[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / CodeGen / RegisterCoalescer.cpp
bloba917b0d27d4af9db9f9c752fd6d72a731bec1c86
1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
13 //===----------------------------------------------------------------------===//
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/LaneBitmask.h"
45 #include "llvm/MC/MCInstrDesc.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <iterator>
56 #include <limits>
57 #include <tuple>
58 #include <utility>
59 #include <vector>
61 using namespace llvm;
63 #define DEBUG_TYPE "regalloc"
65 STATISTIC(numJoins , "Number of interval joins performed");
66 STATISTIC(numCrossRCs , "Number of cross class joins performed");
67 STATISTIC(numCommutes , "Number of instruction commuting performed");
68 STATISTIC(numExtends , "Number of copies extended");
69 STATISTIC(NumReMats , "Number of instructions re-materialized");
70 STATISTIC(NumInflated , "Number of register classes inflated");
71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
72 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved");
73 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called");
75 static cl::opt<bool> EnableJoining("join-liveintervals",
76 cl::desc("Coalesce copies (default=true)"),
77 cl::init(true), cl::Hidden);
79 static cl::opt<bool> UseTerminalRule("terminal-rule",
80 cl::desc("Apply the terminal rule"),
81 cl::init(false), cl::Hidden);
83 /// Temporary flag to test critical edge unsplitting.
84 static cl::opt<bool>
85 EnableJoinSplits("join-splitedges",
86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
88 /// Temporary flag to test global copy optimization.
89 static cl::opt<cl::boolOrDefault>
90 EnableGlobalCopies("join-globalcopies",
91 cl::desc("Coalesce copies that span blocks (default=subtarget)"),
92 cl::init(cl::BOU_UNSET), cl::Hidden);
94 static cl::opt<bool>
95 VerifyCoalescing("verify-coalescing",
96 cl::desc("Verify machine instrs before and after register coalescing"),
97 cl::Hidden);
99 static cl::opt<unsigned> LateRematUpdateThreshold(
100 "late-remat-update-threshold", cl::Hidden,
101 cl::desc("During rematerialization for a copy, if the def instruction has "
102 "many other copy uses to be rematerialized, delay the multiple "
103 "separate live interval update work and do them all at once after "
104 "all those rematerialization are done. It will save a lot of "
105 "repeated work. "),
106 cl::init(100));
108 static cl::opt<unsigned> LargeIntervalSizeThreshold(
109 "large-interval-size-threshold", cl::Hidden,
110 cl::desc("If the valnos size of an interval is larger than the threshold, "
111 "it is regarded as a large interval. "),
112 cl::init(100));
114 static cl::opt<unsigned> LargeIntervalFreqThreshold(
115 "large-interval-freq-threshold", cl::Hidden,
116 cl::desc("For a large interval, if it is coalesed with other live "
117 "intervals many times more than the threshold, stop its "
118 "coalescing to control the compile time. "),
119 cl::init(100));
121 namespace {
123 class JoinVals;
125 class RegisterCoalescer : public MachineFunctionPass,
126 private LiveRangeEdit::Delegate {
127 MachineFunction* MF = nullptr;
128 MachineRegisterInfo* MRI = nullptr;
129 const TargetRegisterInfo* TRI = nullptr;
130 const TargetInstrInfo* TII = nullptr;
131 LiveIntervals *LIS = nullptr;
132 const MachineLoopInfo* Loops = nullptr;
133 AliasAnalysis *AA = nullptr;
134 RegisterClassInfo RegClassInfo;
136 /// Position and VReg of a PHI instruction during coalescing.
137 struct PHIValPos {
138 SlotIndex SI; ///< Slot where this PHI occurs.
139 Register Reg; ///< VReg the PHI occurs in.
140 unsigned SubReg; ///< Qualifying subregister for Reg.
143 /// Map from debug instruction number to PHI position during coalescing.
144 DenseMap<unsigned, PHIValPos> PHIValToPos;
145 /// Index of, for each VReg, which debug instruction numbers and
146 /// corresponding PHIs are sensitive to coalescing. Each VReg may have
147 /// multiple PHI defs, at different positions.
148 DenseMap<Register, SmallVector<unsigned, 2>> RegToPHIIdx;
150 /// Debug variable location tracking -- for each VReg, maintain an
151 /// ordered-by-slot-index set of DBG_VALUEs, to help quick
152 /// identification of whether coalescing may change location validity.
153 using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>;
154 DenseMap<Register, std::vector<DbgValueLoc>> DbgVRegToValues;
156 /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached.
157 /// To avoid repeatedly merging sets of DbgValueLocs, instead record
158 /// which vregs have been coalesced, and where to. This map is from
159 /// vreg => {set of vregs merged in}.
160 DenseMap<Register, SmallVector<Register, 4>> DbgMergedVRegNums;
162 /// A LaneMask to remember on which subregister live ranges we need to call
163 /// shrinkToUses() later.
164 LaneBitmask ShrinkMask;
166 /// True if the main range of the currently coalesced intervals should be
167 /// checked for smaller live intervals.
168 bool ShrinkMainRange = false;
170 /// True if the coalescer should aggressively coalesce global copies
171 /// in favor of keeping local copies.
172 bool JoinGlobalCopies = false;
174 /// True if the coalescer should aggressively coalesce fall-thru
175 /// blocks exclusively containing copies.
176 bool JoinSplitEdges = false;
178 /// Copy instructions yet to be coalesced.
179 SmallVector<MachineInstr*, 8> WorkList;
180 SmallVector<MachineInstr*, 8> LocalWorkList;
182 /// Set of instruction pointers that have been erased, and
183 /// that may be present in WorkList.
184 SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
186 /// Dead instructions that are about to be deleted.
187 SmallVector<MachineInstr*, 8> DeadDefs;
189 /// Virtual registers to be considered for register class inflation.
190 SmallVector<Register, 8> InflateRegs;
192 /// The collection of live intervals which should have been updated
193 /// immediately after rematerialiation but delayed until
194 /// lateLiveIntervalUpdate is called.
195 DenseSet<Register> ToBeUpdated;
197 /// Record how many times the large live interval with many valnos
198 /// has been tried to join with other live interval.
199 DenseMap<Register, unsigned long> LargeLIVisitCounter;
201 /// Recursively eliminate dead defs in DeadDefs.
202 void eliminateDeadDefs();
204 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
205 /// OrigIdx are also available with the same value at UseIdx.
206 bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx,
207 SlotIndex UseIdx);
209 /// LiveRangeEdit callback for eliminateDeadDefs().
210 void LRE_WillEraseInstruction(MachineInstr *MI) override;
212 /// Coalesce the LocalWorkList.
213 void coalesceLocals();
215 /// Join compatible live intervals
216 void joinAllIntervals();
218 /// Coalesce copies in the specified MBB, putting
219 /// copies that cannot yet be coalesced into WorkList.
220 void copyCoalesceInMBB(MachineBasicBlock *MBB);
222 /// Tries to coalesce all copies in CurrList. Returns true if any progress
223 /// was made.
224 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
226 /// If one def has many copy like uses, and those copy uses are all
227 /// rematerialized, the live interval update needed for those
228 /// rematerializations will be delayed and done all at once instead
229 /// of being done multiple times. This is to save compile cost because
230 /// live interval update is costly.
231 void lateLiveIntervalUpdate();
233 /// Check if the incoming value defined by a COPY at \p SLRQ in the subrange
234 /// has no value defined in the predecessors. If the incoming value is the
235 /// same as defined by the copy itself, the value is considered undefined.
236 bool copyValueUndefInPredecessors(LiveRange &S,
237 const MachineBasicBlock *MBB,
238 LiveQueryResult SLRQ);
240 /// Set necessary undef flags on subregister uses after pruning out undef
241 /// lane segments from the subrange.
242 void setUndefOnPrunedSubRegUses(LiveInterval &LI, Register Reg,
243 LaneBitmask PrunedLanes);
245 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
246 /// src/dst of the copy instruction CopyMI. This returns true if the copy
247 /// was successfully coalesced away. If it is not currently possible to
248 /// coalesce this interval, but it may be possible if other things get
249 /// coalesced, then it returns true by reference in 'Again'.
250 bool joinCopy(MachineInstr *CopyMI, bool &Again);
252 /// Attempt to join these two intervals. On failure, this
253 /// returns false. The output "SrcInt" will not have been modified, so we
254 /// can use this information below to update aliases.
255 bool joinIntervals(CoalescerPair &CP);
257 /// Attempt joining two virtual registers. Return true on success.
258 bool joinVirtRegs(CoalescerPair &CP);
260 /// If a live interval has many valnos and is coalesced with other
261 /// live intervals many times, we regard such live interval as having
262 /// high compile time cost.
263 bool isHighCostLiveInterval(LiveInterval &LI);
265 /// Attempt joining with a reserved physreg.
266 bool joinReservedPhysReg(CoalescerPair &CP);
268 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
269 /// Subranges in @p LI which only partially interfere with the desired
270 /// LaneMask are split as necessary. @p LaneMask are the lanes that
271 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
272 /// lanemasks already adjusted to the coalesced register.
273 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
274 LaneBitmask LaneMask, CoalescerPair &CP,
275 unsigned DstIdx);
277 /// Join the liveranges of two subregisters. Joins @p RRange into
278 /// @p LRange, @p RRange may be invalid afterwards.
279 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
280 LaneBitmask LaneMask, const CoalescerPair &CP);
282 /// We found a non-trivially-coalescable copy. If the source value number is
283 /// defined by a copy from the destination reg see if we can merge these two
284 /// destination reg valno# into a single value number, eliminating a copy.
285 /// This returns true if an interval was modified.
286 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
288 /// Return true if there are definitions of IntB
289 /// other than BValNo val# that can reach uses of AValno val# of IntA.
290 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
291 VNInfo *AValNo, VNInfo *BValNo);
293 /// We found a non-trivially-coalescable copy.
294 /// If the source value number is defined by a commutable instruction and
295 /// its other operand is coalesced to the copy dest register, see if we
296 /// can transform the copy into a noop by commuting the definition.
297 /// This returns a pair of two flags:
298 /// - the first element is true if an interval was modified,
299 /// - the second element is true if the destination interval needs
300 /// to be shrunk after deleting the copy.
301 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
302 MachineInstr *CopyMI);
304 /// We found a copy which can be moved to its less frequent predecessor.
305 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
307 /// If the source of a copy is defined by a
308 /// trivial computation, replace the copy by rematerialize the definition.
309 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
310 bool &IsDefCopy);
312 /// Return true if a copy involving a physreg should be joined.
313 bool canJoinPhys(const CoalescerPair &CP);
315 /// Replace all defs and uses of SrcReg to DstReg and update the subregister
316 /// number if it is not zero. If DstReg is a physical register and the
317 /// existing subregister number of the def / use being updated is not zero,
318 /// make sure to set it to the correct physical subregister.
319 void updateRegDefsUses(Register SrcReg, Register DstReg, unsigned SubIdx);
321 /// If the given machine operand reads only undefined lanes add an undef
322 /// flag.
323 /// This can happen when undef uses were previously concealed by a copy
324 /// which we coalesced. Example:
325 /// %0:sub0<def,read-undef> = ...
326 /// %1 = COPY %0 <-- Coalescing COPY reveals undef
327 /// = use %1:sub1 <-- hidden undef use
328 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
329 MachineOperand &MO, unsigned SubRegIdx);
331 /// Handle copies of undef values. If the undef value is an incoming
332 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
333 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
334 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
335 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
337 /// Check whether or not we should apply the terminal rule on the
338 /// destination (Dst) of \p Copy.
339 /// When the terminal rule applies, Copy is not profitable to
340 /// coalesce.
341 /// Dst is terminal if it has exactly one affinity (Dst, Src) and
342 /// at least one interference (Dst, Dst2). If Dst is terminal, the
343 /// terminal rule consists in checking that at least one of
344 /// interfering node, say Dst2, has an affinity of equal or greater
345 /// weight with Src.
346 /// In that case, Dst2 and Dst will not be able to be both coalesced
347 /// with Src. Since Dst2 exposes more coalescing opportunities than
348 /// Dst, we can drop \p Copy.
349 bool applyTerminalRule(const MachineInstr &Copy) const;
351 /// Wrapper method for \see LiveIntervals::shrinkToUses.
352 /// This method does the proper fixing of the live-ranges when the afore
353 /// mentioned method returns true.
354 void shrinkToUses(LiveInterval *LI,
355 SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
356 NumShrinkToUses++;
357 if (LIS->shrinkToUses(LI, Dead)) {
358 /// Check whether or not \p LI is composed by multiple connected
359 /// components and if that is the case, fix that.
360 SmallVector<LiveInterval*, 8> SplitLIs;
361 LIS->splitSeparateComponents(*LI, SplitLIs);
365 /// Wrapper Method to do all the necessary work when an Instruction is
366 /// deleted.
367 /// Optimizations should use this to make sure that deleted instructions
368 /// are always accounted for.
369 void deleteInstr(MachineInstr* MI) {
370 ErasedInstrs.insert(MI);
371 LIS->RemoveMachineInstrFromMaps(*MI);
372 MI->eraseFromParent();
375 /// Walk over function and initialize the DbgVRegToValues map.
376 void buildVRegToDbgValueMap(MachineFunction &MF);
378 /// Test whether, after merging, any DBG_VALUEs would refer to a
379 /// different value number than before merging, and whether this can
380 /// be resolved. If not, mark the DBG_VALUE as being undef.
381 void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS,
382 JoinVals &LHSVals, LiveRange &RHS,
383 JoinVals &RHSVals);
385 void checkMergingChangesDbgValuesImpl(Register Reg, LiveRange &OtherRange,
386 LiveRange &RegRange, JoinVals &Vals2);
388 public:
389 static char ID; ///< Class identification, replacement for typeinfo
391 RegisterCoalescer() : MachineFunctionPass(ID) {
392 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
395 void getAnalysisUsage(AnalysisUsage &AU) const override;
397 void releaseMemory() override;
399 /// This is the pass entry point.
400 bool runOnMachineFunction(MachineFunction&) override;
402 /// Implement the dump method.
403 void print(raw_ostream &O, const Module* = nullptr) const override;
406 } // end anonymous namespace
408 char RegisterCoalescer::ID = 0;
410 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
412 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
413 "Simple Register Coalescing", false, false)
414 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
415 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
416 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
417 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
418 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
419 "Simple Register Coalescing", false, false)
421 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri,
422 const MachineInstr *MI, Register &Src,
423 Register &Dst, unsigned &SrcSub,
424 unsigned &DstSub) {
425 if (MI->isCopy()) {
426 Dst = MI->getOperand(0).getReg();
427 DstSub = MI->getOperand(0).getSubReg();
428 Src = MI->getOperand(1).getReg();
429 SrcSub = MI->getOperand(1).getSubReg();
430 } else if (MI->isSubregToReg()) {
431 Dst = MI->getOperand(0).getReg();
432 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
433 MI->getOperand(3).getImm());
434 Src = MI->getOperand(2).getReg();
435 SrcSub = MI->getOperand(2).getSubReg();
436 } else
437 return false;
438 return true;
441 /// Return true if this block should be vacated by the coalescer to eliminate
442 /// branches. The important cases to handle in the coalescer are critical edges
443 /// split during phi elimination which contain only copies. Simple blocks that
444 /// contain non-branches should also be vacated, but this can be handled by an
445 /// earlier pass similar to early if-conversion.
446 static bool isSplitEdge(const MachineBasicBlock *MBB) {
447 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
448 return false;
450 for (const auto &MI : *MBB) {
451 if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
452 return false;
454 return true;
457 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
458 SrcReg = DstReg = Register();
459 SrcIdx = DstIdx = 0;
460 NewRC = nullptr;
461 Flipped = CrossClass = false;
463 Register Src, Dst;
464 unsigned SrcSub = 0, DstSub = 0;
465 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
466 return false;
467 Partial = SrcSub || DstSub;
469 // If one register is a physreg, it must be Dst.
470 if (Register::isPhysicalRegister(Src)) {
471 if (Register::isPhysicalRegister(Dst))
472 return false;
473 std::swap(Src, Dst);
474 std::swap(SrcSub, DstSub);
475 Flipped = true;
478 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
480 if (Register::isPhysicalRegister(Dst)) {
481 // Eliminate DstSub on a physreg.
482 if (DstSub) {
483 Dst = TRI.getSubReg(Dst, DstSub);
484 if (!Dst) return false;
485 DstSub = 0;
488 // Eliminate SrcSub by picking a corresponding Dst superregister.
489 if (SrcSub) {
490 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
491 if (!Dst) return false;
492 } else if (!MRI.getRegClass(Src)->contains(Dst)) {
493 return false;
495 } else {
496 // Both registers are virtual.
497 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
498 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
500 // Both registers have subreg indices.
501 if (SrcSub && DstSub) {
502 // Copies between different sub-registers are never coalescable.
503 if (Src == Dst && SrcSub != DstSub)
504 return false;
506 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
507 SrcIdx, DstIdx);
508 if (!NewRC)
509 return false;
510 } else if (DstSub) {
511 // SrcReg will be merged with a sub-register of DstReg.
512 SrcIdx = DstSub;
513 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
514 } else if (SrcSub) {
515 // DstReg will be merged with a sub-register of SrcReg.
516 DstIdx = SrcSub;
517 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
518 } else {
519 // This is a straight copy without sub-registers.
520 NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
523 // The combined constraint may be impossible to satisfy.
524 if (!NewRC)
525 return false;
527 // Prefer SrcReg to be a sub-register of DstReg.
528 // FIXME: Coalescer should support subregs symmetrically.
529 if (DstIdx && !SrcIdx) {
530 std::swap(Src, Dst);
531 std::swap(SrcIdx, DstIdx);
532 Flipped = !Flipped;
535 CrossClass = NewRC != DstRC || NewRC != SrcRC;
537 // Check our invariants
538 assert(Register::isVirtualRegister(Src) && "Src must be virtual");
539 assert(!(Register::isPhysicalRegister(Dst) && DstSub) &&
540 "Cannot have a physical SubIdx");
541 SrcReg = Src;
542 DstReg = Dst;
543 return true;
546 bool CoalescerPair::flip() {
547 if (Register::isPhysicalRegister(DstReg))
548 return false;
549 std::swap(SrcReg, DstReg);
550 std::swap(SrcIdx, DstIdx);
551 Flipped = !Flipped;
552 return true;
555 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
556 if (!MI)
557 return false;
558 Register Src, Dst;
559 unsigned SrcSub = 0, DstSub = 0;
560 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
561 return false;
563 // Find the virtual register that is SrcReg.
564 if (Dst == SrcReg) {
565 std::swap(Src, Dst);
566 std::swap(SrcSub, DstSub);
567 } else if (Src != SrcReg) {
568 return false;
571 // Now check that Dst matches DstReg.
572 if (DstReg.isPhysical()) {
573 if (!Dst.isPhysical())
574 return false;
575 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
576 // DstSub could be set for a physreg from INSERT_SUBREG.
577 if (DstSub)
578 Dst = TRI.getSubReg(Dst, DstSub);
579 // Full copy of Src.
580 if (!SrcSub)
581 return DstReg == Dst;
582 // This is a partial register copy. Check that the parts match.
583 return Register(TRI.getSubReg(DstReg, SrcSub)) == Dst;
584 } else {
585 // DstReg is virtual.
586 if (DstReg != Dst)
587 return false;
588 // Registers match, do the subregisters line up?
589 return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
590 TRI.composeSubRegIndices(DstIdx, DstSub);
594 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
595 AU.setPreservesCFG();
596 AU.addRequired<AAResultsWrapperPass>();
597 AU.addRequired<LiveIntervals>();
598 AU.addPreserved<LiveIntervals>();
599 AU.addPreserved<SlotIndexes>();
600 AU.addRequired<MachineLoopInfo>();
601 AU.addPreserved<MachineLoopInfo>();
602 AU.addPreservedID(MachineDominatorsID);
603 MachineFunctionPass::getAnalysisUsage(AU);
606 void RegisterCoalescer::eliminateDeadDefs() {
607 SmallVector<Register, 8> NewRegs;
608 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
609 nullptr, this).eliminateDeadDefs(DeadDefs);
612 bool RegisterCoalescer::allUsesAvailableAt(const MachineInstr *OrigMI,
613 SlotIndex OrigIdx,
614 SlotIndex UseIdx) {
615 SmallVector<Register, 8> NewRegs;
616 return LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, nullptr, this)
617 .allUsesAvailableAt(OrigMI, OrigIdx, UseIdx);
620 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
621 // MI may be in WorkList. Make sure we don't visit it.
622 ErasedInstrs.insert(MI);
625 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
626 MachineInstr *CopyMI) {
627 assert(!CP.isPartial() && "This doesn't work for partial copies.");
628 assert(!CP.isPhys() && "This doesn't work for physreg copies.");
630 LiveInterval &IntA =
631 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
632 LiveInterval &IntB =
633 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
634 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
636 // We have a non-trivially-coalescable copy with IntA being the source and
637 // IntB being the dest, thus this defines a value number in IntB. If the
638 // source value number (in IntA) is defined by a copy from B, see if we can
639 // merge these two pieces of B into a single value number, eliminating a copy.
640 // For example:
642 // A3 = B0
643 // ...
644 // B1 = A3 <- this copy
646 // In this case, B0 can be extended to where the B1 copy lives, allowing the
647 // B1 value number to be replaced with B0 (which simplifies the B
648 // liveinterval).
650 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
651 // the example above.
652 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
653 if (BS == IntB.end()) return false;
654 VNInfo *BValNo = BS->valno;
656 // Get the location that B is defined at. Two options: either this value has
657 // an unknown definition point or it is defined at CopyIdx. If unknown, we
658 // can't process it.
659 if (BValNo->def != CopyIdx) return false;
661 // AValNo is the value number in A that defines the copy, A3 in the example.
662 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
663 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
664 // The live segment might not exist after fun with physreg coalescing.
665 if (AS == IntA.end()) return false;
666 VNInfo *AValNo = AS->valno;
668 // If AValNo is defined as a copy from IntB, we can potentially process this.
669 // Get the instruction that defines this value number.
670 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
671 // Don't allow any partial copies, even if isCoalescable() allows them.
672 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
673 return false;
675 // Get the Segment in IntB that this value number starts with.
676 LiveInterval::iterator ValS =
677 IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
678 if (ValS == IntB.end())
679 return false;
681 // Make sure that the end of the live segment is inside the same block as
682 // CopyMI.
683 MachineInstr *ValSEndInst =
684 LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
685 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
686 return false;
688 // Okay, we now know that ValS ends in the same block that the CopyMI
689 // live-range starts. If there are no intervening live segments between them
690 // in IntB, we can merge them.
691 if (ValS+1 != BS) return false;
693 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI));
695 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
696 // We are about to delete CopyMI, so need to remove it as the 'instruction
697 // that defines this value #'. Update the valnum with the new defining
698 // instruction #.
699 BValNo->def = FillerStart;
701 // Okay, we can merge them. We need to insert a new liverange:
702 // [ValS.end, BS.begin) of either value number, then we merge the
703 // two value numbers.
704 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
706 // Okay, merge "B1" into the same value number as "B0".
707 if (BValNo != ValS->valno)
708 IntB.MergeValueNumberInto(BValNo, ValS->valno);
710 // Do the same for the subregister segments.
711 for (LiveInterval::SubRange &S : IntB.subranges()) {
712 // Check for SubRange Segments of the form [1234r,1234d:0) which can be
713 // removed to prevent creating bogus SubRange Segments.
714 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
715 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
716 S.removeSegment(*SS, true);
717 continue;
719 // The subrange may have ended before FillerStart. If so, extend it.
720 if (!S.getVNInfoAt(FillerStart)) {
721 SlotIndex BBStart =
722 LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart));
723 S.extendInBlock(BBStart, FillerStart);
725 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
726 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
727 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
728 if (SubBValNo != SubValSNo)
729 S.MergeValueNumberInto(SubBValNo, SubValSNo);
732 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n');
734 // If the source instruction was killing the source register before the
735 // merge, unset the isKill marker given the live range has been extended.
736 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), true);
737 if (UIdx != -1) {
738 ValSEndInst->getOperand(UIdx).setIsKill(false);
741 // Rewrite the copy.
742 CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI);
743 // If the copy instruction was killing the destination register or any
744 // subrange before the merge trim the live range.
745 bool RecomputeLiveRange = AS->end == CopyIdx;
746 if (!RecomputeLiveRange) {
747 for (LiveInterval::SubRange &S : IntA.subranges()) {
748 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
749 if (SS != S.end() && SS->end == CopyIdx) {
750 RecomputeLiveRange = true;
751 break;
755 if (RecomputeLiveRange)
756 shrinkToUses(&IntA);
758 ++numExtends;
759 return true;
762 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
763 LiveInterval &IntB,
764 VNInfo *AValNo,
765 VNInfo *BValNo) {
766 // If AValNo has PHI kills, conservatively assume that IntB defs can reach
767 // the PHI values.
768 if (LIS->hasPHIKill(IntA, AValNo))
769 return true;
771 for (LiveRange::Segment &ASeg : IntA.segments) {
772 if (ASeg.valno != AValNo) continue;
773 LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
774 if (BI != IntB.begin())
775 --BI;
776 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
777 if (BI->valno == BValNo)
778 continue;
779 if (BI->start <= ASeg.start && BI->end > ASeg.start)
780 return true;
781 if (BI->start > ASeg.start && BI->start < ASeg.end)
782 return true;
785 return false;
788 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
789 /// range @Dst and use value number @p DstValNo there.
790 static std::pair<bool,bool>
791 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
792 const VNInfo *SrcValNo) {
793 bool Changed = false;
794 bool MergedWithDead = false;
795 for (const LiveRange::Segment &S : Src.segments) {
796 if (S.valno != SrcValNo)
797 continue;
798 // This is adding a segment from Src that ends in a copy that is about
799 // to be removed. This segment is going to be merged with a pre-existing
800 // segment in Dst. This works, except in cases when the corresponding
801 // segment in Dst is dead. For example: adding [192r,208r:1) from Src
802 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
803 // Recognized such cases, so that the segments can be shrunk.
804 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
805 LiveRange::Segment &Merged = *Dst.addSegment(Added);
806 if (Merged.end.isDead())
807 MergedWithDead = true;
808 Changed = true;
810 return std::make_pair(Changed, MergedWithDead);
813 std::pair<bool,bool>
814 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
815 MachineInstr *CopyMI) {
816 assert(!CP.isPhys());
818 LiveInterval &IntA =
819 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
820 LiveInterval &IntB =
821 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
823 // We found a non-trivially-coalescable copy with IntA being the source and
824 // IntB being the dest, thus this defines a value number in IntB. If the
825 // source value number (in IntA) is defined by a commutable instruction and
826 // its other operand is coalesced to the copy dest register, see if we can
827 // transform the copy into a noop by commuting the definition. For example,
829 // A3 = op A2 killed B0
830 // ...
831 // B1 = A3 <- this copy
832 // ...
833 // = op A3 <- more uses
835 // ==>
837 // B2 = op B0 killed A2
838 // ...
839 // B1 = B2 <- now an identity copy
840 // ...
841 // = op B2 <- more uses
843 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
844 // the example above.
845 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
846 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
847 assert(BValNo != nullptr && BValNo->def == CopyIdx);
849 // AValNo is the value number in A that defines the copy, A3 in the example.
850 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
851 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
852 if (AValNo->isPHIDef())
853 return { false, false };
854 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
855 if (!DefMI)
856 return { false, false };
857 if (!DefMI->isCommutable())
858 return { false, false };
859 // If DefMI is a two-address instruction then commuting it will change the
860 // destination register.
861 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg());
862 assert(DefIdx != -1);
863 unsigned UseOpIdx;
864 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
865 return { false, false };
867 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
868 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
869 // passed to the method. That _other_ operand is chosen by
870 // the findCommutedOpIndices() method.
872 // That is obviously an area for improvement in case of instructions having
873 // more than 2 operands. For example, if some instruction has 3 commutable
874 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
875 // op#2<->op#3) of commute transformation should be considered/tried here.
876 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
877 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
878 return { false, false };
880 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
881 Register NewReg = NewDstMO.getReg();
882 if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill())
883 return { false, false };
885 // Make sure there are no other definitions of IntB that would reach the
886 // uses which the new definition can reach.
887 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
888 return { false, false };
890 // If some of the uses of IntA.reg is already coalesced away, return false.
891 // It's not possible to determine whether it's safe to perform the coalescing.
892 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) {
893 MachineInstr *UseMI = MO.getParent();
894 unsigned OpNo = &MO - &UseMI->getOperand(0);
895 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
896 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
897 if (US == IntA.end() || US->valno != AValNo)
898 continue;
899 // If this use is tied to a def, we can't rewrite the register.
900 if (UseMI->isRegTiedToDefOperand(OpNo))
901 return { false, false };
904 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
905 << *DefMI);
907 // At this point we have decided that it is legal to do this
908 // transformation. Start by commuting the instruction.
909 MachineBasicBlock *MBB = DefMI->getParent();
910 MachineInstr *NewMI =
911 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
912 if (!NewMI)
913 return { false, false };
914 if (Register::isVirtualRegister(IntA.reg()) &&
915 Register::isVirtualRegister(IntB.reg()) &&
916 !MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg())))
917 return { false, false };
918 if (NewMI != DefMI) {
919 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
920 MachineBasicBlock::iterator Pos = DefMI;
921 MBB->insert(Pos, NewMI);
922 MBB->erase(DefMI);
925 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
926 // A = or A, B
927 // ...
928 // B = A
929 // ...
930 // C = killed A
931 // ...
932 // = B
934 // Update uses of IntA of the specific Val# with IntB.
935 for (MachineOperand &UseMO :
936 llvm::make_early_inc_range(MRI->use_operands(IntA.reg()))) {
937 if (UseMO.isUndef())
938 continue;
939 MachineInstr *UseMI = UseMO.getParent();
940 if (UseMI->isDebugInstr()) {
941 // FIXME These don't have an instruction index. Not clear we have enough
942 // info to decide whether to do this replacement or not. For now do it.
943 UseMO.setReg(NewReg);
944 continue;
946 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
947 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
948 assert(US != IntA.end() && "Use must be live");
949 if (US->valno != AValNo)
950 continue;
951 // Kill flags are no longer accurate. They are recomputed after RA.
952 UseMO.setIsKill(false);
953 if (Register::isPhysicalRegister(NewReg))
954 UseMO.substPhysReg(NewReg, *TRI);
955 else
956 UseMO.setReg(NewReg);
957 if (UseMI == CopyMI)
958 continue;
959 if (!UseMI->isCopy())
960 continue;
961 if (UseMI->getOperand(0).getReg() != IntB.reg() ||
962 UseMI->getOperand(0).getSubReg())
963 continue;
965 // This copy will become a noop. If it's defining a new val#, merge it into
966 // BValNo.
967 SlotIndex DefIdx = UseIdx.getRegSlot();
968 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
969 if (!DVNI)
970 continue;
971 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
972 assert(DVNI->def == DefIdx);
973 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
974 for (LiveInterval::SubRange &S : IntB.subranges()) {
975 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
976 if (!SubDVNI)
977 continue;
978 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
979 assert(SubBValNo->def == CopyIdx);
980 S.MergeValueNumberInto(SubDVNI, SubBValNo);
983 deleteInstr(UseMI);
986 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
987 // is updated.
988 bool ShrinkB = false;
989 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
990 if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
991 if (!IntA.hasSubRanges()) {
992 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg());
993 IntA.createSubRangeFrom(Allocator, Mask, IntA);
994 } else if (!IntB.hasSubRanges()) {
995 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg());
996 IntB.createSubRangeFrom(Allocator, Mask, IntB);
998 SlotIndex AIdx = CopyIdx.getRegSlot(true);
999 LaneBitmask MaskA;
1000 const SlotIndexes &Indexes = *LIS->getSlotIndexes();
1001 for (LiveInterval::SubRange &SA : IntA.subranges()) {
1002 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
1003 // Even if we are dealing with a full copy, some lanes can
1004 // still be undefined.
1005 // E.g.,
1006 // undef A.subLow = ...
1007 // B = COPY A <== A.subHigh is undefined here and does
1008 // not have a value number.
1009 if (!ASubValNo)
1010 continue;
1011 MaskA |= SA.LaneMask;
1013 IntB.refineSubRanges(
1014 Allocator, SA.LaneMask,
1015 [&Allocator, &SA, CopyIdx, ASubValNo,
1016 &ShrinkB](LiveInterval::SubRange &SR) {
1017 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
1018 : SR.getVNInfoAt(CopyIdx);
1019 assert(BSubValNo != nullptr);
1020 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
1021 ShrinkB |= P.second;
1022 if (P.first)
1023 BSubValNo->def = ASubValNo->def;
1025 Indexes, *TRI);
1027 // Go over all subranges of IntB that have not been covered by IntA,
1028 // and delete the segments starting at CopyIdx. This can happen if
1029 // IntA has undef lanes that are defined in IntB.
1030 for (LiveInterval::SubRange &SB : IntB.subranges()) {
1031 if ((SB.LaneMask & MaskA).any())
1032 continue;
1033 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
1034 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
1035 SB.removeSegment(*S, true);
1039 BValNo->def = AValNo->def;
1040 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
1041 ShrinkB |= P.second;
1042 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
1044 LIS->removeVRegDefAt(IntA, AValNo->def);
1046 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
1047 ++numCommutes;
1048 return { true, ShrinkB };
1051 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1052 /// predecessor of BB2, and if B is not redefined on the way from A = B
1053 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1054 /// execution goes through the path from BB0 to BB2. We may move B = A
1055 /// to the predecessor without such reversed copy.
1056 /// So we will transform the program from:
1057 /// BB0:
1058 /// A = B; BB1:
1059 /// ... ...
1060 /// / \ /
1061 /// BB2:
1062 /// ...
1063 /// B = A;
1065 /// to:
1067 /// BB0: BB1:
1068 /// A = B; ...
1069 /// ... B = A;
1070 /// / \ /
1071 /// BB2:
1072 /// ...
1074 /// A special case is when BB0 and BB2 are the same BB which is the only
1075 /// BB in a loop:
1076 /// BB1:
1077 /// ...
1078 /// BB0/BB2: ----
1079 /// B = A; |
1080 /// ... |
1081 /// A = B; |
1082 /// |-------
1083 /// |
1084 /// We may hoist B = A from BB0/BB2 to BB1.
1086 /// The major preconditions for correctness to remove such partial
1087 /// redundancy include:
1088 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1089 /// the PHI is defined by the reversed copy A = B in BB0.
1090 /// 2. No B is referenced from the start of BB2 to B = A.
1091 /// 3. No B is defined from A = B to the end of BB0.
1092 /// 4. BB1 has only one successor.
1094 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1095 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1096 /// colder place, which not only prevent endless loop, but also make sure
1097 /// the movement of copy is beneficial.
1098 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1099 MachineInstr &CopyMI) {
1100 assert(!CP.isPhys());
1101 if (!CopyMI.isFullCopy())
1102 return false;
1104 MachineBasicBlock &MBB = *CopyMI.getParent();
1105 // If this block is the target of an invoke/inlineasm_br, moving the copy into
1106 // the predecessor is tricker, and we don't handle it.
1107 if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget())
1108 return false;
1110 if (MBB.pred_size() != 2)
1111 return false;
1113 LiveInterval &IntA =
1114 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1115 LiveInterval &IntB =
1116 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1118 // A is defined by PHI at the entry of MBB.
1119 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1120 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1121 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1122 if (!AValNo->isPHIDef())
1123 return false;
1125 // No B is referenced before CopyMI in MBB.
1126 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1127 return false;
1129 // MBB has two predecessors: one contains A = B so no copy will be inserted
1130 // for it. The other one will have a copy moved from MBB.
1131 bool FoundReverseCopy = false;
1132 MachineBasicBlock *CopyLeftBB = nullptr;
1133 for (MachineBasicBlock *Pred : MBB.predecessors()) {
1134 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1135 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1136 if (!DefMI || !DefMI->isFullCopy()) {
1137 CopyLeftBB = Pred;
1138 continue;
1140 // Check DefMI is a reverse copy and it is in BB Pred.
1141 if (DefMI->getOperand(0).getReg() != IntA.reg() ||
1142 DefMI->getOperand(1).getReg() != IntB.reg() ||
1143 DefMI->getParent() != Pred) {
1144 CopyLeftBB = Pred;
1145 continue;
1147 // If there is any other def of B after DefMI and before the end of Pred,
1148 // we need to keep the copy of B = A at the end of Pred if we remove
1149 // B = A from MBB.
1150 bool ValB_Changed = false;
1151 for (auto VNI : IntB.valnos) {
1152 if (VNI->isUnused())
1153 continue;
1154 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1155 ValB_Changed = true;
1156 break;
1159 if (ValB_Changed) {
1160 CopyLeftBB = Pred;
1161 continue;
1163 FoundReverseCopy = true;
1166 // If no reverse copy is found in predecessors, nothing to do.
1167 if (!FoundReverseCopy)
1168 return false;
1170 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1171 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1172 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1173 // update IntA/IntB.
1175 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1176 // MBB is hotter than CopyLeftBB.
1177 if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1178 return false;
1180 // Now (almost sure it's) ok to move copy.
1181 if (CopyLeftBB) {
1182 // Position in CopyLeftBB where we should insert new copy.
1183 auto InsPos = CopyLeftBB->getFirstTerminator();
1185 // Make sure that B isn't referenced in the terminators (if any) at the end
1186 // of the predecessor since we're about to insert a new definition of B
1187 // before them.
1188 if (InsPos != CopyLeftBB->end()) {
1189 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1190 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1191 return false;
1194 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1195 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1197 // Insert new copy to CopyLeftBB.
1198 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1199 TII->get(TargetOpcode::COPY), IntB.reg())
1200 .addReg(IntA.reg());
1201 SlotIndex NewCopyIdx =
1202 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1203 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1204 for (LiveInterval::SubRange &SR : IntB.subranges())
1205 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1207 // If the newly created Instruction has an address of an instruction that was
1208 // deleted before (object recycled by the allocator) it needs to be removed from
1209 // the deleted list.
1210 ErasedInstrs.erase(NewCopyMI);
1211 } else {
1212 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1213 << printMBBReference(MBB) << '\t' << CopyMI);
1216 // Remove CopyMI.
1217 // Note: This is fine to remove the copy before updating the live-ranges.
1218 // While updating the live-ranges, we only look at slot indices and
1219 // never go back to the instruction.
1220 // Mark instructions as deleted.
1221 deleteInstr(&CopyMI);
1223 // Update the liveness.
1224 SmallVector<SlotIndex, 8> EndPoints;
1225 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1226 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1227 &EndPoints);
1228 BValNo->markUnused();
1229 // Extend IntB to the EndPoints of its original live interval.
1230 LIS->extendToIndices(IntB, EndPoints);
1232 // Now, do the same for its subranges.
1233 for (LiveInterval::SubRange &SR : IntB.subranges()) {
1234 EndPoints.clear();
1235 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1236 assert(BValNo && "All sublanes should be live");
1237 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1238 BValNo->markUnused();
1239 // We can have a situation where the result of the original copy is live,
1240 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1241 // the copy appear as an endpoint from pruneValue(), but we don't want it
1242 // to because the copy has been removed. We can go ahead and remove that
1243 // endpoint; there is no other situation here that there could be a use at
1244 // the same place as we know that the copy is a full copy.
1245 for (unsigned I = 0; I != EndPoints.size(); ) {
1246 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1247 EndPoints[I] = EndPoints.back();
1248 EndPoints.pop_back();
1249 continue;
1251 ++I;
1253 SmallVector<SlotIndex, 8> Undefs;
1254 IntB.computeSubRangeUndefs(Undefs, SR.LaneMask, *MRI,
1255 *LIS->getSlotIndexes());
1256 LIS->extendToIndices(SR, EndPoints, Undefs);
1258 // If any dead defs were extended, truncate them.
1259 shrinkToUses(&IntB);
1261 // Finally, update the live-range of IntA.
1262 shrinkToUses(&IntA);
1263 return true;
1266 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1267 /// defining a subregister.
1268 static bool definesFullReg(const MachineInstr &MI, Register Reg) {
1269 assert(!Reg.isPhysical() && "This code cannot handle physreg aliasing");
1271 for (const MachineOperand &Op : MI.operands()) {
1272 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1273 continue;
1274 // Return true if we define the full register or don't care about the value
1275 // inside other subregisters.
1276 if (Op.getSubReg() == 0 || Op.isUndef())
1277 return true;
1279 return false;
1282 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1283 MachineInstr *CopyMI,
1284 bool &IsDefCopy) {
1285 IsDefCopy = false;
1286 Register SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1287 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1288 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1289 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1290 if (Register::isPhysicalRegister(SrcReg))
1291 return false;
1293 LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1294 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1295 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1296 if (!ValNo)
1297 return false;
1298 if (ValNo->isPHIDef() || ValNo->isUnused())
1299 return false;
1300 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1301 if (!DefMI)
1302 return false;
1303 if (DefMI->isCopyLike()) {
1304 IsDefCopy = true;
1305 return false;
1307 if (!TII->isAsCheapAsAMove(*DefMI))
1308 return false;
1309 if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1310 return false;
1311 if (!definesFullReg(*DefMI, SrcReg))
1312 return false;
1313 bool SawStore = false;
1314 if (!DefMI->isSafeToMove(AA, SawStore))
1315 return false;
1316 const MCInstrDesc &MCID = DefMI->getDesc();
1317 if (MCID.getNumDefs() != 1)
1318 return false;
1319 // Only support subregister destinations when the def is read-undef.
1320 MachineOperand &DstOperand = CopyMI->getOperand(0);
1321 Register CopyDstReg = DstOperand.getReg();
1322 if (DstOperand.getSubReg() && !DstOperand.isUndef())
1323 return false;
1325 // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1326 // the register substantially (beyond both source and dest size). This is bad
1327 // for performance since it can cascade through a function, introducing many
1328 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1329 // around after a few subreg copies).
1330 if (SrcIdx && DstIdx)
1331 return false;
1333 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1334 if (!DefMI->isImplicitDef()) {
1335 if (DstReg.isPhysical()) {
1336 Register NewDstReg = DstReg;
1338 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1339 DefMI->getOperand(0).getSubReg());
1340 if (NewDstIdx)
1341 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1343 // Finally, make sure that the physical subregister that will be
1344 // constructed later is permitted for the instruction.
1345 if (!DefRC->contains(NewDstReg))
1346 return false;
1347 } else {
1348 // Theoretically, some stack frame reference could exist. Just make sure
1349 // it hasn't actually happened.
1350 assert(Register::isVirtualRegister(DstReg) &&
1351 "Only expect to deal with virtual or physical registers");
1355 if (!allUsesAvailableAt(DefMI, ValNo->def, CopyIdx))
1356 return false;
1358 DebugLoc DL = CopyMI->getDebugLoc();
1359 MachineBasicBlock *MBB = CopyMI->getParent();
1360 MachineBasicBlock::iterator MII =
1361 std::next(MachineBasicBlock::iterator(CopyMI));
1362 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1363 MachineInstr &NewMI = *std::prev(MII);
1364 NewMI.setDebugLoc(DL);
1366 // In a situation like the following:
1367 // %0:subreg = instr ; DefMI, subreg = DstIdx
1368 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
1369 // instead of widening %1 to the register class of %0 simply do:
1370 // %1 = instr
1371 const TargetRegisterClass *NewRC = CP.getNewRC();
1372 if (DstIdx != 0) {
1373 MachineOperand &DefMO = NewMI.getOperand(0);
1374 if (DefMO.getSubReg() == DstIdx) {
1375 assert(SrcIdx == 0 && CP.isFlipped()
1376 && "Shouldn't have SrcIdx+DstIdx at this point");
1377 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1378 const TargetRegisterClass *CommonRC =
1379 TRI->getCommonSubClass(DefRC, DstRC);
1380 if (CommonRC != nullptr) {
1381 NewRC = CommonRC;
1382 DstIdx = 0;
1383 DefMO.setSubReg(0);
1384 DefMO.setIsUndef(false); // Only subregs can have def+undef.
1389 // CopyMI may have implicit operands, save them so that we can transfer them
1390 // over to the newly materialized instruction after CopyMI is removed.
1391 SmallVector<MachineOperand, 4> ImplicitOps;
1392 ImplicitOps.reserve(CopyMI->getNumOperands() -
1393 CopyMI->getDesc().getNumOperands());
1394 for (unsigned I = CopyMI->getDesc().getNumOperands(),
1395 E = CopyMI->getNumOperands();
1396 I != E; ++I) {
1397 MachineOperand &MO = CopyMI->getOperand(I);
1398 if (MO.isReg()) {
1399 assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1400 // Discard VReg implicit defs.
1401 if (Register::isPhysicalRegister(MO.getReg()))
1402 ImplicitOps.push_back(MO);
1406 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1407 CopyMI->eraseFromParent();
1408 ErasedInstrs.insert(CopyMI);
1410 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1411 // We need to remember these so we can add intervals once we insert
1412 // NewMI into SlotIndexes.
1413 SmallVector<MCRegister, 4> NewMIImplDefs;
1414 for (unsigned i = NewMI.getDesc().getNumOperands(),
1415 e = NewMI.getNumOperands();
1416 i != e; ++i) {
1417 MachineOperand &MO = NewMI.getOperand(i);
1418 if (MO.isReg() && MO.isDef()) {
1419 assert(MO.isImplicit() && MO.isDead() &&
1420 Register::isPhysicalRegister(MO.getReg()));
1421 NewMIImplDefs.push_back(MO.getReg().asMCReg());
1425 if (DstReg.isVirtual()) {
1426 unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1428 if (DefRC != nullptr) {
1429 if (NewIdx)
1430 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1431 else
1432 NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1433 assert(NewRC && "subreg chosen for remat incompatible with instruction");
1435 // Remap subranges to new lanemask and change register class.
1436 LiveInterval &DstInt = LIS->getInterval(DstReg);
1437 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1438 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1440 MRI->setRegClass(DstReg, NewRC);
1442 // Update machine operands and add flags.
1443 updateRegDefsUses(DstReg, DstReg, DstIdx);
1444 NewMI.getOperand(0).setSubReg(NewIdx);
1445 // updateRegDefUses can add an "undef" flag to the definition, since
1446 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1447 // sure that "undef" is not set.
1448 if (NewIdx == 0)
1449 NewMI.getOperand(0).setIsUndef(false);
1450 // Add dead subregister definitions if we are defining the whole register
1451 // but only part of it is live.
1452 // This could happen if the rematerialization instruction is rematerializing
1453 // more than actually is used in the register.
1454 // An example would be:
1455 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1456 // ; Copying only part of the register here, but the rest is undef.
1457 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1458 // ==>
1459 // ; Materialize all the constants but only using one
1460 // %2 = LOAD_CONSTANTS 5, 8
1462 // at this point for the part that wasn't defined before we could have
1463 // subranges missing the definition.
1464 if (NewIdx == 0 && DstInt.hasSubRanges()) {
1465 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1466 SlotIndex DefIndex =
1467 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1468 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1469 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1470 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1471 if (!SR.liveAt(DefIndex))
1472 SR.createDeadDef(DefIndex, Alloc);
1473 MaxMask &= ~SR.LaneMask;
1475 if (MaxMask.any()) {
1476 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1477 SR->createDeadDef(DefIndex, Alloc);
1481 // Make sure that the subrange for resultant undef is removed
1482 // For example:
1483 // %1:sub1<def,read-undef> = LOAD CONSTANT 1
1484 // %2 = COPY %1
1485 // ==>
1486 // %2:sub1<def, read-undef> = LOAD CONSTANT 1
1487 // ; Correct but need to remove the subrange for %2:sub0
1488 // ; as it is now undef
1489 if (NewIdx != 0 && DstInt.hasSubRanges()) {
1490 // The affected subregister segments can be removed.
1491 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1492 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1493 bool UpdatedSubRanges = false;
1494 SlotIndex DefIndex =
1495 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1496 VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator();
1497 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1498 if ((SR.LaneMask & DstMask).none()) {
1499 LLVM_DEBUG(dbgs()
1500 << "Removing undefined SubRange "
1501 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1502 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1503 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1504 SR.removeValNo(RmValNo);
1505 UpdatedSubRanges = true;
1507 } else {
1508 // We know that this lane is defined by this instruction,
1509 // but at this point it may be empty because it is not used by
1510 // anything. This happens when updateRegDefUses adds the missing
1511 // lanes. Assign that lane a dead def so that the interferences
1512 // are properly modeled.
1513 if (SR.empty())
1514 SR.createDeadDef(DefIndex, Alloc);
1517 if (UpdatedSubRanges)
1518 DstInt.removeEmptySubRanges();
1520 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1521 // The New instruction may be defining a sub-register of what's actually
1522 // been asked for. If so it must implicitly define the whole thing.
1523 assert(Register::isPhysicalRegister(DstReg) &&
1524 "Only expect virtual or physical registers in remat");
1525 NewMI.getOperand(0).setIsDead(true);
1526 NewMI.addOperand(MachineOperand::CreateReg(
1527 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1528 // Record small dead def live-ranges for all the subregisters
1529 // of the destination register.
1530 // Otherwise, variables that live through may miss some
1531 // interferences, thus creating invalid allocation.
1532 // E.g., i386 code:
1533 // %1 = somedef ; %1 GR8
1534 // %2 = remat ; %2 GR32
1535 // CL = COPY %2.sub_8bit
1536 // = somedef %1 ; %1 GR8
1537 // =>
1538 // %1 = somedef ; %1 GR8
1539 // dead ECX = remat ; implicit-def CL
1540 // = somedef %1 ; %1 GR8
1541 // %1 will see the interferences with CL but not with CH since
1542 // no live-ranges would have been created for ECX.
1543 // Fix that!
1544 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1545 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1546 Units.isValid(); ++Units)
1547 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1548 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1551 if (NewMI.getOperand(0).getSubReg())
1552 NewMI.getOperand(0).setIsUndef();
1554 // Transfer over implicit operands to the rematerialized instruction.
1555 for (MachineOperand &MO : ImplicitOps)
1556 NewMI.addOperand(MO);
1558 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1559 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1560 MCRegister Reg = NewMIImplDefs[i];
1561 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1562 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1563 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1566 LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1567 ++NumReMats;
1569 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1570 // to describe DstReg instead.
1571 if (MRI->use_nodbg_empty(SrcReg)) {
1572 for (MachineOperand &UseMO :
1573 llvm::make_early_inc_range(MRI->use_operands(SrcReg))) {
1574 MachineInstr *UseMI = UseMO.getParent();
1575 if (UseMI->isDebugInstr()) {
1576 if (Register::isPhysicalRegister(DstReg))
1577 UseMO.substPhysReg(DstReg, *TRI);
1578 else
1579 UseMO.setReg(DstReg);
1580 // Move the debug value directly after the def of the rematerialized
1581 // value in DstReg.
1582 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1583 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1588 if (ToBeUpdated.count(SrcReg))
1589 return true;
1591 unsigned NumCopyUses = 0;
1592 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1593 if (UseMO.getParent()->isCopyLike())
1594 NumCopyUses++;
1596 if (NumCopyUses < LateRematUpdateThreshold) {
1597 // The source interval can become smaller because we removed a use.
1598 shrinkToUses(&SrcInt, &DeadDefs);
1599 if (!DeadDefs.empty())
1600 eliminateDeadDefs();
1601 } else {
1602 ToBeUpdated.insert(SrcReg);
1604 return true;
1607 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1608 // ProcessImplicitDefs may leave some copies of <undef> values, it only
1609 // removes local variables. When we have a copy like:
1611 // %1 = COPY undef %2
1613 // We delete the copy and remove the corresponding value number from %1.
1614 // Any uses of that value number are marked as <undef>.
1616 // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1617 // CoalescerPair may have a new register class with adjusted subreg indices
1618 // at this point.
1619 Register SrcReg, DstReg;
1620 unsigned SrcSubIdx = 0, DstSubIdx = 0;
1621 if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
1622 return nullptr;
1624 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1625 const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1626 // CopyMI is undef iff SrcReg is not live before the instruction.
1627 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1628 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1629 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1630 if ((SR.LaneMask & SrcMask).none())
1631 continue;
1632 if (SR.liveAt(Idx))
1633 return nullptr;
1635 } else if (SrcLI.liveAt(Idx))
1636 return nullptr;
1638 // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1639 // then replace it with an IMPLICIT_DEF.
1640 LiveInterval &DstLI = LIS->getInterval(DstReg);
1641 SlotIndex RegIndex = Idx.getRegSlot();
1642 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1643 assert(Seg != nullptr && "No segment for defining instruction");
1644 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1645 if (V->isPHIDef()) {
1646 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1647 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1648 MachineOperand &MO = CopyMI->getOperand(i-1);
1649 if (MO.isReg() && MO.isUse())
1650 CopyMI->RemoveOperand(i-1);
1652 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1653 "implicit def\n");
1654 return CopyMI;
1658 // Remove any DstReg segments starting at the instruction.
1659 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1661 // Remove value or merge with previous one in case of a subregister def.
1662 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1663 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1664 DstLI.MergeValueNumberInto(VNI, PrevVNI);
1666 // The affected subregister segments can be removed.
1667 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1668 for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1669 if ((SR.LaneMask & DstMask).none())
1670 continue;
1672 VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1673 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1674 SR.removeValNo(SVNI);
1676 DstLI.removeEmptySubRanges();
1677 } else
1678 LIS->removeVRegDefAt(DstLI, RegIndex);
1680 // Mark uses as undef.
1681 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1682 if (MO.isDef() /*|| MO.isUndef()*/)
1683 continue;
1684 const MachineInstr &MI = *MO.getParent();
1685 SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1686 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1687 bool isLive;
1688 if (!UseMask.all() && DstLI.hasSubRanges()) {
1689 isLive = false;
1690 for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1691 if ((SR.LaneMask & UseMask).none())
1692 continue;
1693 if (SR.liveAt(UseIdx)) {
1694 isLive = true;
1695 break;
1698 } else
1699 isLive = DstLI.liveAt(UseIdx);
1700 if (isLive)
1701 continue;
1702 MO.setIsUndef(true);
1703 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1706 // A def of a subregister may be a use of the other subregisters, so
1707 // deleting a def of a subregister may also remove uses. Since CopyMI
1708 // is still part of the function (but about to be erased), mark all
1709 // defs of DstReg in it as <undef>, so that shrinkToUses would
1710 // ignore them.
1711 for (MachineOperand &MO : CopyMI->operands())
1712 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1713 MO.setIsUndef(true);
1714 LIS->shrinkToUses(&DstLI);
1716 return CopyMI;
1719 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1720 MachineOperand &MO, unsigned SubRegIdx) {
1721 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1722 if (MO.isDef())
1723 Mask = ~Mask;
1724 bool IsUndef = true;
1725 for (const LiveInterval::SubRange &S : Int.subranges()) {
1726 if ((S.LaneMask & Mask).none())
1727 continue;
1728 if (S.liveAt(UseIdx)) {
1729 IsUndef = false;
1730 break;
1733 if (IsUndef) {
1734 MO.setIsUndef(true);
1735 // We found out some subregister use is actually reading an undefined
1736 // value. In some cases the whole vreg has become undefined at this
1737 // point so we have to potentially shrink the main range if the
1738 // use was ending a live segment there.
1739 LiveQueryResult Q = Int.Query(UseIdx);
1740 if (Q.valueOut() == nullptr)
1741 ShrinkMainRange = true;
1745 void RegisterCoalescer::updateRegDefsUses(Register SrcReg, Register DstReg,
1746 unsigned SubIdx) {
1747 bool DstIsPhys = Register::isPhysicalRegister(DstReg);
1748 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1750 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1751 for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1752 unsigned SubReg = MO.getSubReg();
1753 if (SubReg == 0 || MO.isUndef())
1754 continue;
1755 MachineInstr &MI = *MO.getParent();
1756 if (MI.isDebugInstr())
1757 continue;
1758 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1759 addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1763 SmallPtrSet<MachineInstr*, 8> Visited;
1764 for (MachineRegisterInfo::reg_instr_iterator
1765 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1766 I != E; ) {
1767 MachineInstr *UseMI = &*(I++);
1769 // Each instruction can only be rewritten once because sub-register
1770 // composition is not always idempotent. When SrcReg != DstReg, rewriting
1771 // the UseMI operands removes them from the SrcReg use-def chain, but when
1772 // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1773 // operands mentioning the virtual register.
1774 if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1775 continue;
1777 SmallVector<unsigned,8> Ops;
1778 bool Reads, Writes;
1779 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1781 // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1782 // because SrcReg is a sub-register.
1783 if (DstInt && !Reads && SubIdx && !UseMI->isDebugInstr())
1784 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1786 // Replace SrcReg with DstReg in all UseMI operands.
1787 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1788 MachineOperand &MO = UseMI->getOperand(Ops[i]);
1790 // Adjust <undef> flags in case of sub-register joins. We don't want to
1791 // turn a full def into a read-modify-write sub-register def and vice
1792 // versa.
1793 if (SubIdx && MO.isDef())
1794 MO.setIsUndef(!Reads);
1796 // A subreg use of a partially undef (super) register may be a complete
1797 // undef use now and then has to be marked that way.
1798 if (MO.isUse() && !DstIsPhys) {
1799 unsigned SubUseIdx = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
1800 if (SubUseIdx != 0 && MRI->shouldTrackSubRegLiveness(DstReg)) {
1801 if (!DstInt->hasSubRanges()) {
1802 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1803 LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg());
1804 LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1805 LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
1806 DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt);
1807 // The unused lanes are just empty live-ranges at this point.
1808 // It is the caller responsibility to set the proper
1809 // dead segments if there is an actual dead def of the
1810 // unused lanes. This may happen with rematerialization.
1811 DstInt->createSubRange(Allocator, UnusedLanes);
1813 SlotIndex MIIdx = UseMI->isDebugInstr()
1814 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1815 : LIS->getInstructionIndex(*UseMI);
1816 SlotIndex UseIdx = MIIdx.getRegSlot(true);
1817 addUndefFlag(*DstInt, UseIdx, MO, SubUseIdx);
1821 if (DstIsPhys)
1822 MO.substPhysReg(DstReg, *TRI);
1823 else
1824 MO.substVirtReg(DstReg, SubIdx, *TRI);
1827 LLVM_DEBUG({
1828 dbgs() << "\t\tupdated: ";
1829 if (!UseMI->isDebugInstr())
1830 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1831 dbgs() << *UseMI;
1836 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1837 // Always join simple intervals that are defined by a single copy from a
1838 // reserved register. This doesn't increase register pressure, so it is
1839 // always beneficial.
1840 if (!MRI->isReserved(CP.getDstReg())) {
1841 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1842 return false;
1845 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1846 if (JoinVInt.containsOneValue())
1847 return true;
1849 LLVM_DEBUG(
1850 dbgs() << "\tCannot join complex intervals into reserved register.\n");
1851 return false;
1854 bool RegisterCoalescer::copyValueUndefInPredecessors(
1855 LiveRange &S, const MachineBasicBlock *MBB, LiveQueryResult SLRQ) {
1856 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
1857 SlotIndex PredEnd = LIS->getMBBEndIdx(Pred);
1858 if (VNInfo *V = S.getVNInfoAt(PredEnd.getPrevSlot())) {
1859 // If this is a self loop, we may be reading the same value.
1860 if (V->id != SLRQ.valueOutOrDead()->id)
1861 return false;
1865 return true;
1868 void RegisterCoalescer::setUndefOnPrunedSubRegUses(LiveInterval &LI,
1869 Register Reg,
1870 LaneBitmask PrunedLanes) {
1871 // If we had other instructions in the segment reading the undef sublane
1872 // value, we need to mark them with undef.
1873 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
1874 unsigned SubRegIdx = MO.getSubReg();
1875 if (SubRegIdx == 0 || MO.isUndef())
1876 continue;
1878 LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1879 SlotIndex Pos = LIS->getInstructionIndex(*MO.getParent());
1880 for (LiveInterval::SubRange &S : LI.subranges()) {
1881 if (!S.liveAt(Pos) && (PrunedLanes & SubRegMask).any()) {
1882 MO.setIsUndef();
1883 break;
1888 LI.removeEmptySubRanges();
1890 // A def of a subregister may be a use of other register lanes. Replacing
1891 // such a def with a def of a different register will eliminate the use,
1892 // and may cause the recorded live range to be larger than the actual
1893 // liveness in the program IR.
1894 LIS->shrinkToUses(&LI);
1897 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1898 Again = false;
1899 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1901 CoalescerPair CP(*TRI);
1902 if (!CP.setRegisters(CopyMI)) {
1903 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1904 return false;
1907 if (CP.getNewRC()) {
1908 auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1909 auto DstRC = MRI->getRegClass(CP.getDstReg());
1910 unsigned SrcIdx = CP.getSrcIdx();
1911 unsigned DstIdx = CP.getDstIdx();
1912 if (CP.isFlipped()) {
1913 std::swap(SrcIdx, DstIdx);
1914 std::swap(SrcRC, DstRC);
1916 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1917 CP.getNewRC(), *LIS)) {
1918 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1919 return false;
1923 // Dead code elimination. This really should be handled by MachineDCE, but
1924 // sometimes dead copies slip through, and we can't generate invalid live
1925 // ranges.
1926 if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1927 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1928 DeadDefs.push_back(CopyMI);
1929 eliminateDeadDefs();
1930 return true;
1933 // Eliminate undefs.
1934 if (!CP.isPhys()) {
1935 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1936 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1937 if (UndefMI->isImplicitDef())
1938 return false;
1939 deleteInstr(CopyMI);
1940 return false; // Not coalescable.
1944 // Coalesced copies are normally removed immediately, but transformations
1945 // like removeCopyByCommutingDef() can inadvertently create identity copies.
1946 // When that happens, just join the values and remove the copy.
1947 if (CP.getSrcReg() == CP.getDstReg()) {
1948 LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1949 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1950 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1951 LiveQueryResult LRQ = LI.Query(CopyIdx);
1952 if (VNInfo *DefVNI = LRQ.valueDefined()) {
1953 VNInfo *ReadVNI = LRQ.valueIn();
1954 assert(ReadVNI && "No value before copy and no <undef> flag.");
1955 assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1957 // Track incoming undef lanes we need to eliminate from the subrange.
1958 LaneBitmask PrunedLanes;
1959 MachineBasicBlock *MBB = CopyMI->getParent();
1961 // Process subregister liveranges.
1962 for (LiveInterval::SubRange &S : LI.subranges()) {
1963 LiveQueryResult SLRQ = S.Query(CopyIdx);
1964 if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1965 if (VNInfo *SReadVNI = SLRQ.valueIn())
1966 SDefVNI = S.MergeValueNumberInto(SDefVNI, SReadVNI);
1968 // If this copy introduced an undef subrange from an incoming value,
1969 // we need to eliminate the undef live in values from the subrange.
1970 if (copyValueUndefInPredecessors(S, MBB, SLRQ)) {
1971 LLVM_DEBUG(dbgs() << "Incoming sublane value is undef at copy\n");
1972 PrunedLanes |= S.LaneMask;
1973 S.removeValNo(SDefVNI);
1978 LI.MergeValueNumberInto(DefVNI, ReadVNI);
1979 if (PrunedLanes.any()) {
1980 LLVM_DEBUG(dbgs() << "Pruning undef incoming lanes: "
1981 << PrunedLanes << '\n');
1982 setUndefOnPrunedSubRegUses(LI, CP.getSrcReg(), PrunedLanes);
1985 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n');
1987 deleteInstr(CopyMI);
1988 return true;
1991 // Enforce policies.
1992 if (CP.isPhys()) {
1993 LLVM_DEBUG(dbgs() << "\tConsidering merging "
1994 << printReg(CP.getSrcReg(), TRI) << " with "
1995 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
1996 if (!canJoinPhys(CP)) {
1997 // Before giving up coalescing, if definition of source is defined by
1998 // trivial computation, try rematerializing it.
1999 bool IsDefCopy = false;
2000 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
2001 return true;
2002 if (IsDefCopy)
2003 Again = true; // May be possible to coalesce later.
2004 return false;
2006 } else {
2007 // When possible, let DstReg be the larger interval.
2008 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
2009 LIS->getInterval(CP.getDstReg()).size())
2010 CP.flip();
2012 LLVM_DEBUG({
2013 dbgs() << "\tConsidering merging to "
2014 << TRI->getRegClassName(CP.getNewRC()) << " with ";
2015 if (CP.getDstIdx() && CP.getSrcIdx())
2016 dbgs() << printReg(CP.getDstReg()) << " in "
2017 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
2018 << printReg(CP.getSrcReg()) << " in "
2019 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
2020 else
2021 dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
2022 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
2026 ShrinkMask = LaneBitmask::getNone();
2027 ShrinkMainRange = false;
2029 // Okay, attempt to join these two intervals. On failure, this returns false.
2030 // Otherwise, if one of the intervals being joined is a physreg, this method
2031 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
2032 // been modified, so we can use this information below to update aliases.
2033 if (!joinIntervals(CP)) {
2034 // Coalescing failed.
2036 // If definition of source is defined by trivial computation, try
2037 // rematerializing it.
2038 bool IsDefCopy = false;
2039 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
2040 return true;
2042 // If we can eliminate the copy without merging the live segments, do so
2043 // now.
2044 if (!CP.isPartial() && !CP.isPhys()) {
2045 bool Changed = adjustCopiesBackFrom(CP, CopyMI);
2046 bool Shrink = false;
2047 if (!Changed)
2048 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
2049 if (Changed) {
2050 deleteInstr(CopyMI);
2051 if (Shrink) {
2052 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
2053 LiveInterval &DstLI = LIS->getInterval(DstReg);
2054 shrinkToUses(&DstLI);
2055 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n');
2057 LLVM_DEBUG(dbgs() << "\tTrivial!\n");
2058 return true;
2062 // Try and see if we can partially eliminate the copy by moving the copy to
2063 // its predecessor.
2064 if (!CP.isPartial() && !CP.isPhys())
2065 if (removePartialRedundancy(CP, *CopyMI))
2066 return true;
2068 // Otherwise, we are unable to join the intervals.
2069 LLVM_DEBUG(dbgs() << "\tInterference!\n");
2070 Again = true; // May be possible to coalesce later.
2071 return false;
2074 // Coalescing to a virtual register that is of a sub-register class of the
2075 // other. Make sure the resulting register is set to the right register class.
2076 if (CP.isCrossClass()) {
2077 ++numCrossRCs;
2078 MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
2081 // Removing sub-register copies can ease the register class constraints.
2082 // Make sure we attempt to inflate the register class of DstReg.
2083 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
2084 InflateRegs.push_back(CP.getDstReg());
2086 // CopyMI has been erased by joinIntervals at this point. Remove it from
2087 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
2088 // to the work list. This keeps ErasedInstrs from growing needlessly.
2089 ErasedInstrs.erase(CopyMI);
2091 // Rewrite all SrcReg operands to DstReg.
2092 // Also update DstReg operands to include DstIdx if it is set.
2093 if (CP.getDstIdx())
2094 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
2095 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
2097 // Shrink subregister ranges if necessary.
2098 if (ShrinkMask.any()) {
2099 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2100 for (LiveInterval::SubRange &S : LI.subranges()) {
2101 if ((S.LaneMask & ShrinkMask).none())
2102 continue;
2103 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
2104 << ")\n");
2105 LIS->shrinkToUses(S, LI.reg());
2107 LI.removeEmptySubRanges();
2110 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
2111 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
2112 // is not up-to-date, need to update the merged live interval here.
2113 if (ToBeUpdated.count(CP.getSrcReg()))
2114 ShrinkMainRange = true;
2116 if (ShrinkMainRange) {
2117 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2118 shrinkToUses(&LI);
2121 // SrcReg is guaranteed to be the register whose live interval that is
2122 // being merged.
2123 LIS->removeInterval(CP.getSrcReg());
2125 // Update regalloc hint.
2126 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
2128 LLVM_DEBUG({
2129 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
2130 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
2131 dbgs() << "\tResult = ";
2132 if (CP.isPhys())
2133 dbgs() << printReg(CP.getDstReg(), TRI);
2134 else
2135 dbgs() << LIS->getInterval(CP.getDstReg());
2136 dbgs() << '\n';
2139 ++numJoins;
2140 return true;
2143 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
2144 Register DstReg = CP.getDstReg();
2145 Register SrcReg = CP.getSrcReg();
2146 assert(CP.isPhys() && "Must be a physreg copy");
2147 assert(MRI->isReserved(DstReg) && "Not a reserved register");
2148 LiveInterval &RHS = LIS->getInterval(SrcReg);
2149 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
2151 assert(RHS.containsOneValue() && "Invalid join with reserved register");
2153 // Optimization for reserved registers like ESP. We can only merge with a
2154 // reserved physreg if RHS has a single value that is a copy of DstReg.
2155 // The live range of the reserved register will look like a set of dead defs
2156 // - we don't properly track the live range of reserved registers.
2158 // Deny any overlapping intervals. This depends on all the reserved
2159 // register live ranges to look like dead defs.
2160 if (!MRI->isConstantPhysReg(DstReg)) {
2161 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2162 // Abort if not all the regunits are reserved.
2163 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
2164 if (!MRI->isReserved(*RI))
2165 return false;
2167 if (RHS.overlaps(LIS->getRegUnit(*UI))) {
2168 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
2169 << '\n');
2170 return false;
2174 // We must also check for overlaps with regmask clobbers.
2175 BitVector RegMaskUsable;
2176 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2177 !RegMaskUsable.test(DstReg)) {
2178 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2179 return false;
2183 // Skip any value computations, we are not adding new values to the
2184 // reserved register. Also skip merging the live ranges, the reserved
2185 // register live range doesn't need to be accurate as long as all the
2186 // defs are there.
2188 // Delete the identity copy.
2189 MachineInstr *CopyMI;
2190 if (CP.isFlipped()) {
2191 // Physreg is copied into vreg
2192 // %y = COPY %physreg_x
2193 // ... //< no other def of %physreg_x here
2194 // use %y
2195 // =>
2196 // ...
2197 // use %physreg_x
2198 CopyMI = MRI->getVRegDef(SrcReg);
2199 } else {
2200 // VReg is copied into physreg:
2201 // %y = def
2202 // ... //< no other def or use of %physreg_x here
2203 // %physreg_x = COPY %y
2204 // =>
2205 // %physreg_x = def
2206 // ...
2207 if (!MRI->hasOneNonDBGUse(SrcReg)) {
2208 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2209 return false;
2212 if (!LIS->intervalIsInOneMBB(RHS)) {
2213 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2214 return false;
2217 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2218 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2219 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2220 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2222 if (!MRI->isConstantPhysReg(DstReg)) {
2223 // We checked above that there are no interfering defs of the physical
2224 // register. However, for this case, where we intend to move up the def of
2225 // the physical register, we also need to check for interfering uses.
2226 SlotIndexes *Indexes = LIS->getSlotIndexes();
2227 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2228 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2229 MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2230 if (MI->readsRegister(DstReg, TRI)) {
2231 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2232 return false;
2237 // We're going to remove the copy which defines a physical reserved
2238 // register, so remove its valno, etc.
2239 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2240 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2242 LIS->removePhysRegDefAt(DstReg.asMCReg(), CopyRegIdx);
2243 // Create a new dead def at the new def location.
2244 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2245 LiveRange &LR = LIS->getRegUnit(*UI);
2246 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2250 deleteInstr(CopyMI);
2252 // We don't track kills for reserved registers.
2253 MRI->clearKillFlags(CP.getSrcReg());
2255 return true;
2258 //===----------------------------------------------------------------------===//
2259 // Interference checking and interval joining
2260 //===----------------------------------------------------------------------===//
2262 // In the easiest case, the two live ranges being joined are disjoint, and
2263 // there is no interference to consider. It is quite common, though, to have
2264 // overlapping live ranges, and we need to check if the interference can be
2265 // resolved.
2267 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2268 // This means that two SSA values overlap if and only if the def of one value
2269 // is contained in the live range of the other value. As a special case, the
2270 // overlapping values can be defined at the same index.
2272 // The interference from an overlapping def can be resolved in these cases:
2274 // 1. Coalescable copies. The value is defined by a copy that would become an
2275 // identity copy after joining SrcReg and DstReg. The copy instruction will
2276 // be removed, and the value will be merged with the source value.
2278 // There can be several copies back and forth, causing many values to be
2279 // merged into one. We compute a list of ultimate values in the joined live
2280 // range as well as a mappings from the old value numbers.
2282 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2283 // predecessors have a live out value. It doesn't cause real interference,
2284 // and can be merged into the value it overlaps. Like a coalescable copy, it
2285 // can be erased after joining.
2287 // 3. Copy of external value. The overlapping def may be a copy of a value that
2288 // is already in the other register. This is like a coalescable copy, but
2289 // the live range of the source register must be trimmed after erasing the
2290 // copy instruction:
2292 // %src = COPY %ext
2293 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
2295 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2296 // defining one lane at a time:
2298 // %dst:ssub0<def,read-undef> = FOO
2299 // %src = BAR
2300 // %dst:ssub1 = COPY %src
2302 // The live range of %src overlaps the %dst value defined by FOO, but
2303 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2304 // which was undef anyway.
2306 // The value mapping is more complicated in this case. The final live range
2307 // will have different value numbers for both FOO and BAR, but there is no
2308 // simple mapping from old to new values. It may even be necessary to add
2309 // new PHI values.
2311 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2312 // is live, but never read. This can happen because we don't compute
2313 // individual live ranges per lane.
2315 // %dst = FOO
2316 // %src = BAR
2317 // %dst:ssub1 = COPY %src
2319 // This kind of interference is only resolved locally. If the clobbered
2320 // lane value escapes the block, the join is aborted.
2322 namespace {
2324 /// Track information about values in a single virtual register about to be
2325 /// joined. Objects of this class are always created in pairs - one for each
2326 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2327 /// pair)
2328 class JoinVals {
2329 /// Live range we work on.
2330 LiveRange &LR;
2332 /// (Main) register we work on.
2333 const Register Reg;
2335 /// Reg (and therefore the values in this liverange) will end up as
2336 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2337 /// CP.SrcIdx.
2338 const unsigned SubIdx;
2340 /// The LaneMask that this liverange will occupy the coalesced register. May
2341 /// be smaller than the lanemask produced by SubIdx when merging subranges.
2342 const LaneBitmask LaneMask;
2344 /// This is true when joining sub register ranges, false when joining main
2345 /// ranges.
2346 const bool SubRangeJoin;
2348 /// Whether the current LiveInterval tracks subregister liveness.
2349 const bool TrackSubRegLiveness;
2351 /// Values that will be present in the final live range.
2352 SmallVectorImpl<VNInfo*> &NewVNInfo;
2354 const CoalescerPair &CP;
2355 LiveIntervals *LIS;
2356 SlotIndexes *Indexes;
2357 const TargetRegisterInfo *TRI;
2359 /// Value number assignments. Maps value numbers in LI to entries in
2360 /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2361 SmallVector<int, 8> Assignments;
2363 public:
2364 /// Conflict resolution for overlapping values.
2365 enum ConflictResolution {
2366 /// No overlap, simply keep this value.
2367 CR_Keep,
2369 /// Merge this value into OtherVNI and erase the defining instruction.
2370 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2371 /// values.
2372 CR_Erase,
2374 /// Merge this value into OtherVNI but keep the defining instruction.
2375 /// This is for the special case where OtherVNI is defined by the same
2376 /// instruction.
2377 CR_Merge,
2379 /// Keep this value, and have it replace OtherVNI where possible. This
2380 /// complicates value mapping since OtherVNI maps to two different values
2381 /// before and after this def.
2382 /// Used when clobbering undefined or dead lanes.
2383 CR_Replace,
2385 /// Unresolved conflict. Visit later when all values have been mapped.
2386 CR_Unresolved,
2388 /// Unresolvable conflict. Abort the join.
2389 CR_Impossible
2392 private:
2393 /// Per-value info for LI. The lane bit masks are all relative to the final
2394 /// joined register, so they can be compared directly between SrcReg and
2395 /// DstReg.
2396 struct Val {
2397 ConflictResolution Resolution = CR_Keep;
2399 /// Lanes written by this def, 0 for unanalyzed values.
2400 LaneBitmask WriteLanes;
2402 /// Lanes with defined values in this register. Other lanes are undef and
2403 /// safe to clobber.
2404 LaneBitmask ValidLanes;
2406 /// Value in LI being redefined by this def.
2407 VNInfo *RedefVNI = nullptr;
2409 /// Value in the other live range that overlaps this def, if any.
2410 VNInfo *OtherVNI = nullptr;
2412 /// Is this value an IMPLICIT_DEF that can be erased?
2414 /// IMPLICIT_DEF values should only exist at the end of a basic block that
2415 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2416 /// safely erased if they are overlapping a live value in the other live
2417 /// interval.
2419 /// Weird control flow graphs and incomplete PHI handling in
2420 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2421 /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2422 /// normal values.
2423 bool ErasableImplicitDef = false;
2425 /// True when the live range of this value will be pruned because of an
2426 /// overlapping CR_Replace value in the other live range.
2427 bool Pruned = false;
2429 /// True once Pruned above has been computed.
2430 bool PrunedComputed = false;
2432 /// True if this value is determined to be identical to OtherVNI
2433 /// (in valuesIdentical). This is used with CR_Erase where the erased
2434 /// copy is redundant, i.e. the source value is already the same as
2435 /// the destination. In such cases the subranges need to be updated
2436 /// properly. See comment at pruneSubRegValues for more info.
2437 bool Identical = false;
2439 Val() = default;
2441 bool isAnalyzed() const { return WriteLanes.any(); }
2444 /// One entry per value number in LI.
2445 SmallVector<Val, 8> Vals;
2447 /// Compute the bitmask of lanes actually written by DefMI.
2448 /// Set Redef if there are any partial register definitions that depend on the
2449 /// previous value of the register.
2450 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2452 /// Find the ultimate value that VNI was copied from.
2453 std::pair<const VNInfo *, Register> followCopyChain(const VNInfo *VNI) const;
2455 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2457 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2458 /// Return a conflict resolution when possible, but leave the hard cases as
2459 /// CR_Unresolved.
2460 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2461 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2462 /// The recursion always goes upwards in the dominator tree, making loops
2463 /// impossible.
2464 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2466 /// Compute the value assignment for ValNo in RI.
2467 /// This may be called recursively by analyzeValue(), but never for a ValNo on
2468 /// the stack.
2469 void computeAssignment(unsigned ValNo, JoinVals &Other);
2471 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2472 /// the extent of the tainted lanes in the block.
2474 /// Multiple values in Other.LR can be affected since partial redefinitions
2475 /// can preserve previously tainted lanes.
2477 /// 1 %dst = VLOAD <-- Define all lanes in %dst
2478 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
2479 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
2480 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2482 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2483 /// entry to TaintedVals.
2485 /// Returns false if the tainted lanes extend beyond the basic block.
2486 bool
2487 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2488 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2490 /// Return true if MI uses any of the given Lanes from Reg.
2491 /// This does not include partial redefinitions of Reg.
2492 bool usesLanes(const MachineInstr &MI, Register, unsigned, LaneBitmask) const;
2494 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2495 /// be pruned:
2497 /// %dst = COPY %src
2498 /// %src = COPY %dst <-- This value to be pruned.
2499 /// %dst = COPY %src <-- This value is a copy of a pruned value.
2500 bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2502 public:
2503 JoinVals(LiveRange &LR, Register Reg, unsigned SubIdx, LaneBitmask LaneMask,
2504 SmallVectorImpl<VNInfo *> &newVNInfo, const CoalescerPair &cp,
2505 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2506 bool TrackSubRegLiveness)
2507 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2508 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2509 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2510 TRI(TRI), Assignments(LR.getNumValNums(), -1),
2511 Vals(LR.getNumValNums()) {}
2513 /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2514 /// Returns false if any conflicts were impossible to resolve.
2515 bool mapValues(JoinVals &Other);
2517 /// Try to resolve conflicts that require all values to be mapped.
2518 /// Returns false if any conflicts were impossible to resolve.
2519 bool resolveConflicts(JoinVals &Other);
2521 /// Prune the live range of values in Other.LR where they would conflict with
2522 /// CR_Replace values in LR. Collect end points for restoring the live range
2523 /// after joining.
2524 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2525 bool changeInstrs);
2527 /// Removes subranges starting at copies that get removed. This sometimes
2528 /// happens when undefined subranges are copied around. These ranges contain
2529 /// no useful information and can be removed.
2530 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2532 /// Pruning values in subranges can lead to removing segments in these
2533 /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2534 /// the main range also need to be removed. This function will mark
2535 /// the corresponding values in the main range as pruned, so that
2536 /// eraseInstrs can do the final cleanup.
2537 /// The parameter @p LI must be the interval whose main range is the
2538 /// live range LR.
2539 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2541 /// Erase any machine instructions that have been coalesced away.
2542 /// Add erased instructions to ErasedInstrs.
2543 /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2544 /// the erased instrs.
2545 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2546 SmallVectorImpl<Register> &ShrinkRegs,
2547 LiveInterval *LI = nullptr);
2549 /// Remove liverange defs at places where implicit defs will be removed.
2550 void removeImplicitDefs();
2552 /// Get the value assignments suitable for passing to LiveInterval::join.
2553 const int *getAssignments() const { return Assignments.data(); }
2555 /// Get the conflict resolution for a value number.
2556 ConflictResolution getResolution(unsigned Num) const {
2557 return Vals[Num].Resolution;
2561 } // end anonymous namespace
2563 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2564 const {
2565 LaneBitmask L;
2566 for (const MachineOperand &MO : DefMI->operands()) {
2567 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2568 continue;
2569 L |= TRI->getSubRegIndexLaneMask(
2570 TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2571 if (MO.readsReg())
2572 Redef = true;
2574 return L;
2577 std::pair<const VNInfo *, Register>
2578 JoinVals::followCopyChain(const VNInfo *VNI) const {
2579 Register TrackReg = Reg;
2581 while (!VNI->isPHIDef()) {
2582 SlotIndex Def = VNI->def;
2583 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2584 assert(MI && "No defining instruction");
2585 if (!MI->isFullCopy())
2586 return std::make_pair(VNI, TrackReg);
2587 Register SrcReg = MI->getOperand(1).getReg();
2588 if (!SrcReg.isVirtual())
2589 return std::make_pair(VNI, TrackReg);
2591 const LiveInterval &LI = LIS->getInterval(SrcReg);
2592 const VNInfo *ValueIn;
2593 // No subrange involved.
2594 if (!SubRangeJoin || !LI.hasSubRanges()) {
2595 LiveQueryResult LRQ = LI.Query(Def);
2596 ValueIn = LRQ.valueIn();
2597 } else {
2598 // Query subranges. Ensure that all matching ones take us to the same def
2599 // (allowing some of them to be undef).
2600 ValueIn = nullptr;
2601 for (const LiveInterval::SubRange &S : LI.subranges()) {
2602 // Transform lanemask to a mask in the joined live interval.
2603 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2604 if ((SMask & LaneMask).none())
2605 continue;
2606 LiveQueryResult LRQ = S.Query(Def);
2607 if (!ValueIn) {
2608 ValueIn = LRQ.valueIn();
2609 continue;
2611 if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2612 return std::make_pair(VNI, TrackReg);
2615 if (ValueIn == nullptr) {
2616 // Reaching an undefined value is legitimate, for example:
2618 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef
2619 // 2 %1 = COPY %0 ;; %1 is defined here.
2620 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition,
2621 // ;; but it's equivalent to "undef".
2622 return std::make_pair(nullptr, SrcReg);
2624 VNI = ValueIn;
2625 TrackReg = SrcReg;
2627 return std::make_pair(VNI, TrackReg);
2630 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2631 const JoinVals &Other) const {
2632 const VNInfo *Orig0;
2633 Register Reg0;
2634 std::tie(Orig0, Reg0) = followCopyChain(Value0);
2635 if (Orig0 == Value1 && Reg0 == Other.Reg)
2636 return true;
2638 const VNInfo *Orig1;
2639 Register Reg1;
2640 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2641 // If both values are undefined, and the source registers are the same
2642 // register, the values are identical. Filter out cases where only one
2643 // value is defined.
2644 if (Orig0 == nullptr || Orig1 == nullptr)
2645 return Orig0 == Orig1 && Reg0 == Reg1;
2647 // The values are equal if they are defined at the same place and use the
2648 // same register. Note that we cannot compare VNInfos directly as some of
2649 // them might be from a copy created in mergeSubRangeInto() while the other
2650 // is from the original LiveInterval.
2651 return Orig0->def == Orig1->def && Reg0 == Reg1;
2654 JoinVals::ConflictResolution
2655 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2656 Val &V = Vals[ValNo];
2657 assert(!V.isAnalyzed() && "Value has already been analyzed!");
2658 VNInfo *VNI = LR.getValNumInfo(ValNo);
2659 if (VNI->isUnused()) {
2660 V.WriteLanes = LaneBitmask::getAll();
2661 return CR_Keep;
2664 // Get the instruction defining this value, compute the lanes written.
2665 const MachineInstr *DefMI = nullptr;
2666 if (VNI->isPHIDef()) {
2667 // Conservatively assume that all lanes in a PHI are valid.
2668 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2669 : TRI->getSubRegIndexLaneMask(SubIdx);
2670 V.ValidLanes = V.WriteLanes = Lanes;
2671 } else {
2672 DefMI = Indexes->getInstructionFromIndex(VNI->def);
2673 assert(DefMI != nullptr);
2674 if (SubRangeJoin) {
2675 // We don't care about the lanes when joining subregister ranges.
2676 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2677 if (DefMI->isImplicitDef()) {
2678 V.ValidLanes = LaneBitmask::getNone();
2679 V.ErasableImplicitDef = true;
2681 } else {
2682 bool Redef = false;
2683 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2685 // If this is a read-modify-write instruction, there may be more valid
2686 // lanes than the ones written by this instruction.
2687 // This only covers partial redef operands. DefMI may have normal use
2688 // operands reading the register. They don't contribute valid lanes.
2690 // This adds ssub1 to the set of valid lanes in %src:
2692 // %src:ssub1 = FOO
2694 // This leaves only ssub1 valid, making any other lanes undef:
2696 // %src:ssub1<def,read-undef> = FOO %src:ssub2
2698 // The <read-undef> flag on the def operand means that old lane values are
2699 // not important.
2700 if (Redef) {
2701 V.RedefVNI = LR.Query(VNI->def).valueIn();
2702 assert((TrackSubRegLiveness || V.RedefVNI) &&
2703 "Instruction is reading nonexistent value");
2704 if (V.RedefVNI != nullptr) {
2705 computeAssignment(V.RedefVNI->id, Other);
2706 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2710 // An IMPLICIT_DEF writes undef values.
2711 if (DefMI->isImplicitDef()) {
2712 // We normally expect IMPLICIT_DEF values to be live only until the end
2713 // of their block. If the value is really live longer and gets pruned in
2714 // another block, this flag is cleared again.
2716 // Clearing the valid lanes is deferred until it is sure this can be
2717 // erased.
2718 V.ErasableImplicitDef = true;
2723 // Find the value in Other that overlaps VNI->def, if any.
2724 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2726 // It is possible that both values are defined by the same instruction, or
2727 // the values are PHIs defined in the same block. When that happens, the two
2728 // values should be merged into one, but not into any preceding value.
2729 // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2730 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2731 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2733 // One value stays, the other is merged. Keep the earlier one, or the first
2734 // one we see.
2735 if (OtherVNI->def < VNI->def)
2736 Other.computeAssignment(OtherVNI->id, *this);
2737 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2738 // This is an early-clobber def overlapping a live-in value in the other
2739 // register. Not mergeable.
2740 V.OtherVNI = OtherLRQ.valueIn();
2741 return CR_Impossible;
2743 V.OtherVNI = OtherVNI;
2744 Val &OtherV = Other.Vals[OtherVNI->id];
2745 // Keep this value, check for conflicts when analyzing OtherVNI.
2746 if (!OtherV.isAnalyzed())
2747 return CR_Keep;
2748 // Both sides have been analyzed now.
2749 // Allow overlapping PHI values. Any real interference would show up in a
2750 // predecessor, the PHI itself can't introduce any conflicts.
2751 if (VNI->isPHIDef())
2752 return CR_Merge;
2753 if ((V.ValidLanes & OtherV.ValidLanes).any())
2754 // Overlapping lanes can't be resolved.
2755 return CR_Impossible;
2756 else
2757 return CR_Merge;
2760 // No simultaneous def. Is Other live at the def?
2761 V.OtherVNI = OtherLRQ.valueIn();
2762 if (!V.OtherVNI)
2763 // No overlap, no conflict.
2764 return CR_Keep;
2766 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2768 // We have overlapping values, or possibly a kill of Other.
2769 // Recursively compute assignments up the dominator tree.
2770 Other.computeAssignment(V.OtherVNI->id, *this);
2771 Val &OtherV = Other.Vals[V.OtherVNI->id];
2773 if (OtherV.ErasableImplicitDef) {
2774 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2775 // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2776 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2777 // technically.
2779 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2780 // to erase the IMPLICIT_DEF instruction.
2781 if (DefMI &&
2782 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2783 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2784 << " extends into "
2785 << printMBBReference(*DefMI->getParent())
2786 << ", keeping it.\n");
2787 OtherV.ErasableImplicitDef = false;
2788 } else {
2789 // We deferred clearing these lanes in case we needed to save them
2790 OtherV.ValidLanes &= ~OtherV.WriteLanes;
2794 // Allow overlapping PHI values. Any real interference would show up in a
2795 // predecessor, the PHI itself can't introduce any conflicts.
2796 if (VNI->isPHIDef())
2797 return CR_Replace;
2799 // Check for simple erasable conflicts.
2800 if (DefMI->isImplicitDef())
2801 return CR_Erase;
2803 // Include the non-conflict where DefMI is a coalescable copy that kills
2804 // OtherVNI. We still want the copy erased and value numbers merged.
2805 if (CP.isCoalescable(DefMI)) {
2806 // Some of the lanes copied from OtherVNI may be undef, making them undef
2807 // here too.
2808 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2809 return CR_Erase;
2812 // This may not be a real conflict if DefMI simply kills Other and defines
2813 // VNI.
2814 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2815 return CR_Keep;
2817 // Handle the case where VNI and OtherVNI can be proven to be identical:
2819 // %other = COPY %ext
2820 // %this = COPY %ext <-- Erase this copy
2822 if (DefMI->isFullCopy() && !CP.isPartial() &&
2823 valuesIdentical(VNI, V.OtherVNI, Other)) {
2824 V.Identical = true;
2825 return CR_Erase;
2828 // The remaining checks apply to the lanes, which aren't tracked here. This
2829 // was already decided to be OK via the following CR_Replace condition.
2830 // CR_Replace.
2831 if (SubRangeJoin)
2832 return CR_Replace;
2834 // If the lanes written by this instruction were all undef in OtherVNI, it is
2835 // still safe to join the live ranges. This can't be done with a simple value
2836 // mapping, though - OtherVNI will map to multiple values:
2838 // 1 %dst:ssub0 = FOO <-- OtherVNI
2839 // 2 %src = BAR <-- VNI
2840 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
2841 // 4 BAZ killed %dst
2842 // 5 QUUX killed %src
2844 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2845 // handles this complex value mapping.
2846 if ((V.WriteLanes & OtherV.ValidLanes).none())
2847 return CR_Replace;
2849 // If the other live range is killed by DefMI and the live ranges are still
2850 // overlapping, it must be because we're looking at an early clobber def:
2852 // %dst<def,early-clobber> = ASM killed %src
2854 // In this case, it is illegal to merge the two live ranges since the early
2855 // clobber def would clobber %src before it was read.
2856 if (OtherLRQ.isKill()) {
2857 // This case where the def doesn't overlap the kill is handled above.
2858 assert(VNI->def.isEarlyClobber() &&
2859 "Only early clobber defs can overlap a kill");
2860 return CR_Impossible;
2863 // VNI is clobbering live lanes in OtherVNI, but there is still the
2864 // possibility that no instructions actually read the clobbered lanes.
2865 // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2866 // Otherwise Other.RI wouldn't be live here.
2867 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2868 return CR_Impossible;
2870 if (TrackSubRegLiveness) {
2871 auto &OtherLI = LIS->getInterval(Other.Reg);
2872 // If OtherVNI does not have subranges, it means all the lanes of OtherVNI
2873 // share the same live range, so we just need to check whether they have
2874 // any conflict bit in their LaneMask.
2875 if (!OtherLI.hasSubRanges()) {
2876 LaneBitmask OtherMask = TRI->getSubRegIndexLaneMask(Other.SubIdx);
2877 return (OtherMask & V.WriteLanes).none() ? CR_Replace : CR_Impossible;
2880 // If we are clobbering some active lanes of OtherVNI at VNI->def, it is
2881 // impossible to resolve the conflict. Otherwise, we can just replace
2882 // OtherVNI because of no real conflict.
2883 for (LiveInterval::SubRange &OtherSR : OtherLI.subranges()) {
2884 LaneBitmask OtherMask =
2885 TRI->composeSubRegIndexLaneMask(Other.SubIdx, OtherSR.LaneMask);
2886 if ((OtherMask & V.WriteLanes).none())
2887 continue;
2889 auto OtherSRQ = OtherSR.Query(VNI->def);
2890 if (OtherSRQ.valueIn() && OtherSRQ.endPoint() > VNI->def) {
2891 // VNI is clobbering some lanes of OtherVNI, they have real conflict.
2892 return CR_Impossible;
2896 // VNI is NOT clobbering any lane of OtherVNI, just replace OtherVNI.
2897 return CR_Replace;
2900 // We need to verify that no instructions are reading the clobbered lanes.
2901 // To save compile time, we'll only check that locally. Don't allow the
2902 // tainted value to escape the basic block.
2903 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2904 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2905 return CR_Impossible;
2907 // There are still some things that could go wrong besides clobbered lanes
2908 // being read, for example OtherVNI may be only partially redefined in MBB,
2909 // and some clobbered lanes could escape the block. Save this analysis for
2910 // resolveConflicts() when all values have been mapped. We need to know
2911 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2912 // that now - the recursive analyzeValue() calls must go upwards in the
2913 // dominator tree.
2914 return CR_Unresolved;
2917 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2918 Val &V = Vals[ValNo];
2919 if (V.isAnalyzed()) {
2920 // Recursion should always move up the dominator tree, so ValNo is not
2921 // supposed to reappear before it has been assigned.
2922 assert(Assignments[ValNo] != -1 && "Bad recursion?");
2923 return;
2925 switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2926 case CR_Erase:
2927 case CR_Merge:
2928 // Merge this ValNo into OtherVNI.
2929 assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2930 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2931 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2932 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2933 << LR.getValNumInfo(ValNo)->def << " into "
2934 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2935 << V.OtherVNI->def << " --> @"
2936 << NewVNInfo[Assignments[ValNo]]->def << '\n');
2937 break;
2938 case CR_Replace:
2939 case CR_Unresolved: {
2940 // The other value is going to be pruned if this join is successful.
2941 assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2942 Val &OtherV = Other.Vals[V.OtherVNI->id];
2943 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2944 // its lanes.
2945 if (OtherV.ErasableImplicitDef &&
2946 TrackSubRegLiveness &&
2947 (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2948 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2950 OtherV.ErasableImplicitDef = false;
2951 // The valid lanes written by the implicit_def were speculatively cleared
2952 // before, so make this more conservative. It may be better to track this,
2953 // I haven't found a testcase where it matters.
2954 OtherV.ValidLanes = LaneBitmask::getAll();
2957 OtherV.Pruned = true;
2958 LLVM_FALLTHROUGH;
2960 default:
2961 // This value number needs to go in the final joined live range.
2962 Assignments[ValNo] = NewVNInfo.size();
2963 NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2964 break;
2968 bool JoinVals::mapValues(JoinVals &Other) {
2969 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2970 computeAssignment(i, Other);
2971 if (Vals[i].Resolution == CR_Impossible) {
2972 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2973 << '@' << LR.getValNumInfo(i)->def << '\n');
2974 return false;
2977 return true;
2980 bool JoinVals::
2981 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2982 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2983 VNInfo *VNI = LR.getValNumInfo(ValNo);
2984 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2985 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2987 // Scan Other.LR from VNI.def to MBBEnd.
2988 LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2989 assert(OtherI != Other.LR.end() && "No conflict?");
2990 do {
2991 // OtherI is pointing to a tainted value. Abort the join if the tainted
2992 // lanes escape the block.
2993 SlotIndex End = OtherI->end;
2994 if (End >= MBBEnd) {
2995 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
2996 << OtherI->valno->id << '@' << OtherI->start << '\n');
2997 return false;
2999 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
3000 << OtherI->valno->id << '@' << OtherI->start << " to "
3001 << End << '\n');
3002 // A dead def is not a problem.
3003 if (End.isDead())
3004 break;
3005 TaintExtent.push_back(std::make_pair(End, TaintedLanes));
3007 // Check for another def in the MBB.
3008 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
3009 break;
3011 // Lanes written by the new def are no longer tainted.
3012 const Val &OV = Other.Vals[OtherI->valno->id];
3013 TaintedLanes &= ~OV.WriteLanes;
3014 if (!OV.RedefVNI)
3015 break;
3016 } while (TaintedLanes.any());
3017 return true;
3020 bool JoinVals::usesLanes(const MachineInstr &MI, Register Reg, unsigned SubIdx,
3021 LaneBitmask Lanes) const {
3022 if (MI.isDebugOrPseudoInstr())
3023 return false;
3024 for (const MachineOperand &MO : MI.operands()) {
3025 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
3026 continue;
3027 if (!MO.readsReg())
3028 continue;
3029 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
3030 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
3031 return true;
3033 return false;
3036 bool JoinVals::resolveConflicts(JoinVals &Other) {
3037 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3038 Val &V = Vals[i];
3039 assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
3040 if (V.Resolution != CR_Unresolved)
3041 continue;
3042 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
3043 << LR.getValNumInfo(i)->def
3044 << ' ' << PrintLaneMask(LaneMask) << '\n');
3045 if (SubRangeJoin)
3046 return false;
3048 ++NumLaneConflicts;
3049 assert(V.OtherVNI && "Inconsistent conflict resolution.");
3050 VNInfo *VNI = LR.getValNumInfo(i);
3051 const Val &OtherV = Other.Vals[V.OtherVNI->id];
3053 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
3054 // join, those lanes will be tainted with a wrong value. Get the extent of
3055 // the tainted lanes.
3056 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
3057 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
3058 if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
3059 // Tainted lanes would extend beyond the basic block.
3060 return false;
3062 assert(!TaintExtent.empty() && "There should be at least one conflict.");
3064 // Now look at the instructions from VNI->def to TaintExtent (inclusive).
3065 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
3066 MachineBasicBlock::iterator MI = MBB->begin();
3067 if (!VNI->isPHIDef()) {
3068 MI = Indexes->getInstructionFromIndex(VNI->def);
3069 if (!VNI->def.isEarlyClobber()) {
3070 // No need to check the instruction defining VNI for reads.
3071 ++MI;
3074 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
3075 "Interference ends on VNI->def. Should have been handled earlier");
3076 MachineInstr *LastMI =
3077 Indexes->getInstructionFromIndex(TaintExtent.front().first);
3078 assert(LastMI && "Range must end at a proper instruction");
3079 unsigned TaintNum = 0;
3080 while (true) {
3081 assert(MI != MBB->end() && "Bad LastMI");
3082 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
3083 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
3084 return false;
3086 // LastMI is the last instruction to use the current value.
3087 if (&*MI == LastMI) {
3088 if (++TaintNum == TaintExtent.size())
3089 break;
3090 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
3091 assert(LastMI && "Range must end at a proper instruction");
3092 TaintedLanes = TaintExtent[TaintNum].second;
3094 ++MI;
3097 // The tainted lanes are unused.
3098 V.Resolution = CR_Replace;
3099 ++NumLaneResolves;
3101 return true;
3104 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
3105 Val &V = Vals[ValNo];
3106 if (V.Pruned || V.PrunedComputed)
3107 return V.Pruned;
3109 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
3110 return V.Pruned;
3112 // Follow copies up the dominator tree and check if any intermediate value
3113 // has been pruned.
3114 V.PrunedComputed = true;
3115 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
3116 return V.Pruned;
3119 void JoinVals::pruneValues(JoinVals &Other,
3120 SmallVectorImpl<SlotIndex> &EndPoints,
3121 bool changeInstrs) {
3122 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3123 SlotIndex Def = LR.getValNumInfo(i)->def;
3124 switch (Vals[i].Resolution) {
3125 case CR_Keep:
3126 break;
3127 case CR_Replace: {
3128 // This value takes precedence over the value in Other.LR.
3129 LIS->pruneValue(Other.LR, Def, &EndPoints);
3130 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
3131 // instructions are only inserted to provide a live-out value for PHI
3132 // predecessors, so the instruction should simply go away once its value
3133 // has been replaced.
3134 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
3135 bool EraseImpDef = OtherV.ErasableImplicitDef &&
3136 OtherV.Resolution == CR_Keep;
3137 if (!Def.isBlock()) {
3138 if (changeInstrs) {
3139 // Remove <def,read-undef> flags. This def is now a partial redef.
3140 // Also remove dead flags since the joined live range will
3141 // continue past this instruction.
3142 for (MachineOperand &MO :
3143 Indexes->getInstructionFromIndex(Def)->operands()) {
3144 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
3145 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
3146 MO.setIsUndef(false);
3147 MO.setIsDead(false);
3151 // This value will reach instructions below, but we need to make sure
3152 // the live range also reaches the instruction at Def.
3153 if (!EraseImpDef)
3154 EndPoints.push_back(Def);
3156 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
3157 << ": " << Other.LR << '\n');
3158 break;
3160 case CR_Erase:
3161 case CR_Merge:
3162 if (isPrunedValue(i, Other)) {
3163 // This value is ultimately a copy of a pruned value in LR or Other.LR.
3164 // We can no longer trust the value mapping computed by
3165 // computeAssignment(), the value that was originally copied could have
3166 // been replaced.
3167 LIS->pruneValue(LR, Def, &EndPoints);
3168 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
3169 << Def << ": " << LR << '\n');
3171 break;
3172 case CR_Unresolved:
3173 case CR_Impossible:
3174 llvm_unreachable("Unresolved conflicts");
3179 // Check if the segment consists of a copied live-through value (i.e. the copy
3180 // in the block only extended the liveness, of an undef value which we may need
3181 // to handle).
3182 static bool isLiveThrough(const LiveQueryResult Q) {
3183 return Q.valueIn() && Q.valueIn()->isPHIDef() && Q.valueIn() == Q.valueOut();
3186 /// Consider the following situation when coalescing the copy between
3187 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
3189 /// Main range Subrange 0004 (sub2)
3190 /// %31 %45 %31 %45
3191 /// 544 %45 = COPY %28 + +
3192 /// | v1 | v1
3193 /// 560B bb.1: + +
3194 /// 624 = %45.sub2 | v2 | v2
3195 /// 800 %31 = COPY %45 + + + +
3196 /// | v0 | v0
3197 /// 816 %31.sub1 = ... + |
3198 /// 880 %30 = COPY %31 | v1 +
3199 /// 928 %45 = COPY %30 | + +
3200 /// | | v0 | v0 <--+
3201 /// 992B ; backedge -> bb.1 | + + |
3202 /// 1040 = %31.sub0 + |
3203 /// This value must remain
3204 /// live-out!
3206 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3207 /// redundant, since it copies the value from %45 back into it. The
3208 /// conflict resolution for the main range determines that %45.v0 is
3209 /// to be erased, which is ok since %31.v1 is identical to it.
3210 /// The problem happens with the subrange for sub2: it has to be live
3211 /// on exit from the block, but since 928 was actually a point of
3212 /// definition of %45.sub2, %45.sub2 was not live immediately prior
3213 /// to that definition. As a result, when 928 was erased, the value v0
3214 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3215 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3216 /// providing an incorrect value to the use at 624.
3218 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3219 /// identical, the corresponding values in subranges must also be the
3220 /// same. A redundant copy is removed because it's not needed, and not
3221 /// because it copied an undefined value, so any liveness that originated
3222 /// from that copy cannot disappear. When pruning a value that started
3223 /// at the removed copy, the corresponding identical value must be
3224 /// extended to replace it.
3225 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3226 // Look for values being erased.
3227 bool DidPrune = false;
3228 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3229 Val &V = Vals[i];
3230 // We should trigger in all cases in which eraseInstrs() does something.
3231 // match what eraseInstrs() is doing, print a message so
3232 if (V.Resolution != CR_Erase &&
3233 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3234 continue;
3236 // Check subranges at the point where the copy will be removed.
3237 SlotIndex Def = LR.getValNumInfo(i)->def;
3238 SlotIndex OtherDef;
3239 if (V.Identical)
3240 OtherDef = V.OtherVNI->def;
3242 // Print message so mismatches with eraseInstrs() can be diagnosed.
3243 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3244 << '\n');
3245 for (LiveInterval::SubRange &S : LI.subranges()) {
3246 LiveQueryResult Q = S.Query(Def);
3248 // If a subrange starts at the copy then an undefined value has been
3249 // copied and we must remove that subrange value as well.
3250 VNInfo *ValueOut = Q.valueOutOrDead();
3251 if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
3252 (V.Identical && V.Resolution == CR_Erase &&
3253 ValueOut->def == Def))) {
3254 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3255 << " at " << Def << "\n");
3256 SmallVector<SlotIndex,8> EndPoints;
3257 LIS->pruneValue(S, Def, &EndPoints);
3258 DidPrune = true;
3259 // Mark value number as unused.
3260 ValueOut->markUnused();
3262 if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
3263 // If V is identical to V.OtherVNI (and S was live at OtherDef),
3264 // then we can't simply prune V from S. V needs to be replaced
3265 // with V.OtherVNI.
3266 LIS->extendToIndices(S, EndPoints);
3269 // We may need to eliminate the subrange if the copy introduced a live
3270 // out undef value.
3271 if (ValueOut->isPHIDef())
3272 ShrinkMask |= S.LaneMask;
3273 continue;
3276 // If a subrange ends at the copy, then a value was copied but only
3277 // partially used later. Shrink the subregister range appropriately.
3279 // Ultimately this calls shrinkToUses, so assuming ShrinkMask is
3280 // conservatively correct.
3281 if ((Q.valueIn() != nullptr && Q.valueOut() == nullptr) ||
3282 (V.Resolution == CR_Erase && isLiveThrough(Q))) {
3283 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3284 << PrintLaneMask(S.LaneMask) << " at " << Def
3285 << "\n");
3286 ShrinkMask |= S.LaneMask;
3290 if (DidPrune)
3291 LI.removeEmptySubRanges();
3294 /// Check if any of the subranges of @p LI contain a definition at @p Def.
3295 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3296 for (LiveInterval::SubRange &SR : LI.subranges()) {
3297 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3298 if (VNI->def == Def)
3299 return true;
3301 return false;
3304 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3305 assert(&static_cast<LiveRange&>(LI) == &LR);
3307 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3308 if (Vals[i].Resolution != CR_Keep)
3309 continue;
3310 VNInfo *VNI = LR.getValNumInfo(i);
3311 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3312 continue;
3313 Vals[i].Pruned = true;
3314 ShrinkMainRange = true;
3318 void JoinVals::removeImplicitDefs() {
3319 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3320 Val &V = Vals[i];
3321 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3322 continue;
3324 VNInfo *VNI = LR.getValNumInfo(i);
3325 VNI->markUnused();
3326 LR.removeValNo(VNI);
3330 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3331 SmallVectorImpl<Register> &ShrinkRegs,
3332 LiveInterval *LI) {
3333 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3334 // Get the def location before markUnused() below invalidates it.
3335 VNInfo *VNI = LR.getValNumInfo(i);
3336 SlotIndex Def = VNI->def;
3337 switch (Vals[i].Resolution) {
3338 case CR_Keep: {
3339 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3340 // longer. The IMPLICIT_DEF instructions are only inserted by
3341 // PHIElimination to guarantee that all PHI predecessors have a value.
3342 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3343 break;
3344 // Remove value number i from LR.
3345 // For intervals with subranges, removing a segment from the main range
3346 // may require extending the previous segment: for each definition of
3347 // a subregister, there will be a corresponding def in the main range.
3348 // That def may fall in the middle of a segment from another subrange.
3349 // In such cases, removing this def from the main range must be
3350 // complemented by extending the main range to account for the liveness
3351 // of the other subrange.
3352 // The new end point of the main range segment to be extended.
3353 SlotIndex NewEnd;
3354 if (LI != nullptr) {
3355 LiveRange::iterator I = LR.FindSegmentContaining(Def);
3356 assert(I != LR.end());
3357 // Do not extend beyond the end of the segment being removed.
3358 // The segment may have been pruned in preparation for joining
3359 // live ranges.
3360 NewEnd = I->end;
3363 LR.removeValNo(VNI);
3364 // Note that this VNInfo is reused and still referenced in NewVNInfo,
3365 // make it appear like an unused value number.
3366 VNI->markUnused();
3368 if (LI != nullptr && LI->hasSubRanges()) {
3369 assert(static_cast<LiveRange*>(LI) == &LR);
3370 // Determine the end point based on the subrange information:
3371 // minimum of (earliest def of next segment,
3372 // latest end point of containing segment)
3373 SlotIndex ED, LE;
3374 for (LiveInterval::SubRange &SR : LI->subranges()) {
3375 LiveRange::iterator I = SR.find(Def);
3376 if (I == SR.end())
3377 continue;
3378 if (I->start > Def)
3379 ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3380 else
3381 LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3383 if (LE.isValid())
3384 NewEnd = std::min(NewEnd, LE);
3385 if (ED.isValid())
3386 NewEnd = std::min(NewEnd, ED);
3388 // We only want to do the extension if there was a subrange that
3389 // was live across Def.
3390 if (LE.isValid()) {
3391 LiveRange::iterator S = LR.find(Def);
3392 if (S != LR.begin())
3393 std::prev(S)->end = NewEnd;
3396 LLVM_DEBUG({
3397 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3398 if (LI != nullptr)
3399 dbgs() << "\t\t LHS = " << *LI << '\n';
3401 LLVM_FALLTHROUGH;
3404 case CR_Erase: {
3405 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3406 assert(MI && "No instruction to erase");
3407 if (MI->isCopy()) {
3408 Register Reg = MI->getOperand(1).getReg();
3409 if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() &&
3410 Reg != CP.getDstReg())
3411 ShrinkRegs.push_back(Reg);
3413 ErasedInstrs.insert(MI);
3414 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3415 LIS->RemoveMachineInstrFromMaps(*MI);
3416 MI->eraseFromParent();
3417 break;
3419 default:
3420 break;
3425 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3426 LaneBitmask LaneMask,
3427 const CoalescerPair &CP) {
3428 SmallVector<VNInfo*, 16> NewVNInfo;
3429 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3430 NewVNInfo, CP, LIS, TRI, true, true);
3431 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3432 NewVNInfo, CP, LIS, TRI, true, true);
3434 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3435 // We should be able to resolve all conflicts here as we could successfully do
3436 // it on the mainrange already. There is however a problem when multiple
3437 // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3438 // interferences.
3439 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3440 // We already determined that it is legal to merge the intervals, so this
3441 // should never fail.
3442 llvm_unreachable("*** Couldn't join subrange!\n");
3444 if (!LHSVals.resolveConflicts(RHSVals) ||
3445 !RHSVals.resolveConflicts(LHSVals)) {
3446 // We already determined that it is legal to merge the intervals, so this
3447 // should never fail.
3448 llvm_unreachable("*** Couldn't join subrange!\n");
3451 // The merging algorithm in LiveInterval::join() can't handle conflicting
3452 // value mappings, so we need to remove any live ranges that overlap a
3453 // CR_Replace resolution. Collect a set of end points that can be used to
3454 // restore the live range after joining.
3455 SmallVector<SlotIndex, 8> EndPoints;
3456 LHSVals.pruneValues(RHSVals, EndPoints, false);
3457 RHSVals.pruneValues(LHSVals, EndPoints, false);
3459 LHSVals.removeImplicitDefs();
3460 RHSVals.removeImplicitDefs();
3462 LRange.verify();
3463 RRange.verify();
3465 // Join RRange into LHS.
3466 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3467 NewVNInfo);
3469 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3470 << ' ' << LRange << "\n");
3471 if (EndPoints.empty())
3472 return;
3474 // Recompute the parts of the live range we had to remove because of
3475 // CR_Replace conflicts.
3476 LLVM_DEBUG({
3477 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3478 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3479 dbgs() << EndPoints[i];
3480 if (i != n-1)
3481 dbgs() << ',';
3483 dbgs() << ": " << LRange << '\n';
3485 LIS->extendToIndices(LRange, EndPoints);
3488 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3489 const LiveRange &ToMerge,
3490 LaneBitmask LaneMask,
3491 CoalescerPair &CP,
3492 unsigned ComposeSubRegIdx) {
3493 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3494 LI.refineSubRanges(
3495 Allocator, LaneMask,
3496 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3497 if (SR.empty()) {
3498 SR.assign(ToMerge, Allocator);
3499 } else {
3500 // joinSubRegRange() destroys the merged range, so we need a copy.
3501 LiveRange RangeCopy(ToMerge, Allocator);
3502 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3505 *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx);
3508 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3509 if (LI.valnos.size() < LargeIntervalSizeThreshold)
3510 return false;
3511 auto &Counter = LargeLIVisitCounter[LI.reg()];
3512 if (Counter < LargeIntervalFreqThreshold) {
3513 Counter++;
3514 return false;
3516 return true;
3519 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3520 SmallVector<VNInfo*, 16> NewVNInfo;
3521 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3522 LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3523 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3524 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3525 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3526 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3527 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3529 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3531 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3532 return false;
3534 // First compute NewVNInfo and the simple value mappings.
3535 // Detect impossible conflicts early.
3536 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3537 return false;
3539 // Some conflicts can only be resolved after all values have been mapped.
3540 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3541 return false;
3543 // All clear, the live ranges can be merged.
3544 if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3545 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3547 // Transform lanemasks from the LHS to masks in the coalesced register and
3548 // create initial subranges if necessary.
3549 unsigned DstIdx = CP.getDstIdx();
3550 if (!LHS.hasSubRanges()) {
3551 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3552 : TRI->getSubRegIndexLaneMask(DstIdx);
3553 // LHS must support subregs or we wouldn't be in this codepath.
3554 assert(Mask.any());
3555 LHS.createSubRangeFrom(Allocator, Mask, LHS);
3556 } else if (DstIdx != 0) {
3557 // Transform LHS lanemasks to new register class if necessary.
3558 for (LiveInterval::SubRange &R : LHS.subranges()) {
3559 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3560 R.LaneMask = Mask;
3563 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3564 << '\n');
3566 // Determine lanemasks of RHS in the coalesced register and merge subranges.
3567 unsigned SrcIdx = CP.getSrcIdx();
3568 if (!RHS.hasSubRanges()) {
3569 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3570 : TRI->getSubRegIndexLaneMask(SrcIdx);
3571 mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx);
3572 } else {
3573 // Pair up subranges and merge.
3574 for (LiveInterval::SubRange &R : RHS.subranges()) {
3575 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3576 mergeSubRangeInto(LHS, R, Mask, CP, DstIdx);
3579 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3581 // Pruning implicit defs from subranges may result in the main range
3582 // having stale segments.
3583 LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3585 LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3586 RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3589 // The merging algorithm in LiveInterval::join() can't handle conflicting
3590 // value mappings, so we need to remove any live ranges that overlap a
3591 // CR_Replace resolution. Collect a set of end points that can be used to
3592 // restore the live range after joining.
3593 SmallVector<SlotIndex, 8> EndPoints;
3594 LHSVals.pruneValues(RHSVals, EndPoints, true);
3595 RHSVals.pruneValues(LHSVals, EndPoints, true);
3597 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3598 // registers to require trimming.
3599 SmallVector<Register, 8> ShrinkRegs;
3600 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3601 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3602 while (!ShrinkRegs.empty())
3603 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3605 // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3606 checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals);
3608 // If the RHS covers any PHI locations that were tracked for debug-info, we
3609 // must update tracking information to reflect the join.
3610 auto RegIt = RegToPHIIdx.find(CP.getSrcReg());
3611 if (RegIt != RegToPHIIdx.end()) {
3612 // Iterate over all the debug instruction numbers assigned this register.
3613 for (unsigned InstID : RegIt->second) {
3614 auto PHIIt = PHIValToPos.find(InstID);
3615 assert(PHIIt != PHIValToPos.end());
3616 const SlotIndex &SI = PHIIt->second.SI;
3618 // Does the RHS cover the position of this PHI?
3619 auto LII = RHS.find(SI);
3620 if (LII == RHS.end() || LII->start > SI)
3621 continue;
3623 // Accept two kinds of subregister movement:
3624 // * When we merge from one register class into a larger register:
3625 // %1:gr16 = some-inst
3626 // ->
3627 // %2:gr32.sub_16bit = some-inst
3628 // * When the PHI is already in a subregister, and the larger class
3629 // is coalesced:
3630 // %2:gr32.sub_16bit = some-inst
3631 // %3:gr32 = COPY %2
3632 // ->
3633 // %3:gr32.sub_16bit = some-inst
3634 // Test for subregister move:
3635 if (CP.getSrcIdx() != 0 || CP.getDstIdx() != 0)
3636 // If we're moving between different subregisters, ignore this join.
3637 // The PHI will not get a location, dropping variable locations.
3638 if (PHIIt->second.SubReg && PHIIt->second.SubReg != CP.getSrcIdx())
3639 continue;
3641 // Update our tracking of where the PHI is.
3642 PHIIt->second.Reg = CP.getDstReg();
3644 // If we merge into a sub-register of a larger class (test above),
3645 // update SubReg.
3646 if (CP.getSrcIdx() != 0)
3647 PHIIt->second.SubReg = CP.getSrcIdx();
3650 // Rebuild the register index in RegToPHIIdx to account for PHIs tracking
3651 // different VRegs now. Copy old collection of debug instruction numbers and
3652 // erase the old one:
3653 auto InstrNums = RegIt->second;
3654 RegToPHIIdx.erase(RegIt);
3656 // There might already be PHIs being tracked in the destination VReg. Insert
3657 // into an existing tracking collection, or insert a new one.
3658 RegIt = RegToPHIIdx.find(CP.getDstReg());
3659 if (RegIt != RegToPHIIdx.end())
3660 RegIt->second.insert(RegIt->second.end(), InstrNums.begin(),
3661 InstrNums.end());
3662 else
3663 RegToPHIIdx.insert({CP.getDstReg(), InstrNums});
3666 // Join RHS into LHS.
3667 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3669 // Kill flags are going to be wrong if the live ranges were overlapping.
3670 // Eventually, we should simply clear all kill flags when computing live
3671 // ranges. They are reinserted after register allocation.
3672 MRI->clearKillFlags(LHS.reg());
3673 MRI->clearKillFlags(RHS.reg());
3675 if (!EndPoints.empty()) {
3676 // Recompute the parts of the live range we had to remove because of
3677 // CR_Replace conflicts.
3678 LLVM_DEBUG({
3679 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3680 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3681 dbgs() << EndPoints[i];
3682 if (i != n-1)
3683 dbgs() << ',';
3685 dbgs() << ": " << LHS << '\n';
3687 LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3690 return true;
3693 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3694 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3697 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF)
3699 const SlotIndexes &Slots = *LIS->getSlotIndexes();
3700 SmallVector<MachineInstr *, 8> ToInsert;
3702 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3703 // vreg => DbgValueLoc map.
3704 auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) {
3705 for (auto *X : ToInsert) {
3706 for (const auto &Op : X->debug_operands()) {
3707 if (Op.isReg() && Op.getReg().isVirtual())
3708 DbgVRegToValues[Op.getReg()].push_back({Slot, X});
3712 ToInsert.clear();
3715 // Iterate over all instructions, collecting them into the ToInsert vector.
3716 // Once a non-debug instruction is found, record the slot index of the
3717 // collected DBG_VALUEs.
3718 for (auto &MBB : MF) {
3719 SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB);
3721 for (auto &MI : MBB) {
3722 if (MI.isDebugValue()) {
3723 if (any_of(MI.debug_operands(), [](const MachineOperand &MO) {
3724 return MO.isReg() && MO.getReg().isVirtual();
3726 ToInsert.push_back(&MI);
3727 } else if (!MI.isDebugOrPseudoInstr()) {
3728 CurrentSlot = Slots.getInstructionIndex(MI);
3729 CloseNewDVRange(CurrentSlot);
3733 // Close range of DBG_VALUEs at the end of blocks.
3734 CloseNewDVRange(Slots.getMBBEndIdx(&MBB));
3737 // Sort all DBG_VALUEs we've seen by slot number.
3738 for (auto &Pair : DbgVRegToValues)
3739 llvm::sort(Pair.second);
3742 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP,
3743 LiveRange &LHS,
3744 JoinVals &LHSVals,
3745 LiveRange &RHS,
3746 JoinVals &RHSVals) {
3747 auto ScanForDstReg = [&](Register Reg) {
3748 checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals);
3751 auto ScanForSrcReg = [&](Register Reg) {
3752 checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals);
3755 // Scan for potentially unsound DBG_VALUEs: examine first the register number
3756 // Reg, and then any other vregs that may have been merged into it.
3757 auto PerformScan = [this](Register Reg, std::function<void(Register)> Func) {
3758 Func(Reg);
3759 if (DbgMergedVRegNums.count(Reg))
3760 for (Register X : DbgMergedVRegNums[Reg])
3761 Func(X);
3764 // Scan for unsound updates of both the source and destination register.
3765 PerformScan(CP.getSrcReg(), ScanForSrcReg);
3766 PerformScan(CP.getDstReg(), ScanForDstReg);
3769 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg,
3770 LiveRange &OtherLR,
3771 LiveRange &RegLR,
3772 JoinVals &RegVals) {
3773 // Are there any DBG_VALUEs to examine?
3774 auto VRegMapIt = DbgVRegToValues.find(Reg);
3775 if (VRegMapIt == DbgVRegToValues.end())
3776 return;
3778 auto &DbgValueSet = VRegMapIt->second;
3779 auto DbgValueSetIt = DbgValueSet.begin();
3780 auto SegmentIt = OtherLR.begin();
3782 bool LastUndefResult = false;
3783 SlotIndex LastUndefIdx;
3785 // If the "Other" register is live at a slot Idx, test whether Reg can
3786 // safely be merged with it, or should be marked undef.
3787 auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult,
3788 &LastUndefIdx](SlotIndex Idx) -> bool {
3789 // Our worst-case performance typically happens with asan, causing very
3790 // many DBG_VALUEs of the same location. Cache a copy of the most recent
3791 // result for this edge-case.
3792 if (LastUndefIdx == Idx)
3793 return LastUndefResult;
3795 // If the other range was live, and Reg's was not, the register coalescer
3796 // will not have tried to resolve any conflicts. We don't know whether
3797 // the DBG_VALUE will refer to the same value number, so it must be made
3798 // undef.
3799 auto OtherIt = RegLR.find(Idx);
3800 if (OtherIt == RegLR.end())
3801 return true;
3803 // Both the registers were live: examine the conflict resolution record for
3804 // the value number Reg refers to. CR_Keep meant that this value number
3805 // "won" and the merged register definitely refers to that value. CR_Erase
3806 // means the value number was a redundant copy of the other value, which
3807 // was coalesced and Reg deleted. It's safe to refer to the other register
3808 // (which will be the source of the copy).
3809 auto Resolution = RegVals.getResolution(OtherIt->valno->id);
3810 LastUndefResult = Resolution != JoinVals::CR_Keep &&
3811 Resolution != JoinVals::CR_Erase;
3812 LastUndefIdx = Idx;
3813 return LastUndefResult;
3816 // Iterate over both the live-range of the "Other" register, and the set of
3817 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3818 // slot index. This relies on the DbgValueSet being ordered.
3819 while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) {
3820 if (DbgValueSetIt->first < SegmentIt->end) {
3821 // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3822 // set it undef.
3823 if (DbgValueSetIt->first >= SegmentIt->start) {
3824 bool HasReg = DbgValueSetIt->second->hasDebugOperandForReg(Reg);
3825 bool ShouldUndefReg = ShouldUndef(DbgValueSetIt->first);
3826 if (HasReg && ShouldUndefReg) {
3827 // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3828 DbgValueSetIt->second->setDebugValueUndef();
3829 continue;
3832 ++DbgValueSetIt;
3833 } else {
3834 ++SegmentIt;
3839 namespace {
3841 /// Information concerning MBB coalescing priority.
3842 struct MBBPriorityInfo {
3843 MachineBasicBlock *MBB;
3844 unsigned Depth;
3845 bool IsSplit;
3847 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3848 : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3851 } // end anonymous namespace
3853 /// C-style comparator that sorts first based on the loop depth of the basic
3854 /// block (the unsigned), and then on the MBB number.
3856 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
3857 static int compareMBBPriority(const MBBPriorityInfo *LHS,
3858 const MBBPriorityInfo *RHS) {
3859 // Deeper loops first
3860 if (LHS->Depth != RHS->Depth)
3861 return LHS->Depth > RHS->Depth ? -1 : 1;
3863 // Try to unsplit critical edges next.
3864 if (LHS->IsSplit != RHS->IsSplit)
3865 return LHS->IsSplit ? -1 : 1;
3867 // Prefer blocks that are more connected in the CFG. This takes care of
3868 // the most difficult copies first while intervals are short.
3869 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3870 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3871 if (cl != cr)
3872 return cl > cr ? -1 : 1;
3874 // As a last resort, sort by block number.
3875 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3878 /// \returns true if the given copy uses or defines a local live range.
3879 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3880 if (!Copy->isCopy())
3881 return false;
3883 if (Copy->getOperand(1).isUndef())
3884 return false;
3886 Register SrcReg = Copy->getOperand(1).getReg();
3887 Register DstReg = Copy->getOperand(0).getReg();
3888 if (Register::isPhysicalRegister(SrcReg) ||
3889 Register::isPhysicalRegister(DstReg))
3890 return false;
3892 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3893 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3896 void RegisterCoalescer::lateLiveIntervalUpdate() {
3897 for (Register reg : ToBeUpdated) {
3898 if (!LIS->hasInterval(reg))
3899 continue;
3900 LiveInterval &LI = LIS->getInterval(reg);
3901 shrinkToUses(&LI, &DeadDefs);
3902 if (!DeadDefs.empty())
3903 eliminateDeadDefs();
3905 ToBeUpdated.clear();
3908 bool RegisterCoalescer::
3909 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3910 bool Progress = false;
3911 for (MachineInstr *&MI : CurrList) {
3912 if (!MI)
3913 continue;
3914 // Skip instruction pointers that have already been erased, for example by
3915 // dead code elimination.
3916 if (ErasedInstrs.count(MI)) {
3917 MI = nullptr;
3918 continue;
3920 bool Again = false;
3921 bool Success = joinCopy(MI, Again);
3922 Progress |= Success;
3923 if (Success || !Again)
3924 MI = nullptr;
3926 return Progress;
3929 /// Check if DstReg is a terminal node.
3930 /// I.e., it does not have any affinity other than \p Copy.
3931 static bool isTerminalReg(Register DstReg, const MachineInstr &Copy,
3932 const MachineRegisterInfo *MRI) {
3933 assert(Copy.isCopyLike());
3934 // Check if the destination of this copy as any other affinity.
3935 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3936 if (&MI != &Copy && MI.isCopyLike())
3937 return false;
3938 return true;
3941 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3942 assert(Copy.isCopyLike());
3943 if (!UseTerminalRule)
3944 return false;
3945 Register SrcReg, DstReg;
3946 unsigned SrcSubReg = 0, DstSubReg = 0;
3947 if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
3948 return false;
3949 // Check if the destination of this copy has any other affinity.
3950 if (DstReg.isPhysical() ||
3951 // If SrcReg is a physical register, the copy won't be coalesced.
3952 // Ignoring it may have other side effect (like missing
3953 // rematerialization). So keep it.
3954 SrcReg.isPhysical() || !isTerminalReg(DstReg, Copy, MRI))
3955 return false;
3957 // DstReg is a terminal node. Check if it interferes with any other
3958 // copy involving SrcReg.
3959 const MachineBasicBlock *OrigBB = Copy.getParent();
3960 const LiveInterval &DstLI = LIS->getInterval(DstReg);
3961 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3962 // Technically we should check if the weight of the new copy is
3963 // interesting compared to the other one and update the weight
3964 // of the copies accordingly. However, this would only work if
3965 // we would gather all the copies first then coalesce, whereas
3966 // right now we interleave both actions.
3967 // For now, just consider the copies that are in the same block.
3968 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3969 continue;
3970 Register OtherSrcReg, OtherReg;
3971 unsigned OtherSrcSubReg = 0, OtherSubReg = 0;
3972 if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3973 OtherSubReg))
3974 return false;
3975 if (OtherReg == SrcReg)
3976 OtherReg = OtherSrcReg;
3977 // Check if OtherReg is a non-terminal.
3978 if (Register::isPhysicalRegister(OtherReg) ||
3979 isTerminalReg(OtherReg, MI, MRI))
3980 continue;
3981 // Check that OtherReg interfere with DstReg.
3982 if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3983 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3984 << '\n');
3985 return true;
3988 return false;
3991 void
3992 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3993 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3995 // Collect all copy-like instructions in MBB. Don't start coalescing anything
3996 // yet, it might invalidate the iterator.
3997 const unsigned PrevSize = WorkList.size();
3998 if (JoinGlobalCopies) {
3999 SmallVector<MachineInstr*, 2> LocalTerminals;
4000 SmallVector<MachineInstr*, 2> GlobalTerminals;
4001 // Coalesce copies bottom-up to coalesce local defs before local uses. They
4002 // are not inherently easier to resolve, but slightly preferable until we
4003 // have local live range splitting. In particular this is required by
4004 // cmp+jmp macro fusion.
4005 for (MachineInstr &MI : *MBB) {
4006 if (!MI.isCopyLike())
4007 continue;
4008 bool ApplyTerminalRule = applyTerminalRule(MI);
4009 if (isLocalCopy(&MI, LIS)) {
4010 if (ApplyTerminalRule)
4011 LocalTerminals.push_back(&MI);
4012 else
4013 LocalWorkList.push_back(&MI);
4014 } else {
4015 if (ApplyTerminalRule)
4016 GlobalTerminals.push_back(&MI);
4017 else
4018 WorkList.push_back(&MI);
4021 // Append the copies evicted by the terminal rule at the end of the list.
4022 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
4023 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
4025 else {
4026 SmallVector<MachineInstr*, 2> Terminals;
4027 for (MachineInstr &MII : *MBB)
4028 if (MII.isCopyLike()) {
4029 if (applyTerminalRule(MII))
4030 Terminals.push_back(&MII);
4031 else
4032 WorkList.push_back(&MII);
4034 // Append the copies evicted by the terminal rule at the end of the list.
4035 WorkList.append(Terminals.begin(), Terminals.end());
4037 // Try coalescing the collected copies immediately, and remove the nulls.
4038 // This prevents the WorkList from getting too large since most copies are
4039 // joinable on the first attempt.
4040 MutableArrayRef<MachineInstr*>
4041 CurrList(WorkList.begin() + PrevSize, WorkList.end());
4042 if (copyCoalesceWorkList(CurrList))
4043 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
4044 nullptr), WorkList.end());
4047 void RegisterCoalescer::coalesceLocals() {
4048 copyCoalesceWorkList(LocalWorkList);
4049 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
4050 if (LocalWorkList[j])
4051 WorkList.push_back(LocalWorkList[j]);
4053 LocalWorkList.clear();
4056 void RegisterCoalescer::joinAllIntervals() {
4057 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
4058 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
4060 std::vector<MBBPriorityInfo> MBBs;
4061 MBBs.reserve(MF->size());
4062 for (MachineBasicBlock &MBB : *MF) {
4063 MBBs.push_back(MBBPriorityInfo(&MBB, Loops->getLoopDepth(&MBB),
4064 JoinSplitEdges && isSplitEdge(&MBB)));
4066 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
4068 // Coalesce intervals in MBB priority order.
4069 unsigned CurrDepth = std::numeric_limits<unsigned>::max();
4070 for (MBBPriorityInfo &MBB : MBBs) {
4071 // Try coalescing the collected local copies for deeper loops.
4072 if (JoinGlobalCopies && MBB.Depth < CurrDepth) {
4073 coalesceLocals();
4074 CurrDepth = MBB.Depth;
4076 copyCoalesceInMBB(MBB.MBB);
4078 lateLiveIntervalUpdate();
4079 coalesceLocals();
4081 // Joining intervals can allow other intervals to be joined. Iteratively join
4082 // until we make no progress.
4083 while (copyCoalesceWorkList(WorkList))
4084 /* empty */ ;
4085 lateLiveIntervalUpdate();
4088 void RegisterCoalescer::releaseMemory() {
4089 ErasedInstrs.clear();
4090 WorkList.clear();
4091 DeadDefs.clear();
4092 InflateRegs.clear();
4093 LargeLIVisitCounter.clear();
4096 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
4097 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
4098 << "********** Function: " << fn.getName() << '\n');
4100 // Variables changed between a setjmp and a longjump can have undefined value
4101 // after the longjmp. This behaviour can be observed if such a variable is
4102 // spilled, so longjmp won't restore the value in the spill slot.
4103 // RegisterCoalescer should not run in functions with a setjmp to avoid
4104 // merging such undefined variables with predictable ones.
4106 // TODO: Could specifically disable coalescing registers live across setjmp
4107 // calls
4108 if (fn.exposesReturnsTwice()) {
4109 LLVM_DEBUG(
4110 dbgs() << "* Skipped as it exposes funcions that returns twice.\n");
4111 return false;
4114 MF = &fn;
4115 MRI = &fn.getRegInfo();
4116 const TargetSubtargetInfo &STI = fn.getSubtarget();
4117 TRI = STI.getRegisterInfo();
4118 TII = STI.getInstrInfo();
4119 LIS = &getAnalysis<LiveIntervals>();
4120 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4121 Loops = &getAnalysis<MachineLoopInfo>();
4122 if (EnableGlobalCopies == cl::BOU_UNSET)
4123 JoinGlobalCopies = STI.enableJoinGlobalCopies();
4124 else
4125 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
4127 // If there are PHIs tracked by debug-info, they will need updating during
4128 // coalescing. Build an index of those PHIs to ease updating.
4129 SlotIndexes *Slots = LIS->getSlotIndexes();
4130 for (const auto &DebugPHI : MF->DebugPHIPositions) {
4131 MachineBasicBlock *MBB = DebugPHI.second.MBB;
4132 Register Reg = DebugPHI.second.Reg;
4133 unsigned SubReg = DebugPHI.second.SubReg;
4134 SlotIndex SI = Slots->getMBBStartIdx(MBB);
4135 PHIValPos P = {SI, Reg, SubReg};
4136 PHIValToPos.insert(std::make_pair(DebugPHI.first, P));
4137 RegToPHIIdx[Reg].push_back(DebugPHI.first);
4140 // The MachineScheduler does not currently require JoinSplitEdges. This will
4141 // either be enabled unconditionally or replaced by a more general live range
4142 // splitting optimization.
4143 JoinSplitEdges = EnableJoinSplits;
4145 if (VerifyCoalescing)
4146 MF->verify(this, "Before register coalescing");
4148 DbgVRegToValues.clear();
4149 DbgMergedVRegNums.clear();
4150 buildVRegToDbgValueMap(fn);
4152 RegClassInfo.runOnMachineFunction(fn);
4154 // Join (coalesce) intervals if requested.
4155 if (EnableJoining)
4156 joinAllIntervals();
4158 // After deleting a lot of copies, register classes may be less constrained.
4159 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
4160 // DPR inflation.
4161 array_pod_sort(InflateRegs.begin(), InflateRegs.end());
4162 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
4163 InflateRegs.end());
4164 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
4165 << " regs.\n");
4166 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
4167 Register Reg = InflateRegs[i];
4168 if (MRI->reg_nodbg_empty(Reg))
4169 continue;
4170 if (MRI->recomputeRegClass(Reg)) {
4171 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
4172 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
4173 ++NumInflated;
4175 LiveInterval &LI = LIS->getInterval(Reg);
4176 if (LI.hasSubRanges()) {
4177 // If the inflated register class does not support subregisters anymore
4178 // remove the subranges.
4179 if (!MRI->shouldTrackSubRegLiveness(Reg)) {
4180 LI.clearSubRanges();
4181 } else {
4182 #ifndef NDEBUG
4183 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
4184 // If subranges are still supported, then the same subregs
4185 // should still be supported.
4186 for (LiveInterval::SubRange &S : LI.subranges()) {
4187 assert((S.LaneMask & ~MaxMask).none());
4189 #endif
4195 // After coalescing, update any PHIs that are being tracked by debug-info
4196 // with their new VReg locations.
4197 for (auto &p : MF->DebugPHIPositions) {
4198 auto it = PHIValToPos.find(p.first);
4199 assert(it != PHIValToPos.end());
4200 p.second.Reg = it->second.Reg;
4201 p.second.SubReg = it->second.SubReg;
4204 PHIValToPos.clear();
4205 RegToPHIIdx.clear();
4207 LLVM_DEBUG(dump());
4208 if (VerifyCoalescing)
4209 MF->verify(this, "After register coalescing");
4210 return true;
4213 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
4214 LIS->print(O, m);