[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / CodeGen / AsmPrinter / EHStreamer.cpp
blob39f40b172c1b526a043a445a8b63a20e489d57af
1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing exception info into assembly files.
11 //===----------------------------------------------------------------------===//
13 #include "EHStreamer.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/BinaryFormat/Dwarf.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineOperand.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCStreamer.h"
27 #include "llvm/MC/MCSymbol.h"
28 #include "llvm/MC/MCTargetOptions.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/LEB128.h"
31 #include "llvm/Target/TargetLoweringObjectFile.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstdint>
35 #include <vector>
37 using namespace llvm;
39 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
41 EHStreamer::~EHStreamer() = default;
43 /// How many leading type ids two landing pads have in common.
44 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
45 const LandingPadInfo *R) {
46 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
47 return std::mismatch(LIds.begin(), LIds.end(), RIds.begin(), RIds.end())
48 .first -
49 LIds.begin();
52 /// Compute the actions table and gather the first action index for each landing
53 /// pad site.
54 void EHStreamer::computeActionsTable(
55 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
56 SmallVectorImpl<ActionEntry> &Actions,
57 SmallVectorImpl<unsigned> &FirstActions) {
58 // The action table follows the call-site table in the LSDA. The individual
59 // records are of two types:
61 // * Catch clause
62 // * Exception specification
64 // The two record kinds have the same format, with only small differences.
65 // They are distinguished by the "switch value" field: Catch clauses
66 // (TypeInfos) have strictly positive switch values, and exception
67 // specifications (FilterIds) have strictly negative switch values. Value 0
68 // indicates a catch-all clause.
70 // Negative type IDs index into FilterIds. Positive type IDs index into
71 // TypeInfos. The value written for a positive type ID is just the type ID
72 // itself. For a negative type ID, however, the value written is the
73 // (negative) byte offset of the corresponding FilterIds entry. The byte
74 // offset is usually equal to the type ID (because the FilterIds entries are
75 // written using a variable width encoding, which outputs one byte per entry
76 // as long as the value written is not too large) but can differ. This kind
77 // of complication does not occur for positive type IDs because type infos are
78 // output using a fixed width encoding. FilterOffsets[i] holds the byte
79 // offset corresponding to FilterIds[i].
81 const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
82 SmallVector<int, 16> FilterOffsets;
83 FilterOffsets.reserve(FilterIds.size());
84 int Offset = -1;
86 for (unsigned FilterId : FilterIds) {
87 FilterOffsets.push_back(Offset);
88 Offset -= getULEB128Size(FilterId);
91 FirstActions.reserve(LandingPads.size());
93 int FirstAction = 0;
94 unsigned SizeActions = 0; // Total size of all action entries for a function
95 const LandingPadInfo *PrevLPI = nullptr;
97 for (const LandingPadInfo *LPI : LandingPads) {
98 const std::vector<int> &TypeIds = LPI->TypeIds;
99 unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
100 unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad
102 if (NumShared < TypeIds.size()) {
103 // Size of one action entry (typeid + next action)
104 unsigned SizeActionEntry = 0;
105 unsigned PrevAction = (unsigned)-1;
107 if (NumShared) {
108 unsigned SizePrevIds = PrevLPI->TypeIds.size();
109 assert(Actions.size());
110 PrevAction = Actions.size() - 1;
111 SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
112 getSLEB128Size(Actions[PrevAction].ValueForTypeID);
114 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
115 assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
116 SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
117 SizeActionEntry += -Actions[PrevAction].NextAction;
118 PrevAction = Actions[PrevAction].Previous;
122 // Compute the actions.
123 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
124 int TypeID = TypeIds[J];
125 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
126 int ValueForTypeID =
127 isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
128 unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
130 int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
131 SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
132 SizeSiteActions += SizeActionEntry;
134 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
135 Actions.push_back(Action);
136 PrevAction = Actions.size() - 1;
139 // Record the first action of the landing pad site.
140 FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
141 } // else identical - re-use previous FirstAction
143 // Information used when creating the call-site table. The action record
144 // field of the call site record is the offset of the first associated
145 // action record, relative to the start of the actions table. This value is
146 // biased by 1 (1 indicating the start of the actions table), and 0
147 // indicates that there are no actions.
148 FirstActions.push_back(FirstAction);
150 // Compute this sites contribution to size.
151 SizeActions += SizeSiteActions;
153 PrevLPI = LPI;
157 /// Return `true' if this is a call to a function marked `nounwind'. Return
158 /// `false' otherwise.
159 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
160 assert(MI->isCall() && "This should be a call instruction!");
162 bool MarkedNoUnwind = false;
163 bool SawFunc = false;
165 for (const MachineOperand &MO : MI->operands()) {
166 if (!MO.isGlobal()) continue;
168 const Function *F = dyn_cast<Function>(MO.getGlobal());
169 if (!F) continue;
171 if (SawFunc) {
172 // Be conservative. If we have more than one function operand for this
173 // call, then we can't make the assumption that it's the callee and
174 // not a parameter to the call.
176 // FIXME: Determine if there's a way to say that `F' is the callee or
177 // parameter.
178 MarkedNoUnwind = false;
179 break;
182 MarkedNoUnwind = F->doesNotThrow();
183 SawFunc = true;
186 return MarkedNoUnwind;
189 void EHStreamer::computePadMap(
190 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
191 RangeMapType &PadMap) {
192 // Invokes and nounwind calls have entries in PadMap (due to being bracketed
193 // by try-range labels when lowered). Ordinary calls do not, so appropriate
194 // try-ranges for them need be deduced so we can put them in the LSDA.
195 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
196 const LandingPadInfo *LandingPad = LandingPads[i];
197 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
198 MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
199 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
200 PadRange P = { i, j };
201 PadMap[BeginLabel] = P;
206 /// Compute the call-site table. The entry for an invoke has a try-range
207 /// containing the call, a non-zero landing pad, and an appropriate action. The
208 /// entry for an ordinary call has a try-range containing the call and zero for
209 /// the landing pad and the action. Calls marked 'nounwind' have no entry and
210 /// must not be contained in the try-range of any entry - they form gaps in the
211 /// table. Entries must be ordered by try-range address.
213 /// Call-sites are split into one or more call-site ranges associated with
214 /// different sections of the function.
216 /// - Without -basic-block-sections, all call-sites are grouped into one
217 /// call-site-range corresponding to the function section.
219 /// - With -basic-block-sections, one call-site range is created for each
220 /// section, with its FragmentBeginLabel and FragmentEndLabel respectively
221 // set to the beginning and ending of the corresponding section and its
222 // ExceptionLabel set to the exception symbol dedicated for this section.
223 // Later, one LSDA header will be emitted for each call-site range with its
224 // call-sites following. The action table and type info table will be
225 // shared across all ranges.
226 void EHStreamer::computeCallSiteTable(
227 SmallVectorImpl<CallSiteEntry> &CallSites,
228 SmallVectorImpl<CallSiteRange> &CallSiteRanges,
229 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
230 const SmallVectorImpl<unsigned> &FirstActions) {
231 RangeMapType PadMap;
232 computePadMap(LandingPads, PadMap);
234 // The end label of the previous invoke or nounwind try-range.
235 MCSymbol *LastLabel = Asm->getFunctionBegin();
237 // Whether there is a potentially throwing instruction (currently this means
238 // an ordinary call) between the end of the previous try-range and now.
239 bool SawPotentiallyThrowing = false;
241 // Whether the last CallSite entry was for an invoke.
242 bool PreviousIsInvoke = false;
244 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
246 // Visit all instructions in order of address.
247 for (const auto &MBB : *Asm->MF) {
248 if (&MBB == &Asm->MF->front() || MBB.isBeginSection()) {
249 // We start a call-site range upon function entry and at the beginning of
250 // every basic block section.
251 CallSiteRanges.push_back(
252 {Asm->MBBSectionRanges[MBB.getSectionIDNum()].BeginLabel,
253 Asm->MBBSectionRanges[MBB.getSectionIDNum()].EndLabel,
254 Asm->getMBBExceptionSym(MBB), CallSites.size()});
255 PreviousIsInvoke = false;
256 SawPotentiallyThrowing = false;
257 LastLabel = nullptr;
260 if (MBB.isEHPad())
261 CallSiteRanges.back().IsLPRange = true;
263 for (const auto &MI : MBB) {
264 if (!MI.isEHLabel()) {
265 if (MI.isCall())
266 SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
267 continue;
270 // End of the previous try-range?
271 MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
272 if (BeginLabel == LastLabel)
273 SawPotentiallyThrowing = false;
275 // Beginning of a new try-range?
276 RangeMapType::const_iterator L = PadMap.find(BeginLabel);
277 if (L == PadMap.end())
278 // Nope, it was just some random label.
279 continue;
281 const PadRange &P = L->second;
282 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
283 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
284 "Inconsistent landing pad map!");
286 // For Dwarf and AIX exception handling (SjLj handling doesn't use this).
287 // If some instruction between the previous try-range and this one may
288 // throw, create a call-site entry with no landing pad for the region
289 // between the try-ranges.
290 if (SawPotentiallyThrowing &&
291 (Asm->MAI->usesCFIForEH() ||
292 Asm->MAI->getExceptionHandlingType() == ExceptionHandling::AIX)) {
293 CallSites.push_back({LastLabel, BeginLabel, nullptr, 0});
294 PreviousIsInvoke = false;
297 LastLabel = LandingPad->EndLabels[P.RangeIndex];
298 assert(BeginLabel && LastLabel && "Invalid landing pad!");
300 if (!LandingPad->LandingPadLabel) {
301 // Create a gap.
302 PreviousIsInvoke = false;
303 } else {
304 // This try-range is for an invoke.
305 CallSiteEntry Site = {
306 BeginLabel,
307 LastLabel,
308 LandingPad,
309 FirstActions[P.PadIndex]
312 // Try to merge with the previous call-site. SJLJ doesn't do this
313 if (PreviousIsInvoke && !IsSJLJ) {
314 CallSiteEntry &Prev = CallSites.back();
315 if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
316 // Extend the range of the previous entry.
317 Prev.EndLabel = Site.EndLabel;
318 continue;
322 // Otherwise, create a new call-site.
323 if (!IsSJLJ)
324 CallSites.push_back(Site);
325 else {
326 // SjLj EH must maintain the call sites in the order assigned
327 // to them by the SjLjPrepare pass.
328 unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
329 if (CallSites.size() < SiteNo)
330 CallSites.resize(SiteNo);
331 CallSites[SiteNo - 1] = Site;
333 PreviousIsInvoke = true;
337 // We end the call-site range upon function exit and at the end of every
338 // basic block section.
339 if (&MBB == &Asm->MF->back() || MBB.isEndSection()) {
340 // If some instruction between the previous try-range and the end of the
341 // function may throw, create a call-site entry with no landing pad for
342 // the region following the try-range.
343 if (SawPotentiallyThrowing && !IsSJLJ) {
344 CallSiteEntry Site = {LastLabel, CallSiteRanges.back().FragmentEndLabel,
345 nullptr, 0};
346 CallSites.push_back(Site);
347 SawPotentiallyThrowing = false;
349 CallSiteRanges.back().CallSiteEndIdx = CallSites.size();
354 /// Emit landing pads and actions.
356 /// The general organization of the table is complex, but the basic concepts are
357 /// easy. First there is a header which describes the location and organization
358 /// of the three components that follow.
360 /// 1. The landing pad site information describes the range of code covered by
361 /// the try. In our case it's an accumulation of the ranges covered by the
362 /// invokes in the try. There is also a reference to the landing pad that
363 /// handles the exception once processed. Finally an index into the actions
364 /// table.
365 /// 2. The action table, in our case, is composed of pairs of type IDs and next
366 /// action offset. Starting with the action index from the landing pad
367 /// site, each type ID is checked for a match to the current exception. If
368 /// it matches then the exception and type id are passed on to the landing
369 /// pad. Otherwise the next action is looked up. This chain is terminated
370 /// with a next action of zero. If no type id is found then the frame is
371 /// unwound and handling continues.
372 /// 3. Type ID table contains references to all the C++ typeinfo for all
373 /// catches in the function. This tables is reverse indexed base 1.
375 /// Returns the starting symbol of an exception table.
376 MCSymbol *EHStreamer::emitExceptionTable() {
377 const MachineFunction *MF = Asm->MF;
378 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
379 const std::vector<unsigned> &FilterIds = MF->getFilterIds();
380 const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
382 // Sort the landing pads in order of their type ids. This is used to fold
383 // duplicate actions.
384 SmallVector<const LandingPadInfo *, 64> LandingPads;
385 LandingPads.reserve(PadInfos.size());
387 for (const LandingPadInfo &LPI : PadInfos)
388 LandingPads.push_back(&LPI);
390 // Order landing pads lexicographically by type id.
391 llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
392 return L->TypeIds < R->TypeIds;
395 // Compute the actions table and gather the first action index for each
396 // landing pad site.
397 SmallVector<ActionEntry, 32> Actions;
398 SmallVector<unsigned, 64> FirstActions;
399 computeActionsTable(LandingPads, Actions, FirstActions);
401 // Compute the call-site table and call-site ranges. Normally, there is only
402 // one call-site-range which covers the whole funciton. With
403 // -basic-block-sections, there is one call-site-range per basic block
404 // section.
405 SmallVector<CallSiteEntry, 64> CallSites;
406 SmallVector<CallSiteRange, 4> CallSiteRanges;
407 computeCallSiteTable(CallSites, CallSiteRanges, LandingPads, FirstActions);
409 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
410 bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
411 bool HasLEB128Directives = Asm->MAI->hasLEB128Directives();
412 unsigned CallSiteEncoding =
413 IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) :
414 Asm->getObjFileLowering().getCallSiteEncoding();
415 bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();
417 // Type infos.
418 MCSection *LSDASection = Asm->getObjFileLowering().getSectionForLSDA(
419 MF->getFunction(), *Asm->CurrentFnSym, Asm->TM);
420 unsigned TTypeEncoding;
422 if (!HaveTTData) {
423 // If there is no TypeInfo, then we just explicitly say that we're omitting
424 // that bit.
425 TTypeEncoding = dwarf::DW_EH_PE_omit;
426 } else {
427 // Okay, we have actual filters or typeinfos to emit. As such, we need to
428 // pick a type encoding for them. We're about to emit a list of pointers to
429 // typeinfo objects at the end of the LSDA. However, unless we're in static
430 // mode, this reference will require a relocation by the dynamic linker.
432 // Because of this, we have a couple of options:
434 // 1) If we are in -static mode, we can always use an absolute reference
435 // from the LSDA, because the static linker will resolve it.
437 // 2) Otherwise, if the LSDA section is writable, we can output the direct
438 // reference to the typeinfo and allow the dynamic linker to relocate
439 // it. Since it is in a writable section, the dynamic linker won't
440 // have a problem.
442 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable,
443 // we need to use some form of indirection. For example, on Darwin,
444 // we can output a statically-relocatable reference to a dyld stub. The
445 // offset to the stub is constant, but the contents are in a section
446 // that is updated by the dynamic linker. This is easy enough, but we
447 // need to tell the personality function of the unwinder to indirect
448 // through the dyld stub.
450 // FIXME: When (3) is actually implemented, we'll have to emit the stubs
451 // somewhere. This predicate should be moved to a shared location that is
452 // in target-independent code.
454 TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
457 // Begin the exception table.
458 // Sometimes we want not to emit the data into separate section (e.g. ARM
459 // EHABI). In this case LSDASection will be NULL.
460 if (LSDASection)
461 Asm->OutStreamer->SwitchSection(LSDASection);
462 Asm->emitAlignment(Align(4));
464 // Emit the LSDA.
465 MCSymbol *GCCETSym =
466 Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
467 Twine(Asm->getFunctionNumber()));
468 Asm->OutStreamer->emitLabel(GCCETSym);
469 MCSymbol *CstEndLabel = Asm->createTempSymbol(
470 CallSiteRanges.size() > 1 ? "action_table_base" : "cst_end");
472 MCSymbol *TTBaseLabel = nullptr;
473 if (HaveTTData)
474 TTBaseLabel = Asm->createTempSymbol("ttbase");
476 const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
478 // Helper for emitting references (offsets) for type table and the end of the
479 // call-site table (which marks the beginning of the action table).
480 // * For Itanium, these references will be emitted for every callsite range.
481 // * For SJLJ and Wasm, they will be emitted only once in the LSDA header.
482 auto EmitTypeTableRefAndCallSiteTableEndRef = [&]() {
483 Asm->emitEncodingByte(TTypeEncoding, "@TType");
484 if (HaveTTData) {
485 // N.B.: There is a dependency loop between the size of the TTBase uleb128
486 // here and the amount of padding before the aligned type table. The
487 // assembler must sometimes pad this uleb128 or insert extra padding
488 // before the type table. See PR35809 or GNU as bug 4029.
489 MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
490 Asm->emitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
491 Asm->OutStreamer->emitLabel(TTBaseRefLabel);
494 // The Action table follows the call-site table. So we emit the
495 // label difference from here (start of the call-site table for SJLJ and
496 // Wasm, and start of a call-site range for Itanium) to the end of the
497 // whole call-site table (end of the last call-site range for Itanium).
498 MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
499 Asm->emitEncodingByte(CallSiteEncoding, "Call site");
500 Asm->emitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
501 Asm->OutStreamer->emitLabel(CstBeginLabel);
504 // An alternative path to EmitTypeTableRefAndCallSiteTableEndRef.
505 // For some platforms, the system assembler does not accept the form of
506 // `.uleb128 label2 - label1`. In those situations, we would need to calculate
507 // the size between label1 and label2 manually.
508 // In this case, we would need to calculate the LSDA size and the call
509 // site table size.
510 auto EmitTypeTableOffsetAndCallSiteTableOffset = [&]() {
511 assert(CallSiteEncoding == dwarf::DW_EH_PE_udata4 && !HasLEB128Directives &&
512 "Targets supporting .uleb128 do not need to take this path.");
513 if (CallSiteRanges.size() > 1)
514 report_fatal_error(
515 "-fbasic-block-sections is not yet supported on "
516 "platforms that do not have general LEB128 directive support.");
518 uint64_t CallSiteTableSize = 0;
519 const CallSiteRange &CSRange = CallSiteRanges.back();
520 for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
521 CallSiteIdx < CSRange.CallSiteEndIdx; ++CallSiteIdx) {
522 const CallSiteEntry &S = CallSites[CallSiteIdx];
523 // Each call site entry consists of 3 udata4 fields (12 bytes) and
524 // 1 ULEB128 field.
525 CallSiteTableSize += 12 + getULEB128Size(S.Action);
526 assert(isUInt<32>(CallSiteTableSize) && "CallSiteTableSize overflows.");
529 Asm->emitEncodingByte(TTypeEncoding, "@TType");
530 if (HaveTTData) {
531 const unsigned ByteSizeOfCallSiteOffset =
532 getULEB128Size(CallSiteTableSize);
533 uint64_t ActionTableSize = 0;
534 for (const ActionEntry &Action : Actions) {
535 // Each action entry consists of two SLEB128 fields.
536 ActionTableSize += getSLEB128Size(Action.ValueForTypeID) +
537 getSLEB128Size(Action.NextAction);
538 assert(isUInt<32>(ActionTableSize) && "ActionTableSize overflows.");
541 const unsigned TypeInfoSize =
542 Asm->GetSizeOfEncodedValue(TTypeEncoding) * MF->getTypeInfos().size();
544 const uint64_t LSDASizeBeforeAlign =
545 1 // Call site encoding byte.
546 + ByteSizeOfCallSiteOffset // ULEB128 encoding of CallSiteTableSize.
547 + CallSiteTableSize // Call site table content.
548 + ActionTableSize; // Action table content.
550 const uint64_t LSDASizeWithoutAlign = LSDASizeBeforeAlign + TypeInfoSize;
551 const unsigned ByteSizeOfLSDAWithoutAlign =
552 getULEB128Size(LSDASizeWithoutAlign);
553 const uint64_t DisplacementBeforeAlign =
554 2 // LPStartEncoding and TypeTableEncoding.
555 + ByteSizeOfLSDAWithoutAlign + LSDASizeBeforeAlign;
557 // The type info area starts with 4 byte alignment.
558 const unsigned NeedAlignVal = (4 - DisplacementBeforeAlign % 4) % 4;
559 uint64_t LSDASizeWithAlign = LSDASizeWithoutAlign + NeedAlignVal;
560 const unsigned ByteSizeOfLSDAWithAlign =
561 getULEB128Size(LSDASizeWithAlign);
563 // The LSDASizeWithAlign could use 1 byte less padding for alignment
564 // when the data we use to represent the LSDA Size "needs" to be 1 byte
565 // larger than the one previously calculated without alignment.
566 if (ByteSizeOfLSDAWithAlign > ByteSizeOfLSDAWithoutAlign)
567 LSDASizeWithAlign -= 1;
569 Asm->OutStreamer->emitULEB128IntValue(LSDASizeWithAlign,
570 ByteSizeOfLSDAWithAlign);
573 Asm->emitEncodingByte(CallSiteEncoding, "Call site");
574 Asm->OutStreamer->emitULEB128IntValue(CallSiteTableSize);
577 // SjLj / Wasm Exception handling
578 if (IsSJLJ || IsWasm) {
579 Asm->OutStreamer->emitLabel(Asm->getMBBExceptionSym(Asm->MF->front()));
581 // emit the LSDA header.
582 Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
583 EmitTypeTableRefAndCallSiteTableEndRef();
585 unsigned idx = 0;
586 for (SmallVectorImpl<CallSiteEntry>::const_iterator
587 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
588 const CallSiteEntry &S = *I;
590 // Index of the call site entry.
591 if (VerboseAsm) {
592 Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
593 Asm->OutStreamer->AddComment(" On exception at call site "+Twine(idx));
595 Asm->emitULEB128(idx);
597 // Offset of the first associated action record, relative to the start of
598 // the action table. This value is biased by 1 (1 indicates the start of
599 // the action table), and 0 indicates that there are no actions.
600 if (VerboseAsm) {
601 if (S.Action == 0)
602 Asm->OutStreamer->AddComment(" Action: cleanup");
603 else
604 Asm->OutStreamer->AddComment(" Action: " +
605 Twine((S.Action - 1) / 2 + 1));
607 Asm->emitULEB128(S.Action);
609 Asm->OutStreamer->emitLabel(CstEndLabel);
610 } else {
611 // Itanium LSDA exception handling
613 // The call-site table is a list of all call sites that may throw an
614 // exception (including C++ 'throw' statements) in the procedure
615 // fragment. It immediately follows the LSDA header. Each entry indicates,
616 // for a given call, the first corresponding action record and corresponding
617 // landing pad.
619 // The table begins with the number of bytes, stored as an LEB128
620 // compressed, unsigned integer. The records immediately follow the record
621 // count. They are sorted in increasing call-site address. Each record
622 // indicates:
624 // * The position of the call-site.
625 // * The position of the landing pad.
626 // * The first action record for that call site.
628 // A missing entry in the call-site table indicates that a call is not
629 // supposed to throw.
631 assert(CallSiteRanges.size() != 0 && "No call-site ranges!");
633 // There should be only one call-site range which includes all the landing
634 // pads. Find that call-site range here.
635 const CallSiteRange *LandingPadRange = nullptr;
636 for (const CallSiteRange &CSRange : CallSiteRanges) {
637 if (CSRange.IsLPRange) {
638 assert(LandingPadRange == nullptr &&
639 "All landing pads must be in a single callsite range.");
640 LandingPadRange = &CSRange;
644 // The call-site table is split into its call-site ranges, each being
645 // emitted as:
646 // [ LPStartEncoding | LPStart ]
647 // [ TypeTableEncoding | TypeTableOffset ]
648 // [ CallSiteEncoding | CallSiteTableEndOffset ]
649 // cst_begin -> { call-site entries contained in this range }
651 // and is followed by the next call-site range.
653 // For each call-site range, CallSiteTableEndOffset is computed as the
654 // difference between cst_begin of that range and the last call-site-table's
655 // end label. This offset is used to find the action table.
657 unsigned Entry = 0;
658 for (const CallSiteRange &CSRange : CallSiteRanges) {
659 if (CSRange.CallSiteBeginIdx != 0) {
660 // Align the call-site range for all ranges except the first. The
661 // first range is already aligned due to the exception table alignment.
662 Asm->emitAlignment(Align(4));
664 Asm->OutStreamer->emitLabel(CSRange.ExceptionLabel);
666 // Emit the LSDA header.
667 // If only one call-site range exists, LPStart is omitted as it is the
668 // same as the function entry.
669 if (CallSiteRanges.size() == 1) {
670 Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
671 } else if (!Asm->isPositionIndependent()) {
672 // For more than one call-site ranges, LPStart must be explicitly
673 // specified.
674 // For non-PIC we can simply use the absolute value.
675 Asm->emitEncodingByte(dwarf::DW_EH_PE_absptr, "@LPStart");
676 Asm->OutStreamer->emitSymbolValue(LandingPadRange->FragmentBeginLabel,
677 Asm->MAI->getCodePointerSize());
678 } else {
679 // For PIC mode, we Emit a PC-relative address for LPStart.
680 Asm->emitEncodingByte(dwarf::DW_EH_PE_pcrel, "@LPStart");
681 MCContext &Context = Asm->OutStreamer->getContext();
682 MCSymbol *Dot = Context.createTempSymbol();
683 Asm->OutStreamer->emitLabel(Dot);
684 Asm->OutStreamer->emitValue(
685 MCBinaryExpr::createSub(
686 MCSymbolRefExpr::create(LandingPadRange->FragmentBeginLabel,
687 Context),
688 MCSymbolRefExpr::create(Dot, Context), Context),
689 Asm->MAI->getCodePointerSize());
692 if (HasLEB128Directives)
693 EmitTypeTableRefAndCallSiteTableEndRef();
694 else
695 EmitTypeTableOffsetAndCallSiteTableOffset();
697 for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
698 CallSiteIdx != CSRange.CallSiteEndIdx; ++CallSiteIdx) {
699 const CallSiteEntry &S = CallSites[CallSiteIdx];
701 MCSymbol *EHFuncBeginSym = CSRange.FragmentBeginLabel;
702 MCSymbol *EHFuncEndSym = CSRange.FragmentEndLabel;
704 MCSymbol *BeginLabel = S.BeginLabel;
705 if (!BeginLabel)
706 BeginLabel = EHFuncBeginSym;
707 MCSymbol *EndLabel = S.EndLabel;
708 if (!EndLabel)
709 EndLabel = EHFuncEndSym;
711 // Offset of the call site relative to the start of the procedure.
712 if (VerboseAsm)
713 Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) +
714 " <<");
715 Asm->emitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding);
716 if (VerboseAsm)
717 Asm->OutStreamer->AddComment(Twine(" Call between ") +
718 BeginLabel->getName() + " and " +
719 EndLabel->getName());
720 Asm->emitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding);
722 // Offset of the landing pad relative to the start of the landing pad
723 // fragment.
724 if (!S.LPad) {
725 if (VerboseAsm)
726 Asm->OutStreamer->AddComment(" has no landing pad");
727 Asm->emitCallSiteValue(0, CallSiteEncoding);
728 } else {
729 if (VerboseAsm)
730 Asm->OutStreamer->AddComment(Twine(" jumps to ") +
731 S.LPad->LandingPadLabel->getName());
732 Asm->emitCallSiteOffset(S.LPad->LandingPadLabel,
733 LandingPadRange->FragmentBeginLabel,
734 CallSiteEncoding);
737 // Offset of the first associated action record, relative to the start
738 // of the action table. This value is biased by 1 (1 indicates the start
739 // of the action table), and 0 indicates that there are no actions.
740 if (VerboseAsm) {
741 if (S.Action == 0)
742 Asm->OutStreamer->AddComment(" On action: cleanup");
743 else
744 Asm->OutStreamer->AddComment(" On action: " +
745 Twine((S.Action - 1) / 2 + 1));
747 Asm->emitULEB128(S.Action);
750 Asm->OutStreamer->emitLabel(CstEndLabel);
753 // Emit the Action Table.
754 int Entry = 0;
755 for (const ActionEntry &Action : Actions) {
756 if (VerboseAsm) {
757 // Emit comments that decode the action table.
758 Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
761 // Type Filter
763 // Used by the runtime to match the type of the thrown exception to the
764 // type of the catch clauses or the types in the exception specification.
765 if (VerboseAsm) {
766 if (Action.ValueForTypeID > 0)
767 Asm->OutStreamer->AddComment(" Catch TypeInfo " +
768 Twine(Action.ValueForTypeID));
769 else if (Action.ValueForTypeID < 0)
770 Asm->OutStreamer->AddComment(" Filter TypeInfo " +
771 Twine(Action.ValueForTypeID));
772 else
773 Asm->OutStreamer->AddComment(" Cleanup");
775 Asm->emitSLEB128(Action.ValueForTypeID);
777 // Action Record
778 if (VerboseAsm) {
779 if (Action.Previous == unsigned(-1)) {
780 Asm->OutStreamer->AddComment(" No further actions");
781 } else {
782 Asm->OutStreamer->AddComment(" Continue to action " +
783 Twine(Action.Previous + 1));
786 Asm->emitSLEB128(Action.NextAction);
789 if (HaveTTData) {
790 Asm->emitAlignment(Align(4));
791 emitTypeInfos(TTypeEncoding, TTBaseLabel);
794 Asm->emitAlignment(Align(4));
795 return GCCETSym;
798 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
799 const MachineFunction *MF = Asm->MF;
800 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
801 const std::vector<unsigned> &FilterIds = MF->getFilterIds();
803 const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
805 int Entry = 0;
806 // Emit the Catch TypeInfos.
807 if (VerboseAsm && !TypeInfos.empty()) {
808 Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
809 Asm->OutStreamer->AddBlankLine();
810 Entry = TypeInfos.size();
813 for (const GlobalValue *GV : llvm::reverse(TypeInfos)) {
814 if (VerboseAsm)
815 Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
816 Asm->emitTTypeReference(GV, TTypeEncoding);
819 Asm->OutStreamer->emitLabel(TTBaseLabel);
821 // Emit the Exception Specifications.
822 if (VerboseAsm && !FilterIds.empty()) {
823 Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
824 Asm->OutStreamer->AddBlankLine();
825 Entry = 0;
827 for (std::vector<unsigned>::const_iterator
828 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
829 unsigned TypeID = *I;
830 if (VerboseAsm) {
831 --Entry;
832 if (isFilterEHSelector(TypeID))
833 Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
836 Asm->emitULEB128(TypeID);