1 //===- IndirectBrExpandPass.cpp - Expand indirectbr to switch -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// Implements an expansion pass to turn `indirectbr` instructions in the IR
11 /// into `switch` instructions. This works by enumerating the basic blocks in
12 /// a dense range of integers, replacing each `blockaddr` constant with the
13 /// corresponding integer constant, and then building a switch that maps from
14 /// the integers to the actual blocks. All of the indirectbr instructions in the
15 /// function are redirected to this common switch.
17 /// While this is generically useful if a target is unable to codegen
18 /// `indirectbr` natively, it is primarily useful when there is some desire to
19 /// get the builtin non-jump-table lowering of a switch even when the input
20 /// source contained an explicit indirect branch construct.
22 /// Note that it doesn't make any sense to enable this pass unless a target also
23 /// disables jump-table lowering of switches. Doing that is likely to pessimize
26 //===----------------------------------------------------------------------===//
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/Sequence.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Analysis/DomTreeUpdater.h"
32 #include "llvm/CodeGen/TargetPassConfig.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/InstIterator.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
50 #define DEBUG_TYPE "indirectbr-expand"
54 class IndirectBrExpandPass
: public FunctionPass
{
55 const TargetLowering
*TLI
= nullptr;
58 static char ID
; // Pass identification, replacement for typeid
60 IndirectBrExpandPass() : FunctionPass(ID
) {
61 initializeIndirectBrExpandPassPass(*PassRegistry::getPassRegistry());
64 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
65 AU
.addPreserved
<DominatorTreeWrapperPass
>();
68 bool runOnFunction(Function
&F
) override
;
71 } // end anonymous namespace
73 char IndirectBrExpandPass::ID
= 0;
75 INITIALIZE_PASS_BEGIN(IndirectBrExpandPass
, DEBUG_TYPE
,
76 "Expand indirectbr instructions", false, false)
77 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
78 INITIALIZE_PASS_END(IndirectBrExpandPass
, DEBUG_TYPE
,
79 "Expand indirectbr instructions", false, false)
81 FunctionPass
*llvm::createIndirectBrExpandPass() {
82 return new IndirectBrExpandPass();
85 bool IndirectBrExpandPass::runOnFunction(Function
&F
) {
86 auto &DL
= F
.getParent()->getDataLayout();
87 auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>();
91 auto &TM
= TPC
->getTM
<TargetMachine
>();
92 auto &STI
= *TM
.getSubtargetImpl(F
);
93 if (!STI
.enableIndirectBrExpand())
95 TLI
= STI
.getTargetLowering();
97 Optional
<DomTreeUpdater
> DTU
;
98 if (auto *DTWP
= getAnalysisIfAvailable
<DominatorTreeWrapperPass
>())
99 DTU
.emplace(DTWP
->getDomTree(), DomTreeUpdater::UpdateStrategy::Lazy
);
101 SmallVector
<IndirectBrInst
*, 1> IndirectBrs
;
103 // Set of all potential successors for indirectbr instructions.
104 SmallPtrSet
<BasicBlock
*, 4> IndirectBrSuccs
;
106 // Build a list of indirectbrs that we want to rewrite.
107 for (BasicBlock
&BB
: F
)
108 if (auto *IBr
= dyn_cast
<IndirectBrInst
>(BB
.getTerminator())) {
109 // Handle the degenerate case of no successors by replacing the indirectbr
110 // with unreachable as there is no successor available.
111 if (IBr
->getNumSuccessors() == 0) {
112 (void)new UnreachableInst(F
.getContext(), IBr
);
113 IBr
->eraseFromParent();
117 IndirectBrs
.push_back(IBr
);
118 for (BasicBlock
*SuccBB
: IBr
->successors())
119 IndirectBrSuccs
.insert(SuccBB
);
122 if (IndirectBrs
.empty())
125 // If we need to replace any indirectbrs we need to establish integer
126 // constants that will correspond to each of the basic blocks in the function
127 // whose address escapes. We do that here and rewrite all the blockaddress
128 // constants to just be those integer constants cast to a pointer type.
129 SmallVector
<BasicBlock
*, 4> BBs
;
131 for (BasicBlock
&BB
: F
) {
132 // Skip blocks that aren't successors to an indirectbr we're going to
134 if (!IndirectBrSuccs
.count(&BB
))
137 auto IsBlockAddressUse
= [&](const Use
&U
) {
138 return isa
<BlockAddress
>(U
.getUser());
140 auto BlockAddressUseIt
= llvm::find_if(BB
.uses(), IsBlockAddressUse
);
141 if (BlockAddressUseIt
== BB
.use_end())
144 assert(std::find_if(std::next(BlockAddressUseIt
), BB
.use_end(),
145 IsBlockAddressUse
) == BB
.use_end() &&
146 "There should only ever be a single blockaddress use because it is "
147 "a constant and should be uniqued.");
149 auto *BA
= cast
<BlockAddress
>(BlockAddressUseIt
->getUser());
151 // Skip if the constant was formed but ended up not being used (due to DCE
153 if (!BA
->isConstantUsed())
156 // Compute the index we want to use for this basic block. We can't use zero
157 // because null can be compared with block addresses.
158 int BBIndex
= BBs
.size() + 1;
161 auto *ITy
= cast
<IntegerType
>(DL
.getIntPtrType(BA
->getType()));
162 ConstantInt
*BBIndexC
= ConstantInt::get(ITy
, BBIndex
);
164 // Now rewrite the blockaddress to an integer constant based on the index.
165 // FIXME: This part doesn't properly recognize other uses of blockaddress
166 // expressions, for instance, where they are used to pass labels to
167 // asm-goto. This part of the pass needs a rework.
168 BA
->replaceAllUsesWith(ConstantExpr::getIntToPtr(BBIndexC
, BA
->getType()));
172 // There are no blocks whose address is taken, so any indirectbr instruction
173 // cannot get a valid input and we can replace all of them with unreachable.
174 SmallVector
<DominatorTree::UpdateType
, 8> Updates
;
176 Updates
.reserve(IndirectBrSuccs
.size());
177 for (auto *IBr
: IndirectBrs
) {
179 for (BasicBlock
*SuccBB
: IBr
->successors())
180 Updates
.push_back({DominatorTree::Delete
, IBr
->getParent(), SuccBB
});
182 (void)new UnreachableInst(F
.getContext(), IBr
);
183 IBr
->eraseFromParent();
186 assert(Updates
.size() == IndirectBrSuccs
.size() &&
187 "Got unexpected update count.");
188 DTU
->applyUpdates(Updates
);
193 BasicBlock
*SwitchBB
;
196 // Compute a common integer type across all the indirectbr instructions.
197 IntegerType
*CommonITy
= nullptr;
198 for (auto *IBr
: IndirectBrs
) {
200 cast
<IntegerType
>(DL
.getIntPtrType(IBr
->getAddress()->getType()));
201 if (!CommonITy
|| ITy
->getBitWidth() > CommonITy
->getBitWidth())
205 auto GetSwitchValue
= [DL
, CommonITy
](IndirectBrInst
*IBr
) {
206 return CastInst::CreatePointerCast(
207 IBr
->getAddress(), CommonITy
,
208 Twine(IBr
->getAddress()->getName()) + ".switch_cast", IBr
);
211 SmallVector
<DominatorTree::UpdateType
, 8> Updates
;
213 if (IndirectBrs
.size() == 1) {
214 // If we only have one indirectbr, we can just directly replace it within
216 IndirectBrInst
*IBr
= IndirectBrs
[0];
217 SwitchBB
= IBr
->getParent();
218 SwitchValue
= GetSwitchValue(IBr
);
220 Updates
.reserve(IndirectBrSuccs
.size());
221 for (BasicBlock
*SuccBB
: IBr
->successors())
222 Updates
.push_back({DominatorTree::Delete
, IBr
->getParent(), SuccBB
});
223 assert(Updates
.size() == IndirectBrSuccs
.size() &&
224 "Got unexpected update count.");
226 IBr
->eraseFromParent();
228 // Otherwise we need to create a new block to hold the switch across BBs,
229 // jump to that block instead of each indirectbr, and phi together the
230 // values for the switch.
231 SwitchBB
= BasicBlock::Create(F
.getContext(), "switch_bb", &F
);
232 auto *SwitchPN
= PHINode::Create(CommonITy
, IndirectBrs
.size(),
233 "switch_value_phi", SwitchBB
);
234 SwitchValue
= SwitchPN
;
236 // Now replace the indirectbr instructions with direct branches to the
237 // switch block and fill out the PHI operands.
239 Updates
.reserve(IndirectBrs
.size() + 2 * IndirectBrSuccs
.size());
240 for (auto *IBr
: IndirectBrs
) {
241 SwitchPN
->addIncoming(GetSwitchValue(IBr
), IBr
->getParent());
242 BranchInst::Create(SwitchBB
, IBr
);
244 Updates
.push_back({DominatorTree::Insert
, IBr
->getParent(), SwitchBB
});
245 for (BasicBlock
*SuccBB
: IBr
->successors())
246 Updates
.push_back({DominatorTree::Delete
, IBr
->getParent(), SuccBB
});
248 IBr
->eraseFromParent();
252 // Now build the switch in the block. The block will have no terminator
254 auto *SI
= SwitchInst::Create(SwitchValue
, BBs
[0], BBs
.size(), SwitchBB
);
256 // Add a case for each block.
257 for (int i
: llvm::seq
<int>(1, BBs
.size()))
258 SI
->addCase(ConstantInt::get(CommonITy
, i
+ 1), BBs
[i
]);
261 // If there were multiple indirectbr's, they may have common successors,
262 // but in the dominator tree, we only track unique edges.
263 SmallPtrSet
<BasicBlock
*, 8> UniqueSuccessors
;
264 Updates
.reserve(Updates
.size() + BBs
.size());
265 for (BasicBlock
*BB
: BBs
) {
266 if (UniqueSuccessors
.insert(BB
).second
)
267 Updates
.push_back({DominatorTree::Insert
, SwitchBB
, BB
});
269 DTU
->applyUpdates(Updates
);