1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Interleaved Access pass, which identifies
10 // interleaved memory accesses and transforms them into target specific
13 // An interleaved load reads data from memory into several vectors, with
14 // DE-interleaving the data on a factor. An interleaved store writes several
15 // vectors to memory with RE-interleaving the data on a factor.
17 // As interleaved accesses are difficult to identified in CodeGen (mainly
18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
19 // IR), we identify and transform them to intrinsics in this pass so the
20 // intrinsics can be easily matched into target specific instructions later in
23 // E.g. An interleaved load (Factor = 2):
24 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6>
26 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7>
28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
29 // intrinsic in ARM backend.
31 // In X86, this can be further optimized into a set of target
32 // specific loads followed by an optimized sequence of shuffles.
34 // E.g. An interleaved store (Factor = 3):
35 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
36 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
37 // store <12 x i32> %i.vec, <12 x i32>* %ptr
39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
40 // intrinsic in ARM backend.
42 // Similarly, a set of interleaved stores can be transformed into an optimized
43 // sequence of shuffles followed by a set of target specific stores for X86.
45 //===----------------------------------------------------------------------===//
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/CodeGen/TargetLowering.h"
51 #include "llvm/CodeGen/TargetPassConfig.h"
52 #include "llvm/CodeGen/TargetSubtargetInfo.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstIterator.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Transforms/Utils/Local.h"
75 #define DEBUG_TYPE "interleaved-access"
77 static cl::opt
<bool> LowerInterleavedAccesses(
78 "lower-interleaved-accesses",
79 cl::desc("Enable lowering interleaved accesses to intrinsics"),
80 cl::init(true), cl::Hidden
);
84 class InterleavedAccess
: public FunctionPass
{
88 InterleavedAccess() : FunctionPass(ID
) {
89 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
92 StringRef
getPassName() const override
{ return "Interleaved Access Pass"; }
94 bool runOnFunction(Function
&F
) override
;
96 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
97 AU
.addRequired
<DominatorTreeWrapperPass
>();
102 DominatorTree
*DT
= nullptr;
103 const TargetLowering
*TLI
= nullptr;
105 /// The maximum supported interleave factor.
108 /// Transform an interleaved load into target specific intrinsics.
109 bool lowerInterleavedLoad(LoadInst
*LI
,
110 SmallVector
<Instruction
*, 32> &DeadInsts
);
112 /// Transform an interleaved store into target specific intrinsics.
113 bool lowerInterleavedStore(StoreInst
*SI
,
114 SmallVector
<Instruction
*, 32> &DeadInsts
);
116 /// Returns true if the uses of an interleaved load by the
117 /// extractelement instructions in \p Extracts can be replaced by uses of the
118 /// shufflevector instructions in \p Shuffles instead. If so, the necessary
119 /// replacements are also performed.
120 bool tryReplaceExtracts(ArrayRef
<ExtractElementInst
*> Extracts
,
121 ArrayRef
<ShuffleVectorInst
*> Shuffles
);
123 /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them
124 /// to binop(shuffle(x), shuffle(y)) to allow the formation of an
125 /// interleaving load. Any newly created shuffles that operate on \p LI will
126 /// be added to \p Shuffles. Returns true, if any changes to the IR have been
128 bool replaceBinOpShuffles(ArrayRef
<ShuffleVectorInst
*> BinOpShuffles
,
129 SmallVectorImpl
<ShuffleVectorInst
*> &Shuffles
,
133 } // end anonymous namespace.
135 char InterleavedAccess::ID
= 0;
137 INITIALIZE_PASS_BEGIN(InterleavedAccess
, DEBUG_TYPE
,
138 "Lower interleaved memory accesses to target specific intrinsics", false,
140 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
141 INITIALIZE_PASS_END(InterleavedAccess
, DEBUG_TYPE
,
142 "Lower interleaved memory accesses to target specific intrinsics", false,
145 FunctionPass
*llvm::createInterleavedAccessPass() {
146 return new InterleavedAccess();
149 /// Check if the mask is a DE-interleave mask of the given factor
151 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
152 static bool isDeInterleaveMaskOfFactor(ArrayRef
<int> Mask
, unsigned Factor
,
154 // Check all potential start indices from 0 to (Factor - 1).
155 for (Index
= 0; Index
< Factor
; Index
++) {
158 // Check that elements are in ascending order by Factor. Ignore undef
160 for (; i
< Mask
.size(); i
++)
161 if (Mask
[i
] >= 0 && static_cast<unsigned>(Mask
[i
]) != Index
+ i
* Factor
)
164 if (i
== Mask
.size())
171 /// Check if the mask is a DE-interleave mask for an interleaved load.
173 /// E.g. DE-interleave masks (Factor = 2) could be:
174 /// <0, 2, 4, 6> (mask of index 0 to extract even elements)
175 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
176 static bool isDeInterleaveMask(ArrayRef
<int> Mask
, unsigned &Factor
,
177 unsigned &Index
, unsigned MaxFactor
,
178 unsigned NumLoadElements
) {
182 // Check potential Factors.
183 for (Factor
= 2; Factor
<= MaxFactor
; Factor
++) {
184 // Make sure we don't produce a load wider than the input load.
185 if (Mask
.size() * Factor
> NumLoadElements
)
187 if (isDeInterleaveMaskOfFactor(Mask
, Factor
, Index
))
194 /// Check if the mask can be used in an interleaved store.
196 /// It checks for a more general pattern than the RE-interleave mask.
197 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
198 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
199 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
200 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
202 /// The particular case of an RE-interleave mask is:
203 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
204 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
205 static bool isReInterleaveMask(ArrayRef
<int> Mask
, unsigned &Factor
,
206 unsigned MaxFactor
, unsigned OpNumElts
) {
207 unsigned NumElts
= Mask
.size();
211 // Check potential Factors.
212 for (Factor
= 2; Factor
<= MaxFactor
; Factor
++) {
213 if (NumElts
% Factor
)
216 unsigned LaneLen
= NumElts
/ Factor
;
217 if (!isPowerOf2_32(LaneLen
))
220 // Check whether each element matches the general interleaved rule.
221 // Ignore undef elements, as long as the defined elements match the rule.
222 // Outer loop processes all factors (x, y, z in the above example)
224 for (; I
< Factor
; I
++) {
225 unsigned SavedLaneValue
;
226 unsigned SavedNoUndefs
= 0;
228 // Inner loop processes consecutive accesses (x, x+1... in the example)
229 for (J
= 0; J
< LaneLen
- 1; J
++) {
230 // Lane computes x's position in the Mask
231 unsigned Lane
= J
* Factor
+ I
;
232 unsigned NextLane
= Lane
+ Factor
;
233 int LaneValue
= Mask
[Lane
];
234 int NextLaneValue
= Mask
[NextLane
];
236 // If both are defined, values must be sequential
237 if (LaneValue
>= 0 && NextLaneValue
>= 0 &&
238 LaneValue
+ 1 != NextLaneValue
)
241 // If the next value is undef, save the current one as reference
242 if (LaneValue
>= 0 && NextLaneValue
< 0) {
243 SavedLaneValue
= LaneValue
;
247 // Undefs are allowed, but defined elements must still be consecutive:
248 // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
249 // Verify this by storing the last non-undef followed by an undef
250 // Check that following non-undef masks are incremented with the
251 // corresponding distance.
252 if (SavedNoUndefs
> 0 && LaneValue
< 0) {
254 if (NextLaneValue
>= 0 &&
255 SavedLaneValue
+ SavedNoUndefs
!= (unsigned)NextLaneValue
)
265 // Check that the start of the I range (J=0) is greater than 0
267 } else if (Mask
[(LaneLen
- 1) * Factor
+ I
] >= 0) {
268 // StartMask defined by the last value in lane
269 StartMask
= Mask
[(LaneLen
- 1) * Factor
+ I
] - J
;
270 } else if (SavedNoUndefs
> 0) {
271 // StartMask defined by some non-zero value in the j loop
272 StartMask
= SavedLaneValue
- (LaneLen
- 1 - SavedNoUndefs
);
274 // else StartMask remains set to 0, i.e. all elements are undefs
278 // We must stay within the vectors; This case can happen with undefs.
279 if (StartMask
+ LaneLen
> OpNumElts
*2)
283 // Found an interleaved mask of current factor.
291 bool InterleavedAccess::lowerInterleavedLoad(
292 LoadInst
*LI
, SmallVector
<Instruction
*, 32> &DeadInsts
) {
293 if (!LI
->isSimple() || isa
<ScalableVectorType
>(LI
->getType()))
296 // Check if all users of this load are shufflevectors. If we encounter any
297 // users that are extractelement instructions or binary operators, we save
298 // them to later check if they can be modified to extract from one of the
299 // shufflevectors instead of the load.
301 SmallVector
<ShuffleVectorInst
*, 4> Shuffles
;
302 SmallVector
<ExtractElementInst
*, 4> Extracts
;
303 // BinOpShuffles need to be handled a single time in case both operands of the
304 // binop are the same load.
305 SmallSetVector
<ShuffleVectorInst
*, 4> BinOpShuffles
;
307 for (auto *User
: LI
->users()) {
308 auto *Extract
= dyn_cast
<ExtractElementInst
>(User
);
309 if (Extract
&& isa
<ConstantInt
>(Extract
->getIndexOperand())) {
310 Extracts
.push_back(Extract
);
313 auto *BI
= dyn_cast
<BinaryOperator
>(User
);
314 if (BI
&& BI
->hasOneUse()) {
315 if (auto *SVI
= dyn_cast
<ShuffleVectorInst
>(*BI
->user_begin())) {
316 BinOpShuffles
.insert(SVI
);
320 auto *SVI
= dyn_cast
<ShuffleVectorInst
>(User
);
321 if (!SVI
|| !isa
<UndefValue
>(SVI
->getOperand(1)))
324 Shuffles
.push_back(SVI
);
327 if (Shuffles
.empty() && BinOpShuffles
.empty())
330 unsigned Factor
, Index
;
332 unsigned NumLoadElements
=
333 cast
<FixedVectorType
>(LI
->getType())->getNumElements();
334 auto *FirstSVI
= Shuffles
.size() > 0 ? Shuffles
[0] : BinOpShuffles
[0];
335 // Check if the first shufflevector is DE-interleave shuffle.
336 if (!isDeInterleaveMask(FirstSVI
->getShuffleMask(), Factor
, Index
, MaxFactor
,
340 // Holds the corresponding index for each DE-interleave shuffle.
341 SmallVector
<unsigned, 4> Indices
;
343 Type
*VecTy
= FirstSVI
->getType();
345 // Check if other shufflevectors are also DE-interleaved of the same type
346 // and factor as the first shufflevector.
347 for (auto *Shuffle
: Shuffles
) {
348 if (Shuffle
->getType() != VecTy
)
350 if (!isDeInterleaveMaskOfFactor(Shuffle
->getShuffleMask(), Factor
,
354 assert(Shuffle
->getShuffleMask().size() <= NumLoadElements
);
355 Indices
.push_back(Index
);
357 for (auto *Shuffle
: BinOpShuffles
) {
358 if (Shuffle
->getType() != VecTy
)
360 if (!isDeInterleaveMaskOfFactor(Shuffle
->getShuffleMask(), Factor
,
364 assert(Shuffle
->getShuffleMask().size() <= NumLoadElements
);
366 if (cast
<Instruction
>(Shuffle
->getOperand(0))->getOperand(0) == LI
)
367 Indices
.push_back(Index
);
368 if (cast
<Instruction
>(Shuffle
->getOperand(0))->getOperand(1) == LI
)
369 Indices
.push_back(Index
);
372 // Try and modify users of the load that are extractelement instructions to
373 // use the shufflevector instructions instead of the load.
374 if (!tryReplaceExtracts(Extracts
, Shuffles
))
377 bool BinOpShuffleChanged
=
378 replaceBinOpShuffles(BinOpShuffles
.getArrayRef(), Shuffles
, LI
);
380 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI
<< "\n");
382 // Try to create target specific intrinsics to replace the load and shuffles.
383 if (!TLI
->lowerInterleavedLoad(LI
, Shuffles
, Indices
, Factor
)) {
384 // If Extracts is not empty, tryReplaceExtracts made changes earlier.
385 return !Extracts
.empty() || BinOpShuffleChanged
;
388 append_range(DeadInsts
, Shuffles
);
390 DeadInsts
.push_back(LI
);
394 bool InterleavedAccess::replaceBinOpShuffles(
395 ArrayRef
<ShuffleVectorInst
*> BinOpShuffles
,
396 SmallVectorImpl
<ShuffleVectorInst
*> &Shuffles
, LoadInst
*LI
) {
397 for (auto *SVI
: BinOpShuffles
) {
398 BinaryOperator
*BI
= cast
<BinaryOperator
>(SVI
->getOperand(0));
399 Type
*BIOp0Ty
= BI
->getOperand(0)->getType();
400 ArrayRef
<int> Mask
= SVI
->getShuffleMask();
401 assert(all_of(Mask
, [&](int Idx
) {
402 return Idx
< (int)cast
<FixedVectorType
>(BIOp0Ty
)->getNumElements();
406 new ShuffleVectorInst(BI
->getOperand(0), PoisonValue::get(BIOp0Ty
),
407 Mask
, SVI
->getName(), SVI
);
408 auto *NewSVI2
= new ShuffleVectorInst(
409 BI
->getOperand(1), PoisonValue::get(BI
->getOperand(1)->getType()), Mask
,
410 SVI
->getName(), SVI
);
411 BinaryOperator
*NewBI
= BinaryOperator::CreateWithCopiedFlags(
412 BI
->getOpcode(), NewSVI1
, NewSVI2
, BI
, BI
->getName(), SVI
);
413 SVI
->replaceAllUsesWith(NewBI
);
414 LLVM_DEBUG(dbgs() << " Replaced: " << *BI
<< "\n And : " << *SVI
415 << "\n With : " << *NewSVI1
<< "\n And : "
416 << *NewSVI2
<< "\n And : " << *NewBI
<< "\n");
417 RecursivelyDeleteTriviallyDeadInstructions(SVI
);
418 if (NewSVI1
->getOperand(0) == LI
)
419 Shuffles
.push_back(NewSVI1
);
420 if (NewSVI2
->getOperand(0) == LI
)
421 Shuffles
.push_back(NewSVI2
);
424 return !BinOpShuffles
.empty();
427 bool InterleavedAccess::tryReplaceExtracts(
428 ArrayRef
<ExtractElementInst
*> Extracts
,
429 ArrayRef
<ShuffleVectorInst
*> Shuffles
) {
430 // If there aren't any extractelement instructions to modify, there's nothing
432 if (Extracts
.empty())
435 // Maps extractelement instructions to vector-index pairs. The extractlement
436 // instructions will be modified to use the new vector and index operands.
437 DenseMap
<ExtractElementInst
*, std::pair
<Value
*, int>> ReplacementMap
;
439 for (auto *Extract
: Extracts
) {
440 // The vector index that is extracted.
441 auto *IndexOperand
= cast
<ConstantInt
>(Extract
->getIndexOperand());
442 auto Index
= IndexOperand
->getSExtValue();
444 // Look for a suitable shufflevector instruction. The goal is to modify the
445 // extractelement instruction (which uses an interleaved load) to use one
446 // of the shufflevector instructions instead of the load.
447 for (auto *Shuffle
: Shuffles
) {
448 // If the shufflevector instruction doesn't dominate the extract, we
449 // can't create a use of it.
450 if (!DT
->dominates(Shuffle
, Extract
))
453 // Inspect the indices of the shufflevector instruction. If the shuffle
454 // selects the same index that is extracted, we can modify the
455 // extractelement instruction.
456 SmallVector
<int, 4> Indices
;
457 Shuffle
->getShuffleMask(Indices
);
458 for (unsigned I
= 0; I
< Indices
.size(); ++I
)
459 if (Indices
[I
] == Index
) {
460 assert(Extract
->getOperand(0) == Shuffle
->getOperand(0) &&
461 "Vector operations do not match");
462 ReplacementMap
[Extract
] = std::make_pair(Shuffle
, I
);
466 // If we found a suitable shufflevector instruction, stop looking.
467 if (ReplacementMap
.count(Extract
))
471 // If we did not find a suitable shufflevector instruction, the
472 // extractelement instruction cannot be modified, so we must give up.
473 if (!ReplacementMap
.count(Extract
))
477 // Finally, perform the replacements.
478 IRBuilder
<> Builder(Extracts
[0]->getContext());
479 for (auto &Replacement
: ReplacementMap
) {
480 auto *Extract
= Replacement
.first
;
481 auto *Vector
= Replacement
.second
.first
;
482 auto Index
= Replacement
.second
.second
;
483 Builder
.SetInsertPoint(Extract
);
484 Extract
->replaceAllUsesWith(Builder
.CreateExtractElement(Vector
, Index
));
485 Extract
->eraseFromParent();
491 bool InterleavedAccess::lowerInterleavedStore(
492 StoreInst
*SI
, SmallVector
<Instruction
*, 32> &DeadInsts
) {
496 auto *SVI
= dyn_cast
<ShuffleVectorInst
>(SI
->getValueOperand());
497 if (!SVI
|| !SVI
->hasOneUse() || isa
<ScalableVectorType
>(SVI
->getType()))
500 // Check if the shufflevector is RE-interleave shuffle.
503 cast
<FixedVectorType
>(SVI
->getOperand(0)->getType())->getNumElements();
504 if (!isReInterleaveMask(SVI
->getShuffleMask(), Factor
, MaxFactor
, OpNumElts
))
507 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI
<< "\n");
509 // Try to create target specific intrinsics to replace the store and shuffle.
510 if (!TLI
->lowerInterleavedStore(SI
, SVI
, Factor
))
513 // Already have a new target specific interleaved store. Erase the old store.
514 DeadInsts
.push_back(SI
);
515 DeadInsts
.push_back(SVI
);
519 bool InterleavedAccess::runOnFunction(Function
&F
) {
520 auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>();
521 if (!TPC
|| !LowerInterleavedAccesses
)
524 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F
.getName() << "\n");
526 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
527 auto &TM
= TPC
->getTM
<TargetMachine
>();
528 TLI
= TM
.getSubtargetImpl(F
)->getTargetLowering();
529 MaxFactor
= TLI
->getMaxSupportedInterleaveFactor();
531 // Holds dead instructions that will be erased later.
532 SmallVector
<Instruction
*, 32> DeadInsts
;
533 bool Changed
= false;
535 for (auto &I
: instructions(F
)) {
536 if (auto *LI
= dyn_cast
<LoadInst
>(&I
))
537 Changed
|= lowerInterleavedLoad(LI
, DeadInsts
);
539 if (auto *SI
= dyn_cast
<StoreInst
>(&I
))
540 Changed
|= lowerInterleavedStore(SI
, DeadInsts
);
543 for (auto I
: DeadInsts
)
544 I
->eraseFromParent();