeAST
*ParseExtern() {
642 getNextToken(); // eat extern.
643 return ParsePrototype();
646 //===----------------------------------------------------------------------===//
647 // Quick and dirty hack
648 //===----------------------------------------------------------------------===//
650 // FIXME: Obviously we can do better than this
651 std::string
GenerateUniqueName(const char *root
)
655 sprintf(s
, "%s%d", root
, i
++);
660 std::string
MakeLegalFunctionName(std::string Name
)
664 return GenerateUniqueName("anon_func_");
666 // Start with what we have
669 // Look for a numberic first character
670 if (NewName
.find_first_of("0123456789") == 0) {
671 NewName
.insert(0, 1, 'n');
674 // Replace illegal characters with their ASCII equivalent
675 std::string legal_elements
= "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
677 while ((pos
= NewName
.find_first_not_of(legal_elements
)) != std::string::npos
) {
678 char old_c
= NewName
.at(pos
);
680 sprintf(new_str
, "%d", (int)old_c
);
681 NewName
= NewName
.replace(pos
, 1, new_str
);
687 //===----------------------------------------------------------------------===//
688 // MCJIT object cache class
689 //===----------------------------------------------------------------------===//
691 class MCJITObjectCache
: public ObjectCache
{
694 // Set IR cache directory
695 sys::fs::current_path(CacheDir
);
696 sys::path::append(CacheDir
, "toy_object_cache");
699 virtual ~MCJITObjectCache() {
702 virtual void notifyObjectCompiled(const Module
*M
, const MemoryBuffer
*Obj
) {
704 const std::string ModuleID
= M
->getModuleIdentifier();
706 // If we've flagged this as an IR file, cache it
707 if (0 == ModuleID
.compare(0, 3, "IR:")) {
708 std::string IRFileName
= ModuleID
.substr(3);
709 SmallString
<128>IRCacheFile
= CacheDir
;
710 sys::path::append(IRCacheFile
, IRFileName
);
711 if (!sys::fs::exists(CacheDir
.str()) && sys::fs::create_directory(CacheDir
.str())) {
712 fprintf(stderr
, "Unable to create cache directory\n");
716 raw_fd_ostream
IRObjectFile(IRCacheFile
.c_str(), ErrStr
, raw_fd_ostream::F_Binary
);
717 IRObjectFile
<< Obj
->getBuffer();
721 // MCJIT will call this function before compiling any module
722 // MCJIT takes ownership of both the MemoryBuffer object and the memory
723 // to which it refers.
724 virtual MemoryBuffer
* getObject(const Module
* M
) {
726 const std::string ModuleID
= M
->getModuleIdentifier();
728 // If we've flagged this as an IR file, cache it
729 if (0 == ModuleID
.compare(0, 3, "IR:")) {
730 std::string IRFileName
= ModuleID
.substr(3);
731 SmallString
<128> IRCacheFile
= CacheDir
;
732 sys::path::append(IRCacheFile
, IRFileName
);
733 if (!sys::fs::exists(IRCacheFile
.str())) {
734 // This file isn't in our cache
737 std::unique_ptr
<MemoryBuffer
> IRObjectBuffer
;
738 MemoryBuffer::getFile(IRCacheFile
.c_str(), IRObjectBuffer
, -1, false);
739 // MCJIT will want to write into this buffer, and we don't want that
740 // because the file has probably just been mmapped. Instead we make
741 // a copy. The filed-based buffer will be released when it goes
743 return MemoryBuffer::getMemBufferCopy(IRObjectBuffer
->getBuffer());
750 SmallString
<128> CacheDir
;
753 //===----------------------------------------------------------------------===//
754 // IR input file handler
755 //===----------------------------------------------------------------------===//
757 Module
* parseInputIR(std::string InputFile
, LLVMContext
&Context
) {
759 Module
*M
= ParseIRFile(InputFile
, Err
, Context
);
761 Err
.print("IR parsing failed: ", errs());
766 sprintf(ModID
, "IR:%s", InputFile
.c_str());
767 M
->setModuleIdentifier(ModID
);
771 //===----------------------------------------------------------------------===//
772 // Helper class for execution engine abstraction
773 //===----------------------------------------------------------------------===//
779 virtual ~BaseHelper() {}
781 virtual Function
*getFunction(const std::string FnName
) = 0;
782 virtual Module
*getModuleForNewFunction() = 0;
783 virtual void *getPointerToFunction(Function
* F
) = 0;
784 virtual void *getPointerToNamedFunction(const std::string
&Name
) = 0;
785 virtual void closeCurrentModule() = 0;
786 virtual void runFPM(Function
&F
) = 0;
790 //===----------------------------------------------------------------------===//
791 // MCJIT helper class
792 //===----------------------------------------------------------------------===//
794 class MCJITHelper
: public BaseHelper
797 MCJITHelper(LLVMContext
& C
) : Context(C
), CurrentModule(NULL
) {
798 if (!InputIR
.empty()) {
799 Module
*M
= parseInputIR(InputIR
, Context
);
800 Modules
.push_back(M
);
801 if (!EnableLazyCompilation
)
807 Function
*getFunction(const std::string FnName
);
808 Module
*getModuleForNewFunction();
809 void *getPointerToFunction(Function
* F
);
810 void *getPointerToNamedFunction(const std::string
&Name
);
811 void closeCurrentModule();
812 virtual void runFPM(Function
&F
) {} // Not needed, see compileModule
816 ExecutionEngine
*compileModule(Module
*M
);
819 typedef std::vector
<Module
*> ModuleVector
;
821 MCJITObjectCache OurObjectCache
;
823 LLVMContext
&Context
;
824 ModuleVector Modules
;
826 std::map
<Module
*, ExecutionEngine
*> EngineMap
;
828 Module
*CurrentModule
;
831 class HelpingMemoryManager
: public SectionMemoryManager
833 HelpingMemoryManager(const HelpingMemoryManager
&) = delete;
834 void operator=(const HelpingMemoryManager
&) = delete;
837 HelpingMemoryManager(MCJITHelper
*Helper
) : MasterHelper(Helper
) {}
838 virtual ~HelpingMemoryManager() {}
840 /// This method returns the address of the specified function.
841 /// Our implementation will attempt to find functions in other
842 /// modules associated with the MCJITHelper to cross link functions
843 /// from one generated module to another.
845 /// If \p AbortOnFailure is false and no function with the given name is
846 /// found, this function returns a null pointer. Otherwise, it prints a
847 /// message to stderr and aborts.
848 virtual void *getPointerToNamedFunction(const std::string
&Name
,
849 bool AbortOnFailure
= true);
851 MCJITHelper
*MasterHelper
;
854 void *HelpingMemoryManager::getPointerToNamedFunction(const std::string
&Name
,
857 // Try the standard symbol resolution first, but ask it not to abort.
858 void *pfn
= RTDyldMemoryManager::getPointerToNamedFunction(Name
, false);
862 pfn
= MasterHelper
->getPointerToNamedFunction(Name
);
863 if (!pfn
&& AbortOnFailure
)
864 report_fatal_error("Program used external function '" + Name
+
865 "' which could not be resolved!");
869 MCJITHelper::~MCJITHelper()
871 // Walk the vector of modules.
872 ModuleVector::iterator it
, end
;
873 for (it
= Modules
.begin(), end
= Modules
.end();
875 // See if we have an execution engine for this module.
876 std::map
<Module
*, ExecutionEngine
*>::iterator mapIt
= EngineMap
.find(*it
);
877 // If we have an EE, the EE owns the module so just delete the EE.
878 if (mapIt
!= EngineMap
.end()) {
879 delete mapIt
->second
;
881 // Otherwise, we still own the module. Delete it now.
887 Function
*MCJITHelper::getFunction(const std::string FnName
) {
888 ModuleVector::iterator begin
= Modules
.begin();
889 ModuleVector::iterator end
= Modules
.end();
890 ModuleVector::iterator it
;
891 for (it
= begin
; it
!= end
; ++it
) {
892 Function
*F
= (*it
)->getFunction(FnName
);
894 if (*it
== CurrentModule
)
897 assert(CurrentModule
!= NULL
);
899 // This function is in a module that has already been JITed.
900 // We just need a prototype for external linkage.
901 Function
*PF
= CurrentModule
->getFunction(FnName
);
902 if (PF
&& !PF
->empty()) {
903 ErrorF("redefinition of function across modules");
907 // If we don't have a prototype yet, create one.
909 PF
= Function::Create(F
->getFunctionType(),
910 Function::ExternalLinkage
,
919 Module
*MCJITHelper::getModuleForNewFunction() {
920 // If we have a Module that hasn't been JITed, use that.
922 return CurrentModule
;
924 // Otherwise create a new Module.
925 std::string ModName
= GenerateUniqueName("mcjit_module_");
926 Module
*M
= new Module(ModName
, Context
);
927 Modules
.push_back(M
);
933 ExecutionEngine
*MCJITHelper::compileModule(Module
*M
) {
934 assert(EngineMap
.find(M
) == EngineMap
.end());
936 if (M
== CurrentModule
)
937 closeCurrentModule();
940 ExecutionEngine
*EE
= EngineBuilder(M
)
941 .setErrorStr(&ErrStr
)
942 .setMCJITMemoryManager(new HelpingMemoryManager(this))
945 fprintf(stderr
, "Could not create ExecutionEngine: %s\n", ErrStr
.c_str());
950 EE
->setObjectCache(&OurObjectCache
);
951 // Get the ModuleID so we can identify IR input files
952 const std::string ModuleID
= M
->getModuleIdentifier();
954 // If we've flagged this as an IR file, it doesn't need function passes run.
955 if (0 != ModuleID
.compare(0, 3, "IR:")) {
956 FunctionPassManager
*FPM
= 0;
958 // Create a FPM for this module
959 FPM
= new FunctionPassManager(M
);
961 // Set up the optimizer pipeline. Start with registering info about how the
962 // target lays out data structures.
963 FPM
->add(new DataLayout(*EE
->getDataLayout()));
964 // Provide basic AliasAnalysis support for GVN.
965 FPM
->add(createBasicAliasAnalysisPass());
966 // Promote allocas to registers.
967 FPM
->add(createPromoteMemoryToRegisterPass());
968 // Do simple "peephole" optimizations and bit-twiddling optzns.
969 FPM
->add(createInstructionCombiningPass());
970 // Reassociate expressions.
971 FPM
->add(createReassociatePass());
972 // Eliminate Common SubExpressions.
973 FPM
->add(createGVNPass());
974 // Simplify the control flow graph (deleting unreachable blocks, etc).
975 FPM
->add(createCFGSimplificationPass());
977 FPM
->doInitialization();
979 // For each function in the module
981 Module::iterator end
= M
->end();
982 for (it
= M
->begin(); it
!= end
; ++it
) {
983 // Run the FPM on this function
990 EE
->finalizeObject();
998 void *MCJITHelper::getPointerToFunction(Function
* F
) {
999 // Look for this function in an existing module
1000 ModuleVector::iterator begin
= Modules
.begin();
1001 ModuleVector::iterator end
= Modules
.end();
1002 ModuleVector::iterator it
;
1003 std::string FnName
= F
->getName();
1004 for (it
= begin
; it
!= end
; ++it
) {
1005 Function
*MF
= (*it
)->getFunction(FnName
);
1007 std::map
<Module
*, ExecutionEngine
*>::iterator eeIt
= EngineMap
.find(*it
);
1008 if (eeIt
!= EngineMap
.end()) {
1009 void *P
= eeIt
->second
->getPointerToFunction(F
);
1013 ExecutionEngine
*EE
= compileModule(*it
);
1014 void *P
= EE
->getPointerToFunction(F
);
1023 void MCJITHelper::closeCurrentModule() {
1024 // If we have an open module (and we should), pack it up
1025 if (CurrentModule
) {
1026 CurrentModule
= NULL
;
1030 void *MCJITHelper::getPointerToNamedFunction(const std::string
&Name
)
1032 // Look for the functions in our modules, compiling only as necessary
1033 ModuleVector::iterator begin
= Modules
.begin();
1034 ModuleVector::iterator end
= Modules
.end();
1035 ModuleVector::iterator it
;
1036 for (it
= begin
; it
!= end
; ++it
) {
1037 Function
*F
= (*it
)->getFunction(Name
);
1038 if (F
&& !F
->empty()) {
1039 std::map
<Module
*, ExecutionEngine
*>::iterator eeIt
= EngineMap
.find(*it
);
1040 if (eeIt
!= EngineMap
.end()) {
1041 void *P
= eeIt
->second
->getPointerToFunction(F
);
1045 ExecutionEngine
*EE
= compileModule(*it
);
1046 void *P
= EE
->getPointerToFunction(F
);
1055 void MCJITHelper::dump()
1057 ModuleVector::iterator begin
= Modules
.begin();
1058 ModuleVector::iterator end
= Modules
.end();
1059 ModuleVector::iterator it
;
1060 for (it
= begin
; it
!= end
; ++it
)
1064 //===----------------------------------------------------------------------===//
1066 //===----------------------------------------------------------------------===//
1068 static BaseHelper
*TheHelper
;
1069 static LLVMContext TheContext
;
1070 static IRBuilder
<> Builder(TheContext
);
1071 static std::map
<std::string
, AllocaInst
*> NamedValues
;
1073 Value
*ErrorV(const char *Str
) { Error(Str
); return 0; }
1075 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
1076 /// the function. This is used for mutable variables etc.
1077 static AllocaInst
*CreateEntryBlockAlloca(Function
*TheFunction
,
1078 const std::string
&VarName
) {
1079 IRBuilder
<> TmpB(&TheFunction
->getEntryBlock(),
1080 TheFunction
->getEntryBlock().begin());
1081 return TmpB
.CreateAlloca(Type::getDoubleTy(TheContext
), 0, VarName
.c_str());
1084 Value
*NumberExprAST::Codegen() {
1085 return ConstantFP::get(TheContext
, APFloat(Val
));
1088 Value
*VariableExprAST::Codegen() {
1089 // Look this variable up in the function.
1090 Value
*V
= NamedValues
[Name
];
1091 if (V
== 0) return ErrorV("Unknown variable name");
1094 return Builder
.CreateLoad(V
, Name
.c_str());
1097 Value
*UnaryExprAST::Codegen() {
1098 Value
*OperandV
= Operand
->Codegen();
1099 if (OperandV
== 0) return 0;
1101 F
= TheHelper
->getFunction(
1102 MakeLegalFunctionName(std::string("unary") + Opcode
));
1104 return ErrorV("Unknown unary operator");
1106 return Builder
.CreateCall(F
, OperandV
, "unop");
1109 Value
*BinaryExprAST::Codegen() {
1110 // Special case '=' because we don't want to emit the LHS as an expression.
1112 // Assignment requires the LHS to be an identifier.
1113 // This assume we're building without RTTI because LLVM builds that way by
1114 // default. If you build LLVM with RTTI this can be changed to a
1115 // dynamic_cast for automatic error checking.
1116 VariableExprAST
*LHSE
= static_cast<VariableExprAST
*>(LHS
);
1118 return ErrorV("destination of '=' must be a variable");
1120 Value
*Val
= RHS
->Codegen();
1121 if (Val
== 0) return 0;
1123 // Look up the name.
1124 Value
*Variable
= NamedValues
[LHSE
->getName()];
1125 if (Variable
== 0) return ErrorV("Unknown variable name");
1127 Builder
.CreateStore(Val
, Variable
);
1131 Value
*L
= LHS
->Codegen();
1132 Value
*R
= RHS
->Codegen();
1133 if (L
== 0 || R
== 0) return 0;
1136 case '+': return Builder
.CreateFAdd(L
, R
, "addtmp");
1137 case '-': return Builder
.CreateFSub(L
, R
, "subtmp");
1138 case '*': return Builder
.CreateFMul(L
, R
, "multmp");
1139 case '/': return Builder
.CreateFDiv(L
, R
, "divtmp");
1141 L
= Builder
.CreateFCmpULT(L
, R
, "cmptmp");
1142 // Convert bool 0/1 to double 0.0 or 1.0
1143 return Builder
.CreateUIToFP(L
, Type::getDoubleTy(TheContext
), "booltmp");
1147 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
1150 F
= TheHelper
->getFunction(MakeLegalFunctionName(std::string("binary")+Op
));
1151 assert(F
&& "binary operator not found!");
1153 Value
*Ops
[] = { L
, R
};
1154 return Builder
.CreateCall(F
, Ops
, "binop");
1157 Value
*CallExprAST::Codegen() {
1158 // Look up the name in the global module table.
1159 Function
*CalleeF
= TheHelper
->getFunction(Callee
);
1162 sprintf(error_str
, "Unknown function referenced %s", Callee
.c_str());
1163 return ErrorV(error_str
);
1166 // If argument mismatch error.
1167 if (CalleeF
->arg_size() != Args
.size())
1168 return ErrorV("Incorrect # arguments passed");
1170 std::vector
<Value
*> ArgsV
;
1171 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
1172 ArgsV
.push_back(Args
[i
]->Codegen());
1173 if (ArgsV
.back() == 0) return 0;
1176 return Builder
.CreateCall(CalleeF
, ArgsV
, "calltmp");
1179 Value
*IfExprAST::Codegen() {
1180 Value
*CondV
= Cond
->Codegen();
1181 if (CondV
== 0) return 0;
1183 // Convert condition to a bool by comparing equal to 0.0.
1184 CondV
= Builder
.CreateFCmpONE(
1185 CondV
, ConstantFP::get(TheContext
, APFloat(0.0)), "ifcond");
1187 Function
*TheFunction
= Builder
.GetInsertBlock()->getParent();
1189 // Create blocks for the then and else cases. Insert the 'then' block at the
1190 // end of the function.
1191 BasicBlock
*ThenBB
= BasicBlock::Create(TheContext
, "then", TheFunction
);
1192 BasicBlock
*ElseBB
= BasicBlock::Create(TheContext
, "else");
1193 BasicBlock
*MergeBB
= BasicBlock::Create(TheContext
, "ifcont");
1195 Builder
.CreateCondBr(CondV
, ThenBB
, ElseBB
);
1198 Builder
.SetInsertPoint(ThenBB
);
1200 Value
*ThenV
= Then
->Codegen();
1201 if (ThenV
== 0) return 0;
1203 Builder
.CreateBr(MergeBB
);
1204 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
1205 ThenBB
= Builder
.GetInsertBlock();
1208 TheFunction
->getBasicBlockList().push_back(ElseBB
);
1209 Builder
.SetInsertPoint(ElseBB
);
1211 Value
*ElseV
= Else
->Codegen();
1212 if (ElseV
== 0) return 0;
1214 Builder
.CreateBr(MergeBB
);
1215 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
1216 ElseBB
= Builder
.GetInsertBlock();
1218 // Emit merge block.
1219 TheFunction
->getBasicBlockList().push_back(MergeBB
);
1220 Builder
.SetInsertPoint(MergeBB
);
1221 PHINode
*PN
= Builder
.CreatePHI(Type::getDoubleTy(TheContext
), 2, "iftmp");
1223 PN
->addIncoming(ThenV
, ThenBB
);
1224 PN
->addIncoming(ElseV
, ElseBB
);
1228 Value
*ForExprAST::Codegen() {
1230 // var = alloca double
1232 // start = startexpr
1233 // store start -> var
1241 // endcond = endexpr
1243 // curvar = load var
1244 // nextvar = curvar + step
1245 // store nextvar -> var
1246 // br endcond, loop, endloop
1249 Function
*TheFunction
= Builder
.GetInsertBlock()->getParent();
1251 // Create an alloca for the variable in the entry block.
1252 AllocaInst
*Alloca
= CreateEntryBlockAlloca(TheFunction
, VarName
);
1254 // Emit the start code first, without 'variable' in scope.
1255 Value
*StartVal
= Start
->Codegen();
1256 if (StartVal
== 0) return 0;
1258 // Store the value into the alloca.
1259 Builder
.CreateStore(StartVal
, Alloca
);
1261 // Make the new basic block for the loop header, inserting after current
1263 BasicBlock
*LoopBB
= BasicBlock::Create(TheContext
, "loop", TheFunction
);
1265 // Insert an explicit fall through from the current block to the LoopBB.
1266 Builder
.CreateBr(LoopBB
);
1268 // Start insertion in LoopBB.
1269 Builder
.SetInsertPoint(LoopBB
);
1271 // Within the loop, the variable is defined equal to the PHI node. If it
1272 // shadows an existing variable, we have to restore it, so save it now.
1273 AllocaInst
*OldVal
= NamedValues
[VarName
];
1274 NamedValues
[VarName
] = Alloca
;
1276 // Emit the body of the loop. This, like any other expr, can change the
1277 // current BB. Note that we ignore the value computed by the body, but don't
1279 if (Body
->Codegen() == 0)
1282 // Emit the step value.
1285 StepVal
= Step
->Codegen();
1286 if (StepVal
== 0) return 0;
1288 // If not specified, use 1.0.
1289 StepVal
= ConstantFP::get(TheContext
, APFloat(1.0));
1292 // Compute the end condition.
1293 Value
*EndCond
= End
->Codegen();
1294 if (EndCond
== 0) return EndCond
;
1296 // Reload, increment, and restore the alloca. This handles the case where
1297 // the body of the loop mutates the variable.
1298 Value
*CurVar
= Builder
.CreateLoad(Alloca
, VarName
.c_str());
1299 Value
*NextVar
= Builder
.CreateFAdd(CurVar
, StepVal
, "nextvar");
1300 Builder
.CreateStore(NextVar
, Alloca
);
1302 // Convert condition to a bool by comparing equal to 0.0.
1303 EndCond
= Builder
.CreateFCmpONE(
1304 EndCond
, ConstantFP::get(TheContext
, APFloat(0.0)), "loopcond");
1306 // Create the "after loop" block and insert it.
1307 BasicBlock
*AfterBB
=
1308 BasicBlock::Create(TheContext
, "afterloop", TheFunction
);
1310 // Insert the conditional branch into the end of LoopEndBB.
1311 Builder
.CreateCondBr(EndCond
, LoopBB
, AfterBB
);
1313 // Any new code will be inserted in AfterBB.
1314 Builder
.SetInsertPoint(AfterBB
);
1316 // Restore the unshadowed variable.
1318 NamedValues
[VarName
] = OldVal
;
1320 NamedValues
.erase(VarName
);
1323 // for expr always returns 0.0.
1324 return Constant::getNullValue(Type::getDoubleTy(TheContext
));
1327 Value
*VarExprAST::Codegen() {
1328 std::vector
<AllocaInst
*> OldBindings
;
1330 Function
*TheFunction
= Builder
.GetInsertBlock()->getParent();
1332 // Register all variables and emit their initializer.
1333 for (unsigned i
= 0, e
= VarNames
.size(); i
!= e
; ++i
) {
1334 const std::string
&VarName
= VarNames
[i
].first
;
1335 ExprAST
*Init
= VarNames
[i
].second
;
1337 // Emit the initializer before adding the variable to scope, this prevents
1338 // the initializer from referencing the variable itself, and permits stuff
1341 // var a = a in ... # refers to outer 'a'.
1344 InitVal
= Init
->Codegen();
1345 if (InitVal
== 0) return 0;
1346 } else { // If not specified, use 0.0.
1347 InitVal
= ConstantFP::get(TheContext
, APFloat(0.0));
1350 AllocaInst
*Alloca
= CreateEntryBlockAlloca(TheFunction
, VarName
);
1351 Builder
.CreateStore(InitVal
, Alloca
);
1353 // Remember the old variable binding so that we can restore the binding when
1355 OldBindings
.push_back(NamedValues
[VarName
]);
1357 // Remember this binding.
1358 NamedValues
[VarName
] = Alloca
;
1361 // Codegen the body, now that all vars are in scope.
1362 Value
*BodyVal
= Body
->Codegen();
1363 if (BodyVal
== 0) return 0;
1365 // Pop all our variables from scope.
1366 for (unsigned i
= 0, e
= VarNames
.size(); i
!= e
; ++i
)
1367 NamedValues
[VarNames
[i
].first
] = OldBindings
[i
];
1369 // Return the body computation.
1373 Function
*PrototypeAST::Codegen() {
1374 // Make the function type: double(double,double) etc.
1375 std::vector
<Type
*> Doubles(Args
.size(), Type::getDoubleTy(TheContext
));
1377 FunctionType::get(Type::getDoubleTy(TheContext
), Doubles
, false);
1380 FnName
= MakeLegalFunctionName(Name
);
1382 Module
* M
= TheHelper
->getModuleForNewFunction();
1383 Function
*F
= Function::Create(FT
, Function::ExternalLinkage
, FnName
, M
);
1385 // FIXME: Implement duplicate function detection.
1386 // The check below will only work if the duplicate is in the open module.
1387 // If F conflicted, there was already something named 'Name'. If it has a
1388 // body, don't allow redefinition or reextern.
1389 if (F
->getName() != FnName
) {
1390 // Delete the one we just made and get the existing one.
1391 F
->eraseFromParent();
1392 F
= M
->getFunction(FnName
);
1393 // If F already has a body, reject this.
1395 ErrorF("redefinition of function");
1398 // If F took a different number of args, reject.
1399 if (F
->arg_size() != Args
.size()) {
1400 ErrorF("redefinition of function with different # args");
1405 // Set names for all arguments.
1407 for (Function::arg_iterator AI
= F
->arg_begin(); Idx
!= Args
.size();
1409 AI
->setName(Args
[Idx
]);
1414 /// CreateArgumentAllocas - Create an alloca for each argument and register the
1415 /// argument in the symbol table so that references to it will succeed.
1416 void PrototypeAST::CreateArgumentAllocas(Function
*F
) {
1417 Function::arg_iterator AI
= F
->arg_begin();
1418 for (unsigned Idx
= 0, e
= Args
.size(); Idx
!= e
; ++Idx
, ++AI
) {
1419 // Create an alloca for this variable.
1420 AllocaInst
*Alloca
= CreateEntryBlockAlloca(F
, Args
[Idx
]);
1422 // Store the initial value into the alloca.
1423 Builder
.CreateStore(AI
, Alloca
);
1425 // Add arguments to variable symbol table.
1426 NamedValues
[Args
[Idx
]] = Alloca
;
1430 Function
*FunctionAST::Codegen() {
1431 NamedValues
.clear();
1433 Function
*TheFunction
= Proto
->Codegen();
1434 if (TheFunction
== 0)
1437 // If this is an operator, install it.
1438 if (Proto
->isBinaryOp())
1439 BinopPrecedence
[Proto
->getOperatorName()] = Proto
->getBinaryPrecedence();
1441 // Create a new basic block to start insertion into.
1442 BasicBlock
*BB
= BasicBlock::Create(TheContext
, "entry", TheFunction
);
1443 Builder
.SetInsertPoint(BB
);
1445 // Add all arguments to the symbol table and create their allocas.
1446 Proto
->CreateArgumentAllocas(TheFunction
);
1448 if (Value
*RetVal
= Body
->Codegen()) {
1449 // Finish off the function.
1450 Builder
.CreateRet(RetVal
);
1452 // Validate the generated code, checking for consistency.
1453 verifyFunction(*TheFunction
);
1458 // Error reading body, remove function.
1459 TheFunction
->eraseFromParent();
1461 if (Proto
->isBinaryOp())
1462 BinopPrecedence
.erase(Proto
->getOperatorName());
1466 //===----------------------------------------------------------------------===//
1467 // Top-Level parsing and JIT Driver
1468 //===----------------------------------------------------------------------===//
1470 static void HandleDefinition() {
1471 if (FunctionAST
*F
= ParseDefinition()) {
1472 if (EnableLazyCompilation
)
1473 TheHelper
->closeCurrentModule();
1474 Function
*LF
= F
->Codegen();
1475 if (LF
&& VerboseOutput
) {
1476 fprintf(stderr
, "Read function definition:");
1478 fprintf(stderr
, "\n");
1481 // Skip token for error recovery.
1486 static void HandleExtern() {
1487 if (PrototypeAST
*P
= ParseExtern()) {
1488 Function
*F
= P
->Codegen();
1489 if (F
&& VerboseOutput
) {
1490 fprintf(stderr
, "Read extern: ");
1492 fprintf(stderr
, "\n");
1495 // Skip token for error recovery.
1500 static void HandleTopLevelExpression() {
1501 // Evaluate a top-level expression into an anonymous function.
1502 if (FunctionAST
*F
= ParseTopLevelExpr()) {
1503 if (Function
*LF
= F
->Codegen()) {
1504 // JIT the function, returning a function pointer.
1505 void *FPtr
= TheHelper
->getPointerToFunction(LF
);
1506 // Cast it to the right type (takes no arguments, returns a double) so we
1507 // can call it as a native function.
1508 double (*FP
)() = (double (*)())(intptr_t)FPtr
;
1509 double Result
= FP();
1511 fprintf(stderr
, "Evaluated to %f\n", Result
);
1514 // Skip token for error recovery.
1519 /// top ::= definition | external | expression | ';'
1520 static void MainLoop() {
1522 if (!SuppressPrompts
)
1523 fprintf(stderr
, "ready> ");
1525 case tok_eof
: return;
1526 case ';': getNextToken(); break; // ignore top-level semicolons.
1527 case tok_def
: HandleDefinition(); break;
1528 case tok_extern
: HandleExtern(); break;
1529 default: HandleTopLevelExpression(); break;
1534 //===----------------------------------------------------------------------===//
1535 // "Library" functions that can be "extern'd" from user code.
1536 //===----------------------------------------------------------------------===//
1538 /// putchard - putchar that takes a double and returns 0.
1540 double putchard(double X
) {
1545 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1547 double printd(double X
) {
1558 //===----------------------------------------------------------------------===//
1559 // Main driver code.
1560 //===----------------------------------------------------------------------===//
1562 int main(int argc
, char **argv
) {
1563 InitializeNativeTarget();
1564 InitializeNativeTargetAsmPrinter();
1565 InitializeNativeTargetAsmParser();
1566 LLVMContext
&Context
= TheContext
;
1568 cl::ParseCommandLineOptions(argc
, argv
,
1569 "Kaleidoscope example program\n");
1571 // Install standard binary operators.
1572 // 1 is lowest precedence.
1573 BinopPrecedence
['='] = 2;
1574 BinopPrecedence
['<'] = 10;
1575 BinopPrecedence
['+'] = 20;
1576 BinopPrecedence
['-'] = 20;
1577 BinopPrecedence
['/'] = 40;
1578 BinopPrecedence
['*'] = 40; // highest.
1580 // Make the Helper, which holds all the code.
1581 TheHelper
= new MCJITHelper(Context
);
1583 // Prime the first token.
1584 if (!SuppressPrompts
)
1585 fprintf(stderr
, "ready> ");
1588 // Run the main "interpreter loop" now.
1591 // Print out all of the generated code.
1592 if (DumpModulesOnExit
)