[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / CodeGen / MachineBlockPlacement.cpp
blobc93ffaabf74c82059bcfe15498bb737712ea5bdb
1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
23 // function in-order.
25 //===----------------------------------------------------------------------===//
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
39 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineLoopInfo.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/MachineSizeOpts.h"
46 #include "llvm/CodeGen/TailDuplicator.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetLowering.h"
49 #include "llvm/CodeGen/TargetPassConfig.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Allocator.h"
56 #include "llvm/Support/BlockFrequency.h"
57 #include "llvm/Support/BranchProbability.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetMachine.h"
64 #include "llvm/Transforms/Utils/CodeLayout.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstdint>
68 #include <iterator>
69 #include <memory>
70 #include <string>
71 #include <tuple>
72 #include <utility>
73 #include <vector>
75 using namespace llvm;
77 #define DEBUG_TYPE "block-placement"
79 STATISTIC(NumCondBranches, "Number of conditional branches");
80 STATISTIC(NumUncondBranches, "Number of unconditional branches");
81 STATISTIC(CondBranchTakenFreq,
82 "Potential frequency of taking conditional branches");
83 STATISTIC(UncondBranchTakenFreq,
84 "Potential frequency of taking unconditional branches");
86 static cl::opt<unsigned> AlignAllBlock(
87 "align-all-blocks",
88 cl::desc("Force the alignment of all blocks in the function in log2 format "
89 "(e.g 4 means align on 16B boundaries)."),
90 cl::init(0), cl::Hidden);
92 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
93 "align-all-nofallthru-blocks",
94 cl::desc("Force the alignment of all blocks that have no fall-through "
95 "predecessors (i.e. don't add nops that are executed). In log2 "
96 "format (e.g 4 means align on 16B boundaries)."),
97 cl::init(0), cl::Hidden);
99 static cl::opt<unsigned> MaxBytesForAlignmentOverride(
100 "max-bytes-for-alignment",
101 cl::desc("Forces the maximum bytes allowed to be emitted when padding for "
102 "alignment"),
103 cl::init(0), cl::Hidden);
105 // FIXME: Find a good default for this flag and remove the flag.
106 static cl::opt<unsigned> ExitBlockBias(
107 "block-placement-exit-block-bias",
108 cl::desc("Block frequency percentage a loop exit block needs "
109 "over the original exit to be considered the new exit."),
110 cl::init(0), cl::Hidden);
112 // Definition:
113 // - Outlining: placement of a basic block outside the chain or hot path.
115 static cl::opt<unsigned> LoopToColdBlockRatio(
116 "loop-to-cold-block-ratio",
117 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
118 "(frequency of block) is greater than this ratio"),
119 cl::init(5), cl::Hidden);
121 static cl::opt<bool> ForceLoopColdBlock(
122 "force-loop-cold-block",
123 cl::desc("Force outlining cold blocks from loops."),
124 cl::init(false), cl::Hidden);
126 static cl::opt<bool>
127 PreciseRotationCost("precise-rotation-cost",
128 cl::desc("Model the cost of loop rotation more "
129 "precisely by using profile data."),
130 cl::init(false), cl::Hidden);
132 static cl::opt<bool>
133 ForcePreciseRotationCost("force-precise-rotation-cost",
134 cl::desc("Force the use of precise cost "
135 "loop rotation strategy."),
136 cl::init(false), cl::Hidden);
138 static cl::opt<unsigned> MisfetchCost(
139 "misfetch-cost",
140 cl::desc("Cost that models the probabilistic risk of an instruction "
141 "misfetch due to a jump comparing to falling through, whose cost "
142 "is zero."),
143 cl::init(1), cl::Hidden);
145 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
146 cl::desc("Cost of jump instructions."),
147 cl::init(1), cl::Hidden);
148 static cl::opt<bool>
149 TailDupPlacement("tail-dup-placement",
150 cl::desc("Perform tail duplication during placement. "
151 "Creates more fallthrough opportunites in "
152 "outline branches."),
153 cl::init(true), cl::Hidden);
155 static cl::opt<bool>
156 BranchFoldPlacement("branch-fold-placement",
157 cl::desc("Perform branch folding during placement. "
158 "Reduces code size."),
159 cl::init(true), cl::Hidden);
161 // Heuristic for tail duplication.
162 static cl::opt<unsigned> TailDupPlacementThreshold(
163 "tail-dup-placement-threshold",
164 cl::desc("Instruction cutoff for tail duplication during layout. "
165 "Tail merging during layout is forced to have a threshold "
166 "that won't conflict."), cl::init(2),
167 cl::Hidden);
169 // Heuristic for aggressive tail duplication.
170 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
171 "tail-dup-placement-aggressive-threshold",
172 cl::desc("Instruction cutoff for aggressive tail duplication during "
173 "layout. Used at -O3. Tail merging during layout is forced to "
174 "have a threshold that won't conflict."), cl::init(4),
175 cl::Hidden);
177 // Heuristic for tail duplication.
178 static cl::opt<unsigned> TailDupPlacementPenalty(
179 "tail-dup-placement-penalty",
180 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
181 "Copying can increase fallthrough, but it also increases icache "
182 "pressure. This parameter controls the penalty to account for that. "
183 "Percent as integer."),
184 cl::init(2),
185 cl::Hidden);
187 // Heuristic for tail duplication if profile count is used in cost model.
188 static cl::opt<unsigned> TailDupProfilePercentThreshold(
189 "tail-dup-profile-percent-threshold",
190 cl::desc("If profile count information is used in tail duplication cost "
191 "model, the gained fall through number from tail duplication "
192 "should be at least this percent of hot count."),
193 cl::init(50), cl::Hidden);
195 // Heuristic for triangle chains.
196 static cl::opt<unsigned> TriangleChainCount(
197 "triangle-chain-count",
198 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
199 "triangle tail duplication heuristic to kick in. 0 to disable."),
200 cl::init(2),
201 cl::Hidden);
203 static cl::opt<bool> EnableExtTspBlockPlacement(
204 "enable-ext-tsp-block-placement", cl::Hidden, cl::init(false),
205 cl::desc("Enable machine block placement based on the ext-tsp model, "
206 "optimizing I-cache utilization."));
208 namespace llvm {
209 extern cl::opt<unsigned> StaticLikelyProb;
210 extern cl::opt<unsigned> ProfileLikelyProb;
212 // Internal option used to control BFI display only after MBP pass.
213 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
214 // -view-block-layout-with-bfi=
215 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
217 // Command line option to specify the name of the function for CFG dump
218 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
219 extern cl::opt<std::string> ViewBlockFreqFuncName;
220 } // namespace llvm
222 namespace {
224 class BlockChain;
226 /// Type for our function-wide basic block -> block chain mapping.
227 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
229 /// A chain of blocks which will be laid out contiguously.
231 /// This is the datastructure representing a chain of consecutive blocks that
232 /// are profitable to layout together in order to maximize fallthrough
233 /// probabilities and code locality. We also can use a block chain to represent
234 /// a sequence of basic blocks which have some external (correctness)
235 /// requirement for sequential layout.
237 /// Chains can be built around a single basic block and can be merged to grow
238 /// them. They participate in a block-to-chain mapping, which is updated
239 /// automatically as chains are merged together.
240 class BlockChain {
241 /// The sequence of blocks belonging to this chain.
243 /// This is the sequence of blocks for a particular chain. These will be laid
244 /// out in-order within the function.
245 SmallVector<MachineBasicBlock *, 4> Blocks;
247 /// A handle to the function-wide basic block to block chain mapping.
249 /// This is retained in each block chain to simplify the computation of child
250 /// block chains for SCC-formation and iteration. We store the edges to child
251 /// basic blocks, and map them back to their associated chains using this
252 /// structure.
253 BlockToChainMapType &BlockToChain;
255 public:
256 /// Construct a new BlockChain.
258 /// This builds a new block chain representing a single basic block in the
259 /// function. It also registers itself as the chain that block participates
260 /// in with the BlockToChain mapping.
261 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
262 : Blocks(1, BB), BlockToChain(BlockToChain) {
263 assert(BB && "Cannot create a chain with a null basic block");
264 BlockToChain[BB] = this;
267 /// Iterator over blocks within the chain.
268 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
269 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
271 /// Beginning of blocks within the chain.
272 iterator begin() { return Blocks.begin(); }
273 const_iterator begin() const { return Blocks.begin(); }
275 /// End of blocks within the chain.
276 iterator end() { return Blocks.end(); }
277 const_iterator end() const { return Blocks.end(); }
279 bool remove(MachineBasicBlock* BB) {
280 for(iterator i = begin(); i != end(); ++i) {
281 if (*i == BB) {
282 Blocks.erase(i);
283 return true;
286 return false;
289 /// Merge a block chain into this one.
291 /// This routine merges a block chain into this one. It takes care of forming
292 /// a contiguous sequence of basic blocks, updating the edge list, and
293 /// updating the block -> chain mapping. It does not free or tear down the
294 /// old chain, but the old chain's block list is no longer valid.
295 void merge(MachineBasicBlock *BB, BlockChain *Chain) {
296 assert(BB && "Can't merge a null block.");
297 assert(!Blocks.empty() && "Can't merge into an empty chain.");
299 // Fast path in case we don't have a chain already.
300 if (!Chain) {
301 assert(!BlockToChain[BB] &&
302 "Passed chain is null, but BB has entry in BlockToChain.");
303 Blocks.push_back(BB);
304 BlockToChain[BB] = this;
305 return;
308 assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
309 assert(Chain->begin() != Chain->end());
311 // Update the incoming blocks to point to this chain, and add them to the
312 // chain structure.
313 for (MachineBasicBlock *ChainBB : *Chain) {
314 Blocks.push_back(ChainBB);
315 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
316 BlockToChain[ChainBB] = this;
320 #ifndef NDEBUG
321 /// Dump the blocks in this chain.
322 LLVM_DUMP_METHOD void dump() {
323 for (MachineBasicBlock *MBB : *this)
324 MBB->dump();
326 #endif // NDEBUG
328 /// Count of predecessors of any block within the chain which have not
329 /// yet been scheduled. In general, we will delay scheduling this chain
330 /// until those predecessors are scheduled (or we find a sufficiently good
331 /// reason to override this heuristic.) Note that when forming loop chains,
332 /// blocks outside the loop are ignored and treated as if they were already
333 /// scheduled.
335 /// Note: This field is reinitialized multiple times - once for each loop,
336 /// and then once for the function as a whole.
337 unsigned UnscheduledPredecessors = 0;
340 class MachineBlockPlacement : public MachineFunctionPass {
341 /// A type for a block filter set.
342 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
344 /// Pair struct containing basic block and taildup profitability
345 struct BlockAndTailDupResult {
346 MachineBasicBlock *BB;
347 bool ShouldTailDup;
350 /// Triple struct containing edge weight and the edge.
351 struct WeightedEdge {
352 BlockFrequency Weight;
353 MachineBasicBlock *Src;
354 MachineBasicBlock *Dest;
357 /// work lists of blocks that are ready to be laid out
358 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
359 SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
361 /// Edges that have already been computed as optimal.
362 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
364 /// Machine Function
365 MachineFunction *F;
367 /// A handle to the branch probability pass.
368 const MachineBranchProbabilityInfo *MBPI;
370 /// A handle to the function-wide block frequency pass.
371 std::unique_ptr<MBFIWrapper> MBFI;
373 /// A handle to the loop info.
374 MachineLoopInfo *MLI;
376 /// Preferred loop exit.
377 /// Member variable for convenience. It may be removed by duplication deep
378 /// in the call stack.
379 MachineBasicBlock *PreferredLoopExit;
381 /// A handle to the target's instruction info.
382 const TargetInstrInfo *TII;
384 /// A handle to the target's lowering info.
385 const TargetLoweringBase *TLI;
387 /// A handle to the post dominator tree.
388 MachinePostDominatorTree *MPDT;
390 ProfileSummaryInfo *PSI;
392 /// Duplicator used to duplicate tails during placement.
394 /// Placement decisions can open up new tail duplication opportunities, but
395 /// since tail duplication affects placement decisions of later blocks, it
396 /// must be done inline.
397 TailDuplicator TailDup;
399 /// Partial tail duplication threshold.
400 BlockFrequency DupThreshold;
402 /// True: use block profile count to compute tail duplication cost.
403 /// False: use block frequency to compute tail duplication cost.
404 bool UseProfileCount;
406 /// Allocator and owner of BlockChain structures.
408 /// We build BlockChains lazily while processing the loop structure of
409 /// a function. To reduce malloc traffic, we allocate them using this
410 /// slab-like allocator, and destroy them after the pass completes. An
411 /// important guarantee is that this allocator produces stable pointers to
412 /// the chains.
413 SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
415 /// Function wide BasicBlock to BlockChain mapping.
417 /// This mapping allows efficiently moving from any given basic block to the
418 /// BlockChain it participates in, if any. We use it to, among other things,
419 /// allow implicitly defining edges between chains as the existing edges
420 /// between basic blocks.
421 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
423 #ifndef NDEBUG
424 /// The set of basic blocks that have terminators that cannot be fully
425 /// analyzed. These basic blocks cannot be re-ordered safely by
426 /// MachineBlockPlacement, and we must preserve physical layout of these
427 /// blocks and their successors through the pass.
428 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
429 #endif
431 /// Get block profile count or frequency according to UseProfileCount.
432 /// The return value is used to model tail duplication cost.
433 BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) {
434 if (UseProfileCount) {
435 auto Count = MBFI->getBlockProfileCount(BB);
436 if (Count)
437 return *Count;
438 else
439 return 0;
440 } else
441 return MBFI->getBlockFreq(BB);
444 /// Scale the DupThreshold according to basic block size.
445 BlockFrequency scaleThreshold(MachineBasicBlock *BB);
446 void initDupThreshold();
448 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
449 /// if the count goes to 0, add them to the appropriate work list.
450 void markChainSuccessors(
451 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
452 const BlockFilterSet *BlockFilter = nullptr);
454 /// Decrease the UnscheduledPredecessors count for a single block, and
455 /// if the count goes to 0, add them to the appropriate work list.
456 void markBlockSuccessors(
457 const BlockChain &Chain, const MachineBasicBlock *BB,
458 const MachineBasicBlock *LoopHeaderBB,
459 const BlockFilterSet *BlockFilter = nullptr);
461 BranchProbability
462 collectViableSuccessors(
463 const MachineBasicBlock *BB, const BlockChain &Chain,
464 const BlockFilterSet *BlockFilter,
465 SmallVector<MachineBasicBlock *, 4> &Successors);
466 bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred,
467 BlockFilterSet *BlockFilter);
468 void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates,
469 MachineBasicBlock *BB,
470 BlockFilterSet *BlockFilter);
471 bool repeatedlyTailDuplicateBlock(
472 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
473 const MachineBasicBlock *LoopHeaderBB,
474 BlockChain &Chain, BlockFilterSet *BlockFilter,
475 MachineFunction::iterator &PrevUnplacedBlockIt);
476 bool maybeTailDuplicateBlock(
477 MachineBasicBlock *BB, MachineBasicBlock *LPred,
478 BlockChain &Chain, BlockFilterSet *BlockFilter,
479 MachineFunction::iterator &PrevUnplacedBlockIt,
480 bool &DuplicatedToLPred);
481 bool hasBetterLayoutPredecessor(
482 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
483 const BlockChain &SuccChain, BranchProbability SuccProb,
484 BranchProbability RealSuccProb, const BlockChain &Chain,
485 const BlockFilterSet *BlockFilter);
486 BlockAndTailDupResult selectBestSuccessor(
487 const MachineBasicBlock *BB, const BlockChain &Chain,
488 const BlockFilterSet *BlockFilter);
489 MachineBasicBlock *selectBestCandidateBlock(
490 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
491 MachineBasicBlock *getFirstUnplacedBlock(
492 const BlockChain &PlacedChain,
493 MachineFunction::iterator &PrevUnplacedBlockIt,
494 const BlockFilterSet *BlockFilter);
496 /// Add a basic block to the work list if it is appropriate.
498 /// If the optional parameter BlockFilter is provided, only MBB
499 /// present in the set will be added to the worklist. If nullptr
500 /// is provided, no filtering occurs.
501 void fillWorkLists(const MachineBasicBlock *MBB,
502 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
503 const BlockFilterSet *BlockFilter);
505 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
506 BlockFilterSet *BlockFilter = nullptr);
507 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
508 const MachineBasicBlock *OldTop);
509 bool hasViableTopFallthrough(const MachineBasicBlock *Top,
510 const BlockFilterSet &LoopBlockSet);
511 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
512 const BlockFilterSet &LoopBlockSet);
513 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
514 const MachineBasicBlock *OldTop,
515 const MachineBasicBlock *ExitBB,
516 const BlockFilterSet &LoopBlockSet);
517 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
518 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
519 MachineBasicBlock *findBestLoopTop(
520 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
521 MachineBasicBlock *findBestLoopExit(
522 const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
523 BlockFrequency &ExitFreq);
524 BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
525 void buildLoopChains(const MachineLoop &L);
526 void rotateLoop(
527 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
528 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
529 void rotateLoopWithProfile(
530 BlockChain &LoopChain, const MachineLoop &L,
531 const BlockFilterSet &LoopBlockSet);
532 void buildCFGChains();
533 void optimizeBranches();
534 void alignBlocks();
535 /// Returns true if a block should be tail-duplicated to increase fallthrough
536 /// opportunities.
537 bool shouldTailDuplicate(MachineBasicBlock *BB);
538 /// Check the edge frequencies to see if tail duplication will increase
539 /// fallthroughs.
540 bool isProfitableToTailDup(
541 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
542 BranchProbability QProb,
543 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
545 /// Check for a trellis layout.
546 bool isTrellis(const MachineBasicBlock *BB,
547 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
548 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
550 /// Get the best successor given a trellis layout.
551 BlockAndTailDupResult getBestTrellisSuccessor(
552 const MachineBasicBlock *BB,
553 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
554 BranchProbability AdjustedSumProb, const BlockChain &Chain,
555 const BlockFilterSet *BlockFilter);
557 /// Get the best pair of non-conflicting edges.
558 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
559 const MachineBasicBlock *BB,
560 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
562 /// Returns true if a block can tail duplicate into all unplaced
563 /// predecessors. Filters based on loop.
564 bool canTailDuplicateUnplacedPreds(
565 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
566 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
568 /// Find chains of triangles to tail-duplicate where a global analysis works,
569 /// but a local analysis would not find them.
570 void precomputeTriangleChains();
572 /// Apply a post-processing step optimizing block placement.
573 void applyExtTsp();
575 /// Modify the existing block placement in the function and adjust all jumps.
576 void assignBlockOrder(const std::vector<const MachineBasicBlock *> &NewOrder);
578 /// Create a single CFG chain from the current block order.
579 void createCFGChainExtTsp();
581 public:
582 static char ID; // Pass identification, replacement for typeid
584 MachineBlockPlacement() : MachineFunctionPass(ID) {
585 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
588 bool runOnMachineFunction(MachineFunction &F) override;
590 bool allowTailDupPlacement() const {
591 assert(F);
592 return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
595 void getAnalysisUsage(AnalysisUsage &AU) const override {
596 AU.addRequired<MachineBranchProbabilityInfo>();
597 AU.addRequired<MachineBlockFrequencyInfo>();
598 if (TailDupPlacement)
599 AU.addRequired<MachinePostDominatorTree>();
600 AU.addRequired<MachineLoopInfo>();
601 AU.addRequired<ProfileSummaryInfoWrapperPass>();
602 AU.addRequired<TargetPassConfig>();
603 MachineFunctionPass::getAnalysisUsage(AU);
607 } // end anonymous namespace
609 char MachineBlockPlacement::ID = 0;
611 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
613 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
614 "Branch Probability Basic Block Placement", false, false)
615 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
616 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
617 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
618 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
619 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
620 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
621 "Branch Probability Basic Block Placement", false, false)
623 #ifndef NDEBUG
624 /// Helper to print the name of a MBB.
626 /// Only used by debug logging.
627 static std::string getBlockName(const MachineBasicBlock *BB) {
628 std::string Result;
629 raw_string_ostream OS(Result);
630 OS << printMBBReference(*BB);
631 OS << " ('" << BB->getName() << "')";
632 OS.flush();
633 return Result;
635 #endif
637 /// Mark a chain's successors as having one fewer preds.
639 /// When a chain is being merged into the "placed" chain, this routine will
640 /// quickly walk the successors of each block in the chain and mark them as
641 /// having one fewer active predecessor. It also adds any successors of this
642 /// chain which reach the zero-predecessor state to the appropriate worklist.
643 void MachineBlockPlacement::markChainSuccessors(
644 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
645 const BlockFilterSet *BlockFilter) {
646 // Walk all the blocks in this chain, marking their successors as having
647 // a predecessor placed.
648 for (MachineBasicBlock *MBB : Chain) {
649 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
653 /// Mark a single block's successors as having one fewer preds.
655 /// Under normal circumstances, this is only called by markChainSuccessors,
656 /// but if a block that was to be placed is completely tail-duplicated away,
657 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
658 /// for just that block.
659 void MachineBlockPlacement::markBlockSuccessors(
660 const BlockChain &Chain, const MachineBasicBlock *MBB,
661 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
662 // Add any successors for which this is the only un-placed in-loop
663 // predecessor to the worklist as a viable candidate for CFG-neutral
664 // placement. No subsequent placement of this block will violate the CFG
665 // shape, so we get to use heuristics to choose a favorable placement.
666 for (MachineBasicBlock *Succ : MBB->successors()) {
667 if (BlockFilter && !BlockFilter->count(Succ))
668 continue;
669 BlockChain &SuccChain = *BlockToChain[Succ];
670 // Disregard edges within a fixed chain, or edges to the loop header.
671 if (&Chain == &SuccChain || Succ == LoopHeaderBB)
672 continue;
674 // This is a cross-chain edge that is within the loop, so decrement the
675 // loop predecessor count of the destination chain.
676 if (SuccChain.UnscheduledPredecessors == 0 ||
677 --SuccChain.UnscheduledPredecessors > 0)
678 continue;
680 auto *NewBB = *SuccChain.begin();
681 if (NewBB->isEHPad())
682 EHPadWorkList.push_back(NewBB);
683 else
684 BlockWorkList.push_back(NewBB);
688 /// This helper function collects the set of successors of block
689 /// \p BB that are allowed to be its layout successors, and return
690 /// the total branch probability of edges from \p BB to those
691 /// blocks.
692 BranchProbability MachineBlockPlacement::collectViableSuccessors(
693 const MachineBasicBlock *BB, const BlockChain &Chain,
694 const BlockFilterSet *BlockFilter,
695 SmallVector<MachineBasicBlock *, 4> &Successors) {
696 // Adjust edge probabilities by excluding edges pointing to blocks that is
697 // either not in BlockFilter or is already in the current chain. Consider the
698 // following CFG:
700 // --->A
701 // | / \
702 // | B C
703 // | \ / \
704 // ----D E
706 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
707 // A->C is chosen as a fall-through, D won't be selected as a successor of C
708 // due to CFG constraint (the probability of C->D is not greater than
709 // HotProb to break topo-order). If we exclude E that is not in BlockFilter
710 // when calculating the probability of C->D, D will be selected and we
711 // will get A C D B as the layout of this loop.
712 auto AdjustedSumProb = BranchProbability::getOne();
713 for (MachineBasicBlock *Succ : BB->successors()) {
714 bool SkipSucc = false;
715 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
716 SkipSucc = true;
717 } else {
718 BlockChain *SuccChain = BlockToChain[Succ];
719 if (SuccChain == &Chain) {
720 SkipSucc = true;
721 } else if (Succ != *SuccChain->begin()) {
722 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ)
723 << " -> Mid chain!\n");
724 continue;
727 if (SkipSucc)
728 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
729 else
730 Successors.push_back(Succ);
733 return AdjustedSumProb;
736 /// The helper function returns the branch probability that is adjusted
737 /// or normalized over the new total \p AdjustedSumProb.
738 static BranchProbability
739 getAdjustedProbability(BranchProbability OrigProb,
740 BranchProbability AdjustedSumProb) {
741 BranchProbability SuccProb;
742 uint32_t SuccProbN = OrigProb.getNumerator();
743 uint32_t SuccProbD = AdjustedSumProb.getNumerator();
744 if (SuccProbN >= SuccProbD)
745 SuccProb = BranchProbability::getOne();
746 else
747 SuccProb = BranchProbability(SuccProbN, SuccProbD);
749 return SuccProb;
752 /// Check if \p BB has exactly the successors in \p Successors.
753 static bool
754 hasSameSuccessors(MachineBasicBlock &BB,
755 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
756 if (BB.succ_size() != Successors.size())
757 return false;
758 // We don't want to count self-loops
759 if (Successors.count(&BB))
760 return false;
761 for (MachineBasicBlock *Succ : BB.successors())
762 if (!Successors.count(Succ))
763 return false;
764 return true;
767 /// Check if a block should be tail duplicated to increase fallthrough
768 /// opportunities.
769 /// \p BB Block to check.
770 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
771 // Blocks with single successors don't create additional fallthrough
772 // opportunities. Don't duplicate them. TODO: When conditional exits are
773 // analyzable, allow them to be duplicated.
774 bool IsSimple = TailDup.isSimpleBB(BB);
776 if (BB->succ_size() == 1)
777 return false;
778 return TailDup.shouldTailDuplicate(IsSimple, *BB);
781 /// Compare 2 BlockFrequency's with a small penalty for \p A.
782 /// In order to be conservative, we apply a X% penalty to account for
783 /// increased icache pressure and static heuristics. For small frequencies
784 /// we use only the numerators to improve accuracy. For simplicity, we assume the
785 /// penalty is less than 100%
786 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
787 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
788 uint64_t EntryFreq) {
789 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
790 BlockFrequency Gain = A - B;
791 return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
794 /// Check the edge frequencies to see if tail duplication will increase
795 /// fallthroughs. It only makes sense to call this function when
796 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
797 /// always locally profitable if we would have picked \p Succ without
798 /// considering duplication.
799 bool MachineBlockPlacement::isProfitableToTailDup(
800 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
801 BranchProbability QProb,
802 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
803 // We need to do a probability calculation to make sure this is profitable.
804 // First: does succ have a successor that post-dominates? This affects the
805 // calculation. The 2 relevant cases are:
806 // BB BB
807 // | \Qout | \Qout
808 // P| C |P C
809 // = C' = C'
810 // | /Qin | /Qin
811 // | / | /
812 // Succ Succ
813 // / \ | \ V
814 // U/ =V |U \
815 // / \ = D
816 // D E | /
817 // | /
818 // |/
819 // PDom
820 // '=' : Branch taken for that CFG edge
821 // In the second case, Placing Succ while duplicating it into C prevents the
822 // fallthrough of Succ into either D or PDom, because they now have C as an
823 // unplaced predecessor
825 // Start by figuring out which case we fall into
826 MachineBasicBlock *PDom = nullptr;
827 SmallVector<MachineBasicBlock *, 4> SuccSuccs;
828 // Only scan the relevant successors
829 auto AdjustedSuccSumProb =
830 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
831 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
832 auto BBFreq = MBFI->getBlockFreq(BB);
833 auto SuccFreq = MBFI->getBlockFreq(Succ);
834 BlockFrequency P = BBFreq * PProb;
835 BlockFrequency Qout = BBFreq * QProb;
836 uint64_t EntryFreq = MBFI->getEntryFreq();
837 // If there are no more successors, it is profitable to copy, as it strictly
838 // increases fallthrough.
839 if (SuccSuccs.size() == 0)
840 return greaterWithBias(P, Qout, EntryFreq);
842 auto BestSuccSucc = BranchProbability::getZero();
843 // Find the PDom or the best Succ if no PDom exists.
844 for (MachineBasicBlock *SuccSucc : SuccSuccs) {
845 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
846 if (Prob > BestSuccSucc)
847 BestSuccSucc = Prob;
848 if (PDom == nullptr)
849 if (MPDT->dominates(SuccSucc, Succ)) {
850 PDom = SuccSucc;
851 break;
854 // For the comparisons, we need to know Succ's best incoming edge that isn't
855 // from BB.
856 auto SuccBestPred = BlockFrequency(0);
857 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
858 if (SuccPred == Succ || SuccPred == BB
859 || BlockToChain[SuccPred] == &Chain
860 || (BlockFilter && !BlockFilter->count(SuccPred)))
861 continue;
862 auto Freq = MBFI->getBlockFreq(SuccPred)
863 * MBPI->getEdgeProbability(SuccPred, Succ);
864 if (Freq > SuccBestPred)
865 SuccBestPred = Freq;
867 // Qin is Succ's best unplaced incoming edge that isn't BB
868 BlockFrequency Qin = SuccBestPred;
869 // If it doesn't have a post-dominating successor, here is the calculation:
870 // BB BB
871 // | \Qout | \
872 // P| C | =
873 // = C' | C
874 // | /Qin | |
875 // | / | C' (+Succ)
876 // Succ Succ /|
877 // / \ | \/ |
878 // U/ =V | == |
879 // / \ | / \|
880 // D E D E
881 // '=' : Branch taken for that CFG edge
882 // Cost in the first case is: P + V
883 // For this calculation, we always assume P > Qout. If Qout > P
884 // The result of this function will be ignored at the caller.
885 // Let F = SuccFreq - Qin
886 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
888 if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
889 BranchProbability UProb = BestSuccSucc;
890 BranchProbability VProb = AdjustedSuccSumProb - UProb;
891 BlockFrequency F = SuccFreq - Qin;
892 BlockFrequency V = SuccFreq * VProb;
893 BlockFrequency QinU = std::min(Qin, F) * UProb;
894 BlockFrequency BaseCost = P + V;
895 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
896 return greaterWithBias(BaseCost, DupCost, EntryFreq);
898 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
899 BranchProbability VProb = AdjustedSuccSumProb - UProb;
900 BlockFrequency U = SuccFreq * UProb;
901 BlockFrequency V = SuccFreq * VProb;
902 BlockFrequency F = SuccFreq - Qin;
903 // If there is a post-dominating successor, here is the calculation:
904 // BB BB BB BB
905 // | \Qout | \ | \Qout | \
906 // |P C | = |P C | =
907 // = C' |P C = C' |P C
908 // | /Qin | | | /Qin | |
909 // | / | C' (+Succ) | / | C' (+Succ)
910 // Succ Succ /| Succ Succ /|
911 // | \ V | \/ | | \ V | \/ |
912 // |U \ |U /\ =? |U = |U /\ |
913 // = D = = =?| | D | = =|
914 // | / |/ D | / |/ D
915 // | / | / | = | /
916 // |/ | / |/ | =
917 // Dom Dom Dom Dom
918 // '=' : Branch taken for that CFG edge
919 // The cost for taken branches in the first case is P + U
920 // Let F = SuccFreq - Qin
921 // The cost in the second case (assuming independence), given the layout:
922 // BB, Succ, (C+Succ), D, Dom or the layout:
923 // BB, Succ, D, Dom, (C+Succ)
924 // is Qout + max(F, Qin) * U + min(F, Qin)
925 // compare P + U vs Qout + P * U + Qin.
927 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
929 // For the 3rd case, the cost is P + 2 * V
930 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
931 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
932 if (UProb > AdjustedSuccSumProb / 2 &&
933 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
934 Chain, BlockFilter))
935 // Cases 3 & 4
936 return greaterWithBias(
937 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
938 EntryFreq);
939 // Cases 1 & 2
940 return greaterWithBias((P + U),
941 (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
942 std::max(Qin, F) * UProb),
943 EntryFreq);
946 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
947 /// successors form the lower part of a trellis. A successor set S forms the
948 /// lower part of a trellis if all of the predecessors of S are either in S or
949 /// have all of S as successors. We ignore trellises where BB doesn't have 2
950 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
951 /// are very uncommon and complex to compute optimally. Allowing edges within S
952 /// is not strictly a trellis, but the same algorithm works, so we allow it.
953 bool MachineBlockPlacement::isTrellis(
954 const MachineBasicBlock *BB,
955 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
956 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
957 // Technically BB could form a trellis with branching factor higher than 2.
958 // But that's extremely uncommon.
959 if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
960 return false;
962 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
963 BB->succ_end());
964 // To avoid reviewing the same predecessors twice.
965 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
967 for (MachineBasicBlock *Succ : ViableSuccs) {
968 int PredCount = 0;
969 for (auto SuccPred : Succ->predecessors()) {
970 // Allow triangle successors, but don't count them.
971 if (Successors.count(SuccPred)) {
972 // Make sure that it is actually a triangle.
973 for (MachineBasicBlock *CheckSucc : SuccPred->successors())
974 if (!Successors.count(CheckSucc))
975 return false;
976 continue;
978 const BlockChain *PredChain = BlockToChain[SuccPred];
979 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
980 PredChain == &Chain || PredChain == BlockToChain[Succ])
981 continue;
982 ++PredCount;
983 // Perform the successor check only once.
984 if (!SeenPreds.insert(SuccPred).second)
985 continue;
986 if (!hasSameSuccessors(*SuccPred, Successors))
987 return false;
989 // If one of the successors has only BB as a predecessor, it is not a
990 // trellis.
991 if (PredCount < 1)
992 return false;
994 return true;
997 /// Pick the highest total weight pair of edges that can both be laid out.
998 /// The edges in \p Edges[0] are assumed to have a different destination than
999 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
1000 /// the individual highest weight edges to the 2 different destinations, or in
1001 /// case of a conflict, one of them should be replaced with a 2nd best edge.
1002 std::pair<MachineBlockPlacement::WeightedEdge,
1003 MachineBlockPlacement::WeightedEdge>
1004 MachineBlockPlacement::getBestNonConflictingEdges(
1005 const MachineBasicBlock *BB,
1006 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
1007 Edges) {
1008 // Sort the edges, and then for each successor, find the best incoming
1009 // predecessor. If the best incoming predecessors aren't the same,
1010 // then that is clearly the best layout. If there is a conflict, one of the
1011 // successors will have to fallthrough from the second best predecessor. We
1012 // compare which combination is better overall.
1014 // Sort for highest frequency.
1015 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
1017 llvm::stable_sort(Edges[0], Cmp);
1018 llvm::stable_sort(Edges[1], Cmp);
1019 auto BestA = Edges[0].begin();
1020 auto BestB = Edges[1].begin();
1021 // Arrange for the correct answer to be in BestA and BestB
1022 // If the 2 best edges don't conflict, the answer is already there.
1023 if (BestA->Src == BestB->Src) {
1024 // Compare the total fallthrough of (Best + Second Best) for both pairs
1025 auto SecondBestA = std::next(BestA);
1026 auto SecondBestB = std::next(BestB);
1027 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
1028 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
1029 if (BestAScore < BestBScore)
1030 BestA = SecondBestA;
1031 else
1032 BestB = SecondBestB;
1034 // Arrange for the BB edge to be in BestA if it exists.
1035 if (BestB->Src == BB)
1036 std::swap(BestA, BestB);
1037 return std::make_pair(*BestA, *BestB);
1040 /// Get the best successor from \p BB based on \p BB being part of a trellis.
1041 /// We only handle trellises with 2 successors, so the algorithm is
1042 /// straightforward: Find the best pair of edges that don't conflict. We find
1043 /// the best incoming edge for each successor in the trellis. If those conflict,
1044 /// we consider which of them should be replaced with the second best.
1045 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
1046 /// comes from \p BB, it will be in \p BestEdges[0]
1047 MachineBlockPlacement::BlockAndTailDupResult
1048 MachineBlockPlacement::getBestTrellisSuccessor(
1049 const MachineBasicBlock *BB,
1050 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
1051 BranchProbability AdjustedSumProb, const BlockChain &Chain,
1052 const BlockFilterSet *BlockFilter) {
1054 BlockAndTailDupResult Result = {nullptr, false};
1055 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1056 BB->succ_end());
1058 // We assume size 2 because it's common. For general n, we would have to do
1059 // the Hungarian algorithm, but it's not worth the complexity because more
1060 // than 2 successors is fairly uncommon, and a trellis even more so.
1061 if (Successors.size() != 2 || ViableSuccs.size() != 2)
1062 return Result;
1064 // Collect the edge frequencies of all edges that form the trellis.
1065 SmallVector<WeightedEdge, 8> Edges[2];
1066 int SuccIndex = 0;
1067 for (auto Succ : ViableSuccs) {
1068 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1069 // Skip any placed predecessors that are not BB
1070 if (SuccPred != BB)
1071 if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
1072 BlockToChain[SuccPred] == &Chain ||
1073 BlockToChain[SuccPred] == BlockToChain[Succ])
1074 continue;
1075 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1076 MBPI->getEdgeProbability(SuccPred, Succ);
1077 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1079 ++SuccIndex;
1082 // Pick the best combination of 2 edges from all the edges in the trellis.
1083 WeightedEdge BestA, BestB;
1084 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1086 if (BestA.Src != BB) {
1087 // If we have a trellis, and BB doesn't have the best fallthrough edges,
1088 // we shouldn't choose any successor. We've already looked and there's a
1089 // better fallthrough edge for all the successors.
1090 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1091 return Result;
1094 // Did we pick the triangle edge? If tail-duplication is profitable, do
1095 // that instead. Otherwise merge the triangle edge now while we know it is
1096 // optimal.
1097 if (BestA.Dest == BestB.Src) {
1098 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1099 // would be better.
1100 MachineBasicBlock *Succ1 = BestA.Dest;
1101 MachineBasicBlock *Succ2 = BestB.Dest;
1102 // Check to see if tail-duplication would be profitable.
1103 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1104 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1105 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1106 Chain, BlockFilter)) {
1107 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1108 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1109 dbgs() << " Selected: " << getBlockName(Succ2)
1110 << ", probability: " << Succ2Prob
1111 << " (Tail Duplicate)\n");
1112 Result.BB = Succ2;
1113 Result.ShouldTailDup = true;
1114 return Result;
1117 // We have already computed the optimal edge for the other side of the
1118 // trellis.
1119 ComputedEdges[BestB.Src] = { BestB.Dest, false };
1121 auto TrellisSucc = BestA.Dest;
1122 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1123 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1124 dbgs() << " Selected: " << getBlockName(TrellisSucc)
1125 << ", probability: " << SuccProb << " (Trellis)\n");
1126 Result.BB = TrellisSucc;
1127 return Result;
1130 /// When the option allowTailDupPlacement() is on, this method checks if the
1131 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1132 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1133 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1134 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1135 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1136 if (!shouldTailDuplicate(Succ))
1137 return false;
1139 // The result of canTailDuplicate.
1140 bool Duplicate = true;
1141 // Number of possible duplication.
1142 unsigned int NumDup = 0;
1144 // For CFG checking.
1145 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1146 BB->succ_end());
1147 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1148 // Make sure all unplaced and unfiltered predecessors can be
1149 // tail-duplicated into.
1150 // Skip any blocks that are already placed or not in this loop.
1151 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1152 || BlockToChain[Pred] == &Chain)
1153 continue;
1154 if (!TailDup.canTailDuplicate(Succ, Pred)) {
1155 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1156 // This will result in a trellis after tail duplication, so we don't
1157 // need to copy Succ into this predecessor. In the presence
1158 // of a trellis tail duplication can continue to be profitable.
1159 // For example:
1160 // A A
1161 // |\ |\
1162 // | \ | \
1163 // | C | C+BB
1164 // | / | |
1165 // |/ | |
1166 // BB => BB |
1167 // |\ |\/|
1168 // | \ |/\|
1169 // | D | D
1170 // | / | /
1171 // |/ |/
1172 // Succ Succ
1174 // After BB was duplicated into C, the layout looks like the one on the
1175 // right. BB and C now have the same successors. When considering
1176 // whether Succ can be duplicated into all its unplaced predecessors, we
1177 // ignore C.
1178 // We can do this because C already has a profitable fallthrough, namely
1179 // D. TODO(iteratee): ignore sufficiently cold predecessors for
1180 // duplication and for this test.
1182 // This allows trellises to be laid out in 2 separate chains
1183 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1184 // because it allows the creation of 2 fallthrough paths with links
1185 // between them, and we correctly identify the best layout for these
1186 // CFGs. We want to extend trellises that the user created in addition
1187 // to trellises created by tail-duplication, so we just look for the
1188 // CFG.
1189 continue;
1190 Duplicate = false;
1191 continue;
1193 NumDup++;
1196 // No possible duplication in current filter set.
1197 if (NumDup == 0)
1198 return false;
1200 // If profile information is available, findDuplicateCandidates can do more
1201 // precise benefit analysis.
1202 if (F->getFunction().hasProfileData())
1203 return true;
1205 // This is mainly for function exit BB.
1206 // The integrated tail duplication is really designed for increasing
1207 // fallthrough from predecessors from Succ to its successors. We may need
1208 // other machanism to handle different cases.
1209 if (Succ->succ_empty())
1210 return true;
1212 // Plus the already placed predecessor.
1213 NumDup++;
1215 // If the duplication candidate has more unplaced predecessors than
1216 // successors, the extra duplication can't bring more fallthrough.
1218 // Pred1 Pred2 Pred3
1219 // \ | /
1220 // \ | /
1221 // \ | /
1222 // Dup
1223 // / \
1224 // / \
1225 // Succ1 Succ2
1227 // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
1228 // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
1229 // but the duplication into Pred3 can't increase fallthrough.
1231 // A small number of extra duplication may not hurt too much. We need a better
1232 // heuristic to handle it.
1233 if ((NumDup > Succ->succ_size()) || !Duplicate)
1234 return false;
1236 return true;
1239 /// Find chains of triangles where we believe it would be profitable to
1240 /// tail-duplicate them all, but a local analysis would not find them.
1241 /// There are 3 ways this can be profitable:
1242 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1243 /// longer chains)
1244 /// 2) The chains are statically correlated. Branch probabilities have a very
1245 /// U-shaped distribution.
1246 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1247 /// If the branches in a chain are likely to be from the same side of the
1248 /// distribution as their predecessor, but are independent at runtime, this
1249 /// transformation is profitable. (Because the cost of being wrong is a small
1250 /// fixed cost, unlike the standard triangle layout where the cost of being
1251 /// wrong scales with the # of triangles.)
1252 /// 3) The chains are dynamically correlated. If the probability that a previous
1253 /// branch was taken positively influences whether the next branch will be
1254 /// taken
1255 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1256 void MachineBlockPlacement::precomputeTriangleChains() {
1257 struct TriangleChain {
1258 std::vector<MachineBasicBlock *> Edges;
1260 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1261 : Edges({src, dst}) {}
1263 void append(MachineBasicBlock *dst) {
1264 assert(getKey()->isSuccessor(dst) &&
1265 "Attempting to append a block that is not a successor.");
1266 Edges.push_back(dst);
1269 unsigned count() const { return Edges.size() - 1; }
1271 MachineBasicBlock *getKey() const {
1272 return Edges.back();
1276 if (TriangleChainCount == 0)
1277 return;
1279 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1280 // Map from last block to the chain that contains it. This allows us to extend
1281 // chains as we find new triangles.
1282 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1283 for (MachineBasicBlock &BB : *F) {
1284 // If BB doesn't have 2 successors, it doesn't start a triangle.
1285 if (BB.succ_size() != 2)
1286 continue;
1287 MachineBasicBlock *PDom = nullptr;
1288 for (MachineBasicBlock *Succ : BB.successors()) {
1289 if (!MPDT->dominates(Succ, &BB))
1290 continue;
1291 PDom = Succ;
1292 break;
1294 // If BB doesn't have a post-dominating successor, it doesn't form a
1295 // triangle.
1296 if (PDom == nullptr)
1297 continue;
1298 // If PDom has a hint that it is low probability, skip this triangle.
1299 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1300 continue;
1301 // If PDom isn't eligible for duplication, this isn't the kind of triangle
1302 // we're looking for.
1303 if (!shouldTailDuplicate(PDom))
1304 continue;
1305 bool CanTailDuplicate = true;
1306 // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1307 // isn't the kind of triangle we're looking for.
1308 for (MachineBasicBlock* Pred : PDom->predecessors()) {
1309 if (Pred == &BB)
1310 continue;
1311 if (!TailDup.canTailDuplicate(PDom, Pred)) {
1312 CanTailDuplicate = false;
1313 break;
1316 // If we can't tail-duplicate PDom to its predecessors, then skip this
1317 // triangle.
1318 if (!CanTailDuplicate)
1319 continue;
1321 // Now we have an interesting triangle. Insert it if it's not part of an
1322 // existing chain.
1323 // Note: This cannot be replaced with a call insert() or emplace() because
1324 // the find key is BB, but the insert/emplace key is PDom.
1325 auto Found = TriangleChainMap.find(&BB);
1326 // If it is, remove the chain from the map, grow it, and put it back in the
1327 // map with the end as the new key.
1328 if (Found != TriangleChainMap.end()) {
1329 TriangleChain Chain = std::move(Found->second);
1330 TriangleChainMap.erase(Found);
1331 Chain.append(PDom);
1332 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1333 } else {
1334 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1335 assert(InsertResult.second && "Block seen twice.");
1336 (void)InsertResult;
1340 // Iterating over a DenseMap is safe here, because the only thing in the body
1341 // of the loop is inserting into another DenseMap (ComputedEdges).
1342 // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1343 for (auto &ChainPair : TriangleChainMap) {
1344 TriangleChain &Chain = ChainPair.second;
1345 // Benchmarking has shown that due to branch correlation duplicating 2 or
1346 // more triangles is profitable, despite the calculations assuming
1347 // independence.
1348 if (Chain.count() < TriangleChainCount)
1349 continue;
1350 MachineBasicBlock *dst = Chain.Edges.back();
1351 Chain.Edges.pop_back();
1352 for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1353 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1354 << getBlockName(dst)
1355 << " as pre-computed based on triangles.\n");
1357 auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1358 assert(InsertResult.second && "Block seen twice.");
1359 (void)InsertResult;
1361 dst = src;
1366 // When profile is not present, return the StaticLikelyProb.
1367 // When profile is available, we need to handle the triangle-shape CFG.
1368 static BranchProbability getLayoutSuccessorProbThreshold(
1369 const MachineBasicBlock *BB) {
1370 if (!BB->getParent()->getFunction().hasProfileData())
1371 return BranchProbability(StaticLikelyProb, 100);
1372 if (BB->succ_size() == 2) {
1373 const MachineBasicBlock *Succ1 = *BB->succ_begin();
1374 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1375 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1376 /* See case 1 below for the cost analysis. For BB->Succ to
1377 * be taken with smaller cost, the following needs to hold:
1378 * Prob(BB->Succ) > 2 * Prob(BB->Pred)
1379 * So the threshold T in the calculation below
1380 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1381 * So T / (1 - T) = 2, Yielding T = 2/3
1382 * Also adding user specified branch bias, we have
1383 * T = (2/3)*(ProfileLikelyProb/50)
1384 * = (2*ProfileLikelyProb)/150)
1386 return BranchProbability(2 * ProfileLikelyProb, 150);
1389 return BranchProbability(ProfileLikelyProb, 100);
1392 /// Checks to see if the layout candidate block \p Succ has a better layout
1393 /// predecessor than \c BB. If yes, returns true.
1394 /// \p SuccProb: The probability adjusted for only remaining blocks.
1395 /// Only used for logging
1396 /// \p RealSuccProb: The un-adjusted probability.
1397 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1398 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1399 /// considered
1400 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1401 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1402 const BlockChain &SuccChain, BranchProbability SuccProb,
1403 BranchProbability RealSuccProb, const BlockChain &Chain,
1404 const BlockFilterSet *BlockFilter) {
1406 // There isn't a better layout when there are no unscheduled predecessors.
1407 if (SuccChain.UnscheduledPredecessors == 0)
1408 return false;
1410 // There are two basic scenarios here:
1411 // -------------------------------------
1412 // Case 1: triangular shape CFG (if-then):
1413 // BB
1414 // | \
1415 // | \
1416 // | Pred
1417 // | /
1418 // Succ
1419 // In this case, we are evaluating whether to select edge -> Succ, e.g.
1420 // set Succ as the layout successor of BB. Picking Succ as BB's
1421 // successor breaks the CFG constraints (FIXME: define these constraints).
1422 // With this layout, Pred BB
1423 // is forced to be outlined, so the overall cost will be cost of the
1424 // branch taken from BB to Pred, plus the cost of back taken branch
1425 // from Pred to Succ, as well as the additional cost associated
1426 // with the needed unconditional jump instruction from Pred To Succ.
1428 // The cost of the topological order layout is the taken branch cost
1429 // from BB to Succ, so to make BB->Succ a viable candidate, the following
1430 // must hold:
1431 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1432 // < freq(BB->Succ) * taken_branch_cost.
1433 // Ignoring unconditional jump cost, we get
1434 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1435 // prob(BB->Succ) > 2 * prob(BB->Pred)
1437 // When real profile data is available, we can precisely compute the
1438 // probability threshold that is needed for edge BB->Succ to be considered.
1439 // Without profile data, the heuristic requires the branch bias to be
1440 // a lot larger to make sure the signal is very strong (e.g. 80% default).
1441 // -----------------------------------------------------------------
1442 // Case 2: diamond like CFG (if-then-else):
1443 // S
1444 // / \
1445 // | \
1446 // BB Pred
1447 // \ /
1448 // Succ
1449 // ..
1451 // The current block is BB and edge BB->Succ is now being evaluated.
1452 // Note that edge S->BB was previously already selected because
1453 // prob(S->BB) > prob(S->Pred).
1454 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1455 // choose Pred, we will have a topological ordering as shown on the left
1456 // in the picture below. If we choose Succ, we have the solution as shown
1457 // on the right:
1459 // topo-order:
1461 // S----- ---S
1462 // | | | |
1463 // ---BB | | BB
1464 // | | | |
1465 // | Pred-- | Succ--
1466 // | | | |
1467 // ---Succ ---Pred--
1469 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred)
1470 // = freq(S->Pred) + freq(S->BB)
1472 // If we have profile data (i.e, branch probabilities can be trusted), the
1473 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1474 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1475 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1476 // means the cost of topological order is greater.
1477 // When profile data is not available, however, we need to be more
1478 // conservative. If the branch prediction is wrong, breaking the topo-order
1479 // will actually yield a layout with large cost. For this reason, we need
1480 // strong biased branch at block S with Prob(S->BB) in order to select
1481 // BB->Succ. This is equivalent to looking the CFG backward with backward
1482 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1483 // profile data).
1484 // --------------------------------------------------------------------------
1485 // Case 3: forked diamond
1486 // S
1487 // / \
1488 // / \
1489 // BB Pred
1490 // | \ / |
1491 // | \ / |
1492 // | X |
1493 // | / \ |
1494 // | / \ |
1495 // S1 S2
1497 // The current block is BB and edge BB->S1 is now being evaluated.
1498 // As above S->BB was already selected because
1499 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1501 // topo-order:
1503 // S-------| ---S
1504 // | | | |
1505 // ---BB | | BB
1506 // | | | |
1507 // | Pred----| | S1----
1508 // | | | |
1509 // --(S1 or S2) ---Pred--
1510 // |
1511 // S2
1513 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1514 // + min(freq(Pred->S1), freq(Pred->S2))
1515 // Non-topo-order cost:
1516 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1517 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1518 // is 0. Then the non topo layout is better when
1519 // freq(S->Pred) < freq(BB->S1).
1520 // This is exactly what is checked below.
1521 // Note there are other shapes that apply (Pred may not be a single block,
1522 // but they all fit this general pattern.)
1523 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1525 // Make sure that a hot successor doesn't have a globally more
1526 // important predecessor.
1527 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1528 bool BadCFGConflict = false;
1530 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1531 BlockChain *PredChain = BlockToChain[Pred];
1532 if (Pred == Succ || PredChain == &SuccChain ||
1533 (BlockFilter && !BlockFilter->count(Pred)) ||
1534 PredChain == &Chain || Pred != *std::prev(PredChain->end()) ||
1535 // This check is redundant except for look ahead. This function is
1536 // called for lookahead by isProfitableToTailDup when BB hasn't been
1537 // placed yet.
1538 (Pred == BB))
1539 continue;
1540 // Do backward checking.
1541 // For all cases above, we need a backward checking to filter out edges that
1542 // are not 'strongly' biased.
1543 // BB Pred
1544 // \ /
1545 // Succ
1546 // We select edge BB->Succ if
1547 // freq(BB->Succ) > freq(Succ) * HotProb
1548 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1549 // HotProb
1550 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1551 // Case 1 is covered too, because the first equation reduces to:
1552 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1553 BlockFrequency PredEdgeFreq =
1554 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1555 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1556 BadCFGConflict = true;
1557 break;
1561 if (BadCFGConflict) {
1562 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> "
1563 << SuccProb << " (prob) (non-cold CFG conflict)\n");
1564 return true;
1567 return false;
1570 /// Select the best successor for a block.
1572 /// This looks across all successors of a particular block and attempts to
1573 /// select the "best" one to be the layout successor. It only considers direct
1574 /// successors which also pass the block filter. It will attempt to avoid
1575 /// breaking CFG structure, but cave and break such structures in the case of
1576 /// very hot successor edges.
1578 /// \returns The best successor block found, or null if none are viable, along
1579 /// with a boolean indicating if tail duplication is necessary.
1580 MachineBlockPlacement::BlockAndTailDupResult
1581 MachineBlockPlacement::selectBestSuccessor(
1582 const MachineBasicBlock *BB, const BlockChain &Chain,
1583 const BlockFilterSet *BlockFilter) {
1584 const BranchProbability HotProb(StaticLikelyProb, 100);
1586 BlockAndTailDupResult BestSucc = { nullptr, false };
1587 auto BestProb = BranchProbability::getZero();
1589 SmallVector<MachineBasicBlock *, 4> Successors;
1590 auto AdjustedSumProb =
1591 collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1593 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1594 << "\n");
1596 // if we already precomputed the best successor for BB, return that if still
1597 // applicable.
1598 auto FoundEdge = ComputedEdges.find(BB);
1599 if (FoundEdge != ComputedEdges.end()) {
1600 MachineBasicBlock *Succ = FoundEdge->second.BB;
1601 ComputedEdges.erase(FoundEdge);
1602 BlockChain *SuccChain = BlockToChain[Succ];
1603 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1604 SuccChain != &Chain && Succ == *SuccChain->begin())
1605 return FoundEdge->second;
1608 // if BB is part of a trellis, Use the trellis to determine the optimal
1609 // fallthrough edges
1610 if (isTrellis(BB, Successors, Chain, BlockFilter))
1611 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1612 BlockFilter);
1614 // For blocks with CFG violations, we may be able to lay them out anyway with
1615 // tail-duplication. We keep this vector so we can perform the probability
1616 // calculations the minimum number of times.
1617 SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4>
1618 DupCandidates;
1619 for (MachineBasicBlock *Succ : Successors) {
1620 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1621 BranchProbability SuccProb =
1622 getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1624 BlockChain &SuccChain = *BlockToChain[Succ];
1625 // Skip the edge \c BB->Succ if block \c Succ has a better layout
1626 // predecessor that yields lower global cost.
1627 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1628 Chain, BlockFilter)) {
1629 // If tail duplication would make Succ profitable, place it.
1630 if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1631 DupCandidates.emplace_back(SuccProb, Succ);
1632 continue;
1635 LLVM_DEBUG(
1636 dbgs() << " Candidate: " << getBlockName(Succ)
1637 << ", probability: " << SuccProb
1638 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1639 << "\n");
1641 if (BestSucc.BB && BestProb >= SuccProb) {
1642 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n");
1643 continue;
1646 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n");
1647 BestSucc.BB = Succ;
1648 BestProb = SuccProb;
1650 // Handle the tail duplication candidates in order of decreasing probability.
1651 // Stop at the first one that is profitable. Also stop if they are less
1652 // profitable than BestSucc. Position is important because we preserve it and
1653 // prefer first best match. Here we aren't comparing in order, so we capture
1654 // the position instead.
1655 llvm::stable_sort(DupCandidates,
1656 [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1657 std::tuple<BranchProbability, MachineBasicBlock *> R) {
1658 return std::get<0>(L) > std::get<0>(R);
1660 for (auto &Tup : DupCandidates) {
1661 BranchProbability DupProb;
1662 MachineBasicBlock *Succ;
1663 std::tie(DupProb, Succ) = Tup;
1664 if (DupProb < BestProb)
1665 break;
1666 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1667 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1668 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ)
1669 << ", probability: " << DupProb
1670 << " (Tail Duplicate)\n");
1671 BestSucc.BB = Succ;
1672 BestSucc.ShouldTailDup = true;
1673 break;
1677 if (BestSucc.BB)
1678 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n");
1680 return BestSucc;
1683 /// Select the best block from a worklist.
1685 /// This looks through the provided worklist as a list of candidate basic
1686 /// blocks and select the most profitable one to place. The definition of
1687 /// profitable only really makes sense in the context of a loop. This returns
1688 /// the most frequently visited block in the worklist, which in the case of
1689 /// a loop, is the one most desirable to be physically close to the rest of the
1690 /// loop body in order to improve i-cache behavior.
1692 /// \returns The best block found, or null if none are viable.
1693 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1694 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1695 // Once we need to walk the worklist looking for a candidate, cleanup the
1696 // worklist of already placed entries.
1697 // FIXME: If this shows up on profiles, it could be folded (at the cost of
1698 // some code complexity) into the loop below.
1699 llvm::erase_if(WorkList, [&](MachineBasicBlock *BB) {
1700 return BlockToChain.lookup(BB) == &Chain;
1703 if (WorkList.empty())
1704 return nullptr;
1706 bool IsEHPad = WorkList[0]->isEHPad();
1708 MachineBasicBlock *BestBlock = nullptr;
1709 BlockFrequency BestFreq;
1710 for (MachineBasicBlock *MBB : WorkList) {
1711 assert(MBB->isEHPad() == IsEHPad &&
1712 "EHPad mismatch between block and work list.");
1714 BlockChain &SuccChain = *BlockToChain[MBB];
1715 if (&SuccChain == &Chain)
1716 continue;
1718 assert(SuccChain.UnscheduledPredecessors == 0 &&
1719 "Found CFG-violating block");
1721 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1722 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> ";
1723 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1725 // For ehpad, we layout the least probable first as to avoid jumping back
1726 // from least probable landingpads to more probable ones.
1728 // FIXME: Using probability is probably (!) not the best way to achieve
1729 // this. We should probably have a more principled approach to layout
1730 // cleanup code.
1732 // The goal is to get:
1734 // +--------------------------+
1735 // | V
1736 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume
1738 // Rather than:
1740 // +-------------------------------------+
1741 // V |
1742 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup
1743 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1744 continue;
1746 BestBlock = MBB;
1747 BestFreq = CandidateFreq;
1750 return BestBlock;
1753 /// Retrieve the first unplaced basic block.
1755 /// This routine is called when we are unable to use the CFG to walk through
1756 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1757 /// We walk through the function's blocks in order, starting from the
1758 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1759 /// re-scanning the entire sequence on repeated calls to this routine.
1760 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1761 const BlockChain &PlacedChain,
1762 MachineFunction::iterator &PrevUnplacedBlockIt,
1763 const BlockFilterSet *BlockFilter) {
1764 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1765 ++I) {
1766 if (BlockFilter && !BlockFilter->count(&*I))
1767 continue;
1768 if (BlockToChain[&*I] != &PlacedChain) {
1769 PrevUnplacedBlockIt = I;
1770 // Now select the head of the chain to which the unplaced block belongs
1771 // as the block to place. This will force the entire chain to be placed,
1772 // and satisfies the requirements of merging chains.
1773 return *BlockToChain[&*I]->begin();
1776 return nullptr;
1779 void MachineBlockPlacement::fillWorkLists(
1780 const MachineBasicBlock *MBB,
1781 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1782 const BlockFilterSet *BlockFilter = nullptr) {
1783 BlockChain &Chain = *BlockToChain[MBB];
1784 if (!UpdatedPreds.insert(&Chain).second)
1785 return;
1787 assert(
1788 Chain.UnscheduledPredecessors == 0 &&
1789 "Attempting to place block with unscheduled predecessors in worklist.");
1790 for (MachineBasicBlock *ChainBB : Chain) {
1791 assert(BlockToChain[ChainBB] == &Chain &&
1792 "Block in chain doesn't match BlockToChain map.");
1793 for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1794 if (BlockFilter && !BlockFilter->count(Pred))
1795 continue;
1796 if (BlockToChain[Pred] == &Chain)
1797 continue;
1798 ++Chain.UnscheduledPredecessors;
1802 if (Chain.UnscheduledPredecessors != 0)
1803 return;
1805 MachineBasicBlock *BB = *Chain.begin();
1806 if (BB->isEHPad())
1807 EHPadWorkList.push_back(BB);
1808 else
1809 BlockWorkList.push_back(BB);
1812 void MachineBlockPlacement::buildChain(
1813 const MachineBasicBlock *HeadBB, BlockChain &Chain,
1814 BlockFilterSet *BlockFilter) {
1815 assert(HeadBB && "BB must not be null.\n");
1816 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1817 MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1819 const MachineBasicBlock *LoopHeaderBB = HeadBB;
1820 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1821 MachineBasicBlock *BB = *std::prev(Chain.end());
1822 while (true) {
1823 assert(BB && "null block found at end of chain in loop.");
1824 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1825 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1828 // Look for the best viable successor if there is one to place immediately
1829 // after this block.
1830 auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1831 MachineBasicBlock* BestSucc = Result.BB;
1832 bool ShouldTailDup = Result.ShouldTailDup;
1833 if (allowTailDupPlacement())
1834 ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc,
1835 Chain,
1836 BlockFilter));
1838 // If an immediate successor isn't available, look for the best viable
1839 // block among those we've identified as not violating the loop's CFG at
1840 // this point. This won't be a fallthrough, but it will increase locality.
1841 if (!BestSucc)
1842 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1843 if (!BestSucc)
1844 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1846 if (!BestSucc) {
1847 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1848 if (!BestSucc)
1849 break;
1851 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1852 "layout successor until the CFG reduces\n");
1855 // Placement may have changed tail duplication opportunities.
1856 // Check for that now.
1857 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1858 repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1859 BlockFilter, PrevUnplacedBlockIt);
1860 // If the chosen successor was duplicated into BB, don't bother laying
1861 // it out, just go round the loop again with BB as the chain end.
1862 if (!BB->isSuccessor(BestSucc))
1863 continue;
1866 // Place this block, updating the datastructures to reflect its placement.
1867 BlockChain &SuccChain = *BlockToChain[BestSucc];
1868 // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1869 // we selected a successor that didn't fit naturally into the CFG.
1870 SuccChain.UnscheduledPredecessors = 0;
1871 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1872 << getBlockName(BestSucc) << "\n");
1873 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1874 Chain.merge(BestSucc, &SuccChain);
1875 BB = *std::prev(Chain.end());
1878 LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1879 << getBlockName(*Chain.begin()) << "\n");
1882 // If bottom of block BB has only one successor OldTop, in most cases it is
1883 // profitable to move it before OldTop, except the following case:
1885 // -->OldTop<-
1886 // | . |
1887 // | . |
1888 // | . |
1889 // ---Pred |
1890 // | |
1891 // BB-----
1893 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1894 // layout the other successor below it, so it can't reduce taken branch.
1895 // In this case we keep its original layout.
1896 bool
1897 MachineBlockPlacement::canMoveBottomBlockToTop(
1898 const MachineBasicBlock *BottomBlock,
1899 const MachineBasicBlock *OldTop) {
1900 if (BottomBlock->pred_size() != 1)
1901 return true;
1902 MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1903 if (Pred->succ_size() != 2)
1904 return true;
1906 MachineBasicBlock *OtherBB = *Pred->succ_begin();
1907 if (OtherBB == BottomBlock)
1908 OtherBB = *Pred->succ_rbegin();
1909 if (OtherBB == OldTop)
1910 return false;
1912 return true;
1915 // Find out the possible fall through frequence to the top of a loop.
1916 BlockFrequency
1917 MachineBlockPlacement::TopFallThroughFreq(
1918 const MachineBasicBlock *Top,
1919 const BlockFilterSet &LoopBlockSet) {
1920 BlockFrequency MaxFreq = 0;
1921 for (MachineBasicBlock *Pred : Top->predecessors()) {
1922 BlockChain *PredChain = BlockToChain[Pred];
1923 if (!LoopBlockSet.count(Pred) &&
1924 (!PredChain || Pred == *std::prev(PredChain->end()))) {
1925 // Found a Pred block can be placed before Top.
1926 // Check if Top is the best successor of Pred.
1927 auto TopProb = MBPI->getEdgeProbability(Pred, Top);
1928 bool TopOK = true;
1929 for (MachineBasicBlock *Succ : Pred->successors()) {
1930 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
1931 BlockChain *SuccChain = BlockToChain[Succ];
1932 // Check if Succ can be placed after Pred.
1933 // Succ should not be in any chain, or it is the head of some chain.
1934 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
1935 (!SuccChain || Succ == *SuccChain->begin())) {
1936 TopOK = false;
1937 break;
1940 if (TopOK) {
1941 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1942 MBPI->getEdgeProbability(Pred, Top);
1943 if (EdgeFreq > MaxFreq)
1944 MaxFreq = EdgeFreq;
1948 return MaxFreq;
1951 // Compute the fall through gains when move NewTop before OldTop.
1953 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1954 // marked as "+" are increased fallthrough, this function computes
1956 // SUM(increased fallthrough) - SUM(decreased fallthrough)
1958 // |
1959 // | -
1960 // V
1961 // --->OldTop
1962 // | .
1963 // | .
1964 // +| . +
1965 // | Pred --->
1966 // | |-
1967 // | V
1968 // --- NewTop <---
1969 // |-
1970 // V
1972 BlockFrequency
1973 MachineBlockPlacement::FallThroughGains(
1974 const MachineBasicBlock *NewTop,
1975 const MachineBasicBlock *OldTop,
1976 const MachineBasicBlock *ExitBB,
1977 const BlockFilterSet &LoopBlockSet) {
1978 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
1979 BlockFrequency FallThrough2Exit = 0;
1980 if (ExitBB)
1981 FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
1982 MBPI->getEdgeProbability(NewTop, ExitBB);
1983 BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
1984 MBPI->getEdgeProbability(NewTop, OldTop);
1986 // Find the best Pred of NewTop.
1987 MachineBasicBlock *BestPred = nullptr;
1988 BlockFrequency FallThroughFromPred = 0;
1989 for (MachineBasicBlock *Pred : NewTop->predecessors()) {
1990 if (!LoopBlockSet.count(Pred))
1991 continue;
1992 BlockChain *PredChain = BlockToChain[Pred];
1993 if (!PredChain || Pred == *std::prev(PredChain->end())) {
1994 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1995 MBPI->getEdgeProbability(Pred, NewTop);
1996 if (EdgeFreq > FallThroughFromPred) {
1997 FallThroughFromPred = EdgeFreq;
1998 BestPred = Pred;
2003 // If NewTop is not placed after Pred, another successor can be placed
2004 // after Pred.
2005 BlockFrequency NewFreq = 0;
2006 if (BestPred) {
2007 for (MachineBasicBlock *Succ : BestPred->successors()) {
2008 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
2009 continue;
2010 if (ComputedEdges.find(Succ) != ComputedEdges.end())
2011 continue;
2012 BlockChain *SuccChain = BlockToChain[Succ];
2013 if ((SuccChain && (Succ != *SuccChain->begin())) ||
2014 (SuccChain == BlockToChain[BestPred]))
2015 continue;
2016 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
2017 MBPI->getEdgeProbability(BestPred, Succ);
2018 if (EdgeFreq > NewFreq)
2019 NewFreq = EdgeFreq;
2021 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
2022 MBPI->getEdgeProbability(BestPred, NewTop);
2023 if (NewFreq > OrigEdgeFreq) {
2024 // If NewTop is not the best successor of Pred, then Pred doesn't
2025 // fallthrough to NewTop. So there is no FallThroughFromPred and
2026 // NewFreq.
2027 NewFreq = 0;
2028 FallThroughFromPred = 0;
2032 BlockFrequency Result = 0;
2033 BlockFrequency Gains = BackEdgeFreq + NewFreq;
2034 BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
2035 FallThroughFromPred;
2036 if (Gains > Lost)
2037 Result = Gains - Lost;
2038 return Result;
2041 /// Helper function of findBestLoopTop. Find the best loop top block
2042 /// from predecessors of old top.
2044 /// Look for a block which is strictly better than the old top for laying
2045 /// out before the old top of the loop. This looks for only two patterns:
2047 /// 1. a block has only one successor, the old loop top
2049 /// Because such a block will always result in an unconditional jump,
2050 /// rotating it in front of the old top is always profitable.
2052 /// 2. a block has two successors, one is old top, another is exit
2053 /// and it has more than one predecessors
2055 /// If it is below one of its predecessors P, only P can fall through to
2056 /// it, all other predecessors need a jump to it, and another conditional
2057 /// jump to loop header. If it is moved before loop header, all its
2058 /// predecessors jump to it, then fall through to loop header. So all its
2059 /// predecessors except P can reduce one taken branch.
2060 /// At the same time, move it before old top increases the taken branch
2061 /// to loop exit block, so the reduced taken branch will be compared with
2062 /// the increased taken branch to the loop exit block.
2063 MachineBasicBlock *
2064 MachineBlockPlacement::findBestLoopTopHelper(
2065 MachineBasicBlock *OldTop,
2066 const MachineLoop &L,
2067 const BlockFilterSet &LoopBlockSet) {
2068 // Check that the header hasn't been fused with a preheader block due to
2069 // crazy branches. If it has, we need to start with the header at the top to
2070 // prevent pulling the preheader into the loop body.
2071 BlockChain &HeaderChain = *BlockToChain[OldTop];
2072 if (!LoopBlockSet.count(*HeaderChain.begin()))
2073 return OldTop;
2074 if (OldTop != *HeaderChain.begin())
2075 return OldTop;
2077 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
2078 << "\n");
2080 BlockFrequency BestGains = 0;
2081 MachineBasicBlock *BestPred = nullptr;
2082 for (MachineBasicBlock *Pred : OldTop->predecessors()) {
2083 if (!LoopBlockSet.count(Pred))
2084 continue;
2085 if (Pred == L.getHeader())
2086 continue;
2087 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has "
2088 << Pred->succ_size() << " successors, ";
2089 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
2090 if (Pred->succ_size() > 2)
2091 continue;
2093 MachineBasicBlock *OtherBB = nullptr;
2094 if (Pred->succ_size() == 2) {
2095 OtherBB = *Pred->succ_begin();
2096 if (OtherBB == OldTop)
2097 OtherBB = *Pred->succ_rbegin();
2100 if (!canMoveBottomBlockToTop(Pred, OldTop))
2101 continue;
2103 BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
2104 LoopBlockSet);
2105 if ((Gains > 0) && (Gains > BestGains ||
2106 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
2107 BestPred = Pred;
2108 BestGains = Gains;
2112 // If no direct predecessor is fine, just use the loop header.
2113 if (!BestPred) {
2114 LLVM_DEBUG(dbgs() << " final top unchanged\n");
2115 return OldTop;
2118 // Walk backwards through any straight line of predecessors.
2119 while (BestPred->pred_size() == 1 &&
2120 (*BestPred->pred_begin())->succ_size() == 1 &&
2121 *BestPred->pred_begin() != L.getHeader())
2122 BestPred = *BestPred->pred_begin();
2124 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
2125 return BestPred;
2128 /// Find the best loop top block for layout.
2130 /// This function iteratively calls findBestLoopTopHelper, until no new better
2131 /// BB can be found.
2132 MachineBasicBlock *
2133 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2134 const BlockFilterSet &LoopBlockSet) {
2135 // Placing the latch block before the header may introduce an extra branch
2136 // that skips this block the first time the loop is executed, which we want
2137 // to avoid when optimising for size.
2138 // FIXME: in theory there is a case that does not introduce a new branch,
2139 // i.e. when the layout predecessor does not fallthrough to the loop header.
2140 // In practice this never happens though: there always seems to be a preheader
2141 // that can fallthrough and that is also placed before the header.
2142 bool OptForSize = F->getFunction().hasOptSize() ||
2143 llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get());
2144 if (OptForSize)
2145 return L.getHeader();
2147 MachineBasicBlock *OldTop = nullptr;
2148 MachineBasicBlock *NewTop = L.getHeader();
2149 while (NewTop != OldTop) {
2150 OldTop = NewTop;
2151 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2152 if (NewTop != OldTop)
2153 ComputedEdges[NewTop] = { OldTop, false };
2155 return NewTop;
2158 /// Find the best loop exiting block for layout.
2160 /// This routine implements the logic to analyze the loop looking for the best
2161 /// block to layout at the top of the loop. Typically this is done to maximize
2162 /// fallthrough opportunities.
2163 MachineBasicBlock *
2164 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2165 const BlockFilterSet &LoopBlockSet,
2166 BlockFrequency &ExitFreq) {
2167 // We don't want to layout the loop linearly in all cases. If the loop header
2168 // is just a normal basic block in the loop, we want to look for what block
2169 // within the loop is the best one to layout at the top. However, if the loop
2170 // header has be pre-merged into a chain due to predecessors not having
2171 // analyzable branches, *and* the predecessor it is merged with is *not* part
2172 // of the loop, rotating the header into the middle of the loop will create
2173 // a non-contiguous range of blocks which is Very Bad. So start with the
2174 // header and only rotate if safe.
2175 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2176 if (!LoopBlockSet.count(*HeaderChain.begin()))
2177 return nullptr;
2179 BlockFrequency BestExitEdgeFreq;
2180 unsigned BestExitLoopDepth = 0;
2181 MachineBasicBlock *ExitingBB = nullptr;
2182 // If there are exits to outer loops, loop rotation can severely limit
2183 // fallthrough opportunities unless it selects such an exit. Keep a set of
2184 // blocks where rotating to exit with that block will reach an outer loop.
2185 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2187 LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2188 << getBlockName(L.getHeader()) << "\n");
2189 for (MachineBasicBlock *MBB : L.getBlocks()) {
2190 BlockChain &Chain = *BlockToChain[MBB];
2191 // Ensure that this block is at the end of a chain; otherwise it could be
2192 // mid-way through an inner loop or a successor of an unanalyzable branch.
2193 if (MBB != *std::prev(Chain.end()))
2194 continue;
2196 // Now walk the successors. We need to establish whether this has a viable
2197 // exiting successor and whether it has a viable non-exiting successor.
2198 // We store the old exiting state and restore it if a viable looping
2199 // successor isn't found.
2200 MachineBasicBlock *OldExitingBB = ExitingBB;
2201 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2202 bool HasLoopingSucc = false;
2203 for (MachineBasicBlock *Succ : MBB->successors()) {
2204 if (Succ->isEHPad())
2205 continue;
2206 if (Succ == MBB)
2207 continue;
2208 BlockChain &SuccChain = *BlockToChain[Succ];
2209 // Don't split chains, either this chain or the successor's chain.
2210 if (&Chain == &SuccChain) {
2211 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
2212 << getBlockName(Succ) << " (chain conflict)\n");
2213 continue;
2216 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
2217 if (LoopBlockSet.count(Succ)) {
2218 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> "
2219 << getBlockName(Succ) << " (" << SuccProb << ")\n");
2220 HasLoopingSucc = true;
2221 continue;
2224 unsigned SuccLoopDepth = 0;
2225 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
2226 SuccLoopDepth = ExitLoop->getLoopDepth();
2227 if (ExitLoop->contains(&L))
2228 BlocksExitingToOuterLoop.insert(MBB);
2231 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2232 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
2233 << getBlockName(Succ) << " [L:" << SuccLoopDepth
2234 << "] (";
2235 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
2236 // Note that we bias this toward an existing layout successor to retain
2237 // incoming order in the absence of better information. The exit must have
2238 // a frequency higher than the current exit before we consider breaking
2239 // the layout.
2240 BranchProbability Bias(100 - ExitBlockBias, 100);
2241 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2242 ExitEdgeFreq > BestExitEdgeFreq ||
2243 (MBB->isLayoutSuccessor(Succ) &&
2244 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2245 BestExitEdgeFreq = ExitEdgeFreq;
2246 ExitingBB = MBB;
2250 if (!HasLoopingSucc) {
2251 // Restore the old exiting state, no viable looping successor was found.
2252 ExitingBB = OldExitingBB;
2253 BestExitEdgeFreq = OldBestExitEdgeFreq;
2256 // Without a candidate exiting block or with only a single block in the
2257 // loop, just use the loop header to layout the loop.
2258 if (!ExitingBB) {
2259 LLVM_DEBUG(
2260 dbgs() << " No other candidate exit blocks, using loop header\n");
2261 return nullptr;
2263 if (L.getNumBlocks() == 1) {
2264 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n");
2265 return nullptr;
2268 // Also, if we have exit blocks which lead to outer loops but didn't select
2269 // one of them as the exiting block we are rotating toward, disable loop
2270 // rotation altogether.
2271 if (!BlocksExitingToOuterLoop.empty() &&
2272 !BlocksExitingToOuterLoop.count(ExitingBB))
2273 return nullptr;
2275 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB)
2276 << "\n");
2277 ExitFreq = BestExitEdgeFreq;
2278 return ExitingBB;
2281 /// Check if there is a fallthrough to loop header Top.
2283 /// 1. Look for a Pred that can be layout before Top.
2284 /// 2. Check if Top is the most possible successor of Pred.
2285 bool
2286 MachineBlockPlacement::hasViableTopFallthrough(
2287 const MachineBasicBlock *Top,
2288 const BlockFilterSet &LoopBlockSet) {
2289 for (MachineBasicBlock *Pred : Top->predecessors()) {
2290 BlockChain *PredChain = BlockToChain[Pred];
2291 if (!LoopBlockSet.count(Pred) &&
2292 (!PredChain || Pred == *std::prev(PredChain->end()))) {
2293 // Found a Pred block can be placed before Top.
2294 // Check if Top is the best successor of Pred.
2295 auto TopProb = MBPI->getEdgeProbability(Pred, Top);
2296 bool TopOK = true;
2297 for (MachineBasicBlock *Succ : Pred->successors()) {
2298 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
2299 BlockChain *SuccChain = BlockToChain[Succ];
2300 // Check if Succ can be placed after Pred.
2301 // Succ should not be in any chain, or it is the head of some chain.
2302 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2303 TopOK = false;
2304 break;
2307 if (TopOK)
2308 return true;
2311 return false;
2314 /// Attempt to rotate an exiting block to the bottom of the loop.
2316 /// Once we have built a chain, try to rotate it to line up the hot exit block
2317 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2318 /// branches. For example, if the loop has fallthrough into its header and out
2319 /// of its bottom already, don't rotate it.
2320 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2321 const MachineBasicBlock *ExitingBB,
2322 BlockFrequency ExitFreq,
2323 const BlockFilterSet &LoopBlockSet) {
2324 if (!ExitingBB)
2325 return;
2327 MachineBasicBlock *Top = *LoopChain.begin();
2328 MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2330 // If ExitingBB is already the last one in a chain then nothing to do.
2331 if (Bottom == ExitingBB)
2332 return;
2334 // The entry block should always be the first BB in a function.
2335 if (Top->isEntryBlock())
2336 return;
2338 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2340 // If the header has viable fallthrough, check whether the current loop
2341 // bottom is a viable exiting block. If so, bail out as rotating will
2342 // introduce an unnecessary branch.
2343 if (ViableTopFallthrough) {
2344 for (MachineBasicBlock *Succ : Bottom->successors()) {
2345 BlockChain *SuccChain = BlockToChain[Succ];
2346 if (!LoopBlockSet.count(Succ) &&
2347 (!SuccChain || Succ == *SuccChain->begin()))
2348 return;
2351 // Rotate will destroy the top fallthrough, we need to ensure the new exit
2352 // frequency is larger than top fallthrough.
2353 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
2354 if (FallThrough2Top >= ExitFreq)
2355 return;
2358 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2359 if (ExitIt == LoopChain.end())
2360 return;
2362 // Rotating a loop exit to the bottom when there is a fallthrough to top
2363 // trades the entry fallthrough for an exit fallthrough.
2364 // If there is no bottom->top edge, but the chosen exit block does have
2365 // a fallthrough, we break that fallthrough for nothing in return.
2367 // Let's consider an example. We have a built chain of basic blocks
2368 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2369 // By doing a rotation we get
2370 // Bk+1, ..., Bn, B1, ..., Bk
2371 // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2372 // If we had a fallthrough Bk -> Bk+1 it is broken now.
2373 // It might be compensated by fallthrough Bn -> B1.
2374 // So we have a condition to avoid creation of extra branch by loop rotation.
2375 // All below must be true to avoid loop rotation:
2376 // If there is a fallthrough to top (B1)
2377 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2378 // There is no fallthrough from bottom (Bn) to top (B1).
2379 // Please note that there is no exit fallthrough from Bn because we checked it
2380 // above.
2381 if (ViableTopFallthrough) {
2382 assert(std::next(ExitIt) != LoopChain.end() &&
2383 "Exit should not be last BB");
2384 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2385 if (ExitingBB->isSuccessor(NextBlockInChain))
2386 if (!Bottom->isSuccessor(Top))
2387 return;
2390 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2391 << " at bottom\n");
2392 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2395 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2397 /// With profile data, we can determine the cost in terms of missed fall through
2398 /// opportunities when rotating a loop chain and select the best rotation.
2399 /// Basically, there are three kinds of cost to consider for each rotation:
2400 /// 1. The possibly missed fall through edge (if it exists) from BB out of
2401 /// the loop to the loop header.
2402 /// 2. The possibly missed fall through edges (if they exist) from the loop
2403 /// exits to BB out of the loop.
2404 /// 3. The missed fall through edge (if it exists) from the last BB to the
2405 /// first BB in the loop chain.
2406 /// Therefore, the cost for a given rotation is the sum of costs listed above.
2407 /// We select the best rotation with the smallest cost.
2408 void MachineBlockPlacement::rotateLoopWithProfile(
2409 BlockChain &LoopChain, const MachineLoop &L,
2410 const BlockFilterSet &LoopBlockSet) {
2411 auto RotationPos = LoopChain.end();
2412 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2414 // The entry block should always be the first BB in a function.
2415 if (ChainHeaderBB->isEntryBlock())
2416 return;
2418 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
2420 // A utility lambda that scales up a block frequency by dividing it by a
2421 // branch probability which is the reciprocal of the scale.
2422 auto ScaleBlockFrequency = [](BlockFrequency Freq,
2423 unsigned Scale) -> BlockFrequency {
2424 if (Scale == 0)
2425 return 0;
2426 // Use operator / between BlockFrequency and BranchProbability to implement
2427 // saturating multiplication.
2428 return Freq / BranchProbability(1, Scale);
2431 // Compute the cost of the missed fall-through edge to the loop header if the
2432 // chain head is not the loop header. As we only consider natural loops with
2433 // single header, this computation can be done only once.
2434 BlockFrequency HeaderFallThroughCost(0);
2435 for (auto *Pred : ChainHeaderBB->predecessors()) {
2436 BlockChain *PredChain = BlockToChain[Pred];
2437 if (!LoopBlockSet.count(Pred) &&
2438 (!PredChain || Pred == *std::prev(PredChain->end()))) {
2439 auto EdgeFreq = MBFI->getBlockFreq(Pred) *
2440 MBPI->getEdgeProbability(Pred, ChainHeaderBB);
2441 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2442 // If the predecessor has only an unconditional jump to the header, we
2443 // need to consider the cost of this jump.
2444 if (Pred->succ_size() == 1)
2445 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2446 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2450 // Here we collect all exit blocks in the loop, and for each exit we find out
2451 // its hottest exit edge. For each loop rotation, we define the loop exit cost
2452 // as the sum of frequencies of exit edges we collect here, excluding the exit
2453 // edge from the tail of the loop chain.
2454 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2455 for (auto BB : LoopChain) {
2456 auto LargestExitEdgeProb = BranchProbability::getZero();
2457 for (auto *Succ : BB->successors()) {
2458 BlockChain *SuccChain = BlockToChain[Succ];
2459 if (!LoopBlockSet.count(Succ) &&
2460 (!SuccChain || Succ == *SuccChain->begin())) {
2461 auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2462 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2465 if (LargestExitEdgeProb > BranchProbability::getZero()) {
2466 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2467 ExitsWithFreq.emplace_back(BB, ExitFreq);
2471 // In this loop we iterate every block in the loop chain and calculate the
2472 // cost assuming the block is the head of the loop chain. When the loop ends,
2473 // we should have found the best candidate as the loop chain's head.
2474 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2475 EndIter = LoopChain.end();
2476 Iter != EndIter; Iter++, TailIter++) {
2477 // TailIter is used to track the tail of the loop chain if the block we are
2478 // checking (pointed by Iter) is the head of the chain.
2479 if (TailIter == LoopChain.end())
2480 TailIter = LoopChain.begin();
2482 auto TailBB = *TailIter;
2484 // Calculate the cost by putting this BB to the top.
2485 BlockFrequency Cost = 0;
2487 // If the current BB is the loop header, we need to take into account the
2488 // cost of the missed fall through edge from outside of the loop to the
2489 // header.
2490 if (Iter != LoopChain.begin())
2491 Cost += HeaderFallThroughCost;
2493 // Collect the loop exit cost by summing up frequencies of all exit edges
2494 // except the one from the chain tail.
2495 for (auto &ExitWithFreq : ExitsWithFreq)
2496 if (TailBB != ExitWithFreq.first)
2497 Cost += ExitWithFreq.second;
2499 // The cost of breaking the once fall-through edge from the tail to the top
2500 // of the loop chain. Here we need to consider three cases:
2501 // 1. If the tail node has only one successor, then we will get an
2502 // additional jmp instruction. So the cost here is (MisfetchCost +
2503 // JumpInstCost) * tail node frequency.
2504 // 2. If the tail node has two successors, then we may still get an
2505 // additional jmp instruction if the layout successor after the loop
2506 // chain is not its CFG successor. Note that the more frequently executed
2507 // jmp instruction will be put ahead of the other one. Assume the
2508 // frequency of those two branches are x and y, where x is the frequency
2509 // of the edge to the chain head, then the cost will be
2510 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2511 // 3. If the tail node has more than two successors (this rarely happens),
2512 // we won't consider any additional cost.
2513 if (TailBB->isSuccessor(*Iter)) {
2514 auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2515 if (TailBB->succ_size() == 1)
2516 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2517 MisfetchCost + JumpInstCost);
2518 else if (TailBB->succ_size() == 2) {
2519 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2520 auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2521 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2522 ? TailBBFreq * TailToHeadProb.getCompl()
2523 : TailToHeadFreq;
2524 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2525 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2529 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2530 << getBlockName(*Iter)
2531 << " to the top: " << Cost.getFrequency() << "\n");
2533 if (Cost < SmallestRotationCost) {
2534 SmallestRotationCost = Cost;
2535 RotationPos = Iter;
2539 if (RotationPos != LoopChain.end()) {
2540 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2541 << " to the top\n");
2542 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2546 /// Collect blocks in the given loop that are to be placed.
2548 /// When profile data is available, exclude cold blocks from the returned set;
2549 /// otherwise, collect all blocks in the loop.
2550 MachineBlockPlacement::BlockFilterSet
2551 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2552 BlockFilterSet LoopBlockSet;
2554 // Filter cold blocks off from LoopBlockSet when profile data is available.
2555 // Collect the sum of frequencies of incoming edges to the loop header from
2556 // outside. If we treat the loop as a super block, this is the frequency of
2557 // the loop. Then for each block in the loop, we calculate the ratio between
2558 // its frequency and the frequency of the loop block. When it is too small,
2559 // don't add it to the loop chain. If there are outer loops, then this block
2560 // will be merged into the first outer loop chain for which this block is not
2561 // cold anymore. This needs precise profile data and we only do this when
2562 // profile data is available.
2563 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2564 BlockFrequency LoopFreq(0);
2565 for (auto LoopPred : L.getHeader()->predecessors())
2566 if (!L.contains(LoopPred))
2567 LoopFreq += MBFI->getBlockFreq(LoopPred) *
2568 MBPI->getEdgeProbability(LoopPred, L.getHeader());
2570 for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2571 if (LoopBlockSet.count(LoopBB))
2572 continue;
2573 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2574 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2575 continue;
2576 BlockChain *Chain = BlockToChain[LoopBB];
2577 for (MachineBasicBlock *ChainBB : *Chain)
2578 LoopBlockSet.insert(ChainBB);
2580 } else
2581 LoopBlockSet.insert(L.block_begin(), L.block_end());
2583 return LoopBlockSet;
2586 /// Forms basic block chains from the natural loop structures.
2588 /// These chains are designed to preserve the existing *structure* of the code
2589 /// as much as possible. We can then stitch the chains together in a way which
2590 /// both preserves the topological structure and minimizes taken conditional
2591 /// branches.
2592 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2593 // First recurse through any nested loops, building chains for those inner
2594 // loops.
2595 for (const MachineLoop *InnerLoop : L)
2596 buildLoopChains(*InnerLoop);
2598 assert(BlockWorkList.empty() &&
2599 "BlockWorkList not empty when starting to build loop chains.");
2600 assert(EHPadWorkList.empty() &&
2601 "EHPadWorkList not empty when starting to build loop chains.");
2602 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2604 // Check if we have profile data for this function. If yes, we will rotate
2605 // this loop by modeling costs more precisely which requires the profile data
2606 // for better layout.
2607 bool RotateLoopWithProfile =
2608 ForcePreciseRotationCost ||
2609 (PreciseRotationCost && F->getFunction().hasProfileData());
2611 // First check to see if there is an obviously preferable top block for the
2612 // loop. This will default to the header, but may end up as one of the
2613 // predecessors to the header if there is one which will result in strictly
2614 // fewer branches in the loop body.
2615 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
2617 // If we selected just the header for the loop top, look for a potentially
2618 // profitable exit block in the event that rotating the loop can eliminate
2619 // branches by placing an exit edge at the bottom.
2621 // Loops are processed innermost to uttermost, make sure we clear
2622 // PreferredLoopExit before processing a new loop.
2623 PreferredLoopExit = nullptr;
2624 BlockFrequency ExitFreq;
2625 if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2626 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
2628 BlockChain &LoopChain = *BlockToChain[LoopTop];
2630 // FIXME: This is a really lame way of walking the chains in the loop: we
2631 // walk the blocks, and use a set to prevent visiting a particular chain
2632 // twice.
2633 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2634 assert(LoopChain.UnscheduledPredecessors == 0 &&
2635 "LoopChain should not have unscheduled predecessors.");
2636 UpdatedPreds.insert(&LoopChain);
2638 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2639 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2641 buildChain(LoopTop, LoopChain, &LoopBlockSet);
2643 if (RotateLoopWithProfile)
2644 rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2645 else
2646 rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
2648 LLVM_DEBUG({
2649 // Crash at the end so we get all of the debugging output first.
2650 bool BadLoop = false;
2651 if (LoopChain.UnscheduledPredecessors) {
2652 BadLoop = true;
2653 dbgs() << "Loop chain contains a block without its preds placed!\n"
2654 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2655 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2657 for (MachineBasicBlock *ChainBB : LoopChain) {
2658 dbgs() << " ... " << getBlockName(ChainBB) << "\n";
2659 if (!LoopBlockSet.remove(ChainBB)) {
2660 // We don't mark the loop as bad here because there are real situations
2661 // where this can occur. For example, with an unanalyzable fallthrough
2662 // from a loop block to a non-loop block or vice versa.
2663 dbgs() << "Loop chain contains a block not contained by the loop!\n"
2664 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2665 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2666 << " Bad block: " << getBlockName(ChainBB) << "\n";
2670 if (!LoopBlockSet.empty()) {
2671 BadLoop = true;
2672 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2673 dbgs() << "Loop contains blocks never placed into a chain!\n"
2674 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2675 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2676 << " Bad block: " << getBlockName(LoopBB) << "\n";
2678 assert(!BadLoop && "Detected problems with the placement of this loop.");
2681 BlockWorkList.clear();
2682 EHPadWorkList.clear();
2685 void MachineBlockPlacement::buildCFGChains() {
2686 // Ensure that every BB in the function has an associated chain to simplify
2687 // the assumptions of the remaining algorithm.
2688 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2689 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2690 ++FI) {
2691 MachineBasicBlock *BB = &*FI;
2692 BlockChain *Chain =
2693 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2694 // Also, merge any blocks which we cannot reason about and must preserve
2695 // the exact fallthrough behavior for.
2696 while (true) {
2697 Cond.clear();
2698 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2699 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2700 break;
2702 MachineFunction::iterator NextFI = std::next(FI);
2703 MachineBasicBlock *NextBB = &*NextFI;
2704 // Ensure that the layout successor is a viable block, as we know that
2705 // fallthrough is a possibility.
2706 assert(NextFI != FE && "Can't fallthrough past the last block.");
2707 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2708 << getBlockName(BB) << " -> " << getBlockName(NextBB)
2709 << "\n");
2710 Chain->merge(NextBB, nullptr);
2711 #ifndef NDEBUG
2712 BlocksWithUnanalyzableExits.insert(&*BB);
2713 #endif
2714 FI = NextFI;
2715 BB = NextBB;
2719 // Build any loop-based chains.
2720 PreferredLoopExit = nullptr;
2721 for (MachineLoop *L : *MLI)
2722 buildLoopChains(*L);
2724 assert(BlockWorkList.empty() &&
2725 "BlockWorkList should be empty before building final chain.");
2726 assert(EHPadWorkList.empty() &&
2727 "EHPadWorkList should be empty before building final chain.");
2729 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2730 for (MachineBasicBlock &MBB : *F)
2731 fillWorkLists(&MBB, UpdatedPreds);
2733 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2734 buildChain(&F->front(), FunctionChain);
2736 #ifndef NDEBUG
2737 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2738 #endif
2739 LLVM_DEBUG({
2740 // Crash at the end so we get all of the debugging output first.
2741 bool BadFunc = false;
2742 FunctionBlockSetType FunctionBlockSet;
2743 for (MachineBasicBlock &MBB : *F)
2744 FunctionBlockSet.insert(&MBB);
2746 for (MachineBasicBlock *ChainBB : FunctionChain)
2747 if (!FunctionBlockSet.erase(ChainBB)) {
2748 BadFunc = true;
2749 dbgs() << "Function chain contains a block not in the function!\n"
2750 << " Bad block: " << getBlockName(ChainBB) << "\n";
2753 if (!FunctionBlockSet.empty()) {
2754 BadFunc = true;
2755 for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2756 dbgs() << "Function contains blocks never placed into a chain!\n"
2757 << " Bad block: " << getBlockName(RemainingBB) << "\n";
2759 assert(!BadFunc && "Detected problems with the block placement.");
2762 // Remember original layout ordering, so we can update terminators after
2763 // reordering to point to the original layout successor.
2764 SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors(
2765 F->getNumBlockIDs());
2767 MachineBasicBlock *LastMBB = nullptr;
2768 for (auto &MBB : *F) {
2769 if (LastMBB != nullptr)
2770 OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB;
2771 LastMBB = &MBB;
2773 OriginalLayoutSuccessors[F->back().getNumber()] = nullptr;
2776 // Splice the blocks into place.
2777 MachineFunction::iterator InsertPos = F->begin();
2778 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2779 for (MachineBasicBlock *ChainBB : FunctionChain) {
2780 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2781 : " ... ")
2782 << getBlockName(ChainBB) << "\n");
2783 if (InsertPos != MachineFunction::iterator(ChainBB))
2784 F->splice(InsertPos, ChainBB);
2785 else
2786 ++InsertPos;
2788 // Update the terminator of the previous block.
2789 if (ChainBB == *FunctionChain.begin())
2790 continue;
2791 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2793 // FIXME: It would be awesome of updateTerminator would just return rather
2794 // than assert when the branch cannot be analyzed in order to remove this
2795 // boiler plate.
2796 Cond.clear();
2797 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2799 #ifndef NDEBUG
2800 if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2801 // Given the exact block placement we chose, we may actually not _need_ to
2802 // be able to edit PrevBB's terminator sequence, but not being _able_ to
2803 // do that at this point is a bug.
2804 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2805 !PrevBB->canFallThrough()) &&
2806 "Unexpected block with un-analyzable fallthrough!");
2807 Cond.clear();
2808 TBB = FBB = nullptr;
2810 #endif
2812 // The "PrevBB" is not yet updated to reflect current code layout, so,
2813 // o. it may fall-through to a block without explicit "goto" instruction
2814 // before layout, and no longer fall-through it after layout; or
2815 // o. just opposite.
2817 // analyzeBranch() may return erroneous value for FBB when these two
2818 // situations take place. For the first scenario FBB is mistakenly set NULL;
2819 // for the 2nd scenario, the FBB, which is expected to be NULL, is
2820 // mistakenly pointing to "*BI".
2821 // Thus, if the future change needs to use FBB before the layout is set, it
2822 // has to correct FBB first by using the code similar to the following:
2824 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2825 // PrevBB->updateTerminator();
2826 // Cond.clear();
2827 // TBB = FBB = nullptr;
2828 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2829 // // FIXME: This should never take place.
2830 // TBB = FBB = nullptr;
2831 // }
2832 // }
2833 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2834 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2838 // Fixup the last block.
2839 Cond.clear();
2840 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2841 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) {
2842 MachineBasicBlock *PrevBB = &F->back();
2843 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2846 BlockWorkList.clear();
2847 EHPadWorkList.clear();
2850 void MachineBlockPlacement::optimizeBranches() {
2851 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2852 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2854 // Now that all the basic blocks in the chain have the proper layout,
2855 // make a final call to analyzeBranch with AllowModify set.
2856 // Indeed, the target may be able to optimize the branches in a way we
2857 // cannot because all branches may not be analyzable.
2858 // E.g., the target may be able to remove an unconditional branch to
2859 // a fallthrough when it occurs after predicated terminators.
2860 for (MachineBasicBlock *ChainBB : FunctionChain) {
2861 Cond.clear();
2862 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2863 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2864 // If PrevBB has a two-way branch, try to re-order the branches
2865 // such that we branch to the successor with higher probability first.
2866 if (TBB && !Cond.empty() && FBB &&
2867 MBPI->getEdgeProbability(ChainBB, FBB) >
2868 MBPI->getEdgeProbability(ChainBB, TBB) &&
2869 !TII->reverseBranchCondition(Cond)) {
2870 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2871 << getBlockName(ChainBB) << "\n");
2872 LLVM_DEBUG(dbgs() << " Edge probability: "
2873 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2874 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2875 DebugLoc dl; // FIXME: this is nowhere
2876 TII->removeBranch(*ChainBB);
2877 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2883 void MachineBlockPlacement::alignBlocks() {
2884 // Walk through the backedges of the function now that we have fully laid out
2885 // the basic blocks and align the destination of each backedge. We don't rely
2886 // exclusively on the loop info here so that we can align backedges in
2887 // unnatural CFGs and backedges that were introduced purely because of the
2888 // loop rotations done during this layout pass.
2889 if (F->getFunction().hasMinSize() ||
2890 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2891 return;
2892 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2893 if (FunctionChain.begin() == FunctionChain.end())
2894 return; // Empty chain.
2896 const BranchProbability ColdProb(1, 5); // 20%
2897 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2898 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2899 for (MachineBasicBlock *ChainBB : FunctionChain) {
2900 if (ChainBB == *FunctionChain.begin())
2901 continue;
2903 // Don't align non-looping basic blocks. These are unlikely to execute
2904 // enough times to matter in practice. Note that we'll still handle
2905 // unnatural CFGs inside of a natural outer loop (the common case) and
2906 // rotated loops.
2907 MachineLoop *L = MLI->getLoopFor(ChainBB);
2908 if (!L)
2909 continue;
2911 const Align Align = TLI->getPrefLoopAlignment(L);
2912 if (Align == 1)
2913 continue; // Don't care about loop alignment.
2915 // If the block is cold relative to the function entry don't waste space
2916 // aligning it.
2917 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2918 if (Freq < WeightedEntryFreq)
2919 continue;
2921 // If the block is cold relative to its loop header, don't align it
2922 // regardless of what edges into the block exist.
2923 MachineBasicBlock *LoopHeader = L->getHeader();
2924 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2925 if (Freq < (LoopHeaderFreq * ColdProb))
2926 continue;
2928 // If the global profiles indicates so, don't align it.
2929 if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) &&
2930 !TLI->alignLoopsWithOptSize())
2931 continue;
2933 // Check for the existence of a non-layout predecessor which would benefit
2934 // from aligning this block.
2935 MachineBasicBlock *LayoutPred =
2936 &*std::prev(MachineFunction::iterator(ChainBB));
2938 auto DetermineMaxAlignmentPadding = [&]() {
2939 // Set the maximum bytes allowed to be emitted for alignment.
2940 unsigned MaxBytes;
2941 if (MaxBytesForAlignmentOverride.getNumOccurrences() > 0)
2942 MaxBytes = MaxBytesForAlignmentOverride;
2943 else
2944 MaxBytes = TLI->getMaxPermittedBytesForAlignment(ChainBB);
2945 ChainBB->setMaxBytesForAlignment(MaxBytes);
2948 // Force alignment if all the predecessors are jumps. We already checked
2949 // that the block isn't cold above.
2950 if (!LayoutPred->isSuccessor(ChainBB)) {
2951 ChainBB->setAlignment(Align);
2952 DetermineMaxAlignmentPadding();
2953 continue;
2956 // Align this block if the layout predecessor's edge into this block is
2957 // cold relative to the block. When this is true, other predecessors make up
2958 // all of the hot entries into the block and thus alignment is likely to be
2959 // important.
2960 BranchProbability LayoutProb =
2961 MBPI->getEdgeProbability(LayoutPred, ChainBB);
2962 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2963 if (LayoutEdgeFreq <= (Freq * ColdProb)) {
2964 ChainBB->setAlignment(Align);
2965 DetermineMaxAlignmentPadding();
2970 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2971 /// it was duplicated into its chain predecessor and removed.
2972 /// \p BB - Basic block that may be duplicated.
2974 /// \p LPred - Chosen layout predecessor of \p BB.
2975 /// Updated to be the chain end if LPred is removed.
2976 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2977 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2978 /// Used to identify which blocks to update predecessor
2979 /// counts.
2980 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2981 /// chosen in the given order due to unnatural CFG
2982 /// only needed if \p BB is removed and
2983 /// \p PrevUnplacedBlockIt pointed to \p BB.
2984 /// @return true if \p BB was removed.
2985 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2986 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2987 const MachineBasicBlock *LoopHeaderBB,
2988 BlockChain &Chain, BlockFilterSet *BlockFilter,
2989 MachineFunction::iterator &PrevUnplacedBlockIt) {
2990 bool Removed, DuplicatedToLPred;
2991 bool DuplicatedToOriginalLPred;
2992 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2993 PrevUnplacedBlockIt,
2994 DuplicatedToLPred);
2995 if (!Removed)
2996 return false;
2997 DuplicatedToOriginalLPred = DuplicatedToLPred;
2998 // Iteratively try to duplicate again. It can happen that a block that is
2999 // duplicated into is still small enough to be duplicated again.
3000 // No need to call markBlockSuccessors in this case, as the blocks being
3001 // duplicated from here on are already scheduled.
3002 while (DuplicatedToLPred && Removed) {
3003 MachineBasicBlock *DupBB, *DupPred;
3004 // The removal callback causes Chain.end() to be updated when a block is
3005 // removed. On the first pass through the loop, the chain end should be the
3006 // same as it was on function entry. On subsequent passes, because we are
3007 // duplicating the block at the end of the chain, if it is removed the
3008 // chain will have shrunk by one block.
3009 BlockChain::iterator ChainEnd = Chain.end();
3010 DupBB = *(--ChainEnd);
3011 // Now try to duplicate again.
3012 if (ChainEnd == Chain.begin())
3013 break;
3014 DupPred = *std::prev(ChainEnd);
3015 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
3016 PrevUnplacedBlockIt,
3017 DuplicatedToLPred);
3019 // If BB was duplicated into LPred, it is now scheduled. But because it was
3020 // removed, markChainSuccessors won't be called for its chain. Instead we
3021 // call markBlockSuccessors for LPred to achieve the same effect. This must go
3022 // at the end because repeating the tail duplication can increase the number
3023 // of unscheduled predecessors.
3024 LPred = *std::prev(Chain.end());
3025 if (DuplicatedToOriginalLPred)
3026 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
3027 return true;
3030 /// Tail duplicate \p BB into (some) predecessors if profitable.
3031 /// \p BB - Basic block that may be duplicated
3032 /// \p LPred - Chosen layout predecessor of \p BB
3033 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
3034 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
3035 /// Used to identify which blocks to update predecessor
3036 /// counts.
3037 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
3038 /// chosen in the given order due to unnatural CFG
3039 /// only needed if \p BB is removed and
3040 /// \p PrevUnplacedBlockIt pointed to \p BB.
3041 /// \p DuplicatedToLPred - True if the block was duplicated into LPred.
3042 /// \return - True if the block was duplicated into all preds and removed.
3043 bool MachineBlockPlacement::maybeTailDuplicateBlock(
3044 MachineBasicBlock *BB, MachineBasicBlock *LPred,
3045 BlockChain &Chain, BlockFilterSet *BlockFilter,
3046 MachineFunction::iterator &PrevUnplacedBlockIt,
3047 bool &DuplicatedToLPred) {
3048 DuplicatedToLPred = false;
3049 if (!shouldTailDuplicate(BB))
3050 return false;
3052 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
3053 << "\n");
3055 // This has to be a callback because none of it can be done after
3056 // BB is deleted.
3057 bool Removed = false;
3058 auto RemovalCallback =
3059 [&](MachineBasicBlock *RemBB) {
3060 // Signal to outer function
3061 Removed = true;
3063 // Conservative default.
3064 bool InWorkList = true;
3065 // Remove from the Chain and Chain Map
3066 if (BlockToChain.count(RemBB)) {
3067 BlockChain *Chain = BlockToChain[RemBB];
3068 InWorkList = Chain->UnscheduledPredecessors == 0;
3069 Chain->remove(RemBB);
3070 BlockToChain.erase(RemBB);
3073 // Handle the unplaced block iterator
3074 if (&(*PrevUnplacedBlockIt) == RemBB) {
3075 PrevUnplacedBlockIt++;
3078 // Handle the Work Lists
3079 if (InWorkList) {
3080 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
3081 if (RemBB->isEHPad())
3082 RemoveList = EHPadWorkList;
3083 llvm::erase_value(RemoveList, RemBB);
3086 // Handle the filter set
3087 if (BlockFilter) {
3088 BlockFilter->remove(RemBB);
3091 // Remove the block from loop info.
3092 MLI->removeBlock(RemBB);
3093 if (RemBB == PreferredLoopExit)
3094 PreferredLoopExit = nullptr;
3096 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
3097 << getBlockName(RemBB) << "\n");
3099 auto RemovalCallbackRef =
3100 function_ref<void(MachineBasicBlock*)>(RemovalCallback);
3102 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
3103 bool IsSimple = TailDup.isSimpleBB(BB);
3104 SmallVector<MachineBasicBlock *, 8> CandidatePreds;
3105 SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr;
3106 if (F->getFunction().hasProfileData()) {
3107 // We can do partial duplication with precise profile information.
3108 findDuplicateCandidates(CandidatePreds, BB, BlockFilter);
3109 if (CandidatePreds.size() == 0)
3110 return false;
3111 if (CandidatePreds.size() < BB->pred_size())
3112 CandidatePtr = &CandidatePreds;
3114 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds,
3115 &RemovalCallbackRef, CandidatePtr);
3117 // Update UnscheduledPredecessors to reflect tail-duplication.
3118 DuplicatedToLPred = false;
3119 for (MachineBasicBlock *Pred : DuplicatedPreds) {
3120 // We're only looking for unscheduled predecessors that match the filter.
3121 BlockChain* PredChain = BlockToChain[Pred];
3122 if (Pred == LPred)
3123 DuplicatedToLPred = true;
3124 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
3125 || PredChain == &Chain)
3126 continue;
3127 for (MachineBasicBlock *NewSucc : Pred->successors()) {
3128 if (BlockFilter && !BlockFilter->count(NewSucc))
3129 continue;
3130 BlockChain *NewChain = BlockToChain[NewSucc];
3131 if (NewChain != &Chain && NewChain != PredChain)
3132 NewChain->UnscheduledPredecessors++;
3135 return Removed;
3138 // Count the number of actual machine instructions.
3139 static uint64_t countMBBInstruction(MachineBasicBlock *MBB) {
3140 uint64_t InstrCount = 0;
3141 for (MachineInstr &MI : *MBB) {
3142 if (!MI.isPHI() && !MI.isMetaInstruction())
3143 InstrCount += 1;
3145 return InstrCount;
3148 // The size cost of duplication is the instruction size of the duplicated block.
3149 // So we should scale the threshold accordingly. But the instruction size is not
3150 // available on all targets, so we use the number of instructions instead.
3151 BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) {
3152 return DupThreshold.getFrequency() * countMBBInstruction(BB);
3155 // Returns true if BB is Pred's best successor.
3156 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB,
3157 MachineBasicBlock *Pred,
3158 BlockFilterSet *BlockFilter) {
3159 if (BB == Pred)
3160 return false;
3161 if (BlockFilter && !BlockFilter->count(Pred))
3162 return false;
3163 BlockChain *PredChain = BlockToChain[Pred];
3164 if (PredChain && (Pred != *std::prev(PredChain->end())))
3165 return false;
3167 // Find the successor with largest probability excluding BB.
3168 BranchProbability BestProb = BranchProbability::getZero();
3169 for (MachineBasicBlock *Succ : Pred->successors())
3170 if (Succ != BB) {
3171 if (BlockFilter && !BlockFilter->count(Succ))
3172 continue;
3173 BlockChain *SuccChain = BlockToChain[Succ];
3174 if (SuccChain && (Succ != *SuccChain->begin()))
3175 continue;
3176 BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ);
3177 if (SuccProb > BestProb)
3178 BestProb = SuccProb;
3181 BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB);
3182 if (BBProb <= BestProb)
3183 return false;
3185 // Compute the number of reduced taken branches if Pred falls through to BB
3186 // instead of another successor. Then compare it with threshold.
3187 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3188 BlockFrequency Gain = PredFreq * (BBProb - BestProb);
3189 return Gain > scaleThreshold(BB);
3192 // Find out the predecessors of BB and BB can be beneficially duplicated into
3193 // them.
3194 void MachineBlockPlacement::findDuplicateCandidates(
3195 SmallVectorImpl<MachineBasicBlock *> &Candidates,
3196 MachineBasicBlock *BB,
3197 BlockFilterSet *BlockFilter) {
3198 MachineBasicBlock *Fallthrough = nullptr;
3199 BranchProbability DefaultBranchProb = BranchProbability::getZero();
3200 BlockFrequency BBDupThreshold(scaleThreshold(BB));
3201 SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors());
3202 SmallVector<MachineBasicBlock *, 8> Succs(BB->successors());
3204 // Sort for highest frequency.
3205 auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3206 return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B);
3208 auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3209 return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B);
3211 llvm::stable_sort(Succs, CmpSucc);
3212 llvm::stable_sort(Preds, CmpPred);
3214 auto SuccIt = Succs.begin();
3215 if (SuccIt != Succs.end()) {
3216 DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl();
3219 // For each predecessors of BB, compute the benefit of duplicating BB,
3220 // if it is larger than the threshold, add it into Candidates.
3222 // If we have following control flow.
3224 // PB1 PB2 PB3 PB4
3225 // \ | / /\
3226 // \ | / / \
3227 // \ |/ / \
3228 // BB----/ OB
3229 // /\
3230 // / \
3231 // SB1 SB2
3233 // And it can be partially duplicated as
3235 // PB2+BB
3236 // | PB1 PB3 PB4
3237 // | | / /\
3238 // | | / / \
3239 // | |/ / \
3240 // | BB----/ OB
3241 // |\ /|
3242 // | X |
3243 // |/ \|
3244 // SB2 SB1
3246 // The benefit of duplicating into a predecessor is defined as
3247 // Orig_taken_branch - Duplicated_taken_branch
3249 // The Orig_taken_branch is computed with the assumption that predecessor
3250 // jumps to BB and the most possible successor is laid out after BB.
3252 // The Duplicated_taken_branch is computed with the assumption that BB is
3253 // duplicated into PB, and one successor is layout after it (SB1 for PB1 and
3254 // SB2 for PB2 in our case). If there is no available successor, the combined
3255 // block jumps to all BB's successor, like PB3 in this example.
3257 // If a predecessor has multiple successors, so BB can't be duplicated into
3258 // it. But it can beneficially fall through to BB, and duplicate BB into other
3259 // predecessors.
3260 for (MachineBasicBlock *Pred : Preds) {
3261 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3263 if (!TailDup.canTailDuplicate(BB, Pred)) {
3264 // BB can't be duplicated into Pred, but it is possible to be layout
3265 // below Pred.
3266 if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) {
3267 Fallthrough = Pred;
3268 if (SuccIt != Succs.end())
3269 SuccIt++;
3271 continue;
3274 BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb;
3275 BlockFrequency DupCost;
3276 if (SuccIt == Succs.end()) {
3277 // Jump to all successors;
3278 if (Succs.size() > 0)
3279 DupCost += PredFreq;
3280 } else {
3281 // Fallthrough to *SuccIt, jump to all other successors;
3282 DupCost += PredFreq;
3283 DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt);
3286 assert(OrigCost >= DupCost);
3287 OrigCost -= DupCost;
3288 if (OrigCost > BBDupThreshold) {
3289 Candidates.push_back(Pred);
3290 if (SuccIt != Succs.end())
3291 SuccIt++;
3295 // No predecessors can optimally fallthrough to BB.
3296 // So we can change one duplication into fallthrough.
3297 if (!Fallthrough) {
3298 if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) {
3299 Candidates[0] = Candidates.back();
3300 Candidates.pop_back();
3305 void MachineBlockPlacement::initDupThreshold() {
3306 DupThreshold = 0;
3307 if (!F->getFunction().hasProfileData())
3308 return;
3310 // We prefer to use prifile count.
3311 uint64_t HotThreshold = PSI->getOrCompHotCountThreshold();
3312 if (HotThreshold != UINT64_MAX) {
3313 UseProfileCount = true;
3314 DupThreshold = HotThreshold * TailDupProfilePercentThreshold / 100;
3315 return;
3318 // Profile count is not available, we can use block frequency instead.
3319 BlockFrequency MaxFreq = 0;
3320 for (MachineBasicBlock &MBB : *F) {
3321 BlockFrequency Freq = MBFI->getBlockFreq(&MBB);
3322 if (Freq > MaxFreq)
3323 MaxFreq = Freq;
3326 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
3327 DupThreshold = MaxFreq * ThresholdProb;
3328 UseProfileCount = false;
3331 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
3332 if (skipFunction(MF.getFunction()))
3333 return false;
3335 // Check for single-block functions and skip them.
3336 if (std::next(MF.begin()) == MF.end())
3337 return false;
3339 F = &MF;
3340 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3341 MBFI = std::make_unique<MBFIWrapper>(
3342 getAnalysis<MachineBlockFrequencyInfo>());
3343 MLI = &getAnalysis<MachineLoopInfo>();
3344 TII = MF.getSubtarget().getInstrInfo();
3345 TLI = MF.getSubtarget().getTargetLowering();
3346 MPDT = nullptr;
3347 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3349 initDupThreshold();
3351 // Initialize PreferredLoopExit to nullptr here since it may never be set if
3352 // there are no MachineLoops.
3353 PreferredLoopExit = nullptr;
3355 assert(BlockToChain.empty() &&
3356 "BlockToChain map should be empty before starting placement.");
3357 assert(ComputedEdges.empty() &&
3358 "Computed Edge map should be empty before starting placement.");
3360 unsigned TailDupSize = TailDupPlacementThreshold;
3361 // If only the aggressive threshold is explicitly set, use it.
3362 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3363 TailDupPlacementThreshold.getNumOccurrences() == 0)
3364 TailDupSize = TailDupPlacementAggressiveThreshold;
3366 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
3367 // For aggressive optimization, we can adjust some thresholds to be less
3368 // conservative.
3369 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
3370 // At O3 we should be more willing to copy blocks for tail duplication. This
3371 // increases size pressure, so we only do it at O3
3372 // Do this unless only the regular threshold is explicitly set.
3373 if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3374 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3375 TailDupSize = TailDupPlacementAggressiveThreshold;
3378 // If there's no threshold provided through options, query the target
3379 // information for a threshold instead.
3380 if (TailDupPlacementThreshold.getNumOccurrences() == 0 &&
3381 (PassConfig->getOptLevel() < CodeGenOpt::Aggressive ||
3382 TailDupPlacementAggressiveThreshold.getNumOccurrences() == 0))
3383 TailDupSize = TII->getTailDuplicateSize(PassConfig->getOptLevel());
3385 if (allowTailDupPlacement()) {
3386 MPDT = &getAnalysis<MachinePostDominatorTree>();
3387 bool OptForSize = MF.getFunction().hasOptSize() ||
3388 llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI());
3389 if (OptForSize)
3390 TailDupSize = 1;
3391 bool PreRegAlloc = false;
3392 TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI,
3393 /* LayoutMode */ true, TailDupSize);
3394 precomputeTriangleChains();
3397 buildCFGChains();
3399 // Changing the layout can create new tail merging opportunities.
3400 // TailMerge can create jump into if branches that make CFG irreducible for
3401 // HW that requires structured CFG.
3402 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3403 PassConfig->getEnableTailMerge() &&
3404 BranchFoldPlacement;
3405 // No tail merging opportunities if the block number is less than four.
3406 if (MF.size() > 3 && EnableTailMerge) {
3407 unsigned TailMergeSize = TailDupSize + 1;
3408 BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false,
3409 *MBFI, *MBPI, PSI, TailMergeSize);
3411 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI,
3412 /*AfterPlacement=*/true)) {
3413 // Redo the layout if tail merging creates/removes/moves blocks.
3414 BlockToChain.clear();
3415 ComputedEdges.clear();
3416 // Must redo the post-dominator tree if blocks were changed.
3417 if (MPDT)
3418 MPDT->runOnMachineFunction(MF);
3419 ChainAllocator.DestroyAll();
3420 buildCFGChains();
3424 // Apply a post-processing optimizing block placement.
3425 if (MF.size() >= 3 && EnableExtTspBlockPlacement) {
3426 // Find a new placement and modify the layout of the blocks in the function.
3427 applyExtTsp();
3429 // Re-create CFG chain so that we can optimizeBranches and alignBlocks.
3430 createCFGChainExtTsp();
3433 optimizeBranches();
3434 alignBlocks();
3436 BlockToChain.clear();
3437 ComputedEdges.clear();
3438 ChainAllocator.DestroyAll();
3440 bool HasMaxBytesOverride =
3441 MaxBytesForAlignmentOverride.getNumOccurrences() > 0;
3443 if (AlignAllBlock)
3444 // Align all of the blocks in the function to a specific alignment.
3445 for (MachineBasicBlock &MBB : MF) {
3446 if (HasMaxBytesOverride)
3447 MBB.setAlignment(Align(1ULL << AlignAllBlock),
3448 MaxBytesForAlignmentOverride);
3449 else
3450 MBB.setAlignment(Align(1ULL << AlignAllBlock));
3452 else if (AlignAllNonFallThruBlocks) {
3453 // Align all of the blocks that have no fall-through predecessors to a
3454 // specific alignment.
3455 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
3456 auto LayoutPred = std::prev(MBI);
3457 if (!LayoutPred->isSuccessor(&*MBI)) {
3458 if (HasMaxBytesOverride)
3459 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks),
3460 MaxBytesForAlignmentOverride);
3461 else
3462 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
3466 if (ViewBlockLayoutWithBFI != GVDT_None &&
3467 (ViewBlockFreqFuncName.empty() ||
3468 F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
3469 MBFI->view("MBP." + MF.getName(), false);
3472 // We always return true as we have no way to track whether the final order
3473 // differs from the original order.
3474 return true;
3477 void MachineBlockPlacement::applyExtTsp() {
3478 // Prepare data; blocks are indexed by their index in the current ordering.
3479 DenseMap<const MachineBasicBlock *, uint64_t> BlockIndex;
3480 BlockIndex.reserve(F->size());
3481 std::vector<const MachineBasicBlock *> CurrentBlockOrder;
3482 CurrentBlockOrder.reserve(F->size());
3483 size_t NumBlocks = 0;
3484 for (const MachineBasicBlock &MBB : *F) {
3485 BlockIndex[&MBB] = NumBlocks++;
3486 CurrentBlockOrder.push_back(&MBB);
3489 auto BlockSizes = std::vector<uint64_t>(F->size());
3490 auto BlockCounts = std::vector<uint64_t>(F->size());
3491 DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> JumpCounts;
3492 for (MachineBasicBlock &MBB : *F) {
3493 // Getting the block frequency.
3494 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3495 BlockCounts[BlockIndex[&MBB]] = BlockFreq.getFrequency();
3496 // Getting the block size:
3497 // - approximate the size of an instruction by 4 bytes, and
3498 // - ignore debug instructions.
3499 // Note: getting the exact size of each block is target-dependent and can be
3500 // done by extending the interface of MCCodeEmitter. Experimentally we do
3501 // not see a perf improvement with the exact block sizes.
3502 auto NonDbgInsts =
3503 instructionsWithoutDebug(MBB.instr_begin(), MBB.instr_end());
3504 int NumInsts = std::distance(NonDbgInsts.begin(), NonDbgInsts.end());
3505 BlockSizes[BlockIndex[&MBB]] = 4 * NumInsts;
3506 // Getting jump frequencies.
3507 for (MachineBasicBlock *Succ : MBB.successors()) {
3508 auto EP = MBPI->getEdgeProbability(&MBB, Succ);
3509 BlockFrequency EdgeFreq = BlockFreq * EP;
3510 auto Edge = std::make_pair(BlockIndex[&MBB], BlockIndex[Succ]);
3511 JumpCounts[Edge] = EdgeFreq.getFrequency();
3515 LLVM_DEBUG(dbgs() << "Applying ext-tsp layout for |V| = " << F->size()
3516 << " with profile = " << F->getFunction().hasProfileData()
3517 << " (" << F->getName().str() << ")"
3518 << "\n");
3519 LLVM_DEBUG(
3520 dbgs() << format(" original layout score: %0.2f\n",
3521 calcExtTspScore(BlockSizes, BlockCounts, JumpCounts)));
3523 // Run the layout algorithm.
3524 auto NewOrder = applyExtTspLayout(BlockSizes, BlockCounts, JumpCounts);
3525 std::vector<const MachineBasicBlock *> NewBlockOrder;
3526 NewBlockOrder.reserve(F->size());
3527 for (uint64_t Node : NewOrder) {
3528 NewBlockOrder.push_back(CurrentBlockOrder[Node]);
3530 LLVM_DEBUG(dbgs() << format(" optimized layout score: %0.2f\n",
3531 calcExtTspScore(NewOrder, BlockSizes, BlockCounts,
3532 JumpCounts)));
3534 // Assign new block order.
3535 assignBlockOrder(NewBlockOrder);
3538 void MachineBlockPlacement::assignBlockOrder(
3539 const std::vector<const MachineBasicBlock *> &NewBlockOrder) {
3540 assert(F->size() == NewBlockOrder.size() && "Incorrect size of block order");
3541 F->RenumberBlocks();
3543 bool HasChanges = false;
3544 for (size_t I = 0; I < NewBlockOrder.size(); I++) {
3545 if (NewBlockOrder[I] != F->getBlockNumbered(I)) {
3546 HasChanges = true;
3547 break;
3550 // Stop early if the new block order is identical to the existing one.
3551 if (!HasChanges)
3552 return;
3554 SmallVector<MachineBasicBlock *, 4> PrevFallThroughs(F->getNumBlockIDs());
3555 for (auto &MBB : *F) {
3556 PrevFallThroughs[MBB.getNumber()] = MBB.getFallThrough();
3559 // Sort basic blocks in the function according to the computed order.
3560 DenseMap<const MachineBasicBlock *, size_t> NewIndex;
3561 for (const MachineBasicBlock *MBB : NewBlockOrder) {
3562 NewIndex[MBB] = NewIndex.size();
3564 F->sort([&](MachineBasicBlock &L, MachineBasicBlock &R) {
3565 return NewIndex[&L] < NewIndex[&R];
3568 // Update basic block branches by inserting explicit fallthrough branches
3569 // when required and re-optimize branches when possible.
3570 const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo();
3571 SmallVector<MachineOperand, 4> Cond;
3572 for (auto &MBB : *F) {
3573 MachineFunction::iterator NextMBB = std::next(MBB.getIterator());
3574 MachineFunction::iterator EndIt = MBB.getParent()->end();
3575 auto *FTMBB = PrevFallThroughs[MBB.getNumber()];
3576 // If this block had a fallthrough before we need an explicit unconditional
3577 // branch to that block if the fallthrough block is not adjacent to the
3578 // block in the new order.
3579 if (FTMBB && (NextMBB == EndIt || &*NextMBB != FTMBB)) {
3580 TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc());
3583 // It might be possible to optimize branches by flipping the condition.
3584 Cond.clear();
3585 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
3586 if (TII->analyzeBranch(MBB, TBB, FBB, Cond))
3587 continue;
3588 MBB.updateTerminator(FTMBB);
3591 #ifndef NDEBUG
3592 // Make sure we correctly constructed all branches.
3593 F->verify(this, "After optimized block reordering");
3594 #endif
3597 void MachineBlockPlacement::createCFGChainExtTsp() {
3598 BlockToChain.clear();
3599 ComputedEdges.clear();
3600 ChainAllocator.DestroyAll();
3602 MachineBasicBlock *HeadBB = &F->front();
3603 BlockChain *FunctionChain =
3604 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, HeadBB);
3606 for (MachineBasicBlock &MBB : *F) {
3607 if (HeadBB == &MBB)
3608 continue; // Ignore head of the chain
3609 FunctionChain->merge(&MBB, nullptr);
3613 namespace {
3615 /// A pass to compute block placement statistics.
3617 /// A separate pass to compute interesting statistics for evaluating block
3618 /// placement. This is separate from the actual placement pass so that they can
3619 /// be computed in the absence of any placement transformations or when using
3620 /// alternative placement strategies.
3621 class MachineBlockPlacementStats : public MachineFunctionPass {
3622 /// A handle to the branch probability pass.
3623 const MachineBranchProbabilityInfo *MBPI;
3625 /// A handle to the function-wide block frequency pass.
3626 const MachineBlockFrequencyInfo *MBFI;
3628 public:
3629 static char ID; // Pass identification, replacement for typeid
3631 MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3632 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3635 bool runOnMachineFunction(MachineFunction &F) override;
3637 void getAnalysisUsage(AnalysisUsage &AU) const override {
3638 AU.addRequired<MachineBranchProbabilityInfo>();
3639 AU.addRequired<MachineBlockFrequencyInfo>();
3640 AU.setPreservesAll();
3641 MachineFunctionPass::getAnalysisUsage(AU);
3645 } // end anonymous namespace
3647 char MachineBlockPlacementStats::ID = 0;
3649 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3651 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3652 "Basic Block Placement Stats", false, false)
3653 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
3654 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
3655 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3656 "Basic Block Placement Stats", false, false)
3658 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3659 // Check for single-block functions and skip them.
3660 if (std::next(F.begin()) == F.end())
3661 return false;
3663 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3664 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3666 for (MachineBasicBlock &MBB : F) {
3667 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3668 Statistic &NumBranches =
3669 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3670 Statistic &BranchTakenFreq =
3671 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3672 for (MachineBasicBlock *Succ : MBB.successors()) {
3673 // Skip if this successor is a fallthrough.
3674 if (MBB.isLayoutSuccessor(Succ))
3675 continue;
3677 BlockFrequency EdgeFreq =
3678 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
3679 ++NumBranches;
3680 BranchTakenFreq += EdgeFreq.getFrequency();
3684 return false;