1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Pass to verify generated machine code. The following is checked:
11 // Operand counts: All explicit operands must be present.
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
86 struct MachineVerifier
{
87 MachineVerifier(Pass
*pass
, const char *b
) : PASS(pass
), Banner(b
) {}
89 unsigned verify(const MachineFunction
&MF
);
93 const MachineFunction
*MF
;
94 const TargetMachine
*TM
;
95 const TargetInstrInfo
*TII
;
96 const TargetRegisterInfo
*TRI
;
97 const MachineRegisterInfo
*MRI
;
101 // Avoid querying the MachineFunctionProperties for each operand.
102 bool isFunctionRegBankSelected
;
103 bool isFunctionSelected
;
104 bool isFunctionTracksDebugUserValues
;
106 using RegVector
= SmallVector
<Register
, 16>;
107 using RegMaskVector
= SmallVector
<const uint32_t *, 4>;
108 using RegSet
= DenseSet
<Register
>;
109 using RegMap
= DenseMap
<Register
, const MachineInstr
*>;
110 using BlockSet
= SmallPtrSet
<const MachineBasicBlock
*, 8>;
112 const MachineInstr
*FirstNonPHI
;
113 const MachineInstr
*FirstTerminator
;
114 BlockSet FunctionBlocks
;
116 BitVector regsReserved
;
118 RegVector regsDefined
, regsDead
, regsKilled
;
119 RegMaskVector regMasks
;
123 // Add Reg and any sub-registers to RV
124 void addRegWithSubRegs(RegVector
&RV
, Register Reg
) {
126 if (Reg
.isPhysical())
127 append_range(RV
, TRI
->subregs(Reg
.asMCReg()));
131 // Is this MBB reachable from the MF entry point?
132 bool reachable
= false;
134 // Vregs that must be live in because they are used without being
135 // defined. Map value is the user. vregsLiveIn doesn't include regs
136 // that only are used by PHI nodes.
139 // Regs killed in MBB. They may be defined again, and will then be in both
140 // regsKilled and regsLiveOut.
143 // Regs defined in MBB and live out. Note that vregs passing through may
144 // be live out without being mentioned here.
147 // Vregs that pass through MBB untouched. This set is disjoint from
148 // regsKilled and regsLiveOut.
151 // Vregs that must pass through MBB because they are needed by a successor
152 // block. This set is disjoint from regsLiveOut.
153 RegSet vregsRequired
;
155 // Set versions of block's predecessor and successor lists.
156 BlockSet Preds
, Succs
;
160 // Add register to vregsRequired if it belongs there. Return true if
162 bool addRequired(Register Reg
) {
163 if (!Reg
.isVirtual())
165 if (regsLiveOut
.count(Reg
))
167 return vregsRequired
.insert(Reg
).second
;
170 // Same for a full set.
171 bool addRequired(const RegSet
&RS
) {
172 bool Changed
= false;
173 for (Register Reg
: RS
)
174 Changed
|= addRequired(Reg
);
178 // Same for a full map.
179 bool addRequired(const RegMap
&RM
) {
180 bool Changed
= false;
181 for (const auto &I
: RM
)
182 Changed
|= addRequired(I
.first
);
186 // Live-out registers are either in regsLiveOut or vregsPassed.
187 bool isLiveOut(Register Reg
) const {
188 return regsLiveOut
.count(Reg
) || vregsPassed
.count(Reg
);
192 // Extra register info per MBB.
193 DenseMap
<const MachineBasicBlock
*, BBInfo
> MBBInfoMap
;
195 bool isReserved(Register Reg
) {
196 return Reg
.id() < regsReserved
.size() && regsReserved
.test(Reg
.id());
199 bool isAllocatable(Register Reg
) const {
200 return Reg
.id() < TRI
->getNumRegs() && TRI
->isInAllocatableClass(Reg
) &&
201 !regsReserved
.test(Reg
.id());
204 // Analysis information if available
205 LiveVariables
*LiveVars
;
206 LiveIntervals
*LiveInts
;
207 LiveStacks
*LiveStks
;
208 SlotIndexes
*Indexes
;
210 void visitMachineFunctionBefore();
211 void visitMachineBasicBlockBefore(const MachineBasicBlock
*MBB
);
212 void visitMachineBundleBefore(const MachineInstr
*MI
);
214 /// Verify that all of \p MI's virtual register operands are scalars.
215 /// \returns True if all virtual register operands are scalar. False
217 bool verifyAllRegOpsScalar(const MachineInstr
&MI
,
218 const MachineRegisterInfo
&MRI
);
219 bool verifyVectorElementMatch(LLT Ty0
, LLT Ty1
, const MachineInstr
*MI
);
220 void verifyPreISelGenericInstruction(const MachineInstr
*MI
);
221 void visitMachineInstrBefore(const MachineInstr
*MI
);
222 void visitMachineOperand(const MachineOperand
*MO
, unsigned MONum
);
223 void visitMachineBundleAfter(const MachineInstr
*MI
);
224 void visitMachineBasicBlockAfter(const MachineBasicBlock
*MBB
);
225 void visitMachineFunctionAfter();
227 void report(const char *msg
, const MachineFunction
*MF
);
228 void report(const char *msg
, const MachineBasicBlock
*MBB
);
229 void report(const char *msg
, const MachineInstr
*MI
);
230 void report(const char *msg
, const MachineOperand
*MO
, unsigned MONum
,
231 LLT MOVRegType
= LLT
{});
232 void report(const Twine
&Msg
, const MachineInstr
*MI
);
234 void report_context(const LiveInterval
&LI
) const;
235 void report_context(const LiveRange
&LR
, Register VRegUnit
,
236 LaneBitmask LaneMask
) const;
237 void report_context(const LiveRange::Segment
&S
) const;
238 void report_context(const VNInfo
&VNI
) const;
239 void report_context(SlotIndex Pos
) const;
240 void report_context(MCPhysReg PhysReg
) const;
241 void report_context_liverange(const LiveRange
&LR
) const;
242 void report_context_lanemask(LaneBitmask LaneMask
) const;
243 void report_context_vreg(Register VReg
) const;
244 void report_context_vreg_regunit(Register VRegOrUnit
) const;
246 void verifyInlineAsm(const MachineInstr
*MI
);
248 void checkLiveness(const MachineOperand
*MO
, unsigned MONum
);
249 void checkLivenessAtUse(const MachineOperand
*MO
, unsigned MONum
,
250 SlotIndex UseIdx
, const LiveRange
&LR
,
252 LaneBitmask LaneMask
= LaneBitmask::getNone());
253 void checkLivenessAtDef(const MachineOperand
*MO
, unsigned MONum
,
254 SlotIndex DefIdx
, const LiveRange
&LR
,
255 Register VRegOrUnit
, bool SubRangeCheck
= false,
256 LaneBitmask LaneMask
= LaneBitmask::getNone());
258 void markReachable(const MachineBasicBlock
*MBB
);
259 void calcRegsPassed();
260 void checkPHIOps(const MachineBasicBlock
&MBB
);
262 void calcRegsRequired();
263 void verifyLiveVariables();
264 void verifyLiveIntervals();
265 void verifyLiveInterval(const LiveInterval
&);
266 void verifyLiveRangeValue(const LiveRange
&, const VNInfo
*, Register
,
268 void verifyLiveRangeSegment(const LiveRange
&,
269 const LiveRange::const_iterator I
, Register
,
271 void verifyLiveRange(const LiveRange
&, Register
,
272 LaneBitmask LaneMask
= LaneBitmask::getNone());
274 void verifyStackFrame();
276 void verifySlotIndexes() const;
277 void verifyProperties(const MachineFunction
&MF
);
280 struct MachineVerifierPass
: public MachineFunctionPass
{
281 static char ID
; // Pass ID, replacement for typeid
283 const std::string Banner
;
285 MachineVerifierPass(std::string banner
= std::string())
286 : MachineFunctionPass(ID
), Banner(std::move(banner
)) {
287 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
290 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
291 AU
.setPreservesAll();
292 MachineFunctionPass::getAnalysisUsage(AU
);
295 bool runOnMachineFunction(MachineFunction
&MF
) override
{
296 // Skip functions that have known verification problems.
297 // FIXME: Remove this mechanism when all problematic passes have been
299 if (MF
.getProperties().hasProperty(
300 MachineFunctionProperties::Property::FailsVerification
))
303 unsigned FoundErrors
= MachineVerifier(this, Banner
.c_str()).verify(MF
);
305 report_fatal_error("Found "+Twine(FoundErrors
)+" machine code errors.");
310 } // end anonymous namespace
312 char MachineVerifierPass::ID
= 0;
314 INITIALIZE_PASS(MachineVerifierPass
, "machineverifier",
315 "Verify generated machine code", false, false)
317 FunctionPass
*llvm::createMachineVerifierPass(const std::string
&Banner
) {
318 return new MachineVerifierPass(Banner
);
321 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager
*,
322 const std::string
&Banner
,
323 const MachineFunction
&MF
) {
324 // TODO: Use MFAM after porting below analyses.
325 // LiveVariables *LiveVars;
326 // LiveIntervals *LiveInts;
327 // LiveStacks *LiveStks;
328 // SlotIndexes *Indexes;
329 unsigned FoundErrors
= MachineVerifier(nullptr, Banner
.c_str()).verify(MF
);
331 report_fatal_error("Found " + Twine(FoundErrors
) + " machine code errors.");
334 bool MachineFunction::verify(Pass
*p
, const char *Banner
, bool AbortOnErrors
)
336 MachineFunction
&MF
= const_cast<MachineFunction
&>(*this);
337 unsigned FoundErrors
= MachineVerifier(p
, Banner
).verify(MF
);
338 if (AbortOnErrors
&& FoundErrors
)
339 report_fatal_error("Found "+Twine(FoundErrors
)+" machine code errors.");
340 return FoundErrors
== 0;
343 void MachineVerifier::verifySlotIndexes() const {
344 if (Indexes
== nullptr)
347 // Ensure the IdxMBB list is sorted by slot indexes.
349 for (SlotIndexes::MBBIndexIterator I
= Indexes
->MBBIndexBegin(),
350 E
= Indexes
->MBBIndexEnd(); I
!= E
; ++I
) {
351 assert(!Last
.isValid() || I
->first
> Last
);
356 void MachineVerifier::verifyProperties(const MachineFunction
&MF
) {
357 // If a pass has introduced virtual registers without clearing the
358 // NoVRegs property (or set it without allocating the vregs)
359 // then report an error.
360 if (MF
.getProperties().hasProperty(
361 MachineFunctionProperties::Property::NoVRegs
) &&
362 MRI
->getNumVirtRegs())
363 report("Function has NoVRegs property but there are VReg operands", &MF
);
366 unsigned MachineVerifier::verify(const MachineFunction
&MF
) {
370 TM
= &MF
.getTarget();
371 TII
= MF
.getSubtarget().getInstrInfo();
372 TRI
= MF
.getSubtarget().getRegisterInfo();
373 MRI
= &MF
.getRegInfo();
375 const bool isFunctionFailedISel
= MF
.getProperties().hasProperty(
376 MachineFunctionProperties::Property::FailedISel
);
378 // If we're mid-GlobalISel and we already triggered the fallback path then
379 // it's expected that the MIR is somewhat broken but that's ok since we'll
380 // reset it and clear the FailedISel attribute in ResetMachineFunctions.
381 if (isFunctionFailedISel
)
384 isFunctionRegBankSelected
= MF
.getProperties().hasProperty(
385 MachineFunctionProperties::Property::RegBankSelected
);
386 isFunctionSelected
= MF
.getProperties().hasProperty(
387 MachineFunctionProperties::Property::Selected
);
388 isFunctionTracksDebugUserValues
= MF
.getProperties().hasProperty(
389 MachineFunctionProperties::Property::TracksDebugUserValues
);
396 LiveInts
= PASS
->getAnalysisIfAvailable
<LiveIntervals
>();
397 // We don't want to verify LiveVariables if LiveIntervals is available.
399 LiveVars
= PASS
->getAnalysisIfAvailable
<LiveVariables
>();
400 LiveStks
= PASS
->getAnalysisIfAvailable
<LiveStacks
>();
401 Indexes
= PASS
->getAnalysisIfAvailable
<SlotIndexes
>();
406 verifyProperties(MF
);
408 visitMachineFunctionBefore();
409 for (const MachineBasicBlock
&MBB
: MF
) {
410 visitMachineBasicBlockBefore(&MBB
);
411 // Keep track of the current bundle header.
412 const MachineInstr
*CurBundle
= nullptr;
413 // Do we expect the next instruction to be part of the same bundle?
414 bool InBundle
= false;
416 for (const MachineInstr
&MI
: MBB
.instrs()) {
417 if (MI
.getParent() != &MBB
) {
418 report("Bad instruction parent pointer", &MBB
);
419 errs() << "Instruction: " << MI
;
423 // Check for consistent bundle flags.
424 if (InBundle
&& !MI
.isBundledWithPred())
425 report("Missing BundledPred flag, "
426 "BundledSucc was set on predecessor",
428 if (!InBundle
&& MI
.isBundledWithPred())
429 report("BundledPred flag is set, "
430 "but BundledSucc not set on predecessor",
433 // Is this a bundle header?
434 if (!MI
.isInsideBundle()) {
436 visitMachineBundleAfter(CurBundle
);
438 visitMachineBundleBefore(CurBundle
);
439 } else if (!CurBundle
)
440 report("No bundle header", &MI
);
441 visitMachineInstrBefore(&MI
);
442 for (unsigned I
= 0, E
= MI
.getNumOperands(); I
!= E
; ++I
) {
443 const MachineOperand
&Op
= MI
.getOperand(I
);
444 if (Op
.getParent() != &MI
) {
445 // Make sure to use correct addOperand / RemoveOperand / ChangeTo
446 // functions when replacing operands of a MachineInstr.
447 report("Instruction has operand with wrong parent set", &MI
);
450 visitMachineOperand(&Op
, I
);
453 // Was this the last bundled instruction?
454 InBundle
= MI
.isBundledWithSucc();
457 visitMachineBundleAfter(CurBundle
);
459 report("BundledSucc flag set on last instruction in block", &MBB
.back());
460 visitMachineBasicBlockAfter(&MBB
);
462 visitMachineFunctionAfter();
475 void MachineVerifier::report(const char *msg
, const MachineFunction
*MF
) {
478 if (!foundErrors
++) {
480 errs() << "# " << Banner
<< '\n';
481 if (LiveInts
!= nullptr)
482 LiveInts
->print(errs());
484 MF
->print(errs(), Indexes
);
486 errs() << "*** Bad machine code: " << msg
<< " ***\n"
487 << "- function: " << MF
->getName() << "\n";
490 void MachineVerifier::report(const char *msg
, const MachineBasicBlock
*MBB
) {
492 report(msg
, MBB
->getParent());
493 errs() << "- basic block: " << printMBBReference(*MBB
) << ' '
494 << MBB
->getName() << " (" << (const void *)MBB
<< ')';
496 errs() << " [" << Indexes
->getMBBStartIdx(MBB
)
497 << ';' << Indexes
->getMBBEndIdx(MBB
) << ')';
501 void MachineVerifier::report(const char *msg
, const MachineInstr
*MI
) {
503 report(msg
, MI
->getParent());
504 errs() << "- instruction: ";
505 if (Indexes
&& Indexes
->hasIndex(*MI
))
506 errs() << Indexes
->getInstructionIndex(*MI
) << '\t';
507 MI
->print(errs(), /*IsStandalone=*/true);
510 void MachineVerifier::report(const char *msg
, const MachineOperand
*MO
,
511 unsigned MONum
, LLT MOVRegType
) {
513 report(msg
, MO
->getParent());
514 errs() << "- operand " << MONum
<< ": ";
515 MO
->print(errs(), MOVRegType
, TRI
);
519 void MachineVerifier::report(const Twine
&Msg
, const MachineInstr
*MI
) {
520 report(Msg
.str().c_str(), MI
);
523 void MachineVerifier::report_context(SlotIndex Pos
) const {
524 errs() << "- at: " << Pos
<< '\n';
527 void MachineVerifier::report_context(const LiveInterval
&LI
) const {
528 errs() << "- interval: " << LI
<< '\n';
531 void MachineVerifier::report_context(const LiveRange
&LR
, Register VRegUnit
,
532 LaneBitmask LaneMask
) const {
533 report_context_liverange(LR
);
534 report_context_vreg_regunit(VRegUnit
);
536 report_context_lanemask(LaneMask
);
539 void MachineVerifier::report_context(const LiveRange::Segment
&S
) const {
540 errs() << "- segment: " << S
<< '\n';
543 void MachineVerifier::report_context(const VNInfo
&VNI
) const {
544 errs() << "- ValNo: " << VNI
.id
<< " (def " << VNI
.def
<< ")\n";
547 void MachineVerifier::report_context_liverange(const LiveRange
&LR
) const {
548 errs() << "- liverange: " << LR
<< '\n';
551 void MachineVerifier::report_context(MCPhysReg PReg
) const {
552 errs() << "- p. register: " << printReg(PReg
, TRI
) << '\n';
555 void MachineVerifier::report_context_vreg(Register VReg
) const {
556 errs() << "- v. register: " << printReg(VReg
, TRI
) << '\n';
559 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit
) const {
560 if (Register::isVirtualRegister(VRegOrUnit
)) {
561 report_context_vreg(VRegOrUnit
);
563 errs() << "- regunit: " << printRegUnit(VRegOrUnit
, TRI
) << '\n';
567 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask
) const {
568 errs() << "- lanemask: " << PrintLaneMask(LaneMask
) << '\n';
571 void MachineVerifier::markReachable(const MachineBasicBlock
*MBB
) {
572 BBInfo
&MInfo
= MBBInfoMap
[MBB
];
573 if (!MInfo
.reachable
) {
574 MInfo
.reachable
= true;
575 for (const MachineBasicBlock
*Succ
: MBB
->successors())
580 void MachineVerifier::visitMachineFunctionBefore() {
581 lastIndex
= SlotIndex();
582 regsReserved
= MRI
->reservedRegsFrozen() ? MRI
->getReservedRegs()
583 : TRI
->getReservedRegs(*MF
);
586 markReachable(&MF
->front());
588 // Build a set of the basic blocks in the function.
589 FunctionBlocks
.clear();
590 for (const auto &MBB
: *MF
) {
591 FunctionBlocks
.insert(&MBB
);
592 BBInfo
&MInfo
= MBBInfoMap
[&MBB
];
594 MInfo
.Preds
.insert(MBB
.pred_begin(), MBB
.pred_end());
595 if (MInfo
.Preds
.size() != MBB
.pred_size())
596 report("MBB has duplicate entries in its predecessor list.", &MBB
);
598 MInfo
.Succs
.insert(MBB
.succ_begin(), MBB
.succ_end());
599 if (MInfo
.Succs
.size() != MBB
.succ_size())
600 report("MBB has duplicate entries in its successor list.", &MBB
);
603 // Check that the register use lists are sane.
604 MRI
->verifyUseLists();
611 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock
*MBB
) {
612 FirstTerminator
= nullptr;
613 FirstNonPHI
= nullptr;
615 if (!MF
->getProperties().hasProperty(
616 MachineFunctionProperties::Property::NoPHIs
) && MRI
->tracksLiveness()) {
617 // If this block has allocatable physical registers live-in, check that
618 // it is an entry block or landing pad.
619 for (const auto &LI
: MBB
->liveins()) {
620 if (isAllocatable(LI
.PhysReg
) && !MBB
->isEHPad() &&
621 MBB
->getIterator() != MBB
->getParent()->begin()) {
622 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB
);
623 report_context(LI
.PhysReg
);
628 // Count the number of landing pad successors.
629 SmallPtrSet
<const MachineBasicBlock
*, 4> LandingPadSuccs
;
630 for (const auto *succ
: MBB
->successors()) {
632 LandingPadSuccs
.insert(succ
);
633 if (!FunctionBlocks
.count(succ
))
634 report("MBB has successor that isn't part of the function.", MBB
);
635 if (!MBBInfoMap
[succ
].Preds
.count(MBB
)) {
636 report("Inconsistent CFG", MBB
);
637 errs() << "MBB is not in the predecessor list of the successor "
638 << printMBBReference(*succ
) << ".\n";
642 // Check the predecessor list.
643 for (const MachineBasicBlock
*Pred
: MBB
->predecessors()) {
644 if (!FunctionBlocks
.count(Pred
))
645 report("MBB has predecessor that isn't part of the function.", MBB
);
646 if (!MBBInfoMap
[Pred
].Succs
.count(MBB
)) {
647 report("Inconsistent CFG", MBB
);
648 errs() << "MBB is not in the successor list of the predecessor "
649 << printMBBReference(*Pred
) << ".\n";
653 const MCAsmInfo
*AsmInfo
= TM
->getMCAsmInfo();
654 const BasicBlock
*BB
= MBB
->getBasicBlock();
655 const Function
&F
= MF
->getFunction();
656 if (LandingPadSuccs
.size() > 1 &&
658 AsmInfo
->getExceptionHandlingType() == ExceptionHandling::SjLj
&&
659 BB
&& isa
<SwitchInst
>(BB
->getTerminator())) &&
660 !isScopedEHPersonality(classifyEHPersonality(F
.getPersonalityFn())))
661 report("MBB has more than one landing pad successor", MBB
);
663 // Call analyzeBranch. If it succeeds, there several more conditions to check.
664 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
665 SmallVector
<MachineOperand
, 4> Cond
;
666 if (!TII
->analyzeBranch(*const_cast<MachineBasicBlock
*>(MBB
), TBB
, FBB
,
668 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
669 // check whether its answers match up with reality.
671 // Block falls through to its successor.
672 if (!MBB
->empty() && MBB
->back().isBarrier() &&
673 !TII
->isPredicated(MBB
->back())) {
674 report("MBB exits via unconditional fall-through but ends with a "
675 "barrier instruction!", MBB
);
678 report("MBB exits via unconditional fall-through but has a condition!",
681 } else if (TBB
&& !FBB
&& Cond
.empty()) {
682 // Block unconditionally branches somewhere.
684 report("MBB exits via unconditional branch but doesn't contain "
685 "any instructions!", MBB
);
686 } else if (!MBB
->back().isBarrier()) {
687 report("MBB exits via unconditional branch but doesn't end with a "
688 "barrier instruction!", MBB
);
689 } else if (!MBB
->back().isTerminator()) {
690 report("MBB exits via unconditional branch but the branch isn't a "
691 "terminator instruction!", MBB
);
693 } else if (TBB
&& !FBB
&& !Cond
.empty()) {
694 // Block conditionally branches somewhere, otherwise falls through.
696 report("MBB exits via conditional branch/fall-through but doesn't "
697 "contain any instructions!", MBB
);
698 } else if (MBB
->back().isBarrier()) {
699 report("MBB exits via conditional branch/fall-through but ends with a "
700 "barrier instruction!", MBB
);
701 } else if (!MBB
->back().isTerminator()) {
702 report("MBB exits via conditional branch/fall-through but the branch "
703 "isn't a terminator instruction!", MBB
);
705 } else if (TBB
&& FBB
) {
706 // Block conditionally branches somewhere, otherwise branches
709 report("MBB exits via conditional branch/branch but doesn't "
710 "contain any instructions!", MBB
);
711 } else if (!MBB
->back().isBarrier()) {
712 report("MBB exits via conditional branch/branch but doesn't end with a "
713 "barrier instruction!", MBB
);
714 } else if (!MBB
->back().isTerminator()) {
715 report("MBB exits via conditional branch/branch but the branch "
716 "isn't a terminator instruction!", MBB
);
719 report("MBB exits via conditional branch/branch but there's no "
723 report("analyzeBranch returned invalid data!", MBB
);
726 // Now check that the successors match up with the answers reported by
728 if (TBB
&& !MBB
->isSuccessor(TBB
))
729 report("MBB exits via jump or conditional branch, but its target isn't a "
732 if (FBB
&& !MBB
->isSuccessor(FBB
))
733 report("MBB exits via conditional branch, but its target isn't a CFG "
737 // There might be a fallthrough to the next block if there's either no
738 // unconditional true branch, or if there's a condition, and one of the
739 // branches is missing.
740 bool Fallthrough
= !TBB
|| (!Cond
.empty() && !FBB
);
742 // A conditional fallthrough must be an actual CFG successor, not
743 // unreachable. (Conversely, an unconditional fallthrough might not really
744 // be a successor, because the block might end in unreachable.)
745 if (!Cond
.empty() && !FBB
) {
746 MachineFunction::const_iterator MBBI
= std::next(MBB
->getIterator());
747 if (MBBI
== MF
->end()) {
748 report("MBB conditionally falls through out of function!", MBB
);
749 } else if (!MBB
->isSuccessor(&*MBBI
))
750 report("MBB exits via conditional branch/fall-through but the CFG "
751 "successors don't match the actual successors!",
755 // Verify that there aren't any extra un-accounted-for successors.
756 for (const MachineBasicBlock
*SuccMBB
: MBB
->successors()) {
757 // If this successor is one of the branch targets, it's okay.
758 if (SuccMBB
== TBB
|| SuccMBB
== FBB
)
760 // If we might have a fallthrough, and the successor is the fallthrough
761 // block, that's also ok.
762 if (Fallthrough
&& SuccMBB
== MBB
->getNextNode())
764 // Also accept successors which are for exception-handling or might be
765 // inlineasm_br targets.
766 if (SuccMBB
->isEHPad() || SuccMBB
->isInlineAsmBrIndirectTarget())
768 report("MBB has unexpected successors which are not branch targets, "
769 "fallthrough, EHPads, or inlineasm_br targets.",
775 if (MRI
->tracksLiveness()) {
776 for (const auto &LI
: MBB
->liveins()) {
777 if (!Register::isPhysicalRegister(LI
.PhysReg
)) {
778 report("MBB live-in list contains non-physical register", MBB
);
781 for (const MCPhysReg
&SubReg
: TRI
->subregs_inclusive(LI
.PhysReg
))
782 regsLive
.insert(SubReg
);
786 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
787 BitVector PR
= MFI
.getPristineRegs(*MF
);
788 for (unsigned I
: PR
.set_bits()) {
789 for (const MCPhysReg
&SubReg
: TRI
->subregs_inclusive(I
))
790 regsLive
.insert(SubReg
);
797 lastIndex
= Indexes
->getMBBStartIdx(MBB
);
800 // This function gets called for all bundle headers, including normal
801 // stand-alone unbundled instructions.
802 void MachineVerifier::visitMachineBundleBefore(const MachineInstr
*MI
) {
803 if (Indexes
&& Indexes
->hasIndex(*MI
)) {
804 SlotIndex idx
= Indexes
->getInstructionIndex(*MI
);
805 if (!(idx
> lastIndex
)) {
806 report("Instruction index out of order", MI
);
807 errs() << "Last instruction was at " << lastIndex
<< '\n';
812 // Ensure non-terminators don't follow terminators.
813 if (MI
->isTerminator()) {
814 if (!FirstTerminator
)
815 FirstTerminator
= MI
;
816 } else if (FirstTerminator
) {
817 report("Non-terminator instruction after the first terminator", MI
);
818 errs() << "First terminator was:\t" << *FirstTerminator
;
822 // The operands on an INLINEASM instruction must follow a template.
823 // Verify that the flag operands make sense.
824 void MachineVerifier::verifyInlineAsm(const MachineInstr
*MI
) {
825 // The first two operands on INLINEASM are the asm string and global flags.
826 if (MI
->getNumOperands() < 2) {
827 report("Too few operands on inline asm", MI
);
830 if (!MI
->getOperand(0).isSymbol())
831 report("Asm string must be an external symbol", MI
);
832 if (!MI
->getOperand(1).isImm())
833 report("Asm flags must be an immediate", MI
);
834 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
835 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
836 // and Extra_IsConvergent = 32.
837 if (!isUInt
<6>(MI
->getOperand(1).getImm()))
838 report("Unknown asm flags", &MI
->getOperand(1), 1);
840 static_assert(InlineAsm::MIOp_FirstOperand
== 2, "Asm format changed");
842 unsigned OpNo
= InlineAsm::MIOp_FirstOperand
;
844 for (unsigned e
= MI
->getNumOperands(); OpNo
< e
; OpNo
+= NumOps
) {
845 const MachineOperand
&MO
= MI
->getOperand(OpNo
);
846 // There may be implicit ops after the fixed operands.
849 NumOps
= 1 + InlineAsm::getNumOperandRegisters(MO
.getImm());
852 if (OpNo
> MI
->getNumOperands())
853 report("Missing operands in last group", MI
);
855 // An optional MDNode follows the groups.
856 if (OpNo
< MI
->getNumOperands() && MI
->getOperand(OpNo
).isMetadata())
859 // All trailing operands must be implicit registers.
860 for (unsigned e
= MI
->getNumOperands(); OpNo
< e
; ++OpNo
) {
861 const MachineOperand
&MO
= MI
->getOperand(OpNo
);
862 if (!MO
.isReg() || !MO
.isImplicit())
863 report("Expected implicit register after groups", &MO
, OpNo
);
867 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr
&MI
,
868 const MachineRegisterInfo
&MRI
) {
869 if (none_of(MI
.explicit_operands(), [&MRI
](const MachineOperand
&Op
) {
872 const auto Reg
= Op
.getReg();
873 if (Reg
.isPhysical())
875 return !MRI
.getType(Reg
).isScalar();
878 report("All register operands must have scalar types", &MI
);
882 /// Check that types are consistent when two operands need to have the same
883 /// number of vector elements.
884 /// \return true if the types are valid.
885 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0
, LLT Ty1
,
886 const MachineInstr
*MI
) {
887 if (Ty0
.isVector() != Ty1
.isVector()) {
888 report("operand types must be all-vector or all-scalar", MI
);
889 // Generally we try to report as many issues as possible at once, but in
890 // this case it's not clear what should we be comparing the size of the
891 // scalar with: the size of the whole vector or its lane. Instead of
892 // making an arbitrary choice and emitting not so helpful message, let's
893 // avoid the extra noise and stop here.
897 if (Ty0
.isVector() && Ty0
.getNumElements() != Ty1
.getNumElements()) {
898 report("operand types must preserve number of vector elements", MI
);
905 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr
*MI
) {
906 if (isFunctionSelected
)
907 report("Unexpected generic instruction in a Selected function", MI
);
909 const MCInstrDesc
&MCID
= MI
->getDesc();
910 unsigned NumOps
= MI
->getNumOperands();
912 // Branches must reference a basic block if they are not indirect
913 if (MI
->isBranch() && !MI
->isIndirectBranch()) {
915 for (const MachineOperand
&Op
: MI
->operands()) {
923 report("Branch instruction is missing a basic block operand or "
924 "isIndirectBranch property",
930 SmallVector
<LLT
, 4> Types
;
931 for (unsigned I
= 0, E
= std::min(MCID
.getNumOperands(), NumOps
);
933 if (!MCID
.OpInfo
[I
].isGenericType())
935 // Generic instructions specify type equality constraints between some of
936 // their operands. Make sure these are consistent.
937 size_t TypeIdx
= MCID
.OpInfo
[I
].getGenericTypeIndex();
938 Types
.resize(std::max(TypeIdx
+ 1, Types
.size()));
940 const MachineOperand
*MO
= &MI
->getOperand(I
);
942 report("generic instruction must use register operands", MI
);
946 LLT OpTy
= MRI
->getType(MO
->getReg());
947 // Don't report a type mismatch if there is no actual mismatch, only a
948 // type missing, to reduce noise:
949 if (OpTy
.isValid()) {
950 // Only the first valid type for a type index will be printed: don't
951 // overwrite it later so it's always clear which type was expected:
952 if (!Types
[TypeIdx
].isValid())
953 Types
[TypeIdx
] = OpTy
;
954 else if (Types
[TypeIdx
] != OpTy
)
955 report("Type mismatch in generic instruction", MO
, I
, OpTy
);
957 // Generic instructions must have types attached to their operands.
958 report("Generic instruction is missing a virtual register type", MO
, I
);
962 // Generic opcodes must not have physical register operands.
963 for (unsigned I
= 0; I
< MI
->getNumOperands(); ++I
) {
964 const MachineOperand
*MO
= &MI
->getOperand(I
);
965 if (MO
->isReg() && Register::isPhysicalRegister(MO
->getReg()))
966 report("Generic instruction cannot have physical register", MO
, I
);
969 // Avoid out of bounds in checks below. This was already reported earlier.
970 if (MI
->getNumOperands() < MCID
.getNumOperands())
974 if (!TII
->verifyInstruction(*MI
, ErrorInfo
))
975 report(ErrorInfo
.data(), MI
);
977 // Verify properties of various specific instruction types
978 unsigned Opc
= MI
->getOpcode();
980 case TargetOpcode::G_ASSERT_SEXT
:
981 case TargetOpcode::G_ASSERT_ZEXT
: {
982 std::string OpcName
=
983 Opc
== TargetOpcode::G_ASSERT_ZEXT
? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
984 if (!MI
->getOperand(2).isImm()) {
985 report(Twine(OpcName
, " expects an immediate operand #2"), MI
);
989 Register Dst
= MI
->getOperand(0).getReg();
990 Register Src
= MI
->getOperand(1).getReg();
991 LLT SrcTy
= MRI
->getType(Src
);
992 int64_t Imm
= MI
->getOperand(2).getImm();
994 report(Twine(OpcName
, " size must be >= 1"), MI
);
998 if (Imm
>= SrcTy
.getScalarSizeInBits()) {
999 report(Twine(OpcName
, " size must be less than source bit width"), MI
);
1003 if (MRI
->getRegBankOrNull(Src
) != MRI
->getRegBankOrNull(Dst
)) {
1005 Twine(OpcName
, " source and destination register banks must match"),
1010 if (MRI
->getRegClassOrNull(Src
) != MRI
->getRegClassOrNull(Dst
))
1012 Twine(OpcName
, " source and destination register classes must match"),
1018 case TargetOpcode::G_CONSTANT
:
1019 case TargetOpcode::G_FCONSTANT
: {
1020 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1021 if (DstTy
.isVector())
1022 report("Instruction cannot use a vector result type", MI
);
1024 if (MI
->getOpcode() == TargetOpcode::G_CONSTANT
) {
1025 if (!MI
->getOperand(1).isCImm()) {
1026 report("G_CONSTANT operand must be cimm", MI
);
1030 const ConstantInt
*CI
= MI
->getOperand(1).getCImm();
1031 if (CI
->getBitWidth() != DstTy
.getSizeInBits())
1032 report("inconsistent constant size", MI
);
1034 if (!MI
->getOperand(1).isFPImm()) {
1035 report("G_FCONSTANT operand must be fpimm", MI
);
1038 const ConstantFP
*CF
= MI
->getOperand(1).getFPImm();
1040 if (APFloat::getSizeInBits(CF
->getValueAPF().getSemantics()) !=
1041 DstTy
.getSizeInBits()) {
1042 report("inconsistent constant size", MI
);
1048 case TargetOpcode::G_LOAD
:
1049 case TargetOpcode::G_STORE
:
1050 case TargetOpcode::G_ZEXTLOAD
:
1051 case TargetOpcode::G_SEXTLOAD
: {
1052 LLT ValTy
= MRI
->getType(MI
->getOperand(0).getReg());
1053 LLT PtrTy
= MRI
->getType(MI
->getOperand(1).getReg());
1054 if (!PtrTy
.isPointer())
1055 report("Generic memory instruction must access a pointer", MI
);
1057 // Generic loads and stores must have a single MachineMemOperand
1058 // describing that access.
1059 if (!MI
->hasOneMemOperand()) {
1060 report("Generic instruction accessing memory must have one mem operand",
1063 const MachineMemOperand
&MMO
= **MI
->memoperands_begin();
1064 if (MI
->getOpcode() == TargetOpcode::G_ZEXTLOAD
||
1065 MI
->getOpcode() == TargetOpcode::G_SEXTLOAD
) {
1066 if (MMO
.getSizeInBits() >= ValTy
.getSizeInBits())
1067 report("Generic extload must have a narrower memory type", MI
);
1068 } else if (MI
->getOpcode() == TargetOpcode::G_LOAD
) {
1069 if (MMO
.getSize() > ValTy
.getSizeInBytes())
1070 report("load memory size cannot exceed result size", MI
);
1071 } else if (MI
->getOpcode() == TargetOpcode::G_STORE
) {
1072 if (ValTy
.getSizeInBytes() < MMO
.getSize())
1073 report("store memory size cannot exceed value size", MI
);
1079 case TargetOpcode::G_PHI
: {
1080 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1081 if (!DstTy
.isValid() || !all_of(drop_begin(MI
->operands()),
1082 [this, &DstTy
](const MachineOperand
&MO
) {
1085 LLT Ty
= MRI
->getType(MO
.getReg());
1086 if (!Ty
.isValid() || (Ty
!= DstTy
))
1090 report("Generic Instruction G_PHI has operands with incompatible/missing "
1095 case TargetOpcode::G_BITCAST
: {
1096 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1097 LLT SrcTy
= MRI
->getType(MI
->getOperand(1).getReg());
1098 if (!DstTy
.isValid() || !SrcTy
.isValid())
1101 if (SrcTy
.isPointer() != DstTy
.isPointer())
1102 report("bitcast cannot convert between pointers and other types", MI
);
1104 if (SrcTy
.getSizeInBits() != DstTy
.getSizeInBits())
1105 report("bitcast sizes must match", MI
);
1108 report("bitcast must change the type", MI
);
1112 case TargetOpcode::G_INTTOPTR
:
1113 case TargetOpcode::G_PTRTOINT
:
1114 case TargetOpcode::G_ADDRSPACE_CAST
: {
1115 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1116 LLT SrcTy
= MRI
->getType(MI
->getOperand(1).getReg());
1117 if (!DstTy
.isValid() || !SrcTy
.isValid())
1120 verifyVectorElementMatch(DstTy
, SrcTy
, MI
);
1122 DstTy
= DstTy
.getScalarType();
1123 SrcTy
= SrcTy
.getScalarType();
1125 if (MI
->getOpcode() == TargetOpcode::G_INTTOPTR
) {
1126 if (!DstTy
.isPointer())
1127 report("inttoptr result type must be a pointer", MI
);
1128 if (SrcTy
.isPointer())
1129 report("inttoptr source type must not be a pointer", MI
);
1130 } else if (MI
->getOpcode() == TargetOpcode::G_PTRTOINT
) {
1131 if (!SrcTy
.isPointer())
1132 report("ptrtoint source type must be a pointer", MI
);
1133 if (DstTy
.isPointer())
1134 report("ptrtoint result type must not be a pointer", MI
);
1136 assert(MI
->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST
);
1137 if (!SrcTy
.isPointer() || !DstTy
.isPointer())
1138 report("addrspacecast types must be pointers", MI
);
1140 if (SrcTy
.getAddressSpace() == DstTy
.getAddressSpace())
1141 report("addrspacecast must convert different address spaces", MI
);
1147 case TargetOpcode::G_PTR_ADD
: {
1148 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1149 LLT PtrTy
= MRI
->getType(MI
->getOperand(1).getReg());
1150 LLT OffsetTy
= MRI
->getType(MI
->getOperand(2).getReg());
1151 if (!DstTy
.isValid() || !PtrTy
.isValid() || !OffsetTy
.isValid())
1154 if (!PtrTy
.getScalarType().isPointer())
1155 report("gep first operand must be a pointer", MI
);
1157 if (OffsetTy
.getScalarType().isPointer())
1158 report("gep offset operand must not be a pointer", MI
);
1160 // TODO: Is the offset allowed to be a scalar with a vector?
1163 case TargetOpcode::G_PTRMASK
: {
1164 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1165 LLT SrcTy
= MRI
->getType(MI
->getOperand(1).getReg());
1166 LLT MaskTy
= MRI
->getType(MI
->getOperand(2).getReg());
1167 if (!DstTy
.isValid() || !SrcTy
.isValid() || !MaskTy
.isValid())
1170 if (!DstTy
.getScalarType().isPointer())
1171 report("ptrmask result type must be a pointer", MI
);
1173 if (!MaskTy
.getScalarType().isScalar())
1174 report("ptrmask mask type must be an integer", MI
);
1176 verifyVectorElementMatch(DstTy
, MaskTy
, MI
);
1179 case TargetOpcode::G_SEXT
:
1180 case TargetOpcode::G_ZEXT
:
1181 case TargetOpcode::G_ANYEXT
:
1182 case TargetOpcode::G_TRUNC
:
1183 case TargetOpcode::G_FPEXT
:
1184 case TargetOpcode::G_FPTRUNC
: {
1185 // Number of operands and presense of types is already checked (and
1186 // reported in case of any issues), so no need to report them again. As
1187 // we're trying to report as many issues as possible at once, however, the
1188 // instructions aren't guaranteed to have the right number of operands or
1189 // types attached to them at this point
1190 assert(MCID
.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1191 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1192 LLT SrcTy
= MRI
->getType(MI
->getOperand(1).getReg());
1193 if (!DstTy
.isValid() || !SrcTy
.isValid())
1196 LLT DstElTy
= DstTy
.getScalarType();
1197 LLT SrcElTy
= SrcTy
.getScalarType();
1198 if (DstElTy
.isPointer() || SrcElTy
.isPointer())
1199 report("Generic extend/truncate can not operate on pointers", MI
);
1201 verifyVectorElementMatch(DstTy
, SrcTy
, MI
);
1203 unsigned DstSize
= DstElTy
.getSizeInBits();
1204 unsigned SrcSize
= SrcElTy
.getSizeInBits();
1205 switch (MI
->getOpcode()) {
1207 if (DstSize
<= SrcSize
)
1208 report("Generic extend has destination type no larger than source", MI
);
1210 case TargetOpcode::G_TRUNC
:
1211 case TargetOpcode::G_FPTRUNC
:
1212 if (DstSize
>= SrcSize
)
1213 report("Generic truncate has destination type no smaller than source",
1219 case TargetOpcode::G_SELECT
: {
1220 LLT SelTy
= MRI
->getType(MI
->getOperand(0).getReg());
1221 LLT CondTy
= MRI
->getType(MI
->getOperand(1).getReg());
1222 if (!SelTy
.isValid() || !CondTy
.isValid())
1225 // Scalar condition select on a vector is valid.
1226 if (CondTy
.isVector())
1227 verifyVectorElementMatch(SelTy
, CondTy
, MI
);
1230 case TargetOpcode::G_MERGE_VALUES
: {
1231 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1232 // e.g. s2N = MERGE sN, sN
1233 // Merging multiple scalars into a vector is not allowed, should use
1234 // G_BUILD_VECTOR for that.
1235 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1236 LLT SrcTy
= MRI
->getType(MI
->getOperand(1).getReg());
1237 if (DstTy
.isVector() || SrcTy
.isVector())
1238 report("G_MERGE_VALUES cannot operate on vectors", MI
);
1240 const unsigned NumOps
= MI
->getNumOperands();
1241 if (DstTy
.getSizeInBits() != SrcTy
.getSizeInBits() * (NumOps
- 1))
1242 report("G_MERGE_VALUES result size is inconsistent", MI
);
1244 for (unsigned I
= 2; I
!= NumOps
; ++I
) {
1245 if (MRI
->getType(MI
->getOperand(I
).getReg()) != SrcTy
)
1246 report("G_MERGE_VALUES source types do not match", MI
);
1251 case TargetOpcode::G_UNMERGE_VALUES
: {
1252 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1253 LLT SrcTy
= MRI
->getType(MI
->getOperand(MI
->getNumOperands()-1).getReg());
1254 // For now G_UNMERGE can split vectors.
1255 for (unsigned i
= 0; i
< MI
->getNumOperands()-1; ++i
) {
1256 if (MRI
->getType(MI
->getOperand(i
).getReg()) != DstTy
)
1257 report("G_UNMERGE_VALUES destination types do not match", MI
);
1259 if (SrcTy
.getSizeInBits() !=
1260 (DstTy
.getSizeInBits() * (MI
->getNumOperands() - 1))) {
1261 report("G_UNMERGE_VALUES source operand does not cover dest operands",
1266 case TargetOpcode::G_BUILD_VECTOR
: {
1267 // Source types must be scalars, dest type a vector. Total size of scalars
1268 // must match the dest vector size.
1269 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1270 LLT SrcEltTy
= MRI
->getType(MI
->getOperand(1).getReg());
1271 if (!DstTy
.isVector() || SrcEltTy
.isVector()) {
1272 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI
);
1276 if (DstTy
.getElementType() != SrcEltTy
)
1277 report("G_BUILD_VECTOR result element type must match source type", MI
);
1279 if (DstTy
.getNumElements() != MI
->getNumOperands() - 1)
1280 report("G_BUILD_VECTOR must have an operand for each elemement", MI
);
1282 for (const MachineOperand
&MO
: llvm::drop_begin(MI
->operands(), 2))
1283 if (MRI
->getType(MI
->getOperand(1).getReg()) != MRI
->getType(MO
.getReg()))
1284 report("G_BUILD_VECTOR source operand types are not homogeneous", MI
);
1288 case TargetOpcode::G_BUILD_VECTOR_TRUNC
: {
1289 // Source types must be scalars, dest type a vector. Scalar types must be
1290 // larger than the dest vector elt type, as this is a truncating operation.
1291 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1292 LLT SrcEltTy
= MRI
->getType(MI
->getOperand(1).getReg());
1293 if (!DstTy
.isVector() || SrcEltTy
.isVector())
1294 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1296 for (const MachineOperand
&MO
: llvm::drop_begin(MI
->operands(), 2))
1297 if (MRI
->getType(MI
->getOperand(1).getReg()) != MRI
->getType(MO
.getReg()))
1298 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1300 if (SrcEltTy
.getSizeInBits() <= DstTy
.getElementType().getSizeInBits())
1301 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1306 case TargetOpcode::G_CONCAT_VECTORS
: {
1307 // Source types should be vectors, and total size should match the dest
1309 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1310 LLT SrcTy
= MRI
->getType(MI
->getOperand(1).getReg());
1311 if (!DstTy
.isVector() || !SrcTy
.isVector())
1312 report("G_CONCAT_VECTOR requires vector source and destination operands",
1315 if (MI
->getNumOperands() < 3)
1316 report("G_CONCAT_VECTOR requires at least 2 source operands", MI
);
1318 for (const MachineOperand
&MO
: llvm::drop_begin(MI
->operands(), 2))
1319 if (MRI
->getType(MI
->getOperand(1).getReg()) != MRI
->getType(MO
.getReg()))
1320 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI
);
1321 if (DstTy
.getNumElements() !=
1322 SrcTy
.getNumElements() * (MI
->getNumOperands() - 1))
1323 report("G_CONCAT_VECTOR num dest and source elements should match", MI
);
1326 case TargetOpcode::G_ICMP
:
1327 case TargetOpcode::G_FCMP
: {
1328 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1329 LLT SrcTy
= MRI
->getType(MI
->getOperand(2).getReg());
1331 if ((DstTy
.isVector() != SrcTy
.isVector()) ||
1332 (DstTy
.isVector() && DstTy
.getNumElements() != SrcTy
.getNumElements()))
1333 report("Generic vector icmp/fcmp must preserve number of lanes", MI
);
1337 case TargetOpcode::G_EXTRACT
: {
1338 const MachineOperand
&SrcOp
= MI
->getOperand(1);
1339 if (!SrcOp
.isReg()) {
1340 report("extract source must be a register", MI
);
1344 const MachineOperand
&OffsetOp
= MI
->getOperand(2);
1345 if (!OffsetOp
.isImm()) {
1346 report("extract offset must be a constant", MI
);
1350 unsigned DstSize
= MRI
->getType(MI
->getOperand(0).getReg()).getSizeInBits();
1351 unsigned SrcSize
= MRI
->getType(SrcOp
.getReg()).getSizeInBits();
1352 if (SrcSize
== DstSize
)
1353 report("extract source must be larger than result", MI
);
1355 if (DstSize
+ OffsetOp
.getImm() > SrcSize
)
1356 report("extract reads past end of register", MI
);
1359 case TargetOpcode::G_INSERT
: {
1360 const MachineOperand
&SrcOp
= MI
->getOperand(2);
1361 if (!SrcOp
.isReg()) {
1362 report("insert source must be a register", MI
);
1366 const MachineOperand
&OffsetOp
= MI
->getOperand(3);
1367 if (!OffsetOp
.isImm()) {
1368 report("insert offset must be a constant", MI
);
1372 unsigned DstSize
= MRI
->getType(MI
->getOperand(0).getReg()).getSizeInBits();
1373 unsigned SrcSize
= MRI
->getType(SrcOp
.getReg()).getSizeInBits();
1375 if (DstSize
<= SrcSize
)
1376 report("inserted size must be smaller than total register", MI
);
1378 if (SrcSize
+ OffsetOp
.getImm() > DstSize
)
1379 report("insert writes past end of register", MI
);
1383 case TargetOpcode::G_JUMP_TABLE
: {
1384 if (!MI
->getOperand(1).isJTI())
1385 report("G_JUMP_TABLE source operand must be a jump table index", MI
);
1386 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1387 if (!DstTy
.isPointer())
1388 report("G_JUMP_TABLE dest operand must have a pointer type", MI
);
1391 case TargetOpcode::G_BRJT
: {
1392 if (!MRI
->getType(MI
->getOperand(0).getReg()).isPointer())
1393 report("G_BRJT src operand 0 must be a pointer type", MI
);
1395 if (!MI
->getOperand(1).isJTI())
1396 report("G_BRJT src operand 1 must be a jump table index", MI
);
1398 const auto &IdxOp
= MI
->getOperand(2);
1399 if (!IdxOp
.isReg() || MRI
->getType(IdxOp
.getReg()).isPointer())
1400 report("G_BRJT src operand 2 must be a scalar reg type", MI
);
1403 case TargetOpcode::G_INTRINSIC
:
1404 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS
: {
1405 // TODO: Should verify number of def and use operands, but the current
1406 // interface requires passing in IR types for mangling.
1407 const MachineOperand
&IntrIDOp
= MI
->getOperand(MI
->getNumExplicitDefs());
1408 if (!IntrIDOp
.isIntrinsicID()) {
1409 report("G_INTRINSIC first src operand must be an intrinsic ID", MI
);
1413 bool NoSideEffects
= MI
->getOpcode() == TargetOpcode::G_INTRINSIC
;
1414 unsigned IntrID
= IntrIDOp
.getIntrinsicID();
1415 if (IntrID
!= 0 && IntrID
< Intrinsic::num_intrinsics
) {
1417 = Intrinsic::getAttributes(MF
->getFunction().getContext(),
1418 static_cast<Intrinsic::ID
>(IntrID
));
1419 bool DeclHasSideEffects
= !Attrs
.hasFnAttr(Attribute::ReadNone
);
1420 if (NoSideEffects
&& DeclHasSideEffects
) {
1421 report("G_INTRINSIC used with intrinsic that accesses memory", MI
);
1424 if (!NoSideEffects
&& !DeclHasSideEffects
) {
1425 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI
);
1432 case TargetOpcode::G_SEXT_INREG
: {
1433 if (!MI
->getOperand(2).isImm()) {
1434 report("G_SEXT_INREG expects an immediate operand #2", MI
);
1438 LLT SrcTy
= MRI
->getType(MI
->getOperand(1).getReg());
1439 int64_t Imm
= MI
->getOperand(2).getImm();
1441 report("G_SEXT_INREG size must be >= 1", MI
);
1442 if (Imm
>= SrcTy
.getScalarSizeInBits())
1443 report("G_SEXT_INREG size must be less than source bit width", MI
);
1446 case TargetOpcode::G_SHUFFLE_VECTOR
: {
1447 const MachineOperand
&MaskOp
= MI
->getOperand(3);
1448 if (!MaskOp
.isShuffleMask()) {
1449 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI
);
1453 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1454 LLT Src0Ty
= MRI
->getType(MI
->getOperand(1).getReg());
1455 LLT Src1Ty
= MRI
->getType(MI
->getOperand(2).getReg());
1457 if (Src0Ty
!= Src1Ty
)
1458 report("Source operands must be the same type", MI
);
1460 if (Src0Ty
.getScalarType() != DstTy
.getScalarType())
1461 report("G_SHUFFLE_VECTOR cannot change element type", MI
);
1463 // Don't check that all operands are vector because scalars are used in
1464 // place of 1 element vectors.
1465 int SrcNumElts
= Src0Ty
.isVector() ? Src0Ty
.getNumElements() : 1;
1466 int DstNumElts
= DstTy
.isVector() ? DstTy
.getNumElements() : 1;
1468 ArrayRef
<int> MaskIdxes
= MaskOp
.getShuffleMask();
1470 if (static_cast<int>(MaskIdxes
.size()) != DstNumElts
)
1471 report("Wrong result type for shufflemask", MI
);
1473 for (int Idx
: MaskIdxes
) {
1477 if (Idx
>= 2 * SrcNumElts
)
1478 report("Out of bounds shuffle index", MI
);
1483 case TargetOpcode::G_DYN_STACKALLOC
: {
1484 const MachineOperand
&DstOp
= MI
->getOperand(0);
1485 const MachineOperand
&AllocOp
= MI
->getOperand(1);
1486 const MachineOperand
&AlignOp
= MI
->getOperand(2);
1488 if (!DstOp
.isReg() || !MRI
->getType(DstOp
.getReg()).isPointer()) {
1489 report("dst operand 0 must be a pointer type", MI
);
1493 if (!AllocOp
.isReg() || !MRI
->getType(AllocOp
.getReg()).isScalar()) {
1494 report("src operand 1 must be a scalar reg type", MI
);
1498 if (!AlignOp
.isImm()) {
1499 report("src operand 2 must be an immediate type", MI
);
1504 case TargetOpcode::G_MEMCPY_INLINE
:
1505 case TargetOpcode::G_MEMCPY
:
1506 case TargetOpcode::G_MEMMOVE
: {
1507 ArrayRef
<MachineMemOperand
*> MMOs
= MI
->memoperands();
1508 if (MMOs
.size() != 2) {
1509 report("memcpy/memmove must have 2 memory operands", MI
);
1513 if ((!MMOs
[0]->isStore() || MMOs
[0]->isLoad()) ||
1514 (MMOs
[1]->isStore() || !MMOs
[1]->isLoad())) {
1515 report("wrong memory operand types", MI
);
1519 if (MMOs
[0]->getSize() != MMOs
[1]->getSize())
1520 report("inconsistent memory operand sizes", MI
);
1522 LLT DstPtrTy
= MRI
->getType(MI
->getOperand(0).getReg());
1523 LLT SrcPtrTy
= MRI
->getType(MI
->getOperand(1).getReg());
1525 if (!DstPtrTy
.isPointer() || !SrcPtrTy
.isPointer()) {
1526 report("memory instruction operand must be a pointer", MI
);
1530 if (DstPtrTy
.getAddressSpace() != MMOs
[0]->getAddrSpace())
1531 report("inconsistent store address space", MI
);
1532 if (SrcPtrTy
.getAddressSpace() != MMOs
[1]->getAddrSpace())
1533 report("inconsistent load address space", MI
);
1535 if (Opc
!= TargetOpcode::G_MEMCPY_INLINE
)
1536 if (!MI
->getOperand(3).isImm() || (MI
->getOperand(3).getImm() & ~1LL))
1537 report("'tail' flag (operand 3) must be an immediate 0 or 1", MI
);
1541 case TargetOpcode::G_BZERO
:
1542 case TargetOpcode::G_MEMSET
: {
1543 ArrayRef
<MachineMemOperand
*> MMOs
= MI
->memoperands();
1544 std::string Name
= Opc
== TargetOpcode::G_MEMSET
? "memset" : "bzero";
1545 if (MMOs
.size() != 1) {
1546 report(Twine(Name
, " must have 1 memory operand"), MI
);
1550 if ((!MMOs
[0]->isStore() || MMOs
[0]->isLoad())) {
1551 report(Twine(Name
, " memory operand must be a store"), MI
);
1555 LLT DstPtrTy
= MRI
->getType(MI
->getOperand(0).getReg());
1556 if (!DstPtrTy
.isPointer()) {
1557 report(Twine(Name
, " operand must be a pointer"), MI
);
1561 if (DstPtrTy
.getAddressSpace() != MMOs
[0]->getAddrSpace())
1562 report("inconsistent " + Twine(Name
, " address space"), MI
);
1564 if (!MI
->getOperand(MI
->getNumOperands() - 1).isImm() ||
1565 (MI
->getOperand(MI
->getNumOperands() - 1).getImm() & ~1LL))
1566 report("'tail' flag (last operand) must be an immediate 0 or 1", MI
);
1570 case TargetOpcode::G_VECREDUCE_SEQ_FADD
:
1571 case TargetOpcode::G_VECREDUCE_SEQ_FMUL
: {
1572 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1573 LLT Src1Ty
= MRI
->getType(MI
->getOperand(1).getReg());
1574 LLT Src2Ty
= MRI
->getType(MI
->getOperand(2).getReg());
1575 if (!DstTy
.isScalar())
1576 report("Vector reduction requires a scalar destination type", MI
);
1577 if (!Src1Ty
.isScalar())
1578 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI
);
1579 if (!Src2Ty
.isVector())
1580 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI
);
1583 case TargetOpcode::G_VECREDUCE_FADD
:
1584 case TargetOpcode::G_VECREDUCE_FMUL
:
1585 case TargetOpcode::G_VECREDUCE_FMAX
:
1586 case TargetOpcode::G_VECREDUCE_FMIN
:
1587 case TargetOpcode::G_VECREDUCE_ADD
:
1588 case TargetOpcode::G_VECREDUCE_MUL
:
1589 case TargetOpcode::G_VECREDUCE_AND
:
1590 case TargetOpcode::G_VECREDUCE_OR
:
1591 case TargetOpcode::G_VECREDUCE_XOR
:
1592 case TargetOpcode::G_VECREDUCE_SMAX
:
1593 case TargetOpcode::G_VECREDUCE_SMIN
:
1594 case TargetOpcode::G_VECREDUCE_UMAX
:
1595 case TargetOpcode::G_VECREDUCE_UMIN
: {
1596 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1597 if (!DstTy
.isScalar())
1598 report("Vector reduction requires a scalar destination type", MI
);
1602 case TargetOpcode::G_SBFX
:
1603 case TargetOpcode::G_UBFX
: {
1604 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1605 if (DstTy
.isVector()) {
1606 report("Bitfield extraction is not supported on vectors", MI
);
1611 case TargetOpcode::G_SHL
:
1612 case TargetOpcode::G_LSHR
:
1613 case TargetOpcode::G_ASHR
:
1614 case TargetOpcode::G_ROTR
:
1615 case TargetOpcode::G_ROTL
: {
1616 LLT Src1Ty
= MRI
->getType(MI
->getOperand(1).getReg());
1617 LLT Src2Ty
= MRI
->getType(MI
->getOperand(2).getReg());
1618 if (Src1Ty
.isVector() != Src2Ty
.isVector()) {
1619 report("Shifts and rotates require operands to be either all scalars or "
1626 case TargetOpcode::G_LLROUND
:
1627 case TargetOpcode::G_LROUND
: {
1628 verifyAllRegOpsScalar(*MI
, *MRI
);
1636 void MachineVerifier::visitMachineInstrBefore(const MachineInstr
*MI
) {
1637 const MCInstrDesc
&MCID
= MI
->getDesc();
1638 if (MI
->getNumOperands() < MCID
.getNumOperands()) {
1639 report("Too few operands", MI
);
1640 errs() << MCID
.getNumOperands() << " operands expected, but "
1641 << MI
->getNumOperands() << " given.\n";
1645 if (MF
->getProperties().hasProperty(
1646 MachineFunctionProperties::Property::NoPHIs
))
1647 report("Found PHI instruction with NoPHIs property set", MI
);
1650 report("Found PHI instruction after non-PHI", MI
);
1651 } else if (FirstNonPHI
== nullptr)
1654 // Check the tied operands.
1655 if (MI
->isInlineAsm())
1656 verifyInlineAsm(MI
);
1658 // Check that unspillable terminators define a reg and have at most one use.
1659 if (TII
->isUnspillableTerminator(MI
)) {
1660 if (!MI
->getOperand(0).isReg() || !MI
->getOperand(0).isDef())
1661 report("Unspillable Terminator does not define a reg", MI
);
1662 Register Def
= MI
->getOperand(0).getReg();
1663 if (Def
.isVirtual() &&
1664 !MF
->getProperties().hasProperty(
1665 MachineFunctionProperties::Property::NoPHIs
) &&
1666 std::distance(MRI
->use_nodbg_begin(Def
), MRI
->use_nodbg_end()) > 1)
1667 report("Unspillable Terminator expected to have at most one use!", MI
);
1670 // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1671 // DBG_VALUEs: these are convenient to use in tests, but should never get
1673 if (MI
->isDebugValue() && MI
->getNumOperands() == 4)
1674 if (!MI
->getDebugLoc())
1675 report("Missing DebugLoc for debug instruction", MI
);
1677 // Meta instructions should never be the subject of debug value tracking,
1678 // they don't create a value in the output program at all.
1679 if (MI
->isMetaInstruction() && MI
->peekDebugInstrNum())
1680 report("Metadata instruction should not have a value tracking number", MI
);
1682 // Check the MachineMemOperands for basic consistency.
1683 for (MachineMemOperand
*Op
: MI
->memoperands()) {
1684 if (Op
->isLoad() && !MI
->mayLoad())
1685 report("Missing mayLoad flag", MI
);
1686 if (Op
->isStore() && !MI
->mayStore())
1687 report("Missing mayStore flag", MI
);
1690 // Debug values must not have a slot index.
1691 // Other instructions must have one, unless they are inside a bundle.
1693 bool mapped
= !LiveInts
->isNotInMIMap(*MI
);
1694 if (MI
->isDebugOrPseudoInstr()) {
1696 report("Debug instruction has a slot index", MI
);
1697 } else if (MI
->isInsideBundle()) {
1699 report("Instruction inside bundle has a slot index", MI
);
1702 report("Missing slot index", MI
);
1706 unsigned Opc
= MCID
.getOpcode();
1707 if (isPreISelGenericOpcode(Opc
) || isPreISelGenericOptimizationHint(Opc
)) {
1708 verifyPreISelGenericInstruction(MI
);
1712 StringRef ErrorInfo
;
1713 if (!TII
->verifyInstruction(*MI
, ErrorInfo
))
1714 report(ErrorInfo
.data(), MI
);
1716 // Verify properties of various specific instruction types
1717 switch (MI
->getOpcode()) {
1718 case TargetOpcode::COPY
: {
1719 const MachineOperand
&DstOp
= MI
->getOperand(0);
1720 const MachineOperand
&SrcOp
= MI
->getOperand(1);
1721 const Register SrcReg
= SrcOp
.getReg();
1722 const Register DstReg
= DstOp
.getReg();
1724 LLT DstTy
= MRI
->getType(DstReg
);
1725 LLT SrcTy
= MRI
->getType(SrcReg
);
1726 if (SrcTy
.isValid() && DstTy
.isValid()) {
1727 // If both types are valid, check that the types are the same.
1728 if (SrcTy
!= DstTy
) {
1729 report("Copy Instruction is illegal with mismatching types", MI
);
1730 errs() << "Def = " << DstTy
<< ", Src = " << SrcTy
<< "\n";
1736 if (!SrcTy
.isValid() && !DstTy
.isValid())
1739 // If we have only one valid type, this is likely a copy between a virtual
1740 // and physical register.
1741 unsigned SrcSize
= 0;
1742 unsigned DstSize
= 0;
1743 if (SrcReg
.isPhysical() && DstTy
.isValid()) {
1744 const TargetRegisterClass
*SrcRC
=
1745 TRI
->getMinimalPhysRegClassLLT(SrcReg
, DstTy
);
1747 SrcSize
= TRI
->getRegSizeInBits(*SrcRC
);
1751 SrcSize
= TRI
->getRegSizeInBits(SrcReg
, *MRI
);
1753 if (DstReg
.isPhysical() && SrcTy
.isValid()) {
1754 const TargetRegisterClass
*DstRC
=
1755 TRI
->getMinimalPhysRegClassLLT(DstReg
, SrcTy
);
1757 DstSize
= TRI
->getRegSizeInBits(*DstRC
);
1761 DstSize
= TRI
->getRegSizeInBits(DstReg
, *MRI
);
1763 if (SrcSize
!= 0 && DstSize
!= 0 && SrcSize
!= DstSize
) {
1764 if (!DstOp
.getSubReg() && !SrcOp
.getSubReg()) {
1765 report("Copy Instruction is illegal with mismatching sizes", MI
);
1766 errs() << "Def Size = " << DstSize
<< ", Src Size = " << SrcSize
1772 case TargetOpcode::STATEPOINT
: {
1773 StatepointOpers
SO(MI
);
1774 if (!MI
->getOperand(SO
.getIDPos()).isImm() ||
1775 !MI
->getOperand(SO
.getNBytesPos()).isImm() ||
1776 !MI
->getOperand(SO
.getNCallArgsPos()).isImm()) {
1777 report("meta operands to STATEPOINT not constant!", MI
);
1781 auto VerifyStackMapConstant
= [&](unsigned Offset
) {
1782 if (Offset
>= MI
->getNumOperands()) {
1783 report("stack map constant to STATEPOINT is out of range!", MI
);
1786 if (!MI
->getOperand(Offset
- 1).isImm() ||
1787 MI
->getOperand(Offset
- 1).getImm() != StackMaps::ConstantOp
||
1788 !MI
->getOperand(Offset
).isImm())
1789 report("stack map constant to STATEPOINT not well formed!", MI
);
1791 VerifyStackMapConstant(SO
.getCCIdx());
1792 VerifyStackMapConstant(SO
.getFlagsIdx());
1793 VerifyStackMapConstant(SO
.getNumDeoptArgsIdx());
1794 VerifyStackMapConstant(SO
.getNumGCPtrIdx());
1795 VerifyStackMapConstant(SO
.getNumAllocaIdx());
1796 VerifyStackMapConstant(SO
.getNumGcMapEntriesIdx());
1798 // Verify that all explicit statepoint defs are tied to gc operands as
1799 // they are expected to be a relocation of gc operands.
1800 unsigned FirstGCPtrIdx
= SO
.getFirstGCPtrIdx();
1801 unsigned LastGCPtrIdx
= SO
.getNumAllocaIdx() - 2;
1802 for (unsigned Idx
= 0; Idx
< MI
->getNumDefs(); Idx
++) {
1804 if (!MI
->isRegTiedToUseOperand(Idx
, &UseOpIdx
)) {
1805 report("STATEPOINT defs expected to be tied", MI
);
1808 if (UseOpIdx
< FirstGCPtrIdx
|| UseOpIdx
> LastGCPtrIdx
) {
1809 report("STATEPOINT def tied to non-gc operand", MI
);
1814 // TODO: verify we have properly encoded deopt arguments
1816 case TargetOpcode::INSERT_SUBREG
: {
1817 unsigned InsertedSize
;
1818 if (unsigned SubIdx
= MI
->getOperand(2).getSubReg())
1819 InsertedSize
= TRI
->getSubRegIdxSize(SubIdx
);
1821 InsertedSize
= TRI
->getRegSizeInBits(MI
->getOperand(2).getReg(), *MRI
);
1822 unsigned SubRegSize
= TRI
->getSubRegIdxSize(MI
->getOperand(3).getImm());
1823 if (SubRegSize
< InsertedSize
) {
1824 report("INSERT_SUBREG expected inserted value to have equal or lesser "
1825 "size than the subreg it was inserted into", MI
);
1833 MachineVerifier::visitMachineOperand(const MachineOperand
*MO
, unsigned MONum
) {
1834 const MachineInstr
*MI
= MO
->getParent();
1835 const MCInstrDesc
&MCID
= MI
->getDesc();
1836 unsigned NumDefs
= MCID
.getNumDefs();
1837 if (MCID
.getOpcode() == TargetOpcode::PATCHPOINT
)
1838 NumDefs
= (MONum
== 0 && MO
->isReg()) ? NumDefs
: 0;
1840 // The first MCID.NumDefs operands must be explicit register defines
1841 if (MONum
< NumDefs
) {
1842 const MCOperandInfo
&MCOI
= MCID
.OpInfo
[MONum
];
1844 report("Explicit definition must be a register", MO
, MONum
);
1845 else if (!MO
->isDef() && !MCOI
.isOptionalDef())
1846 report("Explicit definition marked as use", MO
, MONum
);
1847 else if (MO
->isImplicit())
1848 report("Explicit definition marked as implicit", MO
, MONum
);
1849 } else if (MONum
< MCID
.getNumOperands()) {
1850 const MCOperandInfo
&MCOI
= MCID
.OpInfo
[MONum
];
1851 // Don't check if it's the last operand in a variadic instruction. See,
1852 // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1853 bool IsOptional
= MI
->isVariadic() && MONum
== MCID
.getNumOperands() - 1;
1856 if (MO
->isDef() && !MCOI
.isOptionalDef() && !MCID
.variadicOpsAreDefs())
1857 report("Explicit operand marked as def", MO
, MONum
);
1858 if (MO
->isImplicit())
1859 report("Explicit operand marked as implicit", MO
, MONum
);
1862 // Check that an instruction has register operands only as expected.
1863 if (MCOI
.OperandType
== MCOI::OPERAND_REGISTER
&&
1864 !MO
->isReg() && !MO
->isFI())
1865 report("Expected a register operand.", MO
, MONum
);
1867 if (MCOI
.OperandType
== MCOI::OPERAND_IMMEDIATE
||
1868 (MCOI
.OperandType
== MCOI::OPERAND_PCREL
&&
1869 !TII
->isPCRelRegisterOperandLegal(*MO
)))
1870 report("Expected a non-register operand.", MO
, MONum
);
1874 int TiedTo
= MCID
.getOperandConstraint(MONum
, MCOI::TIED_TO
);
1877 report("Tied use must be a register", MO
, MONum
);
1878 else if (!MO
->isTied())
1879 report("Operand should be tied", MO
, MONum
);
1880 else if (unsigned(TiedTo
) != MI
->findTiedOperandIdx(MONum
))
1881 report("Tied def doesn't match MCInstrDesc", MO
, MONum
);
1882 else if (Register::isPhysicalRegister(MO
->getReg())) {
1883 const MachineOperand
&MOTied
= MI
->getOperand(TiedTo
);
1884 if (!MOTied
.isReg())
1885 report("Tied counterpart must be a register", &MOTied
, TiedTo
);
1886 else if (Register::isPhysicalRegister(MOTied
.getReg()) &&
1887 MO
->getReg() != MOTied
.getReg())
1888 report("Tied physical registers must match.", &MOTied
, TiedTo
);
1890 } else if (MO
->isReg() && MO
->isTied())
1891 report("Explicit operand should not be tied", MO
, MONum
);
1893 // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1894 if (MO
->isReg() && !MO
->isImplicit() && !MI
->isVariadic() && MO
->getReg())
1895 report("Extra explicit operand on non-variadic instruction", MO
, MONum
);
1898 switch (MO
->getType()) {
1899 case MachineOperand::MO_Register
: {
1900 // Verify debug flag on debug instructions. Check this first because reg0
1901 // indicates an undefined debug value.
1902 if (MI
->isDebugInstr() && MO
->isUse()) {
1904 report("Register operand must be marked debug", MO
, MONum
);
1905 } else if (MO
->isDebug()) {
1906 report("Register operand must not be marked debug", MO
, MONum
);
1909 const Register Reg
= MO
->getReg();
1912 if (MRI
->tracksLiveness() && !MI
->isDebugValue())
1913 checkLiveness(MO
, MONum
);
1915 // Verify the consistency of tied operands.
1917 unsigned OtherIdx
= MI
->findTiedOperandIdx(MONum
);
1918 const MachineOperand
&OtherMO
= MI
->getOperand(OtherIdx
);
1919 if (!OtherMO
.isReg())
1920 report("Must be tied to a register", MO
, MONum
);
1921 if (!OtherMO
.isTied())
1922 report("Missing tie flags on tied operand", MO
, MONum
);
1923 if (MI
->findTiedOperandIdx(OtherIdx
) != MONum
)
1924 report("Inconsistent tie links", MO
, MONum
);
1925 if (MONum
< MCID
.getNumDefs()) {
1926 if (OtherIdx
< MCID
.getNumOperands()) {
1927 if (-1 == MCID
.getOperandConstraint(OtherIdx
, MCOI::TIED_TO
))
1928 report("Explicit def tied to explicit use without tie constraint",
1931 if (!OtherMO
.isImplicit())
1932 report("Explicit def should be tied to implicit use", MO
, MONum
);
1937 // Verify two-address constraints after the twoaddressinstruction pass.
1938 // Both twoaddressinstruction pass and phi-node-elimination pass call
1939 // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1940 // twoaddressinstruction pass not after phi-node-elimination pass. So we
1941 // shouldn't use the NoSSA as the condition, we should based on
1942 // TiedOpsRewritten property to verify two-address constraints, this
1943 // property will be set in twoaddressinstruction pass.
1945 if (MF
->getProperties().hasProperty(
1946 MachineFunctionProperties::Property::TiedOpsRewritten
) &&
1947 MO
->isUse() && MI
->isRegTiedToDefOperand(MONum
, &DefIdx
) &&
1948 Reg
!= MI
->getOperand(DefIdx
).getReg())
1949 report("Two-address instruction operands must be identical", MO
, MONum
);
1951 // Check register classes.
1952 unsigned SubIdx
= MO
->getSubReg();
1954 if (Register::isPhysicalRegister(Reg
)) {
1956 report("Illegal subregister index for physical register", MO
, MONum
);
1959 if (MONum
< MCID
.getNumOperands()) {
1960 if (const TargetRegisterClass
*DRC
=
1961 TII
->getRegClass(MCID
, MONum
, TRI
, *MF
)) {
1962 if (!DRC
->contains(Reg
)) {
1963 report("Illegal physical register for instruction", MO
, MONum
);
1964 errs() << printReg(Reg
, TRI
) << " is not a "
1965 << TRI
->getRegClassName(DRC
) << " register.\n";
1969 if (MO
->isRenamable()) {
1970 if (MRI
->isReserved(Reg
)) {
1971 report("isRenamable set on reserved register", MO
, MONum
);
1976 // Virtual register.
1977 const TargetRegisterClass
*RC
= MRI
->getRegClassOrNull(Reg
);
1979 // This is a generic virtual register.
1981 // Do not allow undef uses for generic virtual registers. This ensures
1982 // getVRegDef can never fail and return null on a generic register.
1984 // FIXME: This restriction should probably be broadened to all SSA
1985 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1986 // run on the SSA function just before phi elimination.
1988 report("Generic virtual register use cannot be undef", MO
, MONum
);
1990 // Debug value instruction is permitted to use undefined vregs.
1991 // This is a performance measure to skip the overhead of immediately
1992 // pruning unused debug operands. The final undef substitution occurs
1993 // when debug values are allocated in LDVImpl::handleDebugValue, so
1994 // these verifications always apply after this pass.
1995 if (isFunctionTracksDebugUserValues
|| !MO
->isUse() ||
1996 !MI
->isDebugValue() || !MRI
->def_empty(Reg
)) {
1997 // If we're post-Select, we can't have gvregs anymore.
1998 if (isFunctionSelected
) {
1999 report("Generic virtual register invalid in a Selected function",
2004 // The gvreg must have a type and it must not have a SubIdx.
2005 LLT Ty
= MRI
->getType(Reg
);
2006 if (!Ty
.isValid()) {
2007 report("Generic virtual register must have a valid type", MO
,
2012 const RegisterBank
*RegBank
= MRI
->getRegBankOrNull(Reg
);
2014 // If we're post-RegBankSelect, the gvreg must have a bank.
2015 if (!RegBank
&& isFunctionRegBankSelected
) {
2016 report("Generic virtual register must have a bank in a "
2017 "RegBankSelected function",
2022 // Make sure the register fits into its register bank if any.
2023 if (RegBank
&& Ty
.isValid() &&
2024 RegBank
->getSize() < Ty
.getSizeInBits()) {
2025 report("Register bank is too small for virtual register", MO
,
2027 errs() << "Register bank " << RegBank
->getName() << " too small("
2028 << RegBank
->getSize() << ") to fit " << Ty
.getSizeInBits()
2035 report("Generic virtual register does not allow subregister index", MO
,
2040 // If this is a target specific instruction and this operand
2041 // has register class constraint, the virtual register must
2043 if (!isPreISelGenericOpcode(MCID
.getOpcode()) &&
2044 MONum
< MCID
.getNumOperands() &&
2045 TII
->getRegClass(MCID
, MONum
, TRI
, *MF
)) {
2046 report("Virtual register does not match instruction constraint", MO
,
2048 errs() << "Expect register class "
2049 << TRI
->getRegClassName(
2050 TII
->getRegClass(MCID
, MONum
, TRI
, *MF
))
2051 << " but got nothing\n";
2058 const TargetRegisterClass
*SRC
=
2059 TRI
->getSubClassWithSubReg(RC
, SubIdx
);
2061 report("Invalid subregister index for virtual register", MO
, MONum
);
2062 errs() << "Register class " << TRI
->getRegClassName(RC
)
2063 << " does not support subreg index " << SubIdx
<< "\n";
2067 report("Invalid register class for subregister index", MO
, MONum
);
2068 errs() << "Register class " << TRI
->getRegClassName(RC
)
2069 << " does not fully support subreg index " << SubIdx
<< "\n";
2073 if (MONum
< MCID
.getNumOperands()) {
2074 if (const TargetRegisterClass
*DRC
=
2075 TII
->getRegClass(MCID
, MONum
, TRI
, *MF
)) {
2077 const TargetRegisterClass
*SuperRC
=
2078 TRI
->getLargestLegalSuperClass(RC
, *MF
);
2080 report("No largest legal super class exists.", MO
, MONum
);
2083 DRC
= TRI
->getMatchingSuperRegClass(SuperRC
, DRC
, SubIdx
);
2085 report("No matching super-reg register class.", MO
, MONum
);
2089 if (!RC
->hasSuperClassEq(DRC
)) {
2090 report("Illegal virtual register for instruction", MO
, MONum
);
2091 errs() << "Expected a " << TRI
->getRegClassName(DRC
)
2092 << " register, but got a " << TRI
->getRegClassName(RC
)
2101 case MachineOperand::MO_RegisterMask
:
2102 regMasks
.push_back(MO
->getRegMask());
2105 case MachineOperand::MO_MachineBasicBlock
:
2106 if (MI
->isPHI() && !MO
->getMBB()->isSuccessor(MI
->getParent()))
2107 report("PHI operand is not in the CFG", MO
, MONum
);
2110 case MachineOperand::MO_FrameIndex
:
2111 if (LiveStks
&& LiveStks
->hasInterval(MO
->getIndex()) &&
2112 LiveInts
&& !LiveInts
->isNotInMIMap(*MI
)) {
2113 int FI
= MO
->getIndex();
2114 LiveInterval
&LI
= LiveStks
->getInterval(FI
);
2115 SlotIndex Idx
= LiveInts
->getInstructionIndex(*MI
);
2117 bool stores
= MI
->mayStore();
2118 bool loads
= MI
->mayLoad();
2119 // For a memory-to-memory move, we need to check if the frame
2120 // index is used for storing or loading, by inspecting the
2122 if (stores
&& loads
) {
2123 for (auto *MMO
: MI
->memoperands()) {
2124 const PseudoSourceValue
*PSV
= MMO
->getPseudoValue();
2125 if (PSV
== nullptr) continue;
2126 const FixedStackPseudoSourceValue
*Value
=
2127 dyn_cast
<FixedStackPseudoSourceValue
>(PSV
);
2128 if (Value
== nullptr) continue;
2129 if (Value
->getFrameIndex() != FI
) continue;
2137 if (loads
== stores
)
2138 report("Missing fixed stack memoperand.", MI
);
2140 if (loads
&& !LI
.liveAt(Idx
.getRegSlot(true))) {
2141 report("Instruction loads from dead spill slot", MO
, MONum
);
2142 errs() << "Live stack: " << LI
<< '\n';
2144 if (stores
&& !LI
.liveAt(Idx
.getRegSlot())) {
2145 report("Instruction stores to dead spill slot", MO
, MONum
);
2146 errs() << "Live stack: " << LI
<< '\n';
2156 void MachineVerifier::checkLivenessAtUse(const MachineOperand
*MO
,
2157 unsigned MONum
, SlotIndex UseIdx
,
2158 const LiveRange
&LR
,
2159 Register VRegOrUnit
,
2160 LaneBitmask LaneMask
) {
2161 LiveQueryResult LRQ
= LR
.Query(UseIdx
);
2162 // Check if we have a segment at the use, note however that we only need one
2163 // live subregister range, the others may be dead.
2164 if (!LRQ
.valueIn() && LaneMask
.none()) {
2165 report("No live segment at use", MO
, MONum
);
2166 report_context_liverange(LR
);
2167 report_context_vreg_regunit(VRegOrUnit
);
2168 report_context(UseIdx
);
2170 if (MO
->isKill() && !LRQ
.isKill()) {
2171 report("Live range continues after kill flag", MO
, MONum
);
2172 report_context_liverange(LR
);
2173 report_context_vreg_regunit(VRegOrUnit
);
2175 report_context_lanemask(LaneMask
);
2176 report_context(UseIdx
);
2180 void MachineVerifier::checkLivenessAtDef(const MachineOperand
*MO
,
2181 unsigned MONum
, SlotIndex DefIdx
,
2182 const LiveRange
&LR
,
2183 Register VRegOrUnit
,
2185 LaneBitmask LaneMask
) {
2186 if (const VNInfo
*VNI
= LR
.getVNInfoAt(DefIdx
)) {
2187 assert(VNI
&& "NULL valno is not allowed");
2188 if (VNI
->def
!= DefIdx
) {
2189 report("Inconsistent valno->def", MO
, MONum
);
2190 report_context_liverange(LR
);
2191 report_context_vreg_regunit(VRegOrUnit
);
2193 report_context_lanemask(LaneMask
);
2194 report_context(*VNI
);
2195 report_context(DefIdx
);
2198 report("No live segment at def", MO
, MONum
);
2199 report_context_liverange(LR
);
2200 report_context_vreg_regunit(VRegOrUnit
);
2202 report_context_lanemask(LaneMask
);
2203 report_context(DefIdx
);
2205 // Check that, if the dead def flag is present, LiveInts agree.
2207 LiveQueryResult LRQ
= LR
.Query(DefIdx
);
2208 if (!LRQ
.isDeadDef()) {
2209 assert(Register::isVirtualRegister(VRegOrUnit
) &&
2210 "Expecting a virtual register.");
2211 // A dead subreg def only tells us that the specific subreg is dead. There
2212 // could be other non-dead defs of other subregs, or we could have other
2213 // parts of the register being live through the instruction. So unless we
2214 // are checking liveness for a subrange it is ok for the live range to
2215 // continue, given that we have a dead def of a subregister.
2216 if (SubRangeCheck
|| MO
->getSubReg() == 0) {
2217 report("Live range continues after dead def flag", MO
, MONum
);
2218 report_context_liverange(LR
);
2219 report_context_vreg_regunit(VRegOrUnit
);
2221 report_context_lanemask(LaneMask
);
2227 void MachineVerifier::checkLiveness(const MachineOperand
*MO
, unsigned MONum
) {
2228 const MachineInstr
*MI
= MO
->getParent();
2229 const Register Reg
= MO
->getReg();
2230 const unsigned SubRegIdx
= MO
->getSubReg();
2232 const LiveInterval
*LI
= nullptr;
2233 if (LiveInts
&& Reg
.isVirtual()) {
2234 if (LiveInts
->hasInterval(Reg
)) {
2235 LI
= &LiveInts
->getInterval(Reg
);
2236 if (SubRegIdx
!= 0 && (MO
->isDef() || !MO
->isUndef()) && !LI
->empty() &&
2237 !LI
->hasSubRanges() && MRI
->shouldTrackSubRegLiveness(Reg
))
2238 report("Live interval for subreg operand has no subranges", MO
, MONum
);
2240 report("Virtual register has no live interval", MO
, MONum
);
2244 // Both use and def operands can read a register.
2245 if (MO
->readsReg()) {
2247 addRegWithSubRegs(regsKilled
, Reg
);
2249 // Check that LiveVars knows this kill (unless we are inside a bundle, in
2250 // which case we have already checked that LiveVars knows any kills on the
2251 // bundle header instead).
2252 if (LiveVars
&& Reg
.isVirtual() && MO
->isKill() &&
2253 !MI
->isBundledWithPred()) {
2254 LiveVariables::VarInfo
&VI
= LiveVars
->getVarInfo(Reg
);
2255 if (!is_contained(VI
.Kills
, MI
))
2256 report("Kill missing from LiveVariables", MO
, MONum
);
2259 // Check LiveInts liveness and kill.
2260 if (LiveInts
&& !LiveInts
->isNotInMIMap(*MI
)) {
2261 SlotIndex UseIdx
= LiveInts
->getInstructionIndex(*MI
);
2262 // Check the cached regunit intervals.
2263 if (Reg
.isPhysical() && !isReserved(Reg
)) {
2264 for (MCRegUnitIterator
Units(Reg
.asMCReg(), TRI
); Units
.isValid();
2266 if (MRI
->isReservedRegUnit(*Units
))
2268 if (const LiveRange
*LR
= LiveInts
->getCachedRegUnit(*Units
))
2269 checkLivenessAtUse(MO
, MONum
, UseIdx
, *LR
, *Units
);
2273 if (Reg
.isVirtual()) {
2274 // This is a virtual register interval.
2275 checkLivenessAtUse(MO
, MONum
, UseIdx
, *LI
, Reg
);
2277 if (LI
->hasSubRanges() && !MO
->isDef()) {
2278 LaneBitmask MOMask
= SubRegIdx
!= 0
2279 ? TRI
->getSubRegIndexLaneMask(SubRegIdx
)
2280 : MRI
->getMaxLaneMaskForVReg(Reg
);
2281 LaneBitmask LiveInMask
;
2282 for (const LiveInterval::SubRange
&SR
: LI
->subranges()) {
2283 if ((MOMask
& SR
.LaneMask
).none())
2285 checkLivenessAtUse(MO
, MONum
, UseIdx
, SR
, Reg
, SR
.LaneMask
);
2286 LiveQueryResult LRQ
= SR
.Query(UseIdx
);
2288 LiveInMask
|= SR
.LaneMask
;
2290 // At least parts of the register has to be live at the use.
2291 if ((LiveInMask
& MOMask
).none()) {
2292 report("No live subrange at use", MO
, MONum
);
2293 report_context(*LI
);
2294 report_context(UseIdx
);
2300 // Use of a dead register.
2301 if (!regsLive
.count(Reg
)) {
2302 if (Reg
.isPhysical()) {
2303 // Reserved registers may be used even when 'dead'.
2304 bool Bad
= !isReserved(Reg
);
2305 // We are fine if just any subregister has a defined value.
2308 for (const MCPhysReg
&SubReg
: TRI
->subregs(Reg
)) {
2309 if (regsLive
.count(SubReg
)) {
2315 // If there is an additional implicit-use of a super register we stop
2316 // here. By definition we are fine if the super register is not
2317 // (completely) dead, if the complete super register is dead we will
2318 // get a report for its operand.
2320 for (const MachineOperand
&MOP
: MI
->uses()) {
2321 if (!MOP
.isReg() || !MOP
.isImplicit())
2324 if (!MOP
.getReg().isPhysical())
2327 if (llvm::is_contained(TRI
->subregs(MOP
.getReg()), Reg
))
2332 report("Using an undefined physical register", MO
, MONum
);
2333 } else if (MRI
->def_empty(Reg
)) {
2334 report("Reading virtual register without a def", MO
, MONum
);
2336 BBInfo
&MInfo
= MBBInfoMap
[MI
->getParent()];
2337 // We don't know which virtual registers are live in, so only complain
2338 // if vreg was killed in this MBB. Otherwise keep track of vregs that
2339 // must be live in. PHI instructions are handled separately.
2340 if (MInfo
.regsKilled
.count(Reg
))
2341 report("Using a killed virtual register", MO
, MONum
);
2342 else if (!MI
->isPHI())
2343 MInfo
.vregsLiveIn
.insert(std::make_pair(Reg
, MI
));
2349 // Register defined.
2350 // TODO: verify that earlyclobber ops are not used.
2352 addRegWithSubRegs(regsDead
, Reg
);
2354 addRegWithSubRegs(regsDefined
, Reg
);
2357 if (MRI
->isSSA() && Reg
.isVirtual() &&
2358 std::next(MRI
->def_begin(Reg
)) != MRI
->def_end())
2359 report("Multiple virtual register defs in SSA form", MO
, MONum
);
2361 // Check LiveInts for a live segment, but only for virtual registers.
2362 if (LiveInts
&& !LiveInts
->isNotInMIMap(*MI
)) {
2363 SlotIndex DefIdx
= LiveInts
->getInstructionIndex(*MI
);
2364 DefIdx
= DefIdx
.getRegSlot(MO
->isEarlyClobber());
2366 if (Reg
.isVirtual()) {
2367 checkLivenessAtDef(MO
, MONum
, DefIdx
, *LI
, Reg
);
2369 if (LI
->hasSubRanges()) {
2370 LaneBitmask MOMask
= SubRegIdx
!= 0
2371 ? TRI
->getSubRegIndexLaneMask(SubRegIdx
)
2372 : MRI
->getMaxLaneMaskForVReg(Reg
);
2373 for (const LiveInterval::SubRange
&SR
: LI
->subranges()) {
2374 if ((SR
.LaneMask
& MOMask
).none())
2376 checkLivenessAtDef(MO
, MONum
, DefIdx
, SR
, Reg
, true, SR
.LaneMask
);
2384 // This function gets called after visiting all instructions in a bundle. The
2385 // argument points to the bundle header.
2386 // Normal stand-alone instructions are also considered 'bundles', and this
2387 // function is called for all of them.
2388 void MachineVerifier::visitMachineBundleAfter(const MachineInstr
*MI
) {
2389 BBInfo
&MInfo
= MBBInfoMap
[MI
->getParent()];
2390 set_union(MInfo
.regsKilled
, regsKilled
);
2391 set_subtract(regsLive
, regsKilled
); regsKilled
.clear();
2392 // Kill any masked registers.
2393 while (!regMasks
.empty()) {
2394 const uint32_t *Mask
= regMasks
.pop_back_val();
2395 for (Register Reg
: regsLive
)
2396 if (Reg
.isPhysical() &&
2397 MachineOperand::clobbersPhysReg(Mask
, Reg
.asMCReg()))
2398 regsDead
.push_back(Reg
);
2400 set_subtract(regsLive
, regsDead
); regsDead
.clear();
2401 set_union(regsLive
, regsDefined
); regsDefined
.clear();
2405 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock
*MBB
) {
2406 MBBInfoMap
[MBB
].regsLiveOut
= regsLive
;
2410 SlotIndex stop
= Indexes
->getMBBEndIdx(MBB
);
2411 if (!(stop
> lastIndex
)) {
2412 report("Block ends before last instruction index", MBB
);
2413 errs() << "Block ends at " << stop
2414 << " last instruction was at " << lastIndex
<< '\n';
2421 // This implements a set of registers that serves as a filter: can filter other
2422 // sets by passing through elements not in the filter and blocking those that
2423 // are. Any filter implicitly includes the full set of physical registers upon
2424 // creation, thus filtering them all out. The filter itself as a set only grows,
2425 // and needs to be as efficient as possible.
2427 // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2428 // no duplicates. Both virtual and physical registers are fine.
2429 template <typename RegSetT
> void add(const RegSetT
&FromRegSet
) {
2430 SmallVector
<Register
, 0> VRegsBuffer
;
2431 filterAndAdd(FromRegSet
, VRegsBuffer
);
2433 // Filter \p FromRegSet through the filter and append passed elements into \p
2434 // ToVRegs. All elements appended are then added to the filter itself.
2435 // \returns true if anything changed.
2436 template <typename RegSetT
>
2437 bool filterAndAdd(const RegSetT
&FromRegSet
,
2438 SmallVectorImpl
<Register
> &ToVRegs
) {
2439 unsigned SparseUniverse
= Sparse
.size();
2440 unsigned NewSparseUniverse
= SparseUniverse
;
2441 unsigned NewDenseSize
= Dense
.size();
2442 size_t Begin
= ToVRegs
.size();
2443 for (Register Reg
: FromRegSet
) {
2444 if (!Reg
.isVirtual())
2446 unsigned Index
= Register::virtReg2Index(Reg
);
2447 if (Index
< SparseUniverseMax
) {
2448 if (Index
< SparseUniverse
&& Sparse
.test(Index
))
2450 NewSparseUniverse
= std::max(NewSparseUniverse
, Index
+ 1);
2452 if (Dense
.count(Reg
))
2456 ToVRegs
.push_back(Reg
);
2458 size_t End
= ToVRegs
.size();
2461 // Reserving space in sets once performs better than doing so continuously
2462 // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2463 // tuned all the way down) and double iteration (the second one is over a
2464 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2465 Sparse
.resize(NewSparseUniverse
);
2466 Dense
.reserve(NewDenseSize
);
2467 for (unsigned I
= Begin
; I
< End
; ++I
) {
2468 Register Reg
= ToVRegs
[I
];
2469 unsigned Index
= Register::virtReg2Index(Reg
);
2470 if (Index
< SparseUniverseMax
)
2479 static constexpr unsigned SparseUniverseMax
= 10 * 1024 * 8;
2480 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2481 // are tracked by Dense. The only purpose of the threashold and the Dense set
2482 // is to have a reasonably growing memory usage in pathological cases (large
2483 // number of very sparse VRegFilter instances live at the same time). In
2484 // practice even in the worst-by-execution time cases having all elements
2485 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2486 // space efficient than if tracked by Dense. The threashold is set to keep the
2487 // worst-case memory usage within 2x of figures determined empirically for
2488 // "all Dense" scenario in such worst-by-execution-time cases.
2490 DenseSet
<unsigned> Dense
;
2493 // Implements both a transfer function and a (binary, in-place) join operator
2494 // for a dataflow over register sets with set union join and filtering transfer
2495 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2496 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2497 // time, where n is the size of the set (as opposed to O(U) where U is the
2498 // universe). filter_b implicitly contains all physical registers at all times.
2499 class FilteringVRegSet
{
2501 SmallVector
<Register
, 0> VRegs
;
2504 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2505 // Both virtual and physical registers are fine.
2506 template <typename RegSetT
> void addToFilter(const RegSetT
&RS
) {
2509 // Passes \p RS through the filter_b (transfer function) and adds what's left
2510 // to itself (out_b).
2511 template <typename RegSetT
> bool add(const RegSetT
&RS
) {
2512 // Double-duty the Filter: to maintain VRegs a set (and the join operation
2513 // a set union) just add everything being added here to the Filter as well.
2514 return Filter
.filterAndAdd(RS
, VRegs
);
2516 using const_iterator
= decltype(VRegs
)::const_iterator
;
2517 const_iterator
begin() const { return VRegs
.begin(); }
2518 const_iterator
end() const { return VRegs
.end(); }
2519 size_t size() const { return VRegs
.size(); }
2523 // Calculate the largest possible vregsPassed sets. These are the registers that
2524 // can pass through an MBB live, but may not be live every time. It is assumed
2525 // that all vregsPassed sets are empty before the call.
2526 void MachineVerifier::calcRegsPassed() {
2528 // ReversePostOrderTraversal doesn't handle empty functions.
2531 for (const MachineBasicBlock
*MB
:
2532 ReversePostOrderTraversal
<const MachineFunction
*>(MF
)) {
2533 FilteringVRegSet VRegs
;
2534 BBInfo
&Info
= MBBInfoMap
[MB
];
2535 assert(Info
.reachable
);
2537 VRegs
.addToFilter(Info
.regsKilled
);
2538 VRegs
.addToFilter(Info
.regsLiveOut
);
2539 for (const MachineBasicBlock
*Pred
: MB
->predecessors()) {
2540 const BBInfo
&PredInfo
= MBBInfoMap
[Pred
];
2541 if (!PredInfo
.reachable
)
2544 VRegs
.add(PredInfo
.regsLiveOut
);
2545 VRegs
.add(PredInfo
.vregsPassed
);
2547 Info
.vregsPassed
.reserve(VRegs
.size());
2548 Info
.vregsPassed
.insert(VRegs
.begin(), VRegs
.end());
2552 // Calculate the set of virtual registers that must be passed through each basic
2553 // block in order to satisfy the requirements of successor blocks. This is very
2554 // similar to calcRegsPassed, only backwards.
2555 void MachineVerifier::calcRegsRequired() {
2556 // First push live-in regs to predecessors' vregsRequired.
2557 SmallPtrSet
<const MachineBasicBlock
*, 8> todo
;
2558 for (const auto &MBB
: *MF
) {
2559 BBInfo
&MInfo
= MBBInfoMap
[&MBB
];
2560 for (const MachineBasicBlock
*Pred
: MBB
.predecessors()) {
2561 BBInfo
&PInfo
= MBBInfoMap
[Pred
];
2562 if (PInfo
.addRequired(MInfo
.vregsLiveIn
))
2566 // Handle the PHI node.
2567 for (const MachineInstr
&MI
: MBB
.phis()) {
2568 for (unsigned i
= 1, e
= MI
.getNumOperands(); i
!= e
; i
+= 2) {
2569 // Skip those Operands which are undef regs or not regs.
2570 if (!MI
.getOperand(i
).isReg() || !MI
.getOperand(i
).readsReg())
2573 // Get register and predecessor for one PHI edge.
2574 Register Reg
= MI
.getOperand(i
).getReg();
2575 const MachineBasicBlock
*Pred
= MI
.getOperand(i
+ 1).getMBB();
2577 BBInfo
&PInfo
= MBBInfoMap
[Pred
];
2578 if (PInfo
.addRequired(Reg
))
2584 // Iteratively push vregsRequired to predecessors. This will converge to the
2585 // same final state regardless of DenseSet iteration order.
2586 while (!todo
.empty()) {
2587 const MachineBasicBlock
*MBB
= *todo
.begin();
2589 BBInfo
&MInfo
= MBBInfoMap
[MBB
];
2590 for (const MachineBasicBlock
*Pred
: MBB
->predecessors()) {
2593 BBInfo
&SInfo
= MBBInfoMap
[Pred
];
2594 if (SInfo
.addRequired(MInfo
.vregsRequired
))
2600 // Check PHI instructions at the beginning of MBB. It is assumed that
2601 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2602 void MachineVerifier::checkPHIOps(const MachineBasicBlock
&MBB
) {
2603 BBInfo
&MInfo
= MBBInfoMap
[&MBB
];
2605 SmallPtrSet
<const MachineBasicBlock
*, 8> seen
;
2606 for (const MachineInstr
&Phi
: MBB
) {
2611 const MachineOperand
&MODef
= Phi
.getOperand(0);
2612 if (!MODef
.isReg() || !MODef
.isDef()) {
2613 report("Expected first PHI operand to be a register def", &MODef
, 0);
2616 if (MODef
.isTied() || MODef
.isImplicit() || MODef
.isInternalRead() ||
2617 MODef
.isEarlyClobber() || MODef
.isDebug())
2618 report("Unexpected flag on PHI operand", &MODef
, 0);
2619 Register DefReg
= MODef
.getReg();
2620 if (!Register::isVirtualRegister(DefReg
))
2621 report("Expected first PHI operand to be a virtual register", &MODef
, 0);
2623 for (unsigned I
= 1, E
= Phi
.getNumOperands(); I
!= E
; I
+= 2) {
2624 const MachineOperand
&MO0
= Phi
.getOperand(I
);
2626 report("Expected PHI operand to be a register", &MO0
, I
);
2629 if (MO0
.isImplicit() || MO0
.isInternalRead() || MO0
.isEarlyClobber() ||
2630 MO0
.isDebug() || MO0
.isTied())
2631 report("Unexpected flag on PHI operand", &MO0
, I
);
2633 const MachineOperand
&MO1
= Phi
.getOperand(I
+ 1);
2635 report("Expected PHI operand to be a basic block", &MO1
, I
+ 1);
2639 const MachineBasicBlock
&Pre
= *MO1
.getMBB();
2640 if (!Pre
.isSuccessor(&MBB
)) {
2641 report("PHI input is not a predecessor block", &MO1
, I
+ 1);
2645 if (MInfo
.reachable
) {
2647 BBInfo
&PrInfo
= MBBInfoMap
[&Pre
];
2648 if (!MO0
.isUndef() && PrInfo
.reachable
&&
2649 !PrInfo
.isLiveOut(MO0
.getReg()))
2650 report("PHI operand is not live-out from predecessor", &MO0
, I
);
2654 // Did we see all predecessors?
2655 if (MInfo
.reachable
) {
2656 for (MachineBasicBlock
*Pred
: MBB
.predecessors()) {
2657 if (!seen
.count(Pred
)) {
2658 report("Missing PHI operand", &Phi
);
2659 errs() << printMBBReference(*Pred
)
2660 << " is a predecessor according to the CFG.\n";
2667 void MachineVerifier::visitMachineFunctionAfter() {
2670 for (const MachineBasicBlock
&MBB
: *MF
)
2673 // Now check liveness info if available
2676 // Check for killed virtual registers that should be live out.
2677 for (const auto &MBB
: *MF
) {
2678 BBInfo
&MInfo
= MBBInfoMap
[&MBB
];
2679 for (Register VReg
: MInfo
.vregsRequired
)
2680 if (MInfo
.regsKilled
.count(VReg
)) {
2681 report("Virtual register killed in block, but needed live out.", &MBB
);
2682 errs() << "Virtual register " << printReg(VReg
)
2683 << " is used after the block.\n";
2688 BBInfo
&MInfo
= MBBInfoMap
[&MF
->front()];
2689 for (Register VReg
: MInfo
.vregsRequired
) {
2690 report("Virtual register defs don't dominate all uses.", MF
);
2691 report_context_vreg(VReg
);
2696 verifyLiveVariables();
2698 verifyLiveIntervals();
2700 // Check live-in list of each MBB. If a register is live into MBB, check
2701 // that the register is in regsLiveOut of each predecessor block. Since
2702 // this must come from a definition in the predecesssor or its live-in
2703 // list, this will catch a live-through case where the predecessor does not
2704 // have the register in its live-in list. This currently only checks
2705 // registers that have no aliases, are not allocatable and are not
2706 // reserved, which could mean a condition code register for instance.
2707 if (MRI
->tracksLiveness())
2708 for (const auto &MBB
: *MF
)
2709 for (MachineBasicBlock::RegisterMaskPair P
: MBB
.liveins()) {
2710 MCPhysReg LiveInReg
= P
.PhysReg
;
2711 bool hasAliases
= MCRegAliasIterator(LiveInReg
, TRI
, false).isValid();
2712 if (hasAliases
|| isAllocatable(LiveInReg
) || isReserved(LiveInReg
))
2714 for (const MachineBasicBlock
*Pred
: MBB
.predecessors()) {
2715 BBInfo
&PInfo
= MBBInfoMap
[Pred
];
2716 if (!PInfo
.regsLiveOut
.count(LiveInReg
)) {
2717 report("Live in register not found to be live out from predecessor.",
2719 errs() << TRI
->getName(LiveInReg
)
2720 << " not found to be live out from "
2721 << printMBBReference(*Pred
) << "\n";
2726 for (auto CSInfo
: MF
->getCallSitesInfo())
2727 if (!CSInfo
.first
->isCall())
2728 report("Call site info referencing instruction that is not call", MF
);
2730 // If there's debug-info, check that we don't have any duplicate value
2731 // tracking numbers.
2732 if (MF
->getFunction().getSubprogram()) {
2733 DenseSet
<unsigned> SeenNumbers
;
2734 for (auto &MBB
: *MF
) {
2735 for (auto &MI
: MBB
) {
2736 if (auto Num
= MI
.peekDebugInstrNum()) {
2737 auto Result
= SeenNumbers
.insert((unsigned)Num
);
2739 report("Instruction has a duplicated value tracking number", &MI
);
2746 void MachineVerifier::verifyLiveVariables() {
2747 assert(LiveVars
&& "Don't call verifyLiveVariables without LiveVars");
2748 for (unsigned I
= 0, E
= MRI
->getNumVirtRegs(); I
!= E
; ++I
) {
2749 Register Reg
= Register::index2VirtReg(I
);
2750 LiveVariables::VarInfo
&VI
= LiveVars
->getVarInfo(Reg
);
2751 for (const auto &MBB
: *MF
) {
2752 BBInfo
&MInfo
= MBBInfoMap
[&MBB
];
2754 // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2755 if (MInfo
.vregsRequired
.count(Reg
)) {
2756 if (!VI
.AliveBlocks
.test(MBB
.getNumber())) {
2757 report("LiveVariables: Block missing from AliveBlocks", &MBB
);
2758 errs() << "Virtual register " << printReg(Reg
)
2759 << " must be live through the block.\n";
2762 if (VI
.AliveBlocks
.test(MBB
.getNumber())) {
2763 report("LiveVariables: Block should not be in AliveBlocks", &MBB
);
2764 errs() << "Virtual register " << printReg(Reg
)
2765 << " is not needed live through the block.\n";
2772 void MachineVerifier::verifyLiveIntervals() {
2773 assert(LiveInts
&& "Don't call verifyLiveIntervals without LiveInts");
2774 for (unsigned I
= 0, E
= MRI
->getNumVirtRegs(); I
!= E
; ++I
) {
2775 Register Reg
= Register::index2VirtReg(I
);
2777 // Spilling and splitting may leave unused registers around. Skip them.
2778 if (MRI
->reg_nodbg_empty(Reg
))
2781 if (!LiveInts
->hasInterval(Reg
)) {
2782 report("Missing live interval for virtual register", MF
);
2783 errs() << printReg(Reg
, TRI
) << " still has defs or uses\n";
2787 const LiveInterval
&LI
= LiveInts
->getInterval(Reg
);
2788 assert(Reg
== LI
.reg() && "Invalid reg to interval mapping");
2789 verifyLiveInterval(LI
);
2792 // Verify all the cached regunit intervals.
2793 for (unsigned i
= 0, e
= TRI
->getNumRegUnits(); i
!= e
; ++i
)
2794 if (const LiveRange
*LR
= LiveInts
->getCachedRegUnit(i
))
2795 verifyLiveRange(*LR
, i
);
2798 void MachineVerifier::verifyLiveRangeValue(const LiveRange
&LR
,
2799 const VNInfo
*VNI
, Register Reg
,
2800 LaneBitmask LaneMask
) {
2801 if (VNI
->isUnused())
2804 const VNInfo
*DefVNI
= LR
.getVNInfoAt(VNI
->def
);
2807 report("Value not live at VNInfo def and not marked unused", MF
);
2808 report_context(LR
, Reg
, LaneMask
);
2809 report_context(*VNI
);
2813 if (DefVNI
!= VNI
) {
2814 report("Live segment at def has different VNInfo", MF
);
2815 report_context(LR
, Reg
, LaneMask
);
2816 report_context(*VNI
);
2820 const MachineBasicBlock
*MBB
= LiveInts
->getMBBFromIndex(VNI
->def
);
2822 report("Invalid VNInfo definition index", MF
);
2823 report_context(LR
, Reg
, LaneMask
);
2824 report_context(*VNI
);
2828 if (VNI
->isPHIDef()) {
2829 if (VNI
->def
!= LiveInts
->getMBBStartIdx(MBB
)) {
2830 report("PHIDef VNInfo is not defined at MBB start", MBB
);
2831 report_context(LR
, Reg
, LaneMask
);
2832 report_context(*VNI
);
2838 const MachineInstr
*MI
= LiveInts
->getInstructionFromIndex(VNI
->def
);
2840 report("No instruction at VNInfo def index", MBB
);
2841 report_context(LR
, Reg
, LaneMask
);
2842 report_context(*VNI
);
2847 bool hasDef
= false;
2848 bool isEarlyClobber
= false;
2849 for (ConstMIBundleOperands
MOI(*MI
); MOI
.isValid(); ++MOI
) {
2850 if (!MOI
->isReg() || !MOI
->isDef())
2852 if (Register::isVirtualRegister(Reg
)) {
2853 if (MOI
->getReg() != Reg
)
2856 if (!Register::isPhysicalRegister(MOI
->getReg()) ||
2857 !TRI
->hasRegUnit(MOI
->getReg(), Reg
))
2860 if (LaneMask
.any() &&
2861 (TRI
->getSubRegIndexLaneMask(MOI
->getSubReg()) & LaneMask
).none())
2864 if (MOI
->isEarlyClobber())
2865 isEarlyClobber
= true;
2869 report("Defining instruction does not modify register", MI
);
2870 report_context(LR
, Reg
, LaneMask
);
2871 report_context(*VNI
);
2874 // Early clobber defs begin at USE slots, but other defs must begin at
2876 if (isEarlyClobber
) {
2877 if (!VNI
->def
.isEarlyClobber()) {
2878 report("Early clobber def must be at an early-clobber slot", MBB
);
2879 report_context(LR
, Reg
, LaneMask
);
2880 report_context(*VNI
);
2882 } else if (!VNI
->def
.isRegister()) {
2883 report("Non-PHI, non-early clobber def must be at a register slot", MBB
);
2884 report_context(LR
, Reg
, LaneMask
);
2885 report_context(*VNI
);
2890 void MachineVerifier::verifyLiveRangeSegment(const LiveRange
&LR
,
2891 const LiveRange::const_iterator I
,
2893 LaneBitmask LaneMask
) {
2894 const LiveRange::Segment
&S
= *I
;
2895 const VNInfo
*VNI
= S
.valno
;
2896 assert(VNI
&& "Live segment has no valno");
2898 if (VNI
->id
>= LR
.getNumValNums() || VNI
!= LR
.getValNumInfo(VNI
->id
)) {
2899 report("Foreign valno in live segment", MF
);
2900 report_context(LR
, Reg
, LaneMask
);
2902 report_context(*VNI
);
2905 if (VNI
->isUnused()) {
2906 report("Live segment valno is marked unused", MF
);
2907 report_context(LR
, Reg
, LaneMask
);
2911 const MachineBasicBlock
*MBB
= LiveInts
->getMBBFromIndex(S
.start
);
2913 report("Bad start of live segment, no basic block", MF
);
2914 report_context(LR
, Reg
, LaneMask
);
2918 SlotIndex MBBStartIdx
= LiveInts
->getMBBStartIdx(MBB
);
2919 if (S
.start
!= MBBStartIdx
&& S
.start
!= VNI
->def
) {
2920 report("Live segment must begin at MBB entry or valno def", MBB
);
2921 report_context(LR
, Reg
, LaneMask
);
2925 const MachineBasicBlock
*EndMBB
=
2926 LiveInts
->getMBBFromIndex(S
.end
.getPrevSlot());
2928 report("Bad end of live segment, no basic block", MF
);
2929 report_context(LR
, Reg
, LaneMask
);
2934 // No more checks for live-out segments.
2935 if (S
.end
== LiveInts
->getMBBEndIdx(EndMBB
))
2938 // RegUnit intervals are allowed dead phis.
2939 if (!Register::isVirtualRegister(Reg
) && VNI
->isPHIDef() &&
2940 S
.start
== VNI
->def
&& S
.end
== VNI
->def
.getDeadSlot())
2943 // The live segment is ending inside EndMBB
2944 const MachineInstr
*MI
=
2945 LiveInts
->getInstructionFromIndex(S
.end
.getPrevSlot());
2947 report("Live segment doesn't end at a valid instruction", EndMBB
);
2948 report_context(LR
, Reg
, LaneMask
);
2953 // The block slot must refer to a basic block boundary.
2954 if (S
.end
.isBlock()) {
2955 report("Live segment ends at B slot of an instruction", EndMBB
);
2956 report_context(LR
, Reg
, LaneMask
);
2960 if (S
.end
.isDead()) {
2961 // Segment ends on the dead slot.
2962 // That means there must be a dead def.
2963 if (!SlotIndex::isSameInstr(S
.start
, S
.end
)) {
2964 report("Live segment ending at dead slot spans instructions", EndMBB
);
2965 report_context(LR
, Reg
, LaneMask
);
2970 // After tied operands are rewritten, a live segment can only end at an
2971 // early-clobber slot if it is being redefined by an early-clobber def.
2972 // TODO: Before tied operands are rewritten, a live segment can only end at an
2973 // early-clobber slot if the last use is tied to an early-clobber def.
2974 if (MF
->getProperties().hasProperty(
2975 MachineFunctionProperties::Property::TiedOpsRewritten
) &&
2976 S
.end
.isEarlyClobber()) {
2977 if (I
+1 == LR
.end() || (I
+1)->start
!= S
.end
) {
2978 report("Live segment ending at early clobber slot must be "
2979 "redefined by an EC def in the same instruction", EndMBB
);
2980 report_context(LR
, Reg
, LaneMask
);
2985 // The following checks only apply to virtual registers. Physreg liveness
2986 // is too weird to check.
2987 if (Register::isVirtualRegister(Reg
)) {
2988 // A live segment can end with either a redefinition, a kill flag on a
2989 // use, or a dead flag on a def.
2990 bool hasRead
= false;
2991 bool hasSubRegDef
= false;
2992 bool hasDeadDef
= false;
2993 for (ConstMIBundleOperands
MOI(*MI
); MOI
.isValid(); ++MOI
) {
2994 if (!MOI
->isReg() || MOI
->getReg() != Reg
)
2996 unsigned Sub
= MOI
->getSubReg();
2997 LaneBitmask SLM
= Sub
!= 0 ? TRI
->getSubRegIndexLaneMask(Sub
)
2998 : LaneBitmask::getAll();
3001 hasSubRegDef
= true;
3002 // An operand %0:sub0 reads %0:sub1..n. Invert the lane
3003 // mask for subregister defs. Read-undef defs will be handled by
3010 if (LaneMask
.any() && (LaneMask
& SLM
).none())
3012 if (MOI
->readsReg())
3015 if (S
.end
.isDead()) {
3016 // Make sure that the corresponding machine operand for a "dead" live
3017 // range has the dead flag. We cannot perform this check for subregister
3018 // liveranges as partially dead values are allowed.
3019 if (LaneMask
.none() && !hasDeadDef
) {
3020 report("Instruction ending live segment on dead slot has no dead flag",
3022 report_context(LR
, Reg
, LaneMask
);
3027 // When tracking subregister liveness, the main range must start new
3028 // values on partial register writes, even if there is no read.
3029 if (!MRI
->shouldTrackSubRegLiveness(Reg
) || LaneMask
.any() ||
3031 report("Instruction ending live segment doesn't read the register",
3033 report_context(LR
, Reg
, LaneMask
);
3040 // Now check all the basic blocks in this live segment.
3041 MachineFunction::const_iterator MFI
= MBB
->getIterator();
3042 // Is this live segment the beginning of a non-PHIDef VN?
3043 if (S
.start
== VNI
->def
&& !VNI
->isPHIDef()) {
3044 // Not live-in to any blocks.
3051 SmallVector
<SlotIndex
, 4> Undefs
;
3052 if (LaneMask
.any()) {
3053 LiveInterval
&OwnerLI
= LiveInts
->getInterval(Reg
);
3054 OwnerLI
.computeSubRangeUndefs(Undefs
, LaneMask
, *MRI
, *Indexes
);
3058 assert(LiveInts
->isLiveInToMBB(LR
, &*MFI
));
3059 // We don't know how to track physregs into a landing pad.
3060 if (!Register::isVirtualRegister(Reg
) && MFI
->isEHPad()) {
3061 if (&*MFI
== EndMBB
)
3067 // Is VNI a PHI-def in the current block?
3068 bool IsPHI
= VNI
->isPHIDef() &&
3069 VNI
->def
== LiveInts
->getMBBStartIdx(&*MFI
);
3071 // Check that VNI is live-out of all predecessors.
3072 for (const MachineBasicBlock
*Pred
: MFI
->predecessors()) {
3073 SlotIndex PEnd
= LiveInts
->getMBBEndIdx(Pred
);
3074 // Predecessor of landing pad live-out on last call.
3075 if (MFI
->isEHPad()) {
3076 for (const MachineInstr
&MI
: llvm::reverse(*Pred
)) {
3078 PEnd
= Indexes
->getInstructionIndex(MI
).getBoundaryIndex();
3083 const VNInfo
*PVNI
= LR
.getVNInfoBefore(PEnd
);
3085 // All predecessors must have a live-out value. However for a phi
3086 // instruction with subregister intervals
3087 // only one of the subregisters (not necessarily the current one) needs to
3089 if (!PVNI
&& (LaneMask
.none() || !IsPHI
)) {
3090 if (LiveRangeCalc::isJointlyDominated(Pred
, Undefs
, *Indexes
))
3092 report("Register not marked live out of predecessor", Pred
);
3093 report_context(LR
, Reg
, LaneMask
);
3094 report_context(*VNI
);
3095 errs() << " live into " << printMBBReference(*MFI
) << '@'
3096 << LiveInts
->getMBBStartIdx(&*MFI
) << ", not live before "
3101 // Only PHI-defs can take different predecessor values.
3102 if (!IsPHI
&& PVNI
!= VNI
) {
3103 report("Different value live out of predecessor", Pred
);
3104 report_context(LR
, Reg
, LaneMask
);
3105 errs() << "Valno #" << PVNI
->id
<< " live out of "
3106 << printMBBReference(*Pred
) << '@' << PEnd
<< "\nValno #"
3107 << VNI
->id
<< " live into " << printMBBReference(*MFI
) << '@'
3108 << LiveInts
->getMBBStartIdx(&*MFI
) << '\n';
3111 if (&*MFI
== EndMBB
)
3117 void MachineVerifier::verifyLiveRange(const LiveRange
&LR
, Register Reg
,
3118 LaneBitmask LaneMask
) {
3119 for (const VNInfo
*VNI
: LR
.valnos
)
3120 verifyLiveRangeValue(LR
, VNI
, Reg
, LaneMask
);
3122 for (LiveRange::const_iterator I
= LR
.begin(), E
= LR
.end(); I
!= E
; ++I
)
3123 verifyLiveRangeSegment(LR
, I
, Reg
, LaneMask
);
3126 void MachineVerifier::verifyLiveInterval(const LiveInterval
&LI
) {
3127 Register Reg
= LI
.reg();
3128 assert(Register::isVirtualRegister(Reg
));
3129 verifyLiveRange(LI
, Reg
);
3132 LaneBitmask MaxMask
= MRI
->getMaxLaneMaskForVReg(Reg
);
3133 for (const LiveInterval::SubRange
&SR
: LI
.subranges()) {
3134 if ((Mask
& SR
.LaneMask
).any()) {
3135 report("Lane masks of sub ranges overlap in live interval", MF
);
3138 if ((SR
.LaneMask
& ~MaxMask
).any()) {
3139 report("Subrange lanemask is invalid", MF
);
3143 report("Subrange must not be empty", MF
);
3144 report_context(SR
, LI
.reg(), SR
.LaneMask
);
3146 Mask
|= SR
.LaneMask
;
3147 verifyLiveRange(SR
, LI
.reg(), SR
.LaneMask
);
3148 if (!LI
.covers(SR
)) {
3149 report("A Subrange is not covered by the main range", MF
);
3154 // Check the LI only has one connected component.
3155 ConnectedVNInfoEqClasses
ConEQ(*LiveInts
);
3156 unsigned NumComp
= ConEQ
.Classify(LI
);
3158 report("Multiple connected components in live interval", MF
);
3160 for (unsigned comp
= 0; comp
!= NumComp
; ++comp
) {
3161 errs() << comp
<< ": valnos";
3162 for (const VNInfo
*I
: LI
.valnos
)
3163 if (comp
== ConEQ
.getEqClass(I
))
3164 errs() << ' ' << I
->id
;
3172 // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3173 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3175 // We use a bool plus an integer to capture the stack state.
3176 struct StackStateOfBB
{
3177 StackStateOfBB() = default;
3178 StackStateOfBB(int EntryVal
, int ExitVal
, bool EntrySetup
, bool ExitSetup
) :
3179 EntryValue(EntryVal
), ExitValue(ExitVal
), EntryIsSetup(EntrySetup
),
3180 ExitIsSetup(ExitSetup
) {}
3182 // Can be negative, which means we are setting up a frame.
3185 bool EntryIsSetup
= false;
3186 bool ExitIsSetup
= false;
3189 } // end anonymous namespace
3191 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3192 /// by a FrameDestroy <n>, stack adjustments are identical on all
3193 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
3194 void MachineVerifier::verifyStackFrame() {
3195 unsigned FrameSetupOpcode
= TII
->getCallFrameSetupOpcode();
3196 unsigned FrameDestroyOpcode
= TII
->getCallFrameDestroyOpcode();
3197 if (FrameSetupOpcode
== ~0u && FrameDestroyOpcode
== ~0u)
3200 SmallVector
<StackStateOfBB
, 8> SPState
;
3201 SPState
.resize(MF
->getNumBlockIDs());
3202 df_iterator_default_set
<const MachineBasicBlock
*> Reachable
;
3204 // Visit the MBBs in DFS order.
3205 for (df_ext_iterator
<const MachineFunction
*,
3206 df_iterator_default_set
<const MachineBasicBlock
*>>
3207 DFI
= df_ext_begin(MF
, Reachable
), DFE
= df_ext_end(MF
, Reachable
);
3208 DFI
!= DFE
; ++DFI
) {
3209 const MachineBasicBlock
*MBB
= *DFI
;
3211 StackStateOfBB BBState
;
3212 // Check the exit state of the DFS stack predecessor.
3213 if (DFI
.getPathLength() >= 2) {
3214 const MachineBasicBlock
*StackPred
= DFI
.getPath(DFI
.getPathLength() - 2);
3215 assert(Reachable
.count(StackPred
) &&
3216 "DFS stack predecessor is already visited.\n");
3217 BBState
.EntryValue
= SPState
[StackPred
->getNumber()].ExitValue
;
3218 BBState
.EntryIsSetup
= SPState
[StackPred
->getNumber()].ExitIsSetup
;
3219 BBState
.ExitValue
= BBState
.EntryValue
;
3220 BBState
.ExitIsSetup
= BBState
.EntryIsSetup
;
3223 // Update stack state by checking contents of MBB.
3224 for (const auto &I
: *MBB
) {
3225 if (I
.getOpcode() == FrameSetupOpcode
) {
3226 if (BBState
.ExitIsSetup
)
3227 report("FrameSetup is after another FrameSetup", &I
);
3228 BBState
.ExitValue
-= TII
->getFrameTotalSize(I
);
3229 BBState
.ExitIsSetup
= true;
3232 if (I
.getOpcode() == FrameDestroyOpcode
) {
3233 int Size
= TII
->getFrameTotalSize(I
);
3234 if (!BBState
.ExitIsSetup
)
3235 report("FrameDestroy is not after a FrameSetup", &I
);
3236 int AbsSPAdj
= BBState
.ExitValue
< 0 ? -BBState
.ExitValue
:
3238 if (BBState
.ExitIsSetup
&& AbsSPAdj
!= Size
) {
3239 report("FrameDestroy <n> is after FrameSetup <m>", &I
);
3240 errs() << "FrameDestroy <" << Size
<< "> is after FrameSetup <"
3241 << AbsSPAdj
<< ">.\n";
3243 BBState
.ExitValue
+= Size
;
3244 BBState
.ExitIsSetup
= false;
3247 SPState
[MBB
->getNumber()] = BBState
;
3249 // Make sure the exit state of any predecessor is consistent with the entry
3251 for (const MachineBasicBlock
*Pred
: MBB
->predecessors()) {
3252 if (Reachable
.count(Pred
) &&
3253 (SPState
[Pred
->getNumber()].ExitValue
!= BBState
.EntryValue
||
3254 SPState
[Pred
->getNumber()].ExitIsSetup
!= BBState
.EntryIsSetup
)) {
3255 report("The exit stack state of a predecessor is inconsistent.", MBB
);
3256 errs() << "Predecessor " << printMBBReference(*Pred
)
3257 << " has exit state (" << SPState
[Pred
->getNumber()].ExitValue
3258 << ", " << SPState
[Pred
->getNumber()].ExitIsSetup
<< "), while "
3259 << printMBBReference(*MBB
) << " has entry state ("
3260 << BBState
.EntryValue
<< ", " << BBState
.EntryIsSetup
<< ").\n";
3264 // Make sure the entry state of any successor is consistent with the exit
3266 for (const MachineBasicBlock
*Succ
: MBB
->successors()) {
3267 if (Reachable
.count(Succ
) &&
3268 (SPState
[Succ
->getNumber()].EntryValue
!= BBState
.ExitValue
||
3269 SPState
[Succ
->getNumber()].EntryIsSetup
!= BBState
.ExitIsSetup
)) {
3270 report("The entry stack state of a successor is inconsistent.", MBB
);
3271 errs() << "Successor " << printMBBReference(*Succ
)
3272 << " has entry state (" << SPState
[Succ
->getNumber()].EntryValue
3273 << ", " << SPState
[Succ
->getNumber()].EntryIsSetup
<< "), while "
3274 << printMBBReference(*MBB
) << " has exit state ("
3275 << BBState
.ExitValue
<< ", " << BBState
.ExitIsSetup
<< ").\n";
3279 // Make sure a basic block with return ends with zero stack adjustment.
3280 if (!MBB
->empty() && MBB
->back().isReturn()) {
3281 if (BBState
.ExitIsSetup
)
3282 report("A return block ends with a FrameSetup.", MBB
);
3283 if (BBState
.ExitValue
)
3284 report("A return block ends with a nonzero stack adjustment.", MBB
);