1 //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Common functionality for different debug information format backends.
10 // LLVM currently supports DWARF and CodeView.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/DebugHandlerBase.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/Twine.h"
17 #include "llvm/CodeGen/AsmPrinter.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/MachineModuleInfo.h"
21 #include "llvm/CodeGen/TargetSubtargetInfo.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/MC/MCStreamer.h"
24 #include "llvm/Support/CommandLine.h"
28 #define DEBUG_TYPE "dwarfdebug"
30 /// If true, we drop variable location ranges which exist entirely outside the
31 /// variable's lexical scope instruction ranges.
32 static cl::opt
<bool> TrimVarLocs("trim-var-locs", cl::Hidden
, cl::init(true));
34 Optional
<DbgVariableLocation
>
35 DbgVariableLocation::extractFromMachineInstruction(
36 const MachineInstr
&Instruction
) {
37 DbgVariableLocation Location
;
38 // Variables calculated from multiple locations can't be represented here.
39 if (Instruction
.getNumDebugOperands() != 1)
41 if (!Instruction
.getDebugOperand(0).isReg())
43 Location
.Register
= Instruction
.getDebugOperand(0).getReg();
44 Location
.FragmentInfo
.reset();
45 // We only handle expressions generated by DIExpression::appendOffset,
46 // which doesn't require a full stack machine.
48 const DIExpression
*DIExpr
= Instruction
.getDebugExpression();
49 auto Op
= DIExpr
->expr_op_begin();
50 // We can handle a DBG_VALUE_LIST iff it has exactly one location operand that
51 // appears exactly once at the start of the expression.
52 if (Instruction
.isDebugValueList()) {
53 if (Instruction
.getNumDebugOperands() == 1 &&
54 Op
->getOp() == dwarf::DW_OP_LLVM_arg
)
59 while (Op
!= DIExpr
->expr_op_end()) {
60 switch (Op
->getOp()) {
61 case dwarf::DW_OP_constu
: {
62 int Value
= Op
->getArg(0);
64 if (Op
!= DIExpr
->expr_op_end()) {
65 switch (Op
->getOp()) {
66 case dwarf::DW_OP_minus
:
69 case dwarf::DW_OP_plus
:
77 case dwarf::DW_OP_plus_uconst
:
78 Offset
+= Op
->getArg(0);
80 case dwarf::DW_OP_LLVM_fragment
:
81 Location
.FragmentInfo
= {Op
->getArg(1), Op
->getArg(0)};
83 case dwarf::DW_OP_deref
:
84 Location
.LoadChain
.push_back(Offset
);
93 // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE
95 // FIXME: Replace these with DIExpression.
96 if (Instruction
.isIndirectDebugValue())
97 Location
.LoadChain
.push_back(Offset
);
102 DebugHandlerBase::DebugHandlerBase(AsmPrinter
*A
) : Asm(A
), MMI(Asm
->MMI
) {}
104 void DebugHandlerBase::beginModule(Module
*M
) {
105 if (M
->debug_compile_units().empty())
109 // Each LexicalScope has first instruction and last instruction to mark
110 // beginning and end of a scope respectively. Create an inverse map that list
111 // scopes starts (and ends) with an instruction. One instruction may start (or
112 // end) multiple scopes. Ignore scopes that are not reachable.
113 void DebugHandlerBase::identifyScopeMarkers() {
114 SmallVector
<LexicalScope
*, 4> WorkList
;
115 WorkList
.push_back(LScopes
.getCurrentFunctionScope());
116 while (!WorkList
.empty()) {
117 LexicalScope
*S
= WorkList
.pop_back_val();
119 const SmallVectorImpl
<LexicalScope
*> &Children
= S
->getChildren();
120 if (!Children
.empty())
121 WorkList
.append(Children
.begin(), Children
.end());
123 if (S
->isAbstractScope())
126 for (const InsnRange
&R
: S
->getRanges()) {
127 assert(R
.first
&& "InsnRange does not have first instruction!");
128 assert(R
.second
&& "InsnRange does not have second instruction!");
129 requestLabelBeforeInsn(R
.first
);
130 requestLabelAfterInsn(R
.second
);
135 // Return Label preceding the instruction.
136 MCSymbol
*DebugHandlerBase::getLabelBeforeInsn(const MachineInstr
*MI
) {
137 MCSymbol
*Label
= LabelsBeforeInsn
.lookup(MI
);
138 assert(Label
&& "Didn't insert label before instruction");
142 // Return Label immediately following the instruction.
143 MCSymbol
*DebugHandlerBase::getLabelAfterInsn(const MachineInstr
*MI
) {
144 return LabelsAfterInsn
.lookup(MI
);
147 /// If this type is derived from a base type then return base type size.
148 uint64_t DebugHandlerBase::getBaseTypeSize(const DIType
*Ty
) {
150 const DIDerivedType
*DDTy
= dyn_cast
<DIDerivedType
>(Ty
);
152 return Ty
->getSizeInBits();
154 unsigned Tag
= DDTy
->getTag();
156 if (Tag
!= dwarf::DW_TAG_member
&& Tag
!= dwarf::DW_TAG_typedef
&&
157 Tag
!= dwarf::DW_TAG_const_type
&& Tag
!= dwarf::DW_TAG_volatile_type
&&
158 Tag
!= dwarf::DW_TAG_restrict_type
&& Tag
!= dwarf::DW_TAG_atomic_type
&&
159 Tag
!= dwarf::DW_TAG_immutable_type
)
160 return DDTy
->getSizeInBits();
162 DIType
*BaseType
= DDTy
->getBaseType();
167 // If this is a derived type, go ahead and get the base type, unless it's a
168 // reference then it's just the size of the field. Pointer types have no need
169 // of this since they're a different type of qualification on the type.
170 if (BaseType
->getTag() == dwarf::DW_TAG_reference_type
||
171 BaseType
->getTag() == dwarf::DW_TAG_rvalue_reference_type
)
172 return Ty
->getSizeInBits();
174 return getBaseTypeSize(BaseType
);
177 bool DebugHandlerBase::isUnsignedDIType(const DIType
*Ty
) {
178 if (isa
<DIStringType
>(Ty
)) {
179 // Some transformations (e.g. instcombine) may decide to turn a Fortran
180 // character object into an integer, and later ones (e.g. SROA) may
181 // further inject a constant integer in a llvm.dbg.value call to track
182 // the object's value. Here we trust the transformations are doing the
183 // right thing, and treat the constant as unsigned to preserve that value
184 // (i.e. avoid sign extension).
188 if (auto *CTy
= dyn_cast
<DICompositeType
>(Ty
)) {
189 if (CTy
->getTag() == dwarf::DW_TAG_enumeration_type
) {
190 if (!(Ty
= CTy
->getBaseType()))
191 // FIXME: Enums without a fixed underlying type have unknown signedness
192 // here, leading to incorrectly emitted constants.
195 // (Pieces of) aggregate types that get hacked apart by SROA may be
196 // represented by a constant. Encode them as unsigned bytes.
200 if (auto *DTy
= dyn_cast
<DIDerivedType
>(Ty
)) {
201 dwarf::Tag T
= (dwarf::Tag
)Ty
->getTag();
202 // Encode pointer constants as unsigned bytes. This is used at least for
203 // null pointer constant emission.
204 // FIXME: reference and rvalue_reference /probably/ shouldn't be allowed
205 // here, but accept them for now due to a bug in SROA producing bogus
207 if (T
== dwarf::DW_TAG_pointer_type
||
208 T
== dwarf::DW_TAG_ptr_to_member_type
||
209 T
== dwarf::DW_TAG_reference_type
||
210 T
== dwarf::DW_TAG_rvalue_reference_type
)
212 assert(T
== dwarf::DW_TAG_typedef
|| T
== dwarf::DW_TAG_const_type
||
213 T
== dwarf::DW_TAG_volatile_type
||
214 T
== dwarf::DW_TAG_restrict_type
|| T
== dwarf::DW_TAG_atomic_type
||
215 T
== dwarf::DW_TAG_immutable_type
);
216 assert(DTy
->getBaseType() && "Expected valid base type");
217 return isUnsignedDIType(DTy
->getBaseType());
220 auto *BTy
= cast
<DIBasicType
>(Ty
);
221 unsigned Encoding
= BTy
->getEncoding();
222 assert((Encoding
== dwarf::DW_ATE_unsigned
||
223 Encoding
== dwarf::DW_ATE_unsigned_char
||
224 Encoding
== dwarf::DW_ATE_signed
||
225 Encoding
== dwarf::DW_ATE_signed_char
||
226 Encoding
== dwarf::DW_ATE_float
|| Encoding
== dwarf::DW_ATE_UTF
||
227 Encoding
== dwarf::DW_ATE_boolean
||
228 (Ty
->getTag() == dwarf::DW_TAG_unspecified_type
&&
229 Ty
->getName() == "decltype(nullptr)")) &&
230 "Unsupported encoding");
231 return Encoding
== dwarf::DW_ATE_unsigned
||
232 Encoding
== dwarf::DW_ATE_unsigned_char
||
233 Encoding
== dwarf::DW_ATE_UTF
|| Encoding
== dwarf::DW_ATE_boolean
||
234 Ty
->getTag() == dwarf::DW_TAG_unspecified_type
;
237 static bool hasDebugInfo(const MachineModuleInfo
*MMI
,
238 const MachineFunction
*MF
) {
239 if (!MMI
->hasDebugInfo())
241 auto *SP
= MF
->getFunction().getSubprogram();
244 assert(SP
->getUnit());
245 auto EK
= SP
->getUnit()->getEmissionKind();
246 if (EK
== DICompileUnit::NoDebug
)
251 void DebugHandlerBase::beginFunction(const MachineFunction
*MF
) {
252 PrevInstBB
= nullptr;
254 if (!Asm
|| !hasDebugInfo(MMI
, MF
)) {
255 skippedNonDebugFunction();
259 // Grab the lexical scopes for the function, if we don't have any of those
260 // then we're not going to be able to do anything.
261 LScopes
.initialize(*MF
);
262 if (LScopes
.empty()) {
263 beginFunctionImpl(MF
);
267 // Make sure that each lexical scope will have a begin/end label.
268 identifyScopeMarkers();
270 // Calculate history for local variables.
271 assert(DbgValues
.empty() && "DbgValues map wasn't cleaned!");
272 assert(DbgLabels
.empty() && "DbgLabels map wasn't cleaned!");
273 calculateDbgEntityHistory(MF
, Asm
->MF
->getSubtarget().getRegisterInfo(),
274 DbgValues
, DbgLabels
);
275 InstOrdering
.initialize(*MF
);
277 DbgValues
.trimLocationRanges(*MF
, LScopes
, InstOrdering
);
278 LLVM_DEBUG(DbgValues
.dump());
280 // Request labels for the full history.
281 for (const auto &I
: DbgValues
) {
282 const auto &Entries
= I
.second
;
286 auto IsDescribedByReg
= [](const MachineInstr
*MI
) {
287 return any_of(MI
->debug_operands(),
288 [](auto &MO
) { return MO
.isReg() && MO
.getReg(); });
291 // The first mention of a function argument gets the CurrentFnBegin label,
292 // so arguments are visible when breaking at function entry.
294 // We do not change the label for values that are described by registers,
295 // as that could place them above their defining instructions. We should
296 // ideally not change the labels for constant debug values either, since
297 // doing that violates the ranges that are calculated in the history map.
298 // However, we currently do not emit debug values for constant arguments
299 // directly at the start of the function, so this code is still useful.
300 const DILocalVariable
*DIVar
=
301 Entries
.front().getInstr()->getDebugVariable();
302 if (DIVar
->isParameter() &&
303 getDISubprogram(DIVar
->getScope())->describes(&MF
->getFunction())) {
304 if (!IsDescribedByReg(Entries
.front().getInstr()))
305 LabelsBeforeInsn
[Entries
.front().getInstr()] = Asm
->getFunctionBegin();
306 if (Entries
.front().getInstr()->getDebugExpression()->isFragment()) {
307 // Mark all non-overlapping initial fragments.
308 for (auto I
= Entries
.begin(); I
!= Entries
.end(); ++I
) {
309 if (!I
->isDbgValue())
311 const DIExpression
*Fragment
= I
->getInstr()->getDebugExpression();
312 if (std::any_of(Entries
.begin(), I
,
313 [&](DbgValueHistoryMap::Entry Pred
) {
314 return Pred
.isDbgValue() &&
315 Fragment
->fragmentsOverlap(
316 Pred
.getInstr()->getDebugExpression());
319 // The code that generates location lists for DWARF assumes that the
320 // entries' start labels are monotonically increasing, and since we
321 // don't change the label for fragments that are described by
322 // registers, we must bail out when encountering such a fragment.
323 if (IsDescribedByReg(I
->getInstr()))
325 LabelsBeforeInsn
[I
->getInstr()] = Asm
->getFunctionBegin();
330 for (const auto &Entry
: Entries
) {
331 if (Entry
.isDbgValue())
332 requestLabelBeforeInsn(Entry
.getInstr());
334 requestLabelAfterInsn(Entry
.getInstr());
338 // Ensure there is a symbol before DBG_LABEL.
339 for (const auto &I
: DbgLabels
) {
340 const MachineInstr
*MI
= I
.second
;
341 requestLabelBeforeInsn(MI
);
344 PrevInstLoc
= DebugLoc();
345 PrevLabel
= Asm
->getFunctionBegin();
346 beginFunctionImpl(MF
);
349 void DebugHandlerBase::beginInstruction(const MachineInstr
*MI
) {
350 if (!Asm
|| !MMI
->hasDebugInfo())
353 assert(CurMI
== nullptr);
356 // Insert labels where requested.
357 DenseMap
<const MachineInstr
*, MCSymbol
*>::iterator I
=
358 LabelsBeforeInsn
.find(MI
);
361 if (I
== LabelsBeforeInsn
.end())
364 // Label already assigned.
369 PrevLabel
= MMI
->getContext().createTempSymbol();
370 Asm
->OutStreamer
->emitLabel(PrevLabel
);
372 I
->second
= PrevLabel
;
375 void DebugHandlerBase::endInstruction() {
376 if (!Asm
|| !MMI
->hasDebugInfo())
379 assert(CurMI
!= nullptr);
380 // Don't create a new label after DBG_VALUE and other instructions that don't
382 if (!CurMI
->isMetaInstruction()) {
384 PrevInstBB
= CurMI
->getParent();
387 DenseMap
<const MachineInstr
*, MCSymbol
*>::iterator I
=
388 LabelsAfterInsn
.find(CurMI
);
390 // No label needed or label already assigned.
391 if (I
== LabelsAfterInsn
.end() || I
->second
) {
396 // We need a label after this instruction. With basic block sections, just
397 // use the end symbol of the section if this is the last instruction of the
398 // section. This reduces the need for an additional label and also helps
400 if (CurMI
->getParent()->isEndSection() && CurMI
->getNextNode() == nullptr) {
401 PrevLabel
= CurMI
->getParent()->getEndSymbol();
402 } else if (!PrevLabel
) {
403 PrevLabel
= MMI
->getContext().createTempSymbol();
404 Asm
->OutStreamer
->emitLabel(PrevLabel
);
406 I
->second
= PrevLabel
;
410 void DebugHandlerBase::endFunction(const MachineFunction
*MF
) {
411 if (Asm
&& hasDebugInfo(MMI
, MF
))
415 LabelsBeforeInsn
.clear();
416 LabelsAfterInsn
.clear();
417 InstOrdering
.clear();
420 void DebugHandlerBase::beginBasicBlock(const MachineBasicBlock
&MBB
) {
421 if (!MBB
.isBeginSection())
424 PrevLabel
= MBB
.getSymbol();
427 void DebugHandlerBase::endBasicBlock(const MachineBasicBlock
&MBB
) {
428 if (!MBB
.isEndSection())