[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / CodeGen / PHIElimination.cpp
blob7693ab417de965f8000ff624260cd58f00d3725b
1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates machine instruction PHI nodes by inserting copy
10 // instructions. This destroys SSA information, but is the desired input for
11 // some register allocators.
13 //===----------------------------------------------------------------------===//
15 #include "PHIEliminationUtils.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetPassConfig.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <iterator>
45 #include <utility>
47 using namespace llvm;
49 #define DEBUG_TYPE "phi-node-elimination"
51 static cl::opt<bool>
52 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
53 cl::Hidden, cl::desc("Disable critical edge splitting "
54 "during PHI elimination"));
56 static cl::opt<bool>
57 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
58 cl::Hidden, cl::desc("Split all critical edges during "
59 "PHI elimination"));
61 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
62 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
63 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
65 namespace {
67 class PHIElimination : public MachineFunctionPass {
68 MachineRegisterInfo *MRI; // Machine register information
69 LiveVariables *LV;
70 LiveIntervals *LIS;
72 public:
73 static char ID; // Pass identification, replacement for typeid
75 PHIElimination() : MachineFunctionPass(ID) {
76 initializePHIEliminationPass(*PassRegistry::getPassRegistry());
79 bool runOnMachineFunction(MachineFunction &MF) override;
80 void getAnalysisUsage(AnalysisUsage &AU) const override;
82 private:
83 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
84 /// in predecessor basic blocks.
85 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
87 void LowerPHINode(MachineBasicBlock &MBB,
88 MachineBasicBlock::iterator LastPHIIt);
90 /// analyzePHINodes - Gather information about the PHI nodes in
91 /// here. In particular, we want to map the number of uses of a virtual
92 /// register which is used in a PHI node. We map that to the BB the
93 /// vreg is coming from. This is used later to determine when the vreg
94 /// is killed in the BB.
95 void analyzePHINodes(const MachineFunction& MF);
97 /// Split critical edges where necessary for good coalescer performance.
98 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
99 MachineLoopInfo *MLI,
100 std::vector<SparseBitVector<>> *LiveInSets);
102 // These functions are temporary abstractions around LiveVariables and
103 // LiveIntervals, so they can go away when LiveVariables does.
104 bool isLiveIn(Register Reg, const MachineBasicBlock *MBB);
105 bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB);
107 using BBVRegPair = std::pair<unsigned, Register>;
108 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
110 // Count the number of non-undef PHI uses of each register in each BB.
111 VRegPHIUse VRegPHIUseCount;
113 // Defs of PHI sources which are implicit_def.
114 SmallPtrSet<MachineInstr*, 4> ImpDefs;
116 // Map reusable lowered PHI node -> incoming join register.
117 using LoweredPHIMap =
118 DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
119 LoweredPHIMap LoweredPHIs;
122 } // end anonymous namespace
124 STATISTIC(NumLowered, "Number of phis lowered");
125 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
126 STATISTIC(NumReused, "Number of reused lowered phis");
128 char PHIElimination::ID = 0;
130 char& llvm::PHIEliminationID = PHIElimination::ID;
132 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
133 "Eliminate PHI nodes for register allocation",
134 false, false)
135 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
136 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
137 "Eliminate PHI nodes for register allocation", false, false)
139 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
140 AU.addUsedIfAvailable<LiveVariables>();
141 AU.addPreserved<LiveVariables>();
142 AU.addPreserved<SlotIndexes>();
143 AU.addPreserved<LiveIntervals>();
144 AU.addPreserved<MachineDominatorTree>();
145 AU.addPreserved<MachineLoopInfo>();
146 MachineFunctionPass::getAnalysisUsage(AU);
149 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
150 MRI = &MF.getRegInfo();
151 LV = getAnalysisIfAvailable<LiveVariables>();
152 LIS = getAnalysisIfAvailable<LiveIntervals>();
154 bool Changed = false;
156 // Split critical edges to help the coalescer.
157 if (!DisableEdgeSplitting && (LV || LIS)) {
158 // A set of live-in regs for each MBB which is used to update LV
159 // efficiently also with large functions.
160 std::vector<SparseBitVector<>> LiveInSets;
161 if (LV) {
162 LiveInSets.resize(MF.size());
163 for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) {
164 // Set the bit for this register for each MBB where it is
165 // live-through or live-in (killed).
166 unsigned VirtReg = Register::index2VirtReg(Index);
167 MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
168 if (!DefMI)
169 continue;
170 LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg);
171 SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin();
172 SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end();
173 while (AliveBlockItr != EndItr) {
174 unsigned BlockNum = *(AliveBlockItr++);
175 LiveInSets[BlockNum].set(Index);
177 // The register is live into an MBB in which it is killed but not
178 // defined. See comment for VarInfo in LiveVariables.h.
179 MachineBasicBlock *DefMBB = DefMI->getParent();
180 if (VI.Kills.size() > 1 ||
181 (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB))
182 for (auto *MI : VI.Kills)
183 LiveInSets[MI->getParent()->getNumber()].set(Index);
187 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
188 for (auto &MBB : MF)
189 Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr));
192 // This pass takes the function out of SSA form.
193 MRI->leaveSSA();
195 // Populate VRegPHIUseCount
196 analyzePHINodes(MF);
198 // Eliminate PHI instructions by inserting copies into predecessor blocks.
199 for (auto &MBB : MF)
200 Changed |= EliminatePHINodes(MF, MBB);
202 // Remove dead IMPLICIT_DEF instructions.
203 for (MachineInstr *DefMI : ImpDefs) {
204 Register DefReg = DefMI->getOperand(0).getReg();
205 if (MRI->use_nodbg_empty(DefReg)) {
206 if (LIS)
207 LIS->RemoveMachineInstrFromMaps(*DefMI);
208 DefMI->eraseFromParent();
212 // Clean up the lowered PHI instructions.
213 for (auto &I : LoweredPHIs) {
214 if (LIS)
215 LIS->RemoveMachineInstrFromMaps(*I.first);
216 MF.deleteMachineInstr(I.first);
219 // TODO: we should use the incremental DomTree updater here.
220 if (Changed)
221 if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>())
222 MDT->getBase().recalculate(MF);
224 LoweredPHIs.clear();
225 ImpDefs.clear();
226 VRegPHIUseCount.clear();
228 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
230 return Changed;
233 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
234 /// predecessor basic blocks.
235 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
236 MachineBasicBlock &MBB) {
237 if (MBB.empty() || !MBB.front().isPHI())
238 return false; // Quick exit for basic blocks without PHIs.
240 // Get an iterator to the last PHI node.
241 MachineBasicBlock::iterator LastPHIIt =
242 std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
244 while (MBB.front().isPHI())
245 LowerPHINode(MBB, LastPHIIt);
247 return true;
250 /// Return true if all defs of VirtReg are implicit-defs.
251 /// This includes registers with no defs.
252 static bool isImplicitlyDefined(unsigned VirtReg,
253 const MachineRegisterInfo &MRI) {
254 for (MachineInstr &DI : MRI.def_instructions(VirtReg))
255 if (!DI.isImplicitDef())
256 return false;
257 return true;
260 /// Return true if all sources of the phi node are implicit_def's, or undef's.
261 static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
262 const MachineRegisterInfo &MRI) {
263 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
264 const MachineOperand &MO = MPhi.getOperand(I);
265 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
266 return false;
268 return true;
270 /// LowerPHINode - Lower the PHI node at the top of the specified block.
271 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
272 MachineBasicBlock::iterator LastPHIIt) {
273 ++NumLowered;
275 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
277 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
278 MachineInstr *MPhi = MBB.remove(&*MBB.begin());
280 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
281 Register DestReg = MPhi->getOperand(0).getReg();
282 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
283 bool isDead = MPhi->getOperand(0).isDead();
285 // Create a new register for the incoming PHI arguments.
286 MachineFunction &MF = *MBB.getParent();
287 unsigned IncomingReg = 0;
288 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
290 // Insert a register to register copy at the top of the current block (but
291 // after any remaining phi nodes) which copies the new incoming register
292 // into the phi node destination.
293 MachineInstr *PHICopy = nullptr;
294 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
295 if (allPhiOperandsUndefined(*MPhi, *MRI))
296 // If all sources of a PHI node are implicit_def or undef uses, just emit an
297 // implicit_def instead of a copy.
298 PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
299 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
300 else {
301 // Can we reuse an earlier PHI node? This only happens for critical edges,
302 // typically those created by tail duplication.
303 unsigned &entry = LoweredPHIs[MPhi];
304 if (entry) {
305 // An identical PHI node was already lowered. Reuse the incoming register.
306 IncomingReg = entry;
307 reusedIncoming = true;
308 ++NumReused;
309 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
310 << *MPhi);
311 } else {
312 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
313 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
315 // Give the target possiblity to handle special cases fallthrough otherwise
316 PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
317 IncomingReg, DestReg);
320 if (MPhi->peekDebugInstrNum()) {
321 // If referred to by debug-info, store where this PHI was.
322 MachineFunction *MF = MBB.getParent();
323 unsigned ID = MPhi->peekDebugInstrNum();
324 auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0);
325 auto Res = MF->DebugPHIPositions.insert({ID, P});
326 assert(Res.second);
327 (void)Res;
330 // Update live variable information if there is any.
331 if (LV) {
332 if (IncomingReg) {
333 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
335 // Increment use count of the newly created virtual register.
336 LV->setPHIJoin(IncomingReg);
338 MachineInstr *OldKill = nullptr;
339 bool IsPHICopyAfterOldKill = false;
341 if (reusedIncoming && (OldKill = VI.findKill(&MBB))) {
342 // Calculate whether the PHICopy is after the OldKill.
343 // In general, the PHICopy is inserted as the first non-phi instruction
344 // by default, so it's before the OldKill. But some Target hooks for
345 // createPHIDestinationCopy() may modify the default insert position of
346 // PHICopy.
347 for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end();
348 I != E; ++I) {
349 if (I == PHICopy)
350 break;
352 if (I == OldKill) {
353 IsPHICopyAfterOldKill = true;
354 break;
359 // When we are reusing the incoming register and it has been marked killed
360 // by OldKill, if the PHICopy is after the OldKill, we should remove the
361 // killed flag from OldKill.
362 if (IsPHICopyAfterOldKill) {
363 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
364 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
365 LLVM_DEBUG(MBB.dump());
368 // Add information to LiveVariables to know that the first used incoming
369 // value or the resued incoming value whose PHICopy is after the OldKIll
370 // is killed. Note that because the value is defined in several places
371 // (once each for each incoming block), the "def" block and instruction
372 // fields for the VarInfo is not filled in.
373 if (!OldKill || IsPHICopyAfterOldKill)
374 LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
377 // Since we are going to be deleting the PHI node, if it is the last use of
378 // any registers, or if the value itself is dead, we need to move this
379 // information over to the new copy we just inserted.
380 LV->removeVirtualRegistersKilled(*MPhi);
382 // If the result is dead, update LV.
383 if (isDead) {
384 LV->addVirtualRegisterDead(DestReg, *PHICopy);
385 LV->removeVirtualRegisterDead(DestReg, *MPhi);
389 // Update LiveIntervals for the new copy or implicit def.
390 if (LIS) {
391 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
393 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
394 if (IncomingReg) {
395 // Add the region from the beginning of MBB to the copy instruction to
396 // IncomingReg's live interval.
397 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
398 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
399 if (!IncomingVNI)
400 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
401 LIS->getVNInfoAllocator());
402 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
403 DestCopyIndex.getRegSlot(),
404 IncomingVNI));
407 LiveInterval &DestLI = LIS->getInterval(DestReg);
408 assert(!DestLI.empty() && "PHIs should have nonempty LiveIntervals.");
409 if (DestLI.endIndex().isDead()) {
410 // A dead PHI's live range begins and ends at the start of the MBB, but
411 // the lowered copy, which will still be dead, needs to begin and end at
412 // the copy instruction.
413 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
414 assert(OrigDestVNI && "PHI destination should be live at block entry.");
415 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
416 DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
417 LIS->getVNInfoAllocator());
418 DestLI.removeValNo(OrigDestVNI);
419 } else {
420 // Otherwise, remove the region from the beginning of MBB to the copy
421 // instruction from DestReg's live interval.
422 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
423 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
424 assert(DestVNI && "PHI destination should be live at its definition.");
425 DestVNI->def = DestCopyIndex.getRegSlot();
429 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
430 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
431 if (!MPhi->getOperand(i).isUndef()) {
432 --VRegPHIUseCount[BBVRegPair(
433 MPhi->getOperand(i + 1).getMBB()->getNumber(),
434 MPhi->getOperand(i).getReg())];
438 // Now loop over all of the incoming arguments, changing them to copy into the
439 // IncomingReg register in the corresponding predecessor basic block.
440 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
441 for (int i = NumSrcs - 1; i >= 0; --i) {
442 Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
443 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
444 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
445 isImplicitlyDefined(SrcReg, *MRI);
446 assert(Register::isVirtualRegister(SrcReg) &&
447 "Machine PHI Operands must all be virtual registers!");
449 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
450 // path the PHI.
451 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
453 // Check to make sure we haven't already emitted the copy for this block.
454 // This can happen because PHI nodes may have multiple entries for the same
455 // basic block.
456 if (!MBBsInsertedInto.insert(&opBlock).second)
457 continue; // If the copy has already been emitted, we're done.
459 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
460 if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) {
461 assert(SrcRegDef->getOperand(0).isReg() &&
462 SrcRegDef->getOperand(0).isDef() &&
463 "Expected operand 0 to be a reg def!");
464 // Now that the PHI's use has been removed (as the instruction was
465 // removed) there should be no other uses of the SrcReg.
466 assert(MRI->use_empty(SrcReg) &&
467 "Expected a single use from UnspillableTerminator");
468 SrcRegDef->getOperand(0).setReg(IncomingReg);
470 // Update LiveVariables.
471 if (LV) {
472 LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg);
473 LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg);
474 IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks);
475 SrcVI.AliveBlocks.clear();
478 continue;
481 // Find a safe location to insert the copy, this may be the first terminator
482 // in the block (or end()).
483 MachineBasicBlock::iterator InsertPos =
484 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
486 // Insert the copy.
487 MachineInstr *NewSrcInstr = nullptr;
488 if (!reusedIncoming && IncomingReg) {
489 if (SrcUndef) {
490 // The source register is undefined, so there is no need for a real
491 // COPY, but we still need to ensure joint dominance by defs.
492 // Insert an IMPLICIT_DEF instruction.
493 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
494 TII->get(TargetOpcode::IMPLICIT_DEF),
495 IncomingReg);
497 // Clean up the old implicit-def, if there even was one.
498 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
499 if (DefMI->isImplicitDef())
500 ImpDefs.insert(DefMI);
501 } else {
502 // Delete the debug location, since the copy is inserted into a
503 // different basic block.
504 NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr,
505 SrcReg, SrcSubReg, IncomingReg);
509 // We only need to update the LiveVariables kill of SrcReg if this was the
510 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
511 // out of the predecessor. We can also ignore undef sources.
512 if (LV && !SrcUndef &&
513 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
514 !LV->isLiveOut(SrcReg, opBlock)) {
515 // We want to be able to insert a kill of the register if this PHI (aka,
516 // the copy we just inserted) is the last use of the source value. Live
517 // variable analysis conservatively handles this by saying that the value
518 // is live until the end of the block the PHI entry lives in. If the value
519 // really is dead at the PHI copy, there will be no successor blocks which
520 // have the value live-in.
522 // Okay, if we now know that the value is not live out of the block, we
523 // can add a kill marker in this block saying that it kills the incoming
524 // value!
526 // In our final twist, we have to decide which instruction kills the
527 // register. In most cases this is the copy, however, terminator
528 // instructions at the end of the block may also use the value. In this
529 // case, we should mark the last such terminator as being the killing
530 // block, not the copy.
531 MachineBasicBlock::iterator KillInst = opBlock.end();
532 for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end();
533 ++Term) {
534 if (Term->readsRegister(SrcReg))
535 KillInst = Term;
538 if (KillInst == opBlock.end()) {
539 // No terminator uses the register.
541 if (reusedIncoming || !IncomingReg) {
542 // We may have to rewind a bit if we didn't insert a copy this time.
543 KillInst = InsertPos;
544 while (KillInst != opBlock.begin()) {
545 --KillInst;
546 if (KillInst->isDebugInstr())
547 continue;
548 if (KillInst->readsRegister(SrcReg))
549 break;
551 } else {
552 // We just inserted this copy.
553 KillInst = NewSrcInstr;
556 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
558 // Finally, mark it killed.
559 LV->addVirtualRegisterKilled(SrcReg, *KillInst);
561 // This vreg no longer lives all of the way through opBlock.
562 unsigned opBlockNum = opBlock.getNumber();
563 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
566 if (LIS) {
567 if (NewSrcInstr) {
568 LIS->InsertMachineInstrInMaps(*NewSrcInstr);
569 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
572 if (!SrcUndef &&
573 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
574 LiveInterval &SrcLI = LIS->getInterval(SrcReg);
576 bool isLiveOut = false;
577 for (MachineBasicBlock *Succ : opBlock.successors()) {
578 SlotIndex startIdx = LIS->getMBBStartIdx(Succ);
579 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
581 // Definitions by other PHIs are not truly live-in for our purposes.
582 if (VNI && VNI->def != startIdx) {
583 isLiveOut = true;
584 break;
588 if (!isLiveOut) {
589 MachineBasicBlock::iterator KillInst = opBlock.end();
590 for (MachineBasicBlock::iterator Term = InsertPos;
591 Term != opBlock.end(); ++Term) {
592 if (Term->readsRegister(SrcReg))
593 KillInst = Term;
596 if (KillInst == opBlock.end()) {
597 // No terminator uses the register.
599 if (reusedIncoming || !IncomingReg) {
600 // We may have to rewind a bit if we didn't just insert a copy.
601 KillInst = InsertPos;
602 while (KillInst != opBlock.begin()) {
603 --KillInst;
604 if (KillInst->isDebugInstr())
605 continue;
606 if (KillInst->readsRegister(SrcReg))
607 break;
609 } else {
610 // We just inserted this copy.
611 KillInst = std::prev(InsertPos);
614 assert(KillInst->readsRegister(SrcReg) &&
615 "Cannot find kill instruction");
617 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
618 SrcLI.removeSegment(LastUseIndex.getRegSlot(),
619 LIS->getMBBEndIdx(&opBlock));
625 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
626 if (reusedIncoming || !IncomingReg) {
627 if (LIS)
628 LIS->RemoveMachineInstrFromMaps(*MPhi);
629 MF.deleteMachineInstr(MPhi);
633 /// analyzePHINodes - Gather information about the PHI nodes in here. In
634 /// particular, we want to map the number of uses of a virtual register which is
635 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
636 /// used later to determine when the vreg is killed in the BB.
637 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
638 for (const auto &MBB : MF) {
639 for (const auto &BBI : MBB) {
640 if (!BBI.isPHI())
641 break;
642 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
643 if (!BBI.getOperand(i).isUndef()) {
644 ++VRegPHIUseCount[BBVRegPair(
645 BBI.getOperand(i + 1).getMBB()->getNumber(),
646 BBI.getOperand(i).getReg())];
653 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
654 MachineBasicBlock &MBB,
655 MachineLoopInfo *MLI,
656 std::vector<SparseBitVector<>> *LiveInSets) {
657 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
658 return false; // Quick exit for basic blocks without PHIs.
660 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
661 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
663 bool Changed = false;
664 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
665 BBI != BBE && BBI->isPHI(); ++BBI) {
666 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
667 Register Reg = BBI->getOperand(i).getReg();
668 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
669 // Is there a critical edge from PreMBB to MBB?
670 if (PreMBB->succ_size() == 1)
671 continue;
673 // Avoid splitting backedges of loops. It would introduce small
674 // out-of-line blocks into the loop which is very bad for code placement.
675 if (PreMBB == &MBB && !SplitAllCriticalEdges)
676 continue;
677 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
678 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
679 continue;
681 // LV doesn't consider a phi use live-out, so isLiveOut only returns true
682 // when the source register is live-out for some other reason than a phi
683 // use. That means the copy we will insert in PreMBB won't be a kill, and
684 // there is a risk it may not be coalesced away.
686 // If the copy would be a kill, there is no need to split the edge.
687 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
688 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
689 continue;
690 if (ShouldSplit) {
691 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
692 << printMBBReference(*PreMBB) << " -> "
693 << printMBBReference(MBB) << ": " << *BBI);
696 // If Reg is not live-in to MBB, it means it must be live-in to some
697 // other PreMBB successor, and we can avoid the interference by splitting
698 // the edge.
700 // If Reg *is* live-in to MBB, the interference is inevitable and a copy
701 // is likely to be left after coalescing. If we are looking at a loop
702 // exiting edge, split it so we won't insert code in the loop, otherwise
703 // don't bother.
704 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
706 // Check for a loop exiting edge.
707 if (!ShouldSplit && CurLoop != PreLoop) {
708 LLVM_DEBUG({
709 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
710 if (PreLoop)
711 dbgs() << "PreLoop: " << *PreLoop;
712 if (CurLoop)
713 dbgs() << "CurLoop: " << *CurLoop;
715 // This edge could be entering a loop, exiting a loop, or it could be
716 // both: Jumping directly form one loop to the header of a sibling
717 // loop.
718 // Split unless this edge is entering CurLoop from an outer loop.
719 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
721 if (!ShouldSplit && !SplitAllCriticalEdges)
722 continue;
723 if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) {
724 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
725 continue;
727 Changed = true;
728 ++NumCriticalEdgesSplit;
731 return Changed;
734 bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) {
735 assert((LV || LIS) &&
736 "isLiveIn() requires either LiveVariables or LiveIntervals");
737 if (LIS)
738 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
739 else
740 return LV->isLiveIn(Reg, *MBB);
743 bool PHIElimination::isLiveOutPastPHIs(Register Reg,
744 const MachineBasicBlock *MBB) {
745 assert((LV || LIS) &&
746 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
747 // LiveVariables considers uses in PHIs to be in the predecessor basic block,
748 // so that a register used only in a PHI is not live out of the block. In
749 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
750 // in the predecessor basic block, so that a register used only in a PHI is live
751 // out of the block.
752 if (LIS) {
753 const LiveInterval &LI = LIS->getInterval(Reg);
754 for (const MachineBasicBlock *SI : MBB->successors())
755 if (LI.liveAt(LIS->getMBBStartIdx(SI)))
756 return true;
757 return false;
758 } else {
759 return LV->isLiveOut(Reg, *MBB);