1 #define MINIMAL_STDERR_OUTPUT
3 #include "llvm/Analysis/Passes.h"
4 #include "llvm/ExecutionEngine/ExecutionEngine.h"
5 #include "llvm/ExecutionEngine/MCJIT.h"
6 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
7 #include "llvm/IR/DataLayout.h"
8 #include "llvm/IR/DerivedTypes.h"
9 #include "llvm/IR/IRBuilder.h"
10 #include "llvm/IR/LLVMContext.h"
11 #include "llvm/IR/LegacyPassManager.h"
12 #include "llvm/IR/Module.h"
13 #include "llvm/IR/Verifier.h"
14 #include "llvm/Support/TargetSelect.h"
15 #include "llvm/Transforms/Scalar.h"
23 //===----------------------------------------------------------------------===//
25 //===----------------------------------------------------------------------===//
27 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
28 // of these for known things.
33 tok_def
= -2, tok_extern
= -3,
36 tok_identifier
= -4, tok_number
= -5,
39 tok_if
= -6, tok_then
= -7, tok_else
= -8,
40 tok_for
= -9, tok_in
= -10,
43 tok_binary
= -11, tok_unary
= -12,
49 static std::string IdentifierStr
; // Filled in if tok_identifier
50 static double NumVal
; // Filled in if tok_number
52 /// gettok - Return the next token from standard input.
54 static int LastChar
= ' ';
56 // Skip any whitespace.
57 while (isspace(LastChar
))
60 if (isalpha(LastChar
)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
61 IdentifierStr
= LastChar
;
62 while (isalnum((LastChar
= getchar())))
63 IdentifierStr
+= LastChar
;
65 if (IdentifierStr
== "def") return tok_def
;
66 if (IdentifierStr
== "extern") return tok_extern
;
67 if (IdentifierStr
== "if") return tok_if
;
68 if (IdentifierStr
== "then") return tok_then
;
69 if (IdentifierStr
== "else") return tok_else
;
70 if (IdentifierStr
== "for") return tok_for
;
71 if (IdentifierStr
== "in") return tok_in
;
72 if (IdentifierStr
== "binary") return tok_binary
;
73 if (IdentifierStr
== "unary") return tok_unary
;
74 if (IdentifierStr
== "var") return tok_var
;
75 return tok_identifier
;
78 if (isdigit(LastChar
) || LastChar
== '.') { // Number: [0-9.]+
83 } while (isdigit(LastChar
) || LastChar
== '.');
85 NumVal
= strtod(NumStr
.c_str(), 0);
89 if (LastChar
== '#') {
90 // Comment until end of line.
91 do LastChar
= getchar();
92 while (LastChar
!= EOF
&& LastChar
!= '\n' && LastChar
!= '\r');
98 // Check for end of file. Don't eat the EOF.
102 // Otherwise, just return the character as its ascii value.
103 int ThisChar
= LastChar
;
104 LastChar
= getchar();
108 //===----------------------------------------------------------------------===//
109 // Abstract Syntax Tree (aka Parse Tree)
110 //===----------------------------------------------------------------------===//
112 /// ExprAST - Base class for all expression nodes.
115 virtual ~ExprAST() {}
116 virtual Value
*Codegen() = 0;
119 /// NumberExprAST - Expression class for numeric literals like "1.0".
120 class NumberExprAST
: public ExprAST
{
123 NumberExprAST(double val
) : Val(val
) {}
124 virtual Value
*Codegen();
127 /// VariableExprAST - Expression class for referencing a variable, like "a".
128 class VariableExprAST
: public ExprAST
{
131 VariableExprAST(const std::string
&name
) : Name(name
) {}
132 const std::string
&getName() const { return Name
; }
133 virtual Value
*Codegen();
136 /// UnaryExprAST - Expression class for a unary operator.
137 class UnaryExprAST
: public ExprAST
{
141 UnaryExprAST(char opcode
, ExprAST
*operand
)
142 : Opcode(opcode
), Operand(operand
) {}
143 virtual Value
*Codegen();
146 /// BinaryExprAST - Expression class for a binary operator.
147 class BinaryExprAST
: public ExprAST
{
151 BinaryExprAST(char op
, ExprAST
*lhs
, ExprAST
*rhs
)
152 : Op(op
), LHS(lhs
), RHS(rhs
) {}
153 virtual Value
*Codegen();
156 /// CallExprAST - Expression class for function calls.
157 class CallExprAST
: public ExprAST
{
159 std::vector
<ExprAST
*> Args
;
161 CallExprAST(const std::string
&callee
, std::vector
<ExprAST
*> &args
)
162 : Callee(callee
), Args(args
) {}
163 virtual Value
*Codegen();
166 /// IfExprAST - Expression class for if/then/else.
167 class IfExprAST
: public ExprAST
{
168 ExprAST
*Cond
, *Then
, *Else
;
170 IfExprAST(ExprAST
*cond
, ExprAST
*then
, ExprAST
*_else
)
171 : Cond(cond
), Then(then
), Else(_else
) {}
172 virtual Value
*Codegen();
175 /// ForExprAST - Expression class for for/in.
176 class ForExprAST
: public ExprAST
{
178 ExprAST
*Start
, *End
, *Step
, *Body
;
180 ForExprAST(const std::string
&varname
, ExprAST
*start
, ExprAST
*end
,
181 ExprAST
*step
, ExprAST
*body
)
182 : VarName(varname
), Start(start
), End(end
), Step(step
), Body(body
) {}
183 virtual Value
*Codegen();
186 /// VarExprAST - Expression class for var/in
187 class VarExprAST
: public ExprAST
{
188 std::vector
<std::pair
<std::string
, ExprAST
*> > VarNames
;
191 VarExprAST(const std::vector
<std::pair
<std::string
, ExprAST
*> > &varnames
,
193 : VarNames(varnames
), Body(body
) {}
195 virtual Value
*Codegen();
198 /// PrototypeAST - This class represents the "prototype" for a function,
199 /// which captures its argument names as well as if it is an operator.
202 std::vector
<std::string
> Args
;
204 unsigned Precedence
; // Precedence if a binary op.
206 PrototypeAST(const std::string
&name
, const std::vector
<std::string
> &args
,
207 bool isoperator
= false, unsigned prec
= 0)
208 : Name(name
), Args(args
), isOperator(isoperator
), Precedence(prec
) {}
210 bool isUnaryOp() const { return isOperator
&& Args
.size() == 1; }
211 bool isBinaryOp() const { return isOperator
&& Args
.size() == 2; }
213 char getOperatorName() const {
214 assert(isUnaryOp() || isBinaryOp());
215 return Name
[Name
.size()-1];
218 unsigned getBinaryPrecedence() const { return Precedence
; }
222 void CreateArgumentAllocas(Function
*F
);
225 /// FunctionAST - This class represents a function definition itself.
230 FunctionAST(PrototypeAST
*proto
, ExprAST
*body
)
231 : Proto(proto
), Body(body
) {}
236 //===----------------------------------------------------------------------===//
238 //===----------------------------------------------------------------------===//
240 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
241 /// token the parser is looking at. getNextToken reads another token from the
242 /// lexer and updates CurTok with its results.
244 static int getNextToken() {
245 return CurTok
= gettok();
248 /// BinopPrecedence - This holds the precedence for each binary operator that is
250 static std::map
<char, int> BinopPrecedence
;
252 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
253 static int GetTokPrecedence() {
254 if (!isascii(CurTok
))
257 // Make sure it's a declared binop.
258 int TokPrec
= BinopPrecedence
[CurTok
];
259 if (TokPrec
<= 0) return -1;
263 /// Error* - These are little helper functions for error handling.
264 ExprAST
*Error(const char *Str
) { fprintf(stderr
, "Error: %s\n", Str
);return 0;}
265 PrototypeAST
*ErrorP(const char *Str
) { Error(Str
); return 0; }
266 FunctionAST
*ErrorF(const char *Str
) { Error(Str
); return 0; }
268 static ExprAST
*ParseExpression();
272 /// ::= identifier '(' expression* ')'
273 static ExprAST
*ParseIdentifierExpr() {
274 std::string IdName
= IdentifierStr
;
276 getNextToken(); // eat identifier.
278 if (CurTok
!= '(') // Simple variable ref.
279 return new VariableExprAST(IdName
);
282 getNextToken(); // eat (
283 std::vector
<ExprAST
*> Args
;
286 ExprAST
*Arg
= ParseExpression();
290 if (CurTok
== ')') break;
293 return Error("Expected ')' or ',' in argument list");
301 return new CallExprAST(IdName
, Args
);
304 /// numberexpr ::= number
305 static ExprAST
*ParseNumberExpr() {
306 ExprAST
*Result
= new NumberExprAST(NumVal
);
307 getNextToken(); // consume the number
311 /// parenexpr ::= '(' expression ')'
312 static ExprAST
*ParseParenExpr() {
313 getNextToken(); // eat (.
314 ExprAST
*V
= ParseExpression();
318 return Error("expected ')'");
319 getNextToken(); // eat ).
323 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
324 static ExprAST
*ParseIfExpr() {
325 getNextToken(); // eat the if.
328 ExprAST
*Cond
= ParseExpression();
331 if (CurTok
!= tok_then
)
332 return Error("expected then");
333 getNextToken(); // eat the then
335 ExprAST
*Then
= ParseExpression();
336 if (Then
== 0) return 0;
338 if (CurTok
!= tok_else
)
339 return Error("expected else");
343 ExprAST
*Else
= ParseExpression();
346 return new IfExprAST(Cond
, Then
, Else
);
349 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
350 static ExprAST
*ParseForExpr() {
351 getNextToken(); // eat the for.
353 if (CurTok
!= tok_identifier
)
354 return Error("expected identifier after for");
356 std::string IdName
= IdentifierStr
;
357 getNextToken(); // eat identifier.
360 return Error("expected '=' after for");
361 getNextToken(); // eat '='.
364 ExprAST
*Start
= ParseExpression();
365 if (Start
== 0) return 0;
367 return Error("expected ',' after for start value");
370 ExprAST
*End
= ParseExpression();
371 if (End
== 0) return 0;
373 // The step value is optional.
377 Step
= ParseExpression();
378 if (Step
== 0) return 0;
381 if (CurTok
!= tok_in
)
382 return Error("expected 'in' after for");
383 getNextToken(); // eat 'in'.
385 ExprAST
*Body
= ParseExpression();
386 if (Body
== 0) return 0;
388 return new ForExprAST(IdName
, Start
, End
, Step
, Body
);
391 /// varexpr ::= 'var' identifier ('=' expression)?
392 // (',' identifier ('=' expression)?)* 'in' expression
393 static ExprAST
*ParseVarExpr() {
394 getNextToken(); // eat the var.
396 std::vector
<std::pair
<std::string
, ExprAST
*> > VarNames
;
398 // At least one variable name is required.
399 if (CurTok
!= tok_identifier
)
400 return Error("expected identifier after var");
403 std::string Name
= IdentifierStr
;
404 getNextToken(); // eat identifier.
406 // Read the optional initializer.
409 getNextToken(); // eat the '='.
411 Init
= ParseExpression();
412 if (Init
== 0) return 0;
415 VarNames
.push_back(std::make_pair(Name
, Init
));
417 // End of var list, exit loop.
418 if (CurTok
!= ',') break;
419 getNextToken(); // eat the ','.
421 if (CurTok
!= tok_identifier
)
422 return Error("expected identifier list after var");
425 // At this point, we have to have 'in'.
426 if (CurTok
!= tok_in
)
427 return Error("expected 'in' keyword after 'var'");
428 getNextToken(); // eat 'in'.
430 ExprAST
*Body
= ParseExpression();
431 if (Body
== 0) return 0;
433 return new VarExprAST(VarNames
, Body
);
437 /// ::= identifierexpr
443 static ExprAST
*ParsePrimary() {
445 default: return Error("unknown token when expecting an expression");
446 case tok_identifier
: return ParseIdentifierExpr();
447 case tok_number
: return ParseNumberExpr();
448 case '(': return ParseParenExpr();
449 case tok_if
: return ParseIfExpr();
450 case tok_for
: return ParseForExpr();
451 case tok_var
: return ParseVarExpr();
458 static ExprAST
*ParseUnary() {
459 // If the current token is not an operator, it must be a primary expr.
460 if (!isascii(CurTok
) || CurTok
== '(' || CurTok
== ',')
461 return ParsePrimary();
463 // If this is a unary operator, read it.
466 if (ExprAST
*Operand
= ParseUnary())
467 return new UnaryExprAST(Opc
, Operand
);
473 static ExprAST
*ParseBinOpRHS(int ExprPrec
, ExprAST
*LHS
) {
474 // If this is a binop, find its precedence.
476 int TokPrec
= GetTokPrecedence();
478 // If this is a binop that binds at least as tightly as the current binop,
479 // consume it, otherwise we are done.
480 if (TokPrec
< ExprPrec
)
483 // Okay, we know this is a binop.
485 getNextToken(); // eat binop
487 // Parse the unary expression after the binary operator.
488 ExprAST
*RHS
= ParseUnary();
491 // If BinOp binds less tightly with RHS than the operator after RHS, let
492 // the pending operator take RHS as its LHS.
493 int NextPrec
= GetTokPrecedence();
494 if (TokPrec
< NextPrec
) {
495 RHS
= ParseBinOpRHS(TokPrec
+1, RHS
);
496 if (RHS
== 0) return 0;
500 LHS
= new BinaryExprAST(BinOp
, LHS
, RHS
);
505 /// ::= unary binoprhs
507 static ExprAST
*ParseExpression() {
508 ExprAST
*LHS
= ParseUnary();
511 return ParseBinOpRHS(0, LHS
);
515 /// ::= id '(' id* ')'
516 /// ::= binary LETTER number? (id, id)
517 /// ::= unary LETTER (id)
518 static PrototypeAST
*ParsePrototype() {
521 unsigned Kind
= 0; // 0 = identifier, 1 = unary, 2 = binary.
522 unsigned BinaryPrecedence
= 30;
526 return ErrorP("Expected function name in prototype");
528 FnName
= IdentifierStr
;
534 if (!isascii(CurTok
))
535 return ErrorP("Expected unary operator");
537 FnName
+= (char)CurTok
;
543 if (!isascii(CurTok
))
544 return ErrorP("Expected binary operator");
546 FnName
+= (char)CurTok
;
550 // Read the precedence if present.
551 if (CurTok
== tok_number
) {
552 if (NumVal
< 1 || NumVal
> 100)
553 return ErrorP("Invalid precedecnce: must be 1..100");
554 BinaryPrecedence
= (unsigned)NumVal
;
561 return ErrorP("Expected '(' in prototype");
563 std::vector
<std::string
> ArgNames
;
564 while (getNextToken() == tok_identifier
)
565 ArgNames
.push_back(IdentifierStr
);
567 return ErrorP("Expected ')' in prototype");
570 getNextToken(); // eat ')'.
572 // Verify right number of names for operator.
573 if (Kind
&& ArgNames
.size() != Kind
)
574 return ErrorP("Invalid number of operands for operator");
576 return new PrototypeAST(FnName
, ArgNames
, Kind
!= 0, BinaryPrecedence
);
579 /// definition ::= 'def' prototype expression
580 static FunctionAST
*ParseDefinition() {
581 getNextToken(); // eat def.
582 PrototypeAST
*Proto
= ParsePrototype();
583 if (Proto
== 0) return 0;
585 if (ExprAST
*E
= ParseExpression())
586 return new FunctionAST(Proto
, E
);
590 /// toplevelexpr ::= expression
591 static FunctionAST
*ParseTopLevelExpr() {
592 if (ExprAST
*E
= ParseExpression()) {
593 // Make an anonymous proto.
594 PrototypeAST
*Proto
= new PrototypeAST("", std::vector
<std::string
>());
595 return new FunctionAST(Proto
, E
);
600 /// external ::= 'extern' prototype
601 static PrototypeAST
*ParseExtern() {
602 getNextToken(); // eat extern.
603 return ParsePrototype();
606 //===----------------------------------------------------------------------===//
607 // Quick and dirty hack
608 //===----------------------------------------------------------------------===//
610 // FIXME: Obviously we can do better than this
611 std::string
GenerateUniqueName(const char *root
)
615 sprintf(s
, "%s%d", root
, i
++);
620 std::string
MakeLegalFunctionName(std::string Name
)
624 return GenerateUniqueName("anon_func_");
626 // Start with what we have
629 // Look for a numberic first character
630 if (NewName
.find_first_of("0123456789") == 0) {
631 NewName
.insert(0, 1, 'n');
634 // Replace illegal characters with their ASCII equivalent
635 std::string legal_elements
= "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
637 while ((pos
= NewName
.find_first_not_of(legal_elements
)) != std::string::npos
) {
638 char old_c
= NewName
.at(pos
);
640 sprintf(new_str
, "%d", (int)old_c
);
641 NewName
= NewName
.replace(pos
, 1, new_str
);
647 //===----------------------------------------------------------------------===//
648 // MCJIT helper class
649 //===----------------------------------------------------------------------===//
654 MCJITHelper(LLVMContext
& C
) : Context(C
), OpenModule(NULL
) {}
657 Function
*getFunction(const std::string FnName
);
658 Module
*getModuleForNewFunction();
659 void *getPointerToFunction(Function
* F
);
660 void *getPointerToNamedFunction(const std::string
&Name
);
661 ExecutionEngine
*compileModule(Module
*M
);
662 void closeCurrentModule();
666 typedef std::vector
<Module
*> ModuleVector
;
668 LLVMContext
&Context
;
670 ModuleVector Modules
;
671 std::map
<Module
*, ExecutionEngine
*> EngineMap
;
674 class HelpingMemoryManager
: public SectionMemoryManager
676 HelpingMemoryManager(const HelpingMemoryManager
&) = delete;
677 void operator=(const HelpingMemoryManager
&) = delete;
680 HelpingMemoryManager(MCJITHelper
*Helper
) : MasterHelper(Helper
) {}
681 virtual ~HelpingMemoryManager() {}
683 /// This method returns the address of the specified function.
684 /// Our implementation will attempt to find functions in other
685 /// modules associated with the MCJITHelper to cross link functions
686 /// from one generated module to another.
688 /// If \p AbortOnFailure is false and no function with the given name is
689 /// found, this function returns a null pointer. Otherwise, it prints a
690 /// message to stderr and aborts.
691 virtual void *getPointerToNamedFunction(const std::string
&Name
,
692 bool AbortOnFailure
= true);
694 MCJITHelper
*MasterHelper
;
697 void *HelpingMemoryManager::getPointerToNamedFunction(const std::string
&Name
,
700 // Try the standard symbol resolution first, but ask it not to abort.
701 void *pfn
= SectionMemoryManager::getPointerToNamedFunction(Name
, false);
705 pfn
= MasterHelper
->getPointerToNamedFunction(Name
);
706 if (!pfn
&& AbortOnFailure
)
707 report_fatal_error("Program used external function '" + Name
+
708 "' which could not be resolved!");
712 MCJITHelper::~MCJITHelper()
714 // Walk the vector of modules.
715 ModuleVector::iterator it
, end
;
716 for (it
= Modules
.begin(), end
= Modules
.end();
718 // See if we have an execution engine for this module.
719 std::map
<Module
*, ExecutionEngine
*>::iterator mapIt
= EngineMap
.find(*it
);
720 // If we have an EE, the EE owns the module so just delete the EE.
721 if (mapIt
!= EngineMap
.end()) {
722 delete mapIt
->second
;
724 // Otherwise, we still own the module. Delete it now.
730 Function
*MCJITHelper::getFunction(const std::string FnName
) {
731 ModuleVector::iterator begin
= Modules
.begin();
732 ModuleVector::iterator end
= Modules
.end();
733 ModuleVector::iterator it
;
734 for (it
= begin
; it
!= end
; ++it
) {
735 Function
*F
= (*it
)->getFunction(FnName
);
737 if (*it
== OpenModule
)
740 assert(OpenModule
!= NULL
);
742 // This function is in a module that has already been JITed.
743 // We need to generate a new prototype for external linkage.
744 Function
*PF
= OpenModule
->getFunction(FnName
);
745 if (PF
&& !PF
->empty()) {
746 ErrorF("redefinition of function across modules");
750 // If we don't have a prototype yet, create one.
752 PF
= Function::Create(F
->getFunctionType(),
753 Function::ExternalLinkage
,
762 Module
*MCJITHelper::getModuleForNewFunction() {
763 // If we have a Module that hasn't been JITed, use that.
767 // Otherwise create a new Module.
768 std::string ModName
= GenerateUniqueName("mcjit_module_");
769 Module
*M
= new Module(ModName
, Context
);
770 Modules
.push_back(M
);
775 void *MCJITHelper::getPointerToFunction(Function
* F
) {
776 // Look for this function in an existing module
777 ModuleVector::iterator begin
= Modules
.begin();
778 ModuleVector::iterator end
= Modules
.end();
779 ModuleVector::iterator it
;
780 std::string FnName
= F
->getName();
781 for (it
= begin
; it
!= end
; ++it
) {
782 Function
*MF
= (*it
)->getFunction(FnName
);
784 std::map
<Module
*, ExecutionEngine
*>::iterator eeIt
= EngineMap
.find(*it
);
785 if (eeIt
!= EngineMap
.end()) {
786 void *P
= eeIt
->second
->getPointerToFunction(F
);
790 ExecutionEngine
*EE
= compileModule(*it
);
791 void *P
= EE
->getPointerToFunction(F
);
800 void MCJITHelper::closeCurrentModule() {
804 ExecutionEngine
*MCJITHelper::compileModule(Module
*M
) {
806 closeCurrentModule();
809 ExecutionEngine
*NewEngine
= EngineBuilder(M
)
810 .setErrorStr(&ErrStr
)
811 .setMCJITMemoryManager(new HelpingMemoryManager(this))
814 fprintf(stderr
, "Could not create ExecutionEngine: %s\n", ErrStr
.c_str());
818 // Create a function pass manager for this engine
819 FunctionPassManager
*FPM
= new FunctionPassManager(M
);
821 // Set up the optimizer pipeline. Start with registering info about how the
822 // target lays out data structures.
823 FPM
->add(new DataLayout(*NewEngine
->getDataLayout()));
824 // Provide basic AliasAnalysis support for GVN.
825 FPM
->add(createBasicAliasAnalysisPass());
826 // Promote allocas to registers.
827 FPM
->add(createPromoteMemoryToRegisterPass());
828 // Do simple "peephole" optimizations and bit-twiddling optzns.
829 FPM
->add(createInstructionCombiningPass());
830 // Reassociate expressions.
831 FPM
->add(createReassociatePass());
832 // Eliminate Common SubExpressions.
833 FPM
->add(createGVNPass());
834 // Simplify the control flow graph (deleting unreachable blocks, etc).
835 FPM
->add(createCFGSimplificationPass());
836 FPM
->doInitialization();
838 // For each function in the module
840 Module::iterator end
= M
->end();
841 for (it
= M
->begin(); it
!= end
; ++it
) {
842 // Run the FPM on this function
846 // We don't need this anymore
850 EngineMap
[M
] = NewEngine
;
851 NewEngine
->finalizeObject();
856 void *MCJITHelper::getPointerToNamedFunction(const std::string
&Name
)
858 // Look for the functions in our modules, compiling only as necessary
859 ModuleVector::iterator begin
= Modules
.begin();
860 ModuleVector::iterator end
= Modules
.end();
861 ModuleVector::iterator it
;
862 for (it
= begin
; it
!= end
; ++it
) {
863 Function
*F
= (*it
)->getFunction(Name
);
864 if (F
&& !F
->empty()) {
865 std::map
<Module
*, ExecutionEngine
*>::iterator eeIt
= EngineMap
.find(*it
);
866 if (eeIt
!= EngineMap
.end()) {
867 void *P
= eeIt
->second
->getPointerToFunction(F
);
871 ExecutionEngine
*EE
= compileModule(*it
);
872 void *P
= EE
->getPointerToFunction(F
);
881 void MCJITHelper::dump()
883 ModuleVector::iterator begin
= Modules
.begin();
884 ModuleVector::iterator end
= Modules
.end();
885 ModuleVector::iterator it
;
886 for (it
= begin
; it
!= end
; ++it
)
890 //===----------------------------------------------------------------------===//
892 //===----------------------------------------------------------------------===//
894 static MCJITHelper
*TheHelper
;
895 static LLVMContext TheContext
;
896 static IRBuilder
<> Builder(TheContext
);
897 static std::map
<std::string
, AllocaInst
*> NamedValues
;
899 Value
*ErrorV(const char *Str
) { Error(Str
); return 0; }
901 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
902 /// the function. This is used for mutable variables etc.
903 static AllocaInst
*CreateEntryBlockAlloca(Function
*TheFunction
,
904 const std::string
&VarName
) {
905 IRBuilder
<> TmpB(&TheFunction
->getEntryBlock(),
906 TheFunction
->getEntryBlock().begin());
907 return TmpB
.CreateAlloca(Type::getDoubleTy(TheContext
), 0, VarName
.c_str());
910 Value
*NumberExprAST::Codegen() {
911 return ConstantFP::get(TheContext
, APFloat(Val
));
914 Value
*VariableExprAST::Codegen() {
915 // Look this variable up in the function.
916 Value
*V
= NamedValues
[Name
];
918 sprintf(ErrStr
, "Unknown variable name %s", Name
.c_str());
919 if (V
== 0) return ErrorV(ErrStr
);
922 return Builder
.CreateLoad(V
, Name
.c_str());
925 Value
*UnaryExprAST::Codegen() {
926 Value
*OperandV
= Operand
->Codegen();
927 if (OperandV
== 0) return 0;
929 Function
*F
= TheHelper
->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode
));
931 return ErrorV("Unknown unary operator");
933 return Builder
.CreateCall(F
, OperandV
, "unop");
936 Value
*BinaryExprAST::Codegen() {
937 // Special case '=' because we don't want to emit the LHS as an expression.
939 // Assignment requires the LHS to be an identifier.
940 VariableExprAST
*LHSE
= static_cast<VariableExprAST
*>(LHS
);
942 return ErrorV("destination of '=' must be a variable");
944 Value
*Val
= RHS
->Codegen();
945 if (Val
== 0) return 0;
948 Value
*Variable
= NamedValues
[LHSE
->getName()];
949 if (Variable
== 0) return ErrorV("Unknown variable name");
951 Builder
.CreateStore(Val
, Variable
);
955 Value
*L
= LHS
->Codegen();
956 Value
*R
= RHS
->Codegen();
957 if (L
== 0 || R
== 0) return 0;
960 case '+': return Builder
.CreateFAdd(L
, R
, "addtmp");
961 case '-': return Builder
.CreateFSub(L
, R
, "subtmp");
962 case '*': return Builder
.CreateFMul(L
, R
, "multmp");
963 case '/': return Builder
.CreateFDiv(L
, R
, "divtmp");
965 L
= Builder
.CreateFCmpULT(L
, R
, "cmptmp");
966 // Convert bool 0/1 to double 0.0 or 1.0
967 return Builder
.CreateUIToFP(L
, Type::getDoubleTy(TheContext
), "booltmp");
971 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
973 Function
*F
= TheHelper
->getFunction(MakeLegalFunctionName(std::string("binary")+Op
));
974 assert(F
&& "binary operator not found!");
976 Value
*Ops
[] = { L
, R
};
977 return Builder
.CreateCall(F
, Ops
, "binop");
980 Value
*CallExprAST::Codegen() {
981 // Look up the name in the global module table.
982 Function
*CalleeF
= TheHelper
->getFunction(Callee
);
984 return ErrorV("Unknown function referenced");
986 // If argument mismatch error.
987 if (CalleeF
->arg_size() != Args
.size())
988 return ErrorV("Incorrect # arguments passed");
990 std::vector
<Value
*> ArgsV
;
991 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
992 ArgsV
.push_back(Args
[i
]->Codegen());
993 if (ArgsV
.back() == 0) return 0;
996 return Builder
.CreateCall(CalleeF
, ArgsV
, "calltmp");
999 Value
*IfExprAST::Codegen() {
1000 Value
*CondV
= Cond
->Codegen();
1001 if (CondV
== 0) return 0;
1003 // Convert condition to a bool by comparing equal to 0.0.
1004 CondV
= Builder
.CreateFCmpONE(
1005 CondV
, ConstantFP::get(TheContext
, APFloat(0.0)), "ifcond");
1007 Function
*TheFunction
= Builder
.GetInsertBlock()->getParent();
1009 // Create blocks for the then and else cases. Insert the 'then' block at the
1010 // end of the function.
1011 BasicBlock
*ThenBB
= BasicBlock::Create(TheContext
, "then", TheFunction
);
1012 BasicBlock
*ElseBB
= BasicBlock::Create(TheContext
, "else");
1013 BasicBlock
*MergeBB
= BasicBlock::Create(TheContext
, "ifcont");
1015 Builder
.CreateCondBr(CondV
, ThenBB
, ElseBB
);
1018 Builder
.SetInsertPoint(ThenBB
);
1020 Value
*ThenV
= Then
->Codegen();
1021 if (ThenV
== 0) return 0;
1023 Builder
.CreateBr(MergeBB
);
1024 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
1025 ThenBB
= Builder
.GetInsertBlock();
1028 TheFunction
->getBasicBlockList().push_back(ElseBB
);
1029 Builder
.SetInsertPoint(ElseBB
);
1031 Value
*ElseV
= Else
->Codegen();
1032 if (ElseV
== 0) return 0;
1034 Builder
.CreateBr(MergeBB
);
1035 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
1036 ElseBB
= Builder
.GetInsertBlock();
1038 // Emit merge block.
1039 TheFunction
->getBasicBlockList().push_back(MergeBB
);
1040 Builder
.SetInsertPoint(MergeBB
);
1041 PHINode
*PN
= Builder
.CreatePHI(Type::getDoubleTy(TheContext
), 2, "iftmp");
1043 PN
->addIncoming(ThenV
, ThenBB
);
1044 PN
->addIncoming(ElseV
, ElseBB
);
1048 Value
*ForExprAST::Codegen() {
1050 // var = alloca double
1052 // start = startexpr
1053 // store start -> var
1061 // endcond = endexpr
1063 // curvar = load var
1064 // nextvar = curvar + step
1065 // store nextvar -> var
1066 // br endcond, loop, endloop
1069 Function
*TheFunction
= Builder
.GetInsertBlock()->getParent();
1071 // Create an alloca for the variable in the entry block.
1072 AllocaInst
*Alloca
= CreateEntryBlockAlloca(TheFunction
, VarName
);
1074 // Emit the start code first, without 'variable' in scope.
1075 Value
*StartVal
= Start
->Codegen();
1076 if (StartVal
== 0) return 0;
1078 // Store the value into the alloca.
1079 Builder
.CreateStore(StartVal
, Alloca
);
1081 // Make the new basic block for the loop header, inserting after current
1083 BasicBlock
*LoopBB
= BasicBlock::Create(TheContext
, "loop", TheFunction
);
1085 // Insert an explicit fall through from the current block to the LoopBB.
1086 Builder
.CreateBr(LoopBB
);
1088 // Start insertion in LoopBB.
1089 Builder
.SetInsertPoint(LoopBB
);
1091 // Within the loop, the variable is defined equal to the PHI node. If it
1092 // shadows an existing variable, we have to restore it, so save it now.
1093 AllocaInst
*OldVal
= NamedValues
[VarName
];
1094 NamedValues
[VarName
] = Alloca
;
1096 // Emit the body of the loop. This, like any other expr, can change the
1097 // current BB. Note that we ignore the value computed by the body, but don't
1099 if (Body
->Codegen() == 0)
1102 // Emit the step value.
1105 StepVal
= Step
->Codegen();
1106 if (StepVal
== 0) return 0;
1108 // If not specified, use 1.0.
1109 StepVal
= ConstantFP::get(TheContext
, APFloat(1.0));
1112 // Compute the end condition.
1113 Value
*EndCond
= End
->Codegen();
1114 if (EndCond
== 0) return EndCond
;
1116 // Reload, increment, and restore the alloca. This handles the case where
1117 // the body of the loop mutates the variable.
1118 Value
*CurVar
= Builder
.CreateLoad(Alloca
, VarName
.c_str());
1119 Value
*NextVar
= Builder
.CreateFAdd(CurVar
, StepVal
, "nextvar");
1120 Builder
.CreateStore(NextVar
, Alloca
);
1122 // Convert condition to a bool by comparing equal to 0.0.
1123 EndCond
= Builder
.CreateFCmpONE(
1124 EndCond
, ConstantFP::get(TheContext
, APFloat(0.0)), "loopcond");
1126 // Create the "after loop" block and insert it.
1127 BasicBlock
*AfterBB
=
1128 BasicBlock::Create(TheContext
, "afterloop", TheFunction
);
1130 // Insert the conditional branch into the end of LoopEndBB.
1131 Builder
.CreateCondBr(EndCond
, LoopBB
, AfterBB
);
1133 // Any new code will be inserted in AfterBB.
1134 Builder
.SetInsertPoint(AfterBB
);
1136 // Restore the unshadowed variable.
1138 NamedValues
[VarName
] = OldVal
;
1140 NamedValues
.erase(VarName
);
1143 // for expr always returns 0.0.
1144 return Constant::getNullValue(Type::getDoubleTy(TheContext
));
1147 Value
*VarExprAST::Codegen() {
1148 std::vector
<AllocaInst
*> OldBindings
;
1150 Function
*TheFunction
= Builder
.GetInsertBlock()->getParent();
1152 // Register all variables and emit their initializer.
1153 for (unsigned i
= 0, e
= VarNames
.size(); i
!= e
; ++i
) {
1154 const std::string
&VarName
= VarNames
[i
].first
;
1155 ExprAST
*Init
= VarNames
[i
].second
;
1157 // Emit the initializer before adding the variable to scope, this prevents
1158 // the initializer from referencing the variable itself, and permits stuff
1161 // var a = a in ... # refers to outer 'a'.
1164 InitVal
= Init
->Codegen();
1165 if (InitVal
== 0) return 0;
1166 } else { // If not specified, use 0.0.
1167 InitVal
= ConstantFP::get(TheContext
, APFloat(0.0));
1170 AllocaInst
*Alloca
= CreateEntryBlockAlloca(TheFunction
, VarName
);
1171 Builder
.CreateStore(InitVal
, Alloca
);
1173 // Remember the old variable binding so that we can restore the binding when
1175 OldBindings
.push_back(NamedValues
[VarName
]);
1177 // Remember this binding.
1178 NamedValues
[VarName
] = Alloca
;
1181 // Codegen the body, now that all vars are in scope.
1182 Value
*BodyVal
= Body
->Codegen();
1183 if (BodyVal
== 0) return 0;
1185 // Pop all our variables from scope.
1186 for (unsigned i
= 0, e
= VarNames
.size(); i
!= e
; ++i
)
1187 NamedValues
[VarNames
[i
].first
] = OldBindings
[i
];
1189 // Return the body computation.
1193 Function
*PrototypeAST::Codegen() {
1194 // Make the function type: double(double,double) etc.
1195 std::vector
<Type
*> Doubles(Args
.size(), Type::getDoubleTy(TheContext
));
1197 FunctionType::get(Type::getDoubleTy(TheContext
), Doubles
, false);
1199 std::string FnName
= MakeLegalFunctionName(Name
);
1201 Module
* M
= TheHelper
->getModuleForNewFunction();
1203 Function
*F
= Function::Create(FT
, Function::ExternalLinkage
, FnName
, M
);
1205 // If F conflicted, there was already something named 'FnName'. If it has a
1206 // body, don't allow redefinition or reextern.
1207 if (F
->getName() != FnName
) {
1208 // Delete the one we just made and get the existing one.
1209 F
->eraseFromParent();
1210 F
= M
->getFunction(Name
);
1212 // If F already has a body, reject this.
1214 ErrorF("redefinition of function");
1218 // If F took a different number of args, reject.
1219 if (F
->arg_size() != Args
.size()) {
1220 ErrorF("redefinition of function with different # args");
1225 // Set names for all arguments.
1227 for (Function::arg_iterator AI
= F
->arg_begin(); Idx
!= Args
.size();
1229 AI
->setName(Args
[Idx
]);
1234 /// CreateArgumentAllocas - Create an alloca for each argument and register the
1235 /// argument in the symbol table so that references to it will succeed.
1236 void PrototypeAST::CreateArgumentAllocas(Function
*F
) {
1237 Function::arg_iterator AI
= F
->arg_begin();
1238 for (unsigned Idx
= 0, e
= Args
.size(); Idx
!= e
; ++Idx
, ++AI
) {
1239 // Create an alloca for this variable.
1240 AllocaInst
*Alloca
= CreateEntryBlockAlloca(F
, Args
[Idx
]);
1242 // Store the initial value into the alloca.
1243 Builder
.CreateStore(AI
, Alloca
);
1245 // Add arguments to variable symbol table.
1246 NamedValues
[Args
[Idx
]] = Alloca
;
1250 Function
*FunctionAST::Codegen() {
1251 NamedValues
.clear();
1253 Function
*TheFunction
= Proto
->Codegen();
1254 if (TheFunction
== 0)
1257 // If this is an operator, install it.
1258 if (Proto
->isBinaryOp())
1259 BinopPrecedence
[Proto
->getOperatorName()] = Proto
->getBinaryPrecedence();
1261 // Create a new basic block to start insertion into.
1262 BasicBlock
*BB
= BasicBlock::Create(TheContext
, "entry", TheFunction
);
1263 Builder
.SetInsertPoint(BB
);
1265 // Add all arguments to the symbol table and create their allocas.
1266 Proto
->CreateArgumentAllocas(TheFunction
);
1268 if (Value
*RetVal
= Body
->Codegen()) {
1269 // Finish off the function.
1270 Builder
.CreateRet(RetVal
);
1272 // Validate the generated code, checking for consistency.
1273 verifyFunction(*TheFunction
);
1278 // Error reading body, remove function.
1279 TheFunction
->eraseFromParent();
1281 if (Proto
->isBinaryOp())
1282 BinopPrecedence
.erase(Proto
->getOperatorName());
1286 //===----------------------------------------------------------------------===//
1287 // Top-Level parsing and JIT Driver
1288 //===----------------------------------------------------------------------===//
1290 static void HandleDefinition() {
1291 if (FunctionAST
*F
= ParseDefinition()) {
1292 TheHelper
->closeCurrentModule();
1293 if (Function
*LF
= F
->Codegen()) {
1294 #ifndef MINIMAL_STDERR_OUTPUT
1295 fprintf(stderr
, "Read function definition:");
1297 fprintf(stderr
, "\n");
1301 // Skip token for error recovery.
1306 static void HandleExtern() {
1307 if (PrototypeAST
*P
= ParseExtern()) {
1308 if (Function
*F
= P
->Codegen()) {
1309 #ifndef MINIMAL_STDERR_OUTPUT
1310 fprintf(stderr
, "Read extern: ");
1312 fprintf(stderr
, "\n");
1316 // Skip token for error recovery.
1321 static void HandleTopLevelExpression() {
1322 // Evaluate a top-level expression into an anonymous function.
1323 if (FunctionAST
*F
= ParseTopLevelExpr()) {
1324 if (Function
*LF
= F
->Codegen()) {
1325 // JIT the function, returning a function pointer.
1326 void *FPtr
= TheHelper
->getPointerToFunction(LF
);
1328 // Cast it to the right type (takes no arguments, returns a double) so we
1329 // can call it as a native function.
1330 double (*FP
)() = (double (*)())(intptr_t)FPtr
;
1331 #ifdef MINIMAL_STDERR_OUTPUT
1334 fprintf(stderr
, "Evaluated to %f\n", FP());
1338 // Skip token for error recovery.
1343 /// top ::= definition | external | expression | ';'
1344 static void MainLoop() {
1346 #ifndef MINIMAL_STDERR_OUTPUT
1347 fprintf(stderr
, "ready> ");
1350 case tok_eof
: return;
1351 case ';': getNextToken(); break; // ignore top-level semicolons.
1352 case tok_def
: HandleDefinition(); break;
1353 case tok_extern
: HandleExtern(); break;
1354 default: HandleTopLevelExpression(); break;
1359 //===----------------------------------------------------------------------===//
1360 // "Library" functions that can be "extern'd" from user code.
1361 //===----------------------------------------------------------------------===//
1363 /// putchard - putchar that takes a double and returns 0.
1365 double putchard(double X
) {
1370 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1372 double printd(double X
) {
1383 //===----------------------------------------------------------------------===//
1384 // Main driver code.
1385 //===----------------------------------------------------------------------===//
1388 InitializeNativeTarget();
1389 InitializeNativeTargetAsmPrinter();
1390 InitializeNativeTargetAsmParser();
1391 LLVMContext
&Context
= TheContext
;
1393 // Install standard binary operators.
1394 // 1 is lowest precedence.
1395 BinopPrecedence
['='] = 2;
1396 BinopPrecedence
['<'] = 10;
1397 BinopPrecedence
['+'] = 20;
1398 BinopPrecedence
['-'] = 20;
1399 BinopPrecedence
['/'] = 40;
1400 BinopPrecedence
['*'] = 40; // highest.
1402 // Prime the first token.
1403 #ifndef MINIMAL_STDERR_OUTPUT
1404 fprintf(stderr
, "ready> ");
1408 // Make the helper, which holds all the code.
1409 TheHelper
= new MCJITHelper(Context
);
1411 // Run the main "interpreter loop" now.
1414 #ifndef MINIMAL_STDERR_OUTPUT
1415 // Print out all of the generated code.