1 //===- MachineFunction.cpp ------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Collect native machine code information for a function. This allows
10 // target-specific information about the generated code to be stored with each
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/WasmEHFuncInfo.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/MC/SectionKind.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/DOTGraphTraits.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/GraphWriter.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
75 #include <type_traits>
79 #include "LiveDebugValues/LiveDebugValues.h"
83 #define DEBUG_TYPE "codegen"
85 static cl::opt
<unsigned> AlignAllFunctions(
86 "align-all-functions",
87 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
88 "means align on 16B boundaries)."),
89 cl::init(0), cl::Hidden
);
91 static const char *getPropertyName(MachineFunctionProperties::Property Prop
) {
92 using P
= MachineFunctionProperties::Property
;
96 case P::FailedISel
: return "FailedISel";
97 case P::IsSSA
: return "IsSSA";
98 case P::Legalized
: return "Legalized";
99 case P::NoPHIs
: return "NoPHIs";
100 case P::NoVRegs
: return "NoVRegs";
101 case P::RegBankSelected
: return "RegBankSelected";
102 case P::Selected
: return "Selected";
103 case P::TracksLiveness
: return "TracksLiveness";
104 case P::TiedOpsRewritten
: return "TiedOpsRewritten";
105 case P::FailsVerification
: return "FailsVerification";
106 case P::TracksDebugUserValues
: return "TracksDebugUserValues";
109 llvm_unreachable("Invalid machine function property");
112 // Pin the vtable to this file.
113 void MachineFunction::Delegate::anchor() {}
115 void MachineFunctionProperties::print(raw_ostream
&OS
) const {
116 const char *Separator
= "";
117 for (BitVector::size_type I
= 0; I
< Properties
.size(); ++I
) {
120 OS
<< Separator
<< getPropertyName(static_cast<Property
>(I
));
125 //===----------------------------------------------------------------------===//
126 // MachineFunction implementation
127 //===----------------------------------------------------------------------===//
129 // Out-of-line virtual method.
130 MachineFunctionInfo::~MachineFunctionInfo() = default;
132 void ilist_alloc_traits
<MachineBasicBlock
>::deleteNode(MachineBasicBlock
*MBB
) {
133 MBB
->getParent()->deleteMachineBasicBlock(MBB
);
136 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo
*STI
,
138 if (auto MA
= F
.getFnStackAlign())
140 return STI
->getFrameLowering()->getStackAlign().value();
143 MachineFunction::MachineFunction(Function
&F
, const LLVMTargetMachine
&Target
,
144 const TargetSubtargetInfo
&STI
,
145 unsigned FunctionNum
, MachineModuleInfo
&mmi
)
146 : F(F
), Target(Target
), STI(&STI
), Ctx(mmi
.getContext()), MMI(mmi
) {
147 FunctionNumber
= FunctionNum
;
151 void MachineFunction::handleInsertion(MachineInstr
&MI
) {
153 TheDelegate
->MF_HandleInsertion(MI
);
156 void MachineFunction::handleRemoval(MachineInstr
&MI
) {
158 TheDelegate
->MF_HandleRemoval(MI
);
161 void MachineFunction::init() {
162 // Assume the function starts in SSA form with correct liveness.
163 Properties
.set(MachineFunctionProperties::Property::IsSSA
);
164 Properties
.set(MachineFunctionProperties::Property::TracksLiveness
);
165 if (STI
->getRegisterInfo())
166 RegInfo
= new (Allocator
) MachineRegisterInfo(this);
171 // We can realign the stack if the target supports it and the user hasn't
172 // explicitly asked us not to.
173 bool CanRealignSP
= STI
->getFrameLowering()->isStackRealignable() &&
174 !F
.hasFnAttribute("no-realign-stack");
175 FrameInfo
= new (Allocator
) MachineFrameInfo(
176 getFnStackAlignment(STI
, F
), /*StackRealignable=*/CanRealignSP
,
177 /*ForcedRealign=*/CanRealignSP
&&
178 F
.hasFnAttribute(Attribute::StackAlignment
));
180 if (F
.hasFnAttribute(Attribute::StackAlignment
))
181 FrameInfo
->ensureMaxAlignment(*F
.getFnStackAlign());
183 ConstantPool
= new (Allocator
) MachineConstantPool(getDataLayout());
184 Alignment
= STI
->getTargetLowering()->getMinFunctionAlignment();
186 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
187 // FIXME: Use Function::hasOptSize().
188 if (!F
.hasFnAttribute(Attribute::OptimizeForSize
))
189 Alignment
= std::max(Alignment
,
190 STI
->getTargetLowering()->getPrefFunctionAlignment());
192 if (AlignAllFunctions
)
193 Alignment
= Align(1ULL << AlignAllFunctions
);
195 JumpTableInfo
= nullptr;
197 if (isFuncletEHPersonality(classifyEHPersonality(
198 F
.hasPersonalityFn() ? F
.getPersonalityFn() : nullptr))) {
199 WinEHInfo
= new (Allocator
) WinEHFuncInfo();
202 if (isScopedEHPersonality(classifyEHPersonality(
203 F
.hasPersonalityFn() ? F
.getPersonalityFn() : nullptr))) {
204 WasmEHInfo
= new (Allocator
) WasmEHFuncInfo();
207 assert(Target
.isCompatibleDataLayout(getDataLayout()) &&
208 "Can't create a MachineFunction using a Module with a "
209 "Target-incompatible DataLayout attached\n");
212 std::make_unique
<PseudoSourceValueManager
>(*(getSubtarget().
216 MachineFunction::~MachineFunction() {
220 void MachineFunction::clear() {
222 // Don't call destructors on MachineInstr and MachineOperand. All of their
223 // memory comes from the BumpPtrAllocator which is about to be purged.
225 // Do call MachineBasicBlock destructors, it contains std::vectors.
226 for (iterator I
= begin(), E
= end(); I
!= E
; I
= BasicBlocks
.erase(I
))
227 I
->Insts
.clearAndLeakNodesUnsafely();
228 MBBNumbering
.clear();
230 InstructionRecycler
.clear(Allocator
);
231 OperandRecycler
.clear(Allocator
);
232 BasicBlockRecycler
.clear(Allocator
);
233 CodeViewAnnotations
.clear();
234 VariableDbgInfos
.clear();
236 RegInfo
->~MachineRegisterInfo();
237 Allocator
.Deallocate(RegInfo
);
240 MFInfo
->~MachineFunctionInfo();
241 Allocator
.Deallocate(MFInfo
);
244 FrameInfo
->~MachineFrameInfo();
245 Allocator
.Deallocate(FrameInfo
);
247 ConstantPool
->~MachineConstantPool();
248 Allocator
.Deallocate(ConstantPool
);
251 JumpTableInfo
->~MachineJumpTableInfo();
252 Allocator
.Deallocate(JumpTableInfo
);
256 WinEHInfo
->~WinEHFuncInfo();
257 Allocator
.Deallocate(WinEHInfo
);
261 WasmEHInfo
->~WasmEHFuncInfo();
262 Allocator
.Deallocate(WasmEHInfo
);
266 const DataLayout
&MachineFunction::getDataLayout() const {
267 return F
.getParent()->getDataLayout();
270 /// Get the JumpTableInfo for this function.
271 /// If it does not already exist, allocate one.
272 MachineJumpTableInfo
*MachineFunction::
273 getOrCreateJumpTableInfo(unsigned EntryKind
) {
274 if (JumpTableInfo
) return JumpTableInfo
;
276 JumpTableInfo
= new (Allocator
)
277 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind
)EntryKind
);
278 return JumpTableInfo
;
281 DenormalMode
MachineFunction::getDenormalMode(const fltSemantics
&FPType
) const {
282 return F
.getDenormalMode(FPType
);
285 /// Should we be emitting segmented stack stuff for the function
286 bool MachineFunction::shouldSplitStack() const {
287 return getFunction().hasFnAttribute("split-stack");
290 LLVM_NODISCARD
unsigned
291 MachineFunction::addFrameInst(const MCCFIInstruction
&Inst
) {
292 FrameInstructions
.push_back(Inst
);
293 return FrameInstructions
.size() - 1;
296 /// This discards all of the MachineBasicBlock numbers and recomputes them.
297 /// This guarantees that the MBB numbers are sequential, dense, and match the
298 /// ordering of the blocks within the function. If a specific MachineBasicBlock
299 /// is specified, only that block and those after it are renumbered.
300 void MachineFunction::RenumberBlocks(MachineBasicBlock
*MBB
) {
301 if (empty()) { MBBNumbering
.clear(); return; }
302 MachineFunction::iterator MBBI
, E
= end();
306 MBBI
= MBB
->getIterator();
308 // Figure out the block number this should have.
309 unsigned BlockNo
= 0;
311 BlockNo
= std::prev(MBBI
)->getNumber() + 1;
313 for (; MBBI
!= E
; ++MBBI
, ++BlockNo
) {
314 if (MBBI
->getNumber() != (int)BlockNo
) {
315 // Remove use of the old number.
316 if (MBBI
->getNumber() != -1) {
317 assert(MBBNumbering
[MBBI
->getNumber()] == &*MBBI
&&
318 "MBB number mismatch!");
319 MBBNumbering
[MBBI
->getNumber()] = nullptr;
322 // If BlockNo is already taken, set that block's number to -1.
323 if (MBBNumbering
[BlockNo
])
324 MBBNumbering
[BlockNo
]->setNumber(-1);
326 MBBNumbering
[BlockNo
] = &*MBBI
;
327 MBBI
->setNumber(BlockNo
);
331 // Okay, all the blocks are renumbered. If we have compactified the block
332 // numbering, shrink MBBNumbering now.
333 assert(BlockNo
<= MBBNumbering
.size() && "Mismatch!");
334 MBBNumbering
.resize(BlockNo
);
337 /// This method iterates over the basic blocks and assigns their IsBeginSection
338 /// and IsEndSection fields. This must be called after MBB layout is finalized
339 /// and the SectionID's are assigned to MBBs.
340 void MachineFunction::assignBeginEndSections() {
341 front().setIsBeginSection();
342 auto CurrentSectionID
= front().getSectionID();
343 for (auto MBBI
= std::next(begin()), E
= end(); MBBI
!= E
; ++MBBI
) {
344 if (MBBI
->getSectionID() == CurrentSectionID
)
346 MBBI
->setIsBeginSection();
347 std::prev(MBBI
)->setIsEndSection();
348 CurrentSectionID
= MBBI
->getSectionID();
350 back().setIsEndSection();
353 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
354 MachineInstr
*MachineFunction::CreateMachineInstr(const MCInstrDesc
&MCID
,
357 return new (InstructionRecycler
.Allocate
<MachineInstr
>(Allocator
))
358 MachineInstr(*this, MCID
, std::move(DL
), NoImplicit
);
361 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
362 /// identical in all ways except the instruction has no parent, prev, or next.
364 MachineFunction::CloneMachineInstr(const MachineInstr
*Orig
) {
365 return new (InstructionRecycler
.Allocate
<MachineInstr
>(Allocator
))
366 MachineInstr(*this, *Orig
);
369 MachineInstr
&MachineFunction::cloneMachineInstrBundle(
370 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator InsertBefore
,
371 const MachineInstr
&Orig
) {
372 MachineInstr
*FirstClone
= nullptr;
373 MachineBasicBlock::const_instr_iterator I
= Orig
.getIterator();
375 MachineInstr
*Cloned
= CloneMachineInstr(&*I
);
376 MBB
.insert(InsertBefore
, Cloned
);
377 if (FirstClone
== nullptr) {
380 Cloned
->bundleWithPred();
383 if (!I
->isBundledWithSucc())
387 // Copy over call site info to the cloned instruction if needed. If Orig is in
388 // a bundle, copyCallSiteInfo takes care of finding the call instruction in
390 if (Orig
.shouldUpdateCallSiteInfo())
391 copyCallSiteInfo(&Orig
, FirstClone
);
395 /// Delete the given MachineInstr.
397 /// This function also serves as the MachineInstr destructor - the real
398 /// ~MachineInstr() destructor must be empty.
399 void MachineFunction::deleteMachineInstr(MachineInstr
*MI
) {
400 // Verify that a call site info is at valid state. This assertion should
401 // be triggered during the implementation of support for the
402 // call site info of a new architecture. If the assertion is triggered,
403 // back trace will tell where to insert a call to updateCallSiteInfo().
404 assert((!MI
->isCandidateForCallSiteEntry() ||
405 CallSitesInfo
.find(MI
) == CallSitesInfo
.end()) &&
406 "Call site info was not updated!");
407 // Strip it for parts. The operand array and the MI object itself are
408 // independently recyclable.
410 deallocateOperandArray(MI
->CapOperands
, MI
->Operands
);
411 // Don't call ~MachineInstr() which must be trivial anyway because
412 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
414 InstructionRecycler
.Deallocate(Allocator
, MI
);
417 /// Allocate a new MachineBasicBlock. Use this instead of
418 /// `new MachineBasicBlock'.
420 MachineFunction::CreateMachineBasicBlock(const BasicBlock
*bb
) {
421 return new (BasicBlockRecycler
.Allocate
<MachineBasicBlock
>(Allocator
))
422 MachineBasicBlock(*this, bb
);
425 /// Delete the given MachineBasicBlock.
426 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock
*MBB
) {
427 assert(MBB
->getParent() == this && "MBB parent mismatch!");
428 // Clean up any references to MBB in jump tables before deleting it.
430 JumpTableInfo
->RemoveMBBFromJumpTables(MBB
);
431 MBB
->~MachineBasicBlock();
432 BasicBlockRecycler
.Deallocate(Allocator
, MBB
);
435 MachineMemOperand
*MachineFunction::getMachineMemOperand(
436 MachinePointerInfo PtrInfo
, MachineMemOperand::Flags f
, uint64_t s
,
437 Align base_alignment
, const AAMDNodes
&AAInfo
, const MDNode
*Ranges
,
438 SyncScope::ID SSID
, AtomicOrdering Ordering
,
439 AtomicOrdering FailureOrdering
) {
440 return new (Allocator
)
441 MachineMemOperand(PtrInfo
, f
, s
, base_alignment
, AAInfo
, Ranges
,
442 SSID
, Ordering
, FailureOrdering
);
445 MachineMemOperand
*MachineFunction::getMachineMemOperand(
446 MachinePointerInfo PtrInfo
, MachineMemOperand::Flags f
, LLT MemTy
,
447 Align base_alignment
, const AAMDNodes
&AAInfo
, const MDNode
*Ranges
,
448 SyncScope::ID SSID
, AtomicOrdering Ordering
,
449 AtomicOrdering FailureOrdering
) {
450 return new (Allocator
)
451 MachineMemOperand(PtrInfo
, f
, MemTy
, base_alignment
, AAInfo
, Ranges
, SSID
,
452 Ordering
, FailureOrdering
);
455 MachineMemOperand
*MachineFunction::getMachineMemOperand(
456 const MachineMemOperand
*MMO
, const MachinePointerInfo
&PtrInfo
, uint64_t Size
) {
457 return new (Allocator
)
458 MachineMemOperand(PtrInfo
, MMO
->getFlags(), Size
, MMO
->getBaseAlign(),
459 AAMDNodes(), nullptr, MMO
->getSyncScopeID(),
460 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
463 MachineMemOperand
*MachineFunction::getMachineMemOperand(
464 const MachineMemOperand
*MMO
, const MachinePointerInfo
&PtrInfo
, LLT Ty
) {
465 return new (Allocator
)
466 MachineMemOperand(PtrInfo
, MMO
->getFlags(), Ty
, MMO
->getBaseAlign(),
467 AAMDNodes(), nullptr, MMO
->getSyncScopeID(),
468 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
472 MachineFunction::getMachineMemOperand(const MachineMemOperand
*MMO
,
473 int64_t Offset
, LLT Ty
) {
474 const MachinePointerInfo
&PtrInfo
= MMO
->getPointerInfo();
476 // If there is no pointer value, the offset isn't tracked so we need to adjust
477 // the base alignment.
478 Align Alignment
= PtrInfo
.V
.isNull()
479 ? commonAlignment(MMO
->getBaseAlign(), Offset
)
480 : MMO
->getBaseAlign();
482 // Do not preserve ranges, since we don't necessarily know what the high bits
484 return new (Allocator
) MachineMemOperand(
485 PtrInfo
.getWithOffset(Offset
), MMO
->getFlags(), Ty
, Alignment
,
486 MMO
->getAAInfo(), nullptr, MMO
->getSyncScopeID(),
487 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
491 MachineFunction::getMachineMemOperand(const MachineMemOperand
*MMO
,
492 const AAMDNodes
&AAInfo
) {
493 MachinePointerInfo MPI
= MMO
->getValue() ?
494 MachinePointerInfo(MMO
->getValue(), MMO
->getOffset()) :
495 MachinePointerInfo(MMO
->getPseudoValue(), MMO
->getOffset());
497 return new (Allocator
) MachineMemOperand(
498 MPI
, MMO
->getFlags(), MMO
->getSize(), MMO
->getBaseAlign(), AAInfo
,
499 MMO
->getRanges(), MMO
->getSyncScopeID(), MMO
->getSuccessOrdering(),
500 MMO
->getFailureOrdering());
504 MachineFunction::getMachineMemOperand(const MachineMemOperand
*MMO
,
505 MachineMemOperand::Flags Flags
) {
506 return new (Allocator
) MachineMemOperand(
507 MMO
->getPointerInfo(), Flags
, MMO
->getSize(), MMO
->getBaseAlign(),
508 MMO
->getAAInfo(), MMO
->getRanges(), MMO
->getSyncScopeID(),
509 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
512 MachineInstr::ExtraInfo
*MachineFunction::createMIExtraInfo(
513 ArrayRef
<MachineMemOperand
*> MMOs
, MCSymbol
*PreInstrSymbol
,
514 MCSymbol
*PostInstrSymbol
, MDNode
*HeapAllocMarker
) {
515 return MachineInstr::ExtraInfo::create(Allocator
, MMOs
, PreInstrSymbol
,
516 PostInstrSymbol
, HeapAllocMarker
);
519 const char *MachineFunction::createExternalSymbolName(StringRef Name
) {
520 char *Dest
= Allocator
.Allocate
<char>(Name
.size() + 1);
521 llvm::copy(Name
, Dest
);
522 Dest
[Name
.size()] = 0;
526 uint32_t *MachineFunction::allocateRegMask() {
527 unsigned NumRegs
= getSubtarget().getRegisterInfo()->getNumRegs();
528 unsigned Size
= MachineOperand::getRegMaskSize(NumRegs
);
529 uint32_t *Mask
= Allocator
.Allocate
<uint32_t>(Size
);
530 memset(Mask
, 0, Size
* sizeof(Mask
[0]));
534 ArrayRef
<int> MachineFunction::allocateShuffleMask(ArrayRef
<int> Mask
) {
535 int* AllocMask
= Allocator
.Allocate
<int>(Mask
.size());
536 copy(Mask
, AllocMask
);
537 return {AllocMask
, Mask
.size()};
540 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
541 LLVM_DUMP_METHOD
void MachineFunction::dump() const {
546 StringRef
MachineFunction::getName() const {
547 return getFunction().getName();
550 void MachineFunction::print(raw_ostream
&OS
, const SlotIndexes
*Indexes
) const {
551 OS
<< "# Machine code for function " << getName() << ": ";
552 getProperties().print(OS
);
555 // Print Frame Information
556 FrameInfo
->print(*this, OS
);
558 // Print JumpTable Information
560 JumpTableInfo
->print(OS
);
562 // Print Constant Pool
563 ConstantPool
->print(OS
);
565 const TargetRegisterInfo
*TRI
= getSubtarget().getRegisterInfo();
567 if (RegInfo
&& !RegInfo
->livein_empty()) {
568 OS
<< "Function Live Ins: ";
569 for (MachineRegisterInfo::livein_iterator
570 I
= RegInfo
->livein_begin(), E
= RegInfo
->livein_end(); I
!= E
; ++I
) {
571 OS
<< printReg(I
->first
, TRI
);
573 OS
<< " in " << printReg(I
->second
, TRI
);
574 if (std::next(I
) != E
)
580 ModuleSlotTracker
MST(getFunction().getParent());
581 MST
.incorporateFunction(getFunction());
582 for (const auto &BB
: *this) {
584 // If we print the whole function, print it at its most verbose level.
585 BB
.print(OS
, MST
, Indexes
, /*IsStandalone=*/true);
588 OS
<< "\n# End machine code for function " << getName() << ".\n\n";
591 /// True if this function needs frame moves for debug or exceptions.
592 bool MachineFunction::needsFrameMoves() const {
593 return getMMI().hasDebugInfo() ||
594 getTarget().Options
.ForceDwarfFrameSection
||
595 F
.needsUnwindTableEntry();
601 struct DOTGraphTraits
<const MachineFunction
*> : public DefaultDOTGraphTraits
{
602 DOTGraphTraits(bool isSimple
= false) : DefaultDOTGraphTraits(isSimple
) {}
604 static std::string
getGraphName(const MachineFunction
*F
) {
605 return ("CFG for '" + F
->getName() + "' function").str();
608 std::string
getNodeLabel(const MachineBasicBlock
*Node
,
609 const MachineFunction
*Graph
) {
612 raw_string_ostream
OSS(OutStr
);
615 OSS
<< printMBBReference(*Node
);
616 if (const BasicBlock
*BB
= Node
->getBasicBlock())
617 OSS
<< ": " << BB
->getName();
622 if (OutStr
[0] == '\n') OutStr
.erase(OutStr
.begin());
624 // Process string output to make it nicer...
625 for (unsigned i
= 0; i
!= OutStr
.length(); ++i
)
626 if (OutStr
[i
] == '\n') { // Left justify
628 OutStr
.insert(OutStr
.begin()+i
+1, 'l');
634 } // end namespace llvm
636 void MachineFunction::viewCFG() const
639 ViewGraph(this, "mf" + getName());
641 errs() << "MachineFunction::viewCFG is only available in debug builds on "
642 << "systems with Graphviz or gv!\n";
646 void MachineFunction::viewCFGOnly() const
649 ViewGraph(this, "mf" + getName(), true);
651 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
652 << "systems with Graphviz or gv!\n";
656 /// Add the specified physical register as a live-in value and
657 /// create a corresponding virtual register for it.
658 Register
MachineFunction::addLiveIn(MCRegister PReg
,
659 const TargetRegisterClass
*RC
) {
660 MachineRegisterInfo
&MRI
= getRegInfo();
661 Register VReg
= MRI
.getLiveInVirtReg(PReg
);
663 const TargetRegisterClass
*VRegRC
= MRI
.getRegClass(VReg
);
665 // A physical register can be added several times.
666 // Between two calls, the register class of the related virtual register
667 // may have been constrained to match some operation constraints.
668 // In that case, check that the current register class includes the
669 // physical register and is a sub class of the specified RC.
670 assert((VRegRC
== RC
|| (VRegRC
->contains(PReg
) &&
671 RC
->hasSubClassEq(VRegRC
))) &&
672 "Register class mismatch!");
675 VReg
= MRI
.createVirtualRegister(RC
);
676 MRI
.addLiveIn(PReg
, VReg
);
680 /// Return the MCSymbol for the specified non-empty jump table.
681 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
682 /// normal 'L' label is returned.
683 MCSymbol
*MachineFunction::getJTISymbol(unsigned JTI
, MCContext
&Ctx
,
684 bool isLinkerPrivate
) const {
685 const DataLayout
&DL
= getDataLayout();
686 assert(JumpTableInfo
&& "No jump tables");
687 assert(JTI
< JumpTableInfo
->getJumpTables().size() && "Invalid JTI!");
689 StringRef Prefix
= isLinkerPrivate
? DL
.getLinkerPrivateGlobalPrefix()
690 : DL
.getPrivateGlobalPrefix();
691 SmallString
<60> Name
;
692 raw_svector_ostream(Name
)
693 << Prefix
<< "JTI" << getFunctionNumber() << '_' << JTI
;
694 return Ctx
.getOrCreateSymbol(Name
);
697 /// Return a function-local symbol to represent the PIC base.
698 MCSymbol
*MachineFunction::getPICBaseSymbol() const {
699 const DataLayout
&DL
= getDataLayout();
700 return Ctx
.getOrCreateSymbol(Twine(DL
.getPrivateGlobalPrefix()) +
701 Twine(getFunctionNumber()) + "$pb");
704 /// \name Exception Handling
708 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock
*LandingPad
) {
709 unsigned N
= LandingPads
.size();
710 for (unsigned i
= 0; i
< N
; ++i
) {
711 LandingPadInfo
&LP
= LandingPads
[i
];
712 if (LP
.LandingPadBlock
== LandingPad
)
716 LandingPads
.push_back(LandingPadInfo(LandingPad
));
717 return LandingPads
[N
];
720 void MachineFunction::addInvoke(MachineBasicBlock
*LandingPad
,
721 MCSymbol
*BeginLabel
, MCSymbol
*EndLabel
) {
722 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
723 LP
.BeginLabels
.push_back(BeginLabel
);
724 LP
.EndLabels
.push_back(EndLabel
);
727 MCSymbol
*MachineFunction::addLandingPad(MachineBasicBlock
*LandingPad
) {
728 MCSymbol
*LandingPadLabel
= Ctx
.createTempSymbol();
729 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
730 LP
.LandingPadLabel
= LandingPadLabel
;
732 const Instruction
*FirstI
= LandingPad
->getBasicBlock()->getFirstNonPHI();
733 if (const auto *LPI
= dyn_cast
<LandingPadInst
>(FirstI
)) {
735 dyn_cast
<Function
>(F
.getPersonalityFn()->stripPointerCasts()))
736 getMMI().addPersonality(PF
);
738 if (LPI
->isCleanup())
739 addCleanup(LandingPad
);
741 // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
742 // correct, but we need to do it this way because of how the DWARF EH
743 // emitter processes the clauses.
744 for (unsigned I
= LPI
->getNumClauses(); I
!= 0; --I
) {
745 Value
*Val
= LPI
->getClause(I
- 1);
746 if (LPI
->isCatch(I
- 1)) {
747 addCatchTypeInfo(LandingPad
,
748 dyn_cast
<GlobalValue
>(Val
->stripPointerCasts()));
750 // Add filters in a list.
751 auto *CVal
= cast
<Constant
>(Val
);
752 SmallVector
<const GlobalValue
*, 4> FilterList
;
753 for (const Use
&U
: CVal
->operands())
754 FilterList
.push_back(cast
<GlobalValue
>(U
->stripPointerCasts()));
756 addFilterTypeInfo(LandingPad
, FilterList
);
760 } else if (const auto *CPI
= dyn_cast
<CatchPadInst
>(FirstI
)) {
761 for (unsigned I
= CPI
->getNumArgOperands(); I
!= 0; --I
) {
762 Value
*TypeInfo
= CPI
->getArgOperand(I
- 1)->stripPointerCasts();
763 addCatchTypeInfo(LandingPad
, dyn_cast
<GlobalValue
>(TypeInfo
));
767 assert(isa
<CleanupPadInst
>(FirstI
) && "Invalid landingpad!");
770 return LandingPadLabel
;
773 void MachineFunction::addCatchTypeInfo(MachineBasicBlock
*LandingPad
,
774 ArrayRef
<const GlobalValue
*> TyInfo
) {
775 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
776 for (const GlobalValue
*GV
: llvm::reverse(TyInfo
))
777 LP
.TypeIds
.push_back(getTypeIDFor(GV
));
780 void MachineFunction::addFilterTypeInfo(MachineBasicBlock
*LandingPad
,
781 ArrayRef
<const GlobalValue
*> TyInfo
) {
782 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
783 std::vector
<unsigned> IdsInFilter(TyInfo
.size());
784 for (unsigned I
= 0, E
= TyInfo
.size(); I
!= E
; ++I
)
785 IdsInFilter
[I
] = getTypeIDFor(TyInfo
[I
]);
786 LP
.TypeIds
.push_back(getFilterIDFor(IdsInFilter
));
789 void MachineFunction::tidyLandingPads(DenseMap
<MCSymbol
*, uintptr_t> *LPMap
,
790 bool TidyIfNoBeginLabels
) {
791 for (unsigned i
= 0; i
!= LandingPads
.size(); ) {
792 LandingPadInfo
&LandingPad
= LandingPads
[i
];
793 if (LandingPad
.LandingPadLabel
&&
794 !LandingPad
.LandingPadLabel
->isDefined() &&
795 (!LPMap
|| (*LPMap
)[LandingPad
.LandingPadLabel
] == 0))
796 LandingPad
.LandingPadLabel
= nullptr;
798 // Special case: we *should* emit LPs with null LP MBB. This indicates
800 if (!LandingPad
.LandingPadLabel
&& LandingPad
.LandingPadBlock
) {
801 LandingPads
.erase(LandingPads
.begin() + i
);
805 if (TidyIfNoBeginLabels
) {
806 for (unsigned j
= 0, e
= LandingPads
[i
].BeginLabels
.size(); j
!= e
; ++j
) {
807 MCSymbol
*BeginLabel
= LandingPad
.BeginLabels
[j
];
808 MCSymbol
*EndLabel
= LandingPad
.EndLabels
[j
];
809 if ((BeginLabel
->isDefined() || (LPMap
&& (*LPMap
)[BeginLabel
] != 0)) &&
810 (EndLabel
->isDefined() || (LPMap
&& (*LPMap
)[EndLabel
] != 0)))
813 LandingPad
.BeginLabels
.erase(LandingPad
.BeginLabels
.begin() + j
);
814 LandingPad
.EndLabels
.erase(LandingPad
.EndLabels
.begin() + j
);
819 // Remove landing pads with no try-ranges.
820 if (LandingPads
[i
].BeginLabels
.empty()) {
821 LandingPads
.erase(LandingPads
.begin() + i
);
826 // If there is no landing pad, ensure that the list of typeids is empty.
827 // If the only typeid is a cleanup, this is the same as having no typeids.
828 if (!LandingPad
.LandingPadBlock
||
829 (LandingPad
.TypeIds
.size() == 1 && !LandingPad
.TypeIds
[0]))
830 LandingPad
.TypeIds
.clear();
835 void MachineFunction::addCleanup(MachineBasicBlock
*LandingPad
) {
836 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
837 LP
.TypeIds
.push_back(0);
840 void MachineFunction::addSEHCatchHandler(MachineBasicBlock
*LandingPad
,
841 const Function
*Filter
,
842 const BlockAddress
*RecoverBA
) {
843 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
845 Handler
.FilterOrFinally
= Filter
;
846 Handler
.RecoverBA
= RecoverBA
;
847 LP
.SEHHandlers
.push_back(Handler
);
850 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock
*LandingPad
,
851 const Function
*Cleanup
) {
852 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
854 Handler
.FilterOrFinally
= Cleanup
;
855 Handler
.RecoverBA
= nullptr;
856 LP
.SEHHandlers
.push_back(Handler
);
859 void MachineFunction::setCallSiteLandingPad(MCSymbol
*Sym
,
860 ArrayRef
<unsigned> Sites
) {
861 LPadToCallSiteMap
[Sym
].append(Sites
.begin(), Sites
.end());
864 unsigned MachineFunction::getTypeIDFor(const GlobalValue
*TI
) {
865 for (unsigned i
= 0, N
= TypeInfos
.size(); i
!= N
; ++i
)
866 if (TypeInfos
[i
] == TI
) return i
+ 1;
868 TypeInfos
.push_back(TI
);
869 return TypeInfos
.size();
872 int MachineFunction::getFilterIDFor(std::vector
<unsigned> &TyIds
) {
873 // If the new filter coincides with the tail of an existing filter, then
874 // re-use the existing filter. Folding filters more than this requires
875 // re-ordering filters and/or their elements - probably not worth it.
876 for (unsigned i
: FilterEnds
) {
877 unsigned j
= TyIds
.size();
880 if (FilterIds
[--i
] != TyIds
[--j
])
884 // The new filter coincides with range [i, end) of the existing filter.
890 // Add the new filter.
891 int FilterID
= -(1 + FilterIds
.size());
892 FilterIds
.reserve(FilterIds
.size() + TyIds
.size() + 1);
893 llvm::append_range(FilterIds
, TyIds
);
894 FilterEnds
.push_back(FilterIds
.size());
895 FilterIds
.push_back(0); // terminator
899 MachineFunction::CallSiteInfoMap::iterator
900 MachineFunction::getCallSiteInfo(const MachineInstr
*MI
) {
901 assert(MI
->isCandidateForCallSiteEntry() &&
902 "Call site info refers only to call (MI) candidates");
904 if (!Target
.Options
.EmitCallSiteInfo
)
905 return CallSitesInfo
.end();
906 return CallSitesInfo
.find(MI
);
909 /// Return the call machine instruction or find a call within bundle.
910 static const MachineInstr
*getCallInstr(const MachineInstr
*MI
) {
914 for (auto &BMI
: make_range(getBundleStart(MI
->getIterator()),
915 getBundleEnd(MI
->getIterator())))
916 if (BMI
.isCandidateForCallSiteEntry())
919 llvm_unreachable("Unexpected bundle without a call site candidate");
922 void MachineFunction::eraseCallSiteInfo(const MachineInstr
*MI
) {
923 assert(MI
->shouldUpdateCallSiteInfo() &&
924 "Call site info refers only to call (MI) candidates or "
925 "candidates inside bundles");
927 const MachineInstr
*CallMI
= getCallInstr(MI
);
928 CallSiteInfoMap::iterator CSIt
= getCallSiteInfo(CallMI
);
929 if (CSIt
== CallSitesInfo
.end())
931 CallSitesInfo
.erase(CSIt
);
934 void MachineFunction::copyCallSiteInfo(const MachineInstr
*Old
,
935 const MachineInstr
*New
) {
936 assert(Old
->shouldUpdateCallSiteInfo() &&
937 "Call site info refers only to call (MI) candidates or "
938 "candidates inside bundles");
940 if (!New
->isCandidateForCallSiteEntry())
941 return eraseCallSiteInfo(Old
);
943 const MachineInstr
*OldCallMI
= getCallInstr(Old
);
944 CallSiteInfoMap::iterator CSIt
= getCallSiteInfo(OldCallMI
);
945 if (CSIt
== CallSitesInfo
.end())
948 CallSiteInfo CSInfo
= CSIt
->second
;
949 CallSitesInfo
[New
] = CSInfo
;
952 void MachineFunction::moveCallSiteInfo(const MachineInstr
*Old
,
953 const MachineInstr
*New
) {
954 assert(Old
->shouldUpdateCallSiteInfo() &&
955 "Call site info refers only to call (MI) candidates or "
956 "candidates inside bundles");
958 if (!New
->isCandidateForCallSiteEntry())
959 return eraseCallSiteInfo(Old
);
961 const MachineInstr
*OldCallMI
= getCallInstr(Old
);
962 CallSiteInfoMap::iterator CSIt
= getCallSiteInfo(OldCallMI
);
963 if (CSIt
== CallSitesInfo
.end())
966 CallSiteInfo CSInfo
= std::move(CSIt
->second
);
967 CallSitesInfo
.erase(CSIt
);
968 CallSitesInfo
[New
] = CSInfo
;
971 void MachineFunction::setDebugInstrNumberingCount(unsigned Num
) {
972 DebugInstrNumberingCount
= Num
;
975 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A
,
976 DebugInstrOperandPair B
,
978 // Catch any accidental self-loops.
979 assert(A
.first
!= B
.first
);
980 // Don't allow any substitutions _from_ the memory operand number.
981 assert(A
.second
!= DebugOperandMemNumber
);
983 DebugValueSubstitutions
.push_back({A
, B
, Subreg
});
986 void MachineFunction::substituteDebugValuesForInst(const MachineInstr
&Old
,
988 unsigned MaxOperand
) {
989 // If the Old instruction wasn't tracked at all, there is no work to do.
990 unsigned OldInstrNum
= Old
.peekDebugInstrNum();
994 // Iterate over all operands looking for defs to create substitutions for.
995 // Avoid creating new instr numbers unless we create a new substitution.
996 // While this has no functional effect, it risks confusing someone reading
998 // Examine all the operands, or the first N specified by the caller.
999 MaxOperand
= std::min(MaxOperand
, Old
.getNumOperands());
1000 for (unsigned int I
= 0; I
< MaxOperand
; ++I
) {
1001 const auto &OldMO
= Old
.getOperand(I
);
1002 auto &NewMO
= New
.getOperand(I
);
1005 if (!OldMO
.isReg() || !OldMO
.isDef())
1007 assert(NewMO
.isDef());
1009 unsigned NewInstrNum
= New
.getDebugInstrNum();
1010 makeDebugValueSubstitution(std::make_pair(OldInstrNum
, I
),
1011 std::make_pair(NewInstrNum
, I
));
1015 auto MachineFunction::salvageCopySSA(MachineInstr
&MI
)
1016 -> DebugInstrOperandPair
{
1017 MachineRegisterInfo
&MRI
= getRegInfo();
1018 const TargetRegisterInfo
&TRI
= *MRI
.getTargetRegisterInfo();
1019 const TargetInstrInfo
&TII
= *getSubtarget().getInstrInfo();
1021 // Chase the value read by a copy-like instruction back to the instruction
1022 // that ultimately _defines_ that value. This may pass:
1023 // * Through multiple intermediate copies, including subregister moves /
1025 // * Copies from physical registers that must then be traced back to the
1026 // defining instruction,
1027 // * Or, physical registers may be live-in to (only) the entry block, which
1028 // requires a DBG_PHI to be created.
1029 // We can pursue this problem in that order: trace back through copies,
1030 // optionally through a physical register, to a defining instruction. We
1031 // should never move from physreg to vreg. As we're still in SSA form, no need
1032 // to worry about partial definitions of registers.
1034 // Helper lambda to interpret a copy-like instruction. Takes instruction,
1035 // returns the register read and any subregister identifying which part is
1037 auto GetRegAndSubreg
=
1038 [&](const MachineInstr
&Cpy
) -> std::pair
<Register
, unsigned> {
1039 Register NewReg
, OldReg
;
1042 OldReg
= Cpy
.getOperand(0).getReg();
1043 NewReg
= Cpy
.getOperand(1).getReg();
1044 SubReg
= Cpy
.getOperand(1).getSubReg();
1045 } else if (Cpy
.isSubregToReg()) {
1046 OldReg
= Cpy
.getOperand(0).getReg();
1047 NewReg
= Cpy
.getOperand(2).getReg();
1048 SubReg
= Cpy
.getOperand(3).getImm();
1050 auto CopyDetails
= *TII
.isCopyInstr(Cpy
);
1051 const MachineOperand
&Src
= *CopyDetails
.Source
;
1052 const MachineOperand
&Dest
= *CopyDetails
.Destination
;
1053 OldReg
= Dest
.getReg();
1054 NewReg
= Src
.getReg();
1055 SubReg
= Src
.getSubReg();
1058 return {NewReg
, SubReg
};
1061 // First seek either the defining instruction, or a copy from a physreg.
1062 // During search, the current state is the current copy instruction, and which
1063 // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1064 // deal with those later.
1065 auto State
= GetRegAndSubreg(MI
);
1066 auto CurInst
= MI
.getIterator();
1067 SmallVector
<unsigned, 4> SubregsSeen
;
1069 // If we've found a copy from a physreg, first portion of search is over.
1070 if (!State
.first
.isVirtual())
1073 // Record any subregister qualifier.
1075 SubregsSeen
.push_back(State
.second
);
1077 assert(MRI
.hasOneDef(State
.first
));
1078 MachineInstr
&Inst
= *MRI
.def_begin(State
.first
)->getParent();
1079 CurInst
= Inst
.getIterator();
1081 // Any non-copy instruction is the defining instruction we're seeking.
1082 if (!Inst
.isCopyLike() && !TII
.isCopyInstr(Inst
))
1084 State
= GetRegAndSubreg(Inst
);
1087 // Helper lambda to apply additional subregister substitutions to a known
1088 // instruction/operand pair. Adds new (fake) substitutions so that we can
1089 // record the subregister. FIXME: this isn't very space efficient if multiple
1090 // values are tracked back through the same copies; cache something later.
1091 auto ApplySubregisters
=
1092 [&](DebugInstrOperandPair P
) -> DebugInstrOperandPair
{
1093 for (unsigned Subreg
: reverse(SubregsSeen
)) {
1094 // Fetch a new instruction number, not attached to an actual instruction.
1095 unsigned NewInstrNumber
= getNewDebugInstrNum();
1096 // Add a substitution from the "new" number to the known one, with a
1097 // qualifying subreg.
1098 makeDebugValueSubstitution({NewInstrNumber
, 0}, P
, Subreg
);
1099 // Return the new number; to find the underlying value, consumers need to
1100 // deal with the qualifying subreg.
1101 P
= {NewInstrNumber
, 0};
1106 // If we managed to find the defining instruction after COPYs, return an
1107 // instruction / operand pair after adding subregister qualifiers.
1108 if (State
.first
.isVirtual()) {
1109 // Virtual register def -- we can just look up where this happens.
1110 MachineInstr
*Inst
= MRI
.def_begin(State
.first
)->getParent();
1111 for (auto &MO
: Inst
->operands()) {
1112 if (!MO
.isReg() || !MO
.isDef() || MO
.getReg() != State
.first
)
1114 return ApplySubregisters(
1115 {Inst
->getDebugInstrNum(), Inst
->getOperandNo(&MO
)});
1118 llvm_unreachable("Vreg def with no corresponding operand?");
1121 // Our search ended in a copy from a physreg: walk back up the function
1122 // looking for whatever defines the physreg.
1123 assert(CurInst
->isCopyLike() || TII
.isCopyInstr(*CurInst
));
1124 State
= GetRegAndSubreg(*CurInst
);
1125 Register RegToSeek
= State
.first
;
1127 auto RMII
= CurInst
->getReverseIterator();
1128 auto PrevInstrs
= make_range(RMII
, CurInst
->getParent()->instr_rend());
1129 for (auto &ToExamine
: PrevInstrs
) {
1130 for (auto &MO
: ToExamine
.operands()) {
1131 // Test for operand that defines something aliasing RegToSeek.
1132 if (!MO
.isReg() || !MO
.isDef() ||
1133 !TRI
.regsOverlap(RegToSeek
, MO
.getReg()))
1136 return ApplySubregisters(
1137 {ToExamine
.getDebugInstrNum(), ToExamine
.getOperandNo(&MO
)});
1141 MachineBasicBlock
&InsertBB
= *CurInst
->getParent();
1143 // We reached the start of the block before finding a defining instruction.
1144 // It could be from a constant register, otherwise it must be an argument.
1145 if (TRI
.isConstantPhysReg(State
.first
)) {
1146 // We can produce a DBG_PHI that identifies the constant physreg. Doesn't
1147 // matter where we put it, as it's constant valued.
1148 assert(CurInst
->isCopy());
1149 } else if (State
.first
== TRI
.getFrameRegister(*this)) {
1150 // LLVM IR is allowed to read the framepointer by calling a
1151 // llvm.frameaddress.* intrinsic. We can support this by emitting a
1152 // DBG_PHI $fp. This isn't ideal, because it extends the behaviours /
1153 // position that DBG_PHIs appear at, limiting what can be done later.
1154 // TODO: see if there's a better way of expressing these variable
1158 // Assert that this is the entry block, or an EH pad. If it isn't, then
1159 // there is some code construct we don't recognise that deals with physregs
1161 assert(!State
.first
.isVirtual());
1162 assert(&*InsertBB
.getParent()->begin() == &InsertBB
|| InsertBB
.isEHPad());
1165 // Create DBG_PHI for specified physreg.
1166 auto Builder
= BuildMI(InsertBB
, InsertBB
.getFirstNonPHI(), DebugLoc(),
1167 TII
.get(TargetOpcode::DBG_PHI
));
1168 Builder
.addReg(State
.first
);
1169 unsigned NewNum
= getNewDebugInstrNum();
1170 Builder
.addImm(NewNum
);
1171 return ApplySubregisters({NewNum
, 0u});
1174 void MachineFunction::finalizeDebugInstrRefs() {
1175 auto *TII
= getSubtarget().getInstrInfo();
1177 auto MakeUndefDbgValue
= [&](MachineInstr
&MI
) {
1178 const MCInstrDesc
&RefII
= TII
->get(TargetOpcode::DBG_VALUE
);
1180 MI
.getOperand(0).setReg(0);
1181 MI
.getOperand(1).ChangeToRegister(0, false);
1184 if (!useDebugInstrRef())
1187 for (auto &MBB
: *this) {
1188 for (auto &MI
: MBB
) {
1189 if (!MI
.isDebugRef() || !MI
.getOperand(0).isReg())
1192 Register Reg
= MI
.getOperand(0).getReg();
1194 // Some vregs can be deleted as redundant in the meantime. Mark those
1195 // as DBG_VALUE $noreg. Additionally, some normal instructions are
1196 // quickly deleted, leaving dangling references to vregs with no def.
1197 if (Reg
== 0 || !RegInfo
->hasOneDef(Reg
)) {
1198 MakeUndefDbgValue(MI
);
1202 assert(Reg
.isVirtual());
1203 MachineInstr
&DefMI
= *RegInfo
->def_instr_begin(Reg
);
1205 // If we've found a copy-like instruction, follow it back to the
1206 // instruction that defines the source value, see salvageCopySSA docs
1207 // for why this is important.
1208 if (DefMI
.isCopyLike() || TII
->isCopyInstr(DefMI
)) {
1209 auto Result
= salvageCopySSA(DefMI
);
1210 MI
.getOperand(0).ChangeToImmediate(Result
.first
);
1211 MI
.getOperand(1).setImm(Result
.second
);
1213 // Otherwise, identify the operand number that the VReg refers to.
1214 unsigned OperandIdx
= 0;
1215 for (const auto &MO
: DefMI
.operands()) {
1216 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == Reg
)
1220 assert(OperandIdx
< DefMI
.getNumOperands());
1222 // Morph this instr ref to point at the given instruction and operand.
1223 unsigned ID
= DefMI
.getDebugInstrNum();
1224 MI
.getOperand(0).ChangeToImmediate(ID
);
1225 MI
.getOperand(1).setImm(OperandIdx
);
1231 bool MachineFunction::useDebugInstrRef() const {
1232 // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1233 // have optimized code inlined into this unoptimized code, however with
1234 // fewer and less aggressive optimizations happening, coverage and accuracy
1235 // should not suffer.
1236 if (getTarget().getOptLevel() == CodeGenOpt::None
)
1239 // Don't use instr-ref if this function is marked optnone.
1240 if (F
.hasFnAttribute(Attribute::OptimizeNone
))
1243 if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
1249 // Use one million as a high / reserved number.
1250 const unsigned MachineFunction::DebugOperandMemNumber
= 1000000;
1254 //===----------------------------------------------------------------------===//
1255 // MachineJumpTableInfo implementation
1256 //===----------------------------------------------------------------------===//
1258 /// Return the size of each entry in the jump table.
1259 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout
&TD
) const {
1260 // The size of a jump table entry is 4 bytes unless the entry is just the
1261 // address of a block, in which case it is the pointer size.
1262 switch (getEntryKind()) {
1263 case MachineJumpTableInfo::EK_BlockAddress
:
1264 return TD
.getPointerSize();
1265 case MachineJumpTableInfo::EK_GPRel64BlockAddress
:
1267 case MachineJumpTableInfo::EK_GPRel32BlockAddress
:
1268 case MachineJumpTableInfo::EK_LabelDifference32
:
1269 case MachineJumpTableInfo::EK_Custom32
:
1271 case MachineJumpTableInfo::EK_Inline
:
1274 llvm_unreachable("Unknown jump table encoding!");
1277 /// Return the alignment of each entry in the jump table.
1278 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout
&TD
) const {
1279 // The alignment of a jump table entry is the alignment of int32 unless the
1280 // entry is just the address of a block, in which case it is the pointer
1282 switch (getEntryKind()) {
1283 case MachineJumpTableInfo::EK_BlockAddress
:
1284 return TD
.getPointerABIAlignment(0).value();
1285 case MachineJumpTableInfo::EK_GPRel64BlockAddress
:
1286 return TD
.getABIIntegerTypeAlignment(64).value();
1287 case MachineJumpTableInfo::EK_GPRel32BlockAddress
:
1288 case MachineJumpTableInfo::EK_LabelDifference32
:
1289 case MachineJumpTableInfo::EK_Custom32
:
1290 return TD
.getABIIntegerTypeAlignment(32).value();
1291 case MachineJumpTableInfo::EK_Inline
:
1294 llvm_unreachable("Unknown jump table encoding!");
1297 /// Create a new jump table entry in the jump table info.
1298 unsigned MachineJumpTableInfo::createJumpTableIndex(
1299 const std::vector
<MachineBasicBlock
*> &DestBBs
) {
1300 assert(!DestBBs
.empty() && "Cannot create an empty jump table!");
1301 JumpTables
.push_back(MachineJumpTableEntry(DestBBs
));
1302 return JumpTables
.size()-1;
1305 /// If Old is the target of any jump tables, update the jump tables to branch
1307 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock
*Old
,
1308 MachineBasicBlock
*New
) {
1309 assert(Old
!= New
&& "Not making a change?");
1310 bool MadeChange
= false;
1311 for (size_t i
= 0, e
= JumpTables
.size(); i
!= e
; ++i
)
1312 ReplaceMBBInJumpTable(i
, Old
, New
);
1316 /// If MBB is present in any jump tables, remove it.
1317 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock
*MBB
) {
1318 bool MadeChange
= false;
1319 for (MachineJumpTableEntry
&JTE
: JumpTables
) {
1320 auto removeBeginItr
= std::remove(JTE
.MBBs
.begin(), JTE
.MBBs
.end(), MBB
);
1321 MadeChange
|= (removeBeginItr
!= JTE
.MBBs
.end());
1322 JTE
.MBBs
.erase(removeBeginItr
, JTE
.MBBs
.end());
1327 /// If Old is a target of the jump tables, update the jump table to branch to
1329 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx
,
1330 MachineBasicBlock
*Old
,
1331 MachineBasicBlock
*New
) {
1332 assert(Old
!= New
&& "Not making a change?");
1333 bool MadeChange
= false;
1334 MachineJumpTableEntry
&JTE
= JumpTables
[Idx
];
1335 for (MachineBasicBlock
*&MBB
: JTE
.MBBs
)
1343 void MachineJumpTableInfo::print(raw_ostream
&OS
) const {
1344 if (JumpTables
.empty()) return;
1346 OS
<< "Jump Tables:\n";
1348 for (unsigned i
= 0, e
= JumpTables
.size(); i
!= e
; ++i
) {
1349 OS
<< printJumpTableEntryReference(i
) << ':';
1350 for (const MachineBasicBlock
*MBB
: JumpTables
[i
].MBBs
)
1351 OS
<< ' ' << printMBBReference(*MBB
);
1359 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1360 LLVM_DUMP_METHOD
void MachineJumpTableInfo::dump() const { print(dbgs()); }
1363 Printable
llvm::printJumpTableEntryReference(unsigned Idx
) {
1364 return Printable([Idx
](raw_ostream
&OS
) { OS
<< "%jump-table." << Idx
; });
1367 //===----------------------------------------------------------------------===//
1368 // MachineConstantPool implementation
1369 //===----------------------------------------------------------------------===//
1371 void MachineConstantPoolValue::anchor() {}
1373 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout
&DL
) const {
1374 return DL
.getTypeAllocSize(Ty
);
1377 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout
&DL
) const {
1378 if (isMachineConstantPoolEntry())
1379 return Val
.MachineCPVal
->getSizeInBytes(DL
);
1380 return DL
.getTypeAllocSize(Val
.ConstVal
->getType());
1383 bool MachineConstantPoolEntry::needsRelocation() const {
1384 if (isMachineConstantPoolEntry())
1386 return Val
.ConstVal
->needsDynamicRelocation();
1390 MachineConstantPoolEntry::getSectionKind(const DataLayout
*DL
) const {
1391 if (needsRelocation())
1392 return SectionKind::getReadOnlyWithRel();
1393 switch (getSizeInBytes(*DL
)) {
1395 return SectionKind::getMergeableConst4();
1397 return SectionKind::getMergeableConst8();
1399 return SectionKind::getMergeableConst16();
1401 return SectionKind::getMergeableConst32();
1403 return SectionKind::getReadOnly();
1407 MachineConstantPool::~MachineConstantPool() {
1408 // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1409 // so keep track of which we've deleted to avoid double deletions.
1410 DenseSet
<MachineConstantPoolValue
*> Deleted
;
1411 for (const MachineConstantPoolEntry
&C
: Constants
)
1412 if (C
.isMachineConstantPoolEntry()) {
1413 Deleted
.insert(C
.Val
.MachineCPVal
);
1414 delete C
.Val
.MachineCPVal
;
1416 for (MachineConstantPoolValue
*CPV
: MachineCPVsSharingEntries
) {
1417 if (Deleted
.count(CPV
) == 0)
1422 /// Test whether the given two constants can be allocated the same constant pool
1424 static bool CanShareConstantPoolEntry(const Constant
*A
, const Constant
*B
,
1425 const DataLayout
&DL
) {
1426 // Handle the trivial case quickly.
1427 if (A
== B
) return true;
1429 // If they have the same type but weren't the same constant, quickly
1431 if (A
->getType() == B
->getType()) return false;
1433 // We can't handle structs or arrays.
1434 if (isa
<StructType
>(A
->getType()) || isa
<ArrayType
>(A
->getType()) ||
1435 isa
<StructType
>(B
->getType()) || isa
<ArrayType
>(B
->getType()))
1438 // For now, only support constants with the same size.
1439 uint64_t StoreSize
= DL
.getTypeStoreSize(A
->getType());
1440 if (StoreSize
!= DL
.getTypeStoreSize(B
->getType()) || StoreSize
> 128)
1443 Type
*IntTy
= IntegerType::get(A
->getContext(), StoreSize
*8);
1445 // Try constant folding a bitcast of both instructions to an integer. If we
1446 // get two identical ConstantInt's, then we are good to share them. We use
1447 // the constant folding APIs to do this so that we get the benefit of
1449 if (isa
<PointerType
>(A
->getType()))
1450 A
= ConstantFoldCastOperand(Instruction::PtrToInt
,
1451 const_cast<Constant
*>(A
), IntTy
, DL
);
1452 else if (A
->getType() != IntTy
)
1453 A
= ConstantFoldCastOperand(Instruction::BitCast
, const_cast<Constant
*>(A
),
1455 if (isa
<PointerType
>(B
->getType()))
1456 B
= ConstantFoldCastOperand(Instruction::PtrToInt
,
1457 const_cast<Constant
*>(B
), IntTy
, DL
);
1458 else if (B
->getType() != IntTy
)
1459 B
= ConstantFoldCastOperand(Instruction::BitCast
, const_cast<Constant
*>(B
),
1465 /// Create a new entry in the constant pool or return an existing one.
1466 /// User must specify the log2 of the minimum required alignment for the object.
1467 unsigned MachineConstantPool::getConstantPoolIndex(const Constant
*C
,
1469 if (Alignment
> PoolAlignment
) PoolAlignment
= Alignment
;
1471 // Check to see if we already have this constant.
1473 // FIXME, this could be made much more efficient for large constant pools.
1474 for (unsigned i
= 0, e
= Constants
.size(); i
!= e
; ++i
)
1475 if (!Constants
[i
].isMachineConstantPoolEntry() &&
1476 CanShareConstantPoolEntry(Constants
[i
].Val
.ConstVal
, C
, DL
)) {
1477 if (Constants
[i
].getAlign() < Alignment
)
1478 Constants
[i
].Alignment
= Alignment
;
1482 Constants
.push_back(MachineConstantPoolEntry(C
, Alignment
));
1483 return Constants
.size()-1;
1486 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue
*V
,
1488 if (Alignment
> PoolAlignment
) PoolAlignment
= Alignment
;
1490 // Check to see if we already have this constant.
1492 // FIXME, this could be made much more efficient for large constant pools.
1493 int Idx
= V
->getExistingMachineCPValue(this, Alignment
);
1495 MachineCPVsSharingEntries
.insert(V
);
1496 return (unsigned)Idx
;
1499 Constants
.push_back(MachineConstantPoolEntry(V
, Alignment
));
1500 return Constants
.size()-1;
1503 void MachineConstantPool::print(raw_ostream
&OS
) const {
1504 if (Constants
.empty()) return;
1506 OS
<< "Constant Pool:\n";
1507 for (unsigned i
= 0, e
= Constants
.size(); i
!= e
; ++i
) {
1508 OS
<< " cp#" << i
<< ": ";
1509 if (Constants
[i
].isMachineConstantPoolEntry())
1510 Constants
[i
].Val
.MachineCPVal
->print(OS
);
1512 Constants
[i
].Val
.ConstVal
->printAsOperand(OS
, /*PrintType=*/false);
1513 OS
<< ", align=" << Constants
[i
].getAlign().value();
1518 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1519 LLVM_DUMP_METHOD
void MachineConstantPool::dump() const { print(dbgs()); }