[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / CodeGen / InterleavedAccessPass.cpp
blob5a20580e54796925a40c619de6cabd53b931b7b8
1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Interleaved Access pass, which identifies
10 // interleaved memory accesses and transforms them into target specific
11 // intrinsics.
13 // An interleaved load reads data from memory into several vectors, with
14 // DE-interleaving the data on a factor. An interleaved store writes several
15 // vectors to memory with RE-interleaving the data on a factor.
17 // As interleaved accesses are difficult to identified in CodeGen (mainly
18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
19 // IR), we identify and transform them to intrinsics in this pass so the
20 // intrinsics can be easily matched into target specific instructions later in
21 // CodeGen.
23 // E.g. An interleaved load (Factor = 2):
24 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6>
26 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7>
28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
29 // intrinsic in ARM backend.
31 // In X86, this can be further optimized into a set of target
32 // specific loads followed by an optimized sequence of shuffles.
34 // E.g. An interleaved store (Factor = 3):
35 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
36 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
37 // store <12 x i32> %i.vec, <12 x i32>* %ptr
39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
40 // intrinsic in ARM backend.
42 // Similarly, a set of interleaved stores can be transformed into an optimized
43 // sequence of shuffles followed by a set of target specific stores for X86.
45 //===----------------------------------------------------------------------===//
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/CodeGen/TargetLowering.h"
51 #include "llvm/CodeGen/TargetPassConfig.h"
52 #include "llvm/CodeGen/TargetSubtargetInfo.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstIterator.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include <cassert>
71 #include <utility>
73 using namespace llvm;
75 #define DEBUG_TYPE "interleaved-access"
77 static cl::opt<bool> LowerInterleavedAccesses(
78 "lower-interleaved-accesses",
79 cl::desc("Enable lowering interleaved accesses to intrinsics"),
80 cl::init(true), cl::Hidden);
82 namespace {
84 class InterleavedAccess : public FunctionPass {
85 public:
86 static char ID;
88 InterleavedAccess() : FunctionPass(ID) {
89 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
92 StringRef getPassName() const override { return "Interleaved Access Pass"; }
94 bool runOnFunction(Function &F) override;
96 void getAnalysisUsage(AnalysisUsage &AU) const override {
97 AU.addRequired<DominatorTreeWrapperPass>();
98 AU.setPreservesCFG();
101 private:
102 DominatorTree *DT = nullptr;
103 const TargetLowering *TLI = nullptr;
105 /// The maximum supported interleave factor.
106 unsigned MaxFactor;
108 /// Transform an interleaved load into target specific intrinsics.
109 bool lowerInterleavedLoad(LoadInst *LI,
110 SmallVector<Instruction *, 32> &DeadInsts);
112 /// Transform an interleaved store into target specific intrinsics.
113 bool lowerInterleavedStore(StoreInst *SI,
114 SmallVector<Instruction *, 32> &DeadInsts);
116 /// Returns true if the uses of an interleaved load by the
117 /// extractelement instructions in \p Extracts can be replaced by uses of the
118 /// shufflevector instructions in \p Shuffles instead. If so, the necessary
119 /// replacements are also performed.
120 bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
121 ArrayRef<ShuffleVectorInst *> Shuffles);
123 /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them
124 /// to binop(shuffle(x), shuffle(y)) to allow the formation of an
125 /// interleaving load. Any newly created shuffles that operate on \p LI will
126 /// be added to \p Shuffles. Returns true, if any changes to the IR have been
127 /// made.
128 bool replaceBinOpShuffles(ArrayRef<ShuffleVectorInst *> BinOpShuffles,
129 SmallVectorImpl<ShuffleVectorInst *> &Shuffles,
130 LoadInst *LI);
133 } // end anonymous namespace.
135 char InterleavedAccess::ID = 0;
137 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
138 "Lower interleaved memory accesses to target specific intrinsics", false,
139 false)
140 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
141 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
142 "Lower interleaved memory accesses to target specific intrinsics", false,
143 false)
145 FunctionPass *llvm::createInterleavedAccessPass() {
146 return new InterleavedAccess();
149 /// Check if the mask is a DE-interleave mask of the given factor
150 /// \p Factor like:
151 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
152 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
153 unsigned &Index) {
154 // Check all potential start indices from 0 to (Factor - 1).
155 for (Index = 0; Index < Factor; Index++) {
156 unsigned i = 0;
158 // Check that elements are in ascending order by Factor. Ignore undef
159 // elements.
160 for (; i < Mask.size(); i++)
161 if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
162 break;
164 if (i == Mask.size())
165 return true;
168 return false;
171 /// Check if the mask is a DE-interleave mask for an interleaved load.
173 /// E.g. DE-interleave masks (Factor = 2) could be:
174 /// <0, 2, 4, 6> (mask of index 0 to extract even elements)
175 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
176 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
177 unsigned &Index, unsigned MaxFactor,
178 unsigned NumLoadElements) {
179 if (Mask.size() < 2)
180 return false;
182 // Check potential Factors.
183 for (Factor = 2; Factor <= MaxFactor; Factor++) {
184 // Make sure we don't produce a load wider than the input load.
185 if (Mask.size() * Factor > NumLoadElements)
186 return false;
187 if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
188 return true;
191 return false;
194 /// Check if the mask can be used in an interleaved store.
196 /// It checks for a more general pattern than the RE-interleave mask.
197 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
198 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
199 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
200 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
202 /// The particular case of an RE-interleave mask is:
203 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
204 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
205 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
206 unsigned MaxFactor, unsigned OpNumElts) {
207 unsigned NumElts = Mask.size();
208 if (NumElts < 4)
209 return false;
211 // Check potential Factors.
212 for (Factor = 2; Factor <= MaxFactor; Factor++) {
213 if (NumElts % Factor)
214 continue;
216 unsigned LaneLen = NumElts / Factor;
217 if (!isPowerOf2_32(LaneLen))
218 continue;
220 // Check whether each element matches the general interleaved rule.
221 // Ignore undef elements, as long as the defined elements match the rule.
222 // Outer loop processes all factors (x, y, z in the above example)
223 unsigned I = 0, J;
224 for (; I < Factor; I++) {
225 unsigned SavedLaneValue;
226 unsigned SavedNoUndefs = 0;
228 // Inner loop processes consecutive accesses (x, x+1... in the example)
229 for (J = 0; J < LaneLen - 1; J++) {
230 // Lane computes x's position in the Mask
231 unsigned Lane = J * Factor + I;
232 unsigned NextLane = Lane + Factor;
233 int LaneValue = Mask[Lane];
234 int NextLaneValue = Mask[NextLane];
236 // If both are defined, values must be sequential
237 if (LaneValue >= 0 && NextLaneValue >= 0 &&
238 LaneValue + 1 != NextLaneValue)
239 break;
241 // If the next value is undef, save the current one as reference
242 if (LaneValue >= 0 && NextLaneValue < 0) {
243 SavedLaneValue = LaneValue;
244 SavedNoUndefs = 1;
247 // Undefs are allowed, but defined elements must still be consecutive:
248 // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
249 // Verify this by storing the last non-undef followed by an undef
250 // Check that following non-undef masks are incremented with the
251 // corresponding distance.
252 if (SavedNoUndefs > 0 && LaneValue < 0) {
253 SavedNoUndefs++;
254 if (NextLaneValue >= 0 &&
255 SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
256 break;
260 if (J < LaneLen - 1)
261 break;
263 int StartMask = 0;
264 if (Mask[I] >= 0) {
265 // Check that the start of the I range (J=0) is greater than 0
266 StartMask = Mask[I];
267 } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
268 // StartMask defined by the last value in lane
269 StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
270 } else if (SavedNoUndefs > 0) {
271 // StartMask defined by some non-zero value in the j loop
272 StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
274 // else StartMask remains set to 0, i.e. all elements are undefs
276 if (StartMask < 0)
277 break;
278 // We must stay within the vectors; This case can happen with undefs.
279 if (StartMask + LaneLen > OpNumElts*2)
280 break;
283 // Found an interleaved mask of current factor.
284 if (I == Factor)
285 return true;
288 return false;
291 bool InterleavedAccess::lowerInterleavedLoad(
292 LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
293 if (!LI->isSimple() || isa<ScalableVectorType>(LI->getType()))
294 return false;
296 // Check if all users of this load are shufflevectors. If we encounter any
297 // users that are extractelement instructions or binary operators, we save
298 // them to later check if they can be modified to extract from one of the
299 // shufflevectors instead of the load.
301 SmallVector<ShuffleVectorInst *, 4> Shuffles;
302 SmallVector<ExtractElementInst *, 4> Extracts;
303 // BinOpShuffles need to be handled a single time in case both operands of the
304 // binop are the same load.
305 SmallSetVector<ShuffleVectorInst *, 4> BinOpShuffles;
307 for (auto *User : LI->users()) {
308 auto *Extract = dyn_cast<ExtractElementInst>(User);
309 if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
310 Extracts.push_back(Extract);
311 continue;
313 auto *BI = dyn_cast<BinaryOperator>(User);
314 if (BI && BI->hasOneUse()) {
315 if (auto *SVI = dyn_cast<ShuffleVectorInst>(*BI->user_begin())) {
316 BinOpShuffles.insert(SVI);
317 continue;
320 auto *SVI = dyn_cast<ShuffleVectorInst>(User);
321 if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
322 return false;
324 Shuffles.push_back(SVI);
327 if (Shuffles.empty() && BinOpShuffles.empty())
328 return false;
330 unsigned Factor, Index;
332 unsigned NumLoadElements =
333 cast<FixedVectorType>(LI->getType())->getNumElements();
334 auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0];
335 // Check if the first shufflevector is DE-interleave shuffle.
336 if (!isDeInterleaveMask(FirstSVI->getShuffleMask(), Factor, Index, MaxFactor,
337 NumLoadElements))
338 return false;
340 // Holds the corresponding index for each DE-interleave shuffle.
341 SmallVector<unsigned, 4> Indices;
343 Type *VecTy = FirstSVI->getType();
345 // Check if other shufflevectors are also DE-interleaved of the same type
346 // and factor as the first shufflevector.
347 for (auto *Shuffle : Shuffles) {
348 if (Shuffle->getType() != VecTy)
349 return false;
350 if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor,
351 Index))
352 return false;
354 assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
355 Indices.push_back(Index);
357 for (auto *Shuffle : BinOpShuffles) {
358 if (Shuffle->getType() != VecTy)
359 return false;
360 if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor,
361 Index))
362 return false;
364 assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
366 if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(0) == LI)
367 Indices.push_back(Index);
368 if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(1) == LI)
369 Indices.push_back(Index);
372 // Try and modify users of the load that are extractelement instructions to
373 // use the shufflevector instructions instead of the load.
374 if (!tryReplaceExtracts(Extracts, Shuffles))
375 return false;
377 bool BinOpShuffleChanged =
378 replaceBinOpShuffles(BinOpShuffles.getArrayRef(), Shuffles, LI);
380 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
382 // Try to create target specific intrinsics to replace the load and shuffles.
383 if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) {
384 // If Extracts is not empty, tryReplaceExtracts made changes earlier.
385 return !Extracts.empty() || BinOpShuffleChanged;
388 append_range(DeadInsts, Shuffles);
390 DeadInsts.push_back(LI);
391 return true;
394 bool InterleavedAccess::replaceBinOpShuffles(
395 ArrayRef<ShuffleVectorInst *> BinOpShuffles,
396 SmallVectorImpl<ShuffleVectorInst *> &Shuffles, LoadInst *LI) {
397 for (auto *SVI : BinOpShuffles) {
398 BinaryOperator *BI = cast<BinaryOperator>(SVI->getOperand(0));
399 Type *BIOp0Ty = BI->getOperand(0)->getType();
400 ArrayRef<int> Mask = SVI->getShuffleMask();
401 assert(all_of(Mask, [&](int Idx) {
402 return Idx < (int)cast<FixedVectorType>(BIOp0Ty)->getNumElements();
403 }));
405 auto *NewSVI1 =
406 new ShuffleVectorInst(BI->getOperand(0), PoisonValue::get(BIOp0Ty),
407 Mask, SVI->getName(), SVI);
408 auto *NewSVI2 = new ShuffleVectorInst(
409 BI->getOperand(1), PoisonValue::get(BI->getOperand(1)->getType()), Mask,
410 SVI->getName(), SVI);
411 BinaryOperator *NewBI = BinaryOperator::CreateWithCopiedFlags(
412 BI->getOpcode(), NewSVI1, NewSVI2, BI, BI->getName(), SVI);
413 SVI->replaceAllUsesWith(NewBI);
414 LLVM_DEBUG(dbgs() << " Replaced: " << *BI << "\n And : " << *SVI
415 << "\n With : " << *NewSVI1 << "\n And : "
416 << *NewSVI2 << "\n And : " << *NewBI << "\n");
417 RecursivelyDeleteTriviallyDeadInstructions(SVI);
418 if (NewSVI1->getOperand(0) == LI)
419 Shuffles.push_back(NewSVI1);
420 if (NewSVI2->getOperand(0) == LI)
421 Shuffles.push_back(NewSVI2);
424 return !BinOpShuffles.empty();
427 bool InterleavedAccess::tryReplaceExtracts(
428 ArrayRef<ExtractElementInst *> Extracts,
429 ArrayRef<ShuffleVectorInst *> Shuffles) {
430 // If there aren't any extractelement instructions to modify, there's nothing
431 // to do.
432 if (Extracts.empty())
433 return true;
435 // Maps extractelement instructions to vector-index pairs. The extractlement
436 // instructions will be modified to use the new vector and index operands.
437 DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
439 for (auto *Extract : Extracts) {
440 // The vector index that is extracted.
441 auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
442 auto Index = IndexOperand->getSExtValue();
444 // Look for a suitable shufflevector instruction. The goal is to modify the
445 // extractelement instruction (which uses an interleaved load) to use one
446 // of the shufflevector instructions instead of the load.
447 for (auto *Shuffle : Shuffles) {
448 // If the shufflevector instruction doesn't dominate the extract, we
449 // can't create a use of it.
450 if (!DT->dominates(Shuffle, Extract))
451 continue;
453 // Inspect the indices of the shufflevector instruction. If the shuffle
454 // selects the same index that is extracted, we can modify the
455 // extractelement instruction.
456 SmallVector<int, 4> Indices;
457 Shuffle->getShuffleMask(Indices);
458 for (unsigned I = 0; I < Indices.size(); ++I)
459 if (Indices[I] == Index) {
460 assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
461 "Vector operations do not match");
462 ReplacementMap[Extract] = std::make_pair(Shuffle, I);
463 break;
466 // If we found a suitable shufflevector instruction, stop looking.
467 if (ReplacementMap.count(Extract))
468 break;
471 // If we did not find a suitable shufflevector instruction, the
472 // extractelement instruction cannot be modified, so we must give up.
473 if (!ReplacementMap.count(Extract))
474 return false;
477 // Finally, perform the replacements.
478 IRBuilder<> Builder(Extracts[0]->getContext());
479 for (auto &Replacement : ReplacementMap) {
480 auto *Extract = Replacement.first;
481 auto *Vector = Replacement.second.first;
482 auto Index = Replacement.second.second;
483 Builder.SetInsertPoint(Extract);
484 Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
485 Extract->eraseFromParent();
488 return true;
491 bool InterleavedAccess::lowerInterleavedStore(
492 StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
493 if (!SI->isSimple())
494 return false;
496 auto *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
497 if (!SVI || !SVI->hasOneUse() || isa<ScalableVectorType>(SVI->getType()))
498 return false;
500 // Check if the shufflevector is RE-interleave shuffle.
501 unsigned Factor;
502 unsigned OpNumElts =
503 cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
504 if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
505 return false;
507 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
509 // Try to create target specific intrinsics to replace the store and shuffle.
510 if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
511 return false;
513 // Already have a new target specific interleaved store. Erase the old store.
514 DeadInsts.push_back(SI);
515 DeadInsts.push_back(SVI);
516 return true;
519 bool InterleavedAccess::runOnFunction(Function &F) {
520 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
521 if (!TPC || !LowerInterleavedAccesses)
522 return false;
524 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
526 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
527 auto &TM = TPC->getTM<TargetMachine>();
528 TLI = TM.getSubtargetImpl(F)->getTargetLowering();
529 MaxFactor = TLI->getMaxSupportedInterleaveFactor();
531 // Holds dead instructions that will be erased later.
532 SmallVector<Instruction *, 32> DeadInsts;
533 bool Changed = false;
535 for (auto &I : instructions(F)) {
536 if (auto *LI = dyn_cast<LoadInst>(&I))
537 Changed |= lowerInterleavedLoad(LI, DeadInsts);
539 if (auto *SI = dyn_cast<StoreInst>(&I))
540 Changed |= lowerInterleavedStore(SI, DeadInsts);
543 for (auto I : DeadInsts)
544 I->eraseFromParent();
546 return Changed;