1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains a pass (at IR level) to replace atomic instructions with
10 // __atomic_* library calls, or target specific instruction which implement the
11 // same semantics in a way which better fits the target backend. This can
12 // include the use of (intrinsic-based) load-linked/store-conditional loops,
13 // AtomicCmpXchg, or type coercions.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/CodeGen/AtomicExpandUtils.h"
22 #include "llvm/CodeGen/RuntimeLibcalls.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/InstIterator.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/User.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/AtomicOrdering.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetMachine.h"
56 #define DEBUG_TYPE "atomic-expand"
60 class AtomicExpand
: public FunctionPass
{
61 const TargetLowering
*TLI
= nullptr;
64 static char ID
; // Pass identification, replacement for typeid
66 AtomicExpand() : FunctionPass(ID
) {
67 initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
70 bool runOnFunction(Function
&F
) override
;
73 bool bracketInstWithFences(Instruction
*I
, AtomicOrdering Order
);
74 IntegerType
*getCorrespondingIntegerType(Type
*T
, const DataLayout
&DL
);
75 LoadInst
*convertAtomicLoadToIntegerType(LoadInst
*LI
);
76 bool tryExpandAtomicLoad(LoadInst
*LI
);
77 bool expandAtomicLoadToLL(LoadInst
*LI
);
78 bool expandAtomicLoadToCmpXchg(LoadInst
*LI
);
79 StoreInst
*convertAtomicStoreToIntegerType(StoreInst
*SI
);
80 bool expandAtomicStore(StoreInst
*SI
);
81 bool tryExpandAtomicRMW(AtomicRMWInst
*AI
);
82 AtomicRMWInst
*convertAtomicXchgToIntegerType(AtomicRMWInst
*RMWI
);
84 insertRMWLLSCLoop(IRBuilder
<> &Builder
, Type
*ResultTy
, Value
*Addr
,
85 Align AddrAlign
, AtomicOrdering MemOpOrder
,
86 function_ref
<Value
*(IRBuilder
<> &, Value
*)> PerformOp
);
87 void expandAtomicOpToLLSC(
88 Instruction
*I
, Type
*ResultTy
, Value
*Addr
, Align AddrAlign
,
89 AtomicOrdering MemOpOrder
,
90 function_ref
<Value
*(IRBuilder
<> &, Value
*)> PerformOp
);
91 void expandPartwordAtomicRMW(
93 TargetLoweringBase::AtomicExpansionKind ExpansionKind
);
94 AtomicRMWInst
*widenPartwordAtomicRMW(AtomicRMWInst
*AI
);
95 bool expandPartwordCmpXchg(AtomicCmpXchgInst
*I
);
96 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst
*AI
);
97 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst
*CI
);
99 AtomicCmpXchgInst
*convertCmpXchgToIntegerType(AtomicCmpXchgInst
*CI
);
100 static Value
*insertRMWCmpXchgLoop(
101 IRBuilder
<> &Builder
, Type
*ResultType
, Value
*Addr
, Align AddrAlign
,
102 AtomicOrdering MemOpOrder
, SyncScope::ID SSID
,
103 function_ref
<Value
*(IRBuilder
<> &, Value
*)> PerformOp
,
104 CreateCmpXchgInstFun CreateCmpXchg
);
105 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst
*CI
);
107 bool expandAtomicCmpXchg(AtomicCmpXchgInst
*CI
);
108 bool isIdempotentRMW(AtomicRMWInst
*RMWI
);
109 bool simplifyIdempotentRMW(AtomicRMWInst
*RMWI
);
111 bool expandAtomicOpToLibcall(Instruction
*I
, unsigned Size
, Align Alignment
,
112 Value
*PointerOperand
, Value
*ValueOperand
,
113 Value
*CASExpected
, AtomicOrdering Ordering
,
114 AtomicOrdering Ordering2
,
115 ArrayRef
<RTLIB::Libcall
> Libcalls
);
116 void expandAtomicLoadToLibcall(LoadInst
*LI
);
117 void expandAtomicStoreToLibcall(StoreInst
*LI
);
118 void expandAtomicRMWToLibcall(AtomicRMWInst
*I
);
119 void expandAtomicCASToLibcall(AtomicCmpXchgInst
*I
);
122 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst
*AI
,
123 CreateCmpXchgInstFun CreateCmpXchg
);
126 } // end anonymous namespace
128 char AtomicExpand::ID
= 0;
130 char &llvm::AtomicExpandID
= AtomicExpand::ID
;
132 INITIALIZE_PASS(AtomicExpand
, DEBUG_TYPE
, "Expand Atomic instructions",
135 FunctionPass
*llvm::createAtomicExpandPass() { return new AtomicExpand(); }
137 // Helper functions to retrieve the size of atomic instructions.
138 static unsigned getAtomicOpSize(LoadInst
*LI
) {
139 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
140 return DL
.getTypeStoreSize(LI
->getType());
143 static unsigned getAtomicOpSize(StoreInst
*SI
) {
144 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
145 return DL
.getTypeStoreSize(SI
->getValueOperand()->getType());
148 static unsigned getAtomicOpSize(AtomicRMWInst
*RMWI
) {
149 const DataLayout
&DL
= RMWI
->getModule()->getDataLayout();
150 return DL
.getTypeStoreSize(RMWI
->getValOperand()->getType());
153 static unsigned getAtomicOpSize(AtomicCmpXchgInst
*CASI
) {
154 const DataLayout
&DL
= CASI
->getModule()->getDataLayout();
155 return DL
.getTypeStoreSize(CASI
->getCompareOperand()->getType());
158 // Determine if a particular atomic operation has a supported size,
159 // and is of appropriate alignment, to be passed through for target
160 // lowering. (Versus turning into a __atomic libcall)
161 template <typename Inst
>
162 static bool atomicSizeSupported(const TargetLowering
*TLI
, Inst
*I
) {
163 unsigned Size
= getAtomicOpSize(I
);
164 Align Alignment
= I
->getAlign();
165 return Alignment
>= Size
&&
166 Size
<= TLI
->getMaxAtomicSizeInBitsSupported() / 8;
169 bool AtomicExpand::runOnFunction(Function
&F
) {
170 auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>();
174 auto &TM
= TPC
->getTM
<TargetMachine
>();
175 if (!TM
.getSubtargetImpl(F
)->enableAtomicExpand())
177 TLI
= TM
.getSubtargetImpl(F
)->getTargetLowering();
179 SmallVector
<Instruction
*, 1> AtomicInsts
;
181 // Changing control-flow while iterating through it is a bad idea, so gather a
182 // list of all atomic instructions before we start.
183 for (Instruction
&I
: instructions(F
))
184 if (I
.isAtomic() && !isa
<FenceInst
>(&I
))
185 AtomicInsts
.push_back(&I
);
187 bool MadeChange
= false;
188 for (auto I
: AtomicInsts
) {
189 auto LI
= dyn_cast
<LoadInst
>(I
);
190 auto SI
= dyn_cast
<StoreInst
>(I
);
191 auto RMWI
= dyn_cast
<AtomicRMWInst
>(I
);
192 auto CASI
= dyn_cast
<AtomicCmpXchgInst
>(I
);
193 assert((LI
|| SI
|| RMWI
|| CASI
) && "Unknown atomic instruction");
195 // If the Size/Alignment is not supported, replace with a libcall.
197 if (!atomicSizeSupported(TLI
, LI
)) {
198 expandAtomicLoadToLibcall(LI
);
203 if (!atomicSizeSupported(TLI
, SI
)) {
204 expandAtomicStoreToLibcall(SI
);
209 if (!atomicSizeSupported(TLI
, RMWI
)) {
210 expandAtomicRMWToLibcall(RMWI
);
215 if (!atomicSizeSupported(TLI
, CASI
)) {
216 expandAtomicCASToLibcall(CASI
);
222 if (TLI
->shouldInsertFencesForAtomic(I
)) {
223 auto FenceOrdering
= AtomicOrdering::Monotonic
;
224 if (LI
&& isAcquireOrStronger(LI
->getOrdering())) {
225 FenceOrdering
= LI
->getOrdering();
226 LI
->setOrdering(AtomicOrdering::Monotonic
);
227 } else if (SI
&& isReleaseOrStronger(SI
->getOrdering())) {
228 FenceOrdering
= SI
->getOrdering();
229 SI
->setOrdering(AtomicOrdering::Monotonic
);
230 } else if (RMWI
&& (isReleaseOrStronger(RMWI
->getOrdering()) ||
231 isAcquireOrStronger(RMWI
->getOrdering()))) {
232 FenceOrdering
= RMWI
->getOrdering();
233 RMWI
->setOrdering(AtomicOrdering::Monotonic
);
235 TLI
->shouldExpandAtomicCmpXchgInIR(CASI
) ==
236 TargetLoweringBase::AtomicExpansionKind::None
&&
237 (isReleaseOrStronger(CASI
->getSuccessOrdering()) ||
238 isAcquireOrStronger(CASI
->getSuccessOrdering()) ||
239 isAcquireOrStronger(CASI
->getFailureOrdering()))) {
240 // If a compare and swap is lowered to LL/SC, we can do smarter fence
241 // insertion, with a stronger one on the success path than on the
242 // failure path. As a result, fence insertion is directly done by
243 // expandAtomicCmpXchg in that case.
244 FenceOrdering
= CASI
->getMergedOrdering();
245 CASI
->setSuccessOrdering(AtomicOrdering::Monotonic
);
246 CASI
->setFailureOrdering(AtomicOrdering::Monotonic
);
249 if (FenceOrdering
!= AtomicOrdering::Monotonic
) {
250 MadeChange
|= bracketInstWithFences(I
, FenceOrdering
);
255 if (LI
->getType()->isFloatingPointTy()) {
256 // TODO: add a TLI hook to control this so that each target can
257 // convert to lowering the original type one at a time.
258 LI
= convertAtomicLoadToIntegerType(LI
);
259 assert(LI
->getType()->isIntegerTy() && "invariant broken");
263 MadeChange
|= tryExpandAtomicLoad(LI
);
265 if (SI
->getValueOperand()->getType()->isFloatingPointTy()) {
266 // TODO: add a TLI hook to control this so that each target can
267 // convert to lowering the original type one at a time.
268 SI
= convertAtomicStoreToIntegerType(SI
);
269 assert(SI
->getValueOperand()->getType()->isIntegerTy() &&
274 if (TLI
->shouldExpandAtomicStoreInIR(SI
))
275 MadeChange
|= expandAtomicStore(SI
);
277 // There are two different ways of expanding RMW instructions:
278 // - into a load if it is idempotent
279 // - into a Cmpxchg/LL-SC loop otherwise
280 // we try them in that order.
282 if (isIdempotentRMW(RMWI
) && simplifyIdempotentRMW(RMWI
)) {
285 AtomicRMWInst::BinOp Op
= RMWI
->getOperation();
286 if (Op
== AtomicRMWInst::Xchg
&&
287 RMWI
->getValOperand()->getType()->isFloatingPointTy()) {
288 // TODO: add a TLI hook to control this so that each target can
289 // convert to lowering the original type one at a time.
290 RMWI
= convertAtomicXchgToIntegerType(RMWI
);
291 assert(RMWI
->getValOperand()->getType()->isIntegerTy() &&
295 unsigned MinCASSize
= TLI
->getMinCmpXchgSizeInBits() / 8;
296 unsigned ValueSize
= getAtomicOpSize(RMWI
);
297 if (ValueSize
< MinCASSize
&&
298 (Op
== AtomicRMWInst::Or
|| Op
== AtomicRMWInst::Xor
||
299 Op
== AtomicRMWInst::And
)) {
300 RMWI
= widenPartwordAtomicRMW(RMWI
);
304 MadeChange
|= tryExpandAtomicRMW(RMWI
);
307 // TODO: when we're ready to make the change at the IR level, we can
308 // extend convertCmpXchgToInteger for floating point too.
309 assert(!CASI
->getCompareOperand()->getType()->isFloatingPointTy() &&
310 "unimplemented - floating point not legal at IR level");
311 if (CASI
->getCompareOperand()->getType()->isPointerTy() ) {
312 // TODO: add a TLI hook to control this so that each target can
313 // convert to lowering the original type one at a time.
314 CASI
= convertCmpXchgToIntegerType(CASI
);
315 assert(CASI
->getCompareOperand()->getType()->isIntegerTy() &&
320 MadeChange
|= tryExpandAtomicCmpXchg(CASI
);
326 bool AtomicExpand::bracketInstWithFences(Instruction
*I
, AtomicOrdering Order
) {
327 IRBuilder
<> Builder(I
);
329 auto LeadingFence
= TLI
->emitLeadingFence(Builder
, I
, Order
);
331 auto TrailingFence
= TLI
->emitTrailingFence(Builder
, I
, Order
);
332 // We have a guard here because not every atomic operation generates a
335 TrailingFence
->moveAfter(I
);
337 return (LeadingFence
|| TrailingFence
);
340 /// Get the iX type with the same bitwidth as T.
341 IntegerType
*AtomicExpand::getCorrespondingIntegerType(Type
*T
,
342 const DataLayout
&DL
) {
343 EVT VT
= TLI
->getMemValueType(DL
, T
);
344 unsigned BitWidth
= VT
.getStoreSizeInBits();
345 assert(BitWidth
== VT
.getSizeInBits() && "must be a power of two");
346 return IntegerType::get(T
->getContext(), BitWidth
);
349 /// Convert an atomic load of a non-integral type to an integer load of the
350 /// equivalent bitwidth. See the function comment on
351 /// convertAtomicStoreToIntegerType for background.
352 LoadInst
*AtomicExpand::convertAtomicLoadToIntegerType(LoadInst
*LI
) {
353 auto *M
= LI
->getModule();
354 Type
*NewTy
= getCorrespondingIntegerType(LI
->getType(),
357 IRBuilder
<> Builder(LI
);
359 Value
*Addr
= LI
->getPointerOperand();
360 Type
*PT
= PointerType::get(NewTy
,
361 Addr
->getType()->getPointerAddressSpace());
362 Value
*NewAddr
= Builder
.CreateBitCast(Addr
, PT
);
364 auto *NewLI
= Builder
.CreateLoad(NewTy
, NewAddr
);
365 NewLI
->setAlignment(LI
->getAlign());
366 NewLI
->setVolatile(LI
->isVolatile());
367 NewLI
->setAtomic(LI
->getOrdering(), LI
->getSyncScopeID());
368 LLVM_DEBUG(dbgs() << "Replaced " << *LI
<< " with " << *NewLI
<< "\n");
370 Value
*NewVal
= Builder
.CreateBitCast(NewLI
, LI
->getType());
371 LI
->replaceAllUsesWith(NewVal
);
372 LI
->eraseFromParent();
377 AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst
*RMWI
) {
378 auto *M
= RMWI
->getModule();
380 getCorrespondingIntegerType(RMWI
->getType(), M
->getDataLayout());
382 IRBuilder
<> Builder(RMWI
);
384 Value
*Addr
= RMWI
->getPointerOperand();
385 Value
*Val
= RMWI
->getValOperand();
386 Type
*PT
= PointerType::get(NewTy
, RMWI
->getPointerAddressSpace());
387 Value
*NewAddr
= Builder
.CreateBitCast(Addr
, PT
);
388 Value
*NewVal
= Builder
.CreateBitCast(Val
, NewTy
);
391 Builder
.CreateAtomicRMW(AtomicRMWInst::Xchg
, NewAddr
, NewVal
,
392 RMWI
->getAlign(), RMWI
->getOrdering());
393 NewRMWI
->setVolatile(RMWI
->isVolatile());
394 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI
<< " with " << *NewRMWI
<< "\n");
396 Value
*NewRVal
= Builder
.CreateBitCast(NewRMWI
, RMWI
->getType());
397 RMWI
->replaceAllUsesWith(NewRVal
);
398 RMWI
->eraseFromParent();
402 bool AtomicExpand::tryExpandAtomicLoad(LoadInst
*LI
) {
403 switch (TLI
->shouldExpandAtomicLoadInIR(LI
)) {
404 case TargetLoweringBase::AtomicExpansionKind::None
:
406 case TargetLoweringBase::AtomicExpansionKind::LLSC
:
407 expandAtomicOpToLLSC(
408 LI
, LI
->getType(), LI
->getPointerOperand(), LI
->getAlign(),
410 [](IRBuilder
<> &Builder
, Value
*Loaded
) { return Loaded
; });
412 case TargetLoweringBase::AtomicExpansionKind::LLOnly
:
413 return expandAtomicLoadToLL(LI
);
414 case TargetLoweringBase::AtomicExpansionKind::CmpXChg
:
415 return expandAtomicLoadToCmpXchg(LI
);
417 llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
421 bool AtomicExpand::expandAtomicLoadToLL(LoadInst
*LI
) {
422 IRBuilder
<> Builder(LI
);
424 // On some architectures, load-linked instructions are atomic for larger
425 // sizes than normal loads. For example, the only 64-bit load guaranteed
426 // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
427 Value
*Val
= TLI
->emitLoadLinked(Builder
, LI
->getType(),
428 LI
->getPointerOperand(), LI
->getOrdering());
429 TLI
->emitAtomicCmpXchgNoStoreLLBalance(Builder
);
431 LI
->replaceAllUsesWith(Val
);
432 LI
->eraseFromParent();
437 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst
*LI
) {
438 IRBuilder
<> Builder(LI
);
439 AtomicOrdering Order
= LI
->getOrdering();
440 if (Order
== AtomicOrdering::Unordered
)
441 Order
= AtomicOrdering::Monotonic
;
443 Value
*Addr
= LI
->getPointerOperand();
444 Type
*Ty
= LI
->getType();
445 Constant
*DummyVal
= Constant::getNullValue(Ty
);
447 Value
*Pair
= Builder
.CreateAtomicCmpXchg(
448 Addr
, DummyVal
, DummyVal
, LI
->getAlign(), Order
,
449 AtomicCmpXchgInst::getStrongestFailureOrdering(Order
));
450 Value
*Loaded
= Builder
.CreateExtractValue(Pair
, 0, "loaded");
452 LI
->replaceAllUsesWith(Loaded
);
453 LI
->eraseFromParent();
458 /// Convert an atomic store of a non-integral type to an integer store of the
459 /// equivalent bitwidth. We used to not support floating point or vector
460 /// atomics in the IR at all. The backends learned to deal with the bitcast
461 /// idiom because that was the only way of expressing the notion of a atomic
462 /// float or vector store. The long term plan is to teach each backend to
463 /// instruction select from the original atomic store, but as a migration
464 /// mechanism, we convert back to the old format which the backends understand.
465 /// Each backend will need individual work to recognize the new format.
466 StoreInst
*AtomicExpand::convertAtomicStoreToIntegerType(StoreInst
*SI
) {
467 IRBuilder
<> Builder(SI
);
468 auto *M
= SI
->getModule();
469 Type
*NewTy
= getCorrespondingIntegerType(SI
->getValueOperand()->getType(),
471 Value
*NewVal
= Builder
.CreateBitCast(SI
->getValueOperand(), NewTy
);
473 Value
*Addr
= SI
->getPointerOperand();
474 Type
*PT
= PointerType::get(NewTy
,
475 Addr
->getType()->getPointerAddressSpace());
476 Value
*NewAddr
= Builder
.CreateBitCast(Addr
, PT
);
478 StoreInst
*NewSI
= Builder
.CreateStore(NewVal
, NewAddr
);
479 NewSI
->setAlignment(SI
->getAlign());
480 NewSI
->setVolatile(SI
->isVolatile());
481 NewSI
->setAtomic(SI
->getOrdering(), SI
->getSyncScopeID());
482 LLVM_DEBUG(dbgs() << "Replaced " << *SI
<< " with " << *NewSI
<< "\n");
483 SI
->eraseFromParent();
487 bool AtomicExpand::expandAtomicStore(StoreInst
*SI
) {
488 // This function is only called on atomic stores that are too large to be
489 // atomic if implemented as a native store. So we replace them by an
490 // atomic swap, that can be implemented for example as a ldrex/strex on ARM
491 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
492 // It is the responsibility of the target to only signal expansion via
493 // shouldExpandAtomicRMW in cases where this is required and possible.
494 IRBuilder
<> Builder(SI
);
495 AtomicRMWInst
*AI
= Builder
.CreateAtomicRMW(
496 AtomicRMWInst::Xchg
, SI
->getPointerOperand(), SI
->getValueOperand(),
497 SI
->getAlign(), SI
->getOrdering());
498 SI
->eraseFromParent();
500 // Now we have an appropriate swap instruction, lower it as usual.
501 return tryExpandAtomicRMW(AI
);
504 static void createCmpXchgInstFun(IRBuilder
<> &Builder
, Value
*Addr
,
505 Value
*Loaded
, Value
*NewVal
, Align AddrAlign
,
506 AtomicOrdering MemOpOrder
, SyncScope::ID SSID
,
507 Value
*&Success
, Value
*&NewLoaded
) {
508 Type
*OrigTy
= NewVal
->getType();
510 // This code can go away when cmpxchg supports FP types.
511 bool NeedBitcast
= OrigTy
->isFloatingPointTy();
513 IntegerType
*IntTy
= Builder
.getIntNTy(OrigTy
->getPrimitiveSizeInBits());
514 unsigned AS
= Addr
->getType()->getPointerAddressSpace();
515 Addr
= Builder
.CreateBitCast(Addr
, IntTy
->getPointerTo(AS
));
516 NewVal
= Builder
.CreateBitCast(NewVal
, IntTy
);
517 Loaded
= Builder
.CreateBitCast(Loaded
, IntTy
);
520 Value
*Pair
= Builder
.CreateAtomicCmpXchg(
521 Addr
, Loaded
, NewVal
, AddrAlign
, MemOpOrder
,
522 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder
), SSID
);
523 Success
= Builder
.CreateExtractValue(Pair
, 1, "success");
524 NewLoaded
= Builder
.CreateExtractValue(Pair
, 0, "newloaded");
527 NewLoaded
= Builder
.CreateBitCast(NewLoaded
, OrigTy
);
530 /// Emit IR to implement the given atomicrmw operation on values in registers,
531 /// returning the new value.
532 static Value
*performAtomicOp(AtomicRMWInst::BinOp Op
, IRBuilder
<> &Builder
,
533 Value
*Loaded
, Value
*Inc
) {
536 case AtomicRMWInst::Xchg
:
538 case AtomicRMWInst::Add
:
539 return Builder
.CreateAdd(Loaded
, Inc
, "new");
540 case AtomicRMWInst::Sub
:
541 return Builder
.CreateSub(Loaded
, Inc
, "new");
542 case AtomicRMWInst::And
:
543 return Builder
.CreateAnd(Loaded
, Inc
, "new");
544 case AtomicRMWInst::Nand
:
545 return Builder
.CreateNot(Builder
.CreateAnd(Loaded
, Inc
), "new");
546 case AtomicRMWInst::Or
:
547 return Builder
.CreateOr(Loaded
, Inc
, "new");
548 case AtomicRMWInst::Xor
:
549 return Builder
.CreateXor(Loaded
, Inc
, "new");
550 case AtomicRMWInst::Max
:
551 NewVal
= Builder
.CreateICmpSGT(Loaded
, Inc
);
552 return Builder
.CreateSelect(NewVal
, Loaded
, Inc
, "new");
553 case AtomicRMWInst::Min
:
554 NewVal
= Builder
.CreateICmpSLE(Loaded
, Inc
);
555 return Builder
.CreateSelect(NewVal
, Loaded
, Inc
, "new");
556 case AtomicRMWInst::UMax
:
557 NewVal
= Builder
.CreateICmpUGT(Loaded
, Inc
);
558 return Builder
.CreateSelect(NewVal
, Loaded
, Inc
, "new");
559 case AtomicRMWInst::UMin
:
560 NewVal
= Builder
.CreateICmpULE(Loaded
, Inc
);
561 return Builder
.CreateSelect(NewVal
, Loaded
, Inc
, "new");
562 case AtomicRMWInst::FAdd
:
563 return Builder
.CreateFAdd(Loaded
, Inc
, "new");
564 case AtomicRMWInst::FSub
:
565 return Builder
.CreateFSub(Loaded
, Inc
, "new");
567 llvm_unreachable("Unknown atomic op");
571 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst
*AI
) {
572 LLVMContext
&Ctx
= AI
->getModule()->getContext();
573 TargetLowering::AtomicExpansionKind Kind
= TLI
->shouldExpandAtomicRMWInIR(AI
);
575 case TargetLoweringBase::AtomicExpansionKind::None
:
577 case TargetLoweringBase::AtomicExpansionKind::LLSC
: {
578 unsigned MinCASSize
= TLI
->getMinCmpXchgSizeInBits() / 8;
579 unsigned ValueSize
= getAtomicOpSize(AI
);
580 if (ValueSize
< MinCASSize
) {
581 expandPartwordAtomicRMW(AI
,
582 TargetLoweringBase::AtomicExpansionKind::LLSC
);
584 auto PerformOp
= [&](IRBuilder
<> &Builder
, Value
*Loaded
) {
585 return performAtomicOp(AI
->getOperation(), Builder
, Loaded
,
586 AI
->getValOperand());
588 expandAtomicOpToLLSC(AI
, AI
->getType(), AI
->getPointerOperand(),
589 AI
->getAlign(), AI
->getOrdering(), PerformOp
);
593 case TargetLoweringBase::AtomicExpansionKind::CmpXChg
: {
594 unsigned MinCASSize
= TLI
->getMinCmpXchgSizeInBits() / 8;
595 unsigned ValueSize
= getAtomicOpSize(AI
);
596 if (ValueSize
< MinCASSize
) {
597 // TODO: Handle atomicrmw fadd/fsub
598 if (AI
->getType()->isFloatingPointTy())
601 expandPartwordAtomicRMW(AI
,
602 TargetLoweringBase::AtomicExpansionKind::CmpXChg
);
604 SmallVector
<StringRef
> SSNs
;
605 Ctx
.getSyncScopeNames(SSNs
);
606 auto MemScope
= SSNs
[AI
->getSyncScopeID()].empty()
608 : SSNs
[AI
->getSyncScopeID()];
609 OptimizationRemarkEmitter
ORE(AI
->getFunction());
611 return OptimizationRemark(DEBUG_TYPE
, "Passed", AI
)
612 << "A compare and swap loop was generated for an atomic "
613 << AI
->getOperationName(AI
->getOperation()) << " operation at "
614 << MemScope
<< " memory scope";
616 expandAtomicRMWToCmpXchg(AI
, createCmpXchgInstFun
);
620 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic
: {
621 expandAtomicRMWToMaskedIntrinsic(AI
);
625 llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
631 struct PartwordMaskValues
{
632 // These three fields are guaranteed to be set by createMaskInstrs.
633 Type
*WordType
= nullptr;
634 Type
*ValueType
= nullptr;
635 Value
*AlignedAddr
= nullptr;
636 Align AlignedAddrAlignment
;
637 // The remaining fields can be null.
638 Value
*ShiftAmt
= nullptr;
639 Value
*Mask
= nullptr;
640 Value
*Inv_Mask
= nullptr;
643 LLVM_ATTRIBUTE_UNUSED
644 raw_ostream
&operator<<(raw_ostream
&O
, const PartwordMaskValues
&PMV
) {
645 auto PrintObj
= [&O
](auto *V
) {
652 O
<< "PartwordMaskValues {\n";
654 PrintObj(PMV
.WordType
);
656 PrintObj(PMV
.ValueType
);
657 O
<< " AlignedAddr: ";
658 PrintObj(PMV
.AlignedAddr
);
659 O
<< " AlignedAddrAlignment: " << PMV
.AlignedAddrAlignment
.value() << '\n';
661 PrintObj(PMV
.ShiftAmt
);
665 PrintObj(PMV
.Inv_Mask
);
670 } // end anonymous namespace
672 /// This is a helper function which builds instructions to provide
673 /// values necessary for partword atomic operations. It takes an
674 /// incoming address, Addr, and ValueType, and constructs the address,
675 /// shift-amounts and masks needed to work with a larger value of size
678 /// AlignedAddr: Addr rounded down to a multiple of WordSize
680 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
681 /// from AlignAddr for it to have the same value as if
682 /// ValueType was loaded from Addr.
684 /// Mask: Value to mask with the value loaded from AlignAddr to
685 /// include only the part that would've been loaded from Addr.
687 /// Inv_Mask: The inverse of Mask.
688 static PartwordMaskValues
createMaskInstrs(IRBuilder
<> &Builder
, Instruction
*I
,
689 Type
*ValueType
, Value
*Addr
,
691 unsigned MinWordSize
) {
692 PartwordMaskValues PMV
;
694 Module
*M
= I
->getModule();
695 LLVMContext
&Ctx
= M
->getContext();
696 const DataLayout
&DL
= M
->getDataLayout();
697 unsigned ValueSize
= DL
.getTypeStoreSize(ValueType
);
699 PMV
.ValueType
= ValueType
;
700 PMV
.WordType
= MinWordSize
> ValueSize
? Type::getIntNTy(Ctx
, MinWordSize
* 8)
702 if (PMV
.ValueType
== PMV
.WordType
) {
703 PMV
.AlignedAddr
= Addr
;
704 PMV
.AlignedAddrAlignment
= AddrAlign
;
705 PMV
.ShiftAmt
= ConstantInt::get(PMV
.ValueType
, 0);
706 PMV
.Mask
= ConstantInt::get(PMV
.ValueType
, ~0);
710 assert(ValueSize
< MinWordSize
);
713 PMV
.WordType
->getPointerTo(Addr
->getType()->getPointerAddressSpace());
715 // TODO: we could skip some of this if AddrAlign >= MinWordSize.
716 Value
*AddrInt
= Builder
.CreatePtrToInt(Addr
, DL
.getIntPtrType(Ctx
));
717 PMV
.AlignedAddr
= Builder
.CreateIntToPtr(
718 Builder
.CreateAnd(AddrInt
, ~(uint64_t)(MinWordSize
- 1)), WordPtrType
,
720 PMV
.AlignedAddrAlignment
= Align(MinWordSize
);
722 Value
*PtrLSB
= Builder
.CreateAnd(AddrInt
, MinWordSize
- 1, "PtrLSB");
723 if (DL
.isLittleEndian()) {
724 // turn bytes into bits
725 PMV
.ShiftAmt
= Builder
.CreateShl(PtrLSB
, 3);
727 // turn bytes into bits, and count from the other side.
728 PMV
.ShiftAmt
= Builder
.CreateShl(
729 Builder
.CreateXor(PtrLSB
, MinWordSize
- ValueSize
), 3);
732 PMV
.ShiftAmt
= Builder
.CreateTrunc(PMV
.ShiftAmt
, PMV
.WordType
, "ShiftAmt");
733 PMV
.Mask
= Builder
.CreateShl(
734 ConstantInt::get(PMV
.WordType
, (1 << (ValueSize
* 8)) - 1), PMV
.ShiftAmt
,
736 PMV
.Inv_Mask
= Builder
.CreateNot(PMV
.Mask
, "Inv_Mask");
740 static Value
*extractMaskedValue(IRBuilder
<> &Builder
, Value
*WideWord
,
741 const PartwordMaskValues
&PMV
) {
742 assert(WideWord
->getType() == PMV
.WordType
&& "Widened type mismatch");
743 if (PMV
.WordType
== PMV
.ValueType
)
746 Value
*Shift
= Builder
.CreateLShr(WideWord
, PMV
.ShiftAmt
, "shifted");
747 Value
*Trunc
= Builder
.CreateTrunc(Shift
, PMV
.ValueType
, "extracted");
751 static Value
*insertMaskedValue(IRBuilder
<> &Builder
, Value
*WideWord
,
752 Value
*Updated
, const PartwordMaskValues
&PMV
) {
753 assert(WideWord
->getType() == PMV
.WordType
&& "Widened type mismatch");
754 assert(Updated
->getType() == PMV
.ValueType
&& "Value type mismatch");
755 if (PMV
.WordType
== PMV
.ValueType
)
758 Value
*ZExt
= Builder
.CreateZExt(Updated
, PMV
.WordType
, "extended");
760 Builder
.CreateShl(ZExt
, PMV
.ShiftAmt
, "shifted", /*HasNUW*/ true);
761 Value
*And
= Builder
.CreateAnd(WideWord
, PMV
.Inv_Mask
, "unmasked");
762 Value
*Or
= Builder
.CreateOr(And
, Shift
, "inserted");
766 /// Emit IR to implement a masked version of a given atomicrmw
767 /// operation. (That is, only the bits under the Mask should be
768 /// affected by the operation)
769 static Value
*performMaskedAtomicOp(AtomicRMWInst::BinOp Op
,
770 IRBuilder
<> &Builder
, Value
*Loaded
,
771 Value
*Shifted_Inc
, Value
*Inc
,
772 const PartwordMaskValues
&PMV
) {
773 // TODO: update to use
774 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
775 // to merge bits from two values without requiring PMV.Inv_Mask.
777 case AtomicRMWInst::Xchg
: {
778 Value
*Loaded_MaskOut
= Builder
.CreateAnd(Loaded
, PMV
.Inv_Mask
);
779 Value
*FinalVal
= Builder
.CreateOr(Loaded_MaskOut
, Shifted_Inc
);
782 case AtomicRMWInst::Or
:
783 case AtomicRMWInst::Xor
:
784 case AtomicRMWInst::And
:
785 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
786 case AtomicRMWInst::Add
:
787 case AtomicRMWInst::Sub
:
788 case AtomicRMWInst::Nand
: {
789 // The other arithmetic ops need to be masked into place.
790 Value
*NewVal
= performAtomicOp(Op
, Builder
, Loaded
, Shifted_Inc
);
791 Value
*NewVal_Masked
= Builder
.CreateAnd(NewVal
, PMV
.Mask
);
792 Value
*Loaded_MaskOut
= Builder
.CreateAnd(Loaded
, PMV
.Inv_Mask
);
793 Value
*FinalVal
= Builder
.CreateOr(Loaded_MaskOut
, NewVal_Masked
);
796 case AtomicRMWInst::Max
:
797 case AtomicRMWInst::Min
:
798 case AtomicRMWInst::UMax
:
799 case AtomicRMWInst::UMin
: {
800 // Finally, comparison ops will operate on the full value, so
801 // truncate down to the original size, and expand out again after
802 // doing the operation.
803 Value
*Loaded_Extract
= extractMaskedValue(Builder
, Loaded
, PMV
);
804 Value
*NewVal
= performAtomicOp(Op
, Builder
, Loaded_Extract
, Inc
);
805 Value
*FinalVal
= insertMaskedValue(Builder
, Loaded
, NewVal
, PMV
);
809 llvm_unreachable("Unknown atomic op");
813 /// Expand a sub-word atomicrmw operation into an appropriate
814 /// word-sized operation.
816 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
817 /// way as a typical atomicrmw expansion. The only difference here is
818 /// that the operation inside of the loop may operate upon only a
819 /// part of the value.
820 void AtomicExpand::expandPartwordAtomicRMW(
821 AtomicRMWInst
*AI
, TargetLoweringBase::AtomicExpansionKind ExpansionKind
) {
822 AtomicOrdering MemOpOrder
= AI
->getOrdering();
823 SyncScope::ID SSID
= AI
->getSyncScopeID();
825 IRBuilder
<> Builder(AI
);
827 PartwordMaskValues PMV
=
828 createMaskInstrs(Builder
, AI
, AI
->getType(), AI
->getPointerOperand(),
829 AI
->getAlign(), TLI
->getMinCmpXchgSizeInBits() / 8);
831 Value
*ValOperand_Shifted
=
832 Builder
.CreateShl(Builder
.CreateZExt(AI
->getValOperand(), PMV
.WordType
),
833 PMV
.ShiftAmt
, "ValOperand_Shifted");
835 auto PerformPartwordOp
= [&](IRBuilder
<> &Builder
, Value
*Loaded
) {
836 return performMaskedAtomicOp(AI
->getOperation(), Builder
, Loaded
,
837 ValOperand_Shifted
, AI
->getValOperand(), PMV
);
841 if (ExpansionKind
== TargetLoweringBase::AtomicExpansionKind::CmpXChg
) {
842 OldResult
= insertRMWCmpXchgLoop(Builder
, PMV
.WordType
, PMV
.AlignedAddr
,
843 PMV
.AlignedAddrAlignment
, MemOpOrder
,
844 SSID
, PerformPartwordOp
,
845 createCmpXchgInstFun
);
847 assert(ExpansionKind
== TargetLoweringBase::AtomicExpansionKind::LLSC
);
848 OldResult
= insertRMWLLSCLoop(Builder
, PMV
.WordType
, PMV
.AlignedAddr
,
849 PMV
.AlignedAddrAlignment
, MemOpOrder
,
853 Value
*FinalOldResult
= extractMaskedValue(Builder
, OldResult
, PMV
);
854 AI
->replaceAllUsesWith(FinalOldResult
);
855 AI
->eraseFromParent();
858 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
859 AtomicRMWInst
*AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst
*AI
) {
860 IRBuilder
<> Builder(AI
);
861 AtomicRMWInst::BinOp Op
= AI
->getOperation();
863 assert((Op
== AtomicRMWInst::Or
|| Op
== AtomicRMWInst::Xor
||
864 Op
== AtomicRMWInst::And
) &&
865 "Unable to widen operation");
867 PartwordMaskValues PMV
=
868 createMaskInstrs(Builder
, AI
, AI
->getType(), AI
->getPointerOperand(),
869 AI
->getAlign(), TLI
->getMinCmpXchgSizeInBits() / 8);
871 Value
*ValOperand_Shifted
=
872 Builder
.CreateShl(Builder
.CreateZExt(AI
->getValOperand(), PMV
.WordType
),
873 PMV
.ShiftAmt
, "ValOperand_Shifted");
877 if (Op
== AtomicRMWInst::And
)
879 Builder
.CreateOr(PMV
.Inv_Mask
, ValOperand_Shifted
, "AndOperand");
881 NewOperand
= ValOperand_Shifted
;
883 AtomicRMWInst
*NewAI
=
884 Builder
.CreateAtomicRMW(Op
, PMV
.AlignedAddr
, NewOperand
,
885 PMV
.AlignedAddrAlignment
, AI
->getOrdering());
887 Value
*FinalOldResult
= extractMaskedValue(Builder
, NewAI
, PMV
);
888 AI
->replaceAllUsesWith(FinalOldResult
);
889 AI
->eraseFromParent();
893 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst
*CI
) {
894 // The basic idea here is that we're expanding a cmpxchg of a
895 // smaller memory size up to a word-sized cmpxchg. To do this, we
896 // need to add a retry-loop for strong cmpxchg, so that
897 // modifications to other parts of the word don't cause a spurious
900 // This generates code like the following:
901 // [[Setup mask values PMV.*]]
902 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
903 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
904 // %InitLoaded = load i32* %addr
905 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
906 // br partword.cmpxchg.loop
907 // partword.cmpxchg.loop:
908 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
909 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
910 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
911 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
912 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
913 // i32 %FullWord_NewVal success_ordering failure_ordering
914 // %OldVal = extractvalue { i32, i1 } %NewCI, 0
915 // %Success = extractvalue { i32, i1 } %NewCI, 1
916 // br i1 %Success, label %partword.cmpxchg.end,
917 // label %partword.cmpxchg.failure
918 // partword.cmpxchg.failure:
919 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
920 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
921 // br i1 %ShouldContinue, label %partword.cmpxchg.loop,
922 // label %partword.cmpxchg.end
923 // partword.cmpxchg.end:
924 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
925 // %FinalOldVal = trunc i32 %tmp1 to i8
926 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
927 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
929 Value
*Addr
= CI
->getPointerOperand();
930 Value
*Cmp
= CI
->getCompareOperand();
931 Value
*NewVal
= CI
->getNewValOperand();
933 BasicBlock
*BB
= CI
->getParent();
934 Function
*F
= BB
->getParent();
935 IRBuilder
<> Builder(CI
);
936 LLVMContext
&Ctx
= Builder
.getContext();
939 BB
->splitBasicBlock(CI
->getIterator(), "partword.cmpxchg.end");
941 BasicBlock::Create(Ctx
, "partword.cmpxchg.failure", F
, EndBB
);
942 auto LoopBB
= BasicBlock::Create(Ctx
, "partword.cmpxchg.loop", F
, FailureBB
);
944 // The split call above "helpfully" added a branch at the end of BB
945 // (to the wrong place).
946 std::prev(BB
->end())->eraseFromParent();
947 Builder
.SetInsertPoint(BB
);
949 PartwordMaskValues PMV
=
950 createMaskInstrs(Builder
, CI
, CI
->getCompareOperand()->getType(), Addr
,
951 CI
->getAlign(), TLI
->getMinCmpXchgSizeInBits() / 8);
953 // Shift the incoming values over, into the right location in the word.
954 Value
*NewVal_Shifted
=
955 Builder
.CreateShl(Builder
.CreateZExt(NewVal
, PMV
.WordType
), PMV
.ShiftAmt
);
957 Builder
.CreateShl(Builder
.CreateZExt(Cmp
, PMV
.WordType
), PMV
.ShiftAmt
);
959 // Load the entire current word, and mask into place the expected and new
961 LoadInst
*InitLoaded
= Builder
.CreateLoad(PMV
.WordType
, PMV
.AlignedAddr
);
962 InitLoaded
->setVolatile(CI
->isVolatile());
963 Value
*InitLoaded_MaskOut
= Builder
.CreateAnd(InitLoaded
, PMV
.Inv_Mask
);
964 Builder
.CreateBr(LoopBB
);
966 // partword.cmpxchg.loop:
967 Builder
.SetInsertPoint(LoopBB
);
968 PHINode
*Loaded_MaskOut
= Builder
.CreatePHI(PMV
.WordType
, 2);
969 Loaded_MaskOut
->addIncoming(InitLoaded_MaskOut
, BB
);
971 // Mask/Or the expected and new values into place in the loaded word.
972 Value
*FullWord_NewVal
= Builder
.CreateOr(Loaded_MaskOut
, NewVal_Shifted
);
973 Value
*FullWord_Cmp
= Builder
.CreateOr(Loaded_MaskOut
, Cmp_Shifted
);
974 AtomicCmpXchgInst
*NewCI
= Builder
.CreateAtomicCmpXchg(
975 PMV
.AlignedAddr
, FullWord_Cmp
, FullWord_NewVal
, PMV
.AlignedAddrAlignment
,
976 CI
->getSuccessOrdering(), CI
->getFailureOrdering(), CI
->getSyncScopeID());
977 NewCI
->setVolatile(CI
->isVolatile());
978 // When we're building a strong cmpxchg, we need a loop, so you
979 // might think we could use a weak cmpxchg inside. But, using strong
980 // allows the below comparison for ShouldContinue, and we're
981 // expecting the underlying cmpxchg to be a machine instruction,
982 // which is strong anyways.
983 NewCI
->setWeak(CI
->isWeak());
985 Value
*OldVal
= Builder
.CreateExtractValue(NewCI
, 0);
986 Value
*Success
= Builder
.CreateExtractValue(NewCI
, 1);
989 Builder
.CreateBr(EndBB
);
991 Builder
.CreateCondBr(Success
, EndBB
, FailureBB
);
993 // partword.cmpxchg.failure:
994 Builder
.SetInsertPoint(FailureBB
);
995 // Upon failure, verify that the masked-out part of the loaded value
996 // has been modified. If it didn't, abort the cmpxchg, since the
997 // masked-in part must've.
998 Value
*OldVal_MaskOut
= Builder
.CreateAnd(OldVal
, PMV
.Inv_Mask
);
999 Value
*ShouldContinue
= Builder
.CreateICmpNE(Loaded_MaskOut
, OldVal_MaskOut
);
1000 Builder
.CreateCondBr(ShouldContinue
, LoopBB
, EndBB
);
1002 // Add the second value to the phi from above
1003 Loaded_MaskOut
->addIncoming(OldVal_MaskOut
, FailureBB
);
1005 // partword.cmpxchg.end:
1006 Builder
.SetInsertPoint(CI
);
1008 Value
*FinalOldVal
= extractMaskedValue(Builder
, OldVal
, PMV
);
1009 Value
*Res
= UndefValue::get(CI
->getType());
1010 Res
= Builder
.CreateInsertValue(Res
, FinalOldVal
, 0);
1011 Res
= Builder
.CreateInsertValue(Res
, Success
, 1);
1013 CI
->replaceAllUsesWith(Res
);
1014 CI
->eraseFromParent();
1018 void AtomicExpand::expandAtomicOpToLLSC(
1019 Instruction
*I
, Type
*ResultType
, Value
*Addr
, Align AddrAlign
,
1020 AtomicOrdering MemOpOrder
,
1021 function_ref
<Value
*(IRBuilder
<> &, Value
*)> PerformOp
) {
1022 IRBuilder
<> Builder(I
);
1023 Value
*Loaded
= insertRMWLLSCLoop(Builder
, ResultType
, Addr
, AddrAlign
,
1024 MemOpOrder
, PerformOp
);
1026 I
->replaceAllUsesWith(Loaded
);
1027 I
->eraseFromParent();
1030 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst
*AI
) {
1031 IRBuilder
<> Builder(AI
);
1033 PartwordMaskValues PMV
=
1034 createMaskInstrs(Builder
, AI
, AI
->getType(), AI
->getPointerOperand(),
1035 AI
->getAlign(), TLI
->getMinCmpXchgSizeInBits() / 8);
1037 // The value operand must be sign-extended for signed min/max so that the
1038 // target's signed comparison instructions can be used. Otherwise, just
1040 Instruction::CastOps CastOp
= Instruction::ZExt
;
1041 AtomicRMWInst::BinOp RMWOp
= AI
->getOperation();
1042 if (RMWOp
== AtomicRMWInst::Max
|| RMWOp
== AtomicRMWInst::Min
)
1043 CastOp
= Instruction::SExt
;
1045 Value
*ValOperand_Shifted
= Builder
.CreateShl(
1046 Builder
.CreateCast(CastOp
, AI
->getValOperand(), PMV
.WordType
),
1047 PMV
.ShiftAmt
, "ValOperand_Shifted");
1048 Value
*OldResult
= TLI
->emitMaskedAtomicRMWIntrinsic(
1049 Builder
, AI
, PMV
.AlignedAddr
, ValOperand_Shifted
, PMV
.Mask
, PMV
.ShiftAmt
,
1051 Value
*FinalOldResult
= extractMaskedValue(Builder
, OldResult
, PMV
);
1052 AI
->replaceAllUsesWith(FinalOldResult
);
1053 AI
->eraseFromParent();
1056 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst
*CI
) {
1057 IRBuilder
<> Builder(CI
);
1059 PartwordMaskValues PMV
= createMaskInstrs(
1060 Builder
, CI
, CI
->getCompareOperand()->getType(), CI
->getPointerOperand(),
1061 CI
->getAlign(), TLI
->getMinCmpXchgSizeInBits() / 8);
1063 Value
*CmpVal_Shifted
= Builder
.CreateShl(
1064 Builder
.CreateZExt(CI
->getCompareOperand(), PMV
.WordType
), PMV
.ShiftAmt
,
1066 Value
*NewVal_Shifted
= Builder
.CreateShl(
1067 Builder
.CreateZExt(CI
->getNewValOperand(), PMV
.WordType
), PMV
.ShiftAmt
,
1069 Value
*OldVal
= TLI
->emitMaskedAtomicCmpXchgIntrinsic(
1070 Builder
, CI
, PMV
.AlignedAddr
, CmpVal_Shifted
, NewVal_Shifted
, PMV
.Mask
,
1071 CI
->getMergedOrdering());
1072 Value
*FinalOldVal
= extractMaskedValue(Builder
, OldVal
, PMV
);
1073 Value
*Res
= UndefValue::get(CI
->getType());
1074 Res
= Builder
.CreateInsertValue(Res
, FinalOldVal
, 0);
1075 Value
*Success
= Builder
.CreateICmpEQ(
1076 CmpVal_Shifted
, Builder
.CreateAnd(OldVal
, PMV
.Mask
), "Success");
1077 Res
= Builder
.CreateInsertValue(Res
, Success
, 1);
1079 CI
->replaceAllUsesWith(Res
);
1080 CI
->eraseFromParent();
1083 Value
*AtomicExpand::insertRMWLLSCLoop(
1084 IRBuilder
<> &Builder
, Type
*ResultTy
, Value
*Addr
, Align AddrAlign
,
1085 AtomicOrdering MemOpOrder
,
1086 function_ref
<Value
*(IRBuilder
<> &, Value
*)> PerformOp
) {
1087 LLVMContext
&Ctx
= Builder
.getContext();
1088 BasicBlock
*BB
= Builder
.GetInsertBlock();
1089 Function
*F
= BB
->getParent();
1092 F
->getParent()->getDataLayout().getTypeStoreSize(ResultTy
) &&
1093 "Expected at least natural alignment at this point.");
1095 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1097 // The standard expansion we produce is:
1100 // %loaded = @load.linked(%addr)
1101 // %new = some_op iN %loaded, %incr
1102 // %stored = @store_conditional(%new, %addr)
1103 // %try_again = icmp i32 ne %stored, 0
1104 // br i1 %try_again, label %loop, label %atomicrmw.end
1107 BasicBlock
*ExitBB
=
1108 BB
->splitBasicBlock(Builder
.GetInsertPoint(), "atomicrmw.end");
1109 BasicBlock
*LoopBB
= BasicBlock::Create(Ctx
, "atomicrmw.start", F
, ExitBB
);
1111 // The split call above "helpfully" added a branch at the end of BB (to the
1113 std::prev(BB
->end())->eraseFromParent();
1114 Builder
.SetInsertPoint(BB
);
1115 Builder
.CreateBr(LoopBB
);
1117 // Start the main loop block now that we've taken care of the preliminaries.
1118 Builder
.SetInsertPoint(LoopBB
);
1119 Value
*Loaded
= TLI
->emitLoadLinked(Builder
, ResultTy
, Addr
, MemOpOrder
);
1121 Value
*NewVal
= PerformOp(Builder
, Loaded
);
1123 Value
*StoreSuccess
=
1124 TLI
->emitStoreConditional(Builder
, NewVal
, Addr
, MemOpOrder
);
1125 Value
*TryAgain
= Builder
.CreateICmpNE(
1126 StoreSuccess
, ConstantInt::get(IntegerType::get(Ctx
, 32), 0), "tryagain");
1127 Builder
.CreateCondBr(TryAgain
, LoopBB
, ExitBB
);
1129 Builder
.SetInsertPoint(ExitBB
, ExitBB
->begin());
1133 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1134 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the
1135 /// IR. As a migration step, we convert back to what use to be the standard
1136 /// way to represent a pointer cmpxchg so that we can update backends one by
1138 AtomicCmpXchgInst
*AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst
*CI
) {
1139 auto *M
= CI
->getModule();
1140 Type
*NewTy
= getCorrespondingIntegerType(CI
->getCompareOperand()->getType(),
1141 M
->getDataLayout());
1143 IRBuilder
<> Builder(CI
);
1145 Value
*Addr
= CI
->getPointerOperand();
1146 Type
*PT
= PointerType::get(NewTy
,
1147 Addr
->getType()->getPointerAddressSpace());
1148 Value
*NewAddr
= Builder
.CreateBitCast(Addr
, PT
);
1150 Value
*NewCmp
= Builder
.CreatePtrToInt(CI
->getCompareOperand(), NewTy
);
1151 Value
*NewNewVal
= Builder
.CreatePtrToInt(CI
->getNewValOperand(), NewTy
);
1153 auto *NewCI
= Builder
.CreateAtomicCmpXchg(
1154 NewAddr
, NewCmp
, NewNewVal
, CI
->getAlign(), CI
->getSuccessOrdering(),
1155 CI
->getFailureOrdering(), CI
->getSyncScopeID());
1156 NewCI
->setVolatile(CI
->isVolatile());
1157 NewCI
->setWeak(CI
->isWeak());
1158 LLVM_DEBUG(dbgs() << "Replaced " << *CI
<< " with " << *NewCI
<< "\n");
1160 Value
*OldVal
= Builder
.CreateExtractValue(NewCI
, 0);
1161 Value
*Succ
= Builder
.CreateExtractValue(NewCI
, 1);
1163 OldVal
= Builder
.CreateIntToPtr(OldVal
, CI
->getCompareOperand()->getType());
1165 Value
*Res
= UndefValue::get(CI
->getType());
1166 Res
= Builder
.CreateInsertValue(Res
, OldVal
, 0);
1167 Res
= Builder
.CreateInsertValue(Res
, Succ
, 1);
1169 CI
->replaceAllUsesWith(Res
);
1170 CI
->eraseFromParent();
1174 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst
*CI
) {
1175 AtomicOrdering SuccessOrder
= CI
->getSuccessOrdering();
1176 AtomicOrdering FailureOrder
= CI
->getFailureOrdering();
1177 Value
*Addr
= CI
->getPointerOperand();
1178 BasicBlock
*BB
= CI
->getParent();
1179 Function
*F
= BB
->getParent();
1180 LLVMContext
&Ctx
= F
->getContext();
1181 // If shouldInsertFencesForAtomic() returns true, then the target does not
1182 // want to deal with memory orders, and emitLeading/TrailingFence should take
1183 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1184 // should preserve the ordering.
1185 bool ShouldInsertFencesForAtomic
= TLI
->shouldInsertFencesForAtomic(CI
);
1186 AtomicOrdering MemOpOrder
= ShouldInsertFencesForAtomic
1187 ? AtomicOrdering::Monotonic
1188 : CI
->getMergedOrdering();
1190 // In implementations which use a barrier to achieve release semantics, we can
1191 // delay emitting this barrier until we know a store is actually going to be
1192 // attempted. The cost of this delay is that we need 2 copies of the block
1193 // emitting the load-linked, affecting code size.
1195 // Ideally, this logic would be unconditional except for the minsize check
1196 // since in other cases the extra blocks naturally collapse down to the
1197 // minimal loop. Unfortunately, this puts too much stress on later
1198 // optimisations so we avoid emitting the extra logic in those cases too.
1199 bool HasReleasedLoadBB
= !CI
->isWeak() && ShouldInsertFencesForAtomic
&&
1200 SuccessOrder
!= AtomicOrdering::Monotonic
&&
1201 SuccessOrder
!= AtomicOrdering::Acquire
&&
1204 // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1205 // do it even on minsize.
1206 bool UseUnconditionalReleaseBarrier
= F
->hasMinSize() && !CI
->isWeak();
1208 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1210 // The full expansion we produce is:
1212 // %aligned.addr = ...
1214 // %unreleasedload = @load.linked(%aligned.addr)
1215 // %unreleasedload.extract = extract value from %unreleasedload
1216 // %should_store = icmp eq %unreleasedload.extract, %desired
1217 // br i1 %should_store, label %cmpxchg.releasingstore,
1218 // label %cmpxchg.nostore
1219 // cmpxchg.releasingstore:
1221 // br label cmpxchg.trystore
1222 // cmpxchg.trystore:
1223 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore],
1224 // [%releasedload, %cmpxchg.releasedload]
1225 // %updated.new = insert %new into %loaded.trystore
1226 // %stored = @store_conditional(%updated.new, %aligned.addr)
1227 // %success = icmp eq i32 %stored, 0
1228 // br i1 %success, label %cmpxchg.success,
1229 // label %cmpxchg.releasedload/%cmpxchg.failure
1230 // cmpxchg.releasedload:
1231 // %releasedload = @load.linked(%aligned.addr)
1232 // %releasedload.extract = extract value from %releasedload
1233 // %should_store = icmp eq %releasedload.extract, %desired
1234 // br i1 %should_store, label %cmpxchg.trystore,
1235 // label %cmpxchg.failure
1238 // br label %cmpxchg.end
1240 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1242 // %cmpxchg.releasedload/%cmpxchg.trystore]
1243 // @load_linked_fail_balance()?
1244 // br label %cmpxchg.failure
1247 // br label %cmpxchg.end
1249 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure],
1250 // [%loaded.trystore, %cmpxchg.trystore]
1251 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1252 // %loaded = extract value from %loaded.exit
1253 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1254 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1256 BasicBlock
*ExitBB
= BB
->splitBasicBlock(CI
->getIterator(), "cmpxchg.end");
1257 auto FailureBB
= BasicBlock::Create(Ctx
, "cmpxchg.failure", F
, ExitBB
);
1258 auto NoStoreBB
= BasicBlock::Create(Ctx
, "cmpxchg.nostore", F
, FailureBB
);
1259 auto SuccessBB
= BasicBlock::Create(Ctx
, "cmpxchg.success", F
, NoStoreBB
);
1260 auto ReleasedLoadBB
=
1261 BasicBlock::Create(Ctx
, "cmpxchg.releasedload", F
, SuccessBB
);
1263 BasicBlock::Create(Ctx
, "cmpxchg.trystore", F
, ReleasedLoadBB
);
1264 auto ReleasingStoreBB
=
1265 BasicBlock::Create(Ctx
, "cmpxchg.fencedstore", F
, TryStoreBB
);
1266 auto StartBB
= BasicBlock::Create(Ctx
, "cmpxchg.start", F
, ReleasingStoreBB
);
1268 // This grabs the DebugLoc from CI
1269 IRBuilder
<> Builder(CI
);
1271 // The split call above "helpfully" added a branch at the end of BB (to the
1272 // wrong place), but we might want a fence too. It's easiest to just remove
1273 // the branch entirely.
1274 std::prev(BB
->end())->eraseFromParent();
1275 Builder
.SetInsertPoint(BB
);
1276 if (ShouldInsertFencesForAtomic
&& UseUnconditionalReleaseBarrier
)
1277 TLI
->emitLeadingFence(Builder
, CI
, SuccessOrder
);
1279 PartwordMaskValues PMV
=
1280 createMaskInstrs(Builder
, CI
, CI
->getCompareOperand()->getType(), Addr
,
1281 CI
->getAlign(), TLI
->getMinCmpXchgSizeInBits() / 8);
1282 Builder
.CreateBr(StartBB
);
1284 // Start the main loop block now that we've taken care of the preliminaries.
1285 Builder
.SetInsertPoint(StartBB
);
1286 Value
*UnreleasedLoad
=
1287 TLI
->emitLoadLinked(Builder
, PMV
.WordType
, PMV
.AlignedAddr
, MemOpOrder
);
1288 Value
*UnreleasedLoadExtract
=
1289 extractMaskedValue(Builder
, UnreleasedLoad
, PMV
);
1290 Value
*ShouldStore
= Builder
.CreateICmpEQ(
1291 UnreleasedLoadExtract
, CI
->getCompareOperand(), "should_store");
1293 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1294 // jump straight past that fence instruction (if it exists).
1295 Builder
.CreateCondBr(ShouldStore
, ReleasingStoreBB
, NoStoreBB
);
1297 Builder
.SetInsertPoint(ReleasingStoreBB
);
1298 if (ShouldInsertFencesForAtomic
&& !UseUnconditionalReleaseBarrier
)
1299 TLI
->emitLeadingFence(Builder
, CI
, SuccessOrder
);
1300 Builder
.CreateBr(TryStoreBB
);
1302 Builder
.SetInsertPoint(TryStoreBB
);
1303 PHINode
*LoadedTryStore
=
1304 Builder
.CreatePHI(PMV
.WordType
, 2, "loaded.trystore");
1305 LoadedTryStore
->addIncoming(UnreleasedLoad
, ReleasingStoreBB
);
1306 Value
*NewValueInsert
=
1307 insertMaskedValue(Builder
, LoadedTryStore
, CI
->getNewValOperand(), PMV
);
1308 Value
*StoreSuccess
=
1309 TLI
->emitStoreConditional(Builder
, NewValueInsert
, PMV
.AlignedAddr
,
1311 StoreSuccess
= Builder
.CreateICmpEQ(
1312 StoreSuccess
, ConstantInt::get(Type::getInt32Ty(Ctx
), 0), "success");
1313 BasicBlock
*RetryBB
= HasReleasedLoadBB
? ReleasedLoadBB
: StartBB
;
1314 Builder
.CreateCondBr(StoreSuccess
, SuccessBB
,
1315 CI
->isWeak() ? FailureBB
: RetryBB
);
1317 Builder
.SetInsertPoint(ReleasedLoadBB
);
1319 if (HasReleasedLoadBB
) {
1321 TLI
->emitLoadLinked(Builder
, PMV
.WordType
, PMV
.AlignedAddr
, MemOpOrder
);
1322 Value
*SecondLoadExtract
= extractMaskedValue(Builder
, SecondLoad
, PMV
);
1323 ShouldStore
= Builder
.CreateICmpEQ(SecondLoadExtract
,
1324 CI
->getCompareOperand(), "should_store");
1326 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1327 // jump straight past that fence instruction (if it exists).
1328 Builder
.CreateCondBr(ShouldStore
, TryStoreBB
, NoStoreBB
);
1329 // Update PHI node in TryStoreBB.
1330 LoadedTryStore
->addIncoming(SecondLoad
, ReleasedLoadBB
);
1332 Builder
.CreateUnreachable();
1334 // Make sure later instructions don't get reordered with a fence if
1336 Builder
.SetInsertPoint(SuccessBB
);
1337 if (ShouldInsertFencesForAtomic
)
1338 TLI
->emitTrailingFence(Builder
, CI
, SuccessOrder
);
1339 Builder
.CreateBr(ExitBB
);
1341 Builder
.SetInsertPoint(NoStoreBB
);
1342 PHINode
*LoadedNoStore
=
1343 Builder
.CreatePHI(UnreleasedLoad
->getType(), 2, "loaded.nostore");
1344 LoadedNoStore
->addIncoming(UnreleasedLoad
, StartBB
);
1345 if (HasReleasedLoadBB
)
1346 LoadedNoStore
->addIncoming(SecondLoad
, ReleasedLoadBB
);
1348 // In the failing case, where we don't execute the store-conditional, the
1349 // target might want to balance out the load-linked with a dedicated
1350 // instruction (e.g., on ARM, clearing the exclusive monitor).
1351 TLI
->emitAtomicCmpXchgNoStoreLLBalance(Builder
);
1352 Builder
.CreateBr(FailureBB
);
1354 Builder
.SetInsertPoint(FailureBB
);
1355 PHINode
*LoadedFailure
=
1356 Builder
.CreatePHI(UnreleasedLoad
->getType(), 2, "loaded.failure");
1357 LoadedFailure
->addIncoming(LoadedNoStore
, NoStoreBB
);
1359 LoadedFailure
->addIncoming(LoadedTryStore
, TryStoreBB
);
1360 if (ShouldInsertFencesForAtomic
)
1361 TLI
->emitTrailingFence(Builder
, CI
, FailureOrder
);
1362 Builder
.CreateBr(ExitBB
);
1364 // Finally, we have control-flow based knowledge of whether the cmpxchg
1365 // succeeded or not. We expose this to later passes by converting any
1366 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1368 Builder
.SetInsertPoint(ExitBB
, ExitBB
->begin());
1369 PHINode
*LoadedExit
=
1370 Builder
.CreatePHI(UnreleasedLoad
->getType(), 2, "loaded.exit");
1371 LoadedExit
->addIncoming(LoadedTryStore
, SuccessBB
);
1372 LoadedExit
->addIncoming(LoadedFailure
, FailureBB
);
1373 PHINode
*Success
= Builder
.CreatePHI(Type::getInt1Ty(Ctx
), 2, "success");
1374 Success
->addIncoming(ConstantInt::getTrue(Ctx
), SuccessBB
);
1375 Success
->addIncoming(ConstantInt::getFalse(Ctx
), FailureBB
);
1377 // This is the "exit value" from the cmpxchg expansion. It may be of
1378 // a type wider than the one in the cmpxchg instruction.
1379 Value
*LoadedFull
= LoadedExit
;
1381 Builder
.SetInsertPoint(ExitBB
, std::next(Success
->getIterator()));
1382 Value
*Loaded
= extractMaskedValue(Builder
, LoadedFull
, PMV
);
1384 // Look for any users of the cmpxchg that are just comparing the loaded value
1385 // against the desired one, and replace them with the CFG-derived version.
1386 SmallVector
<ExtractValueInst
*, 2> PrunedInsts
;
1387 for (auto User
: CI
->users()) {
1388 ExtractValueInst
*EV
= dyn_cast
<ExtractValueInst
>(User
);
1392 assert(EV
->getNumIndices() == 1 && EV
->getIndices()[0] <= 1 &&
1393 "weird extraction from { iN, i1 }");
1395 if (EV
->getIndices()[0] == 0)
1396 EV
->replaceAllUsesWith(Loaded
);
1398 EV
->replaceAllUsesWith(Success
);
1400 PrunedInsts
.push_back(EV
);
1403 // We can remove the instructions now we're no longer iterating through them.
1404 for (auto EV
: PrunedInsts
)
1405 EV
->eraseFromParent();
1407 if (!CI
->use_empty()) {
1408 // Some use of the full struct return that we don't understand has happened,
1409 // so we've got to reconstruct it properly.
1411 Res
= Builder
.CreateInsertValue(UndefValue::get(CI
->getType()), Loaded
, 0);
1412 Res
= Builder
.CreateInsertValue(Res
, Success
, 1);
1414 CI
->replaceAllUsesWith(Res
);
1417 CI
->eraseFromParent();
1421 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst
* RMWI
) {
1422 auto C
= dyn_cast
<ConstantInt
>(RMWI
->getValOperand());
1426 AtomicRMWInst::BinOp Op
= RMWI
->getOperation();
1428 case AtomicRMWInst::Add
:
1429 case AtomicRMWInst::Sub
:
1430 case AtomicRMWInst::Or
:
1431 case AtomicRMWInst::Xor
:
1433 case AtomicRMWInst::And
:
1434 return C
->isMinusOne();
1435 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1441 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst
* RMWI
) {
1442 if (auto ResultingLoad
= TLI
->lowerIdempotentRMWIntoFencedLoad(RMWI
)) {
1443 tryExpandAtomicLoad(ResultingLoad
);
1449 Value
*AtomicExpand::insertRMWCmpXchgLoop(
1450 IRBuilder
<> &Builder
, Type
*ResultTy
, Value
*Addr
, Align AddrAlign
,
1451 AtomicOrdering MemOpOrder
, SyncScope::ID SSID
,
1452 function_ref
<Value
*(IRBuilder
<> &, Value
*)> PerformOp
,
1453 CreateCmpXchgInstFun CreateCmpXchg
) {
1454 LLVMContext
&Ctx
= Builder
.getContext();
1455 BasicBlock
*BB
= Builder
.GetInsertBlock();
1456 Function
*F
= BB
->getParent();
1458 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1460 // The standard expansion we produce is:
1462 // %init_loaded = load atomic iN* %addr
1465 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1466 // %new = some_op iN %loaded, %incr
1467 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1468 // %new_loaded = extractvalue { iN, i1 } %pair, 0
1469 // %success = extractvalue { iN, i1 } %pair, 1
1470 // br i1 %success, label %atomicrmw.end, label %loop
1473 BasicBlock
*ExitBB
=
1474 BB
->splitBasicBlock(Builder
.GetInsertPoint(), "atomicrmw.end");
1475 BasicBlock
*LoopBB
= BasicBlock::Create(Ctx
, "atomicrmw.start", F
, ExitBB
);
1477 // The split call above "helpfully" added a branch at the end of BB (to the
1478 // wrong place), but we want a load. It's easiest to just remove
1479 // the branch entirely.
1480 std::prev(BB
->end())->eraseFromParent();
1481 Builder
.SetInsertPoint(BB
);
1482 LoadInst
*InitLoaded
= Builder
.CreateAlignedLoad(ResultTy
, Addr
, AddrAlign
);
1483 Builder
.CreateBr(LoopBB
);
1485 // Start the main loop block now that we've taken care of the preliminaries.
1486 Builder
.SetInsertPoint(LoopBB
);
1487 PHINode
*Loaded
= Builder
.CreatePHI(ResultTy
, 2, "loaded");
1488 Loaded
->addIncoming(InitLoaded
, BB
);
1490 Value
*NewVal
= PerformOp(Builder
, Loaded
);
1492 Value
*NewLoaded
= nullptr;
1493 Value
*Success
= nullptr;
1495 CreateCmpXchg(Builder
, Addr
, Loaded
, NewVal
, AddrAlign
,
1496 MemOpOrder
== AtomicOrdering::Unordered
1497 ? AtomicOrdering::Monotonic
1499 SSID
, Success
, NewLoaded
);
1500 assert(Success
&& NewLoaded
);
1502 Loaded
->addIncoming(NewLoaded
, LoopBB
);
1504 Builder
.CreateCondBr(Success
, ExitBB
, LoopBB
);
1506 Builder
.SetInsertPoint(ExitBB
, ExitBB
->begin());
1510 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst
*CI
) {
1511 unsigned MinCASSize
= TLI
->getMinCmpXchgSizeInBits() / 8;
1512 unsigned ValueSize
= getAtomicOpSize(CI
);
1514 switch (TLI
->shouldExpandAtomicCmpXchgInIR(CI
)) {
1516 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1517 case TargetLoweringBase::AtomicExpansionKind::None
:
1518 if (ValueSize
< MinCASSize
)
1519 return expandPartwordCmpXchg(CI
);
1521 case TargetLoweringBase::AtomicExpansionKind::LLSC
: {
1522 return expandAtomicCmpXchg(CI
);
1524 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic
:
1525 expandAtomicCmpXchgToMaskedIntrinsic(CI
);
1530 // Note: This function is exposed externally by AtomicExpandUtils.h
1531 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst
*AI
,
1532 CreateCmpXchgInstFun CreateCmpXchg
) {
1533 IRBuilder
<> Builder(AI
);
1534 Value
*Loaded
= AtomicExpand::insertRMWCmpXchgLoop(
1535 Builder
, AI
->getType(), AI
->getPointerOperand(), AI
->getAlign(),
1536 AI
->getOrdering(), AI
->getSyncScopeID(),
1537 [&](IRBuilder
<> &Builder
, Value
*Loaded
) {
1538 return performAtomicOp(AI
->getOperation(), Builder
, Loaded
,
1539 AI
->getValOperand());
1543 AI
->replaceAllUsesWith(Loaded
);
1544 AI
->eraseFromParent();
1548 // In order to use one of the sized library calls such as
1549 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1550 // must be one of the potentially-specialized sizes, and the value
1551 // type must actually exist in C on the target (otherwise, the
1552 // function wouldn't actually be defined.)
1553 static bool canUseSizedAtomicCall(unsigned Size
, Align Alignment
,
1554 const DataLayout
&DL
) {
1555 // TODO: "LargestSize" is an approximation for "largest type that
1556 // you can express in C". It seems to be the case that int128 is
1557 // supported on all 64-bit platforms, otherwise only up to 64-bit
1558 // integers are supported. If we get this wrong, then we'll try to
1559 // call a sized libcall that doesn't actually exist. There should
1560 // really be some more reliable way in LLVM of determining integer
1561 // sizes which are valid in the target's C ABI...
1562 unsigned LargestSize
= DL
.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1563 return Alignment
>= Size
&&
1564 (Size
== 1 || Size
== 2 || Size
== 4 || Size
== 8 || Size
== 16) &&
1565 Size
<= LargestSize
;
1568 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst
*I
) {
1569 static const RTLIB::Libcall Libcalls
[6] = {
1570 RTLIB::ATOMIC_LOAD
, RTLIB::ATOMIC_LOAD_1
, RTLIB::ATOMIC_LOAD_2
,
1571 RTLIB::ATOMIC_LOAD_4
, RTLIB::ATOMIC_LOAD_8
, RTLIB::ATOMIC_LOAD_16
};
1572 unsigned Size
= getAtomicOpSize(I
);
1574 bool expanded
= expandAtomicOpToLibcall(
1575 I
, Size
, I
->getAlign(), I
->getPointerOperand(), nullptr, nullptr,
1576 I
->getOrdering(), AtomicOrdering::NotAtomic
, Libcalls
);
1578 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load");
1581 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst
*I
) {
1582 static const RTLIB::Libcall Libcalls
[6] = {
1583 RTLIB::ATOMIC_STORE
, RTLIB::ATOMIC_STORE_1
, RTLIB::ATOMIC_STORE_2
,
1584 RTLIB::ATOMIC_STORE_4
, RTLIB::ATOMIC_STORE_8
, RTLIB::ATOMIC_STORE_16
};
1585 unsigned Size
= getAtomicOpSize(I
);
1587 bool expanded
= expandAtomicOpToLibcall(
1588 I
, Size
, I
->getAlign(), I
->getPointerOperand(), I
->getValueOperand(),
1589 nullptr, I
->getOrdering(), AtomicOrdering::NotAtomic
, Libcalls
);
1591 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store");
1594 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst
*I
) {
1595 static const RTLIB::Libcall Libcalls
[6] = {
1596 RTLIB::ATOMIC_COMPARE_EXCHANGE
, RTLIB::ATOMIC_COMPARE_EXCHANGE_1
,
1597 RTLIB::ATOMIC_COMPARE_EXCHANGE_2
, RTLIB::ATOMIC_COMPARE_EXCHANGE_4
,
1598 RTLIB::ATOMIC_COMPARE_EXCHANGE_8
, RTLIB::ATOMIC_COMPARE_EXCHANGE_16
};
1599 unsigned Size
= getAtomicOpSize(I
);
1601 bool expanded
= expandAtomicOpToLibcall(
1602 I
, Size
, I
->getAlign(), I
->getPointerOperand(), I
->getNewValOperand(),
1603 I
->getCompareOperand(), I
->getSuccessOrdering(), I
->getFailureOrdering(),
1606 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS");
1609 static ArrayRef
<RTLIB::Libcall
> GetRMWLibcall(AtomicRMWInst::BinOp Op
) {
1610 static const RTLIB::Libcall LibcallsXchg
[6] = {
1611 RTLIB::ATOMIC_EXCHANGE
, RTLIB::ATOMIC_EXCHANGE_1
,
1612 RTLIB::ATOMIC_EXCHANGE_2
, RTLIB::ATOMIC_EXCHANGE_4
,
1613 RTLIB::ATOMIC_EXCHANGE_8
, RTLIB::ATOMIC_EXCHANGE_16
};
1614 static const RTLIB::Libcall LibcallsAdd
[6] = {
1615 RTLIB::UNKNOWN_LIBCALL
, RTLIB::ATOMIC_FETCH_ADD_1
,
1616 RTLIB::ATOMIC_FETCH_ADD_2
, RTLIB::ATOMIC_FETCH_ADD_4
,
1617 RTLIB::ATOMIC_FETCH_ADD_8
, RTLIB::ATOMIC_FETCH_ADD_16
};
1618 static const RTLIB::Libcall LibcallsSub
[6] = {
1619 RTLIB::UNKNOWN_LIBCALL
, RTLIB::ATOMIC_FETCH_SUB_1
,
1620 RTLIB::ATOMIC_FETCH_SUB_2
, RTLIB::ATOMIC_FETCH_SUB_4
,
1621 RTLIB::ATOMIC_FETCH_SUB_8
, RTLIB::ATOMIC_FETCH_SUB_16
};
1622 static const RTLIB::Libcall LibcallsAnd
[6] = {
1623 RTLIB::UNKNOWN_LIBCALL
, RTLIB::ATOMIC_FETCH_AND_1
,
1624 RTLIB::ATOMIC_FETCH_AND_2
, RTLIB::ATOMIC_FETCH_AND_4
,
1625 RTLIB::ATOMIC_FETCH_AND_8
, RTLIB::ATOMIC_FETCH_AND_16
};
1626 static const RTLIB::Libcall LibcallsOr
[6] = {
1627 RTLIB::UNKNOWN_LIBCALL
, RTLIB::ATOMIC_FETCH_OR_1
,
1628 RTLIB::ATOMIC_FETCH_OR_2
, RTLIB::ATOMIC_FETCH_OR_4
,
1629 RTLIB::ATOMIC_FETCH_OR_8
, RTLIB::ATOMIC_FETCH_OR_16
};
1630 static const RTLIB::Libcall LibcallsXor
[6] = {
1631 RTLIB::UNKNOWN_LIBCALL
, RTLIB::ATOMIC_FETCH_XOR_1
,
1632 RTLIB::ATOMIC_FETCH_XOR_2
, RTLIB::ATOMIC_FETCH_XOR_4
,
1633 RTLIB::ATOMIC_FETCH_XOR_8
, RTLIB::ATOMIC_FETCH_XOR_16
};
1634 static const RTLIB::Libcall LibcallsNand
[6] = {
1635 RTLIB::UNKNOWN_LIBCALL
, RTLIB::ATOMIC_FETCH_NAND_1
,
1636 RTLIB::ATOMIC_FETCH_NAND_2
, RTLIB::ATOMIC_FETCH_NAND_4
,
1637 RTLIB::ATOMIC_FETCH_NAND_8
, RTLIB::ATOMIC_FETCH_NAND_16
};
1640 case AtomicRMWInst::BAD_BINOP
:
1641 llvm_unreachable("Should not have BAD_BINOP.");
1642 case AtomicRMWInst::Xchg
:
1643 return makeArrayRef(LibcallsXchg
);
1644 case AtomicRMWInst::Add
:
1645 return makeArrayRef(LibcallsAdd
);
1646 case AtomicRMWInst::Sub
:
1647 return makeArrayRef(LibcallsSub
);
1648 case AtomicRMWInst::And
:
1649 return makeArrayRef(LibcallsAnd
);
1650 case AtomicRMWInst::Or
:
1651 return makeArrayRef(LibcallsOr
);
1652 case AtomicRMWInst::Xor
:
1653 return makeArrayRef(LibcallsXor
);
1654 case AtomicRMWInst::Nand
:
1655 return makeArrayRef(LibcallsNand
);
1656 case AtomicRMWInst::Max
:
1657 case AtomicRMWInst::Min
:
1658 case AtomicRMWInst::UMax
:
1659 case AtomicRMWInst::UMin
:
1660 case AtomicRMWInst::FAdd
:
1661 case AtomicRMWInst::FSub
:
1662 // No atomic libcalls are available for max/min/umax/umin.
1665 llvm_unreachable("Unexpected AtomicRMW operation.");
1668 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst
*I
) {
1669 ArrayRef
<RTLIB::Libcall
> Libcalls
= GetRMWLibcall(I
->getOperation());
1671 unsigned Size
= getAtomicOpSize(I
);
1673 bool Success
= false;
1674 if (!Libcalls
.empty())
1675 Success
= expandAtomicOpToLibcall(
1676 I
, Size
, I
->getAlign(), I
->getPointerOperand(), I
->getValOperand(),
1677 nullptr, I
->getOrdering(), AtomicOrdering::NotAtomic
, Libcalls
);
1679 // The expansion failed: either there were no libcalls at all for
1680 // the operation (min/max), or there were only size-specialized
1681 // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1682 // CAS libcall, via a CAS loop, instead.
1684 expandAtomicRMWToCmpXchg(
1685 I
, [this](IRBuilder
<> &Builder
, Value
*Addr
, Value
*Loaded
,
1686 Value
*NewVal
, Align Alignment
, AtomicOrdering MemOpOrder
,
1687 SyncScope::ID SSID
, Value
*&Success
, Value
*&NewLoaded
) {
1688 // Create the CAS instruction normally...
1689 AtomicCmpXchgInst
*Pair
= Builder
.CreateAtomicCmpXchg(
1690 Addr
, Loaded
, NewVal
, Alignment
, MemOpOrder
,
1691 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder
), SSID
);
1692 Success
= Builder
.CreateExtractValue(Pair
, 1, "success");
1693 NewLoaded
= Builder
.CreateExtractValue(Pair
, 0, "newloaded");
1695 // ...and then expand the CAS into a libcall.
1696 expandAtomicCASToLibcall(Pair
);
1701 // A helper routine for the above expandAtomic*ToLibcall functions.
1703 // 'Libcalls' contains an array of enum values for the particular
1704 // ATOMIC libcalls to be emitted. All of the other arguments besides
1705 // 'I' are extracted from the Instruction subclass by the
1706 // caller. Depending on the particular call, some will be null.
1707 bool AtomicExpand::expandAtomicOpToLibcall(
1708 Instruction
*I
, unsigned Size
, Align Alignment
, Value
*PointerOperand
,
1709 Value
*ValueOperand
, Value
*CASExpected
, AtomicOrdering Ordering
,
1710 AtomicOrdering Ordering2
, ArrayRef
<RTLIB::Libcall
> Libcalls
) {
1711 assert(Libcalls
.size() == 6);
1713 LLVMContext
&Ctx
= I
->getContext();
1714 Module
*M
= I
->getModule();
1715 const DataLayout
&DL
= M
->getDataLayout();
1716 IRBuilder
<> Builder(I
);
1717 IRBuilder
<> AllocaBuilder(&I
->getFunction()->getEntryBlock().front());
1719 bool UseSizedLibcall
= canUseSizedAtomicCall(Size
, Alignment
, DL
);
1720 Type
*SizedIntTy
= Type::getIntNTy(Ctx
, Size
* 8);
1722 const Align AllocaAlignment
= DL
.getPrefTypeAlign(SizedIntTy
);
1724 // TODO: the "order" argument type is "int", not int32. So
1725 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1726 ConstantInt
*SizeVal64
= ConstantInt::get(Type::getInt64Ty(Ctx
), Size
);
1727 assert(Ordering
!= AtomicOrdering::NotAtomic
&& "expect atomic MO");
1728 Constant
*OrderingVal
=
1729 ConstantInt::get(Type::getInt32Ty(Ctx
), (int)toCABI(Ordering
));
1730 Constant
*Ordering2Val
= nullptr;
1732 assert(Ordering2
!= AtomicOrdering::NotAtomic
&& "expect atomic MO");
1734 ConstantInt::get(Type::getInt32Ty(Ctx
), (int)toCABI(Ordering2
));
1736 bool HasResult
= I
->getType() != Type::getVoidTy(Ctx
);
1738 RTLIB::Libcall RTLibType
;
1739 if (UseSizedLibcall
) {
1741 case 1: RTLibType
= Libcalls
[1]; break;
1742 case 2: RTLibType
= Libcalls
[2]; break;
1743 case 4: RTLibType
= Libcalls
[3]; break;
1744 case 8: RTLibType
= Libcalls
[4]; break;
1745 case 16: RTLibType
= Libcalls
[5]; break;
1747 } else if (Libcalls
[0] != RTLIB::UNKNOWN_LIBCALL
) {
1748 RTLibType
= Libcalls
[0];
1750 // Can't use sized function, and there's no generic for this
1751 // operation, so give up.
1755 if (!TLI
->getLibcallName(RTLibType
)) {
1756 // This target does not implement the requested atomic libcall so give up.
1760 // Build up the function call. There's two kinds. First, the sized
1761 // variants. These calls are going to be one of the following (with
1763 // iN __atomic_load_N(iN *ptr, int ordering)
1764 // void __atomic_store_N(iN *ptr, iN val, int ordering)
1765 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1766 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1767 // int success_order, int failure_order)
1769 // Note that these functions can be used for non-integer atomic
1770 // operations, the values just need to be bitcast to integers on the
1773 // And, then, the generic variants. They look like the following:
1774 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1775 // void __atomic_store(size_t size, void *ptr, void *val, int ordering)
1776 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1778 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1779 // void *desired, int success_order,
1780 // int failure_order)
1782 // The different signatures are built up depending on the
1783 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1786 AllocaInst
*AllocaCASExpected
= nullptr;
1787 Value
*AllocaCASExpected_i8
= nullptr;
1788 AllocaInst
*AllocaValue
= nullptr;
1789 Value
*AllocaValue_i8
= nullptr;
1790 AllocaInst
*AllocaResult
= nullptr;
1791 Value
*AllocaResult_i8
= nullptr;
1794 SmallVector
<Value
*, 6> Args
;
1798 if (!UseSizedLibcall
) {
1799 // Note, getIntPtrType is assumed equivalent to size_t.
1800 Args
.push_back(ConstantInt::get(DL
.getIntPtrType(Ctx
), Size
));
1804 // note: This assumes all address spaces share a common libfunc
1805 // implementation and that addresses are convertable. For systems without
1806 // that property, we'd need to extend this mechanism to support AS-specific
1807 // families of atomic intrinsics.
1808 auto PtrTypeAS
= PointerOperand
->getType()->getPointerAddressSpace();
1809 Value
*PtrVal
= Builder
.CreateBitCast(PointerOperand
,
1810 Type::getInt8PtrTy(Ctx
, PtrTypeAS
));
1811 PtrVal
= Builder
.CreateAddrSpaceCast(PtrVal
, Type::getInt8PtrTy(Ctx
));
1812 Args
.push_back(PtrVal
);
1814 // 'expected' argument, if present.
1816 AllocaCASExpected
= AllocaBuilder
.CreateAlloca(CASExpected
->getType());
1817 AllocaCASExpected
->setAlignment(AllocaAlignment
);
1818 unsigned AllocaAS
= AllocaCASExpected
->getType()->getPointerAddressSpace();
1820 AllocaCASExpected_i8
=
1821 Builder
.CreateBitCast(AllocaCASExpected
,
1822 Type::getInt8PtrTy(Ctx
, AllocaAS
));
1823 Builder
.CreateLifetimeStart(AllocaCASExpected_i8
, SizeVal64
);
1824 Builder
.CreateAlignedStore(CASExpected
, AllocaCASExpected
, AllocaAlignment
);
1825 Args
.push_back(AllocaCASExpected_i8
);
1828 // 'val' argument ('desired' for cas), if present.
1830 if (UseSizedLibcall
) {
1832 Builder
.CreateBitOrPointerCast(ValueOperand
, SizedIntTy
);
1833 Args
.push_back(IntValue
);
1835 AllocaValue
= AllocaBuilder
.CreateAlloca(ValueOperand
->getType());
1836 AllocaValue
->setAlignment(AllocaAlignment
);
1838 Builder
.CreateBitCast(AllocaValue
, Type::getInt8PtrTy(Ctx
));
1839 Builder
.CreateLifetimeStart(AllocaValue_i8
, SizeVal64
);
1840 Builder
.CreateAlignedStore(ValueOperand
, AllocaValue
, AllocaAlignment
);
1841 Args
.push_back(AllocaValue_i8
);
1846 if (!CASExpected
&& HasResult
&& !UseSizedLibcall
) {
1847 AllocaResult
= AllocaBuilder
.CreateAlloca(I
->getType());
1848 AllocaResult
->setAlignment(AllocaAlignment
);
1849 unsigned AllocaAS
= AllocaResult
->getType()->getPointerAddressSpace();
1851 Builder
.CreateBitCast(AllocaResult
, Type::getInt8PtrTy(Ctx
, AllocaAS
));
1852 Builder
.CreateLifetimeStart(AllocaResult_i8
, SizeVal64
);
1853 Args
.push_back(AllocaResult_i8
);
1856 // 'ordering' ('success_order' for cas) argument.
1857 Args
.push_back(OrderingVal
);
1859 // 'failure_order' argument, if present.
1861 Args
.push_back(Ordering2Val
);
1863 // Now, the return type.
1865 ResultTy
= Type::getInt1Ty(Ctx
);
1866 Attr
= Attr
.addRetAttribute(Ctx
, Attribute::ZExt
);
1867 } else if (HasResult
&& UseSizedLibcall
)
1868 ResultTy
= SizedIntTy
;
1870 ResultTy
= Type::getVoidTy(Ctx
);
1872 // Done with setting up arguments and return types, create the call:
1873 SmallVector
<Type
*, 6> ArgTys
;
1874 for (Value
*Arg
: Args
)
1875 ArgTys
.push_back(Arg
->getType());
1876 FunctionType
*FnType
= FunctionType::get(ResultTy
, ArgTys
, false);
1877 FunctionCallee LibcallFn
=
1878 M
->getOrInsertFunction(TLI
->getLibcallName(RTLibType
), FnType
, Attr
);
1879 CallInst
*Call
= Builder
.CreateCall(LibcallFn
, Args
);
1880 Call
->setAttributes(Attr
);
1881 Value
*Result
= Call
;
1883 // And then, extract the results...
1884 if (ValueOperand
&& !UseSizedLibcall
)
1885 Builder
.CreateLifetimeEnd(AllocaValue_i8
, SizeVal64
);
1888 // The final result from the CAS is {load of 'expected' alloca, bool result
1890 Type
*FinalResultTy
= I
->getType();
1891 Value
*V
= UndefValue::get(FinalResultTy
);
1892 Value
*ExpectedOut
= Builder
.CreateAlignedLoad(
1893 CASExpected
->getType(), AllocaCASExpected
, AllocaAlignment
);
1894 Builder
.CreateLifetimeEnd(AllocaCASExpected_i8
, SizeVal64
);
1895 V
= Builder
.CreateInsertValue(V
, ExpectedOut
, 0);
1896 V
= Builder
.CreateInsertValue(V
, Result
, 1);
1897 I
->replaceAllUsesWith(V
);
1898 } else if (HasResult
) {
1900 if (UseSizedLibcall
)
1901 V
= Builder
.CreateBitOrPointerCast(Result
, I
->getType());
1903 V
= Builder
.CreateAlignedLoad(I
->getType(), AllocaResult
,
1905 Builder
.CreateLifetimeEnd(AllocaResult_i8
, SizeVal64
);
1907 I
->replaceAllUsesWith(V
);
1909 I
->eraseFromParent();