[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / CodeGen / ImplicitNullChecks.cpp
blobfc97938ccd3e976986a987533e983d7f309c9d12
1 //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass turns explicit null checks of the form
11 // test %r10, %r10
12 // je throw_npe
13 // movl (%r10), %esi
14 // ...
16 // to
18 // faulting_load_op("movl (%r10), %esi", throw_npe)
19 // ...
21 // With the help of a runtime that understands the .fault_maps section,
22 // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
23 // a page fault.
24 // Store and LoadStore are also supported.
26 //===----------------------------------------------------------------------===//
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Analysis/AliasAnalysis.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/CodeGen/FaultMaps.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/PseudoSourceValue.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/TargetOpcodes.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/MC/MCInstrDesc.h"
55 #include "llvm/MC/MCRegisterInfo.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/CommandLine.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
62 using namespace llvm;
64 static cl::opt<int> PageSize("imp-null-check-page-size",
65 cl::desc("The page size of the target in bytes"),
66 cl::init(4096), cl::Hidden);
68 static cl::opt<unsigned> MaxInstsToConsider(
69 "imp-null-max-insts-to-consider",
70 cl::desc("The max number of instructions to consider hoisting loads over "
71 "(the algorithm is quadratic over this number)"),
72 cl::Hidden, cl::init(8));
74 #define DEBUG_TYPE "implicit-null-checks"
76 STATISTIC(NumImplicitNullChecks,
77 "Number of explicit null checks made implicit");
79 namespace {
81 class ImplicitNullChecks : public MachineFunctionPass {
82 /// Return true if \c computeDependence can process \p MI.
83 static bool canHandle(const MachineInstr *MI);
85 /// Helper function for \c computeDependence. Return true if \p A
86 /// and \p B do not have any dependences between them, and can be
87 /// re-ordered without changing program semantics.
88 bool canReorder(const MachineInstr *A, const MachineInstr *B);
90 /// A data type for representing the result computed by \c
91 /// computeDependence. States whether it is okay to reorder the
92 /// instruction passed to \c computeDependence with at most one
93 /// dependency.
94 struct DependenceResult {
95 /// Can we actually re-order \p MI with \p Insts (see \c
96 /// computeDependence).
97 bool CanReorder;
99 /// If non-None, then an instruction in \p Insts that also must be
100 /// hoisted.
101 Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
103 /*implicit*/ DependenceResult(
104 bool CanReorder,
105 Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
106 : CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
107 assert((!PotentialDependence || CanReorder) &&
108 "!CanReorder && PotentialDependence.hasValue() not allowed!");
112 /// Compute a result for the following question: can \p MI be
113 /// re-ordered from after \p Insts to before it.
115 /// \c canHandle should return true for all instructions in \p
116 /// Insts.
117 DependenceResult computeDependence(const MachineInstr *MI,
118 ArrayRef<MachineInstr *> Block);
120 /// Represents one null check that can be made implicit.
121 class NullCheck {
122 // The memory operation the null check can be folded into.
123 MachineInstr *MemOperation;
125 // The instruction actually doing the null check (Ptr != 0).
126 MachineInstr *CheckOperation;
128 // The block the check resides in.
129 MachineBasicBlock *CheckBlock;
131 // The block branched to if the pointer is non-null.
132 MachineBasicBlock *NotNullSucc;
134 // The block branched to if the pointer is null.
135 MachineBasicBlock *NullSucc;
137 // If this is non-null, then MemOperation has a dependency on this
138 // instruction; and it needs to be hoisted to execute before MemOperation.
139 MachineInstr *OnlyDependency;
141 public:
142 explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
143 MachineBasicBlock *checkBlock,
144 MachineBasicBlock *notNullSucc,
145 MachineBasicBlock *nullSucc,
146 MachineInstr *onlyDependency)
147 : MemOperation(memOperation), CheckOperation(checkOperation),
148 CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
149 OnlyDependency(onlyDependency) {}
151 MachineInstr *getMemOperation() const { return MemOperation; }
153 MachineInstr *getCheckOperation() const { return CheckOperation; }
155 MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
157 MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
159 MachineBasicBlock *getNullSucc() const { return NullSucc; }
161 MachineInstr *getOnlyDependency() const { return OnlyDependency; }
164 const TargetInstrInfo *TII = nullptr;
165 const TargetRegisterInfo *TRI = nullptr;
166 AliasAnalysis *AA = nullptr;
167 MachineFrameInfo *MFI = nullptr;
169 bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
170 SmallVectorImpl<NullCheck> &NullCheckList);
171 MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
172 MachineBasicBlock *HandlerMBB);
173 void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
175 enum AliasResult {
176 AR_NoAlias,
177 AR_MayAlias,
178 AR_WillAliasEverything
181 /// Returns AR_NoAlias if \p MI memory operation does not alias with
182 /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
183 /// they may alias and any further memory operation may alias with \p PrevMI.
184 AliasResult areMemoryOpsAliased(const MachineInstr &MI,
185 const MachineInstr *PrevMI) const;
187 enum SuitabilityResult {
188 SR_Suitable,
189 SR_Unsuitable,
190 SR_Impossible
193 /// Return SR_Suitable if \p MI a memory operation that can be used to
194 /// implicitly null check the value in \p PointerReg, SR_Unsuitable if
195 /// \p MI cannot be used to null check and SR_Impossible if there is
196 /// no sense to continue lookup due to any other instruction will not be able
197 /// to be used. \p PrevInsts is the set of instruction seen since
198 /// the explicit null check on \p PointerReg.
199 SuitabilityResult isSuitableMemoryOp(const MachineInstr &MI,
200 unsigned PointerReg,
201 ArrayRef<MachineInstr *> PrevInsts);
203 /// Returns true if \p DependenceMI can clobber the liveIns in NullSucc block
204 /// if it was hoisted to the NullCheck block. This is used by caller
205 /// canHoistInst to decide if DependenceMI can be hoisted safely.
206 bool canDependenceHoistingClobberLiveIns(MachineInstr *DependenceMI,
207 MachineBasicBlock *NullSucc);
209 /// Return true if \p FaultingMI can be hoisted from after the
210 /// instructions in \p InstsSeenSoFar to before them. Set \p Dependence to a
211 /// non-null value if we also need to (and legally can) hoist a dependency.
212 bool canHoistInst(MachineInstr *FaultingMI,
213 ArrayRef<MachineInstr *> InstsSeenSoFar,
214 MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
216 public:
217 static char ID;
219 ImplicitNullChecks() : MachineFunctionPass(ID) {
220 initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
223 bool runOnMachineFunction(MachineFunction &MF) override;
225 void getAnalysisUsage(AnalysisUsage &AU) const override {
226 AU.addRequired<AAResultsWrapperPass>();
227 MachineFunctionPass::getAnalysisUsage(AU);
230 MachineFunctionProperties getRequiredProperties() const override {
231 return MachineFunctionProperties().set(
232 MachineFunctionProperties::Property::NoVRegs);
236 } // end anonymous namespace
238 bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
239 if (MI->isCall() || MI->mayRaiseFPException() ||
240 MI->hasUnmodeledSideEffects())
241 return false;
242 auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
243 (void)IsRegMask;
245 assert(llvm::none_of(MI->operands(), IsRegMask) &&
246 "Calls were filtered out above!");
248 auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
249 return llvm::all_of(MI->memoperands(), IsUnordered);
252 ImplicitNullChecks::DependenceResult
253 ImplicitNullChecks::computeDependence(const MachineInstr *MI,
254 ArrayRef<MachineInstr *> Block) {
255 assert(llvm::all_of(Block, canHandle) && "Check this first!");
256 assert(!is_contained(Block, MI) && "Block must be exclusive of MI!");
258 Optional<ArrayRef<MachineInstr *>::iterator> Dep;
260 for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
261 if (canReorder(*I, MI))
262 continue;
264 if (Dep == None) {
265 // Found one possible dependency, keep track of it.
266 Dep = I;
267 } else {
268 // We found two dependencies, so bail out.
269 return {false, None};
273 return {true, Dep};
276 bool ImplicitNullChecks::canReorder(const MachineInstr *A,
277 const MachineInstr *B) {
278 assert(canHandle(A) && canHandle(B) && "Precondition!");
280 // canHandle makes sure that we _can_ correctly analyze the dependencies
281 // between A and B here -- for instance, we should not be dealing with heap
282 // load-store dependencies here.
284 for (const auto &MOA : A->operands()) {
285 if (!(MOA.isReg() && MOA.getReg()))
286 continue;
288 Register RegA = MOA.getReg();
289 for (const auto &MOB : B->operands()) {
290 if (!(MOB.isReg() && MOB.getReg()))
291 continue;
293 Register RegB = MOB.getReg();
295 if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
296 return false;
300 return true;
303 bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
304 TII = MF.getSubtarget().getInstrInfo();
305 TRI = MF.getRegInfo().getTargetRegisterInfo();
306 MFI = &MF.getFrameInfo();
307 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
309 SmallVector<NullCheck, 16> NullCheckList;
311 for (auto &MBB : MF)
312 analyzeBlockForNullChecks(MBB, NullCheckList);
314 if (!NullCheckList.empty())
315 rewriteNullChecks(NullCheckList);
317 return !NullCheckList.empty();
320 // Return true if any register aliasing \p Reg is live-in into \p MBB.
321 static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
322 MachineBasicBlock *MBB, unsigned Reg) {
323 for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
324 ++AR)
325 if (MBB->isLiveIn(*AR))
326 return true;
327 return false;
330 ImplicitNullChecks::AliasResult
331 ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr &MI,
332 const MachineInstr *PrevMI) const {
333 // If it is not memory access, skip the check.
334 if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
335 return AR_NoAlias;
336 // Load-Load may alias
337 if (!(MI.mayStore() || PrevMI->mayStore()))
338 return AR_NoAlias;
339 // We lost info, conservatively alias. If it was store then no sense to
340 // continue because we won't be able to check against it further.
341 if (MI.memoperands_empty())
342 return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
343 if (PrevMI->memoperands_empty())
344 return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;
346 for (MachineMemOperand *MMO1 : MI.memoperands()) {
347 // MMO1 should have a value due it comes from operation we'd like to use
348 // as implicit null check.
349 assert(MMO1->getValue() && "MMO1 should have a Value!");
350 for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
351 if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
352 if (PSV->mayAlias(MFI))
353 return AR_MayAlias;
354 continue;
356 if (!AA->isNoAlias(
357 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
358 MemoryLocation::getAfter(MMO2->getValue(), MMO2->getAAInfo())))
359 return AR_MayAlias;
362 return AR_NoAlias;
365 ImplicitNullChecks::SuitabilityResult
366 ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr &MI,
367 unsigned PointerReg,
368 ArrayRef<MachineInstr *> PrevInsts) {
369 // Implementation restriction for faulting_op insertion
370 // TODO: This could be relaxed if we find a test case which warrants it.
371 if (MI.getDesc().getNumDefs() > 1)
372 return SR_Unsuitable;
374 if (!MI.mayLoadOrStore() || MI.isPredicable())
375 return SR_Unsuitable;
376 auto AM = TII->getAddrModeFromMemoryOp(MI, TRI);
377 if (!AM)
378 return SR_Unsuitable;
379 auto AddrMode = *AM;
380 const Register BaseReg = AddrMode.BaseReg, ScaledReg = AddrMode.ScaledReg;
381 int64_t Displacement = AddrMode.Displacement;
383 // We need the base of the memory instruction to be same as the register
384 // where the null check is performed (i.e. PointerReg).
385 if (BaseReg != PointerReg && ScaledReg != PointerReg)
386 return SR_Unsuitable;
387 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
388 unsigned PointerRegSizeInBits = TRI->getRegSizeInBits(PointerReg, MRI);
389 // Bail out of the sizes of BaseReg, ScaledReg and PointerReg are not the
390 // same.
391 if ((BaseReg &&
392 TRI->getRegSizeInBits(BaseReg, MRI) != PointerRegSizeInBits) ||
393 (ScaledReg &&
394 TRI->getRegSizeInBits(ScaledReg, MRI) != PointerRegSizeInBits))
395 return SR_Unsuitable;
397 // Returns true if RegUsedInAddr is used for calculating the displacement
398 // depending on addressing mode. Also calculates the Displacement.
399 auto CalculateDisplacementFromAddrMode = [&](Register RegUsedInAddr,
400 int64_t Multiplier) {
401 // The register can be NoRegister, which is defined as zero for all targets.
402 // Consider instruction of interest as `movq 8(,%rdi,8), %rax`. Here the
403 // ScaledReg is %rdi, while there is no BaseReg.
404 if (!RegUsedInAddr)
405 return false;
406 assert(Multiplier && "expected to be non-zero!");
407 MachineInstr *ModifyingMI = nullptr;
408 for (auto It = std::next(MachineBasicBlock::const_reverse_iterator(&MI));
409 It != MI.getParent()->rend(); It++) {
410 const MachineInstr *CurrMI = &*It;
411 if (CurrMI->modifiesRegister(RegUsedInAddr, TRI)) {
412 ModifyingMI = const_cast<MachineInstr *>(CurrMI);
413 break;
416 if (!ModifyingMI)
417 return false;
418 // Check for the const value defined in register by ModifyingMI. This means
419 // all other previous values for that register has been invalidated.
420 int64_t ImmVal;
421 if (!TII->getConstValDefinedInReg(*ModifyingMI, RegUsedInAddr, ImmVal))
422 return false;
423 // Calculate the reg size in bits, since this is needed for bailing out in
424 // case of overflow.
425 int32_t RegSizeInBits = TRI->getRegSizeInBits(RegUsedInAddr, MRI);
426 APInt ImmValC(RegSizeInBits, ImmVal, true /*IsSigned*/);
427 APInt MultiplierC(RegSizeInBits, Multiplier);
428 assert(MultiplierC.isStrictlyPositive() &&
429 "expected to be a positive value!");
430 bool IsOverflow;
431 // Sign of the product depends on the sign of the ImmVal, since Multiplier
432 // is always positive.
433 APInt Product = ImmValC.smul_ov(MultiplierC, IsOverflow);
434 if (IsOverflow)
435 return false;
436 APInt DisplacementC(64, Displacement, true /*isSigned*/);
437 DisplacementC = Product.sadd_ov(DisplacementC, IsOverflow);
438 if (IsOverflow)
439 return false;
441 // We only handle diplacements upto 64 bits wide.
442 if (DisplacementC.getActiveBits() > 64)
443 return false;
444 Displacement = DisplacementC.getSExtValue();
445 return true;
448 // If a register used in the address is constant, fold it's effect into the
449 // displacement for ease of analysis.
450 bool BaseRegIsConstVal = false, ScaledRegIsConstVal = false;
451 if (CalculateDisplacementFromAddrMode(BaseReg, 1))
452 BaseRegIsConstVal = true;
453 if (CalculateDisplacementFromAddrMode(ScaledReg, AddrMode.Scale))
454 ScaledRegIsConstVal = true;
456 // The register which is not null checked should be part of the Displacement
457 // calculation, otherwise we do not know whether the Displacement is made up
458 // by some symbolic values.
459 // This matters because we do not want to incorrectly assume that load from
460 // falls in the zeroth faulting page in the "sane offset check" below.
461 if ((BaseReg && BaseReg != PointerReg && !BaseRegIsConstVal) ||
462 (ScaledReg && ScaledReg != PointerReg && !ScaledRegIsConstVal))
463 return SR_Unsuitable;
465 // We want the mem access to be issued at a sane offset from PointerReg,
466 // so that if PointerReg is null then the access reliably page faults.
467 if (!(-PageSize < Displacement && Displacement < PageSize))
468 return SR_Unsuitable;
470 // Finally, check whether the current memory access aliases with previous one.
471 for (auto *PrevMI : PrevInsts) {
472 AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
473 if (AR == AR_WillAliasEverything)
474 return SR_Impossible;
475 if (AR == AR_MayAlias)
476 return SR_Unsuitable;
478 return SR_Suitable;
481 bool ImplicitNullChecks::canDependenceHoistingClobberLiveIns(
482 MachineInstr *DependenceMI, MachineBasicBlock *NullSucc) {
483 for (const auto &DependenceMO : DependenceMI->operands()) {
484 if (!(DependenceMO.isReg() && DependenceMO.getReg()))
485 continue;
487 // Make sure that we won't clobber any live ins to the sibling block by
488 // hoisting Dependency. For instance, we can't hoist INST to before the
489 // null check (even if it safe, and does not violate any dependencies in
490 // the non_null_block) if %rdx is live in to _null_block.
492 // test %rcx, %rcx
493 // je _null_block
494 // _non_null_block:
495 // %rdx = INST
496 // ...
498 // This restriction does not apply to the faulting load inst because in
499 // case the pointer loaded from is in the null page, the load will not
500 // semantically execute, and affect machine state. That is, if the load
501 // was loading into %rax and it faults, the value of %rax should stay the
502 // same as it would have been had the load not have executed and we'd have
503 // branched to NullSucc directly.
504 if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
505 return true;
509 // The dependence does not clobber live-ins in NullSucc block.
510 return false;
513 bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
514 ArrayRef<MachineInstr *> InstsSeenSoFar,
515 MachineBasicBlock *NullSucc,
516 MachineInstr *&Dependence) {
517 auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
518 if (!DepResult.CanReorder)
519 return false;
521 if (!DepResult.PotentialDependence) {
522 Dependence = nullptr;
523 return true;
526 auto DependenceItr = *DepResult.PotentialDependence;
527 auto *DependenceMI = *DependenceItr;
529 // We don't want to reason about speculating loads. Note -- at this point
530 // we should have already filtered out all of the other non-speculatable
531 // things, like calls and stores.
532 // We also do not want to hoist stores because it might change the memory
533 // while the FaultingMI may result in faulting.
534 assert(canHandle(DependenceMI) && "Should never have reached here!");
535 if (DependenceMI->mayLoadOrStore())
536 return false;
538 if (canDependenceHoistingClobberLiveIns(DependenceMI, NullSucc))
539 return false;
541 auto DepDepResult =
542 computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
544 if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
545 return false;
547 Dependence = DependenceMI;
548 return true;
551 /// Analyze MBB to check if its terminating branch can be turned into an
552 /// implicit null check. If yes, append a description of the said null check to
553 /// NullCheckList and return true, else return false.
554 bool ImplicitNullChecks::analyzeBlockForNullChecks(
555 MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
556 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
558 MDNode *BranchMD = nullptr;
559 if (auto *BB = MBB.getBasicBlock())
560 BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
562 if (!BranchMD)
563 return false;
565 MachineBranchPredicate MBP;
567 if (TII->analyzeBranchPredicate(MBB, MBP, true))
568 return false;
570 // Is the predicate comparing an integer to zero?
571 if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
572 (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
573 MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
574 return false;
576 // If there is a separate condition generation instruction, we chose not to
577 // transform unless we can remove both condition and consuming branch.
578 if (MBP.ConditionDef && !MBP.SingleUseCondition)
579 return false;
581 MachineBasicBlock *NotNullSucc, *NullSucc;
583 if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
584 NotNullSucc = MBP.TrueDest;
585 NullSucc = MBP.FalseDest;
586 } else {
587 NotNullSucc = MBP.FalseDest;
588 NullSucc = MBP.TrueDest;
591 // We handle the simplest case for now. We can potentially do better by using
592 // the machine dominator tree.
593 if (NotNullSucc->pred_size() != 1)
594 return false;
596 const Register PointerReg = MBP.LHS.getReg();
598 if (MBP.ConditionDef) {
599 // To prevent the invalid transformation of the following code:
601 // mov %rax, %rcx
602 // test %rax, %rax
603 // %rax = ...
604 // je throw_npe
605 // mov(%rcx), %r9
606 // mov(%rax), %r10
608 // into:
610 // mov %rax, %rcx
611 // %rax = ....
612 // faulting_load_op("movl (%rax), %r10", throw_npe)
613 // mov(%rcx), %r9
615 // we must ensure that there are no instructions between the 'test' and
616 // conditional jump that modify %rax.
617 assert(MBP.ConditionDef->getParent() == &MBB &&
618 "Should be in basic block");
620 for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I)
621 if (I->modifiesRegister(PointerReg, TRI))
622 return false;
624 // Starting with a code fragment like:
626 // test %rax, %rax
627 // jne LblNotNull
629 // LblNull:
630 // callq throw_NullPointerException
632 // LblNotNull:
633 // Inst0
634 // Inst1
635 // ...
636 // Def = Load (%rax + <offset>)
637 // ...
640 // we want to end up with
642 // Def = FaultingLoad (%rax + <offset>), LblNull
643 // jmp LblNotNull ;; explicit or fallthrough
645 // LblNotNull:
646 // Inst0
647 // Inst1
648 // ...
650 // LblNull:
651 // callq throw_NullPointerException
654 // To see why this is legal, consider the two possibilities:
656 // 1. %rax is null: since we constrain <offset> to be less than PageSize, the
657 // load instruction dereferences the null page, causing a segmentation
658 // fault.
660 // 2. %rax is not null: in this case we know that the load cannot fault, as
661 // otherwise the load would've faulted in the original program too and the
662 // original program would've been undefined.
664 // This reasoning cannot be extended to justify hoisting through arbitrary
665 // control flow. For instance, in the example below (in pseudo-C)
667 // if (ptr == null) { throw_npe(); unreachable; }
668 // if (some_cond) { return 42; }
669 // v = ptr->field; // LD
670 // ...
672 // we cannot (without code duplication) use the load marked "LD" to null check
673 // ptr -- clause (2) above does not apply in this case. In the above program
674 // the safety of ptr->field can be dependent on some_cond; and, for instance,
675 // ptr could be some non-null invalid reference that never gets loaded from
676 // because some_cond is always true.
678 SmallVector<MachineInstr *, 8> InstsSeenSoFar;
680 for (auto &MI : *NotNullSucc) {
681 if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
682 return false;
684 MachineInstr *Dependence;
685 SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
686 if (SR == SR_Impossible)
687 return false;
688 if (SR == SR_Suitable &&
689 canHoistInst(&MI, InstsSeenSoFar, NullSucc, Dependence)) {
690 NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
691 NullSucc, Dependence);
692 return true;
695 // If MI re-defines the PointerReg in a way that changes the value of
696 // PointerReg if it was null, then we cannot move further.
697 if (!TII->preservesZeroValueInReg(&MI, PointerReg, TRI))
698 return false;
699 InstsSeenSoFar.push_back(&MI);
702 return false;
705 /// Wrap a machine instruction, MI, into a FAULTING machine instruction.
706 /// The FAULTING instruction does the same load/store as MI
707 /// (defining the same register), and branches to HandlerMBB if the mem access
708 /// faults. The FAULTING instruction is inserted at the end of MBB.
709 MachineInstr *ImplicitNullChecks::insertFaultingInstr(
710 MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
711 const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
712 // all targets.
714 DebugLoc DL;
715 unsigned NumDefs = MI->getDesc().getNumDefs();
716 assert(NumDefs <= 1 && "other cases unhandled!");
718 unsigned DefReg = NoRegister;
719 if (NumDefs != 0) {
720 DefReg = MI->getOperand(0).getReg();
721 assert(NumDefs == 1 && "expected exactly one def!");
724 FaultMaps::FaultKind FK;
725 if (MI->mayLoad())
726 FK =
727 MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad;
728 else
729 FK = FaultMaps::FaultingStore;
731 auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
732 .addImm(FK)
733 .addMBB(HandlerMBB)
734 .addImm(MI->getOpcode());
736 for (auto &MO : MI->uses()) {
737 if (MO.isReg()) {
738 MachineOperand NewMO = MO;
739 if (MO.isUse()) {
740 NewMO.setIsKill(false);
741 } else {
742 assert(MO.isDef() && "Expected def or use");
743 NewMO.setIsDead(false);
745 MIB.add(NewMO);
746 } else {
747 MIB.add(MO);
751 MIB.setMemRefs(MI->memoperands());
753 return MIB;
756 /// Rewrite the null checks in NullCheckList into implicit null checks.
757 void ImplicitNullChecks::rewriteNullChecks(
758 ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
759 DebugLoc DL;
761 for (auto &NC : NullCheckList) {
762 // Remove the conditional branch dependent on the null check.
763 unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
764 (void)BranchesRemoved;
765 assert(BranchesRemoved > 0 && "expected at least one branch!");
767 if (auto *DepMI = NC.getOnlyDependency()) {
768 DepMI->removeFromParent();
769 NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
772 // Insert a faulting instruction where the conditional branch was
773 // originally. We check earlier ensures that this bit of code motion
774 // is legal. We do not touch the successors list for any basic block
775 // since we haven't changed control flow, we've just made it implicit.
776 MachineInstr *FaultingInstr = insertFaultingInstr(
777 NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
778 // Now the values defined by MemOperation, if any, are live-in of
779 // the block of MemOperation.
780 // The original operation may define implicit-defs alongside
781 // the value.
782 MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
783 for (const MachineOperand &MO : FaultingInstr->operands()) {
784 if (!MO.isReg() || !MO.isDef())
785 continue;
786 Register Reg = MO.getReg();
787 if (!Reg || MBB->isLiveIn(Reg))
788 continue;
789 MBB->addLiveIn(Reg);
792 if (auto *DepMI = NC.getOnlyDependency()) {
793 for (auto &MO : DepMI->operands()) {
794 if (!MO.isReg() || !MO.getReg() || !MO.isDef() || MO.isDead())
795 continue;
796 if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
797 NC.getNotNullSucc()->addLiveIn(MO.getReg());
801 NC.getMemOperation()->eraseFromParent();
802 if (auto *CheckOp = NC.getCheckOperation())
803 CheckOp->eraseFromParent();
805 // Insert an *unconditional* branch to not-null successor - we expect
806 // block placement to remove fallthroughs later.
807 TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
808 /*Cond=*/None, DL);
810 NumImplicitNullChecks++;
814 char ImplicitNullChecks::ID = 0;
816 char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
818 INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
819 "Implicit null checks", false, false)
820 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
821 INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
822 "Implicit null checks", false, false)