1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/PointerIntPair.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/SparseBitVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
29 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineLoopInfo.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachinePostDominators.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/RegisterClassInfo.h"
39 #include "llvm/CodeGen/RegisterPressure.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSubtargetInfo.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/BranchProbability.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/raw_ostream.h"
62 #define DEBUG_TYPE "machine-sink"
65 SplitEdges("machine-sink-split",
66 cl::desc("Split critical edges during machine sinking"),
67 cl::init(true), cl::Hidden
);
70 UseBlockFreqInfo("machine-sink-bfi",
71 cl::desc("Use block frequency info to find successors to sink"),
72 cl::init(true), cl::Hidden
);
74 static cl::opt
<unsigned> SplitEdgeProbabilityThreshold(
75 "machine-sink-split-probability-threshold",
77 "Percentage threshold for splitting single-instruction critical edge. "
78 "If the branch threshold is higher than this threshold, we allow "
79 "speculative execution of up to 1 instruction to avoid branching to "
80 "splitted critical edge"),
81 cl::init(40), cl::Hidden
);
83 static cl::opt
<unsigned> SinkLoadInstsPerBlockThreshold(
84 "machine-sink-load-instrs-threshold",
85 cl::desc("Do not try to find alias store for a load if there is a in-path "
86 "block whose instruction number is higher than this threshold."),
87 cl::init(2000), cl::Hidden
);
89 static cl::opt
<unsigned> SinkLoadBlocksThreshold(
90 "machine-sink-load-blocks-threshold",
91 cl::desc("Do not try to find alias store for a load if the block number in "
92 "the straight line is higher than this threshold."),
93 cl::init(20), cl::Hidden
);
96 SinkInstsIntoLoop("sink-insts-to-avoid-spills",
97 cl::desc("Sink instructions into loops to avoid "
99 cl::init(false), cl::Hidden
);
101 static cl::opt
<unsigned> SinkIntoLoopLimit(
102 "machine-sink-loop-limit",
103 cl::desc("The maximum number of instructions considered for loop sinking."),
104 cl::init(50), cl::Hidden
);
106 STATISTIC(NumSunk
, "Number of machine instructions sunk");
107 STATISTIC(NumLoopSunk
, "Number of machine instructions sunk into a loop");
108 STATISTIC(NumSplit
, "Number of critical edges split");
109 STATISTIC(NumCoalesces
, "Number of copies coalesced");
110 STATISTIC(NumPostRACopySink
, "Number of copies sunk after RA");
114 class MachineSinking
: public MachineFunctionPass
{
115 const TargetInstrInfo
*TII
;
116 const TargetRegisterInfo
*TRI
;
117 MachineRegisterInfo
*MRI
; // Machine register information
118 MachineDominatorTree
*DT
; // Machine dominator tree
119 MachinePostDominatorTree
*PDT
; // Machine post dominator tree
121 MachineBlockFrequencyInfo
*MBFI
;
122 const MachineBranchProbabilityInfo
*MBPI
;
124 RegisterClassInfo RegClassInfo
;
126 // Remember which edges have been considered for breaking.
127 SmallSet
<std::pair
<MachineBasicBlock
*, MachineBasicBlock
*>, 8>
129 // Remember which edges we are about to split.
130 // This is different from CEBCandidates since those edges
132 SetVector
<std::pair
<MachineBasicBlock
*, MachineBasicBlock
*>> ToSplit
;
134 DenseSet
<Register
> RegsToClearKillFlags
;
136 using AllSuccsCache
=
137 std::map
<MachineBasicBlock
*, SmallVector
<MachineBasicBlock
*, 4>>;
139 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
140 /// post-dominated by another DBG_VALUE of the same variable location.
141 /// This is necessary to detect sequences such as:
143 /// DBG_VALUE %0, !123, !DIExpression()
145 /// DBG_VALUE %1, !123, !DIExpression()
146 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
147 /// would re-order assignments.
148 using SeenDbgUser
= PointerIntPair
<MachineInstr
*, 1>;
150 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
151 /// debug instructions to sink.
152 SmallDenseMap
<unsigned, TinyPtrVector
<SeenDbgUser
>> SeenDbgUsers
;
154 /// Record of debug variables that have had their locations set in the
156 DenseSet
<DebugVariable
> SeenDbgVars
;
158 std::map
<std::pair
<MachineBasicBlock
*, MachineBasicBlock
*>, bool>
160 std::map
<std::pair
<MachineBasicBlock
*, MachineBasicBlock
*>,
161 std::vector
<MachineInstr
*>>
164 /// Cached BB's register pressure.
165 std::map
<MachineBasicBlock
*, std::vector
<unsigned>> CachedRegisterPressure
;
168 static char ID
; // Pass identification
170 MachineSinking() : MachineFunctionPass(ID
) {
171 initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
174 bool runOnMachineFunction(MachineFunction
&MF
) override
;
176 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
177 MachineFunctionPass::getAnalysisUsage(AU
);
178 AU
.addRequired
<AAResultsWrapperPass
>();
179 AU
.addRequired
<MachineDominatorTree
>();
180 AU
.addRequired
<MachinePostDominatorTree
>();
181 AU
.addRequired
<MachineLoopInfo
>();
182 AU
.addRequired
<MachineBranchProbabilityInfo
>();
183 AU
.addPreserved
<MachineLoopInfo
>();
184 if (UseBlockFreqInfo
)
185 AU
.addRequired
<MachineBlockFrequencyInfo
>();
188 void releaseMemory() override
{
189 CEBCandidates
.clear();
193 bool ProcessBlock(MachineBasicBlock
&MBB
);
194 void ProcessDbgInst(MachineInstr
&MI
);
195 bool isWorthBreakingCriticalEdge(MachineInstr
&MI
,
196 MachineBasicBlock
*From
,
197 MachineBasicBlock
*To
);
199 bool hasStoreBetween(MachineBasicBlock
*From
, MachineBasicBlock
*To
,
202 /// Postpone the splitting of the given critical
203 /// edge (\p From, \p To).
205 /// We do not split the edges on the fly. Indeed, this invalidates
206 /// the dominance information and thus triggers a lot of updates
207 /// of that information underneath.
208 /// Instead, we postpone all the splits after each iteration of
209 /// the main loop. That way, the information is at least valid
210 /// for the lifetime of an iteration.
212 /// \return True if the edge is marked as toSplit, false otherwise.
213 /// False can be returned if, for instance, this is not profitable.
214 bool PostponeSplitCriticalEdge(MachineInstr
&MI
,
215 MachineBasicBlock
*From
,
216 MachineBasicBlock
*To
,
218 bool SinkInstruction(MachineInstr
&MI
, bool &SawStore
,
219 AllSuccsCache
&AllSuccessors
);
221 /// If we sink a COPY inst, some debug users of it's destination may no
222 /// longer be dominated by the COPY, and will eventually be dropped.
223 /// This is easily rectified by forwarding the non-dominated debug uses
224 /// to the copy source.
225 void SalvageUnsunkDebugUsersOfCopy(MachineInstr
&,
226 MachineBasicBlock
*TargetBlock
);
227 bool AllUsesDominatedByBlock(Register Reg
, MachineBasicBlock
*MBB
,
228 MachineBasicBlock
*DefMBB
, bool &BreakPHIEdge
,
229 bool &LocalUse
) const;
230 MachineBasicBlock
*FindSuccToSinkTo(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
231 bool &BreakPHIEdge
, AllSuccsCache
&AllSuccessors
);
233 void FindLoopSinkCandidates(MachineLoop
*L
, MachineBasicBlock
*BB
,
234 SmallVectorImpl
<MachineInstr
*> &Candidates
);
235 bool SinkIntoLoop(MachineLoop
*L
, MachineInstr
&I
);
237 bool isProfitableToSinkTo(Register Reg
, MachineInstr
&MI
,
238 MachineBasicBlock
*MBB
,
239 MachineBasicBlock
*SuccToSinkTo
,
240 AllSuccsCache
&AllSuccessors
);
242 bool PerformTrivialForwardCoalescing(MachineInstr
&MI
,
243 MachineBasicBlock
*MBB
);
245 SmallVector
<MachineBasicBlock
*, 4> &
246 GetAllSortedSuccessors(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
247 AllSuccsCache
&AllSuccessors
) const;
249 std::vector
<unsigned> &getBBRegisterPressure(MachineBasicBlock
&MBB
);
252 } // end anonymous namespace
254 char MachineSinking::ID
= 0;
256 char &llvm::MachineSinkingID
= MachineSinking::ID
;
258 INITIALIZE_PASS_BEGIN(MachineSinking
, DEBUG_TYPE
,
259 "Machine code sinking", false, false)
260 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
261 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
262 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
263 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
264 INITIALIZE_PASS_END(MachineSinking
, DEBUG_TYPE
,
265 "Machine code sinking", false, false)
267 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr
&MI
,
268 MachineBasicBlock
*MBB
) {
272 Register SrcReg
= MI
.getOperand(1).getReg();
273 Register DstReg
= MI
.getOperand(0).getReg();
274 if (!Register::isVirtualRegister(SrcReg
) ||
275 !Register::isVirtualRegister(DstReg
) || !MRI
->hasOneNonDBGUse(SrcReg
))
278 const TargetRegisterClass
*SRC
= MRI
->getRegClass(SrcReg
);
279 const TargetRegisterClass
*DRC
= MRI
->getRegClass(DstReg
);
283 MachineInstr
*DefMI
= MRI
->getVRegDef(SrcReg
);
284 if (DefMI
->isCopyLike())
286 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI
);
287 LLVM_DEBUG(dbgs() << "*** to: " << MI
);
288 MRI
->replaceRegWith(DstReg
, SrcReg
);
289 MI
.eraseFromParent();
291 // Conservatively, clear any kill flags, since it's possible that they are no
293 MRI
->clearKillFlags(SrcReg
);
299 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
300 /// occur in blocks dominated by the specified block. If any use is in the
301 /// definition block, then return false since it is never legal to move def
303 bool MachineSinking::AllUsesDominatedByBlock(Register Reg
,
304 MachineBasicBlock
*MBB
,
305 MachineBasicBlock
*DefMBB
,
307 bool &LocalUse
) const {
308 assert(Register::isVirtualRegister(Reg
) && "Only makes sense for vregs");
310 // Ignore debug uses because debug info doesn't affect the code.
311 if (MRI
->use_nodbg_empty(Reg
))
314 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
315 // into and they are all PHI nodes. In this case, machine-sink must break
316 // the critical edge first. e.g.
319 // Predecessors according to CFG: %bb.0
321 // %def = DEC64_32r %x, implicit-def dead %eflags
323 // JE_4 <%bb.37>, implicit %eflags
324 // Successors according to CFG: %bb.37 %bb.2
327 // %p = PHI %y, %bb.0, %def, %bb.1
328 if (all_of(MRI
->use_nodbg_operands(Reg
), [&](MachineOperand
&MO
) {
329 MachineInstr
*UseInst
= MO
.getParent();
330 unsigned OpNo
= UseInst
->getOperandNo(&MO
);
331 MachineBasicBlock
*UseBlock
= UseInst
->getParent();
332 return UseBlock
== MBB
&& UseInst
->isPHI() &&
333 UseInst
->getOperand(OpNo
+ 1).getMBB() == DefMBB
;
339 for (MachineOperand
&MO
: MRI
->use_nodbg_operands(Reg
)) {
340 // Determine the block of the use.
341 MachineInstr
*UseInst
= MO
.getParent();
342 unsigned OpNo
= &MO
- &UseInst
->getOperand(0);
343 MachineBasicBlock
*UseBlock
= UseInst
->getParent();
344 if (UseInst
->isPHI()) {
345 // PHI nodes use the operand in the predecessor block, not the block with
347 UseBlock
= UseInst
->getOperand(OpNo
+1).getMBB();
348 } else if (UseBlock
== DefMBB
) {
353 // Check that it dominates.
354 if (!DT
->dominates(MBB
, UseBlock
))
361 /// Return true if this machine instruction loads from global offset table or
363 static bool mayLoadFromGOTOrConstantPool(MachineInstr
&MI
) {
364 assert(MI
.mayLoad() && "Expected MI that loads!");
366 // If we lost memory operands, conservatively assume that the instruction
367 // reads from everything..
368 if (MI
.memoperands_empty())
371 for (MachineMemOperand
*MemOp
: MI
.memoperands())
372 if (const PseudoSourceValue
*PSV
= MemOp
->getPseudoValue())
373 if (PSV
->isGOT() || PSV
->isConstantPool())
379 void MachineSinking::FindLoopSinkCandidates(MachineLoop
*L
, MachineBasicBlock
*BB
,
380 SmallVectorImpl
<MachineInstr
*> &Candidates
) {
381 for (auto &MI
: *BB
) {
382 LLVM_DEBUG(dbgs() << "LoopSink: Analysing candidate: " << MI
);
383 if (!TII
->shouldSink(MI
)) {
384 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not a candidate for this "
388 if (!L
->isLoopInvariant(MI
)) {
389 LLVM_DEBUG(dbgs() << "LoopSink: Instruction is not loop invariant\n");
392 bool DontMoveAcrossStore
= true;
393 if (!MI
.isSafeToMove(AA
, DontMoveAcrossStore
)) {
394 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not safe to move.\n");
397 if (MI
.mayLoad() && !mayLoadFromGOTOrConstantPool(MI
)) {
398 LLVM_DEBUG(dbgs() << "LoopSink: Dont sink GOT or constant pool loads\n");
401 if (MI
.isConvergent())
404 const MachineOperand
&MO
= MI
.getOperand(0);
405 if (!MO
.isReg() || !MO
.getReg() || !MO
.isDef())
407 if (!MRI
->hasOneDef(MO
.getReg()))
410 LLVM_DEBUG(dbgs() << "LoopSink: Instruction added as candidate.\n");
411 Candidates
.push_back(&MI
);
415 bool MachineSinking::runOnMachineFunction(MachineFunction
&MF
) {
416 if (skipFunction(MF
.getFunction()))
419 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
421 TII
= MF
.getSubtarget().getInstrInfo();
422 TRI
= MF
.getSubtarget().getRegisterInfo();
423 MRI
= &MF
.getRegInfo();
424 DT
= &getAnalysis
<MachineDominatorTree
>();
425 PDT
= &getAnalysis
<MachinePostDominatorTree
>();
426 LI
= &getAnalysis
<MachineLoopInfo
>();
427 MBFI
= UseBlockFreqInfo
? &getAnalysis
<MachineBlockFrequencyInfo
>() : nullptr;
428 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
429 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
430 RegClassInfo
.runOnMachineFunction(MF
);
432 bool EverMadeChange
= false;
435 bool MadeChange
= false;
437 // Process all basic blocks.
438 CEBCandidates
.clear();
441 MadeChange
|= ProcessBlock(MBB
);
443 // If we have anything we marked as toSplit, split it now.
444 for (auto &Pair
: ToSplit
) {
445 auto NewSucc
= Pair
.first
->SplitCriticalEdge(Pair
.second
, *this);
446 if (NewSucc
!= nullptr) {
447 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
448 << printMBBReference(*Pair
.first
) << " -- "
449 << printMBBReference(*NewSucc
) << " -- "
450 << printMBBReference(*Pair
.second
) << '\n');
452 MBFI
->onEdgeSplit(*Pair
.first
, *NewSucc
, *MBPI
);
457 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
459 // If this iteration over the code changed anything, keep iterating.
460 if (!MadeChange
) break;
461 EverMadeChange
= true;
464 if (SinkInstsIntoLoop
) {
465 SmallVector
<MachineLoop
*, 8> Loops(LI
->begin(), LI
->end());
466 for (auto *L
: Loops
) {
467 MachineBasicBlock
*Preheader
= LI
->findLoopPreheader(L
);
469 LLVM_DEBUG(dbgs() << "LoopSink: Can't find preheader\n");
472 SmallVector
<MachineInstr
*, 8> Candidates
;
473 FindLoopSinkCandidates(L
, Preheader
, Candidates
);
475 // Walk the candidates in reverse order so that we start with the use
476 // of a def-use chain, if there is any.
477 // TODO: Sort the candidates using a cost-model.
479 for (MachineInstr
*I
: llvm::reverse(Candidates
)) {
480 if (i
++ == SinkIntoLoopLimit
) {
481 LLVM_DEBUG(dbgs() << "LoopSink: Limit reached of instructions to "
486 if (!SinkIntoLoop(L
, *I
))
488 EverMadeChange
= true;
494 HasStoreCache
.clear();
495 StoreInstrCache
.clear();
497 // Now clear any kill flags for recorded registers.
498 for (auto I
: RegsToClearKillFlags
)
499 MRI
->clearKillFlags(I
);
500 RegsToClearKillFlags
.clear();
502 return EverMadeChange
;
505 bool MachineSinking::ProcessBlock(MachineBasicBlock
&MBB
) {
506 // Can't sink anything out of a block that has less than two successors.
507 if (MBB
.succ_size() <= 1 || MBB
.empty()) return false;
509 // Don't bother sinking code out of unreachable blocks. In addition to being
510 // unprofitable, it can also lead to infinite looping, because in an
511 // unreachable loop there may be nowhere to stop.
512 if (!DT
->isReachableFromEntry(&MBB
)) return false;
514 bool MadeChange
= false;
516 // Cache all successors, sorted by frequency info and loop depth.
517 AllSuccsCache AllSuccessors
;
519 // Walk the basic block bottom-up. Remember if we saw a store.
520 MachineBasicBlock::iterator I
= MBB
.end();
522 bool ProcessedBegin
, SawStore
= false;
524 MachineInstr
&MI
= *I
; // The instruction to sink.
526 // Predecrement I (if it's not begin) so that it isn't invalidated by
528 ProcessedBegin
= I
== MBB
.begin();
532 if (MI
.isDebugOrPseudoInstr()) {
533 if (MI
.isDebugValue())
538 bool Joined
= PerformTrivialForwardCoalescing(MI
, &MBB
);
544 if (SinkInstruction(MI
, SawStore
, AllSuccessors
)) {
549 // If we just processed the first instruction in the block, we're done.
550 } while (!ProcessedBegin
);
552 SeenDbgUsers
.clear();
554 // recalculate the bb register pressure after sinking one BB.
555 CachedRegisterPressure
.clear();
560 void MachineSinking::ProcessDbgInst(MachineInstr
&MI
) {
561 // When we see DBG_VALUEs for registers, record any vreg it reads, so that
562 // we know what to sink if the vreg def sinks.
563 assert(MI
.isDebugValue() && "Expected DBG_VALUE for processing");
565 DebugVariable
Var(MI
.getDebugVariable(), MI
.getDebugExpression(),
566 MI
.getDebugLoc()->getInlinedAt());
567 bool SeenBefore
= SeenDbgVars
.contains(Var
);
569 for (MachineOperand
&MO
: MI
.debug_operands()) {
570 if (MO
.isReg() && MO
.getReg().isVirtual())
571 SeenDbgUsers
[MO
.getReg()].push_back(SeenDbgUser(&MI
, SeenBefore
));
574 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
575 SeenDbgVars
.insert(Var
);
578 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr
&MI
,
579 MachineBasicBlock
*From
,
580 MachineBasicBlock
*To
) {
581 // FIXME: Need much better heuristics.
583 // If the pass has already considered breaking this edge (during this pass
584 // through the function), then let's go ahead and break it. This means
585 // sinking multiple "cheap" instructions into the same block.
586 if (!CEBCandidates
.insert(std::make_pair(From
, To
)).second
)
589 if (!MI
.isCopy() && !TII
->isAsCheapAsAMove(MI
))
592 if (From
->isSuccessor(To
) && MBPI
->getEdgeProbability(From
, To
) <=
593 BranchProbability(SplitEdgeProbabilityThreshold
, 100))
596 // MI is cheap, we probably don't want to break the critical edge for it.
597 // However, if this would allow some definitions of its source operands
598 // to be sunk then it's probably worth it.
599 for (const MachineOperand
&MO
: MI
.operands()) {
600 if (!MO
.isReg() || !MO
.isUse())
602 Register Reg
= MO
.getReg();
606 // We don't move live definitions of physical registers,
607 // so sinking their uses won't enable any opportunities.
608 if (Register::isPhysicalRegister(Reg
))
611 // If this instruction is the only user of a virtual register,
612 // check if breaking the edge will enable sinking
613 // both this instruction and the defining instruction.
614 if (MRI
->hasOneNonDBGUse(Reg
)) {
615 // If the definition resides in same MBB,
616 // claim it's likely we can sink these together.
617 // If definition resides elsewhere, we aren't
618 // blocking it from being sunk so don't break the edge.
619 MachineInstr
*DefMI
= MRI
->getVRegDef(Reg
);
620 if (DefMI
->getParent() == MI
.getParent())
628 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr
&MI
,
629 MachineBasicBlock
*FromBB
,
630 MachineBasicBlock
*ToBB
,
632 if (!isWorthBreakingCriticalEdge(MI
, FromBB
, ToBB
))
635 // Avoid breaking back edge. From == To means backedge for single BB loop.
636 if (!SplitEdges
|| FromBB
== ToBB
)
639 // Check for backedges of more "complex" loops.
640 if (LI
->getLoopFor(FromBB
) == LI
->getLoopFor(ToBB
) &&
641 LI
->isLoopHeader(ToBB
))
644 // It's not always legal to break critical edges and sink the computation
652 // ... no uses of v1024
658 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
667 // ... no uses of v1024
673 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
674 // flow. We need to ensure the new basic block where the computation is
675 // sunk to dominates all the uses.
676 // It's only legal to break critical edge and sink the computation to the
677 // new block if all the predecessors of "To", except for "From", are
678 // not dominated by "From". Given SSA property, this means these
679 // predecessors are dominated by "To".
681 // There is no need to do this check if all the uses are PHI nodes. PHI
682 // sources are only defined on the specific predecessor edges.
684 for (MachineBasicBlock
*Pred
: ToBB
->predecessors())
685 if (Pred
!= FromBB
&& !DT
->dominates(ToBB
, Pred
))
689 ToSplit
.insert(std::make_pair(FromBB
, ToBB
));
694 std::vector
<unsigned> &
695 MachineSinking::getBBRegisterPressure(MachineBasicBlock
&MBB
) {
696 // Currently to save compiling time, MBB's register pressure will not change
697 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's
698 // register pressure is changed after sinking any instructions into it.
699 // FIXME: need a accurate and cheap register pressure estiminate model here.
700 auto RP
= CachedRegisterPressure
.find(&MBB
);
701 if (RP
!= CachedRegisterPressure
.end())
704 RegionPressure Pressure
;
705 RegPressureTracker
RPTracker(Pressure
);
707 // Initialize the register pressure tracker.
708 RPTracker
.init(MBB
.getParent(), &RegClassInfo
, nullptr, &MBB
, MBB
.end(),
709 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
711 for (MachineBasicBlock::iterator MII
= MBB
.instr_end(),
712 MIE
= MBB
.instr_begin();
714 MachineInstr
&MI
= *std::prev(MII
);
715 if (MI
.isDebugInstr() || MI
.isPseudoProbe())
717 RegisterOperands RegOpers
;
718 RegOpers
.collect(MI
, *TRI
, *MRI
, false, false);
719 RPTracker
.recedeSkipDebugValues();
720 assert(&*RPTracker
.getPos() == &MI
&& "RPTracker sync error!");
721 RPTracker
.recede(RegOpers
);
724 RPTracker
.closeRegion();
725 auto It
= CachedRegisterPressure
.insert(
726 std::make_pair(&MBB
, RPTracker
.getPressure().MaxSetPressure
));
727 return It
.first
->second
;
730 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
731 bool MachineSinking::isProfitableToSinkTo(Register Reg
, MachineInstr
&MI
,
732 MachineBasicBlock
*MBB
,
733 MachineBasicBlock
*SuccToSinkTo
,
734 AllSuccsCache
&AllSuccessors
) {
735 assert (SuccToSinkTo
&& "Invalid SinkTo Candidate BB");
737 if (MBB
== SuccToSinkTo
)
740 // It is profitable if SuccToSinkTo does not post dominate current block.
741 if (!PDT
->dominates(SuccToSinkTo
, MBB
))
744 // It is profitable to sink an instruction from a deeper loop to a shallower
745 // loop, even if the latter post-dominates the former (PR21115).
746 if (LI
->getLoopDepth(MBB
) > LI
->getLoopDepth(SuccToSinkTo
))
749 // Check if only use in post dominated block is PHI instruction.
750 bool NonPHIUse
= false;
751 for (MachineInstr
&UseInst
: MRI
->use_nodbg_instructions(Reg
)) {
752 MachineBasicBlock
*UseBlock
= UseInst
.getParent();
753 if (UseBlock
== SuccToSinkTo
&& !UseInst
.isPHI())
759 // If SuccToSinkTo post dominates then also it may be profitable if MI
760 // can further profitably sinked into another block in next round.
761 bool BreakPHIEdge
= false;
762 // FIXME - If finding successor is compile time expensive then cache results.
763 if (MachineBasicBlock
*MBB2
=
764 FindSuccToSinkTo(MI
, SuccToSinkTo
, BreakPHIEdge
, AllSuccessors
))
765 return isProfitableToSinkTo(Reg
, MI
, SuccToSinkTo
, MBB2
, AllSuccessors
);
767 MachineLoop
*ML
= LI
->getLoopFor(MBB
);
769 // If the instruction is not inside a loop, it is not profitable to sink MI to
770 // a post dominate block SuccToSinkTo.
774 auto isRegisterPressureSetExceedLimit
= [&](const TargetRegisterClass
*RC
) {
775 unsigned Weight
= TRI
->getRegClassWeight(RC
).RegWeight
;
776 const int *PS
= TRI
->getRegClassPressureSets(RC
);
777 // Get register pressure for block SuccToSinkTo.
778 std::vector
<unsigned> BBRegisterPressure
=
779 getBBRegisterPressure(*SuccToSinkTo
);
780 for (; *PS
!= -1; PS
++)
781 // check if any register pressure set exceeds limit in block SuccToSinkTo
783 if (Weight
+ BBRegisterPressure
[*PS
] >=
784 TRI
->getRegPressureSetLimit(*MBB
->getParent(), *PS
))
789 // If this instruction is inside a loop and sinking this instruction can make
790 // more registers live range shorten, it is still prifitable.
791 for (const MachineOperand
&MO
: MI
.operands()) {
792 // Ignore non-register operands.
795 Register Reg
= MO
.getReg();
799 if (Register::isPhysicalRegister(Reg
)) {
801 (MRI
->isConstantPhysReg(Reg
) || TII
->isIgnorableUse(MO
)))
804 // Don't handle non-constant and non-ignorable physical register.
808 // Users for the defs are all dominated by SuccToSinkTo.
810 // This def register's live range is shortened after sinking.
811 bool LocalUse
= false;
812 if (!AllUsesDominatedByBlock(Reg
, SuccToSinkTo
, MBB
, BreakPHIEdge
,
816 MachineInstr
*DefMI
= MRI
->getVRegDef(Reg
);
817 // DefMI is defined outside of loop. There should be no live range
818 // impact for this operand. Defination outside of loop means:
819 // 1: defination is outside of loop.
820 // 2: defination is in this loop, but it is a PHI in the loop header.
821 if (LI
->getLoopFor(DefMI
->getParent()) != ML
||
822 (DefMI
->isPHI() && LI
->isLoopHeader(DefMI
->getParent())))
824 // The DefMI is defined inside the loop.
825 // If sinking this operand makes some register pressure set exceed limit,
826 // it is not profitable.
827 if (isRegisterPressureSetExceedLimit(MRI
->getRegClass(Reg
))) {
828 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable.");
834 // If MI is in loop and all its operands are alive across the whole loop or if
835 // no operand sinking make register pressure set exceed limit, it is
836 // profitable to sink MI.
840 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
841 /// computing it if it was not already cached.
842 SmallVector
<MachineBasicBlock
*, 4> &
843 MachineSinking::GetAllSortedSuccessors(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
844 AllSuccsCache
&AllSuccessors
) const {
845 // Do we have the sorted successors in cache ?
846 auto Succs
= AllSuccessors
.find(MBB
);
847 if (Succs
!= AllSuccessors
.end())
848 return Succs
->second
;
850 SmallVector
<MachineBasicBlock
*, 4> AllSuccs(MBB
->successors());
852 // Handle cases where sinking can happen but where the sink point isn't a
853 // successor. For example:
859 for (MachineDomTreeNode
*DTChild
: DT
->getNode(MBB
)->children()) {
860 // DomTree children of MBB that have MBB as immediate dominator are added.
861 if (DTChild
->getIDom()->getBlock() == MI
.getParent() &&
862 // Skip MBBs already added to the AllSuccs vector above.
863 !MBB
->isSuccessor(DTChild
->getBlock()))
864 AllSuccs
.push_back(DTChild
->getBlock());
867 // Sort Successors according to their loop depth or block frequency info.
869 AllSuccs
, [this](const MachineBasicBlock
*L
, const MachineBasicBlock
*R
) {
870 uint64_t LHSFreq
= MBFI
? MBFI
->getBlockFreq(L
).getFrequency() : 0;
871 uint64_t RHSFreq
= MBFI
? MBFI
->getBlockFreq(R
).getFrequency() : 0;
872 bool HasBlockFreq
= LHSFreq
!= 0 && RHSFreq
!= 0;
873 return HasBlockFreq
? LHSFreq
< RHSFreq
874 : LI
->getLoopDepth(L
) < LI
->getLoopDepth(R
);
877 auto it
= AllSuccessors
.insert(std::make_pair(MBB
, AllSuccs
));
879 return it
.first
->second
;
882 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
884 MachineSinking::FindSuccToSinkTo(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
886 AllSuccsCache
&AllSuccessors
) {
887 assert (MBB
&& "Invalid MachineBasicBlock!");
889 // Loop over all the operands of the specified instruction. If there is
890 // anything we can't handle, bail out.
892 // SuccToSinkTo - This is the successor to sink this instruction to, once we
894 MachineBasicBlock
*SuccToSinkTo
= nullptr;
895 for (const MachineOperand
&MO
: MI
.operands()) {
896 if (!MO
.isReg()) continue; // Ignore non-register operands.
898 Register Reg
= MO
.getReg();
899 if (Reg
== 0) continue;
901 if (Register::isPhysicalRegister(Reg
)) {
903 // If the physreg has no defs anywhere, it's just an ambient register
904 // and we can freely move its uses. Alternatively, if it's allocatable,
905 // it could get allocated to something with a def during allocation.
906 if (!MRI
->isConstantPhysReg(Reg
) && !TII
->isIgnorableUse(MO
))
908 } else if (!MO
.isDead()) {
909 // A def that isn't dead. We can't move it.
913 // Virtual register uses are always safe to sink.
914 if (MO
.isUse()) continue;
916 // If it's not safe to move defs of the register class, then abort.
917 if (!TII
->isSafeToMoveRegClassDefs(MRI
->getRegClass(Reg
)))
920 // Virtual register defs can only be sunk if all their uses are in blocks
921 // dominated by one of the successors.
923 // If a previous operand picked a block to sink to, then this operand
924 // must be sinkable to the same block.
925 bool LocalUse
= false;
926 if (!AllUsesDominatedByBlock(Reg
, SuccToSinkTo
, MBB
,
927 BreakPHIEdge
, LocalUse
))
933 // Otherwise, we should look at all the successors and decide which one
934 // we should sink to. If we have reliable block frequency information
935 // (frequency != 0) available, give successors with smaller frequencies
936 // higher priority, otherwise prioritize smaller loop depths.
937 for (MachineBasicBlock
*SuccBlock
:
938 GetAllSortedSuccessors(MI
, MBB
, AllSuccessors
)) {
939 bool LocalUse
= false;
940 if (AllUsesDominatedByBlock(Reg
, SuccBlock
, MBB
,
941 BreakPHIEdge
, LocalUse
)) {
942 SuccToSinkTo
= SuccBlock
;
946 // Def is used locally, it's never safe to move this def.
950 // If we couldn't find a block to sink to, ignore this instruction.
953 if (!isProfitableToSinkTo(Reg
, MI
, MBB
, SuccToSinkTo
, AllSuccessors
))
958 // It is not possible to sink an instruction into its own block. This can
959 // happen with loops.
960 if (MBB
== SuccToSinkTo
)
963 // It's not safe to sink instructions to EH landing pad. Control flow into
964 // landing pad is implicitly defined.
965 if (SuccToSinkTo
&& SuccToSinkTo
->isEHPad())
968 // It ought to be okay to sink instructions into an INLINEASM_BR target, but
969 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in
970 // the source block (which this code does not yet do). So for now, forbid
972 if (SuccToSinkTo
&& SuccToSinkTo
->isInlineAsmBrIndirectTarget())
978 /// Return true if MI is likely to be usable as a memory operation by the
979 /// implicit null check optimization.
981 /// This is a "best effort" heuristic, and should not be relied upon for
982 /// correctness. This returning true does not guarantee that the implicit null
983 /// check optimization is legal over MI, and this returning false does not
984 /// guarantee MI cannot possibly be used to do a null check.
985 static bool SinkingPreventsImplicitNullCheck(MachineInstr
&MI
,
986 const TargetInstrInfo
*TII
,
987 const TargetRegisterInfo
*TRI
) {
988 using MachineBranchPredicate
= TargetInstrInfo::MachineBranchPredicate
;
990 auto *MBB
= MI
.getParent();
991 if (MBB
->pred_size() != 1)
994 auto *PredMBB
= *MBB
->pred_begin();
995 auto *PredBB
= PredMBB
->getBasicBlock();
997 // Frontends that don't use implicit null checks have no reason to emit
998 // branches with make.implicit metadata, and this function should always
999 // return false for them.
1001 !PredBB
->getTerminator()->getMetadata(LLVMContext::MD_make_implicit
))
1004 const MachineOperand
*BaseOp
;
1006 bool OffsetIsScalable
;
1007 if (!TII
->getMemOperandWithOffset(MI
, BaseOp
, Offset
, OffsetIsScalable
, TRI
))
1010 if (!BaseOp
->isReg())
1013 if (!(MI
.mayLoad() && !MI
.isPredicable()))
1016 MachineBranchPredicate MBP
;
1017 if (TII
->analyzeBranchPredicate(*PredMBB
, MBP
, false))
1020 return MBP
.LHS
.isReg() && MBP
.RHS
.isImm() && MBP
.RHS
.getImm() == 0 &&
1021 (MBP
.Predicate
== MachineBranchPredicate::PRED_NE
||
1022 MBP
.Predicate
== MachineBranchPredicate::PRED_EQ
) &&
1023 MBP
.LHS
.getReg() == BaseOp
->getReg();
1026 /// If the sunk instruction is a copy, try to forward the copy instead of
1027 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
1028 /// there's any subregister weirdness involved. Returns true if copy
1029 /// propagation occurred.
1030 static bool attemptDebugCopyProp(MachineInstr
&SinkInst
, MachineInstr
&DbgMI
,
1032 const MachineRegisterInfo
&MRI
= SinkInst
.getMF()->getRegInfo();
1033 const TargetInstrInfo
&TII
= *SinkInst
.getMF()->getSubtarget().getInstrInfo();
1035 // Copy DBG_VALUE operand and set the original to undef. We then check to
1036 // see whether this is something that can be copy-forwarded. If it isn't,
1037 // continue around the loop.
1039 const MachineOperand
*SrcMO
= nullptr, *DstMO
= nullptr;
1040 auto CopyOperands
= TII
.isCopyInstr(SinkInst
);
1043 SrcMO
= CopyOperands
->Source
;
1044 DstMO
= CopyOperands
->Destination
;
1046 // Check validity of forwarding this copy.
1047 bool PostRA
= MRI
.getNumVirtRegs() == 0;
1049 // Trying to forward between physical and virtual registers is too hard.
1050 if (Reg
.isVirtual() != SrcMO
->getReg().isVirtual())
1053 // Only try virtual register copy-forwarding before regalloc, and physical
1054 // register copy-forwarding after regalloc.
1055 bool arePhysRegs
= !Reg
.isVirtual();
1056 if (arePhysRegs
!= PostRA
)
1059 // Pre-regalloc, only forward if all subregisters agree (or there are no
1060 // subregs at all). More analysis might recover some forwardable copies.
1062 for (auto &DbgMO
: DbgMI
.getDebugOperandsForReg(Reg
))
1063 if (DbgMO
.getSubReg() != SrcMO
->getSubReg() ||
1064 DbgMO
.getSubReg() != DstMO
->getSubReg())
1067 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
1068 // of this copy. Only forward the copy if the DBG_VALUE operand exactly
1069 // matches the copy destination.
1070 if (PostRA
&& Reg
!= DstMO
->getReg())
1073 for (auto &DbgMO
: DbgMI
.getDebugOperandsForReg(Reg
)) {
1074 DbgMO
.setReg(SrcMO
->getReg());
1075 DbgMO
.setSubReg(SrcMO
->getSubReg());
1080 using MIRegs
= std::pair
<MachineInstr
*, SmallVector
<unsigned, 2>>;
1081 /// Sink an instruction and its associated debug instructions.
1082 static void performSink(MachineInstr
&MI
, MachineBasicBlock
&SuccToSinkTo
,
1083 MachineBasicBlock::iterator InsertPos
,
1084 SmallVectorImpl
<MIRegs
> &DbgValuesToSink
) {
1086 // If we cannot find a location to use (merge with), then we erase the debug
1087 // location to prevent debug-info driven tools from potentially reporting
1088 // wrong location information.
1089 if (!SuccToSinkTo
.empty() && InsertPos
!= SuccToSinkTo
.end())
1090 MI
.setDebugLoc(DILocation::getMergedLocation(MI
.getDebugLoc(),
1091 InsertPos
->getDebugLoc()));
1093 MI
.setDebugLoc(DebugLoc());
1095 // Move the instruction.
1096 MachineBasicBlock
*ParentBlock
= MI
.getParent();
1097 SuccToSinkTo
.splice(InsertPos
, ParentBlock
, MI
,
1098 ++MachineBasicBlock::iterator(MI
));
1100 // Sink a copy of debug users to the insert position. Mark the original
1101 // DBG_VALUE location as 'undef', indicating that any earlier variable
1102 // location should be terminated as we've optimised away the value at this
1104 for (auto DbgValueToSink
: DbgValuesToSink
) {
1105 MachineInstr
*DbgMI
= DbgValueToSink
.first
;
1106 MachineInstr
*NewDbgMI
= DbgMI
->getMF()->CloneMachineInstr(DbgMI
);
1107 SuccToSinkTo
.insert(InsertPos
, NewDbgMI
);
1109 bool PropagatedAllSunkOps
= true;
1110 for (unsigned Reg
: DbgValueToSink
.second
) {
1111 if (DbgMI
->hasDebugOperandForReg(Reg
)) {
1112 if (!attemptDebugCopyProp(MI
, *DbgMI
, Reg
)) {
1113 PropagatedAllSunkOps
= false;
1118 if (!PropagatedAllSunkOps
)
1119 DbgMI
->setDebugValueUndef();
1123 /// hasStoreBetween - check if there is store betweeen straight line blocks From
1125 bool MachineSinking::hasStoreBetween(MachineBasicBlock
*From
,
1126 MachineBasicBlock
*To
, MachineInstr
&MI
) {
1127 // Make sure From and To are in straight line which means From dominates To
1128 // and To post dominates From.
1129 if (!DT
->dominates(From
, To
) || !PDT
->dominates(To
, From
))
1132 auto BlockPair
= std::make_pair(From
, To
);
1134 // Does these two blocks pair be queried before and have a definite cached
1136 if (HasStoreCache
.find(BlockPair
) != HasStoreCache
.end())
1137 return HasStoreCache
[BlockPair
];
1139 if (StoreInstrCache
.find(BlockPair
) != StoreInstrCache
.end())
1140 return llvm::any_of(StoreInstrCache
[BlockPair
], [&](MachineInstr
*I
) {
1141 return I
->mayAlias(AA
, MI
, false);
1144 bool SawStore
= false;
1145 bool HasAliasedStore
= false;
1146 DenseSet
<MachineBasicBlock
*> HandledBlocks
;
1147 DenseSet
<MachineBasicBlock
*> HandledDomBlocks
;
1148 // Go through all reachable blocks from From.
1149 for (MachineBasicBlock
*BB
: depth_first(From
)) {
1150 // We insert the instruction at the start of block To, so no need to worry
1151 // about stores inside To.
1152 // Store in block From should be already considered when just enter function
1154 if (BB
== To
|| BB
== From
)
1157 // We already handle this BB in previous iteration.
1158 if (HandledBlocks
.count(BB
))
1161 HandledBlocks
.insert(BB
);
1162 // To post dominates BB, it must be a path from block From.
1163 if (PDT
->dominates(To
, BB
)) {
1164 if (!HandledDomBlocks
.count(BB
))
1165 HandledDomBlocks
.insert(BB
);
1167 // If this BB is too big or the block number in straight line between From
1168 // and To is too big, stop searching to save compiling time.
1169 if (BB
->size() > SinkLoadInstsPerBlockThreshold
||
1170 HandledDomBlocks
.size() > SinkLoadBlocksThreshold
) {
1171 for (auto *DomBB
: HandledDomBlocks
) {
1172 if (DomBB
!= BB
&& DT
->dominates(DomBB
, BB
))
1173 HasStoreCache
[std::make_pair(DomBB
, To
)] = true;
1174 else if(DomBB
!= BB
&& DT
->dominates(BB
, DomBB
))
1175 HasStoreCache
[std::make_pair(From
, DomBB
)] = true;
1177 HasStoreCache
[BlockPair
] = true;
1181 for (MachineInstr
&I
: *BB
) {
1182 // Treat as alias conservatively for a call or an ordered memory
1184 if (I
.isCall() || I
.hasOrderedMemoryRef()) {
1185 for (auto *DomBB
: HandledDomBlocks
) {
1186 if (DomBB
!= BB
&& DT
->dominates(DomBB
, BB
))
1187 HasStoreCache
[std::make_pair(DomBB
, To
)] = true;
1188 else if(DomBB
!= BB
&& DT
->dominates(BB
, DomBB
))
1189 HasStoreCache
[std::make_pair(From
, DomBB
)] = true;
1191 HasStoreCache
[BlockPair
] = true;
1197 // We still have chance to sink MI if all stores between are not
1199 // Cache all store instructions, so that we don't need to go through
1200 // all From reachable blocks for next load instruction.
1201 if (I
.mayAlias(AA
, MI
, false))
1202 HasAliasedStore
= true;
1203 StoreInstrCache
[BlockPair
].push_back(&I
);
1208 // If there is no store at all, cache the result.
1210 HasStoreCache
[BlockPair
] = false;
1211 return HasAliasedStore
;
1214 /// Sink instructions into loops if profitable. This especially tries to prevent
1215 /// register spills caused by register pressure if there is little to no
1216 /// overhead moving instructions into loops.
1217 bool MachineSinking::SinkIntoLoop(MachineLoop
*L
, MachineInstr
&I
) {
1218 LLVM_DEBUG(dbgs() << "LoopSink: Finding sink block for: " << I
);
1219 MachineBasicBlock
*Preheader
= L
->getLoopPreheader();
1220 assert(Preheader
&& "Loop sink needs a preheader block");
1221 MachineBasicBlock
*SinkBlock
= nullptr;
1222 bool CanSink
= true;
1223 const MachineOperand
&MO
= I
.getOperand(0);
1225 for (MachineInstr
&MI
: MRI
->use_instructions(MO
.getReg())) {
1226 LLVM_DEBUG(dbgs() << "LoopSink: Analysing use: " << MI
);
1227 if (!L
->contains(&MI
)) {
1228 LLVM_DEBUG(dbgs() << "LoopSink: Use not in loop, can't sink.\n");
1233 // FIXME: Come up with a proper cost model that estimates whether sinking
1234 // the instruction (and thus possibly executing it on every loop
1235 // iteration) is more expensive than a register.
1236 // For now assumes that copies are cheap and thus almost always worth it.
1238 LLVM_DEBUG(dbgs() << "LoopSink: Use is not a copy\n");
1243 SinkBlock
= MI
.getParent();
1244 LLVM_DEBUG(dbgs() << "LoopSink: Setting sink block to: "
1245 << printMBBReference(*SinkBlock
) << "\n");
1248 SinkBlock
= DT
->findNearestCommonDominator(SinkBlock
, MI
.getParent());
1250 LLVM_DEBUG(dbgs() << "LoopSink: Can't find nearest dominator\n");
1254 LLVM_DEBUG(dbgs() << "LoopSink: Setting nearest common dom block: " <<
1255 printMBBReference(*SinkBlock
) << "\n");
1259 LLVM_DEBUG(dbgs() << "LoopSink: Can't sink instruction.\n");
1263 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, can't find sink block.\n");
1266 if (SinkBlock
== Preheader
) {
1267 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, sink block is the preheader\n");
1270 if (SinkBlock
->size() > SinkLoadInstsPerBlockThreshold
) {
1271 LLVM_DEBUG(dbgs() << "LoopSink: Not Sinking, block too large to analyse.\n");
1275 LLVM_DEBUG(dbgs() << "LoopSink: Sinking instruction!\n");
1276 SinkBlock
->splice(SinkBlock
->getFirstNonPHI(), Preheader
, I
);
1278 // The instruction is moved from its basic block, so do not retain the
1279 // debug information.
1280 assert(!I
.isDebugInstr() && "Should not sink debug inst");
1281 I
.setDebugLoc(DebugLoc());
1285 /// SinkInstruction - Determine whether it is safe to sink the specified machine
1286 /// instruction out of its current block into a successor.
1287 bool MachineSinking::SinkInstruction(MachineInstr
&MI
, bool &SawStore
,
1288 AllSuccsCache
&AllSuccessors
) {
1289 // Don't sink instructions that the target prefers not to sink.
1290 if (!TII
->shouldSink(MI
))
1293 // Check if it's safe to move the instruction.
1294 if (!MI
.isSafeToMove(AA
, SawStore
))
1297 // Convergent operations may not be made control-dependent on additional
1299 if (MI
.isConvergent())
1302 // Don't break implicit null checks. This is a performance heuristic, and not
1303 // required for correctness.
1304 if (SinkingPreventsImplicitNullCheck(MI
, TII
, TRI
))
1307 // FIXME: This should include support for sinking instructions within the
1308 // block they are currently in to shorten the live ranges. We often get
1309 // instructions sunk into the top of a large block, but it would be better to
1310 // also sink them down before their first use in the block. This xform has to
1311 // be careful not to *increase* register pressure though, e.g. sinking
1312 // "x = y + z" down if it kills y and z would increase the live ranges of y
1313 // and z and only shrink the live range of x.
1315 bool BreakPHIEdge
= false;
1316 MachineBasicBlock
*ParentBlock
= MI
.getParent();
1317 MachineBasicBlock
*SuccToSinkTo
=
1318 FindSuccToSinkTo(MI
, ParentBlock
, BreakPHIEdge
, AllSuccessors
);
1320 // If there are no outputs, it must have side-effects.
1324 // If the instruction to move defines a dead physical register which is live
1325 // when leaving the basic block, don't move it because it could turn into a
1326 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
1327 for (const MachineOperand
&MO
: MI
.operands()) {
1328 if (!MO
.isReg() || MO
.isUse())
1330 Register Reg
= MO
.getReg();
1331 if (Reg
== 0 || !Register::isPhysicalRegister(Reg
))
1333 if (SuccToSinkTo
->isLiveIn(Reg
))
1337 LLVM_DEBUG(dbgs() << "Sink instr " << MI
<< "\tinto block " << *SuccToSinkTo
);
1339 // If the block has multiple predecessors, this is a critical edge.
1340 // Decide if we can sink along it or need to break the edge.
1341 if (SuccToSinkTo
->pred_size() > 1) {
1342 // We cannot sink a load across a critical edge - there may be stores in
1343 // other code paths.
1344 bool TryBreak
= false;
1346 MI
.mayLoad() ? hasStoreBetween(ParentBlock
, SuccToSinkTo
, MI
) : true;
1347 if (!MI
.isSafeToMove(AA
, Store
)) {
1348 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
1352 // We don't want to sink across a critical edge if we don't dominate the
1353 // successor. We could be introducing calculations to new code paths.
1354 if (!TryBreak
&& !DT
->dominates(ParentBlock
, SuccToSinkTo
)) {
1355 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
1359 // Don't sink instructions into a loop.
1360 if (!TryBreak
&& LI
->isLoopHeader(SuccToSinkTo
)) {
1361 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
1365 // Otherwise we are OK with sinking along a critical edge.
1367 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
1369 // Mark this edge as to be split.
1370 // If the edge can actually be split, the next iteration of the main loop
1371 // will sink MI in the newly created block.
1373 PostponeSplitCriticalEdge(MI
, ParentBlock
, SuccToSinkTo
, BreakPHIEdge
);
1375 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
1376 "break critical edge\n");
1377 // The instruction will not be sunk this time.
1383 // BreakPHIEdge is true if all the uses are in the successor MBB being
1384 // sunken into and they are all PHI nodes. In this case, machine-sink must
1385 // break the critical edge first.
1386 bool Status
= PostponeSplitCriticalEdge(MI
, ParentBlock
,
1387 SuccToSinkTo
, BreakPHIEdge
);
1389 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
1390 "break critical edge\n");
1391 // The instruction will not be sunk this time.
1395 // Determine where to insert into. Skip phi nodes.
1396 MachineBasicBlock::iterator InsertPos
= SuccToSinkTo
->begin();
1397 while (InsertPos
!= SuccToSinkTo
->end() && InsertPos
->isPHI())
1400 // Collect debug users of any vreg that this inst defines.
1401 SmallVector
<MIRegs
, 4> DbgUsersToSink
;
1402 for (auto &MO
: MI
.operands()) {
1403 if (!MO
.isReg() || !MO
.isDef() || !MO
.getReg().isVirtual())
1405 if (!SeenDbgUsers
.count(MO
.getReg()))
1408 // Sink any users that don't pass any other DBG_VALUEs for this variable.
1409 auto &Users
= SeenDbgUsers
[MO
.getReg()];
1410 for (auto &User
: Users
) {
1411 MachineInstr
*DbgMI
= User
.getPointer();
1412 if (User
.getInt()) {
1413 // This DBG_VALUE would re-order assignments. If we can't copy-propagate
1414 // it, it can't be recovered. Set it undef.
1415 if (!attemptDebugCopyProp(MI
, *DbgMI
, MO
.getReg()))
1416 DbgMI
->setDebugValueUndef();
1418 DbgUsersToSink
.push_back(
1419 {DbgMI
, SmallVector
<unsigned, 2>(1, MO
.getReg())});
1424 // After sinking, some debug users may not be dominated any more. If possible,
1425 // copy-propagate their operands. As it's expensive, don't do this if there's
1426 // no debuginfo in the program.
1427 if (MI
.getMF()->getFunction().getSubprogram() && MI
.isCopy())
1428 SalvageUnsunkDebugUsersOfCopy(MI
, SuccToSinkTo
);
1430 performSink(MI
, *SuccToSinkTo
, InsertPos
, DbgUsersToSink
);
1432 // Conservatively, clear any kill flags, since it's possible that they are no
1434 // Note that we have to clear the kill flags for any register this instruction
1435 // uses as we may sink over another instruction which currently kills the
1437 for (MachineOperand
&MO
: MI
.operands()) {
1438 if (MO
.isReg() && MO
.isUse())
1439 RegsToClearKillFlags
.insert(MO
.getReg()); // Remember to clear kill flags.
1445 void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
1446 MachineInstr
&MI
, MachineBasicBlock
*TargetBlock
) {
1447 assert(MI
.isCopy());
1448 assert(MI
.getOperand(1).isReg());
1450 // Enumerate all users of vreg operands that are def'd. Skip those that will
1451 // be sunk. For the rest, if they are not dominated by the block we will sink
1452 // MI into, propagate the copy source to them.
1453 SmallVector
<MachineInstr
*, 4> DbgDefUsers
;
1454 SmallVector
<Register
, 4> DbgUseRegs
;
1455 const MachineRegisterInfo
&MRI
= MI
.getMF()->getRegInfo();
1456 for (auto &MO
: MI
.operands()) {
1457 if (!MO
.isReg() || !MO
.isDef() || !MO
.getReg().isVirtual())
1459 DbgUseRegs
.push_back(MO
.getReg());
1460 for (auto &User
: MRI
.use_instructions(MO
.getReg())) {
1461 if (!User
.isDebugValue() || DT
->dominates(TargetBlock
, User
.getParent()))
1464 // If is in same block, will either sink or be use-before-def.
1465 if (User
.getParent() == MI
.getParent())
1468 assert(User
.hasDebugOperandForReg(MO
.getReg()) &&
1469 "DBG_VALUE user of vreg, but has no operand for it?");
1470 DbgDefUsers
.push_back(&User
);
1474 // Point the users of this copy that are no longer dominated, at the source
1476 for (auto *User
: DbgDefUsers
) {
1477 for (auto &Reg
: DbgUseRegs
) {
1478 for (auto &DbgOp
: User
->getDebugOperandsForReg(Reg
)) {
1479 DbgOp
.setReg(MI
.getOperand(1).getReg());
1480 DbgOp
.setSubReg(MI
.getOperand(1).getSubReg());
1486 //===----------------------------------------------------------------------===//
1487 // This pass is not intended to be a replacement or a complete alternative
1488 // for the pre-ra machine sink pass. It is only designed to sink COPY
1489 // instructions which should be handled after RA.
1491 // This pass sinks COPY instructions into a successor block, if the COPY is not
1492 // used in the current block and the COPY is live-in to a single successor
1493 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the
1494 // copy on paths where their results aren't needed. This also exposes
1495 // additional opportunites for dead copy elimination and shrink wrapping.
1497 // These copies were either not handled by or are inserted after the MachineSink
1498 // pass. As an example of the former case, the MachineSink pass cannot sink
1499 // COPY instructions with allocatable source registers; for AArch64 these type
1500 // of copy instructions are frequently used to move function parameters (PhyReg)
1501 // into virtual registers in the entry block.
1503 // For the machine IR below, this pass will sink %w19 in the entry into its
1504 // successor (%bb.1) because %w19 is only live-in in %bb.1.
1506 // %wzr = SUBSWri %w1, 1
1512 // %w0 = ADDWrr %w0, %w19
1517 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
1518 // able to see %bb.0 as a candidate.
1519 //===----------------------------------------------------------------------===//
1522 class PostRAMachineSinking
: public MachineFunctionPass
{
1524 bool runOnMachineFunction(MachineFunction
&MF
) override
;
1527 PostRAMachineSinking() : MachineFunctionPass(ID
) {}
1528 StringRef
getPassName() const override
{ return "PostRA Machine Sink"; }
1530 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1531 AU
.setPreservesCFG();
1532 MachineFunctionPass::getAnalysisUsage(AU
);
1535 MachineFunctionProperties
getRequiredProperties() const override
{
1536 return MachineFunctionProperties().set(
1537 MachineFunctionProperties::Property::NoVRegs
);
1541 /// Track which register units have been modified and used.
1542 LiveRegUnits ModifiedRegUnits
, UsedRegUnits
;
1544 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
1545 /// entry in this map for each unit it touches. The DBG_VALUE's entry
1546 /// consists of a pointer to the instruction itself, and a vector of registers
1547 /// referred to by the instruction that overlap the key register unit.
1548 DenseMap
<unsigned, SmallVector
<MIRegs
, 2>> SeenDbgInstrs
;
1550 /// Sink Copy instructions unused in the same block close to their uses in
1552 bool tryToSinkCopy(MachineBasicBlock
&BB
, MachineFunction
&MF
,
1553 const TargetRegisterInfo
*TRI
, const TargetInstrInfo
*TII
);
1557 char PostRAMachineSinking::ID
= 0;
1558 char &llvm::PostRAMachineSinkingID
= PostRAMachineSinking::ID
;
1560 INITIALIZE_PASS(PostRAMachineSinking
, "postra-machine-sink",
1561 "PostRA Machine Sink", false, false)
1563 static bool aliasWithRegsInLiveIn(MachineBasicBlock
&MBB
, unsigned Reg
,
1564 const TargetRegisterInfo
*TRI
) {
1565 LiveRegUnits
LiveInRegUnits(*TRI
);
1566 LiveInRegUnits
.addLiveIns(MBB
);
1567 return !LiveInRegUnits
.available(Reg
);
1570 static MachineBasicBlock
*
1571 getSingleLiveInSuccBB(MachineBasicBlock
&CurBB
,
1572 const SmallPtrSetImpl
<MachineBasicBlock
*> &SinkableBBs
,
1573 unsigned Reg
, const TargetRegisterInfo
*TRI
) {
1574 // Try to find a single sinkable successor in which Reg is live-in.
1575 MachineBasicBlock
*BB
= nullptr;
1576 for (auto *SI
: SinkableBBs
) {
1577 if (aliasWithRegsInLiveIn(*SI
, Reg
, TRI
)) {
1578 // If BB is set here, Reg is live-in to at least two sinkable successors,
1585 // Reg is not live-in to any sinkable successors.
1589 // Check if any register aliased with Reg is live-in in other successors.
1590 for (auto *SI
: CurBB
.successors()) {
1591 if (!SinkableBBs
.count(SI
) && aliasWithRegsInLiveIn(*SI
, Reg
, TRI
))
1597 static MachineBasicBlock
*
1598 getSingleLiveInSuccBB(MachineBasicBlock
&CurBB
,
1599 const SmallPtrSetImpl
<MachineBasicBlock
*> &SinkableBBs
,
1600 ArrayRef
<unsigned> DefedRegsInCopy
,
1601 const TargetRegisterInfo
*TRI
) {
1602 MachineBasicBlock
*SingleBB
= nullptr;
1603 for (auto DefReg
: DefedRegsInCopy
) {
1604 MachineBasicBlock
*BB
=
1605 getSingleLiveInSuccBB(CurBB
, SinkableBBs
, DefReg
, TRI
);
1606 if (!BB
|| (SingleBB
&& SingleBB
!= BB
))
1613 static void clearKillFlags(MachineInstr
*MI
, MachineBasicBlock
&CurBB
,
1614 SmallVectorImpl
<unsigned> &UsedOpsInCopy
,
1615 LiveRegUnits
&UsedRegUnits
,
1616 const TargetRegisterInfo
*TRI
) {
1617 for (auto U
: UsedOpsInCopy
) {
1618 MachineOperand
&MO
= MI
->getOperand(U
);
1619 Register SrcReg
= MO
.getReg();
1620 if (!UsedRegUnits
.available(SrcReg
)) {
1621 MachineBasicBlock::iterator NI
= std::next(MI
->getIterator());
1622 for (MachineInstr
&UI
: make_range(NI
, CurBB
.end())) {
1623 if (UI
.killsRegister(SrcReg
, TRI
)) {
1624 UI
.clearRegisterKills(SrcReg
, TRI
);
1633 static void updateLiveIn(MachineInstr
*MI
, MachineBasicBlock
*SuccBB
,
1634 SmallVectorImpl
<unsigned> &UsedOpsInCopy
,
1635 SmallVectorImpl
<unsigned> &DefedRegsInCopy
) {
1636 MachineFunction
&MF
= *SuccBB
->getParent();
1637 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
1638 for (unsigned DefReg
: DefedRegsInCopy
)
1639 for (MCSubRegIterator
S(DefReg
, TRI
, true); S
.isValid(); ++S
)
1640 SuccBB
->removeLiveIn(*S
);
1641 for (auto U
: UsedOpsInCopy
) {
1642 Register SrcReg
= MI
->getOperand(U
).getReg();
1644 for (MCRegUnitMaskIterator
S(SrcReg
, TRI
); S
.isValid(); ++S
) {
1645 Mask
|= (*S
).second
;
1647 SuccBB
->addLiveIn(SrcReg
, Mask
.any() ? Mask
: LaneBitmask::getAll());
1649 SuccBB
->sortUniqueLiveIns();
1652 static bool hasRegisterDependency(MachineInstr
*MI
,
1653 SmallVectorImpl
<unsigned> &UsedOpsInCopy
,
1654 SmallVectorImpl
<unsigned> &DefedRegsInCopy
,
1655 LiveRegUnits
&ModifiedRegUnits
,
1656 LiveRegUnits
&UsedRegUnits
) {
1657 bool HasRegDependency
= false;
1658 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1659 MachineOperand
&MO
= MI
->getOperand(i
);
1662 Register Reg
= MO
.getReg();
1666 if (!ModifiedRegUnits
.available(Reg
) || !UsedRegUnits
.available(Reg
)) {
1667 HasRegDependency
= true;
1670 DefedRegsInCopy
.push_back(Reg
);
1672 // FIXME: instead of isUse(), readsReg() would be a better fix here,
1673 // For example, we can ignore modifications in reg with undef. However,
1674 // it's not perfectly clear if skipping the internal read is safe in all
1676 } else if (MO
.isUse()) {
1677 if (!ModifiedRegUnits
.available(Reg
)) {
1678 HasRegDependency
= true;
1681 UsedOpsInCopy
.push_back(i
);
1684 return HasRegDependency
;
1687 static SmallSet
<MCRegister
, 4> getRegUnits(MCRegister Reg
,
1688 const TargetRegisterInfo
*TRI
) {
1689 SmallSet
<MCRegister
, 4> RegUnits
;
1690 for (auto RI
= MCRegUnitIterator(Reg
, TRI
); RI
.isValid(); ++RI
)
1691 RegUnits
.insert(*RI
);
1695 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock
&CurBB
,
1696 MachineFunction
&MF
,
1697 const TargetRegisterInfo
*TRI
,
1698 const TargetInstrInfo
*TII
) {
1699 SmallPtrSet
<MachineBasicBlock
*, 2> SinkableBBs
;
1700 // FIXME: For now, we sink only to a successor which has a single predecessor
1701 // so that we can directly sink COPY instructions to the successor without
1702 // adding any new block or branch instruction.
1703 for (MachineBasicBlock
*SI
: CurBB
.successors())
1704 if (!SI
->livein_empty() && SI
->pred_size() == 1)
1705 SinkableBBs
.insert(SI
);
1707 if (SinkableBBs
.empty())
1710 bool Changed
= false;
1712 // Track which registers have been modified and used between the end of the
1713 // block and the current instruction.
1714 ModifiedRegUnits
.clear();
1715 UsedRegUnits
.clear();
1716 SeenDbgInstrs
.clear();
1718 for (MachineInstr
&MI
: llvm::make_early_inc_range(llvm::reverse(CurBB
))) {
1719 // Track the operand index for use in Copy.
1720 SmallVector
<unsigned, 2> UsedOpsInCopy
;
1721 // Track the register number defed in Copy.
1722 SmallVector
<unsigned, 2> DefedRegsInCopy
;
1724 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1725 // for DBG_VALUEs later, record them when they're encountered.
1726 if (MI
.isDebugValue()) {
1727 SmallDenseMap
<MCRegister
, SmallVector
<unsigned, 2>, 4> MIUnits
;
1728 bool IsValid
= true;
1729 for (MachineOperand
&MO
: MI
.debug_operands()) {
1730 if (MO
.isReg() && Register::isPhysicalRegister(MO
.getReg())) {
1731 // Bail if we can already tell the sink would be rejected, rather
1732 // than needlessly accumulating lots of DBG_VALUEs.
1733 if (hasRegisterDependency(&MI
, UsedOpsInCopy
, DefedRegsInCopy
,
1734 ModifiedRegUnits
, UsedRegUnits
)) {
1739 // Record debug use of each reg unit.
1740 SmallSet
<MCRegister
, 4> RegUnits
= getRegUnits(MO
.getReg(), TRI
);
1741 for (MCRegister Reg
: RegUnits
)
1742 MIUnits
[Reg
].push_back(MO
.getReg());
1746 for (auto RegOps
: MIUnits
)
1747 SeenDbgInstrs
[RegOps
.first
].push_back({&MI
, RegOps
.second
});
1752 if (MI
.isDebugOrPseudoInstr())
1755 // Do not move any instruction across function call.
1759 if (!MI
.isCopy() || !MI
.getOperand(0).isRenamable()) {
1760 LiveRegUnits::accumulateUsedDefed(MI
, ModifiedRegUnits
, UsedRegUnits
,
1765 // Don't sink the COPY if it would violate a register dependency.
1766 if (hasRegisterDependency(&MI
, UsedOpsInCopy
, DefedRegsInCopy
,
1767 ModifiedRegUnits
, UsedRegUnits
)) {
1768 LiveRegUnits::accumulateUsedDefed(MI
, ModifiedRegUnits
, UsedRegUnits
,
1772 assert((!UsedOpsInCopy
.empty() && !DefedRegsInCopy
.empty()) &&
1773 "Unexpect SrcReg or DefReg");
1774 MachineBasicBlock
*SuccBB
=
1775 getSingleLiveInSuccBB(CurBB
, SinkableBBs
, DefedRegsInCopy
, TRI
);
1776 // Don't sink if we cannot find a single sinkable successor in which Reg
1779 LiveRegUnits::accumulateUsedDefed(MI
, ModifiedRegUnits
, UsedRegUnits
,
1783 assert((SuccBB
->pred_size() == 1 && *SuccBB
->pred_begin() == &CurBB
) &&
1784 "Unexpected predecessor");
1786 // Collect DBG_VALUEs that must sink with this copy. We've previously
1787 // recorded which reg units that DBG_VALUEs read, if this instruction
1788 // writes any of those units then the corresponding DBG_VALUEs must sink.
1789 MapVector
<MachineInstr
*, MIRegs::second_type
> DbgValsToSinkMap
;
1790 for (auto &MO
: MI
.operands()) {
1791 if (!MO
.isReg() || !MO
.isDef())
1794 SmallSet
<MCRegister
, 4> Units
= getRegUnits(MO
.getReg(), TRI
);
1795 for (MCRegister Reg
: Units
) {
1796 for (auto MIRegs
: SeenDbgInstrs
.lookup(Reg
)) {
1797 auto &Regs
= DbgValsToSinkMap
[MIRegs
.first
];
1798 for (unsigned Reg
: MIRegs
.second
)
1799 Regs
.push_back(Reg
);
1803 SmallVector
<MIRegs
, 4> DbgValsToSink(DbgValsToSinkMap
.begin(),
1804 DbgValsToSinkMap
.end());
1806 // Clear the kill flag if SrcReg is killed between MI and the end of the
1808 clearKillFlags(&MI
, CurBB
, UsedOpsInCopy
, UsedRegUnits
, TRI
);
1809 MachineBasicBlock::iterator InsertPos
= SuccBB
->getFirstNonPHI();
1810 performSink(MI
, *SuccBB
, InsertPos
, DbgValsToSink
);
1811 updateLiveIn(&MI
, SuccBB
, UsedOpsInCopy
, DefedRegsInCopy
);
1814 ++NumPostRACopySink
;
1819 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction
&MF
) {
1820 if (skipFunction(MF
.getFunction()))
1823 bool Changed
= false;
1824 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
1825 const TargetInstrInfo
*TII
= MF
.getSubtarget().getInstrInfo();
1827 ModifiedRegUnits
.init(*TRI
);
1828 UsedRegUnits
.init(*TRI
);
1830 Changed
|= tryToSinkCopy(BB
, MF
, TRI
, TII
);