[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / CodeGen / MachineSink.cpp
blob0dbbc218e94646152de7cd069d21ae5ebf277c44
1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/PointerIntPair.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/SparseBitVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
29 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineLoopInfo.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachinePostDominators.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/RegisterClassInfo.h"
39 #include "llvm/CodeGen/RegisterPressure.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSubtargetInfo.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/BranchProbability.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <cstdint>
56 #include <map>
57 #include <utility>
58 #include <vector>
60 using namespace llvm;
62 #define DEBUG_TYPE "machine-sink"
64 static cl::opt<bool>
65 SplitEdges("machine-sink-split",
66 cl::desc("Split critical edges during machine sinking"),
67 cl::init(true), cl::Hidden);
69 static cl::opt<bool>
70 UseBlockFreqInfo("machine-sink-bfi",
71 cl::desc("Use block frequency info to find successors to sink"),
72 cl::init(true), cl::Hidden);
74 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
75 "machine-sink-split-probability-threshold",
76 cl::desc(
77 "Percentage threshold for splitting single-instruction critical edge. "
78 "If the branch threshold is higher than this threshold, we allow "
79 "speculative execution of up to 1 instruction to avoid branching to "
80 "splitted critical edge"),
81 cl::init(40), cl::Hidden);
83 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold(
84 "machine-sink-load-instrs-threshold",
85 cl::desc("Do not try to find alias store for a load if there is a in-path "
86 "block whose instruction number is higher than this threshold."),
87 cl::init(2000), cl::Hidden);
89 static cl::opt<unsigned> SinkLoadBlocksThreshold(
90 "machine-sink-load-blocks-threshold",
91 cl::desc("Do not try to find alias store for a load if the block number in "
92 "the straight line is higher than this threshold."),
93 cl::init(20), cl::Hidden);
95 static cl::opt<bool>
96 SinkInstsIntoLoop("sink-insts-to-avoid-spills",
97 cl::desc("Sink instructions into loops to avoid "
98 "register spills"),
99 cl::init(false), cl::Hidden);
101 static cl::opt<unsigned> SinkIntoLoopLimit(
102 "machine-sink-loop-limit",
103 cl::desc("The maximum number of instructions considered for loop sinking."),
104 cl::init(50), cl::Hidden);
106 STATISTIC(NumSunk, "Number of machine instructions sunk");
107 STATISTIC(NumLoopSunk, "Number of machine instructions sunk into a loop");
108 STATISTIC(NumSplit, "Number of critical edges split");
109 STATISTIC(NumCoalesces, "Number of copies coalesced");
110 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
112 namespace {
114 class MachineSinking : public MachineFunctionPass {
115 const TargetInstrInfo *TII;
116 const TargetRegisterInfo *TRI;
117 MachineRegisterInfo *MRI; // Machine register information
118 MachineDominatorTree *DT; // Machine dominator tree
119 MachinePostDominatorTree *PDT; // Machine post dominator tree
120 MachineLoopInfo *LI;
121 MachineBlockFrequencyInfo *MBFI;
122 const MachineBranchProbabilityInfo *MBPI;
123 AliasAnalysis *AA;
124 RegisterClassInfo RegClassInfo;
126 // Remember which edges have been considered for breaking.
127 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
128 CEBCandidates;
129 // Remember which edges we are about to split.
130 // This is different from CEBCandidates since those edges
131 // will be split.
132 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
134 DenseSet<Register> RegsToClearKillFlags;
136 using AllSuccsCache =
137 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
139 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
140 /// post-dominated by another DBG_VALUE of the same variable location.
141 /// This is necessary to detect sequences such as:
142 /// %0 = someinst
143 /// DBG_VALUE %0, !123, !DIExpression()
144 /// %1 = anotherinst
145 /// DBG_VALUE %1, !123, !DIExpression()
146 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
147 /// would re-order assignments.
148 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>;
150 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
151 /// debug instructions to sink.
152 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers;
154 /// Record of debug variables that have had their locations set in the
155 /// current block.
156 DenseSet<DebugVariable> SeenDbgVars;
158 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool>
159 HasStoreCache;
160 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>,
161 std::vector<MachineInstr *>>
162 StoreInstrCache;
164 /// Cached BB's register pressure.
165 std::map<MachineBasicBlock *, std::vector<unsigned>> CachedRegisterPressure;
167 public:
168 static char ID; // Pass identification
170 MachineSinking() : MachineFunctionPass(ID) {
171 initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
174 bool runOnMachineFunction(MachineFunction &MF) override;
176 void getAnalysisUsage(AnalysisUsage &AU) const override {
177 MachineFunctionPass::getAnalysisUsage(AU);
178 AU.addRequired<AAResultsWrapperPass>();
179 AU.addRequired<MachineDominatorTree>();
180 AU.addRequired<MachinePostDominatorTree>();
181 AU.addRequired<MachineLoopInfo>();
182 AU.addRequired<MachineBranchProbabilityInfo>();
183 AU.addPreserved<MachineLoopInfo>();
184 if (UseBlockFreqInfo)
185 AU.addRequired<MachineBlockFrequencyInfo>();
188 void releaseMemory() override {
189 CEBCandidates.clear();
192 private:
193 bool ProcessBlock(MachineBasicBlock &MBB);
194 void ProcessDbgInst(MachineInstr &MI);
195 bool isWorthBreakingCriticalEdge(MachineInstr &MI,
196 MachineBasicBlock *From,
197 MachineBasicBlock *To);
199 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To,
200 MachineInstr &MI);
202 /// Postpone the splitting of the given critical
203 /// edge (\p From, \p To).
205 /// We do not split the edges on the fly. Indeed, this invalidates
206 /// the dominance information and thus triggers a lot of updates
207 /// of that information underneath.
208 /// Instead, we postpone all the splits after each iteration of
209 /// the main loop. That way, the information is at least valid
210 /// for the lifetime of an iteration.
212 /// \return True if the edge is marked as toSplit, false otherwise.
213 /// False can be returned if, for instance, this is not profitable.
214 bool PostponeSplitCriticalEdge(MachineInstr &MI,
215 MachineBasicBlock *From,
216 MachineBasicBlock *To,
217 bool BreakPHIEdge);
218 bool SinkInstruction(MachineInstr &MI, bool &SawStore,
219 AllSuccsCache &AllSuccessors);
221 /// If we sink a COPY inst, some debug users of it's destination may no
222 /// longer be dominated by the COPY, and will eventually be dropped.
223 /// This is easily rectified by forwarding the non-dominated debug uses
224 /// to the copy source.
225 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &,
226 MachineBasicBlock *TargetBlock);
227 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB,
228 MachineBasicBlock *DefMBB, bool &BreakPHIEdge,
229 bool &LocalUse) const;
230 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
231 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
233 void FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB,
234 SmallVectorImpl<MachineInstr *> &Candidates);
235 bool SinkIntoLoop(MachineLoop *L, MachineInstr &I);
237 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI,
238 MachineBasicBlock *MBB,
239 MachineBasicBlock *SuccToSinkTo,
240 AllSuccsCache &AllSuccessors);
242 bool PerformTrivialForwardCoalescing(MachineInstr &MI,
243 MachineBasicBlock *MBB);
245 SmallVector<MachineBasicBlock *, 4> &
246 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
247 AllSuccsCache &AllSuccessors) const;
249 std::vector<unsigned> &getBBRegisterPressure(MachineBasicBlock &MBB);
252 } // end anonymous namespace
254 char MachineSinking::ID = 0;
256 char &llvm::MachineSinkingID = MachineSinking::ID;
258 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
259 "Machine code sinking", false, false)
260 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
261 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
262 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
263 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
264 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
265 "Machine code sinking", false, false)
267 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
268 MachineBasicBlock *MBB) {
269 if (!MI.isCopy())
270 return false;
272 Register SrcReg = MI.getOperand(1).getReg();
273 Register DstReg = MI.getOperand(0).getReg();
274 if (!Register::isVirtualRegister(SrcReg) ||
275 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
276 return false;
278 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
279 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
280 if (SRC != DRC)
281 return false;
283 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
284 if (DefMI->isCopyLike())
285 return false;
286 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
287 LLVM_DEBUG(dbgs() << "*** to: " << MI);
288 MRI->replaceRegWith(DstReg, SrcReg);
289 MI.eraseFromParent();
291 // Conservatively, clear any kill flags, since it's possible that they are no
292 // longer correct.
293 MRI->clearKillFlags(SrcReg);
295 ++NumCoalesces;
296 return true;
299 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
300 /// occur in blocks dominated by the specified block. If any use is in the
301 /// definition block, then return false since it is never legal to move def
302 /// after uses.
303 bool MachineSinking::AllUsesDominatedByBlock(Register Reg,
304 MachineBasicBlock *MBB,
305 MachineBasicBlock *DefMBB,
306 bool &BreakPHIEdge,
307 bool &LocalUse) const {
308 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
310 // Ignore debug uses because debug info doesn't affect the code.
311 if (MRI->use_nodbg_empty(Reg))
312 return true;
314 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
315 // into and they are all PHI nodes. In this case, machine-sink must break
316 // the critical edge first. e.g.
318 // %bb.1:
319 // Predecessors according to CFG: %bb.0
320 // ...
321 // %def = DEC64_32r %x, implicit-def dead %eflags
322 // ...
323 // JE_4 <%bb.37>, implicit %eflags
324 // Successors according to CFG: %bb.37 %bb.2
326 // %bb.2:
327 // %p = PHI %y, %bb.0, %def, %bb.1
328 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) {
329 MachineInstr *UseInst = MO.getParent();
330 unsigned OpNo = UseInst->getOperandNo(&MO);
331 MachineBasicBlock *UseBlock = UseInst->getParent();
332 return UseBlock == MBB && UseInst->isPHI() &&
333 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB;
334 })) {
335 BreakPHIEdge = true;
336 return true;
339 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
340 // Determine the block of the use.
341 MachineInstr *UseInst = MO.getParent();
342 unsigned OpNo = &MO - &UseInst->getOperand(0);
343 MachineBasicBlock *UseBlock = UseInst->getParent();
344 if (UseInst->isPHI()) {
345 // PHI nodes use the operand in the predecessor block, not the block with
346 // the PHI.
347 UseBlock = UseInst->getOperand(OpNo+1).getMBB();
348 } else if (UseBlock == DefMBB) {
349 LocalUse = true;
350 return false;
353 // Check that it dominates.
354 if (!DT->dominates(MBB, UseBlock))
355 return false;
358 return true;
361 /// Return true if this machine instruction loads from global offset table or
362 /// constant pool.
363 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
364 assert(MI.mayLoad() && "Expected MI that loads!");
366 // If we lost memory operands, conservatively assume that the instruction
367 // reads from everything..
368 if (MI.memoperands_empty())
369 return true;
371 for (MachineMemOperand *MemOp : MI.memoperands())
372 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
373 if (PSV->isGOT() || PSV->isConstantPool())
374 return true;
376 return false;
379 void MachineSinking::FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB,
380 SmallVectorImpl<MachineInstr *> &Candidates) {
381 for (auto &MI : *BB) {
382 LLVM_DEBUG(dbgs() << "LoopSink: Analysing candidate: " << MI);
383 if (!TII->shouldSink(MI)) {
384 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not a candidate for this "
385 "target\n");
386 continue;
388 if (!L->isLoopInvariant(MI)) {
389 LLVM_DEBUG(dbgs() << "LoopSink: Instruction is not loop invariant\n");
390 continue;
392 bool DontMoveAcrossStore = true;
393 if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) {
394 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not safe to move.\n");
395 continue;
397 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) {
398 LLVM_DEBUG(dbgs() << "LoopSink: Dont sink GOT or constant pool loads\n");
399 continue;
401 if (MI.isConvergent())
402 continue;
404 const MachineOperand &MO = MI.getOperand(0);
405 if (!MO.isReg() || !MO.getReg() || !MO.isDef())
406 continue;
407 if (!MRI->hasOneDef(MO.getReg()))
408 continue;
410 LLVM_DEBUG(dbgs() << "LoopSink: Instruction added as candidate.\n");
411 Candidates.push_back(&MI);
415 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
416 if (skipFunction(MF.getFunction()))
417 return false;
419 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
421 TII = MF.getSubtarget().getInstrInfo();
422 TRI = MF.getSubtarget().getRegisterInfo();
423 MRI = &MF.getRegInfo();
424 DT = &getAnalysis<MachineDominatorTree>();
425 PDT = &getAnalysis<MachinePostDominatorTree>();
426 LI = &getAnalysis<MachineLoopInfo>();
427 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
428 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
429 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
430 RegClassInfo.runOnMachineFunction(MF);
432 bool EverMadeChange = false;
434 while (true) {
435 bool MadeChange = false;
437 // Process all basic blocks.
438 CEBCandidates.clear();
439 ToSplit.clear();
440 for (auto &MBB: MF)
441 MadeChange |= ProcessBlock(MBB);
443 // If we have anything we marked as toSplit, split it now.
444 for (auto &Pair : ToSplit) {
445 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
446 if (NewSucc != nullptr) {
447 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
448 << printMBBReference(*Pair.first) << " -- "
449 << printMBBReference(*NewSucc) << " -- "
450 << printMBBReference(*Pair.second) << '\n');
451 if (MBFI)
452 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI);
454 MadeChange = true;
455 ++NumSplit;
456 } else
457 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
459 // If this iteration over the code changed anything, keep iterating.
460 if (!MadeChange) break;
461 EverMadeChange = true;
464 if (SinkInstsIntoLoop) {
465 SmallVector<MachineLoop *, 8> Loops(LI->begin(), LI->end());
466 for (auto *L : Loops) {
467 MachineBasicBlock *Preheader = LI->findLoopPreheader(L);
468 if (!Preheader) {
469 LLVM_DEBUG(dbgs() << "LoopSink: Can't find preheader\n");
470 continue;
472 SmallVector<MachineInstr *, 8> Candidates;
473 FindLoopSinkCandidates(L, Preheader, Candidates);
475 // Walk the candidates in reverse order so that we start with the use
476 // of a def-use chain, if there is any.
477 // TODO: Sort the candidates using a cost-model.
478 unsigned i = 0;
479 for (MachineInstr *I : llvm::reverse(Candidates)) {
480 if (i++ == SinkIntoLoopLimit) {
481 LLVM_DEBUG(dbgs() << "LoopSink: Limit reached of instructions to "
482 "be analysed.");
483 break;
486 if (!SinkIntoLoop(L, *I))
487 break;
488 EverMadeChange = true;
489 ++NumLoopSunk;
494 HasStoreCache.clear();
495 StoreInstrCache.clear();
497 // Now clear any kill flags for recorded registers.
498 for (auto I : RegsToClearKillFlags)
499 MRI->clearKillFlags(I);
500 RegsToClearKillFlags.clear();
502 return EverMadeChange;
505 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
506 // Can't sink anything out of a block that has less than two successors.
507 if (MBB.succ_size() <= 1 || MBB.empty()) return false;
509 // Don't bother sinking code out of unreachable blocks. In addition to being
510 // unprofitable, it can also lead to infinite looping, because in an
511 // unreachable loop there may be nowhere to stop.
512 if (!DT->isReachableFromEntry(&MBB)) return false;
514 bool MadeChange = false;
516 // Cache all successors, sorted by frequency info and loop depth.
517 AllSuccsCache AllSuccessors;
519 // Walk the basic block bottom-up. Remember if we saw a store.
520 MachineBasicBlock::iterator I = MBB.end();
521 --I;
522 bool ProcessedBegin, SawStore = false;
523 do {
524 MachineInstr &MI = *I; // The instruction to sink.
526 // Predecrement I (if it's not begin) so that it isn't invalidated by
527 // sinking.
528 ProcessedBegin = I == MBB.begin();
529 if (!ProcessedBegin)
530 --I;
532 if (MI.isDebugOrPseudoInstr()) {
533 if (MI.isDebugValue())
534 ProcessDbgInst(MI);
535 continue;
538 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
539 if (Joined) {
540 MadeChange = true;
541 continue;
544 if (SinkInstruction(MI, SawStore, AllSuccessors)) {
545 ++NumSunk;
546 MadeChange = true;
549 // If we just processed the first instruction in the block, we're done.
550 } while (!ProcessedBegin);
552 SeenDbgUsers.clear();
553 SeenDbgVars.clear();
554 // recalculate the bb register pressure after sinking one BB.
555 CachedRegisterPressure.clear();
557 return MadeChange;
560 void MachineSinking::ProcessDbgInst(MachineInstr &MI) {
561 // When we see DBG_VALUEs for registers, record any vreg it reads, so that
562 // we know what to sink if the vreg def sinks.
563 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing");
565 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
566 MI.getDebugLoc()->getInlinedAt());
567 bool SeenBefore = SeenDbgVars.contains(Var);
569 for (MachineOperand &MO : MI.debug_operands()) {
570 if (MO.isReg() && MO.getReg().isVirtual())
571 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore));
574 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
575 SeenDbgVars.insert(Var);
578 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
579 MachineBasicBlock *From,
580 MachineBasicBlock *To) {
581 // FIXME: Need much better heuristics.
583 // If the pass has already considered breaking this edge (during this pass
584 // through the function), then let's go ahead and break it. This means
585 // sinking multiple "cheap" instructions into the same block.
586 if (!CEBCandidates.insert(std::make_pair(From, To)).second)
587 return true;
589 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
590 return true;
592 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
593 BranchProbability(SplitEdgeProbabilityThreshold, 100))
594 return true;
596 // MI is cheap, we probably don't want to break the critical edge for it.
597 // However, if this would allow some definitions of its source operands
598 // to be sunk then it's probably worth it.
599 for (const MachineOperand &MO : MI.operands()) {
600 if (!MO.isReg() || !MO.isUse())
601 continue;
602 Register Reg = MO.getReg();
603 if (Reg == 0)
604 continue;
606 // We don't move live definitions of physical registers,
607 // so sinking their uses won't enable any opportunities.
608 if (Register::isPhysicalRegister(Reg))
609 continue;
611 // If this instruction is the only user of a virtual register,
612 // check if breaking the edge will enable sinking
613 // both this instruction and the defining instruction.
614 if (MRI->hasOneNonDBGUse(Reg)) {
615 // If the definition resides in same MBB,
616 // claim it's likely we can sink these together.
617 // If definition resides elsewhere, we aren't
618 // blocking it from being sunk so don't break the edge.
619 MachineInstr *DefMI = MRI->getVRegDef(Reg);
620 if (DefMI->getParent() == MI.getParent())
621 return true;
625 return false;
628 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
629 MachineBasicBlock *FromBB,
630 MachineBasicBlock *ToBB,
631 bool BreakPHIEdge) {
632 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
633 return false;
635 // Avoid breaking back edge. From == To means backedge for single BB loop.
636 if (!SplitEdges || FromBB == ToBB)
637 return false;
639 // Check for backedges of more "complex" loops.
640 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
641 LI->isLoopHeader(ToBB))
642 return false;
644 // It's not always legal to break critical edges and sink the computation
645 // to the edge.
647 // %bb.1:
648 // v1024
649 // Beq %bb.3
650 // <fallthrough>
651 // %bb.2:
652 // ... no uses of v1024
653 // <fallthrough>
654 // %bb.3:
655 // ...
656 // = v1024
658 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
660 // %bb.1:
661 // ...
662 // Bne %bb.2
663 // %bb.4:
664 // v1024 =
665 // B %bb.3
666 // %bb.2:
667 // ... no uses of v1024
668 // <fallthrough>
669 // %bb.3:
670 // ...
671 // = v1024
673 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
674 // flow. We need to ensure the new basic block where the computation is
675 // sunk to dominates all the uses.
676 // It's only legal to break critical edge and sink the computation to the
677 // new block if all the predecessors of "To", except for "From", are
678 // not dominated by "From". Given SSA property, this means these
679 // predecessors are dominated by "To".
681 // There is no need to do this check if all the uses are PHI nodes. PHI
682 // sources are only defined on the specific predecessor edges.
683 if (!BreakPHIEdge) {
684 for (MachineBasicBlock *Pred : ToBB->predecessors())
685 if (Pred != FromBB && !DT->dominates(ToBB, Pred))
686 return false;
689 ToSplit.insert(std::make_pair(FromBB, ToBB));
691 return true;
694 std::vector<unsigned> &
695 MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) {
696 // Currently to save compiling time, MBB's register pressure will not change
697 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's
698 // register pressure is changed after sinking any instructions into it.
699 // FIXME: need a accurate and cheap register pressure estiminate model here.
700 auto RP = CachedRegisterPressure.find(&MBB);
701 if (RP != CachedRegisterPressure.end())
702 return RP->second;
704 RegionPressure Pressure;
705 RegPressureTracker RPTracker(Pressure);
707 // Initialize the register pressure tracker.
708 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(),
709 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
711 for (MachineBasicBlock::iterator MII = MBB.instr_end(),
712 MIE = MBB.instr_begin();
713 MII != MIE; --MII) {
714 MachineInstr &MI = *std::prev(MII);
715 if (MI.isDebugInstr() || MI.isPseudoProbe())
716 continue;
717 RegisterOperands RegOpers;
718 RegOpers.collect(MI, *TRI, *MRI, false, false);
719 RPTracker.recedeSkipDebugValues();
720 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
721 RPTracker.recede(RegOpers);
724 RPTracker.closeRegion();
725 auto It = CachedRegisterPressure.insert(
726 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure));
727 return It.first->second;
730 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
731 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI,
732 MachineBasicBlock *MBB,
733 MachineBasicBlock *SuccToSinkTo,
734 AllSuccsCache &AllSuccessors) {
735 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
737 if (MBB == SuccToSinkTo)
738 return false;
740 // It is profitable if SuccToSinkTo does not post dominate current block.
741 if (!PDT->dominates(SuccToSinkTo, MBB))
742 return true;
744 // It is profitable to sink an instruction from a deeper loop to a shallower
745 // loop, even if the latter post-dominates the former (PR21115).
746 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
747 return true;
749 // Check if only use in post dominated block is PHI instruction.
750 bool NonPHIUse = false;
751 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
752 MachineBasicBlock *UseBlock = UseInst.getParent();
753 if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
754 NonPHIUse = true;
756 if (!NonPHIUse)
757 return true;
759 // If SuccToSinkTo post dominates then also it may be profitable if MI
760 // can further profitably sinked into another block in next round.
761 bool BreakPHIEdge = false;
762 // FIXME - If finding successor is compile time expensive then cache results.
763 if (MachineBasicBlock *MBB2 =
764 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
765 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
767 MachineLoop *ML = LI->getLoopFor(MBB);
769 // If the instruction is not inside a loop, it is not profitable to sink MI to
770 // a post dominate block SuccToSinkTo.
771 if (!ML)
772 return false;
774 auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) {
775 unsigned Weight = TRI->getRegClassWeight(RC).RegWeight;
776 const int *PS = TRI->getRegClassPressureSets(RC);
777 // Get register pressure for block SuccToSinkTo.
778 std::vector<unsigned> BBRegisterPressure =
779 getBBRegisterPressure(*SuccToSinkTo);
780 for (; *PS != -1; PS++)
781 // check if any register pressure set exceeds limit in block SuccToSinkTo
782 // after sinking.
783 if (Weight + BBRegisterPressure[*PS] >=
784 TRI->getRegPressureSetLimit(*MBB->getParent(), *PS))
785 return true;
786 return false;
789 // If this instruction is inside a loop and sinking this instruction can make
790 // more registers live range shorten, it is still prifitable.
791 for (const MachineOperand &MO : MI.operands()) {
792 // Ignore non-register operands.
793 if (!MO.isReg())
794 continue;
795 Register Reg = MO.getReg();
796 if (Reg == 0)
797 continue;
799 if (Register::isPhysicalRegister(Reg)) {
800 if (MO.isUse() &&
801 (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO)))
802 continue;
804 // Don't handle non-constant and non-ignorable physical register.
805 return false;
808 // Users for the defs are all dominated by SuccToSinkTo.
809 if (MO.isDef()) {
810 // This def register's live range is shortened after sinking.
811 bool LocalUse = false;
812 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge,
813 LocalUse))
814 return false;
815 } else {
816 MachineInstr *DefMI = MRI->getVRegDef(Reg);
817 // DefMI is defined outside of loop. There should be no live range
818 // impact for this operand. Defination outside of loop means:
819 // 1: defination is outside of loop.
820 // 2: defination is in this loop, but it is a PHI in the loop header.
821 if (LI->getLoopFor(DefMI->getParent()) != ML ||
822 (DefMI->isPHI() && LI->isLoopHeader(DefMI->getParent())))
823 continue;
824 // The DefMI is defined inside the loop.
825 // If sinking this operand makes some register pressure set exceed limit,
826 // it is not profitable.
827 if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) {
828 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable.");
829 return false;
834 // If MI is in loop and all its operands are alive across the whole loop or if
835 // no operand sinking make register pressure set exceed limit, it is
836 // profitable to sink MI.
837 return true;
840 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
841 /// computing it if it was not already cached.
842 SmallVector<MachineBasicBlock *, 4> &
843 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
844 AllSuccsCache &AllSuccessors) const {
845 // Do we have the sorted successors in cache ?
846 auto Succs = AllSuccessors.find(MBB);
847 if (Succs != AllSuccessors.end())
848 return Succs->second;
850 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors());
852 // Handle cases where sinking can happen but where the sink point isn't a
853 // successor. For example:
855 // x = computation
856 // if () {} else {}
857 // use x
859 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) {
860 // DomTree children of MBB that have MBB as immediate dominator are added.
861 if (DTChild->getIDom()->getBlock() == MI.getParent() &&
862 // Skip MBBs already added to the AllSuccs vector above.
863 !MBB->isSuccessor(DTChild->getBlock()))
864 AllSuccs.push_back(DTChild->getBlock());
867 // Sort Successors according to their loop depth or block frequency info.
868 llvm::stable_sort(
869 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
870 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
871 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
872 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
873 return HasBlockFreq ? LHSFreq < RHSFreq
874 : LI->getLoopDepth(L) < LI->getLoopDepth(R);
877 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
879 return it.first->second;
882 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
883 MachineBasicBlock *
884 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
885 bool &BreakPHIEdge,
886 AllSuccsCache &AllSuccessors) {
887 assert (MBB && "Invalid MachineBasicBlock!");
889 // Loop over all the operands of the specified instruction. If there is
890 // anything we can't handle, bail out.
892 // SuccToSinkTo - This is the successor to sink this instruction to, once we
893 // decide.
894 MachineBasicBlock *SuccToSinkTo = nullptr;
895 for (const MachineOperand &MO : MI.operands()) {
896 if (!MO.isReg()) continue; // Ignore non-register operands.
898 Register Reg = MO.getReg();
899 if (Reg == 0) continue;
901 if (Register::isPhysicalRegister(Reg)) {
902 if (MO.isUse()) {
903 // If the physreg has no defs anywhere, it's just an ambient register
904 // and we can freely move its uses. Alternatively, if it's allocatable,
905 // it could get allocated to something with a def during allocation.
906 if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO))
907 return nullptr;
908 } else if (!MO.isDead()) {
909 // A def that isn't dead. We can't move it.
910 return nullptr;
912 } else {
913 // Virtual register uses are always safe to sink.
914 if (MO.isUse()) continue;
916 // If it's not safe to move defs of the register class, then abort.
917 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
918 return nullptr;
920 // Virtual register defs can only be sunk if all their uses are in blocks
921 // dominated by one of the successors.
922 if (SuccToSinkTo) {
923 // If a previous operand picked a block to sink to, then this operand
924 // must be sinkable to the same block.
925 bool LocalUse = false;
926 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
927 BreakPHIEdge, LocalUse))
928 return nullptr;
930 continue;
933 // Otherwise, we should look at all the successors and decide which one
934 // we should sink to. If we have reliable block frequency information
935 // (frequency != 0) available, give successors with smaller frequencies
936 // higher priority, otherwise prioritize smaller loop depths.
937 for (MachineBasicBlock *SuccBlock :
938 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
939 bool LocalUse = false;
940 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
941 BreakPHIEdge, LocalUse)) {
942 SuccToSinkTo = SuccBlock;
943 break;
945 if (LocalUse)
946 // Def is used locally, it's never safe to move this def.
947 return nullptr;
950 // If we couldn't find a block to sink to, ignore this instruction.
951 if (!SuccToSinkTo)
952 return nullptr;
953 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
954 return nullptr;
958 // It is not possible to sink an instruction into its own block. This can
959 // happen with loops.
960 if (MBB == SuccToSinkTo)
961 return nullptr;
963 // It's not safe to sink instructions to EH landing pad. Control flow into
964 // landing pad is implicitly defined.
965 if (SuccToSinkTo && SuccToSinkTo->isEHPad())
966 return nullptr;
968 // It ought to be okay to sink instructions into an INLINEASM_BR target, but
969 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in
970 // the source block (which this code does not yet do). So for now, forbid
971 // doing so.
972 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget())
973 return nullptr;
975 return SuccToSinkTo;
978 /// Return true if MI is likely to be usable as a memory operation by the
979 /// implicit null check optimization.
981 /// This is a "best effort" heuristic, and should not be relied upon for
982 /// correctness. This returning true does not guarantee that the implicit null
983 /// check optimization is legal over MI, and this returning false does not
984 /// guarantee MI cannot possibly be used to do a null check.
985 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
986 const TargetInstrInfo *TII,
987 const TargetRegisterInfo *TRI) {
988 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
990 auto *MBB = MI.getParent();
991 if (MBB->pred_size() != 1)
992 return false;
994 auto *PredMBB = *MBB->pred_begin();
995 auto *PredBB = PredMBB->getBasicBlock();
997 // Frontends that don't use implicit null checks have no reason to emit
998 // branches with make.implicit metadata, and this function should always
999 // return false for them.
1000 if (!PredBB ||
1001 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
1002 return false;
1004 const MachineOperand *BaseOp;
1005 int64_t Offset;
1006 bool OffsetIsScalable;
1007 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
1008 return false;
1010 if (!BaseOp->isReg())
1011 return false;
1013 if (!(MI.mayLoad() && !MI.isPredicable()))
1014 return false;
1016 MachineBranchPredicate MBP;
1017 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
1018 return false;
1020 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
1021 (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
1022 MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
1023 MBP.LHS.getReg() == BaseOp->getReg();
1026 /// If the sunk instruction is a copy, try to forward the copy instead of
1027 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
1028 /// there's any subregister weirdness involved. Returns true if copy
1029 /// propagation occurred.
1030 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI,
1031 Register Reg) {
1032 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo();
1033 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo();
1035 // Copy DBG_VALUE operand and set the original to undef. We then check to
1036 // see whether this is something that can be copy-forwarded. If it isn't,
1037 // continue around the loop.
1039 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr;
1040 auto CopyOperands = TII.isCopyInstr(SinkInst);
1041 if (!CopyOperands)
1042 return false;
1043 SrcMO = CopyOperands->Source;
1044 DstMO = CopyOperands->Destination;
1046 // Check validity of forwarding this copy.
1047 bool PostRA = MRI.getNumVirtRegs() == 0;
1049 // Trying to forward between physical and virtual registers is too hard.
1050 if (Reg.isVirtual() != SrcMO->getReg().isVirtual())
1051 return false;
1053 // Only try virtual register copy-forwarding before regalloc, and physical
1054 // register copy-forwarding after regalloc.
1055 bool arePhysRegs = !Reg.isVirtual();
1056 if (arePhysRegs != PostRA)
1057 return false;
1059 // Pre-regalloc, only forward if all subregisters agree (or there are no
1060 // subregs at all). More analysis might recover some forwardable copies.
1061 if (!PostRA)
1062 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg))
1063 if (DbgMO.getSubReg() != SrcMO->getSubReg() ||
1064 DbgMO.getSubReg() != DstMO->getSubReg())
1065 return false;
1067 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
1068 // of this copy. Only forward the copy if the DBG_VALUE operand exactly
1069 // matches the copy destination.
1070 if (PostRA && Reg != DstMO->getReg())
1071 return false;
1073 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) {
1074 DbgMO.setReg(SrcMO->getReg());
1075 DbgMO.setSubReg(SrcMO->getSubReg());
1077 return true;
1080 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>;
1081 /// Sink an instruction and its associated debug instructions.
1082 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
1083 MachineBasicBlock::iterator InsertPos,
1084 SmallVectorImpl<MIRegs> &DbgValuesToSink) {
1086 // If we cannot find a location to use (merge with), then we erase the debug
1087 // location to prevent debug-info driven tools from potentially reporting
1088 // wrong location information.
1089 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
1090 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
1091 InsertPos->getDebugLoc()));
1092 else
1093 MI.setDebugLoc(DebugLoc());
1095 // Move the instruction.
1096 MachineBasicBlock *ParentBlock = MI.getParent();
1097 SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
1098 ++MachineBasicBlock::iterator(MI));
1100 // Sink a copy of debug users to the insert position. Mark the original
1101 // DBG_VALUE location as 'undef', indicating that any earlier variable
1102 // location should be terminated as we've optimised away the value at this
1103 // point.
1104 for (auto DbgValueToSink : DbgValuesToSink) {
1105 MachineInstr *DbgMI = DbgValueToSink.first;
1106 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI);
1107 SuccToSinkTo.insert(InsertPos, NewDbgMI);
1109 bool PropagatedAllSunkOps = true;
1110 for (unsigned Reg : DbgValueToSink.second) {
1111 if (DbgMI->hasDebugOperandForReg(Reg)) {
1112 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) {
1113 PropagatedAllSunkOps = false;
1114 break;
1118 if (!PropagatedAllSunkOps)
1119 DbgMI->setDebugValueUndef();
1123 /// hasStoreBetween - check if there is store betweeen straight line blocks From
1124 /// and To.
1125 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From,
1126 MachineBasicBlock *To, MachineInstr &MI) {
1127 // Make sure From and To are in straight line which means From dominates To
1128 // and To post dominates From.
1129 if (!DT->dominates(From, To) || !PDT->dominates(To, From))
1130 return true;
1132 auto BlockPair = std::make_pair(From, To);
1134 // Does these two blocks pair be queried before and have a definite cached
1135 // result?
1136 if (HasStoreCache.find(BlockPair) != HasStoreCache.end())
1137 return HasStoreCache[BlockPair];
1139 if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end())
1140 return llvm::any_of(StoreInstrCache[BlockPair], [&](MachineInstr *I) {
1141 return I->mayAlias(AA, MI, false);
1144 bool SawStore = false;
1145 bool HasAliasedStore = false;
1146 DenseSet<MachineBasicBlock *> HandledBlocks;
1147 DenseSet<MachineBasicBlock *> HandledDomBlocks;
1148 // Go through all reachable blocks from From.
1149 for (MachineBasicBlock *BB : depth_first(From)) {
1150 // We insert the instruction at the start of block To, so no need to worry
1151 // about stores inside To.
1152 // Store in block From should be already considered when just enter function
1153 // SinkInstruction.
1154 if (BB == To || BB == From)
1155 continue;
1157 // We already handle this BB in previous iteration.
1158 if (HandledBlocks.count(BB))
1159 continue;
1161 HandledBlocks.insert(BB);
1162 // To post dominates BB, it must be a path from block From.
1163 if (PDT->dominates(To, BB)) {
1164 if (!HandledDomBlocks.count(BB))
1165 HandledDomBlocks.insert(BB);
1167 // If this BB is too big or the block number in straight line between From
1168 // and To is too big, stop searching to save compiling time.
1169 if (BB->size() > SinkLoadInstsPerBlockThreshold ||
1170 HandledDomBlocks.size() > SinkLoadBlocksThreshold) {
1171 for (auto *DomBB : HandledDomBlocks) {
1172 if (DomBB != BB && DT->dominates(DomBB, BB))
1173 HasStoreCache[std::make_pair(DomBB, To)] = true;
1174 else if(DomBB != BB && DT->dominates(BB, DomBB))
1175 HasStoreCache[std::make_pair(From, DomBB)] = true;
1177 HasStoreCache[BlockPair] = true;
1178 return true;
1181 for (MachineInstr &I : *BB) {
1182 // Treat as alias conservatively for a call or an ordered memory
1183 // operation.
1184 if (I.isCall() || I.hasOrderedMemoryRef()) {
1185 for (auto *DomBB : HandledDomBlocks) {
1186 if (DomBB != BB && DT->dominates(DomBB, BB))
1187 HasStoreCache[std::make_pair(DomBB, To)] = true;
1188 else if(DomBB != BB && DT->dominates(BB, DomBB))
1189 HasStoreCache[std::make_pair(From, DomBB)] = true;
1191 HasStoreCache[BlockPair] = true;
1192 return true;
1195 if (I.mayStore()) {
1196 SawStore = true;
1197 // We still have chance to sink MI if all stores between are not
1198 // aliased to MI.
1199 // Cache all store instructions, so that we don't need to go through
1200 // all From reachable blocks for next load instruction.
1201 if (I.mayAlias(AA, MI, false))
1202 HasAliasedStore = true;
1203 StoreInstrCache[BlockPair].push_back(&I);
1208 // If there is no store at all, cache the result.
1209 if (!SawStore)
1210 HasStoreCache[BlockPair] = false;
1211 return HasAliasedStore;
1214 /// Sink instructions into loops if profitable. This especially tries to prevent
1215 /// register spills caused by register pressure if there is little to no
1216 /// overhead moving instructions into loops.
1217 bool MachineSinking::SinkIntoLoop(MachineLoop *L, MachineInstr &I) {
1218 LLVM_DEBUG(dbgs() << "LoopSink: Finding sink block for: " << I);
1219 MachineBasicBlock *Preheader = L->getLoopPreheader();
1220 assert(Preheader && "Loop sink needs a preheader block");
1221 MachineBasicBlock *SinkBlock = nullptr;
1222 bool CanSink = true;
1223 const MachineOperand &MO = I.getOperand(0);
1225 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
1226 LLVM_DEBUG(dbgs() << "LoopSink: Analysing use: " << MI);
1227 if (!L->contains(&MI)) {
1228 LLVM_DEBUG(dbgs() << "LoopSink: Use not in loop, can't sink.\n");
1229 CanSink = false;
1230 break;
1233 // FIXME: Come up with a proper cost model that estimates whether sinking
1234 // the instruction (and thus possibly executing it on every loop
1235 // iteration) is more expensive than a register.
1236 // For now assumes that copies are cheap and thus almost always worth it.
1237 if (!MI.isCopy()) {
1238 LLVM_DEBUG(dbgs() << "LoopSink: Use is not a copy\n");
1239 CanSink = false;
1240 break;
1242 if (!SinkBlock) {
1243 SinkBlock = MI.getParent();
1244 LLVM_DEBUG(dbgs() << "LoopSink: Setting sink block to: "
1245 << printMBBReference(*SinkBlock) << "\n");
1246 continue;
1248 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent());
1249 if (!SinkBlock) {
1250 LLVM_DEBUG(dbgs() << "LoopSink: Can't find nearest dominator\n");
1251 CanSink = false;
1252 break;
1254 LLVM_DEBUG(dbgs() << "LoopSink: Setting nearest common dom block: " <<
1255 printMBBReference(*SinkBlock) << "\n");
1258 if (!CanSink) {
1259 LLVM_DEBUG(dbgs() << "LoopSink: Can't sink instruction.\n");
1260 return false;
1262 if (!SinkBlock) {
1263 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, can't find sink block.\n");
1264 return false;
1266 if (SinkBlock == Preheader) {
1267 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, sink block is the preheader\n");
1268 return false;
1270 if (SinkBlock->size() > SinkLoadInstsPerBlockThreshold) {
1271 LLVM_DEBUG(dbgs() << "LoopSink: Not Sinking, block too large to analyse.\n");
1272 return false;
1275 LLVM_DEBUG(dbgs() << "LoopSink: Sinking instruction!\n");
1276 SinkBlock->splice(SinkBlock->getFirstNonPHI(), Preheader, I);
1278 // The instruction is moved from its basic block, so do not retain the
1279 // debug information.
1280 assert(!I.isDebugInstr() && "Should not sink debug inst");
1281 I.setDebugLoc(DebugLoc());
1282 return true;
1285 /// SinkInstruction - Determine whether it is safe to sink the specified machine
1286 /// instruction out of its current block into a successor.
1287 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
1288 AllSuccsCache &AllSuccessors) {
1289 // Don't sink instructions that the target prefers not to sink.
1290 if (!TII->shouldSink(MI))
1291 return false;
1293 // Check if it's safe to move the instruction.
1294 if (!MI.isSafeToMove(AA, SawStore))
1295 return false;
1297 // Convergent operations may not be made control-dependent on additional
1298 // values.
1299 if (MI.isConvergent())
1300 return false;
1302 // Don't break implicit null checks. This is a performance heuristic, and not
1303 // required for correctness.
1304 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
1305 return false;
1307 // FIXME: This should include support for sinking instructions within the
1308 // block they are currently in to shorten the live ranges. We often get
1309 // instructions sunk into the top of a large block, but it would be better to
1310 // also sink them down before their first use in the block. This xform has to
1311 // be careful not to *increase* register pressure though, e.g. sinking
1312 // "x = y + z" down if it kills y and z would increase the live ranges of y
1313 // and z and only shrink the live range of x.
1315 bool BreakPHIEdge = false;
1316 MachineBasicBlock *ParentBlock = MI.getParent();
1317 MachineBasicBlock *SuccToSinkTo =
1318 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
1320 // If there are no outputs, it must have side-effects.
1321 if (!SuccToSinkTo)
1322 return false;
1324 // If the instruction to move defines a dead physical register which is live
1325 // when leaving the basic block, don't move it because it could turn into a
1326 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
1327 for (const MachineOperand &MO : MI.operands()) {
1328 if (!MO.isReg() || MO.isUse())
1329 continue;
1330 Register Reg = MO.getReg();
1331 if (Reg == 0 || !Register::isPhysicalRegister(Reg))
1332 continue;
1333 if (SuccToSinkTo->isLiveIn(Reg))
1334 return false;
1337 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
1339 // If the block has multiple predecessors, this is a critical edge.
1340 // Decide if we can sink along it or need to break the edge.
1341 if (SuccToSinkTo->pred_size() > 1) {
1342 // We cannot sink a load across a critical edge - there may be stores in
1343 // other code paths.
1344 bool TryBreak = false;
1345 bool Store =
1346 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true;
1347 if (!MI.isSafeToMove(AA, Store)) {
1348 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
1349 TryBreak = true;
1352 // We don't want to sink across a critical edge if we don't dominate the
1353 // successor. We could be introducing calculations to new code paths.
1354 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
1355 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
1356 TryBreak = true;
1359 // Don't sink instructions into a loop.
1360 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
1361 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
1362 TryBreak = true;
1365 // Otherwise we are OK with sinking along a critical edge.
1366 if (!TryBreak)
1367 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
1368 else {
1369 // Mark this edge as to be split.
1370 // If the edge can actually be split, the next iteration of the main loop
1371 // will sink MI in the newly created block.
1372 bool Status =
1373 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
1374 if (!Status)
1375 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
1376 "break critical edge\n");
1377 // The instruction will not be sunk this time.
1378 return false;
1382 if (BreakPHIEdge) {
1383 // BreakPHIEdge is true if all the uses are in the successor MBB being
1384 // sunken into and they are all PHI nodes. In this case, machine-sink must
1385 // break the critical edge first.
1386 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
1387 SuccToSinkTo, BreakPHIEdge);
1388 if (!Status)
1389 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
1390 "break critical edge\n");
1391 // The instruction will not be sunk this time.
1392 return false;
1395 // Determine where to insert into. Skip phi nodes.
1396 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
1397 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
1398 ++InsertPos;
1400 // Collect debug users of any vreg that this inst defines.
1401 SmallVector<MIRegs, 4> DbgUsersToSink;
1402 for (auto &MO : MI.operands()) {
1403 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
1404 continue;
1405 if (!SeenDbgUsers.count(MO.getReg()))
1406 continue;
1408 // Sink any users that don't pass any other DBG_VALUEs for this variable.
1409 auto &Users = SeenDbgUsers[MO.getReg()];
1410 for (auto &User : Users) {
1411 MachineInstr *DbgMI = User.getPointer();
1412 if (User.getInt()) {
1413 // This DBG_VALUE would re-order assignments. If we can't copy-propagate
1414 // it, it can't be recovered. Set it undef.
1415 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg()))
1416 DbgMI->setDebugValueUndef();
1417 } else {
1418 DbgUsersToSink.push_back(
1419 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())});
1424 // After sinking, some debug users may not be dominated any more. If possible,
1425 // copy-propagate their operands. As it's expensive, don't do this if there's
1426 // no debuginfo in the program.
1427 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy())
1428 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo);
1430 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink);
1432 // Conservatively, clear any kill flags, since it's possible that they are no
1433 // longer correct.
1434 // Note that we have to clear the kill flags for any register this instruction
1435 // uses as we may sink over another instruction which currently kills the
1436 // used registers.
1437 for (MachineOperand &MO : MI.operands()) {
1438 if (MO.isReg() && MO.isUse())
1439 RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags.
1442 return true;
1445 void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
1446 MachineInstr &MI, MachineBasicBlock *TargetBlock) {
1447 assert(MI.isCopy());
1448 assert(MI.getOperand(1).isReg());
1450 // Enumerate all users of vreg operands that are def'd. Skip those that will
1451 // be sunk. For the rest, if they are not dominated by the block we will sink
1452 // MI into, propagate the copy source to them.
1453 SmallVector<MachineInstr *, 4> DbgDefUsers;
1454 SmallVector<Register, 4> DbgUseRegs;
1455 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1456 for (auto &MO : MI.operands()) {
1457 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
1458 continue;
1459 DbgUseRegs.push_back(MO.getReg());
1460 for (auto &User : MRI.use_instructions(MO.getReg())) {
1461 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent()))
1462 continue;
1464 // If is in same block, will either sink or be use-before-def.
1465 if (User.getParent() == MI.getParent())
1466 continue;
1468 assert(User.hasDebugOperandForReg(MO.getReg()) &&
1469 "DBG_VALUE user of vreg, but has no operand for it?");
1470 DbgDefUsers.push_back(&User);
1474 // Point the users of this copy that are no longer dominated, at the source
1475 // of the copy.
1476 for (auto *User : DbgDefUsers) {
1477 for (auto &Reg : DbgUseRegs) {
1478 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) {
1479 DbgOp.setReg(MI.getOperand(1).getReg());
1480 DbgOp.setSubReg(MI.getOperand(1).getSubReg());
1486 //===----------------------------------------------------------------------===//
1487 // This pass is not intended to be a replacement or a complete alternative
1488 // for the pre-ra machine sink pass. It is only designed to sink COPY
1489 // instructions which should be handled after RA.
1491 // This pass sinks COPY instructions into a successor block, if the COPY is not
1492 // used in the current block and the COPY is live-in to a single successor
1493 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the
1494 // copy on paths where their results aren't needed. This also exposes
1495 // additional opportunites for dead copy elimination and shrink wrapping.
1497 // These copies were either not handled by or are inserted after the MachineSink
1498 // pass. As an example of the former case, the MachineSink pass cannot sink
1499 // COPY instructions with allocatable source registers; for AArch64 these type
1500 // of copy instructions are frequently used to move function parameters (PhyReg)
1501 // into virtual registers in the entry block.
1503 // For the machine IR below, this pass will sink %w19 in the entry into its
1504 // successor (%bb.1) because %w19 is only live-in in %bb.1.
1505 // %bb.0:
1506 // %wzr = SUBSWri %w1, 1
1507 // %w19 = COPY %w0
1508 // Bcc 11, %bb.2
1509 // %bb.1:
1510 // Live Ins: %w19
1511 // BL @fun
1512 // %w0 = ADDWrr %w0, %w19
1513 // RET %w0
1514 // %bb.2:
1515 // %w0 = COPY %wzr
1516 // RET %w0
1517 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
1518 // able to see %bb.0 as a candidate.
1519 //===----------------------------------------------------------------------===//
1520 namespace {
1522 class PostRAMachineSinking : public MachineFunctionPass {
1523 public:
1524 bool runOnMachineFunction(MachineFunction &MF) override;
1526 static char ID;
1527 PostRAMachineSinking() : MachineFunctionPass(ID) {}
1528 StringRef getPassName() const override { return "PostRA Machine Sink"; }
1530 void getAnalysisUsage(AnalysisUsage &AU) const override {
1531 AU.setPreservesCFG();
1532 MachineFunctionPass::getAnalysisUsage(AU);
1535 MachineFunctionProperties getRequiredProperties() const override {
1536 return MachineFunctionProperties().set(
1537 MachineFunctionProperties::Property::NoVRegs);
1540 private:
1541 /// Track which register units have been modified and used.
1542 LiveRegUnits ModifiedRegUnits, UsedRegUnits;
1544 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
1545 /// entry in this map for each unit it touches. The DBG_VALUE's entry
1546 /// consists of a pointer to the instruction itself, and a vector of registers
1547 /// referred to by the instruction that overlap the key register unit.
1548 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs;
1550 /// Sink Copy instructions unused in the same block close to their uses in
1551 /// successors.
1552 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
1553 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
1555 } // namespace
1557 char PostRAMachineSinking::ID = 0;
1558 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
1560 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
1561 "PostRA Machine Sink", false, false)
1563 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
1564 const TargetRegisterInfo *TRI) {
1565 LiveRegUnits LiveInRegUnits(*TRI);
1566 LiveInRegUnits.addLiveIns(MBB);
1567 return !LiveInRegUnits.available(Reg);
1570 static MachineBasicBlock *
1571 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1572 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1573 unsigned Reg, const TargetRegisterInfo *TRI) {
1574 // Try to find a single sinkable successor in which Reg is live-in.
1575 MachineBasicBlock *BB = nullptr;
1576 for (auto *SI : SinkableBBs) {
1577 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
1578 // If BB is set here, Reg is live-in to at least two sinkable successors,
1579 // so quit.
1580 if (BB)
1581 return nullptr;
1582 BB = SI;
1585 // Reg is not live-in to any sinkable successors.
1586 if (!BB)
1587 return nullptr;
1589 // Check if any register aliased with Reg is live-in in other successors.
1590 for (auto *SI : CurBB.successors()) {
1591 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1592 return nullptr;
1594 return BB;
1597 static MachineBasicBlock *
1598 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1599 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1600 ArrayRef<unsigned> DefedRegsInCopy,
1601 const TargetRegisterInfo *TRI) {
1602 MachineBasicBlock *SingleBB = nullptr;
1603 for (auto DefReg : DefedRegsInCopy) {
1604 MachineBasicBlock *BB =
1605 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1606 if (!BB || (SingleBB && SingleBB != BB))
1607 return nullptr;
1608 SingleBB = BB;
1610 return SingleBB;
1613 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1614 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1615 LiveRegUnits &UsedRegUnits,
1616 const TargetRegisterInfo *TRI) {
1617 for (auto U : UsedOpsInCopy) {
1618 MachineOperand &MO = MI->getOperand(U);
1619 Register SrcReg = MO.getReg();
1620 if (!UsedRegUnits.available(SrcReg)) {
1621 MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1622 for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1623 if (UI.killsRegister(SrcReg, TRI)) {
1624 UI.clearRegisterKills(SrcReg, TRI);
1625 MO.setIsKill(true);
1626 break;
1633 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1634 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1635 SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1636 MachineFunction &MF = *SuccBB->getParent();
1637 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1638 for (unsigned DefReg : DefedRegsInCopy)
1639 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1640 SuccBB->removeLiveIn(*S);
1641 for (auto U : UsedOpsInCopy) {
1642 Register SrcReg = MI->getOperand(U).getReg();
1643 LaneBitmask Mask;
1644 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) {
1645 Mask |= (*S).second;
1647 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll());
1649 SuccBB->sortUniqueLiveIns();
1652 static bool hasRegisterDependency(MachineInstr *MI,
1653 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1654 SmallVectorImpl<unsigned> &DefedRegsInCopy,
1655 LiveRegUnits &ModifiedRegUnits,
1656 LiveRegUnits &UsedRegUnits) {
1657 bool HasRegDependency = false;
1658 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1659 MachineOperand &MO = MI->getOperand(i);
1660 if (!MO.isReg())
1661 continue;
1662 Register Reg = MO.getReg();
1663 if (!Reg)
1664 continue;
1665 if (MO.isDef()) {
1666 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1667 HasRegDependency = true;
1668 break;
1670 DefedRegsInCopy.push_back(Reg);
1672 // FIXME: instead of isUse(), readsReg() would be a better fix here,
1673 // For example, we can ignore modifications in reg with undef. However,
1674 // it's not perfectly clear if skipping the internal read is safe in all
1675 // other targets.
1676 } else if (MO.isUse()) {
1677 if (!ModifiedRegUnits.available(Reg)) {
1678 HasRegDependency = true;
1679 break;
1681 UsedOpsInCopy.push_back(i);
1684 return HasRegDependency;
1687 static SmallSet<MCRegister, 4> getRegUnits(MCRegister Reg,
1688 const TargetRegisterInfo *TRI) {
1689 SmallSet<MCRegister, 4> RegUnits;
1690 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI)
1691 RegUnits.insert(*RI);
1692 return RegUnits;
1695 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1696 MachineFunction &MF,
1697 const TargetRegisterInfo *TRI,
1698 const TargetInstrInfo *TII) {
1699 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1700 // FIXME: For now, we sink only to a successor which has a single predecessor
1701 // so that we can directly sink COPY instructions to the successor without
1702 // adding any new block or branch instruction.
1703 for (MachineBasicBlock *SI : CurBB.successors())
1704 if (!SI->livein_empty() && SI->pred_size() == 1)
1705 SinkableBBs.insert(SI);
1707 if (SinkableBBs.empty())
1708 return false;
1710 bool Changed = false;
1712 // Track which registers have been modified and used between the end of the
1713 // block and the current instruction.
1714 ModifiedRegUnits.clear();
1715 UsedRegUnits.clear();
1716 SeenDbgInstrs.clear();
1718 for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) {
1719 // Track the operand index for use in Copy.
1720 SmallVector<unsigned, 2> UsedOpsInCopy;
1721 // Track the register number defed in Copy.
1722 SmallVector<unsigned, 2> DefedRegsInCopy;
1724 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1725 // for DBG_VALUEs later, record them when they're encountered.
1726 if (MI.isDebugValue()) {
1727 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits;
1728 bool IsValid = true;
1729 for (MachineOperand &MO : MI.debug_operands()) {
1730 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
1731 // Bail if we can already tell the sink would be rejected, rather
1732 // than needlessly accumulating lots of DBG_VALUEs.
1733 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy,
1734 ModifiedRegUnits, UsedRegUnits)) {
1735 IsValid = false;
1736 break;
1739 // Record debug use of each reg unit.
1740 SmallSet<MCRegister, 4> RegUnits = getRegUnits(MO.getReg(), TRI);
1741 for (MCRegister Reg : RegUnits)
1742 MIUnits[Reg].push_back(MO.getReg());
1745 if (IsValid) {
1746 for (auto RegOps : MIUnits)
1747 SeenDbgInstrs[RegOps.first].push_back({&MI, RegOps.second});
1749 continue;
1752 if (MI.isDebugOrPseudoInstr())
1753 continue;
1755 // Do not move any instruction across function call.
1756 if (MI.isCall())
1757 return false;
1759 if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) {
1760 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
1761 TRI);
1762 continue;
1765 // Don't sink the COPY if it would violate a register dependency.
1766 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy,
1767 ModifiedRegUnits, UsedRegUnits)) {
1768 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
1769 TRI);
1770 continue;
1772 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1773 "Unexpect SrcReg or DefReg");
1774 MachineBasicBlock *SuccBB =
1775 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1776 // Don't sink if we cannot find a single sinkable successor in which Reg
1777 // is live-in.
1778 if (!SuccBB) {
1779 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
1780 TRI);
1781 continue;
1783 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1784 "Unexpected predecessor");
1786 // Collect DBG_VALUEs that must sink with this copy. We've previously
1787 // recorded which reg units that DBG_VALUEs read, if this instruction
1788 // writes any of those units then the corresponding DBG_VALUEs must sink.
1789 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap;
1790 for (auto &MO : MI.operands()) {
1791 if (!MO.isReg() || !MO.isDef())
1792 continue;
1794 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI);
1795 for (MCRegister Reg : Units) {
1796 for (auto MIRegs : SeenDbgInstrs.lookup(Reg)) {
1797 auto &Regs = DbgValsToSinkMap[MIRegs.first];
1798 for (unsigned Reg : MIRegs.second)
1799 Regs.push_back(Reg);
1803 SmallVector<MIRegs, 4> DbgValsToSink(DbgValsToSinkMap.begin(),
1804 DbgValsToSinkMap.end());
1806 // Clear the kill flag if SrcReg is killed between MI and the end of the
1807 // block.
1808 clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1809 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1810 performSink(MI, *SuccBB, InsertPos, DbgValsToSink);
1811 updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1813 Changed = true;
1814 ++NumPostRACopySink;
1816 return Changed;
1819 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1820 if (skipFunction(MF.getFunction()))
1821 return false;
1823 bool Changed = false;
1824 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1825 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1827 ModifiedRegUnits.init(*TRI);
1828 UsedRegUnits.init(*TRI);
1829 for (auto &BB : MF)
1830 Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1832 return Changed;