1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines several CodeGen-specific LLVM IR analysis utilities.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/Analysis.h"
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/TargetInstrInfo.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/CodeGen/TargetSubtargetInfo.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Transforms/Utils/GlobalStatus.h"
33 /// Compute the linearized index of a member in a nested aggregate/struct/array
34 /// by recursing and accumulating CurIndex as long as there are indices in the
36 unsigned llvm::ComputeLinearIndex(Type
*Ty
,
37 const unsigned *Indices
,
38 const unsigned *IndicesEnd
,
40 // Base case: We're done.
41 if (Indices
&& Indices
== IndicesEnd
)
44 // Given a struct type, recursively traverse the elements.
45 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
46 for (auto I
: llvm::enumerate(STy
->elements())) {
48 if (Indices
&& *Indices
== I
.index())
49 return ComputeLinearIndex(ET
, Indices
+ 1, IndicesEnd
, CurIndex
);
50 CurIndex
= ComputeLinearIndex(ET
, nullptr, nullptr, CurIndex
);
52 assert(!Indices
&& "Unexpected out of bound");
55 // Given an array type, recursively traverse the elements.
56 else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
57 Type
*EltTy
= ATy
->getElementType();
58 unsigned NumElts
= ATy
->getNumElements();
59 // Compute the Linear offset when jumping one element of the array
60 unsigned EltLinearOffset
= ComputeLinearIndex(EltTy
, nullptr, nullptr, 0);
62 assert(*Indices
< NumElts
&& "Unexpected out of bound");
63 // If the indice is inside the array, compute the index to the requested
64 // elt and recurse inside the element with the end of the indices list
65 CurIndex
+= EltLinearOffset
* *Indices
;
66 return ComputeLinearIndex(EltTy
, Indices
+1, IndicesEnd
, CurIndex
);
68 CurIndex
+= EltLinearOffset
*NumElts
;
71 // We haven't found the type we're looking for, so keep searching.
75 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
76 /// EVTs that represent all the individual underlying
77 /// non-aggregate types that comprise it.
79 /// If Offsets is non-null, it points to a vector to be filled in
80 /// with the in-memory offsets of each of the individual values.
82 void llvm::ComputeValueVTs(const TargetLowering
&TLI
, const DataLayout
&DL
,
83 Type
*Ty
, SmallVectorImpl
<EVT
> &ValueVTs
,
84 SmallVectorImpl
<EVT
> *MemVTs
,
85 SmallVectorImpl
<uint64_t> *Offsets
,
86 uint64_t StartingOffset
) {
87 // Given a struct type, recursively traverse the elements.
88 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
89 // If the Offsets aren't needed, don't query the struct layout. This allows
90 // us to support structs with scalable vectors for operations that don't
92 const StructLayout
*SL
= Offsets
? DL
.getStructLayout(STy
) : nullptr;
93 for (StructType::element_iterator EB
= STy
->element_begin(),
95 EE
= STy
->element_end();
97 // Don't compute the element offset if we didn't get a StructLayout above.
98 uint64_t EltOffset
= SL
? SL
->getElementOffset(EI
- EB
) : 0;
99 ComputeValueVTs(TLI
, DL
, *EI
, ValueVTs
, MemVTs
, Offsets
,
100 StartingOffset
+ EltOffset
);
104 // Given an array type, recursively traverse the elements.
105 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
106 Type
*EltTy
= ATy
->getElementType();
107 uint64_t EltSize
= DL
.getTypeAllocSize(EltTy
).getFixedValue();
108 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
)
109 ComputeValueVTs(TLI
, DL
, EltTy
, ValueVTs
, MemVTs
, Offsets
,
110 StartingOffset
+ i
* EltSize
);
113 // Interpret void as zero return values.
116 // Base case: we can get an EVT for this LLVM IR type.
117 ValueVTs
.push_back(TLI
.getValueType(DL
, Ty
));
119 MemVTs
->push_back(TLI
.getMemValueType(DL
, Ty
));
121 Offsets
->push_back(StartingOffset
);
124 void llvm::ComputeValueVTs(const TargetLowering
&TLI
, const DataLayout
&DL
,
125 Type
*Ty
, SmallVectorImpl
<EVT
> &ValueVTs
,
126 SmallVectorImpl
<uint64_t> *Offsets
,
127 uint64_t StartingOffset
) {
128 return ComputeValueVTs(TLI
, DL
, Ty
, ValueVTs
, /*MemVTs=*/nullptr, Offsets
,
132 void llvm::computeValueLLTs(const DataLayout
&DL
, Type
&Ty
,
133 SmallVectorImpl
<LLT
> &ValueTys
,
134 SmallVectorImpl
<uint64_t> *Offsets
,
135 uint64_t StartingOffset
) {
136 // Given a struct type, recursively traverse the elements.
137 if (StructType
*STy
= dyn_cast
<StructType
>(&Ty
)) {
138 // If the Offsets aren't needed, don't query the struct layout. This allows
139 // us to support structs with scalable vectors for operations that don't
141 const StructLayout
*SL
= Offsets
? DL
.getStructLayout(STy
) : nullptr;
142 for (unsigned I
= 0, E
= STy
->getNumElements(); I
!= E
; ++I
) {
143 uint64_t EltOffset
= SL
? SL
->getElementOffset(I
) : 0;
144 computeValueLLTs(DL
, *STy
->getElementType(I
), ValueTys
, Offsets
,
145 StartingOffset
+ EltOffset
);
149 // Given an array type, recursively traverse the elements.
150 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(&Ty
)) {
151 Type
*EltTy
= ATy
->getElementType();
152 uint64_t EltSize
= DL
.getTypeAllocSize(EltTy
).getFixedValue();
153 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
)
154 computeValueLLTs(DL
, *EltTy
, ValueTys
, Offsets
,
155 StartingOffset
+ i
* EltSize
);
158 // Interpret void as zero return values.
161 // Base case: we can get an LLT for this LLVM IR type.
162 ValueTys
.push_back(getLLTForType(Ty
, DL
));
163 if (Offsets
!= nullptr)
164 Offsets
->push_back(StartingOffset
* 8);
167 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
168 GlobalValue
*llvm::ExtractTypeInfo(Value
*V
) {
169 V
= V
->stripPointerCasts();
170 GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
);
171 GlobalVariable
*Var
= dyn_cast
<GlobalVariable
>(V
);
173 if (Var
&& Var
->getName() == "llvm.eh.catch.all.value") {
174 assert(Var
->hasInitializer() &&
175 "The EH catch-all value must have an initializer");
176 Value
*Init
= Var
->getInitializer();
177 GV
= dyn_cast
<GlobalValue
>(Init
);
178 if (!GV
) V
= cast
<ConstantPointerNull
>(Init
);
181 assert((GV
|| isa
<ConstantPointerNull
>(V
)) &&
182 "TypeInfo must be a global variable or NULL");
186 /// getFCmpCondCode - Return the ISD condition code corresponding to
187 /// the given LLVM IR floating-point condition code. This includes
188 /// consideration of global floating-point math flags.
190 ISD::CondCode
llvm::getFCmpCondCode(FCmpInst::Predicate Pred
) {
192 case FCmpInst::FCMP_FALSE
: return ISD::SETFALSE
;
193 case FCmpInst::FCMP_OEQ
: return ISD::SETOEQ
;
194 case FCmpInst::FCMP_OGT
: return ISD::SETOGT
;
195 case FCmpInst::FCMP_OGE
: return ISD::SETOGE
;
196 case FCmpInst::FCMP_OLT
: return ISD::SETOLT
;
197 case FCmpInst::FCMP_OLE
: return ISD::SETOLE
;
198 case FCmpInst::FCMP_ONE
: return ISD::SETONE
;
199 case FCmpInst::FCMP_ORD
: return ISD::SETO
;
200 case FCmpInst::FCMP_UNO
: return ISD::SETUO
;
201 case FCmpInst::FCMP_UEQ
: return ISD::SETUEQ
;
202 case FCmpInst::FCMP_UGT
: return ISD::SETUGT
;
203 case FCmpInst::FCMP_UGE
: return ISD::SETUGE
;
204 case FCmpInst::FCMP_ULT
: return ISD::SETULT
;
205 case FCmpInst::FCMP_ULE
: return ISD::SETULE
;
206 case FCmpInst::FCMP_UNE
: return ISD::SETUNE
;
207 case FCmpInst::FCMP_TRUE
: return ISD::SETTRUE
;
208 default: llvm_unreachable("Invalid FCmp predicate opcode!");
212 ISD::CondCode
llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC
) {
214 case ISD::SETOEQ
: case ISD::SETUEQ
: return ISD::SETEQ
;
215 case ISD::SETONE
: case ISD::SETUNE
: return ISD::SETNE
;
216 case ISD::SETOLT
: case ISD::SETULT
: return ISD::SETLT
;
217 case ISD::SETOLE
: case ISD::SETULE
: return ISD::SETLE
;
218 case ISD::SETOGT
: case ISD::SETUGT
: return ISD::SETGT
;
219 case ISD::SETOGE
: case ISD::SETUGE
: return ISD::SETGE
;
224 ISD::CondCode
llvm::getICmpCondCode(ICmpInst::Predicate Pred
) {
226 case ICmpInst::ICMP_EQ
: return ISD::SETEQ
;
227 case ICmpInst::ICMP_NE
: return ISD::SETNE
;
228 case ICmpInst::ICMP_SLE
: return ISD::SETLE
;
229 case ICmpInst::ICMP_ULE
: return ISD::SETULE
;
230 case ICmpInst::ICMP_SGE
: return ISD::SETGE
;
231 case ICmpInst::ICMP_UGE
: return ISD::SETUGE
;
232 case ICmpInst::ICMP_SLT
: return ISD::SETLT
;
233 case ICmpInst::ICMP_ULT
: return ISD::SETULT
;
234 case ICmpInst::ICMP_SGT
: return ISD::SETGT
;
235 case ICmpInst::ICMP_UGT
: return ISD::SETUGT
;
237 llvm_unreachable("Invalid ICmp predicate opcode!");
241 ICmpInst::Predicate
llvm::getICmpCondCode(ISD::CondCode Pred
) {
244 return ICmpInst::ICMP_EQ
;
246 return ICmpInst::ICMP_NE
;
248 return ICmpInst::ICMP_SLE
;
250 return ICmpInst::ICMP_ULE
;
252 return ICmpInst::ICMP_SGE
;
254 return ICmpInst::ICMP_UGE
;
256 return ICmpInst::ICMP_SLT
;
258 return ICmpInst::ICMP_ULT
;
260 return ICmpInst::ICMP_SGT
;
262 return ICmpInst::ICMP_UGT
;
264 llvm_unreachable("Invalid ISD integer condition code!");
268 static bool isNoopBitcast(Type
*T1
, Type
*T2
,
269 const TargetLoweringBase
& TLI
) {
270 return T1
== T2
|| (T1
->isPointerTy() && T2
->isPointerTy()) ||
271 (isa
<VectorType
>(T1
) && isa
<VectorType
>(T2
) &&
272 TLI
.isTypeLegal(EVT::getEVT(T1
)) && TLI
.isTypeLegal(EVT::getEVT(T2
)));
275 /// Look through operations that will be free to find the earliest source of
278 /// @param ValLoc If V has aggregate type, we will be interested in a particular
279 /// scalar component. This records its address; the reverse of this list gives a
280 /// sequence of indices appropriate for an extractvalue to locate the important
281 /// value. This value is updated during the function and on exit will indicate
282 /// similar information for the Value returned.
284 /// @param DataBits If this function looks through truncate instructions, this
285 /// will record the smallest size attained.
286 static const Value
*getNoopInput(const Value
*V
,
287 SmallVectorImpl
<unsigned> &ValLoc
,
289 const TargetLoweringBase
&TLI
,
290 const DataLayout
&DL
) {
292 // Try to look through V1; if V1 is not an instruction, it can't be looked
294 const Instruction
*I
= dyn_cast
<Instruction
>(V
);
295 if (!I
|| I
->getNumOperands() == 0) return V
;
296 const Value
*NoopInput
= nullptr;
298 Value
*Op
= I
->getOperand(0);
299 if (isa
<BitCastInst
>(I
)) {
300 // Look through truly no-op bitcasts.
301 if (isNoopBitcast(Op
->getType(), I
->getType(), TLI
))
303 } else if (isa
<GetElementPtrInst
>(I
)) {
304 // Look through getelementptr
305 if (cast
<GetElementPtrInst
>(I
)->hasAllZeroIndices())
307 } else if (isa
<IntToPtrInst
>(I
)) {
308 // Look through inttoptr.
309 // Make sure this isn't a truncating or extending cast. We could
310 // support this eventually, but don't bother for now.
311 if (!isa
<VectorType
>(I
->getType()) &&
312 DL
.getPointerSizeInBits() ==
313 cast
<IntegerType
>(Op
->getType())->getBitWidth())
315 } else if (isa
<PtrToIntInst
>(I
)) {
316 // Look through ptrtoint.
317 // Make sure this isn't a truncating or extending cast. We could
318 // support this eventually, but don't bother for now.
319 if (!isa
<VectorType
>(I
->getType()) &&
320 DL
.getPointerSizeInBits() ==
321 cast
<IntegerType
>(I
->getType())->getBitWidth())
323 } else if (isa
<TruncInst
>(I
) &&
324 TLI
.allowTruncateForTailCall(Op
->getType(), I
->getType())) {
325 DataBits
= std::min((uint64_t)DataBits
,
326 I
->getType()->getPrimitiveSizeInBits().getFixedSize());
328 } else if (auto *CB
= dyn_cast
<CallBase
>(I
)) {
329 const Value
*ReturnedOp
= CB
->getReturnedArgOperand();
330 if (ReturnedOp
&& isNoopBitcast(ReturnedOp
->getType(), I
->getType(), TLI
))
331 NoopInput
= ReturnedOp
;
332 } else if (const InsertValueInst
*IVI
= dyn_cast
<InsertValueInst
>(V
)) {
333 // Value may come from either the aggregate or the scalar
334 ArrayRef
<unsigned> InsertLoc
= IVI
->getIndices();
335 if (ValLoc
.size() >= InsertLoc
.size() &&
336 std::equal(InsertLoc
.begin(), InsertLoc
.end(), ValLoc
.rbegin())) {
337 // The type being inserted is a nested sub-type of the aggregate; we
338 // have to remove those initial indices to get the location we're
339 // interested in for the operand.
340 ValLoc
.resize(ValLoc
.size() - InsertLoc
.size());
341 NoopInput
= IVI
->getInsertedValueOperand();
343 // The struct we're inserting into has the value we're interested in, no
344 // change of address.
347 } else if (const ExtractValueInst
*EVI
= dyn_cast
<ExtractValueInst
>(V
)) {
348 // The part we're interested in will inevitably be some sub-section of the
349 // previous aggregate. Combine the two paths to obtain the true address of
351 ArrayRef
<unsigned> ExtractLoc
= EVI
->getIndices();
352 ValLoc
.append(ExtractLoc
.rbegin(), ExtractLoc
.rend());
355 // Terminate if we couldn't find anything to look through.
363 /// Return true if this scalar return value only has bits discarded on its path
364 /// from the "tail call" to the "ret". This includes the obvious noop
365 /// instructions handled by getNoopInput above as well as free truncations (or
366 /// extensions prior to the call).
367 static bool slotOnlyDiscardsData(const Value
*RetVal
, const Value
*CallVal
,
368 SmallVectorImpl
<unsigned> &RetIndices
,
369 SmallVectorImpl
<unsigned> &CallIndices
,
370 bool AllowDifferingSizes
,
371 const TargetLoweringBase
&TLI
,
372 const DataLayout
&DL
) {
374 // Trace the sub-value needed by the return value as far back up the graph as
375 // possible, in the hope that it will intersect with the value produced by the
376 // call. In the simple case with no "returned" attribute, the hope is actually
377 // that we end up back at the tail call instruction itself.
378 unsigned BitsRequired
= UINT_MAX
;
379 RetVal
= getNoopInput(RetVal
, RetIndices
, BitsRequired
, TLI
, DL
);
381 // If this slot in the value returned is undef, it doesn't matter what the
382 // call puts there, it'll be fine.
383 if (isa
<UndefValue
>(RetVal
))
386 // Now do a similar search up through the graph to find where the value
387 // actually returned by the "tail call" comes from. In the simple case without
388 // a "returned" attribute, the search will be blocked immediately and the loop
390 unsigned BitsProvided
= UINT_MAX
;
391 CallVal
= getNoopInput(CallVal
, CallIndices
, BitsProvided
, TLI
, DL
);
393 // There's no hope if we can't actually trace them to (the same part of!) the
395 if (CallVal
!= RetVal
|| CallIndices
!= RetIndices
)
398 // However, intervening truncates may have made the call non-tail. Make sure
399 // all the bits that are needed by the "ret" have been provided by the "tail
400 // call". FIXME: with sufficiently cunning bit-tracking, we could look through
402 if (BitsProvided
< BitsRequired
||
403 (!AllowDifferingSizes
&& BitsProvided
!= BitsRequired
))
409 /// For an aggregate type, determine whether a given index is within bounds or
411 static bool indexReallyValid(Type
*T
, unsigned Idx
) {
412 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(T
))
413 return Idx
< AT
->getNumElements();
415 return Idx
< cast
<StructType
>(T
)->getNumElements();
418 /// Move the given iterators to the next leaf type in depth first traversal.
420 /// Performs a depth-first traversal of the type as specified by its arguments,
421 /// stopping at the next leaf node (which may be a legitimate scalar type or an
422 /// empty struct or array).
424 /// @param SubTypes List of the partial components making up the type from
425 /// outermost to innermost non-empty aggregate. The element currently
426 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
428 /// @param Path Set of extractvalue indices leading from the outermost type
429 /// (SubTypes[0]) to the leaf node currently represented.
431 /// @returns true if a new type was found, false otherwise. Calling this
432 /// function again on a finished iterator will repeatedly return
433 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
434 /// aggregate or a non-aggregate
435 static bool advanceToNextLeafType(SmallVectorImpl
<Type
*> &SubTypes
,
436 SmallVectorImpl
<unsigned> &Path
) {
437 // First march back up the tree until we can successfully increment one of the
438 // coordinates in Path.
439 while (!Path
.empty() && !indexReallyValid(SubTypes
.back(), Path
.back() + 1)) {
444 // If we reached the top, then the iterator is done.
448 // We know there's *some* valid leaf now, so march back down the tree picking
449 // out the left-most element at each node.
452 ExtractValueInst::getIndexedType(SubTypes
.back(), Path
.back());
453 while (DeeperType
->isAggregateType()) {
454 if (!indexReallyValid(DeeperType
, 0))
457 SubTypes
.push_back(DeeperType
);
460 DeeperType
= ExtractValueInst::getIndexedType(DeeperType
, 0);
466 /// Find the first non-empty, scalar-like type in Next and setup the iterator
469 /// Assuming Next is an aggregate of some kind, this function will traverse the
470 /// tree from left to right (i.e. depth-first) looking for the first
471 /// non-aggregate type which will play a role in function return.
473 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
474 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
475 /// i32 in that type.
476 static bool firstRealType(Type
*Next
, SmallVectorImpl
<Type
*> &SubTypes
,
477 SmallVectorImpl
<unsigned> &Path
) {
478 // First initialise the iterator components to the first "leaf" node
479 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
480 // despite nominally being an aggregate).
481 while (Type
*FirstInner
= ExtractValueInst::getIndexedType(Next
, 0)) {
482 SubTypes
.push_back(Next
);
487 // If there's no Path now, Next was originally scalar already (or empty
488 // leaf). We're done.
492 // Otherwise, use normal iteration to keep looking through the tree until we
493 // find a non-aggregate type.
494 while (ExtractValueInst::getIndexedType(SubTypes
.back(), Path
.back())
495 ->isAggregateType()) {
496 if (!advanceToNextLeafType(SubTypes
, Path
))
503 /// Set the iterator data-structures to the next non-empty, non-aggregate
505 static bool nextRealType(SmallVectorImpl
<Type
*> &SubTypes
,
506 SmallVectorImpl
<unsigned> &Path
) {
508 if (!advanceToNextLeafType(SubTypes
, Path
))
511 assert(!Path
.empty() && "found a leaf but didn't set the path?");
512 } while (ExtractValueInst::getIndexedType(SubTypes
.back(), Path
.back())
513 ->isAggregateType());
519 /// Test if the given instruction is in a position to be optimized
520 /// with a tail-call. This roughly means that it's in a block with
521 /// a return and there's nothing that needs to be scheduled
522 /// between it and the return.
524 /// This function only tests target-independent requirements.
525 bool llvm::isInTailCallPosition(const CallBase
&Call
, const TargetMachine
&TM
) {
526 const BasicBlock
*ExitBB
= Call
.getParent();
527 const Instruction
*Term
= ExitBB
->getTerminator();
528 const ReturnInst
*Ret
= dyn_cast
<ReturnInst
>(Term
);
530 // The block must end in a return statement or unreachable.
532 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
533 // an unreachable, for now. The way tailcall optimization is currently
534 // implemented means it will add an epilogue followed by a jump. That is
535 // not profitable. Also, if the callee is a special function (e.g.
536 // longjmp on x86), it can end up causing miscompilation that has not
537 // been fully understood.
538 if (!Ret
&& ((!TM
.Options
.GuaranteedTailCallOpt
&&
539 Call
.getCallingConv() != CallingConv::Tail
&&
540 Call
.getCallingConv() != CallingConv::SwiftTail
) ||
541 !isa
<UnreachableInst
>(Term
)))
544 // If I will have a chain, make sure no other instruction that will have a
545 // chain interposes between I and the return.
546 // Check for all calls including speculatable functions.
547 for (BasicBlock::const_iterator BBI
= std::prev(ExitBB
->end(), 2);; --BBI
) {
550 // Debug info intrinsics do not get in the way of tail call optimization.
551 // Pseudo probe intrinsics do not block tail call optimization either.
552 if (BBI
->isDebugOrPseudoInst())
554 // A lifetime end, assume or noalias.decl intrinsic should not stop tail
555 // call optimization.
556 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(BBI
))
557 if (II
->getIntrinsicID() == Intrinsic::lifetime_end
||
558 II
->getIntrinsicID() == Intrinsic::assume
||
559 II
->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl
)
561 if (BBI
->mayHaveSideEffects() || BBI
->mayReadFromMemory() ||
562 !isSafeToSpeculativelyExecute(&*BBI
))
566 const Function
*F
= ExitBB
->getParent();
567 return returnTypeIsEligibleForTailCall(
568 F
, &Call
, Ret
, *TM
.getSubtargetImpl(*F
)->getTargetLowering());
571 bool llvm::attributesPermitTailCall(const Function
*F
, const Instruction
*I
,
572 const ReturnInst
*Ret
,
573 const TargetLoweringBase
&TLI
,
574 bool *AllowDifferingSizes
) {
575 // ADS may be null, so don't write to it directly.
577 bool &ADS
= AllowDifferingSizes
? *AllowDifferingSizes
: DummyADS
;
580 AttrBuilder
CallerAttrs(F
->getContext(), F
->getAttributes().getRetAttrs());
581 AttrBuilder
CalleeAttrs(F
->getContext(),
582 cast
<CallInst
>(I
)->getAttributes().getRetAttrs());
584 // Following attributes are completely benign as far as calling convention
585 // goes, they shouldn't affect whether the call is a tail call.
586 for (const auto &Attr
: {Attribute::Alignment
, Attribute::Dereferenceable
,
587 Attribute::DereferenceableOrNull
, Attribute::NoAlias
,
588 Attribute::NonNull
}) {
589 CallerAttrs
.removeAttribute(Attr
);
590 CalleeAttrs
.removeAttribute(Attr
);
593 if (CallerAttrs
.contains(Attribute::ZExt
)) {
594 if (!CalleeAttrs
.contains(Attribute::ZExt
))
598 CallerAttrs
.removeAttribute(Attribute::ZExt
);
599 CalleeAttrs
.removeAttribute(Attribute::ZExt
);
600 } else if (CallerAttrs
.contains(Attribute::SExt
)) {
601 if (!CalleeAttrs
.contains(Attribute::SExt
))
605 CallerAttrs
.removeAttribute(Attribute::SExt
);
606 CalleeAttrs
.removeAttribute(Attribute::SExt
);
609 // Drop sext and zext return attributes if the result is not used.
610 // This enables tail calls for code like:
612 // define void @caller() {
614 // %unused_result = tail call zeroext i1 @callee()
615 // br label %retlabel
619 if (I
->use_empty()) {
620 CalleeAttrs
.removeAttribute(Attribute::SExt
);
621 CalleeAttrs
.removeAttribute(Attribute::ZExt
);
624 // If they're still different, there's some facet we don't understand
625 // (currently only "inreg", but in future who knows). It may be OK but the
626 // only safe option is to reject the tail call.
627 return CallerAttrs
== CalleeAttrs
;
630 /// Check whether B is a bitcast of a pointer type to another pointer type,
631 /// which is equal to A.
632 static bool isPointerBitcastEqualTo(const Value
*A
, const Value
*B
) {
633 assert(A
&& B
&& "Expected non-null inputs!");
635 auto *BitCastIn
= dyn_cast
<BitCastInst
>(B
);
640 if (!A
->getType()->isPointerTy() || !B
->getType()->isPointerTy())
643 return A
== BitCastIn
->getOperand(0);
646 bool llvm::returnTypeIsEligibleForTailCall(const Function
*F
,
647 const Instruction
*I
,
648 const ReturnInst
*Ret
,
649 const TargetLoweringBase
&TLI
) {
650 // If the block ends with a void return or unreachable, it doesn't matter
651 // what the call's return type is.
652 if (!Ret
|| Ret
->getNumOperands() == 0) return true;
654 // If the return value is undef, it doesn't matter what the call's
656 if (isa
<UndefValue
>(Ret
->getOperand(0))) return true;
658 // Make sure the attributes attached to each return are compatible.
659 bool AllowDifferingSizes
;
660 if (!attributesPermitTailCall(F
, I
, Ret
, TLI
, &AllowDifferingSizes
))
663 const Value
*RetVal
= Ret
->getOperand(0), *CallVal
= I
;
664 // Intrinsic like llvm.memcpy has no return value, but the expanded
665 // libcall may or may not have return value. On most platforms, it
666 // will be expanded as memcpy in libc, which returns the first
667 // argument. On other platforms like arm-none-eabi, memcpy may be
668 // expanded as library call without return value, like __aeabi_memcpy.
669 const CallInst
*Call
= cast
<CallInst
>(I
);
670 if (Function
*F
= Call
->getCalledFunction()) {
671 Intrinsic::ID IID
= F
->getIntrinsicID();
672 if (((IID
== Intrinsic::memcpy
&&
673 TLI
.getLibcallName(RTLIB::MEMCPY
) == StringRef("memcpy")) ||
674 (IID
== Intrinsic::memmove
&&
675 TLI
.getLibcallName(RTLIB::MEMMOVE
) == StringRef("memmove")) ||
676 (IID
== Intrinsic::memset
&&
677 TLI
.getLibcallName(RTLIB::MEMSET
) == StringRef("memset"))) &&
678 (RetVal
== Call
->getArgOperand(0) ||
679 isPointerBitcastEqualTo(RetVal
, Call
->getArgOperand(0))))
683 SmallVector
<unsigned, 4> RetPath
, CallPath
;
684 SmallVector
<Type
*, 4> RetSubTypes
, CallSubTypes
;
686 bool RetEmpty
= !firstRealType(RetVal
->getType(), RetSubTypes
, RetPath
);
687 bool CallEmpty
= !firstRealType(CallVal
->getType(), CallSubTypes
, CallPath
);
689 // Nothing's actually returned, it doesn't matter what the callee put there
690 // it's a valid tail call.
694 // Iterate pairwise through each of the value types making up the tail call
695 // and the corresponding return. For each one we want to know whether it's
696 // essentially going directly from the tail call to the ret, via operations
697 // that end up not generating any code.
699 // We allow a certain amount of covariance here. For example it's permitted
700 // for the tail call to define more bits than the ret actually cares about
701 // (e.g. via a truncate).
704 // We've exhausted the values produced by the tail call instruction, the
705 // rest are essentially undef. The type doesn't really matter, but we need
708 ExtractValueInst::getIndexedType(RetSubTypes
.back(), RetPath
.back());
709 CallVal
= UndefValue::get(SlotType
);
712 // The manipulations performed when we're looking through an insertvalue or
713 // an extractvalue would happen at the front of the RetPath list, so since
714 // we have to copy it anyway it's more efficient to create a reversed copy.
715 SmallVector
<unsigned, 4> TmpRetPath(llvm::reverse(RetPath
));
716 SmallVector
<unsigned, 4> TmpCallPath(llvm::reverse(CallPath
));
718 // Finally, we can check whether the value produced by the tail call at this
719 // index is compatible with the value we return.
720 if (!slotOnlyDiscardsData(RetVal
, CallVal
, TmpRetPath
, TmpCallPath
,
721 AllowDifferingSizes
, TLI
,
722 F
->getParent()->getDataLayout()))
725 CallEmpty
= !nextRealType(CallSubTypes
, CallPath
);
726 } while(nextRealType(RetSubTypes
, RetPath
));
731 static void collectEHScopeMembers(
732 DenseMap
<const MachineBasicBlock
*, int> &EHScopeMembership
, int EHScope
,
733 const MachineBasicBlock
*MBB
) {
734 SmallVector
<const MachineBasicBlock
*, 16> Worklist
= {MBB
};
735 while (!Worklist
.empty()) {
736 const MachineBasicBlock
*Visiting
= Worklist
.pop_back_val();
737 // Don't follow blocks which start new scopes.
738 if (Visiting
->isEHPad() && Visiting
!= MBB
)
741 // Add this MBB to our scope.
742 auto P
= EHScopeMembership
.insert(std::make_pair(Visiting
, EHScope
));
744 // Don't revisit blocks.
746 assert(P
.first
->second
== EHScope
&& "MBB is part of two scopes!");
750 // Returns are boundaries where scope transfer can occur, don't follow
752 if (Visiting
->isEHScopeReturnBlock())
755 append_range(Worklist
, Visiting
->successors());
759 DenseMap
<const MachineBasicBlock
*, int>
760 llvm::getEHScopeMembership(const MachineFunction
&MF
) {
761 DenseMap
<const MachineBasicBlock
*, int> EHScopeMembership
;
763 // We don't have anything to do if there aren't any EH pads.
764 if (!MF
.hasEHScopes())
765 return EHScopeMembership
;
767 int EntryBBNumber
= MF
.front().getNumber();
768 bool IsSEH
= isAsynchronousEHPersonality(
769 classifyEHPersonality(MF
.getFunction().getPersonalityFn()));
771 const TargetInstrInfo
*TII
= MF
.getSubtarget().getInstrInfo();
772 SmallVector
<const MachineBasicBlock
*, 16> EHScopeBlocks
;
773 SmallVector
<const MachineBasicBlock
*, 16> UnreachableBlocks
;
774 SmallVector
<const MachineBasicBlock
*, 16> SEHCatchPads
;
775 SmallVector
<std::pair
<const MachineBasicBlock
*, int>, 16> CatchRetSuccessors
;
776 for (const MachineBasicBlock
&MBB
: MF
) {
777 if (MBB
.isEHScopeEntry()) {
778 EHScopeBlocks
.push_back(&MBB
);
779 } else if (IsSEH
&& MBB
.isEHPad()) {
780 SEHCatchPads
.push_back(&MBB
);
781 } else if (MBB
.pred_empty()) {
782 UnreachableBlocks
.push_back(&MBB
);
785 MachineBasicBlock::const_iterator MBBI
= MBB
.getFirstTerminator();
787 // CatchPads are not scopes for SEH so do not consider CatchRet to
788 // transfer control to another scope.
789 if (MBBI
== MBB
.end() || MBBI
->getOpcode() != TII
->getCatchReturnOpcode())
792 // FIXME: SEH CatchPads are not necessarily in the parent function:
793 // they could be inside a finally block.
794 const MachineBasicBlock
*Successor
= MBBI
->getOperand(0).getMBB();
795 const MachineBasicBlock
*SuccessorColor
= MBBI
->getOperand(1).getMBB();
796 CatchRetSuccessors
.push_back(
797 {Successor
, IsSEH
? EntryBBNumber
: SuccessorColor
->getNumber()});
800 // We don't have anything to do if there aren't any EH pads.
801 if (EHScopeBlocks
.empty())
802 return EHScopeMembership
;
804 // Identify all the basic blocks reachable from the function entry.
805 collectEHScopeMembers(EHScopeMembership
, EntryBBNumber
, &MF
.front());
806 // All blocks not part of a scope are in the parent function.
807 for (const MachineBasicBlock
*MBB
: UnreachableBlocks
)
808 collectEHScopeMembers(EHScopeMembership
, EntryBBNumber
, MBB
);
809 // Next, identify all the blocks inside the scopes.
810 for (const MachineBasicBlock
*MBB
: EHScopeBlocks
)
811 collectEHScopeMembers(EHScopeMembership
, MBB
->getNumber(), MBB
);
812 // SEH CatchPads aren't really scopes, handle them separately.
813 for (const MachineBasicBlock
*MBB
: SEHCatchPads
)
814 collectEHScopeMembers(EHScopeMembership
, EntryBBNumber
, MBB
);
815 // Finally, identify all the targets of a catchret.
816 for (std::pair
<const MachineBasicBlock
*, int> CatchRetPair
:
818 collectEHScopeMembers(EHScopeMembership
, CatchRetPair
.second
,
820 return EHScopeMembership
;