1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
25 //===----------------------------------------------------------------------===//
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
39 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineLoopInfo.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/MachineSizeOpts.h"
46 #include "llvm/CodeGen/TailDuplicator.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetLowering.h"
49 #include "llvm/CodeGen/TargetPassConfig.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Allocator.h"
56 #include "llvm/Support/BlockFrequency.h"
57 #include "llvm/Support/BranchProbability.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetMachine.h"
64 #include "llvm/Transforms/Utils/CodeLayout.h"
77 #define DEBUG_TYPE "block-placement"
79 STATISTIC(NumCondBranches
, "Number of conditional branches");
80 STATISTIC(NumUncondBranches
, "Number of unconditional branches");
81 STATISTIC(CondBranchTakenFreq
,
82 "Potential frequency of taking conditional branches");
83 STATISTIC(UncondBranchTakenFreq
,
84 "Potential frequency of taking unconditional branches");
86 static cl::opt
<unsigned> AlignAllBlock(
88 cl::desc("Force the alignment of all blocks in the function in log2 format "
89 "(e.g 4 means align on 16B boundaries)."),
90 cl::init(0), cl::Hidden
);
92 static cl::opt
<unsigned> AlignAllNonFallThruBlocks(
93 "align-all-nofallthru-blocks",
94 cl::desc("Force the alignment of all blocks that have no fall-through "
95 "predecessors (i.e. don't add nops that are executed). In log2 "
96 "format (e.g 4 means align on 16B boundaries)."),
97 cl::init(0), cl::Hidden
);
99 static cl::opt
<unsigned> MaxBytesForAlignmentOverride(
100 "max-bytes-for-alignment",
101 cl::desc("Forces the maximum bytes allowed to be emitted when padding for "
103 cl::init(0), cl::Hidden
);
105 // FIXME: Find a good default for this flag and remove the flag.
106 static cl::opt
<unsigned> ExitBlockBias(
107 "block-placement-exit-block-bias",
108 cl::desc("Block frequency percentage a loop exit block needs "
109 "over the original exit to be considered the new exit."),
110 cl::init(0), cl::Hidden
);
113 // - Outlining: placement of a basic block outside the chain or hot path.
115 static cl::opt
<unsigned> LoopToColdBlockRatio(
116 "loop-to-cold-block-ratio",
117 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
118 "(frequency of block) is greater than this ratio"),
119 cl::init(5), cl::Hidden
);
121 static cl::opt
<bool> ForceLoopColdBlock(
122 "force-loop-cold-block",
123 cl::desc("Force outlining cold blocks from loops."),
124 cl::init(false), cl::Hidden
);
127 PreciseRotationCost("precise-rotation-cost",
128 cl::desc("Model the cost of loop rotation more "
129 "precisely by using profile data."),
130 cl::init(false), cl::Hidden
);
133 ForcePreciseRotationCost("force-precise-rotation-cost",
134 cl::desc("Force the use of precise cost "
135 "loop rotation strategy."),
136 cl::init(false), cl::Hidden
);
138 static cl::opt
<unsigned> MisfetchCost(
140 cl::desc("Cost that models the probabilistic risk of an instruction "
141 "misfetch due to a jump comparing to falling through, whose cost "
143 cl::init(1), cl::Hidden
);
145 static cl::opt
<unsigned> JumpInstCost("jump-inst-cost",
146 cl::desc("Cost of jump instructions."),
147 cl::init(1), cl::Hidden
);
149 TailDupPlacement("tail-dup-placement",
150 cl::desc("Perform tail duplication during placement. "
151 "Creates more fallthrough opportunites in "
152 "outline branches."),
153 cl::init(true), cl::Hidden
);
156 BranchFoldPlacement("branch-fold-placement",
157 cl::desc("Perform branch folding during placement. "
158 "Reduces code size."),
159 cl::init(true), cl::Hidden
);
161 // Heuristic for tail duplication.
162 static cl::opt
<unsigned> TailDupPlacementThreshold(
163 "tail-dup-placement-threshold",
164 cl::desc("Instruction cutoff for tail duplication during layout. "
165 "Tail merging during layout is forced to have a threshold "
166 "that won't conflict."), cl::init(2),
169 // Heuristic for aggressive tail duplication.
170 static cl::opt
<unsigned> TailDupPlacementAggressiveThreshold(
171 "tail-dup-placement-aggressive-threshold",
172 cl::desc("Instruction cutoff for aggressive tail duplication during "
173 "layout. Used at -O3. Tail merging during layout is forced to "
174 "have a threshold that won't conflict."), cl::init(4),
177 // Heuristic for tail duplication.
178 static cl::opt
<unsigned> TailDupPlacementPenalty(
179 "tail-dup-placement-penalty",
180 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
181 "Copying can increase fallthrough, but it also increases icache "
182 "pressure. This parameter controls the penalty to account for that. "
183 "Percent as integer."),
187 // Heuristic for tail duplication if profile count is used in cost model.
188 static cl::opt
<unsigned> TailDupProfilePercentThreshold(
189 "tail-dup-profile-percent-threshold",
190 cl::desc("If profile count information is used in tail duplication cost "
191 "model, the gained fall through number from tail duplication "
192 "should be at least this percent of hot count."),
193 cl::init(50), cl::Hidden
);
195 // Heuristic for triangle chains.
196 static cl::opt
<unsigned> TriangleChainCount(
197 "triangle-chain-count",
198 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
199 "triangle tail duplication heuristic to kick in. 0 to disable."),
203 static cl::opt
<bool> EnableExtTspBlockPlacement(
204 "enable-ext-tsp-block-placement", cl::Hidden
, cl::init(false),
205 cl::desc("Enable machine block placement based on the ext-tsp model, "
206 "optimizing I-cache utilization."));
209 extern cl::opt
<unsigned> StaticLikelyProb
;
210 extern cl::opt
<unsigned> ProfileLikelyProb
;
212 // Internal option used to control BFI display only after MBP pass.
213 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
214 // -view-block-layout-with-bfi=
215 extern cl::opt
<GVDAGType
> ViewBlockLayoutWithBFI
;
217 // Command line option to specify the name of the function for CFG dump
218 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
219 extern cl::opt
<std::string
> ViewBlockFreqFuncName
;
226 /// Type for our function-wide basic block -> block chain mapping.
227 using BlockToChainMapType
= DenseMap
<const MachineBasicBlock
*, BlockChain
*>;
229 /// A chain of blocks which will be laid out contiguously.
231 /// This is the datastructure representing a chain of consecutive blocks that
232 /// are profitable to layout together in order to maximize fallthrough
233 /// probabilities and code locality. We also can use a block chain to represent
234 /// a sequence of basic blocks which have some external (correctness)
235 /// requirement for sequential layout.
237 /// Chains can be built around a single basic block and can be merged to grow
238 /// them. They participate in a block-to-chain mapping, which is updated
239 /// automatically as chains are merged together.
241 /// The sequence of blocks belonging to this chain.
243 /// This is the sequence of blocks for a particular chain. These will be laid
244 /// out in-order within the function.
245 SmallVector
<MachineBasicBlock
*, 4> Blocks
;
247 /// A handle to the function-wide basic block to block chain mapping.
249 /// This is retained in each block chain to simplify the computation of child
250 /// block chains for SCC-formation and iteration. We store the edges to child
251 /// basic blocks, and map them back to their associated chains using this
253 BlockToChainMapType
&BlockToChain
;
256 /// Construct a new BlockChain.
258 /// This builds a new block chain representing a single basic block in the
259 /// function. It also registers itself as the chain that block participates
260 /// in with the BlockToChain mapping.
261 BlockChain(BlockToChainMapType
&BlockToChain
, MachineBasicBlock
*BB
)
262 : Blocks(1, BB
), BlockToChain(BlockToChain
) {
263 assert(BB
&& "Cannot create a chain with a null basic block");
264 BlockToChain
[BB
] = this;
267 /// Iterator over blocks within the chain.
268 using iterator
= SmallVectorImpl
<MachineBasicBlock
*>::iterator
;
269 using const_iterator
= SmallVectorImpl
<MachineBasicBlock
*>::const_iterator
;
271 /// Beginning of blocks within the chain.
272 iterator
begin() { return Blocks
.begin(); }
273 const_iterator
begin() const { return Blocks
.begin(); }
275 /// End of blocks within the chain.
276 iterator
end() { return Blocks
.end(); }
277 const_iterator
end() const { return Blocks
.end(); }
279 bool remove(MachineBasicBlock
* BB
) {
280 for(iterator i
= begin(); i
!= end(); ++i
) {
289 /// Merge a block chain into this one.
291 /// This routine merges a block chain into this one. It takes care of forming
292 /// a contiguous sequence of basic blocks, updating the edge list, and
293 /// updating the block -> chain mapping. It does not free or tear down the
294 /// old chain, but the old chain's block list is no longer valid.
295 void merge(MachineBasicBlock
*BB
, BlockChain
*Chain
) {
296 assert(BB
&& "Can't merge a null block.");
297 assert(!Blocks
.empty() && "Can't merge into an empty chain.");
299 // Fast path in case we don't have a chain already.
301 assert(!BlockToChain
[BB
] &&
302 "Passed chain is null, but BB has entry in BlockToChain.");
303 Blocks
.push_back(BB
);
304 BlockToChain
[BB
] = this;
308 assert(BB
== *Chain
->begin() && "Passed BB is not head of Chain.");
309 assert(Chain
->begin() != Chain
->end());
311 // Update the incoming blocks to point to this chain, and add them to the
313 for (MachineBasicBlock
*ChainBB
: *Chain
) {
314 Blocks
.push_back(ChainBB
);
315 assert(BlockToChain
[ChainBB
] == Chain
&& "Incoming blocks not in chain.");
316 BlockToChain
[ChainBB
] = this;
321 /// Dump the blocks in this chain.
322 LLVM_DUMP_METHOD
void dump() {
323 for (MachineBasicBlock
*MBB
: *this)
328 /// Count of predecessors of any block within the chain which have not
329 /// yet been scheduled. In general, we will delay scheduling this chain
330 /// until those predecessors are scheduled (or we find a sufficiently good
331 /// reason to override this heuristic.) Note that when forming loop chains,
332 /// blocks outside the loop are ignored and treated as if they were already
335 /// Note: This field is reinitialized multiple times - once for each loop,
336 /// and then once for the function as a whole.
337 unsigned UnscheduledPredecessors
= 0;
340 class MachineBlockPlacement
: public MachineFunctionPass
{
341 /// A type for a block filter set.
342 using BlockFilterSet
= SmallSetVector
<const MachineBasicBlock
*, 16>;
344 /// Pair struct containing basic block and taildup profitability
345 struct BlockAndTailDupResult
{
346 MachineBasicBlock
*BB
;
350 /// Triple struct containing edge weight and the edge.
351 struct WeightedEdge
{
352 BlockFrequency Weight
;
353 MachineBasicBlock
*Src
;
354 MachineBasicBlock
*Dest
;
357 /// work lists of blocks that are ready to be laid out
358 SmallVector
<MachineBasicBlock
*, 16> BlockWorkList
;
359 SmallVector
<MachineBasicBlock
*, 16> EHPadWorkList
;
361 /// Edges that have already been computed as optimal.
362 DenseMap
<const MachineBasicBlock
*, BlockAndTailDupResult
> ComputedEdges
;
367 /// A handle to the branch probability pass.
368 const MachineBranchProbabilityInfo
*MBPI
;
370 /// A handle to the function-wide block frequency pass.
371 std::unique_ptr
<MBFIWrapper
> MBFI
;
373 /// A handle to the loop info.
374 MachineLoopInfo
*MLI
;
376 /// Preferred loop exit.
377 /// Member variable for convenience. It may be removed by duplication deep
378 /// in the call stack.
379 MachineBasicBlock
*PreferredLoopExit
;
381 /// A handle to the target's instruction info.
382 const TargetInstrInfo
*TII
;
384 /// A handle to the target's lowering info.
385 const TargetLoweringBase
*TLI
;
387 /// A handle to the post dominator tree.
388 MachinePostDominatorTree
*MPDT
;
390 ProfileSummaryInfo
*PSI
;
392 /// Duplicator used to duplicate tails during placement.
394 /// Placement decisions can open up new tail duplication opportunities, but
395 /// since tail duplication affects placement decisions of later blocks, it
396 /// must be done inline.
397 TailDuplicator TailDup
;
399 /// Partial tail duplication threshold.
400 BlockFrequency DupThreshold
;
402 /// True: use block profile count to compute tail duplication cost.
403 /// False: use block frequency to compute tail duplication cost.
404 bool UseProfileCount
;
406 /// Allocator and owner of BlockChain structures.
408 /// We build BlockChains lazily while processing the loop structure of
409 /// a function. To reduce malloc traffic, we allocate them using this
410 /// slab-like allocator, and destroy them after the pass completes. An
411 /// important guarantee is that this allocator produces stable pointers to
413 SpecificBumpPtrAllocator
<BlockChain
> ChainAllocator
;
415 /// Function wide BasicBlock to BlockChain mapping.
417 /// This mapping allows efficiently moving from any given basic block to the
418 /// BlockChain it participates in, if any. We use it to, among other things,
419 /// allow implicitly defining edges between chains as the existing edges
420 /// between basic blocks.
421 DenseMap
<const MachineBasicBlock
*, BlockChain
*> BlockToChain
;
424 /// The set of basic blocks that have terminators that cannot be fully
425 /// analyzed. These basic blocks cannot be re-ordered safely by
426 /// MachineBlockPlacement, and we must preserve physical layout of these
427 /// blocks and their successors through the pass.
428 SmallPtrSet
<MachineBasicBlock
*, 4> BlocksWithUnanalyzableExits
;
431 /// Get block profile count or frequency according to UseProfileCount.
432 /// The return value is used to model tail duplication cost.
433 BlockFrequency
getBlockCountOrFrequency(const MachineBasicBlock
*BB
) {
434 if (UseProfileCount
) {
435 auto Count
= MBFI
->getBlockProfileCount(BB
);
441 return MBFI
->getBlockFreq(BB
);
444 /// Scale the DupThreshold according to basic block size.
445 BlockFrequency
scaleThreshold(MachineBasicBlock
*BB
);
446 void initDupThreshold();
448 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
449 /// if the count goes to 0, add them to the appropriate work list.
450 void markChainSuccessors(
451 const BlockChain
&Chain
, const MachineBasicBlock
*LoopHeaderBB
,
452 const BlockFilterSet
*BlockFilter
= nullptr);
454 /// Decrease the UnscheduledPredecessors count for a single block, and
455 /// if the count goes to 0, add them to the appropriate work list.
456 void markBlockSuccessors(
457 const BlockChain
&Chain
, const MachineBasicBlock
*BB
,
458 const MachineBasicBlock
*LoopHeaderBB
,
459 const BlockFilterSet
*BlockFilter
= nullptr);
462 collectViableSuccessors(
463 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
464 const BlockFilterSet
*BlockFilter
,
465 SmallVector
<MachineBasicBlock
*, 4> &Successors
);
466 bool isBestSuccessor(MachineBasicBlock
*BB
, MachineBasicBlock
*Pred
,
467 BlockFilterSet
*BlockFilter
);
468 void findDuplicateCandidates(SmallVectorImpl
<MachineBasicBlock
*> &Candidates
,
469 MachineBasicBlock
*BB
,
470 BlockFilterSet
*BlockFilter
);
471 bool repeatedlyTailDuplicateBlock(
472 MachineBasicBlock
*BB
, MachineBasicBlock
*&LPred
,
473 const MachineBasicBlock
*LoopHeaderBB
,
474 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
475 MachineFunction::iterator
&PrevUnplacedBlockIt
);
476 bool maybeTailDuplicateBlock(
477 MachineBasicBlock
*BB
, MachineBasicBlock
*LPred
,
478 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
479 MachineFunction::iterator
&PrevUnplacedBlockIt
,
480 bool &DuplicatedToLPred
);
481 bool hasBetterLayoutPredecessor(
482 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
483 const BlockChain
&SuccChain
, BranchProbability SuccProb
,
484 BranchProbability RealSuccProb
, const BlockChain
&Chain
,
485 const BlockFilterSet
*BlockFilter
);
486 BlockAndTailDupResult
selectBestSuccessor(
487 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
488 const BlockFilterSet
*BlockFilter
);
489 MachineBasicBlock
*selectBestCandidateBlock(
490 const BlockChain
&Chain
, SmallVectorImpl
<MachineBasicBlock
*> &WorkList
);
491 MachineBasicBlock
*getFirstUnplacedBlock(
492 const BlockChain
&PlacedChain
,
493 MachineFunction::iterator
&PrevUnplacedBlockIt
,
494 const BlockFilterSet
*BlockFilter
);
496 /// Add a basic block to the work list if it is appropriate.
498 /// If the optional parameter BlockFilter is provided, only MBB
499 /// present in the set will be added to the worklist. If nullptr
500 /// is provided, no filtering occurs.
501 void fillWorkLists(const MachineBasicBlock
*MBB
,
502 SmallPtrSetImpl
<BlockChain
*> &UpdatedPreds
,
503 const BlockFilterSet
*BlockFilter
);
505 void buildChain(const MachineBasicBlock
*BB
, BlockChain
&Chain
,
506 BlockFilterSet
*BlockFilter
= nullptr);
507 bool canMoveBottomBlockToTop(const MachineBasicBlock
*BottomBlock
,
508 const MachineBasicBlock
*OldTop
);
509 bool hasViableTopFallthrough(const MachineBasicBlock
*Top
,
510 const BlockFilterSet
&LoopBlockSet
);
511 BlockFrequency
TopFallThroughFreq(const MachineBasicBlock
*Top
,
512 const BlockFilterSet
&LoopBlockSet
);
513 BlockFrequency
FallThroughGains(const MachineBasicBlock
*NewTop
,
514 const MachineBasicBlock
*OldTop
,
515 const MachineBasicBlock
*ExitBB
,
516 const BlockFilterSet
&LoopBlockSet
);
517 MachineBasicBlock
*findBestLoopTopHelper(MachineBasicBlock
*OldTop
,
518 const MachineLoop
&L
, const BlockFilterSet
&LoopBlockSet
);
519 MachineBasicBlock
*findBestLoopTop(
520 const MachineLoop
&L
, const BlockFilterSet
&LoopBlockSet
);
521 MachineBasicBlock
*findBestLoopExit(
522 const MachineLoop
&L
, const BlockFilterSet
&LoopBlockSet
,
523 BlockFrequency
&ExitFreq
);
524 BlockFilterSet
collectLoopBlockSet(const MachineLoop
&L
);
525 void buildLoopChains(const MachineLoop
&L
);
527 BlockChain
&LoopChain
, const MachineBasicBlock
*ExitingBB
,
528 BlockFrequency ExitFreq
, const BlockFilterSet
&LoopBlockSet
);
529 void rotateLoopWithProfile(
530 BlockChain
&LoopChain
, const MachineLoop
&L
,
531 const BlockFilterSet
&LoopBlockSet
);
532 void buildCFGChains();
533 void optimizeBranches();
535 /// Returns true if a block should be tail-duplicated to increase fallthrough
537 bool shouldTailDuplicate(MachineBasicBlock
*BB
);
538 /// Check the edge frequencies to see if tail duplication will increase
540 bool isProfitableToTailDup(
541 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
542 BranchProbability QProb
,
543 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
);
545 /// Check for a trellis layout.
546 bool isTrellis(const MachineBasicBlock
*BB
,
547 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
548 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
);
550 /// Get the best successor given a trellis layout.
551 BlockAndTailDupResult
getBestTrellisSuccessor(
552 const MachineBasicBlock
*BB
,
553 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
554 BranchProbability AdjustedSumProb
, const BlockChain
&Chain
,
555 const BlockFilterSet
*BlockFilter
);
557 /// Get the best pair of non-conflicting edges.
558 static std::pair
<WeightedEdge
, WeightedEdge
> getBestNonConflictingEdges(
559 const MachineBasicBlock
*BB
,
560 MutableArrayRef
<SmallVector
<WeightedEdge
, 8>> Edges
);
562 /// Returns true if a block can tail duplicate into all unplaced
563 /// predecessors. Filters based on loop.
564 bool canTailDuplicateUnplacedPreds(
565 const MachineBasicBlock
*BB
, MachineBasicBlock
*Succ
,
566 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
);
568 /// Find chains of triangles to tail-duplicate where a global analysis works,
569 /// but a local analysis would not find them.
570 void precomputeTriangleChains();
572 /// Apply a post-processing step optimizing block placement.
575 /// Modify the existing block placement in the function and adjust all jumps.
576 void assignBlockOrder(const std::vector
<const MachineBasicBlock
*> &NewOrder
);
578 /// Create a single CFG chain from the current block order.
579 void createCFGChainExtTsp();
582 static char ID
; // Pass identification, replacement for typeid
584 MachineBlockPlacement() : MachineFunctionPass(ID
) {
585 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
588 bool runOnMachineFunction(MachineFunction
&F
) override
;
590 bool allowTailDupPlacement() const {
592 return TailDupPlacement
&& !F
->getTarget().requiresStructuredCFG();
595 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
596 AU
.addRequired
<MachineBranchProbabilityInfo
>();
597 AU
.addRequired
<MachineBlockFrequencyInfo
>();
598 if (TailDupPlacement
)
599 AU
.addRequired
<MachinePostDominatorTree
>();
600 AU
.addRequired
<MachineLoopInfo
>();
601 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
602 AU
.addRequired
<TargetPassConfig
>();
603 MachineFunctionPass::getAnalysisUsage(AU
);
607 } // end anonymous namespace
609 char MachineBlockPlacement::ID
= 0;
611 char &llvm::MachineBlockPlacementID
= MachineBlockPlacement::ID
;
613 INITIALIZE_PASS_BEGIN(MachineBlockPlacement
, DEBUG_TYPE
,
614 "Branch Probability Basic Block Placement", false, false)
615 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
616 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo
)
617 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree
)
618 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
619 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
620 INITIALIZE_PASS_END(MachineBlockPlacement
, DEBUG_TYPE
,
621 "Branch Probability Basic Block Placement", false, false)
624 /// Helper to print the name of a MBB.
626 /// Only used by debug logging.
627 static std::string
getBlockName(const MachineBasicBlock
*BB
) {
629 raw_string_ostream
OS(Result
);
630 OS
<< printMBBReference(*BB
);
631 OS
<< " ('" << BB
->getName() << "')";
637 /// Mark a chain's successors as having one fewer preds.
639 /// When a chain is being merged into the "placed" chain, this routine will
640 /// quickly walk the successors of each block in the chain and mark them as
641 /// having one fewer active predecessor. It also adds any successors of this
642 /// chain which reach the zero-predecessor state to the appropriate worklist.
643 void MachineBlockPlacement::markChainSuccessors(
644 const BlockChain
&Chain
, const MachineBasicBlock
*LoopHeaderBB
,
645 const BlockFilterSet
*BlockFilter
) {
646 // Walk all the blocks in this chain, marking their successors as having
647 // a predecessor placed.
648 for (MachineBasicBlock
*MBB
: Chain
) {
649 markBlockSuccessors(Chain
, MBB
, LoopHeaderBB
, BlockFilter
);
653 /// Mark a single block's successors as having one fewer preds.
655 /// Under normal circumstances, this is only called by markChainSuccessors,
656 /// but if a block that was to be placed is completely tail-duplicated away,
657 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
658 /// for just that block.
659 void MachineBlockPlacement::markBlockSuccessors(
660 const BlockChain
&Chain
, const MachineBasicBlock
*MBB
,
661 const MachineBasicBlock
*LoopHeaderBB
, const BlockFilterSet
*BlockFilter
) {
662 // Add any successors for which this is the only un-placed in-loop
663 // predecessor to the worklist as a viable candidate for CFG-neutral
664 // placement. No subsequent placement of this block will violate the CFG
665 // shape, so we get to use heuristics to choose a favorable placement.
666 for (MachineBasicBlock
*Succ
: MBB
->successors()) {
667 if (BlockFilter
&& !BlockFilter
->count(Succ
))
669 BlockChain
&SuccChain
= *BlockToChain
[Succ
];
670 // Disregard edges within a fixed chain, or edges to the loop header.
671 if (&Chain
== &SuccChain
|| Succ
== LoopHeaderBB
)
674 // This is a cross-chain edge that is within the loop, so decrement the
675 // loop predecessor count of the destination chain.
676 if (SuccChain
.UnscheduledPredecessors
== 0 ||
677 --SuccChain
.UnscheduledPredecessors
> 0)
680 auto *NewBB
= *SuccChain
.begin();
681 if (NewBB
->isEHPad())
682 EHPadWorkList
.push_back(NewBB
);
684 BlockWorkList
.push_back(NewBB
);
688 /// This helper function collects the set of successors of block
689 /// \p BB that are allowed to be its layout successors, and return
690 /// the total branch probability of edges from \p BB to those
692 BranchProbability
MachineBlockPlacement::collectViableSuccessors(
693 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
694 const BlockFilterSet
*BlockFilter
,
695 SmallVector
<MachineBasicBlock
*, 4> &Successors
) {
696 // Adjust edge probabilities by excluding edges pointing to blocks that is
697 // either not in BlockFilter or is already in the current chain. Consider the
706 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
707 // A->C is chosen as a fall-through, D won't be selected as a successor of C
708 // due to CFG constraint (the probability of C->D is not greater than
709 // HotProb to break topo-order). If we exclude E that is not in BlockFilter
710 // when calculating the probability of C->D, D will be selected and we
711 // will get A C D B as the layout of this loop.
712 auto AdjustedSumProb
= BranchProbability::getOne();
713 for (MachineBasicBlock
*Succ
: BB
->successors()) {
714 bool SkipSucc
= false;
715 if (Succ
->isEHPad() || (BlockFilter
&& !BlockFilter
->count(Succ
))) {
718 BlockChain
*SuccChain
= BlockToChain
[Succ
];
719 if (SuccChain
== &Chain
) {
721 } else if (Succ
!= *SuccChain
->begin()) {
722 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ
)
723 << " -> Mid chain!\n");
728 AdjustedSumProb
-= MBPI
->getEdgeProbability(BB
, Succ
);
730 Successors
.push_back(Succ
);
733 return AdjustedSumProb
;
736 /// The helper function returns the branch probability that is adjusted
737 /// or normalized over the new total \p AdjustedSumProb.
738 static BranchProbability
739 getAdjustedProbability(BranchProbability OrigProb
,
740 BranchProbability AdjustedSumProb
) {
741 BranchProbability SuccProb
;
742 uint32_t SuccProbN
= OrigProb
.getNumerator();
743 uint32_t SuccProbD
= AdjustedSumProb
.getNumerator();
744 if (SuccProbN
>= SuccProbD
)
745 SuccProb
= BranchProbability::getOne();
747 SuccProb
= BranchProbability(SuccProbN
, SuccProbD
);
752 /// Check if \p BB has exactly the successors in \p Successors.
754 hasSameSuccessors(MachineBasicBlock
&BB
,
755 SmallPtrSetImpl
<const MachineBasicBlock
*> &Successors
) {
756 if (BB
.succ_size() != Successors
.size())
758 // We don't want to count self-loops
759 if (Successors
.count(&BB
))
761 for (MachineBasicBlock
*Succ
: BB
.successors())
762 if (!Successors
.count(Succ
))
767 /// Check if a block should be tail duplicated to increase fallthrough
769 /// \p BB Block to check.
770 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock
*BB
) {
771 // Blocks with single successors don't create additional fallthrough
772 // opportunities. Don't duplicate them. TODO: When conditional exits are
773 // analyzable, allow them to be duplicated.
774 bool IsSimple
= TailDup
.isSimpleBB(BB
);
776 if (BB
->succ_size() == 1)
778 return TailDup
.shouldTailDuplicate(IsSimple
, *BB
);
781 /// Compare 2 BlockFrequency's with a small penalty for \p A.
782 /// In order to be conservative, we apply a X% penalty to account for
783 /// increased icache pressure and static heuristics. For small frequencies
784 /// we use only the numerators to improve accuracy. For simplicity, we assume the
785 /// penalty is less than 100%
786 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
787 static bool greaterWithBias(BlockFrequency A
, BlockFrequency B
,
788 uint64_t EntryFreq
) {
789 BranchProbability
ThresholdProb(TailDupPlacementPenalty
, 100);
790 BlockFrequency Gain
= A
- B
;
791 return (Gain
/ ThresholdProb
).getFrequency() >= EntryFreq
;
794 /// Check the edge frequencies to see if tail duplication will increase
795 /// fallthroughs. It only makes sense to call this function when
796 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
797 /// always locally profitable if we would have picked \p Succ without
798 /// considering duplication.
799 bool MachineBlockPlacement::isProfitableToTailDup(
800 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
801 BranchProbability QProb
,
802 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
) {
803 // We need to do a probability calculation to make sure this is profitable.
804 // First: does succ have a successor that post-dominates? This affects the
805 // calculation. The 2 relevant cases are:
820 // '=' : Branch taken for that CFG edge
821 // In the second case, Placing Succ while duplicating it into C prevents the
822 // fallthrough of Succ into either D or PDom, because they now have C as an
823 // unplaced predecessor
825 // Start by figuring out which case we fall into
826 MachineBasicBlock
*PDom
= nullptr;
827 SmallVector
<MachineBasicBlock
*, 4> SuccSuccs
;
828 // Only scan the relevant successors
829 auto AdjustedSuccSumProb
=
830 collectViableSuccessors(Succ
, Chain
, BlockFilter
, SuccSuccs
);
831 BranchProbability PProb
= MBPI
->getEdgeProbability(BB
, Succ
);
832 auto BBFreq
= MBFI
->getBlockFreq(BB
);
833 auto SuccFreq
= MBFI
->getBlockFreq(Succ
);
834 BlockFrequency P
= BBFreq
* PProb
;
835 BlockFrequency Qout
= BBFreq
* QProb
;
836 uint64_t EntryFreq
= MBFI
->getEntryFreq();
837 // If there are no more successors, it is profitable to copy, as it strictly
838 // increases fallthrough.
839 if (SuccSuccs
.size() == 0)
840 return greaterWithBias(P
, Qout
, EntryFreq
);
842 auto BestSuccSucc
= BranchProbability::getZero();
843 // Find the PDom or the best Succ if no PDom exists.
844 for (MachineBasicBlock
*SuccSucc
: SuccSuccs
) {
845 auto Prob
= MBPI
->getEdgeProbability(Succ
, SuccSucc
);
846 if (Prob
> BestSuccSucc
)
849 if (MPDT
->dominates(SuccSucc
, Succ
)) {
854 // For the comparisons, we need to know Succ's best incoming edge that isn't
856 auto SuccBestPred
= BlockFrequency(0);
857 for (MachineBasicBlock
*SuccPred
: Succ
->predecessors()) {
858 if (SuccPred
== Succ
|| SuccPred
== BB
859 || BlockToChain
[SuccPred
] == &Chain
860 || (BlockFilter
&& !BlockFilter
->count(SuccPred
)))
862 auto Freq
= MBFI
->getBlockFreq(SuccPred
)
863 * MBPI
->getEdgeProbability(SuccPred
, Succ
);
864 if (Freq
> SuccBestPred
)
867 // Qin is Succ's best unplaced incoming edge that isn't BB
868 BlockFrequency Qin
= SuccBestPred
;
869 // If it doesn't have a post-dominating successor, here is the calculation:
881 // '=' : Branch taken for that CFG edge
882 // Cost in the first case is: P + V
883 // For this calculation, we always assume P > Qout. If Qout > P
884 // The result of this function will be ignored at the caller.
885 // Let F = SuccFreq - Qin
886 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
888 if (PDom
== nullptr || !Succ
->isSuccessor(PDom
)) {
889 BranchProbability UProb
= BestSuccSucc
;
890 BranchProbability VProb
= AdjustedSuccSumProb
- UProb
;
891 BlockFrequency F
= SuccFreq
- Qin
;
892 BlockFrequency V
= SuccFreq
* VProb
;
893 BlockFrequency QinU
= std::min(Qin
, F
) * UProb
;
894 BlockFrequency BaseCost
= P
+ V
;
895 BlockFrequency DupCost
= Qout
+ QinU
+ std::max(Qin
, F
) * VProb
;
896 return greaterWithBias(BaseCost
, DupCost
, EntryFreq
);
898 BranchProbability UProb
= MBPI
->getEdgeProbability(Succ
, PDom
);
899 BranchProbability VProb
= AdjustedSuccSumProb
- UProb
;
900 BlockFrequency U
= SuccFreq
* UProb
;
901 BlockFrequency V
= SuccFreq
* VProb
;
902 BlockFrequency F
= SuccFreq
- Qin
;
903 // If there is a post-dominating successor, here is the calculation:
905 // | \Qout | \ | \Qout | \
907 // = C' |P C = C' |P C
908 // | /Qin | | | /Qin | |
909 // | / | C' (+Succ) | / | C' (+Succ)
910 // Succ Succ /| Succ Succ /|
911 // | \ V | \/ | | \ V | \/ |
912 // |U \ |U /\ =? |U = |U /\ |
913 // = D = = =?| | D | = =|
918 // '=' : Branch taken for that CFG edge
919 // The cost for taken branches in the first case is P + U
920 // Let F = SuccFreq - Qin
921 // The cost in the second case (assuming independence), given the layout:
922 // BB, Succ, (C+Succ), D, Dom or the layout:
923 // BB, Succ, D, Dom, (C+Succ)
924 // is Qout + max(F, Qin) * U + min(F, Qin)
925 // compare P + U vs Qout + P * U + Qin.
927 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
929 // For the 3rd case, the cost is P + 2 * V
930 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
931 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
932 if (UProb
> AdjustedSuccSumProb
/ 2 &&
933 !hasBetterLayoutPredecessor(Succ
, PDom
, *BlockToChain
[PDom
], UProb
, UProb
,
936 return greaterWithBias(
937 (P
+ V
), (Qout
+ std::max(Qin
, F
) * VProb
+ std::min(Qin
, F
) * UProb
),
940 return greaterWithBias((P
+ U
),
941 (Qout
+ std::min(Qin
, F
) * AdjustedSuccSumProb
+
942 std::max(Qin
, F
) * UProb
),
946 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
947 /// successors form the lower part of a trellis. A successor set S forms the
948 /// lower part of a trellis if all of the predecessors of S are either in S or
949 /// have all of S as successors. We ignore trellises where BB doesn't have 2
950 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
951 /// are very uncommon and complex to compute optimally. Allowing edges within S
952 /// is not strictly a trellis, but the same algorithm works, so we allow it.
953 bool MachineBlockPlacement::isTrellis(
954 const MachineBasicBlock
*BB
,
955 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
956 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
) {
957 // Technically BB could form a trellis with branching factor higher than 2.
958 // But that's extremely uncommon.
959 if (BB
->succ_size() != 2 || ViableSuccs
.size() != 2)
962 SmallPtrSet
<const MachineBasicBlock
*, 2> Successors(BB
->succ_begin(),
964 // To avoid reviewing the same predecessors twice.
965 SmallPtrSet
<const MachineBasicBlock
*, 8> SeenPreds
;
967 for (MachineBasicBlock
*Succ
: ViableSuccs
) {
969 for (auto SuccPred
: Succ
->predecessors()) {
970 // Allow triangle successors, but don't count them.
971 if (Successors
.count(SuccPred
)) {
972 // Make sure that it is actually a triangle.
973 for (MachineBasicBlock
*CheckSucc
: SuccPred
->successors())
974 if (!Successors
.count(CheckSucc
))
978 const BlockChain
*PredChain
= BlockToChain
[SuccPred
];
979 if (SuccPred
== BB
|| (BlockFilter
&& !BlockFilter
->count(SuccPred
)) ||
980 PredChain
== &Chain
|| PredChain
== BlockToChain
[Succ
])
983 // Perform the successor check only once.
984 if (!SeenPreds
.insert(SuccPred
).second
)
986 if (!hasSameSuccessors(*SuccPred
, Successors
))
989 // If one of the successors has only BB as a predecessor, it is not a
997 /// Pick the highest total weight pair of edges that can both be laid out.
998 /// The edges in \p Edges[0] are assumed to have a different destination than
999 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
1000 /// the individual highest weight edges to the 2 different destinations, or in
1001 /// case of a conflict, one of them should be replaced with a 2nd best edge.
1002 std::pair
<MachineBlockPlacement::WeightedEdge
,
1003 MachineBlockPlacement::WeightedEdge
>
1004 MachineBlockPlacement::getBestNonConflictingEdges(
1005 const MachineBasicBlock
*BB
,
1006 MutableArrayRef
<SmallVector
<MachineBlockPlacement::WeightedEdge
, 8>>
1008 // Sort the edges, and then for each successor, find the best incoming
1009 // predecessor. If the best incoming predecessors aren't the same,
1010 // then that is clearly the best layout. If there is a conflict, one of the
1011 // successors will have to fallthrough from the second best predecessor. We
1012 // compare which combination is better overall.
1014 // Sort for highest frequency.
1015 auto Cmp
= [](WeightedEdge A
, WeightedEdge B
) { return A
.Weight
> B
.Weight
; };
1017 llvm::stable_sort(Edges
[0], Cmp
);
1018 llvm::stable_sort(Edges
[1], Cmp
);
1019 auto BestA
= Edges
[0].begin();
1020 auto BestB
= Edges
[1].begin();
1021 // Arrange for the correct answer to be in BestA and BestB
1022 // If the 2 best edges don't conflict, the answer is already there.
1023 if (BestA
->Src
== BestB
->Src
) {
1024 // Compare the total fallthrough of (Best + Second Best) for both pairs
1025 auto SecondBestA
= std::next(BestA
);
1026 auto SecondBestB
= std::next(BestB
);
1027 BlockFrequency BestAScore
= BestA
->Weight
+ SecondBestB
->Weight
;
1028 BlockFrequency BestBScore
= BestB
->Weight
+ SecondBestA
->Weight
;
1029 if (BestAScore
< BestBScore
)
1030 BestA
= SecondBestA
;
1032 BestB
= SecondBestB
;
1034 // Arrange for the BB edge to be in BestA if it exists.
1035 if (BestB
->Src
== BB
)
1036 std::swap(BestA
, BestB
);
1037 return std::make_pair(*BestA
, *BestB
);
1040 /// Get the best successor from \p BB based on \p BB being part of a trellis.
1041 /// We only handle trellises with 2 successors, so the algorithm is
1042 /// straightforward: Find the best pair of edges that don't conflict. We find
1043 /// the best incoming edge for each successor in the trellis. If those conflict,
1044 /// we consider which of them should be replaced with the second best.
1045 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
1046 /// comes from \p BB, it will be in \p BestEdges[0]
1047 MachineBlockPlacement::BlockAndTailDupResult
1048 MachineBlockPlacement::getBestTrellisSuccessor(
1049 const MachineBasicBlock
*BB
,
1050 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
1051 BranchProbability AdjustedSumProb
, const BlockChain
&Chain
,
1052 const BlockFilterSet
*BlockFilter
) {
1054 BlockAndTailDupResult Result
= {nullptr, false};
1055 SmallPtrSet
<const MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
1058 // We assume size 2 because it's common. For general n, we would have to do
1059 // the Hungarian algorithm, but it's not worth the complexity because more
1060 // than 2 successors is fairly uncommon, and a trellis even more so.
1061 if (Successors
.size() != 2 || ViableSuccs
.size() != 2)
1064 // Collect the edge frequencies of all edges that form the trellis.
1065 SmallVector
<WeightedEdge
, 8> Edges
[2];
1067 for (auto Succ
: ViableSuccs
) {
1068 for (MachineBasicBlock
*SuccPred
: Succ
->predecessors()) {
1069 // Skip any placed predecessors that are not BB
1071 if ((BlockFilter
&& !BlockFilter
->count(SuccPred
)) ||
1072 BlockToChain
[SuccPred
] == &Chain
||
1073 BlockToChain
[SuccPred
] == BlockToChain
[Succ
])
1075 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(SuccPred
) *
1076 MBPI
->getEdgeProbability(SuccPred
, Succ
);
1077 Edges
[SuccIndex
].push_back({EdgeFreq
, SuccPred
, Succ
});
1082 // Pick the best combination of 2 edges from all the edges in the trellis.
1083 WeightedEdge BestA
, BestB
;
1084 std::tie(BestA
, BestB
) = getBestNonConflictingEdges(BB
, Edges
);
1086 if (BestA
.Src
!= BB
) {
1087 // If we have a trellis, and BB doesn't have the best fallthrough edges,
1088 // we shouldn't choose any successor. We've already looked and there's a
1089 // better fallthrough edge for all the successors.
1090 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1094 // Did we pick the triangle edge? If tail-duplication is profitable, do
1095 // that instead. Otherwise merge the triangle edge now while we know it is
1097 if (BestA
.Dest
== BestB
.Src
) {
1098 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1100 MachineBasicBlock
*Succ1
= BestA
.Dest
;
1101 MachineBasicBlock
*Succ2
= BestB
.Dest
;
1102 // Check to see if tail-duplication would be profitable.
1103 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2
) &&
1104 canTailDuplicateUnplacedPreds(BB
, Succ2
, Chain
, BlockFilter
) &&
1105 isProfitableToTailDup(BB
, Succ2
, MBPI
->getEdgeProbability(BB
, Succ1
),
1106 Chain
, BlockFilter
)) {
1107 LLVM_DEBUG(BranchProbability Succ2Prob
= getAdjustedProbability(
1108 MBPI
->getEdgeProbability(BB
, Succ2
), AdjustedSumProb
);
1109 dbgs() << " Selected: " << getBlockName(Succ2
)
1110 << ", probability: " << Succ2Prob
1111 << " (Tail Duplicate)\n");
1113 Result
.ShouldTailDup
= true;
1117 // We have already computed the optimal edge for the other side of the
1119 ComputedEdges
[BestB
.Src
] = { BestB
.Dest
, false };
1121 auto TrellisSucc
= BestA
.Dest
;
1122 LLVM_DEBUG(BranchProbability SuccProb
= getAdjustedProbability(
1123 MBPI
->getEdgeProbability(BB
, TrellisSucc
), AdjustedSumProb
);
1124 dbgs() << " Selected: " << getBlockName(TrellisSucc
)
1125 << ", probability: " << SuccProb
<< " (Trellis)\n");
1126 Result
.BB
= TrellisSucc
;
1130 /// When the option allowTailDupPlacement() is on, this method checks if the
1131 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1132 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1133 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1134 const MachineBasicBlock
*BB
, MachineBasicBlock
*Succ
,
1135 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
) {
1136 if (!shouldTailDuplicate(Succ
))
1139 // The result of canTailDuplicate.
1140 bool Duplicate
= true;
1141 // Number of possible duplication.
1142 unsigned int NumDup
= 0;
1144 // For CFG checking.
1145 SmallPtrSet
<const MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
1147 for (MachineBasicBlock
*Pred
: Succ
->predecessors()) {
1148 // Make sure all unplaced and unfiltered predecessors can be
1149 // tail-duplicated into.
1150 // Skip any blocks that are already placed or not in this loop.
1151 if (Pred
== BB
|| (BlockFilter
&& !BlockFilter
->count(Pred
))
1152 || BlockToChain
[Pred
] == &Chain
)
1154 if (!TailDup
.canTailDuplicate(Succ
, Pred
)) {
1155 if (Successors
.size() > 1 && hasSameSuccessors(*Pred
, Successors
))
1156 // This will result in a trellis after tail duplication, so we don't
1157 // need to copy Succ into this predecessor. In the presence
1158 // of a trellis tail duplication can continue to be profitable.
1174 // After BB was duplicated into C, the layout looks like the one on the
1175 // right. BB and C now have the same successors. When considering
1176 // whether Succ can be duplicated into all its unplaced predecessors, we
1178 // We can do this because C already has a profitable fallthrough, namely
1179 // D. TODO(iteratee): ignore sufficiently cold predecessors for
1180 // duplication and for this test.
1182 // This allows trellises to be laid out in 2 separate chains
1183 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1184 // because it allows the creation of 2 fallthrough paths with links
1185 // between them, and we correctly identify the best layout for these
1186 // CFGs. We want to extend trellises that the user created in addition
1187 // to trellises created by tail-duplication, so we just look for the
1196 // No possible duplication in current filter set.
1200 // If profile information is available, findDuplicateCandidates can do more
1201 // precise benefit analysis.
1202 if (F
->getFunction().hasProfileData())
1205 // This is mainly for function exit BB.
1206 // The integrated tail duplication is really designed for increasing
1207 // fallthrough from predecessors from Succ to its successors. We may need
1208 // other machanism to handle different cases.
1209 if (Succ
->succ_empty())
1212 // Plus the already placed predecessor.
1215 // If the duplication candidate has more unplaced predecessors than
1216 // successors, the extra duplication can't bring more fallthrough.
1218 // Pred1 Pred2 Pred3
1227 // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
1228 // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
1229 // but the duplication into Pred3 can't increase fallthrough.
1231 // A small number of extra duplication may not hurt too much. We need a better
1232 // heuristic to handle it.
1233 if ((NumDup
> Succ
->succ_size()) || !Duplicate
)
1239 /// Find chains of triangles where we believe it would be profitable to
1240 /// tail-duplicate them all, but a local analysis would not find them.
1241 /// There are 3 ways this can be profitable:
1242 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1244 /// 2) The chains are statically correlated. Branch probabilities have a very
1245 /// U-shaped distribution.
1246 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1247 /// If the branches in a chain are likely to be from the same side of the
1248 /// distribution as their predecessor, but are independent at runtime, this
1249 /// transformation is profitable. (Because the cost of being wrong is a small
1250 /// fixed cost, unlike the standard triangle layout where the cost of being
1251 /// wrong scales with the # of triangles.)
1252 /// 3) The chains are dynamically correlated. If the probability that a previous
1253 /// branch was taken positively influences whether the next branch will be
1255 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1256 void MachineBlockPlacement::precomputeTriangleChains() {
1257 struct TriangleChain
{
1258 std::vector
<MachineBasicBlock
*> Edges
;
1260 TriangleChain(MachineBasicBlock
*src
, MachineBasicBlock
*dst
)
1261 : Edges({src
, dst
}) {}
1263 void append(MachineBasicBlock
*dst
) {
1264 assert(getKey()->isSuccessor(dst
) &&
1265 "Attempting to append a block that is not a successor.");
1266 Edges
.push_back(dst
);
1269 unsigned count() const { return Edges
.size() - 1; }
1271 MachineBasicBlock
*getKey() const {
1272 return Edges
.back();
1276 if (TriangleChainCount
== 0)
1279 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1280 // Map from last block to the chain that contains it. This allows us to extend
1281 // chains as we find new triangles.
1282 DenseMap
<const MachineBasicBlock
*, TriangleChain
> TriangleChainMap
;
1283 for (MachineBasicBlock
&BB
: *F
) {
1284 // If BB doesn't have 2 successors, it doesn't start a triangle.
1285 if (BB
.succ_size() != 2)
1287 MachineBasicBlock
*PDom
= nullptr;
1288 for (MachineBasicBlock
*Succ
: BB
.successors()) {
1289 if (!MPDT
->dominates(Succ
, &BB
))
1294 // If BB doesn't have a post-dominating successor, it doesn't form a
1296 if (PDom
== nullptr)
1298 // If PDom has a hint that it is low probability, skip this triangle.
1299 if (MBPI
->getEdgeProbability(&BB
, PDom
) < BranchProbability(50, 100))
1301 // If PDom isn't eligible for duplication, this isn't the kind of triangle
1302 // we're looking for.
1303 if (!shouldTailDuplicate(PDom
))
1305 bool CanTailDuplicate
= true;
1306 // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1307 // isn't the kind of triangle we're looking for.
1308 for (MachineBasicBlock
* Pred
: PDom
->predecessors()) {
1311 if (!TailDup
.canTailDuplicate(PDom
, Pred
)) {
1312 CanTailDuplicate
= false;
1316 // If we can't tail-duplicate PDom to its predecessors, then skip this
1318 if (!CanTailDuplicate
)
1321 // Now we have an interesting triangle. Insert it if it's not part of an
1323 // Note: This cannot be replaced with a call insert() or emplace() because
1324 // the find key is BB, but the insert/emplace key is PDom.
1325 auto Found
= TriangleChainMap
.find(&BB
);
1326 // If it is, remove the chain from the map, grow it, and put it back in the
1327 // map with the end as the new key.
1328 if (Found
!= TriangleChainMap
.end()) {
1329 TriangleChain Chain
= std::move(Found
->second
);
1330 TriangleChainMap
.erase(Found
);
1332 TriangleChainMap
.insert(std::make_pair(Chain
.getKey(), std::move(Chain
)));
1334 auto InsertResult
= TriangleChainMap
.try_emplace(PDom
, &BB
, PDom
);
1335 assert(InsertResult
.second
&& "Block seen twice.");
1340 // Iterating over a DenseMap is safe here, because the only thing in the body
1341 // of the loop is inserting into another DenseMap (ComputedEdges).
1342 // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1343 for (auto &ChainPair
: TriangleChainMap
) {
1344 TriangleChain
&Chain
= ChainPair
.second
;
1345 // Benchmarking has shown that due to branch correlation duplicating 2 or
1346 // more triangles is profitable, despite the calculations assuming
1348 if (Chain
.count() < TriangleChainCount
)
1350 MachineBasicBlock
*dst
= Chain
.Edges
.back();
1351 Chain
.Edges
.pop_back();
1352 for (MachineBasicBlock
*src
: reverse(Chain
.Edges
)) {
1353 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src
) << "->"
1354 << getBlockName(dst
)
1355 << " as pre-computed based on triangles.\n");
1357 auto InsertResult
= ComputedEdges
.insert({src
, {dst
, true}});
1358 assert(InsertResult
.second
&& "Block seen twice.");
1366 // When profile is not present, return the StaticLikelyProb.
1367 // When profile is available, we need to handle the triangle-shape CFG.
1368 static BranchProbability
getLayoutSuccessorProbThreshold(
1369 const MachineBasicBlock
*BB
) {
1370 if (!BB
->getParent()->getFunction().hasProfileData())
1371 return BranchProbability(StaticLikelyProb
, 100);
1372 if (BB
->succ_size() == 2) {
1373 const MachineBasicBlock
*Succ1
= *BB
->succ_begin();
1374 const MachineBasicBlock
*Succ2
= *(BB
->succ_begin() + 1);
1375 if (Succ1
->isSuccessor(Succ2
) || Succ2
->isSuccessor(Succ1
)) {
1376 /* See case 1 below for the cost analysis. For BB->Succ to
1377 * be taken with smaller cost, the following needs to hold:
1378 * Prob(BB->Succ) > 2 * Prob(BB->Pred)
1379 * So the threshold T in the calculation below
1380 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1381 * So T / (1 - T) = 2, Yielding T = 2/3
1382 * Also adding user specified branch bias, we have
1383 * T = (2/3)*(ProfileLikelyProb/50)
1384 * = (2*ProfileLikelyProb)/150)
1386 return BranchProbability(2 * ProfileLikelyProb
, 150);
1389 return BranchProbability(ProfileLikelyProb
, 100);
1392 /// Checks to see if the layout candidate block \p Succ has a better layout
1393 /// predecessor than \c BB. If yes, returns true.
1394 /// \p SuccProb: The probability adjusted for only remaining blocks.
1395 /// Only used for logging
1396 /// \p RealSuccProb: The un-adjusted probability.
1397 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1398 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1400 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1401 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
1402 const BlockChain
&SuccChain
, BranchProbability SuccProb
,
1403 BranchProbability RealSuccProb
, const BlockChain
&Chain
,
1404 const BlockFilterSet
*BlockFilter
) {
1406 // There isn't a better layout when there are no unscheduled predecessors.
1407 if (SuccChain
.UnscheduledPredecessors
== 0)
1410 // There are two basic scenarios here:
1411 // -------------------------------------
1412 // Case 1: triangular shape CFG (if-then):
1419 // In this case, we are evaluating whether to select edge -> Succ, e.g.
1420 // set Succ as the layout successor of BB. Picking Succ as BB's
1421 // successor breaks the CFG constraints (FIXME: define these constraints).
1422 // With this layout, Pred BB
1423 // is forced to be outlined, so the overall cost will be cost of the
1424 // branch taken from BB to Pred, plus the cost of back taken branch
1425 // from Pred to Succ, as well as the additional cost associated
1426 // with the needed unconditional jump instruction from Pred To Succ.
1428 // The cost of the topological order layout is the taken branch cost
1429 // from BB to Succ, so to make BB->Succ a viable candidate, the following
1431 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1432 // < freq(BB->Succ) * taken_branch_cost.
1433 // Ignoring unconditional jump cost, we get
1434 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1435 // prob(BB->Succ) > 2 * prob(BB->Pred)
1437 // When real profile data is available, we can precisely compute the
1438 // probability threshold that is needed for edge BB->Succ to be considered.
1439 // Without profile data, the heuristic requires the branch bias to be
1440 // a lot larger to make sure the signal is very strong (e.g. 80% default).
1441 // -----------------------------------------------------------------
1442 // Case 2: diamond like CFG (if-then-else):
1451 // The current block is BB and edge BB->Succ is now being evaluated.
1452 // Note that edge S->BB was previously already selected because
1453 // prob(S->BB) > prob(S->Pred).
1454 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1455 // choose Pred, we will have a topological ordering as shown on the left
1456 // in the picture below. If we choose Succ, we have the solution as shown
1465 // | Pred-- | Succ--
1467 // ---Succ ---Pred--
1469 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred)
1470 // = freq(S->Pred) + freq(S->BB)
1472 // If we have profile data (i.e, branch probabilities can be trusted), the
1473 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1474 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1475 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1476 // means the cost of topological order is greater.
1477 // When profile data is not available, however, we need to be more
1478 // conservative. If the branch prediction is wrong, breaking the topo-order
1479 // will actually yield a layout with large cost. For this reason, we need
1480 // strong biased branch at block S with Prob(S->BB) in order to select
1481 // BB->Succ. This is equivalent to looking the CFG backward with backward
1482 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1484 // --------------------------------------------------------------------------
1485 // Case 3: forked diamond
1497 // The current block is BB and edge BB->S1 is now being evaluated.
1498 // As above S->BB was already selected because
1499 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1507 // | Pred----| | S1----
1509 // --(S1 or S2) ---Pred--
1513 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1514 // + min(freq(Pred->S1), freq(Pred->S2))
1515 // Non-topo-order cost:
1516 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1517 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1518 // is 0. Then the non topo layout is better when
1519 // freq(S->Pred) < freq(BB->S1).
1520 // This is exactly what is checked below.
1521 // Note there are other shapes that apply (Pred may not be a single block,
1522 // but they all fit this general pattern.)
1523 BranchProbability HotProb
= getLayoutSuccessorProbThreshold(BB
);
1525 // Make sure that a hot successor doesn't have a globally more
1526 // important predecessor.
1527 BlockFrequency CandidateEdgeFreq
= MBFI
->getBlockFreq(BB
) * RealSuccProb
;
1528 bool BadCFGConflict
= false;
1530 for (MachineBasicBlock
*Pred
: Succ
->predecessors()) {
1531 BlockChain
*PredChain
= BlockToChain
[Pred
];
1532 if (Pred
== Succ
|| PredChain
== &SuccChain
||
1533 (BlockFilter
&& !BlockFilter
->count(Pred
)) ||
1534 PredChain
== &Chain
|| Pred
!= *std::prev(PredChain
->end()) ||
1535 // This check is redundant except for look ahead. This function is
1536 // called for lookahead by isProfitableToTailDup when BB hasn't been
1540 // Do backward checking.
1541 // For all cases above, we need a backward checking to filter out edges that
1542 // are not 'strongly' biased.
1546 // We select edge BB->Succ if
1547 // freq(BB->Succ) > freq(Succ) * HotProb
1548 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1550 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1551 // Case 1 is covered too, because the first equation reduces to:
1552 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1553 BlockFrequency PredEdgeFreq
=
1554 MBFI
->getBlockFreq(Pred
) * MBPI
->getEdgeProbability(Pred
, Succ
);
1555 if (PredEdgeFreq
* HotProb
>= CandidateEdgeFreq
* HotProb
.getCompl()) {
1556 BadCFGConflict
= true;
1561 if (BadCFGConflict
) {
1562 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ
) << " -> "
1563 << SuccProb
<< " (prob) (non-cold CFG conflict)\n");
1570 /// Select the best successor for a block.
1572 /// This looks across all successors of a particular block and attempts to
1573 /// select the "best" one to be the layout successor. It only considers direct
1574 /// successors which also pass the block filter. It will attempt to avoid
1575 /// breaking CFG structure, but cave and break such structures in the case of
1576 /// very hot successor edges.
1578 /// \returns The best successor block found, or null if none are viable, along
1579 /// with a boolean indicating if tail duplication is necessary.
1580 MachineBlockPlacement::BlockAndTailDupResult
1581 MachineBlockPlacement::selectBestSuccessor(
1582 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
1583 const BlockFilterSet
*BlockFilter
) {
1584 const BranchProbability
HotProb(StaticLikelyProb
, 100);
1586 BlockAndTailDupResult BestSucc
= { nullptr, false };
1587 auto BestProb
= BranchProbability::getZero();
1589 SmallVector
<MachineBasicBlock
*, 4> Successors
;
1590 auto AdjustedSumProb
=
1591 collectViableSuccessors(BB
, Chain
, BlockFilter
, Successors
);
1593 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB
)
1596 // if we already precomputed the best successor for BB, return that if still
1598 auto FoundEdge
= ComputedEdges
.find(BB
);
1599 if (FoundEdge
!= ComputedEdges
.end()) {
1600 MachineBasicBlock
*Succ
= FoundEdge
->second
.BB
;
1601 ComputedEdges
.erase(FoundEdge
);
1602 BlockChain
*SuccChain
= BlockToChain
[Succ
];
1603 if (BB
->isSuccessor(Succ
) && (!BlockFilter
|| BlockFilter
->count(Succ
)) &&
1604 SuccChain
!= &Chain
&& Succ
== *SuccChain
->begin())
1605 return FoundEdge
->second
;
1608 // if BB is part of a trellis, Use the trellis to determine the optimal
1609 // fallthrough edges
1610 if (isTrellis(BB
, Successors
, Chain
, BlockFilter
))
1611 return getBestTrellisSuccessor(BB
, Successors
, AdjustedSumProb
, Chain
,
1614 // For blocks with CFG violations, we may be able to lay them out anyway with
1615 // tail-duplication. We keep this vector so we can perform the probability
1616 // calculations the minimum number of times.
1617 SmallVector
<std::pair
<BranchProbability
, MachineBasicBlock
*>, 4>
1619 for (MachineBasicBlock
*Succ
: Successors
) {
1620 auto RealSuccProb
= MBPI
->getEdgeProbability(BB
, Succ
);
1621 BranchProbability SuccProb
=
1622 getAdjustedProbability(RealSuccProb
, AdjustedSumProb
);
1624 BlockChain
&SuccChain
= *BlockToChain
[Succ
];
1625 // Skip the edge \c BB->Succ if block \c Succ has a better layout
1626 // predecessor that yields lower global cost.
1627 if (hasBetterLayoutPredecessor(BB
, Succ
, SuccChain
, SuccProb
, RealSuccProb
,
1628 Chain
, BlockFilter
)) {
1629 // If tail duplication would make Succ profitable, place it.
1630 if (allowTailDupPlacement() && shouldTailDuplicate(Succ
))
1631 DupCandidates
.emplace_back(SuccProb
, Succ
);
1636 dbgs() << " Candidate: " << getBlockName(Succ
)
1637 << ", probability: " << SuccProb
1638 << (SuccChain
.UnscheduledPredecessors
!= 0 ? " (CFG break)" : "")
1641 if (BestSucc
.BB
&& BestProb
>= SuccProb
) {
1642 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n");
1646 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n");
1648 BestProb
= SuccProb
;
1650 // Handle the tail duplication candidates in order of decreasing probability.
1651 // Stop at the first one that is profitable. Also stop if they are less
1652 // profitable than BestSucc. Position is important because we preserve it and
1653 // prefer first best match. Here we aren't comparing in order, so we capture
1654 // the position instead.
1655 llvm::stable_sort(DupCandidates
,
1656 [](std::tuple
<BranchProbability
, MachineBasicBlock
*> L
,
1657 std::tuple
<BranchProbability
, MachineBasicBlock
*> R
) {
1658 return std::get
<0>(L
) > std::get
<0>(R
);
1660 for (auto &Tup
: DupCandidates
) {
1661 BranchProbability DupProb
;
1662 MachineBasicBlock
*Succ
;
1663 std::tie(DupProb
, Succ
) = Tup
;
1664 if (DupProb
< BestProb
)
1666 if (canTailDuplicateUnplacedPreds(BB
, Succ
, Chain
, BlockFilter
)
1667 && (isProfitableToTailDup(BB
, Succ
, BestProb
, Chain
, BlockFilter
))) {
1668 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ
)
1669 << ", probability: " << DupProb
1670 << " (Tail Duplicate)\n");
1672 BestSucc
.ShouldTailDup
= true;
1678 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc
.BB
) << "\n");
1683 /// Select the best block from a worklist.
1685 /// This looks through the provided worklist as a list of candidate basic
1686 /// blocks and select the most profitable one to place. The definition of
1687 /// profitable only really makes sense in the context of a loop. This returns
1688 /// the most frequently visited block in the worklist, which in the case of
1689 /// a loop, is the one most desirable to be physically close to the rest of the
1690 /// loop body in order to improve i-cache behavior.
1692 /// \returns The best block found, or null if none are viable.
1693 MachineBasicBlock
*MachineBlockPlacement::selectBestCandidateBlock(
1694 const BlockChain
&Chain
, SmallVectorImpl
<MachineBasicBlock
*> &WorkList
) {
1695 // Once we need to walk the worklist looking for a candidate, cleanup the
1696 // worklist of already placed entries.
1697 // FIXME: If this shows up on profiles, it could be folded (at the cost of
1698 // some code complexity) into the loop below.
1699 llvm::erase_if(WorkList
, [&](MachineBasicBlock
*BB
) {
1700 return BlockToChain
.lookup(BB
) == &Chain
;
1703 if (WorkList
.empty())
1706 bool IsEHPad
= WorkList
[0]->isEHPad();
1708 MachineBasicBlock
*BestBlock
= nullptr;
1709 BlockFrequency BestFreq
;
1710 for (MachineBasicBlock
*MBB
: WorkList
) {
1711 assert(MBB
->isEHPad() == IsEHPad
&&
1712 "EHPad mismatch between block and work list.");
1714 BlockChain
&SuccChain
= *BlockToChain
[MBB
];
1715 if (&SuccChain
== &Chain
)
1718 assert(SuccChain
.UnscheduledPredecessors
== 0 &&
1719 "Found CFG-violating block");
1721 BlockFrequency CandidateFreq
= MBFI
->getBlockFreq(MBB
);
1722 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB
) << " -> ";
1723 MBFI
->printBlockFreq(dbgs(), CandidateFreq
) << " (freq)\n");
1725 // For ehpad, we layout the least probable first as to avoid jumping back
1726 // from least probable landingpads to more probable ones.
1728 // FIXME: Using probability is probably (!) not the best way to achieve
1729 // this. We should probably have a more principled approach to layout
1732 // The goal is to get:
1734 // +--------------------------+
1736 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume
1740 // +-------------------------------------+
1742 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup
1743 if (BestBlock
&& (IsEHPad
^ (BestFreq
>= CandidateFreq
)))
1747 BestFreq
= CandidateFreq
;
1753 /// Retrieve the first unplaced basic block.
1755 /// This routine is called when we are unable to use the CFG to walk through
1756 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1757 /// We walk through the function's blocks in order, starting from the
1758 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1759 /// re-scanning the entire sequence on repeated calls to this routine.
1760 MachineBasicBlock
*MachineBlockPlacement::getFirstUnplacedBlock(
1761 const BlockChain
&PlacedChain
,
1762 MachineFunction::iterator
&PrevUnplacedBlockIt
,
1763 const BlockFilterSet
*BlockFilter
) {
1764 for (MachineFunction::iterator I
= PrevUnplacedBlockIt
, E
= F
->end(); I
!= E
;
1766 if (BlockFilter
&& !BlockFilter
->count(&*I
))
1768 if (BlockToChain
[&*I
] != &PlacedChain
) {
1769 PrevUnplacedBlockIt
= I
;
1770 // Now select the head of the chain to which the unplaced block belongs
1771 // as the block to place. This will force the entire chain to be placed,
1772 // and satisfies the requirements of merging chains.
1773 return *BlockToChain
[&*I
]->begin();
1779 void MachineBlockPlacement::fillWorkLists(
1780 const MachineBasicBlock
*MBB
,
1781 SmallPtrSetImpl
<BlockChain
*> &UpdatedPreds
,
1782 const BlockFilterSet
*BlockFilter
= nullptr) {
1783 BlockChain
&Chain
= *BlockToChain
[MBB
];
1784 if (!UpdatedPreds
.insert(&Chain
).second
)
1788 Chain
.UnscheduledPredecessors
== 0 &&
1789 "Attempting to place block with unscheduled predecessors in worklist.");
1790 for (MachineBasicBlock
*ChainBB
: Chain
) {
1791 assert(BlockToChain
[ChainBB
] == &Chain
&&
1792 "Block in chain doesn't match BlockToChain map.");
1793 for (MachineBasicBlock
*Pred
: ChainBB
->predecessors()) {
1794 if (BlockFilter
&& !BlockFilter
->count(Pred
))
1796 if (BlockToChain
[Pred
] == &Chain
)
1798 ++Chain
.UnscheduledPredecessors
;
1802 if (Chain
.UnscheduledPredecessors
!= 0)
1805 MachineBasicBlock
*BB
= *Chain
.begin();
1807 EHPadWorkList
.push_back(BB
);
1809 BlockWorkList
.push_back(BB
);
1812 void MachineBlockPlacement::buildChain(
1813 const MachineBasicBlock
*HeadBB
, BlockChain
&Chain
,
1814 BlockFilterSet
*BlockFilter
) {
1815 assert(HeadBB
&& "BB must not be null.\n");
1816 assert(BlockToChain
[HeadBB
] == &Chain
&& "BlockToChainMap mis-match.\n");
1817 MachineFunction::iterator PrevUnplacedBlockIt
= F
->begin();
1819 const MachineBasicBlock
*LoopHeaderBB
= HeadBB
;
1820 markChainSuccessors(Chain
, LoopHeaderBB
, BlockFilter
);
1821 MachineBasicBlock
*BB
= *std::prev(Chain
.end());
1823 assert(BB
&& "null block found at end of chain in loop.");
1824 assert(BlockToChain
[BB
] == &Chain
&& "BlockToChainMap mis-match in loop.");
1825 assert(*std::prev(Chain
.end()) == BB
&& "BB Not found at end of chain.");
1828 // Look for the best viable successor if there is one to place immediately
1829 // after this block.
1830 auto Result
= selectBestSuccessor(BB
, Chain
, BlockFilter
);
1831 MachineBasicBlock
* BestSucc
= Result
.BB
;
1832 bool ShouldTailDup
= Result
.ShouldTailDup
;
1833 if (allowTailDupPlacement())
1834 ShouldTailDup
|= (BestSucc
&& canTailDuplicateUnplacedPreds(BB
, BestSucc
,
1838 // If an immediate successor isn't available, look for the best viable
1839 // block among those we've identified as not violating the loop's CFG at
1840 // this point. This won't be a fallthrough, but it will increase locality.
1842 BestSucc
= selectBestCandidateBlock(Chain
, BlockWorkList
);
1844 BestSucc
= selectBestCandidateBlock(Chain
, EHPadWorkList
);
1847 BestSucc
= getFirstUnplacedBlock(Chain
, PrevUnplacedBlockIt
, BlockFilter
);
1851 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1852 "layout successor until the CFG reduces\n");
1855 // Placement may have changed tail duplication opportunities.
1856 // Check for that now.
1857 if (allowTailDupPlacement() && BestSucc
&& ShouldTailDup
) {
1858 repeatedlyTailDuplicateBlock(BestSucc
, BB
, LoopHeaderBB
, Chain
,
1859 BlockFilter
, PrevUnplacedBlockIt
);
1860 // If the chosen successor was duplicated into BB, don't bother laying
1861 // it out, just go round the loop again with BB as the chain end.
1862 if (!BB
->isSuccessor(BestSucc
))
1866 // Place this block, updating the datastructures to reflect its placement.
1867 BlockChain
&SuccChain
= *BlockToChain
[BestSucc
];
1868 // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1869 // we selected a successor that didn't fit naturally into the CFG.
1870 SuccChain
.UnscheduledPredecessors
= 0;
1871 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB
) << " to "
1872 << getBlockName(BestSucc
) << "\n");
1873 markChainSuccessors(SuccChain
, LoopHeaderBB
, BlockFilter
);
1874 Chain
.merge(BestSucc
, &SuccChain
);
1875 BB
= *std::prev(Chain
.end());
1878 LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1879 << getBlockName(*Chain
.begin()) << "\n");
1882 // If bottom of block BB has only one successor OldTop, in most cases it is
1883 // profitable to move it before OldTop, except the following case:
1893 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1894 // layout the other successor below it, so it can't reduce taken branch.
1895 // In this case we keep its original layout.
1897 MachineBlockPlacement::canMoveBottomBlockToTop(
1898 const MachineBasicBlock
*BottomBlock
,
1899 const MachineBasicBlock
*OldTop
) {
1900 if (BottomBlock
->pred_size() != 1)
1902 MachineBasicBlock
*Pred
= *BottomBlock
->pred_begin();
1903 if (Pred
->succ_size() != 2)
1906 MachineBasicBlock
*OtherBB
= *Pred
->succ_begin();
1907 if (OtherBB
== BottomBlock
)
1908 OtherBB
= *Pred
->succ_rbegin();
1909 if (OtherBB
== OldTop
)
1915 // Find out the possible fall through frequence to the top of a loop.
1917 MachineBlockPlacement::TopFallThroughFreq(
1918 const MachineBasicBlock
*Top
,
1919 const BlockFilterSet
&LoopBlockSet
) {
1920 BlockFrequency MaxFreq
= 0;
1921 for (MachineBasicBlock
*Pred
: Top
->predecessors()) {
1922 BlockChain
*PredChain
= BlockToChain
[Pred
];
1923 if (!LoopBlockSet
.count(Pred
) &&
1924 (!PredChain
|| Pred
== *std::prev(PredChain
->end()))) {
1925 // Found a Pred block can be placed before Top.
1926 // Check if Top is the best successor of Pred.
1927 auto TopProb
= MBPI
->getEdgeProbability(Pred
, Top
);
1929 for (MachineBasicBlock
*Succ
: Pred
->successors()) {
1930 auto SuccProb
= MBPI
->getEdgeProbability(Pred
, Succ
);
1931 BlockChain
*SuccChain
= BlockToChain
[Succ
];
1932 // Check if Succ can be placed after Pred.
1933 // Succ should not be in any chain, or it is the head of some chain.
1934 if (!LoopBlockSet
.count(Succ
) && (SuccProb
> TopProb
) &&
1935 (!SuccChain
|| Succ
== *SuccChain
->begin())) {
1941 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(Pred
) *
1942 MBPI
->getEdgeProbability(Pred
, Top
);
1943 if (EdgeFreq
> MaxFreq
)
1951 // Compute the fall through gains when move NewTop before OldTop.
1953 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1954 // marked as "+" are increased fallthrough, this function computes
1956 // SUM(increased fallthrough) - SUM(decreased fallthrough)
1973 MachineBlockPlacement::FallThroughGains(
1974 const MachineBasicBlock
*NewTop
,
1975 const MachineBasicBlock
*OldTop
,
1976 const MachineBasicBlock
*ExitBB
,
1977 const BlockFilterSet
&LoopBlockSet
) {
1978 BlockFrequency FallThrough2Top
= TopFallThroughFreq(OldTop
, LoopBlockSet
);
1979 BlockFrequency FallThrough2Exit
= 0;
1981 FallThrough2Exit
= MBFI
->getBlockFreq(NewTop
) *
1982 MBPI
->getEdgeProbability(NewTop
, ExitBB
);
1983 BlockFrequency BackEdgeFreq
= MBFI
->getBlockFreq(NewTop
) *
1984 MBPI
->getEdgeProbability(NewTop
, OldTop
);
1986 // Find the best Pred of NewTop.
1987 MachineBasicBlock
*BestPred
= nullptr;
1988 BlockFrequency FallThroughFromPred
= 0;
1989 for (MachineBasicBlock
*Pred
: NewTop
->predecessors()) {
1990 if (!LoopBlockSet
.count(Pred
))
1992 BlockChain
*PredChain
= BlockToChain
[Pred
];
1993 if (!PredChain
|| Pred
== *std::prev(PredChain
->end())) {
1994 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(Pred
) *
1995 MBPI
->getEdgeProbability(Pred
, NewTop
);
1996 if (EdgeFreq
> FallThroughFromPred
) {
1997 FallThroughFromPred
= EdgeFreq
;
2003 // If NewTop is not placed after Pred, another successor can be placed
2005 BlockFrequency NewFreq
= 0;
2007 for (MachineBasicBlock
*Succ
: BestPred
->successors()) {
2008 if ((Succ
== NewTop
) || (Succ
== BestPred
) || !LoopBlockSet
.count(Succ
))
2010 if (ComputedEdges
.find(Succ
) != ComputedEdges
.end())
2012 BlockChain
*SuccChain
= BlockToChain
[Succ
];
2013 if ((SuccChain
&& (Succ
!= *SuccChain
->begin())) ||
2014 (SuccChain
== BlockToChain
[BestPred
]))
2016 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(BestPred
) *
2017 MBPI
->getEdgeProbability(BestPred
, Succ
);
2018 if (EdgeFreq
> NewFreq
)
2021 BlockFrequency OrigEdgeFreq
= MBFI
->getBlockFreq(BestPred
) *
2022 MBPI
->getEdgeProbability(BestPred
, NewTop
);
2023 if (NewFreq
> OrigEdgeFreq
) {
2024 // If NewTop is not the best successor of Pred, then Pred doesn't
2025 // fallthrough to NewTop. So there is no FallThroughFromPred and
2028 FallThroughFromPred
= 0;
2032 BlockFrequency Result
= 0;
2033 BlockFrequency Gains
= BackEdgeFreq
+ NewFreq
;
2034 BlockFrequency Lost
= FallThrough2Top
+ FallThrough2Exit
+
2035 FallThroughFromPred
;
2037 Result
= Gains
- Lost
;
2041 /// Helper function of findBestLoopTop. Find the best loop top block
2042 /// from predecessors of old top.
2044 /// Look for a block which is strictly better than the old top for laying
2045 /// out before the old top of the loop. This looks for only two patterns:
2047 /// 1. a block has only one successor, the old loop top
2049 /// Because such a block will always result in an unconditional jump,
2050 /// rotating it in front of the old top is always profitable.
2052 /// 2. a block has two successors, one is old top, another is exit
2053 /// and it has more than one predecessors
2055 /// If it is below one of its predecessors P, only P can fall through to
2056 /// it, all other predecessors need a jump to it, and another conditional
2057 /// jump to loop header. If it is moved before loop header, all its
2058 /// predecessors jump to it, then fall through to loop header. So all its
2059 /// predecessors except P can reduce one taken branch.
2060 /// At the same time, move it before old top increases the taken branch
2061 /// to loop exit block, so the reduced taken branch will be compared with
2062 /// the increased taken branch to the loop exit block.
2064 MachineBlockPlacement::findBestLoopTopHelper(
2065 MachineBasicBlock
*OldTop
,
2066 const MachineLoop
&L
,
2067 const BlockFilterSet
&LoopBlockSet
) {
2068 // Check that the header hasn't been fused with a preheader block due to
2069 // crazy branches. If it has, we need to start with the header at the top to
2070 // prevent pulling the preheader into the loop body.
2071 BlockChain
&HeaderChain
= *BlockToChain
[OldTop
];
2072 if (!LoopBlockSet
.count(*HeaderChain
.begin()))
2074 if (OldTop
!= *HeaderChain
.begin())
2077 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop
)
2080 BlockFrequency BestGains
= 0;
2081 MachineBasicBlock
*BestPred
= nullptr;
2082 for (MachineBasicBlock
*Pred
: OldTop
->predecessors()) {
2083 if (!LoopBlockSet
.count(Pred
))
2085 if (Pred
== L
.getHeader())
2087 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred
) << ", has "
2088 << Pred
->succ_size() << " successors, ";
2089 MBFI
->printBlockFreq(dbgs(), Pred
) << " freq\n");
2090 if (Pred
->succ_size() > 2)
2093 MachineBasicBlock
*OtherBB
= nullptr;
2094 if (Pred
->succ_size() == 2) {
2095 OtherBB
= *Pred
->succ_begin();
2096 if (OtherBB
== OldTop
)
2097 OtherBB
= *Pred
->succ_rbegin();
2100 if (!canMoveBottomBlockToTop(Pred
, OldTop
))
2103 BlockFrequency Gains
= FallThroughGains(Pred
, OldTop
, OtherBB
,
2105 if ((Gains
> 0) && (Gains
> BestGains
||
2106 ((Gains
== BestGains
) && Pred
->isLayoutSuccessor(OldTop
)))) {
2112 // If no direct predecessor is fine, just use the loop header.
2114 LLVM_DEBUG(dbgs() << " final top unchanged\n");
2118 // Walk backwards through any straight line of predecessors.
2119 while (BestPred
->pred_size() == 1 &&
2120 (*BestPred
->pred_begin())->succ_size() == 1 &&
2121 *BestPred
->pred_begin() != L
.getHeader())
2122 BestPred
= *BestPred
->pred_begin();
2124 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred
) << "\n");
2128 /// Find the best loop top block for layout.
2130 /// This function iteratively calls findBestLoopTopHelper, until no new better
2131 /// BB can be found.
2133 MachineBlockPlacement::findBestLoopTop(const MachineLoop
&L
,
2134 const BlockFilterSet
&LoopBlockSet
) {
2135 // Placing the latch block before the header may introduce an extra branch
2136 // that skips this block the first time the loop is executed, which we want
2137 // to avoid when optimising for size.
2138 // FIXME: in theory there is a case that does not introduce a new branch,
2139 // i.e. when the layout predecessor does not fallthrough to the loop header.
2140 // In practice this never happens though: there always seems to be a preheader
2141 // that can fallthrough and that is also placed before the header.
2142 bool OptForSize
= F
->getFunction().hasOptSize() ||
2143 llvm::shouldOptimizeForSize(L
.getHeader(), PSI
, MBFI
.get());
2145 return L
.getHeader();
2147 MachineBasicBlock
*OldTop
= nullptr;
2148 MachineBasicBlock
*NewTop
= L
.getHeader();
2149 while (NewTop
!= OldTop
) {
2151 NewTop
= findBestLoopTopHelper(OldTop
, L
, LoopBlockSet
);
2152 if (NewTop
!= OldTop
)
2153 ComputedEdges
[NewTop
] = { OldTop
, false };
2158 /// Find the best loop exiting block for layout.
2160 /// This routine implements the logic to analyze the loop looking for the best
2161 /// block to layout at the top of the loop. Typically this is done to maximize
2162 /// fallthrough opportunities.
2164 MachineBlockPlacement::findBestLoopExit(const MachineLoop
&L
,
2165 const BlockFilterSet
&LoopBlockSet
,
2166 BlockFrequency
&ExitFreq
) {
2167 // We don't want to layout the loop linearly in all cases. If the loop header
2168 // is just a normal basic block in the loop, we want to look for what block
2169 // within the loop is the best one to layout at the top. However, if the loop
2170 // header has be pre-merged into a chain due to predecessors not having
2171 // analyzable branches, *and* the predecessor it is merged with is *not* part
2172 // of the loop, rotating the header into the middle of the loop will create
2173 // a non-contiguous range of blocks which is Very Bad. So start with the
2174 // header and only rotate if safe.
2175 BlockChain
&HeaderChain
= *BlockToChain
[L
.getHeader()];
2176 if (!LoopBlockSet
.count(*HeaderChain
.begin()))
2179 BlockFrequency BestExitEdgeFreq
;
2180 unsigned BestExitLoopDepth
= 0;
2181 MachineBasicBlock
*ExitingBB
= nullptr;
2182 // If there are exits to outer loops, loop rotation can severely limit
2183 // fallthrough opportunities unless it selects such an exit. Keep a set of
2184 // blocks where rotating to exit with that block will reach an outer loop.
2185 SmallPtrSet
<MachineBasicBlock
*, 4> BlocksExitingToOuterLoop
;
2187 LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2188 << getBlockName(L
.getHeader()) << "\n");
2189 for (MachineBasicBlock
*MBB
: L
.getBlocks()) {
2190 BlockChain
&Chain
= *BlockToChain
[MBB
];
2191 // Ensure that this block is at the end of a chain; otherwise it could be
2192 // mid-way through an inner loop or a successor of an unanalyzable branch.
2193 if (MBB
!= *std::prev(Chain
.end()))
2196 // Now walk the successors. We need to establish whether this has a viable
2197 // exiting successor and whether it has a viable non-exiting successor.
2198 // We store the old exiting state and restore it if a viable looping
2199 // successor isn't found.
2200 MachineBasicBlock
*OldExitingBB
= ExitingBB
;
2201 BlockFrequency OldBestExitEdgeFreq
= BestExitEdgeFreq
;
2202 bool HasLoopingSucc
= false;
2203 for (MachineBasicBlock
*Succ
: MBB
->successors()) {
2204 if (Succ
->isEHPad())
2208 BlockChain
&SuccChain
= *BlockToChain
[Succ
];
2209 // Don't split chains, either this chain or the successor's chain.
2210 if (&Chain
== &SuccChain
) {
2211 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB
) << " -> "
2212 << getBlockName(Succ
) << " (chain conflict)\n");
2216 auto SuccProb
= MBPI
->getEdgeProbability(MBB
, Succ
);
2217 if (LoopBlockSet
.count(Succ
)) {
2218 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB
) << " -> "
2219 << getBlockName(Succ
) << " (" << SuccProb
<< ")\n");
2220 HasLoopingSucc
= true;
2224 unsigned SuccLoopDepth
= 0;
2225 if (MachineLoop
*ExitLoop
= MLI
->getLoopFor(Succ
)) {
2226 SuccLoopDepth
= ExitLoop
->getLoopDepth();
2227 if (ExitLoop
->contains(&L
))
2228 BlocksExitingToOuterLoop
.insert(MBB
);
2231 BlockFrequency ExitEdgeFreq
= MBFI
->getBlockFreq(MBB
) * SuccProb
;
2232 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB
) << " -> "
2233 << getBlockName(Succ
) << " [L:" << SuccLoopDepth
2235 MBFI
->printBlockFreq(dbgs(), ExitEdgeFreq
) << ")\n");
2236 // Note that we bias this toward an existing layout successor to retain
2237 // incoming order in the absence of better information. The exit must have
2238 // a frequency higher than the current exit before we consider breaking
2240 BranchProbability
Bias(100 - ExitBlockBias
, 100);
2241 if (!ExitingBB
|| SuccLoopDepth
> BestExitLoopDepth
||
2242 ExitEdgeFreq
> BestExitEdgeFreq
||
2243 (MBB
->isLayoutSuccessor(Succ
) &&
2244 !(ExitEdgeFreq
< BestExitEdgeFreq
* Bias
))) {
2245 BestExitEdgeFreq
= ExitEdgeFreq
;
2250 if (!HasLoopingSucc
) {
2251 // Restore the old exiting state, no viable looping successor was found.
2252 ExitingBB
= OldExitingBB
;
2253 BestExitEdgeFreq
= OldBestExitEdgeFreq
;
2256 // Without a candidate exiting block or with only a single block in the
2257 // loop, just use the loop header to layout the loop.
2260 dbgs() << " No other candidate exit blocks, using loop header\n");
2263 if (L
.getNumBlocks() == 1) {
2264 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n");
2268 // Also, if we have exit blocks which lead to outer loops but didn't select
2269 // one of them as the exiting block we are rotating toward, disable loop
2270 // rotation altogether.
2271 if (!BlocksExitingToOuterLoop
.empty() &&
2272 !BlocksExitingToOuterLoop
.count(ExitingBB
))
2275 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB
)
2277 ExitFreq
= BestExitEdgeFreq
;
2281 /// Check if there is a fallthrough to loop header Top.
2283 /// 1. Look for a Pred that can be layout before Top.
2284 /// 2. Check if Top is the most possible successor of Pred.
2286 MachineBlockPlacement::hasViableTopFallthrough(
2287 const MachineBasicBlock
*Top
,
2288 const BlockFilterSet
&LoopBlockSet
) {
2289 for (MachineBasicBlock
*Pred
: Top
->predecessors()) {
2290 BlockChain
*PredChain
= BlockToChain
[Pred
];
2291 if (!LoopBlockSet
.count(Pred
) &&
2292 (!PredChain
|| Pred
== *std::prev(PredChain
->end()))) {
2293 // Found a Pred block can be placed before Top.
2294 // Check if Top is the best successor of Pred.
2295 auto TopProb
= MBPI
->getEdgeProbability(Pred
, Top
);
2297 for (MachineBasicBlock
*Succ
: Pred
->successors()) {
2298 auto SuccProb
= MBPI
->getEdgeProbability(Pred
, Succ
);
2299 BlockChain
*SuccChain
= BlockToChain
[Succ
];
2300 // Check if Succ can be placed after Pred.
2301 // Succ should not be in any chain, or it is the head of some chain.
2302 if ((!SuccChain
|| Succ
== *SuccChain
->begin()) && SuccProb
> TopProb
) {
2314 /// Attempt to rotate an exiting block to the bottom of the loop.
2316 /// Once we have built a chain, try to rotate it to line up the hot exit block
2317 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2318 /// branches. For example, if the loop has fallthrough into its header and out
2319 /// of its bottom already, don't rotate it.
2320 void MachineBlockPlacement::rotateLoop(BlockChain
&LoopChain
,
2321 const MachineBasicBlock
*ExitingBB
,
2322 BlockFrequency ExitFreq
,
2323 const BlockFilterSet
&LoopBlockSet
) {
2327 MachineBasicBlock
*Top
= *LoopChain
.begin();
2328 MachineBasicBlock
*Bottom
= *std::prev(LoopChain
.end());
2330 // If ExitingBB is already the last one in a chain then nothing to do.
2331 if (Bottom
== ExitingBB
)
2334 // The entry block should always be the first BB in a function.
2335 if (Top
->isEntryBlock())
2338 bool ViableTopFallthrough
= hasViableTopFallthrough(Top
, LoopBlockSet
);
2340 // If the header has viable fallthrough, check whether the current loop
2341 // bottom is a viable exiting block. If so, bail out as rotating will
2342 // introduce an unnecessary branch.
2343 if (ViableTopFallthrough
) {
2344 for (MachineBasicBlock
*Succ
: Bottom
->successors()) {
2345 BlockChain
*SuccChain
= BlockToChain
[Succ
];
2346 if (!LoopBlockSet
.count(Succ
) &&
2347 (!SuccChain
|| Succ
== *SuccChain
->begin()))
2351 // Rotate will destroy the top fallthrough, we need to ensure the new exit
2352 // frequency is larger than top fallthrough.
2353 BlockFrequency FallThrough2Top
= TopFallThroughFreq(Top
, LoopBlockSet
);
2354 if (FallThrough2Top
>= ExitFreq
)
2358 BlockChain::iterator ExitIt
= llvm::find(LoopChain
, ExitingBB
);
2359 if (ExitIt
== LoopChain
.end())
2362 // Rotating a loop exit to the bottom when there is a fallthrough to top
2363 // trades the entry fallthrough for an exit fallthrough.
2364 // If there is no bottom->top edge, but the chosen exit block does have
2365 // a fallthrough, we break that fallthrough for nothing in return.
2367 // Let's consider an example. We have a built chain of basic blocks
2368 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2369 // By doing a rotation we get
2370 // Bk+1, ..., Bn, B1, ..., Bk
2371 // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2372 // If we had a fallthrough Bk -> Bk+1 it is broken now.
2373 // It might be compensated by fallthrough Bn -> B1.
2374 // So we have a condition to avoid creation of extra branch by loop rotation.
2375 // All below must be true to avoid loop rotation:
2376 // If there is a fallthrough to top (B1)
2377 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2378 // There is no fallthrough from bottom (Bn) to top (B1).
2379 // Please note that there is no exit fallthrough from Bn because we checked it
2381 if (ViableTopFallthrough
) {
2382 assert(std::next(ExitIt
) != LoopChain
.end() &&
2383 "Exit should not be last BB");
2384 MachineBasicBlock
*NextBlockInChain
= *std::next(ExitIt
);
2385 if (ExitingBB
->isSuccessor(NextBlockInChain
))
2386 if (!Bottom
->isSuccessor(Top
))
2390 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB
)
2392 std::rotate(LoopChain
.begin(), std::next(ExitIt
), LoopChain
.end());
2395 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2397 /// With profile data, we can determine the cost in terms of missed fall through
2398 /// opportunities when rotating a loop chain and select the best rotation.
2399 /// Basically, there are three kinds of cost to consider for each rotation:
2400 /// 1. The possibly missed fall through edge (if it exists) from BB out of
2401 /// the loop to the loop header.
2402 /// 2. The possibly missed fall through edges (if they exist) from the loop
2403 /// exits to BB out of the loop.
2404 /// 3. The missed fall through edge (if it exists) from the last BB to the
2405 /// first BB in the loop chain.
2406 /// Therefore, the cost for a given rotation is the sum of costs listed above.
2407 /// We select the best rotation with the smallest cost.
2408 void MachineBlockPlacement::rotateLoopWithProfile(
2409 BlockChain
&LoopChain
, const MachineLoop
&L
,
2410 const BlockFilterSet
&LoopBlockSet
) {
2411 auto RotationPos
= LoopChain
.end();
2412 MachineBasicBlock
*ChainHeaderBB
= *LoopChain
.begin();
2414 // The entry block should always be the first BB in a function.
2415 if (ChainHeaderBB
->isEntryBlock())
2418 BlockFrequency SmallestRotationCost
= BlockFrequency::getMaxFrequency();
2420 // A utility lambda that scales up a block frequency by dividing it by a
2421 // branch probability which is the reciprocal of the scale.
2422 auto ScaleBlockFrequency
= [](BlockFrequency Freq
,
2423 unsigned Scale
) -> BlockFrequency
{
2426 // Use operator / between BlockFrequency and BranchProbability to implement
2427 // saturating multiplication.
2428 return Freq
/ BranchProbability(1, Scale
);
2431 // Compute the cost of the missed fall-through edge to the loop header if the
2432 // chain head is not the loop header. As we only consider natural loops with
2433 // single header, this computation can be done only once.
2434 BlockFrequency
HeaderFallThroughCost(0);
2435 for (auto *Pred
: ChainHeaderBB
->predecessors()) {
2436 BlockChain
*PredChain
= BlockToChain
[Pred
];
2437 if (!LoopBlockSet
.count(Pred
) &&
2438 (!PredChain
|| Pred
== *std::prev(PredChain
->end()))) {
2439 auto EdgeFreq
= MBFI
->getBlockFreq(Pred
) *
2440 MBPI
->getEdgeProbability(Pred
, ChainHeaderBB
);
2441 auto FallThruCost
= ScaleBlockFrequency(EdgeFreq
, MisfetchCost
);
2442 // If the predecessor has only an unconditional jump to the header, we
2443 // need to consider the cost of this jump.
2444 if (Pred
->succ_size() == 1)
2445 FallThruCost
+= ScaleBlockFrequency(EdgeFreq
, JumpInstCost
);
2446 HeaderFallThroughCost
= std::max(HeaderFallThroughCost
, FallThruCost
);
2450 // Here we collect all exit blocks in the loop, and for each exit we find out
2451 // its hottest exit edge. For each loop rotation, we define the loop exit cost
2452 // as the sum of frequencies of exit edges we collect here, excluding the exit
2453 // edge from the tail of the loop chain.
2454 SmallVector
<std::pair
<MachineBasicBlock
*, BlockFrequency
>, 4> ExitsWithFreq
;
2455 for (auto BB
: LoopChain
) {
2456 auto LargestExitEdgeProb
= BranchProbability::getZero();
2457 for (auto *Succ
: BB
->successors()) {
2458 BlockChain
*SuccChain
= BlockToChain
[Succ
];
2459 if (!LoopBlockSet
.count(Succ
) &&
2460 (!SuccChain
|| Succ
== *SuccChain
->begin())) {
2461 auto SuccProb
= MBPI
->getEdgeProbability(BB
, Succ
);
2462 LargestExitEdgeProb
= std::max(LargestExitEdgeProb
, SuccProb
);
2465 if (LargestExitEdgeProb
> BranchProbability::getZero()) {
2466 auto ExitFreq
= MBFI
->getBlockFreq(BB
) * LargestExitEdgeProb
;
2467 ExitsWithFreq
.emplace_back(BB
, ExitFreq
);
2471 // In this loop we iterate every block in the loop chain and calculate the
2472 // cost assuming the block is the head of the loop chain. When the loop ends,
2473 // we should have found the best candidate as the loop chain's head.
2474 for (auto Iter
= LoopChain
.begin(), TailIter
= std::prev(LoopChain
.end()),
2475 EndIter
= LoopChain
.end();
2476 Iter
!= EndIter
; Iter
++, TailIter
++) {
2477 // TailIter is used to track the tail of the loop chain if the block we are
2478 // checking (pointed by Iter) is the head of the chain.
2479 if (TailIter
== LoopChain
.end())
2480 TailIter
= LoopChain
.begin();
2482 auto TailBB
= *TailIter
;
2484 // Calculate the cost by putting this BB to the top.
2485 BlockFrequency Cost
= 0;
2487 // If the current BB is the loop header, we need to take into account the
2488 // cost of the missed fall through edge from outside of the loop to the
2490 if (Iter
!= LoopChain
.begin())
2491 Cost
+= HeaderFallThroughCost
;
2493 // Collect the loop exit cost by summing up frequencies of all exit edges
2494 // except the one from the chain tail.
2495 for (auto &ExitWithFreq
: ExitsWithFreq
)
2496 if (TailBB
!= ExitWithFreq
.first
)
2497 Cost
+= ExitWithFreq
.second
;
2499 // The cost of breaking the once fall-through edge from the tail to the top
2500 // of the loop chain. Here we need to consider three cases:
2501 // 1. If the tail node has only one successor, then we will get an
2502 // additional jmp instruction. So the cost here is (MisfetchCost +
2503 // JumpInstCost) * tail node frequency.
2504 // 2. If the tail node has two successors, then we may still get an
2505 // additional jmp instruction if the layout successor after the loop
2506 // chain is not its CFG successor. Note that the more frequently executed
2507 // jmp instruction will be put ahead of the other one. Assume the
2508 // frequency of those two branches are x and y, where x is the frequency
2509 // of the edge to the chain head, then the cost will be
2510 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2511 // 3. If the tail node has more than two successors (this rarely happens),
2512 // we won't consider any additional cost.
2513 if (TailBB
->isSuccessor(*Iter
)) {
2514 auto TailBBFreq
= MBFI
->getBlockFreq(TailBB
);
2515 if (TailBB
->succ_size() == 1)
2516 Cost
+= ScaleBlockFrequency(TailBBFreq
.getFrequency(),
2517 MisfetchCost
+ JumpInstCost
);
2518 else if (TailBB
->succ_size() == 2) {
2519 auto TailToHeadProb
= MBPI
->getEdgeProbability(TailBB
, *Iter
);
2520 auto TailToHeadFreq
= TailBBFreq
* TailToHeadProb
;
2521 auto ColderEdgeFreq
= TailToHeadProb
> BranchProbability(1, 2)
2522 ? TailBBFreq
* TailToHeadProb
.getCompl()
2524 Cost
+= ScaleBlockFrequency(TailToHeadFreq
, MisfetchCost
) +
2525 ScaleBlockFrequency(ColderEdgeFreq
, JumpInstCost
);
2529 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2530 << getBlockName(*Iter
)
2531 << " to the top: " << Cost
.getFrequency() << "\n");
2533 if (Cost
< SmallestRotationCost
) {
2534 SmallestRotationCost
= Cost
;
2539 if (RotationPos
!= LoopChain
.end()) {
2540 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos
)
2541 << " to the top\n");
2542 std::rotate(LoopChain
.begin(), RotationPos
, LoopChain
.end());
2546 /// Collect blocks in the given loop that are to be placed.
2548 /// When profile data is available, exclude cold blocks from the returned set;
2549 /// otherwise, collect all blocks in the loop.
2550 MachineBlockPlacement::BlockFilterSet
2551 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop
&L
) {
2552 BlockFilterSet LoopBlockSet
;
2554 // Filter cold blocks off from LoopBlockSet when profile data is available.
2555 // Collect the sum of frequencies of incoming edges to the loop header from
2556 // outside. If we treat the loop as a super block, this is the frequency of
2557 // the loop. Then for each block in the loop, we calculate the ratio between
2558 // its frequency and the frequency of the loop block. When it is too small,
2559 // don't add it to the loop chain. If there are outer loops, then this block
2560 // will be merged into the first outer loop chain for which this block is not
2561 // cold anymore. This needs precise profile data and we only do this when
2562 // profile data is available.
2563 if (F
->getFunction().hasProfileData() || ForceLoopColdBlock
) {
2564 BlockFrequency
LoopFreq(0);
2565 for (auto LoopPred
: L
.getHeader()->predecessors())
2566 if (!L
.contains(LoopPred
))
2567 LoopFreq
+= MBFI
->getBlockFreq(LoopPred
) *
2568 MBPI
->getEdgeProbability(LoopPred
, L
.getHeader());
2570 for (MachineBasicBlock
*LoopBB
: L
.getBlocks()) {
2571 if (LoopBlockSet
.count(LoopBB
))
2573 auto Freq
= MBFI
->getBlockFreq(LoopBB
).getFrequency();
2574 if (Freq
== 0 || LoopFreq
.getFrequency() / Freq
> LoopToColdBlockRatio
)
2576 BlockChain
*Chain
= BlockToChain
[LoopBB
];
2577 for (MachineBasicBlock
*ChainBB
: *Chain
)
2578 LoopBlockSet
.insert(ChainBB
);
2581 LoopBlockSet
.insert(L
.block_begin(), L
.block_end());
2583 return LoopBlockSet
;
2586 /// Forms basic block chains from the natural loop structures.
2588 /// These chains are designed to preserve the existing *structure* of the code
2589 /// as much as possible. We can then stitch the chains together in a way which
2590 /// both preserves the topological structure and minimizes taken conditional
2592 void MachineBlockPlacement::buildLoopChains(const MachineLoop
&L
) {
2593 // First recurse through any nested loops, building chains for those inner
2595 for (const MachineLoop
*InnerLoop
: L
)
2596 buildLoopChains(*InnerLoop
);
2598 assert(BlockWorkList
.empty() &&
2599 "BlockWorkList not empty when starting to build loop chains.");
2600 assert(EHPadWorkList
.empty() &&
2601 "EHPadWorkList not empty when starting to build loop chains.");
2602 BlockFilterSet LoopBlockSet
= collectLoopBlockSet(L
);
2604 // Check if we have profile data for this function. If yes, we will rotate
2605 // this loop by modeling costs more precisely which requires the profile data
2606 // for better layout.
2607 bool RotateLoopWithProfile
=
2608 ForcePreciseRotationCost
||
2609 (PreciseRotationCost
&& F
->getFunction().hasProfileData());
2611 // First check to see if there is an obviously preferable top block for the
2612 // loop. This will default to the header, but may end up as one of the
2613 // predecessors to the header if there is one which will result in strictly
2614 // fewer branches in the loop body.
2615 MachineBasicBlock
*LoopTop
= findBestLoopTop(L
, LoopBlockSet
);
2617 // If we selected just the header for the loop top, look for a potentially
2618 // profitable exit block in the event that rotating the loop can eliminate
2619 // branches by placing an exit edge at the bottom.
2621 // Loops are processed innermost to uttermost, make sure we clear
2622 // PreferredLoopExit before processing a new loop.
2623 PreferredLoopExit
= nullptr;
2624 BlockFrequency ExitFreq
;
2625 if (!RotateLoopWithProfile
&& LoopTop
== L
.getHeader())
2626 PreferredLoopExit
= findBestLoopExit(L
, LoopBlockSet
, ExitFreq
);
2628 BlockChain
&LoopChain
= *BlockToChain
[LoopTop
];
2630 // FIXME: This is a really lame way of walking the chains in the loop: we
2631 // walk the blocks, and use a set to prevent visiting a particular chain
2633 SmallPtrSet
<BlockChain
*, 4> UpdatedPreds
;
2634 assert(LoopChain
.UnscheduledPredecessors
== 0 &&
2635 "LoopChain should not have unscheduled predecessors.");
2636 UpdatedPreds
.insert(&LoopChain
);
2638 for (const MachineBasicBlock
*LoopBB
: LoopBlockSet
)
2639 fillWorkLists(LoopBB
, UpdatedPreds
, &LoopBlockSet
);
2641 buildChain(LoopTop
, LoopChain
, &LoopBlockSet
);
2643 if (RotateLoopWithProfile
)
2644 rotateLoopWithProfile(LoopChain
, L
, LoopBlockSet
);
2646 rotateLoop(LoopChain
, PreferredLoopExit
, ExitFreq
, LoopBlockSet
);
2649 // Crash at the end so we get all of the debugging output first.
2650 bool BadLoop
= false;
2651 if (LoopChain
.UnscheduledPredecessors
) {
2653 dbgs() << "Loop chain contains a block without its preds placed!\n"
2654 << " Loop header: " << getBlockName(*L
.block_begin()) << "\n"
2655 << " Chain header: " << getBlockName(*LoopChain
.begin()) << "\n";
2657 for (MachineBasicBlock
*ChainBB
: LoopChain
) {
2658 dbgs() << " ... " << getBlockName(ChainBB
) << "\n";
2659 if (!LoopBlockSet
.remove(ChainBB
)) {
2660 // We don't mark the loop as bad here because there are real situations
2661 // where this can occur. For example, with an unanalyzable fallthrough
2662 // from a loop block to a non-loop block or vice versa.
2663 dbgs() << "Loop chain contains a block not contained by the loop!\n"
2664 << " Loop header: " << getBlockName(*L
.block_begin()) << "\n"
2665 << " Chain header: " << getBlockName(*LoopChain
.begin()) << "\n"
2666 << " Bad block: " << getBlockName(ChainBB
) << "\n";
2670 if (!LoopBlockSet
.empty()) {
2672 for (const MachineBasicBlock
*LoopBB
: LoopBlockSet
)
2673 dbgs() << "Loop contains blocks never placed into a chain!\n"
2674 << " Loop header: " << getBlockName(*L
.block_begin()) << "\n"
2675 << " Chain header: " << getBlockName(*LoopChain
.begin()) << "\n"
2676 << " Bad block: " << getBlockName(LoopBB
) << "\n";
2678 assert(!BadLoop
&& "Detected problems with the placement of this loop.");
2681 BlockWorkList
.clear();
2682 EHPadWorkList
.clear();
2685 void MachineBlockPlacement::buildCFGChains() {
2686 // Ensure that every BB in the function has an associated chain to simplify
2687 // the assumptions of the remaining algorithm.
2688 SmallVector
<MachineOperand
, 4> Cond
; // For analyzeBranch.
2689 for (MachineFunction::iterator FI
= F
->begin(), FE
= F
->end(); FI
!= FE
;
2691 MachineBasicBlock
*BB
= &*FI
;
2693 new (ChainAllocator
.Allocate()) BlockChain(BlockToChain
, BB
);
2694 // Also, merge any blocks which we cannot reason about and must preserve
2695 // the exact fallthrough behavior for.
2698 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For analyzeBranch.
2699 if (!TII
->analyzeBranch(*BB
, TBB
, FBB
, Cond
) || !FI
->canFallThrough())
2702 MachineFunction::iterator NextFI
= std::next(FI
);
2703 MachineBasicBlock
*NextBB
= &*NextFI
;
2704 // Ensure that the layout successor is a viable block, as we know that
2705 // fallthrough is a possibility.
2706 assert(NextFI
!= FE
&& "Can't fallthrough past the last block.");
2707 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2708 << getBlockName(BB
) << " -> " << getBlockName(NextBB
)
2710 Chain
->merge(NextBB
, nullptr);
2712 BlocksWithUnanalyzableExits
.insert(&*BB
);
2719 // Build any loop-based chains.
2720 PreferredLoopExit
= nullptr;
2721 for (MachineLoop
*L
: *MLI
)
2722 buildLoopChains(*L
);
2724 assert(BlockWorkList
.empty() &&
2725 "BlockWorkList should be empty before building final chain.");
2726 assert(EHPadWorkList
.empty() &&
2727 "EHPadWorkList should be empty before building final chain.");
2729 SmallPtrSet
<BlockChain
*, 4> UpdatedPreds
;
2730 for (MachineBasicBlock
&MBB
: *F
)
2731 fillWorkLists(&MBB
, UpdatedPreds
);
2733 BlockChain
&FunctionChain
= *BlockToChain
[&F
->front()];
2734 buildChain(&F
->front(), FunctionChain
);
2737 using FunctionBlockSetType
= SmallPtrSet
<MachineBasicBlock
*, 16>;
2740 // Crash at the end so we get all of the debugging output first.
2741 bool BadFunc
= false;
2742 FunctionBlockSetType FunctionBlockSet
;
2743 for (MachineBasicBlock
&MBB
: *F
)
2744 FunctionBlockSet
.insert(&MBB
);
2746 for (MachineBasicBlock
*ChainBB
: FunctionChain
)
2747 if (!FunctionBlockSet
.erase(ChainBB
)) {
2749 dbgs() << "Function chain contains a block not in the function!\n"
2750 << " Bad block: " << getBlockName(ChainBB
) << "\n";
2753 if (!FunctionBlockSet
.empty()) {
2755 for (MachineBasicBlock
*RemainingBB
: FunctionBlockSet
)
2756 dbgs() << "Function contains blocks never placed into a chain!\n"
2757 << " Bad block: " << getBlockName(RemainingBB
) << "\n";
2759 assert(!BadFunc
&& "Detected problems with the block placement.");
2762 // Remember original layout ordering, so we can update terminators after
2763 // reordering to point to the original layout successor.
2764 SmallVector
<MachineBasicBlock
*, 4> OriginalLayoutSuccessors(
2765 F
->getNumBlockIDs());
2767 MachineBasicBlock
*LastMBB
= nullptr;
2768 for (auto &MBB
: *F
) {
2769 if (LastMBB
!= nullptr)
2770 OriginalLayoutSuccessors
[LastMBB
->getNumber()] = &MBB
;
2773 OriginalLayoutSuccessors
[F
->back().getNumber()] = nullptr;
2776 // Splice the blocks into place.
2777 MachineFunction::iterator InsertPos
= F
->begin();
2778 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F
->getName() << "\n");
2779 for (MachineBasicBlock
*ChainBB
: FunctionChain
) {
2780 LLVM_DEBUG(dbgs() << (ChainBB
== *FunctionChain
.begin() ? "Placing chain "
2782 << getBlockName(ChainBB
) << "\n");
2783 if (InsertPos
!= MachineFunction::iterator(ChainBB
))
2784 F
->splice(InsertPos
, ChainBB
);
2788 // Update the terminator of the previous block.
2789 if (ChainBB
== *FunctionChain
.begin())
2791 MachineBasicBlock
*PrevBB
= &*std::prev(MachineFunction::iterator(ChainBB
));
2793 // FIXME: It would be awesome of updateTerminator would just return rather
2794 // than assert when the branch cannot be analyzed in order to remove this
2797 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For analyzeBranch.
2800 if (!BlocksWithUnanalyzableExits
.count(PrevBB
)) {
2801 // Given the exact block placement we chose, we may actually not _need_ to
2802 // be able to edit PrevBB's terminator sequence, but not being _able_ to
2803 // do that at this point is a bug.
2804 assert((!TII
->analyzeBranch(*PrevBB
, TBB
, FBB
, Cond
) ||
2805 !PrevBB
->canFallThrough()) &&
2806 "Unexpected block with un-analyzable fallthrough!");
2808 TBB
= FBB
= nullptr;
2812 // The "PrevBB" is not yet updated to reflect current code layout, so,
2813 // o. it may fall-through to a block without explicit "goto" instruction
2814 // before layout, and no longer fall-through it after layout; or
2815 // o. just opposite.
2817 // analyzeBranch() may return erroneous value for FBB when these two
2818 // situations take place. For the first scenario FBB is mistakenly set NULL;
2819 // for the 2nd scenario, the FBB, which is expected to be NULL, is
2820 // mistakenly pointing to "*BI".
2821 // Thus, if the future change needs to use FBB before the layout is set, it
2822 // has to correct FBB first by using the code similar to the following:
2824 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2825 // PrevBB->updateTerminator();
2827 // TBB = FBB = nullptr;
2828 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2829 // // FIXME: This should never take place.
2830 // TBB = FBB = nullptr;
2833 if (!TII
->analyzeBranch(*PrevBB
, TBB
, FBB
, Cond
)) {
2834 PrevBB
->updateTerminator(OriginalLayoutSuccessors
[PrevBB
->getNumber()]);
2838 // Fixup the last block.
2840 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For analyzeBranch.
2841 if (!TII
->analyzeBranch(F
->back(), TBB
, FBB
, Cond
)) {
2842 MachineBasicBlock
*PrevBB
= &F
->back();
2843 PrevBB
->updateTerminator(OriginalLayoutSuccessors
[PrevBB
->getNumber()]);
2846 BlockWorkList
.clear();
2847 EHPadWorkList
.clear();
2850 void MachineBlockPlacement::optimizeBranches() {
2851 BlockChain
&FunctionChain
= *BlockToChain
[&F
->front()];
2852 SmallVector
<MachineOperand
, 4> Cond
; // For analyzeBranch.
2854 // Now that all the basic blocks in the chain have the proper layout,
2855 // make a final call to analyzeBranch with AllowModify set.
2856 // Indeed, the target may be able to optimize the branches in a way we
2857 // cannot because all branches may not be analyzable.
2858 // E.g., the target may be able to remove an unconditional branch to
2859 // a fallthrough when it occurs after predicated terminators.
2860 for (MachineBasicBlock
*ChainBB
: FunctionChain
) {
2862 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For analyzeBranch.
2863 if (!TII
->analyzeBranch(*ChainBB
, TBB
, FBB
, Cond
, /*AllowModify*/ true)) {
2864 // If PrevBB has a two-way branch, try to re-order the branches
2865 // such that we branch to the successor with higher probability first.
2866 if (TBB
&& !Cond
.empty() && FBB
&&
2867 MBPI
->getEdgeProbability(ChainBB
, FBB
) >
2868 MBPI
->getEdgeProbability(ChainBB
, TBB
) &&
2869 !TII
->reverseBranchCondition(Cond
)) {
2870 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2871 << getBlockName(ChainBB
) << "\n");
2872 LLVM_DEBUG(dbgs() << " Edge probability: "
2873 << MBPI
->getEdgeProbability(ChainBB
, FBB
) << " vs "
2874 << MBPI
->getEdgeProbability(ChainBB
, TBB
) << "\n");
2875 DebugLoc dl
; // FIXME: this is nowhere
2876 TII
->removeBranch(*ChainBB
);
2877 TII
->insertBranch(*ChainBB
, FBB
, TBB
, Cond
, dl
);
2883 void MachineBlockPlacement::alignBlocks() {
2884 // Walk through the backedges of the function now that we have fully laid out
2885 // the basic blocks and align the destination of each backedge. We don't rely
2886 // exclusively on the loop info here so that we can align backedges in
2887 // unnatural CFGs and backedges that were introduced purely because of the
2888 // loop rotations done during this layout pass.
2889 if (F
->getFunction().hasMinSize() ||
2890 (F
->getFunction().hasOptSize() && !TLI
->alignLoopsWithOptSize()))
2892 BlockChain
&FunctionChain
= *BlockToChain
[&F
->front()];
2893 if (FunctionChain
.begin() == FunctionChain
.end())
2894 return; // Empty chain.
2896 const BranchProbability
ColdProb(1, 5); // 20%
2897 BlockFrequency EntryFreq
= MBFI
->getBlockFreq(&F
->front());
2898 BlockFrequency WeightedEntryFreq
= EntryFreq
* ColdProb
;
2899 for (MachineBasicBlock
*ChainBB
: FunctionChain
) {
2900 if (ChainBB
== *FunctionChain
.begin())
2903 // Don't align non-looping basic blocks. These are unlikely to execute
2904 // enough times to matter in practice. Note that we'll still handle
2905 // unnatural CFGs inside of a natural outer loop (the common case) and
2907 MachineLoop
*L
= MLI
->getLoopFor(ChainBB
);
2911 const Align Align
= TLI
->getPrefLoopAlignment(L
);
2913 continue; // Don't care about loop alignment.
2915 // If the block is cold relative to the function entry don't waste space
2917 BlockFrequency Freq
= MBFI
->getBlockFreq(ChainBB
);
2918 if (Freq
< WeightedEntryFreq
)
2921 // If the block is cold relative to its loop header, don't align it
2922 // regardless of what edges into the block exist.
2923 MachineBasicBlock
*LoopHeader
= L
->getHeader();
2924 BlockFrequency LoopHeaderFreq
= MBFI
->getBlockFreq(LoopHeader
);
2925 if (Freq
< (LoopHeaderFreq
* ColdProb
))
2928 // If the global profiles indicates so, don't align it.
2929 if (llvm::shouldOptimizeForSize(ChainBB
, PSI
, MBFI
.get()) &&
2930 !TLI
->alignLoopsWithOptSize())
2933 // Check for the existence of a non-layout predecessor which would benefit
2934 // from aligning this block.
2935 MachineBasicBlock
*LayoutPred
=
2936 &*std::prev(MachineFunction::iterator(ChainBB
));
2938 auto DetermineMaxAlignmentPadding
= [&]() {
2939 // Set the maximum bytes allowed to be emitted for alignment.
2941 if (MaxBytesForAlignmentOverride
.getNumOccurrences() > 0)
2942 MaxBytes
= MaxBytesForAlignmentOverride
;
2944 MaxBytes
= TLI
->getMaxPermittedBytesForAlignment(ChainBB
);
2945 ChainBB
->setMaxBytesForAlignment(MaxBytes
);
2948 // Force alignment if all the predecessors are jumps. We already checked
2949 // that the block isn't cold above.
2950 if (!LayoutPred
->isSuccessor(ChainBB
)) {
2951 ChainBB
->setAlignment(Align
);
2952 DetermineMaxAlignmentPadding();
2956 // Align this block if the layout predecessor's edge into this block is
2957 // cold relative to the block. When this is true, other predecessors make up
2958 // all of the hot entries into the block and thus alignment is likely to be
2960 BranchProbability LayoutProb
=
2961 MBPI
->getEdgeProbability(LayoutPred
, ChainBB
);
2962 BlockFrequency LayoutEdgeFreq
= MBFI
->getBlockFreq(LayoutPred
) * LayoutProb
;
2963 if (LayoutEdgeFreq
<= (Freq
* ColdProb
)) {
2964 ChainBB
->setAlignment(Align
);
2965 DetermineMaxAlignmentPadding();
2970 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2971 /// it was duplicated into its chain predecessor and removed.
2972 /// \p BB - Basic block that may be duplicated.
2974 /// \p LPred - Chosen layout predecessor of \p BB.
2975 /// Updated to be the chain end if LPred is removed.
2976 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2977 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2978 /// Used to identify which blocks to update predecessor
2980 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2981 /// chosen in the given order due to unnatural CFG
2982 /// only needed if \p BB is removed and
2983 /// \p PrevUnplacedBlockIt pointed to \p BB.
2984 /// @return true if \p BB was removed.
2985 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2986 MachineBasicBlock
*BB
, MachineBasicBlock
*&LPred
,
2987 const MachineBasicBlock
*LoopHeaderBB
,
2988 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
2989 MachineFunction::iterator
&PrevUnplacedBlockIt
) {
2990 bool Removed
, DuplicatedToLPred
;
2991 bool DuplicatedToOriginalLPred
;
2992 Removed
= maybeTailDuplicateBlock(BB
, LPred
, Chain
, BlockFilter
,
2993 PrevUnplacedBlockIt
,
2997 DuplicatedToOriginalLPred
= DuplicatedToLPred
;
2998 // Iteratively try to duplicate again. It can happen that a block that is
2999 // duplicated into is still small enough to be duplicated again.
3000 // No need to call markBlockSuccessors in this case, as the blocks being
3001 // duplicated from here on are already scheduled.
3002 while (DuplicatedToLPred
&& Removed
) {
3003 MachineBasicBlock
*DupBB
, *DupPred
;
3004 // The removal callback causes Chain.end() to be updated when a block is
3005 // removed. On the first pass through the loop, the chain end should be the
3006 // same as it was on function entry. On subsequent passes, because we are
3007 // duplicating the block at the end of the chain, if it is removed the
3008 // chain will have shrunk by one block.
3009 BlockChain::iterator ChainEnd
= Chain
.end();
3010 DupBB
= *(--ChainEnd
);
3011 // Now try to duplicate again.
3012 if (ChainEnd
== Chain
.begin())
3014 DupPred
= *std::prev(ChainEnd
);
3015 Removed
= maybeTailDuplicateBlock(DupBB
, DupPred
, Chain
, BlockFilter
,
3016 PrevUnplacedBlockIt
,
3019 // If BB was duplicated into LPred, it is now scheduled. But because it was
3020 // removed, markChainSuccessors won't be called for its chain. Instead we
3021 // call markBlockSuccessors for LPred to achieve the same effect. This must go
3022 // at the end because repeating the tail duplication can increase the number
3023 // of unscheduled predecessors.
3024 LPred
= *std::prev(Chain
.end());
3025 if (DuplicatedToOriginalLPred
)
3026 markBlockSuccessors(Chain
, LPred
, LoopHeaderBB
, BlockFilter
);
3030 /// Tail duplicate \p BB into (some) predecessors if profitable.
3031 /// \p BB - Basic block that may be duplicated
3032 /// \p LPred - Chosen layout predecessor of \p BB
3033 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
3034 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
3035 /// Used to identify which blocks to update predecessor
3037 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
3038 /// chosen in the given order due to unnatural CFG
3039 /// only needed if \p BB is removed and
3040 /// \p PrevUnplacedBlockIt pointed to \p BB.
3041 /// \p DuplicatedToLPred - True if the block was duplicated into LPred.
3042 /// \return - True if the block was duplicated into all preds and removed.
3043 bool MachineBlockPlacement::maybeTailDuplicateBlock(
3044 MachineBasicBlock
*BB
, MachineBasicBlock
*LPred
,
3045 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
3046 MachineFunction::iterator
&PrevUnplacedBlockIt
,
3047 bool &DuplicatedToLPred
) {
3048 DuplicatedToLPred
= false;
3049 if (!shouldTailDuplicate(BB
))
3052 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB
->getNumber()
3055 // This has to be a callback because none of it can be done after
3057 bool Removed
= false;
3058 auto RemovalCallback
=
3059 [&](MachineBasicBlock
*RemBB
) {
3060 // Signal to outer function
3063 // Conservative default.
3064 bool InWorkList
= true;
3065 // Remove from the Chain and Chain Map
3066 if (BlockToChain
.count(RemBB
)) {
3067 BlockChain
*Chain
= BlockToChain
[RemBB
];
3068 InWorkList
= Chain
->UnscheduledPredecessors
== 0;
3069 Chain
->remove(RemBB
);
3070 BlockToChain
.erase(RemBB
);
3073 // Handle the unplaced block iterator
3074 if (&(*PrevUnplacedBlockIt
) == RemBB
) {
3075 PrevUnplacedBlockIt
++;
3078 // Handle the Work Lists
3080 SmallVectorImpl
<MachineBasicBlock
*> &RemoveList
= BlockWorkList
;
3081 if (RemBB
->isEHPad())
3082 RemoveList
= EHPadWorkList
;
3083 llvm::erase_value(RemoveList
, RemBB
);
3086 // Handle the filter set
3088 BlockFilter
->remove(RemBB
);
3091 // Remove the block from loop info.
3092 MLI
->removeBlock(RemBB
);
3093 if (RemBB
== PreferredLoopExit
)
3094 PreferredLoopExit
= nullptr;
3096 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
3097 << getBlockName(RemBB
) << "\n");
3099 auto RemovalCallbackRef
=
3100 function_ref
<void(MachineBasicBlock
*)>(RemovalCallback
);
3102 SmallVector
<MachineBasicBlock
*, 8> DuplicatedPreds
;
3103 bool IsSimple
= TailDup
.isSimpleBB(BB
);
3104 SmallVector
<MachineBasicBlock
*, 8> CandidatePreds
;
3105 SmallVectorImpl
<MachineBasicBlock
*> *CandidatePtr
= nullptr;
3106 if (F
->getFunction().hasProfileData()) {
3107 // We can do partial duplication with precise profile information.
3108 findDuplicateCandidates(CandidatePreds
, BB
, BlockFilter
);
3109 if (CandidatePreds
.size() == 0)
3111 if (CandidatePreds
.size() < BB
->pred_size())
3112 CandidatePtr
= &CandidatePreds
;
3114 TailDup
.tailDuplicateAndUpdate(IsSimple
, BB
, LPred
, &DuplicatedPreds
,
3115 &RemovalCallbackRef
, CandidatePtr
);
3117 // Update UnscheduledPredecessors to reflect tail-duplication.
3118 DuplicatedToLPred
= false;
3119 for (MachineBasicBlock
*Pred
: DuplicatedPreds
) {
3120 // We're only looking for unscheduled predecessors that match the filter.
3121 BlockChain
* PredChain
= BlockToChain
[Pred
];
3123 DuplicatedToLPred
= true;
3124 if (Pred
== LPred
|| (BlockFilter
&& !BlockFilter
->count(Pred
))
3125 || PredChain
== &Chain
)
3127 for (MachineBasicBlock
*NewSucc
: Pred
->successors()) {
3128 if (BlockFilter
&& !BlockFilter
->count(NewSucc
))
3130 BlockChain
*NewChain
= BlockToChain
[NewSucc
];
3131 if (NewChain
!= &Chain
&& NewChain
!= PredChain
)
3132 NewChain
->UnscheduledPredecessors
++;
3138 // Count the number of actual machine instructions.
3139 static uint64_t countMBBInstruction(MachineBasicBlock
*MBB
) {
3140 uint64_t InstrCount
= 0;
3141 for (MachineInstr
&MI
: *MBB
) {
3142 if (!MI
.isPHI() && !MI
.isMetaInstruction())
3148 // The size cost of duplication is the instruction size of the duplicated block.
3149 // So we should scale the threshold accordingly. But the instruction size is not
3150 // available on all targets, so we use the number of instructions instead.
3151 BlockFrequency
MachineBlockPlacement::scaleThreshold(MachineBasicBlock
*BB
) {
3152 return DupThreshold
.getFrequency() * countMBBInstruction(BB
);
3155 // Returns true if BB is Pred's best successor.
3156 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock
*BB
,
3157 MachineBasicBlock
*Pred
,
3158 BlockFilterSet
*BlockFilter
) {
3161 if (BlockFilter
&& !BlockFilter
->count(Pred
))
3163 BlockChain
*PredChain
= BlockToChain
[Pred
];
3164 if (PredChain
&& (Pred
!= *std::prev(PredChain
->end())))
3167 // Find the successor with largest probability excluding BB.
3168 BranchProbability BestProb
= BranchProbability::getZero();
3169 for (MachineBasicBlock
*Succ
: Pred
->successors())
3171 if (BlockFilter
&& !BlockFilter
->count(Succ
))
3173 BlockChain
*SuccChain
= BlockToChain
[Succ
];
3174 if (SuccChain
&& (Succ
!= *SuccChain
->begin()))
3176 BranchProbability SuccProb
= MBPI
->getEdgeProbability(Pred
, Succ
);
3177 if (SuccProb
> BestProb
)
3178 BestProb
= SuccProb
;
3181 BranchProbability BBProb
= MBPI
->getEdgeProbability(Pred
, BB
);
3182 if (BBProb
<= BestProb
)
3185 // Compute the number of reduced taken branches if Pred falls through to BB
3186 // instead of another successor. Then compare it with threshold.
3187 BlockFrequency PredFreq
= getBlockCountOrFrequency(Pred
);
3188 BlockFrequency Gain
= PredFreq
* (BBProb
- BestProb
);
3189 return Gain
> scaleThreshold(BB
);
3192 // Find out the predecessors of BB and BB can be beneficially duplicated into
3194 void MachineBlockPlacement::findDuplicateCandidates(
3195 SmallVectorImpl
<MachineBasicBlock
*> &Candidates
,
3196 MachineBasicBlock
*BB
,
3197 BlockFilterSet
*BlockFilter
) {
3198 MachineBasicBlock
*Fallthrough
= nullptr;
3199 BranchProbability DefaultBranchProb
= BranchProbability::getZero();
3200 BlockFrequency
BBDupThreshold(scaleThreshold(BB
));
3201 SmallVector
<MachineBasicBlock
*, 8> Preds(BB
->predecessors());
3202 SmallVector
<MachineBasicBlock
*, 8> Succs(BB
->successors());
3204 // Sort for highest frequency.
3205 auto CmpSucc
= [&](MachineBasicBlock
*A
, MachineBasicBlock
*B
) {
3206 return MBPI
->getEdgeProbability(BB
, A
) > MBPI
->getEdgeProbability(BB
, B
);
3208 auto CmpPred
= [&](MachineBasicBlock
*A
, MachineBasicBlock
*B
) {
3209 return MBFI
->getBlockFreq(A
) > MBFI
->getBlockFreq(B
);
3211 llvm::stable_sort(Succs
, CmpSucc
);
3212 llvm::stable_sort(Preds
, CmpPred
);
3214 auto SuccIt
= Succs
.begin();
3215 if (SuccIt
!= Succs
.end()) {
3216 DefaultBranchProb
= MBPI
->getEdgeProbability(BB
, *SuccIt
).getCompl();
3219 // For each predecessors of BB, compute the benefit of duplicating BB,
3220 // if it is larger than the threshold, add it into Candidates.
3222 // If we have following control flow.
3233 // And it can be partially duplicated as
3246 // The benefit of duplicating into a predecessor is defined as
3247 // Orig_taken_branch - Duplicated_taken_branch
3249 // The Orig_taken_branch is computed with the assumption that predecessor
3250 // jumps to BB and the most possible successor is laid out after BB.
3252 // The Duplicated_taken_branch is computed with the assumption that BB is
3253 // duplicated into PB, and one successor is layout after it (SB1 for PB1 and
3254 // SB2 for PB2 in our case). If there is no available successor, the combined
3255 // block jumps to all BB's successor, like PB3 in this example.
3257 // If a predecessor has multiple successors, so BB can't be duplicated into
3258 // it. But it can beneficially fall through to BB, and duplicate BB into other
3260 for (MachineBasicBlock
*Pred
: Preds
) {
3261 BlockFrequency PredFreq
= getBlockCountOrFrequency(Pred
);
3263 if (!TailDup
.canTailDuplicate(BB
, Pred
)) {
3264 // BB can't be duplicated into Pred, but it is possible to be layout
3266 if (!Fallthrough
&& isBestSuccessor(BB
, Pred
, BlockFilter
)) {
3268 if (SuccIt
!= Succs
.end())
3274 BlockFrequency OrigCost
= PredFreq
+ PredFreq
* DefaultBranchProb
;
3275 BlockFrequency DupCost
;
3276 if (SuccIt
== Succs
.end()) {
3277 // Jump to all successors;
3278 if (Succs
.size() > 0)
3279 DupCost
+= PredFreq
;
3281 // Fallthrough to *SuccIt, jump to all other successors;
3282 DupCost
+= PredFreq
;
3283 DupCost
-= PredFreq
* MBPI
->getEdgeProbability(BB
, *SuccIt
);
3286 assert(OrigCost
>= DupCost
);
3287 OrigCost
-= DupCost
;
3288 if (OrigCost
> BBDupThreshold
) {
3289 Candidates
.push_back(Pred
);
3290 if (SuccIt
!= Succs
.end())
3295 // No predecessors can optimally fallthrough to BB.
3296 // So we can change one duplication into fallthrough.
3298 if ((Candidates
.size() < Preds
.size()) && (Candidates
.size() > 0)) {
3299 Candidates
[0] = Candidates
.back();
3300 Candidates
.pop_back();
3305 void MachineBlockPlacement::initDupThreshold() {
3307 if (!F
->getFunction().hasProfileData())
3310 // We prefer to use prifile count.
3311 uint64_t HotThreshold
= PSI
->getOrCompHotCountThreshold();
3312 if (HotThreshold
!= UINT64_MAX
) {
3313 UseProfileCount
= true;
3314 DupThreshold
= HotThreshold
* TailDupProfilePercentThreshold
/ 100;
3318 // Profile count is not available, we can use block frequency instead.
3319 BlockFrequency MaxFreq
= 0;
3320 for (MachineBasicBlock
&MBB
: *F
) {
3321 BlockFrequency Freq
= MBFI
->getBlockFreq(&MBB
);
3326 BranchProbability
ThresholdProb(TailDupPlacementPenalty
, 100);
3327 DupThreshold
= MaxFreq
* ThresholdProb
;
3328 UseProfileCount
= false;
3331 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction
&MF
) {
3332 if (skipFunction(MF
.getFunction()))
3335 // Check for single-block functions and skip them.
3336 if (std::next(MF
.begin()) == MF
.end())
3340 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
3341 MBFI
= std::make_unique
<MBFIWrapper
>(
3342 getAnalysis
<MachineBlockFrequencyInfo
>());
3343 MLI
= &getAnalysis
<MachineLoopInfo
>();
3344 TII
= MF
.getSubtarget().getInstrInfo();
3345 TLI
= MF
.getSubtarget().getTargetLowering();
3347 PSI
= &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
3351 // Initialize PreferredLoopExit to nullptr here since it may never be set if
3352 // there are no MachineLoops.
3353 PreferredLoopExit
= nullptr;
3355 assert(BlockToChain
.empty() &&
3356 "BlockToChain map should be empty before starting placement.");
3357 assert(ComputedEdges
.empty() &&
3358 "Computed Edge map should be empty before starting placement.");
3360 unsigned TailDupSize
= TailDupPlacementThreshold
;
3361 // If only the aggressive threshold is explicitly set, use it.
3362 if (TailDupPlacementAggressiveThreshold
.getNumOccurrences() != 0 &&
3363 TailDupPlacementThreshold
.getNumOccurrences() == 0)
3364 TailDupSize
= TailDupPlacementAggressiveThreshold
;
3366 TargetPassConfig
*PassConfig
= &getAnalysis
<TargetPassConfig
>();
3367 // For aggressive optimization, we can adjust some thresholds to be less
3369 if (PassConfig
->getOptLevel() >= CodeGenOpt::Aggressive
) {
3370 // At O3 we should be more willing to copy blocks for tail duplication. This
3371 // increases size pressure, so we only do it at O3
3372 // Do this unless only the regular threshold is explicitly set.
3373 if (TailDupPlacementThreshold
.getNumOccurrences() == 0 ||
3374 TailDupPlacementAggressiveThreshold
.getNumOccurrences() != 0)
3375 TailDupSize
= TailDupPlacementAggressiveThreshold
;
3378 // If there's no threshold provided through options, query the target
3379 // information for a threshold instead.
3380 if (TailDupPlacementThreshold
.getNumOccurrences() == 0 &&
3381 (PassConfig
->getOptLevel() < CodeGenOpt::Aggressive
||
3382 TailDupPlacementAggressiveThreshold
.getNumOccurrences() == 0))
3383 TailDupSize
= TII
->getTailDuplicateSize(PassConfig
->getOptLevel());
3385 if (allowTailDupPlacement()) {
3386 MPDT
= &getAnalysis
<MachinePostDominatorTree
>();
3387 bool OptForSize
= MF
.getFunction().hasOptSize() ||
3388 llvm::shouldOptimizeForSize(&MF
, PSI
, &MBFI
->getMBFI());
3391 bool PreRegAlloc
= false;
3392 TailDup
.initMF(MF
, PreRegAlloc
, MBPI
, MBFI
.get(), PSI
,
3393 /* LayoutMode */ true, TailDupSize
);
3394 precomputeTriangleChains();
3399 // Changing the layout can create new tail merging opportunities.
3400 // TailMerge can create jump into if branches that make CFG irreducible for
3401 // HW that requires structured CFG.
3402 bool EnableTailMerge
= !MF
.getTarget().requiresStructuredCFG() &&
3403 PassConfig
->getEnableTailMerge() &&
3404 BranchFoldPlacement
;
3405 // No tail merging opportunities if the block number is less than four.
3406 if (MF
.size() > 3 && EnableTailMerge
) {
3407 unsigned TailMergeSize
= TailDupSize
+ 1;
3408 BranchFolder
BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false,
3409 *MBFI
, *MBPI
, PSI
, TailMergeSize
);
3411 if (BF
.OptimizeFunction(MF
, TII
, MF
.getSubtarget().getRegisterInfo(), MLI
,
3412 /*AfterPlacement=*/true)) {
3413 // Redo the layout if tail merging creates/removes/moves blocks.
3414 BlockToChain
.clear();
3415 ComputedEdges
.clear();
3416 // Must redo the post-dominator tree if blocks were changed.
3418 MPDT
->runOnMachineFunction(MF
);
3419 ChainAllocator
.DestroyAll();
3424 // Apply a post-processing optimizing block placement.
3425 if (MF
.size() >= 3 && EnableExtTspBlockPlacement
) {
3426 // Find a new placement and modify the layout of the blocks in the function.
3429 // Re-create CFG chain so that we can optimizeBranches and alignBlocks.
3430 createCFGChainExtTsp();
3436 BlockToChain
.clear();
3437 ComputedEdges
.clear();
3438 ChainAllocator
.DestroyAll();
3440 bool HasMaxBytesOverride
=
3441 MaxBytesForAlignmentOverride
.getNumOccurrences() > 0;
3444 // Align all of the blocks in the function to a specific alignment.
3445 for (MachineBasicBlock
&MBB
: MF
) {
3446 if (HasMaxBytesOverride
)
3447 MBB
.setAlignment(Align(1ULL << AlignAllBlock
),
3448 MaxBytesForAlignmentOverride
);
3450 MBB
.setAlignment(Align(1ULL << AlignAllBlock
));
3452 else if (AlignAllNonFallThruBlocks
) {
3453 // Align all of the blocks that have no fall-through predecessors to a
3454 // specific alignment.
3455 for (auto MBI
= std::next(MF
.begin()), MBE
= MF
.end(); MBI
!= MBE
; ++MBI
) {
3456 auto LayoutPred
= std::prev(MBI
);
3457 if (!LayoutPred
->isSuccessor(&*MBI
)) {
3458 if (HasMaxBytesOverride
)
3459 MBI
->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks
),
3460 MaxBytesForAlignmentOverride
);
3462 MBI
->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks
));
3466 if (ViewBlockLayoutWithBFI
!= GVDT_None
&&
3467 (ViewBlockFreqFuncName
.empty() ||
3468 F
->getFunction().getName().equals(ViewBlockFreqFuncName
))) {
3469 MBFI
->view("MBP." + MF
.getName(), false);
3472 // We always return true as we have no way to track whether the final order
3473 // differs from the original order.
3477 void MachineBlockPlacement::applyExtTsp() {
3478 // Prepare data; blocks are indexed by their index in the current ordering.
3479 DenseMap
<const MachineBasicBlock
*, uint64_t> BlockIndex
;
3480 BlockIndex
.reserve(F
->size());
3481 std::vector
<const MachineBasicBlock
*> CurrentBlockOrder
;
3482 CurrentBlockOrder
.reserve(F
->size());
3483 size_t NumBlocks
= 0;
3484 for (const MachineBasicBlock
&MBB
: *F
) {
3485 BlockIndex
[&MBB
] = NumBlocks
++;
3486 CurrentBlockOrder
.push_back(&MBB
);
3489 auto BlockSizes
= std::vector
<uint64_t>(F
->size());
3490 auto BlockCounts
= std::vector
<uint64_t>(F
->size());
3491 DenseMap
<std::pair
<uint64_t, uint64_t>, uint64_t> JumpCounts
;
3492 for (MachineBasicBlock
&MBB
: *F
) {
3493 // Getting the block frequency.
3494 BlockFrequency BlockFreq
= MBFI
->getBlockFreq(&MBB
);
3495 BlockCounts
[BlockIndex
[&MBB
]] = BlockFreq
.getFrequency();
3496 // Getting the block size:
3497 // - approximate the size of an instruction by 4 bytes, and
3498 // - ignore debug instructions.
3499 // Note: getting the exact size of each block is target-dependent and can be
3500 // done by extending the interface of MCCodeEmitter. Experimentally we do
3501 // not see a perf improvement with the exact block sizes.
3503 instructionsWithoutDebug(MBB
.instr_begin(), MBB
.instr_end());
3504 int NumInsts
= std::distance(NonDbgInsts
.begin(), NonDbgInsts
.end());
3505 BlockSizes
[BlockIndex
[&MBB
]] = 4 * NumInsts
;
3506 // Getting jump frequencies.
3507 for (MachineBasicBlock
*Succ
: MBB
.successors()) {
3508 auto EP
= MBPI
->getEdgeProbability(&MBB
, Succ
);
3509 BlockFrequency EdgeFreq
= BlockFreq
* EP
;
3510 auto Edge
= std::make_pair(BlockIndex
[&MBB
], BlockIndex
[Succ
]);
3511 JumpCounts
[Edge
] = EdgeFreq
.getFrequency();
3515 LLVM_DEBUG(dbgs() << "Applying ext-tsp layout for |V| = " << F
->size()
3516 << " with profile = " << F
->getFunction().hasProfileData()
3517 << " (" << F
->getName().str() << ")"
3520 dbgs() << format(" original layout score: %0.2f\n",
3521 calcExtTspScore(BlockSizes
, BlockCounts
, JumpCounts
)));
3523 // Run the layout algorithm.
3524 auto NewOrder
= applyExtTspLayout(BlockSizes
, BlockCounts
, JumpCounts
);
3525 std::vector
<const MachineBasicBlock
*> NewBlockOrder
;
3526 NewBlockOrder
.reserve(F
->size());
3527 for (uint64_t Node
: NewOrder
) {
3528 NewBlockOrder
.push_back(CurrentBlockOrder
[Node
]);
3530 LLVM_DEBUG(dbgs() << format(" optimized layout score: %0.2f\n",
3531 calcExtTspScore(NewOrder
, BlockSizes
, BlockCounts
,
3534 // Assign new block order.
3535 assignBlockOrder(NewBlockOrder
);
3538 void MachineBlockPlacement::assignBlockOrder(
3539 const std::vector
<const MachineBasicBlock
*> &NewBlockOrder
) {
3540 assert(F
->size() == NewBlockOrder
.size() && "Incorrect size of block order");
3541 F
->RenumberBlocks();
3543 bool HasChanges
= false;
3544 for (size_t I
= 0; I
< NewBlockOrder
.size(); I
++) {
3545 if (NewBlockOrder
[I
] != F
->getBlockNumbered(I
)) {
3550 // Stop early if the new block order is identical to the existing one.
3554 SmallVector
<MachineBasicBlock
*, 4> PrevFallThroughs(F
->getNumBlockIDs());
3555 for (auto &MBB
: *F
) {
3556 PrevFallThroughs
[MBB
.getNumber()] = MBB
.getFallThrough();
3559 // Sort basic blocks in the function according to the computed order.
3560 DenseMap
<const MachineBasicBlock
*, size_t> NewIndex
;
3561 for (const MachineBasicBlock
*MBB
: NewBlockOrder
) {
3562 NewIndex
[MBB
] = NewIndex
.size();
3564 F
->sort([&](MachineBasicBlock
&L
, MachineBasicBlock
&R
) {
3565 return NewIndex
[&L
] < NewIndex
[&R
];
3568 // Update basic block branches by inserting explicit fallthrough branches
3569 // when required and re-optimize branches when possible.
3570 const TargetInstrInfo
*TII
= F
->getSubtarget().getInstrInfo();
3571 SmallVector
<MachineOperand
, 4> Cond
;
3572 for (auto &MBB
: *F
) {
3573 MachineFunction::iterator NextMBB
= std::next(MBB
.getIterator());
3574 MachineFunction::iterator EndIt
= MBB
.getParent()->end();
3575 auto *FTMBB
= PrevFallThroughs
[MBB
.getNumber()];
3576 // If this block had a fallthrough before we need an explicit unconditional
3577 // branch to that block if the fallthrough block is not adjacent to the
3578 // block in the new order.
3579 if (FTMBB
&& (NextMBB
== EndIt
|| &*NextMBB
!= FTMBB
)) {
3580 TII
->insertUnconditionalBranch(MBB
, FTMBB
, MBB
.findBranchDebugLoc());
3583 // It might be possible to optimize branches by flipping the condition.
3585 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
3586 if (TII
->analyzeBranch(MBB
, TBB
, FBB
, Cond
))
3588 MBB
.updateTerminator(FTMBB
);
3592 // Make sure we correctly constructed all branches.
3593 F
->verify(this, "After optimized block reordering");
3597 void MachineBlockPlacement::createCFGChainExtTsp() {
3598 BlockToChain
.clear();
3599 ComputedEdges
.clear();
3600 ChainAllocator
.DestroyAll();
3602 MachineBasicBlock
*HeadBB
= &F
->front();
3603 BlockChain
*FunctionChain
=
3604 new (ChainAllocator
.Allocate()) BlockChain(BlockToChain
, HeadBB
);
3606 for (MachineBasicBlock
&MBB
: *F
) {
3608 continue; // Ignore head of the chain
3609 FunctionChain
->merge(&MBB
, nullptr);
3615 /// A pass to compute block placement statistics.
3617 /// A separate pass to compute interesting statistics for evaluating block
3618 /// placement. This is separate from the actual placement pass so that they can
3619 /// be computed in the absence of any placement transformations or when using
3620 /// alternative placement strategies.
3621 class MachineBlockPlacementStats
: public MachineFunctionPass
{
3622 /// A handle to the branch probability pass.
3623 const MachineBranchProbabilityInfo
*MBPI
;
3625 /// A handle to the function-wide block frequency pass.
3626 const MachineBlockFrequencyInfo
*MBFI
;
3629 static char ID
; // Pass identification, replacement for typeid
3631 MachineBlockPlacementStats() : MachineFunctionPass(ID
) {
3632 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3635 bool runOnMachineFunction(MachineFunction
&F
) override
;
3637 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
3638 AU
.addRequired
<MachineBranchProbabilityInfo
>();
3639 AU
.addRequired
<MachineBlockFrequencyInfo
>();
3640 AU
.setPreservesAll();
3641 MachineFunctionPass::getAnalysisUsage(AU
);
3645 } // end anonymous namespace
3647 char MachineBlockPlacementStats::ID
= 0;
3649 char &llvm::MachineBlockPlacementStatsID
= MachineBlockPlacementStats::ID
;
3651 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats
, "block-placement-stats",
3652 "Basic Block Placement Stats", false, false)
3653 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
3654 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo
)
3655 INITIALIZE_PASS_END(MachineBlockPlacementStats
, "block-placement-stats",
3656 "Basic Block Placement Stats", false, false)
3658 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction
&F
) {
3659 // Check for single-block functions and skip them.
3660 if (std::next(F
.begin()) == F
.end())
3663 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
3664 MBFI
= &getAnalysis
<MachineBlockFrequencyInfo
>();
3666 for (MachineBasicBlock
&MBB
: F
) {
3667 BlockFrequency BlockFreq
= MBFI
->getBlockFreq(&MBB
);
3668 Statistic
&NumBranches
=
3669 (MBB
.succ_size() > 1) ? NumCondBranches
: NumUncondBranches
;
3670 Statistic
&BranchTakenFreq
=
3671 (MBB
.succ_size() > 1) ? CondBranchTakenFreq
: UncondBranchTakenFreq
;
3672 for (MachineBasicBlock
*Succ
: MBB
.successors()) {
3673 // Skip if this successor is a fallthrough.
3674 if (MBB
.isLayoutSuccessor(Succ
))
3677 BlockFrequency EdgeFreq
=
3678 BlockFreq
* MBPI
->getEdgeProbability(&MBB
, Succ
);
3680 BranchTakenFreq
+= EdgeFreq
.getFrequency();