1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
13 //===----------------------------------------------------------------------===//
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/LaneBitmask.h"
45 #include "llvm/MC/MCInstrDesc.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
63 #define DEBUG_TYPE "regalloc"
65 STATISTIC(numJoins
, "Number of interval joins performed");
66 STATISTIC(numCrossRCs
, "Number of cross class joins performed");
67 STATISTIC(numCommutes
, "Number of instruction commuting performed");
68 STATISTIC(numExtends
, "Number of copies extended");
69 STATISTIC(NumReMats
, "Number of instructions re-materialized");
70 STATISTIC(NumInflated
, "Number of register classes inflated");
71 STATISTIC(NumLaneConflicts
, "Number of dead lane conflicts tested");
72 STATISTIC(NumLaneResolves
, "Number of dead lane conflicts resolved");
73 STATISTIC(NumShrinkToUses
, "Number of shrinkToUses called");
75 static cl::opt
<bool> EnableJoining("join-liveintervals",
76 cl::desc("Coalesce copies (default=true)"),
77 cl::init(true), cl::Hidden
);
79 static cl::opt
<bool> UseTerminalRule("terminal-rule",
80 cl::desc("Apply the terminal rule"),
81 cl::init(false), cl::Hidden
);
83 /// Temporary flag to test critical edge unsplitting.
85 EnableJoinSplits("join-splitedges",
86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden
);
88 /// Temporary flag to test global copy optimization.
89 static cl::opt
<cl::boolOrDefault
>
90 EnableGlobalCopies("join-globalcopies",
91 cl::desc("Coalesce copies that span blocks (default=subtarget)"),
92 cl::init(cl::BOU_UNSET
), cl::Hidden
);
95 VerifyCoalescing("verify-coalescing",
96 cl::desc("Verify machine instrs before and after register coalescing"),
99 static cl::opt
<unsigned> LateRematUpdateThreshold(
100 "late-remat-update-threshold", cl::Hidden
,
101 cl::desc("During rematerialization for a copy, if the def instruction has "
102 "many other copy uses to be rematerialized, delay the multiple "
103 "separate live interval update work and do them all at once after "
104 "all those rematerialization are done. It will save a lot of "
108 static cl::opt
<unsigned> LargeIntervalSizeThreshold(
109 "large-interval-size-threshold", cl::Hidden
,
110 cl::desc("If the valnos size of an interval is larger than the threshold, "
111 "it is regarded as a large interval. "),
114 static cl::opt
<unsigned> LargeIntervalFreqThreshold(
115 "large-interval-freq-threshold", cl::Hidden
,
116 cl::desc("For a large interval, if it is coalesed with other live "
117 "intervals many times more than the threshold, stop its "
118 "coalescing to control the compile time. "),
125 class RegisterCoalescer
: public MachineFunctionPass
,
126 private LiveRangeEdit::Delegate
{
127 MachineFunction
* MF
= nullptr;
128 MachineRegisterInfo
* MRI
= nullptr;
129 const TargetRegisterInfo
* TRI
= nullptr;
130 const TargetInstrInfo
* TII
= nullptr;
131 LiveIntervals
*LIS
= nullptr;
132 const MachineLoopInfo
* Loops
= nullptr;
133 AliasAnalysis
*AA
= nullptr;
134 RegisterClassInfo RegClassInfo
;
136 /// Position and VReg of a PHI instruction during coalescing.
138 SlotIndex SI
; ///< Slot where this PHI occurs.
139 Register Reg
; ///< VReg the PHI occurs in.
140 unsigned SubReg
; ///< Qualifying subregister for Reg.
143 /// Map from debug instruction number to PHI position during coalescing.
144 DenseMap
<unsigned, PHIValPos
> PHIValToPos
;
145 /// Index of, for each VReg, which debug instruction numbers and
146 /// corresponding PHIs are sensitive to coalescing. Each VReg may have
147 /// multiple PHI defs, at different positions.
148 DenseMap
<Register
, SmallVector
<unsigned, 2>> RegToPHIIdx
;
150 /// Debug variable location tracking -- for each VReg, maintain an
151 /// ordered-by-slot-index set of DBG_VALUEs, to help quick
152 /// identification of whether coalescing may change location validity.
153 using DbgValueLoc
= std::pair
<SlotIndex
, MachineInstr
*>;
154 DenseMap
<Register
, std::vector
<DbgValueLoc
>> DbgVRegToValues
;
156 /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached.
157 /// To avoid repeatedly merging sets of DbgValueLocs, instead record
158 /// which vregs have been coalesced, and where to. This map is from
159 /// vreg => {set of vregs merged in}.
160 DenseMap
<Register
, SmallVector
<Register
, 4>> DbgMergedVRegNums
;
162 /// A LaneMask to remember on which subregister live ranges we need to call
163 /// shrinkToUses() later.
164 LaneBitmask ShrinkMask
;
166 /// True if the main range of the currently coalesced intervals should be
167 /// checked for smaller live intervals.
168 bool ShrinkMainRange
= false;
170 /// True if the coalescer should aggressively coalesce global copies
171 /// in favor of keeping local copies.
172 bool JoinGlobalCopies
= false;
174 /// True if the coalescer should aggressively coalesce fall-thru
175 /// blocks exclusively containing copies.
176 bool JoinSplitEdges
= false;
178 /// Copy instructions yet to be coalesced.
179 SmallVector
<MachineInstr
*, 8> WorkList
;
180 SmallVector
<MachineInstr
*, 8> LocalWorkList
;
182 /// Set of instruction pointers that have been erased, and
183 /// that may be present in WorkList.
184 SmallPtrSet
<MachineInstr
*, 8> ErasedInstrs
;
186 /// Dead instructions that are about to be deleted.
187 SmallVector
<MachineInstr
*, 8> DeadDefs
;
189 /// Virtual registers to be considered for register class inflation.
190 SmallVector
<Register
, 8> InflateRegs
;
192 /// The collection of live intervals which should have been updated
193 /// immediately after rematerialiation but delayed until
194 /// lateLiveIntervalUpdate is called.
195 DenseSet
<Register
> ToBeUpdated
;
197 /// Record how many times the large live interval with many valnos
198 /// has been tried to join with other live interval.
199 DenseMap
<Register
, unsigned long> LargeLIVisitCounter
;
201 /// Recursively eliminate dead defs in DeadDefs.
202 void eliminateDeadDefs();
204 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
205 /// OrigIdx are also available with the same value at UseIdx.
206 bool allUsesAvailableAt(const MachineInstr
*OrigMI
, SlotIndex OrigIdx
,
209 /// LiveRangeEdit callback for eliminateDeadDefs().
210 void LRE_WillEraseInstruction(MachineInstr
*MI
) override
;
212 /// Coalesce the LocalWorkList.
213 void coalesceLocals();
215 /// Join compatible live intervals
216 void joinAllIntervals();
218 /// Coalesce copies in the specified MBB, putting
219 /// copies that cannot yet be coalesced into WorkList.
220 void copyCoalesceInMBB(MachineBasicBlock
*MBB
);
222 /// Tries to coalesce all copies in CurrList. Returns true if any progress
224 bool copyCoalesceWorkList(MutableArrayRef
<MachineInstr
*> CurrList
);
226 /// If one def has many copy like uses, and those copy uses are all
227 /// rematerialized, the live interval update needed for those
228 /// rematerializations will be delayed and done all at once instead
229 /// of being done multiple times. This is to save compile cost because
230 /// live interval update is costly.
231 void lateLiveIntervalUpdate();
233 /// Check if the incoming value defined by a COPY at \p SLRQ in the subrange
234 /// has no value defined in the predecessors. If the incoming value is the
235 /// same as defined by the copy itself, the value is considered undefined.
236 bool copyValueUndefInPredecessors(LiveRange
&S
,
237 const MachineBasicBlock
*MBB
,
238 LiveQueryResult SLRQ
);
240 /// Set necessary undef flags on subregister uses after pruning out undef
241 /// lane segments from the subrange.
242 void setUndefOnPrunedSubRegUses(LiveInterval
&LI
, Register Reg
,
243 LaneBitmask PrunedLanes
);
245 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
246 /// src/dst of the copy instruction CopyMI. This returns true if the copy
247 /// was successfully coalesced away. If it is not currently possible to
248 /// coalesce this interval, but it may be possible if other things get
249 /// coalesced, then it returns true by reference in 'Again'.
250 bool joinCopy(MachineInstr
*CopyMI
, bool &Again
);
252 /// Attempt to join these two intervals. On failure, this
253 /// returns false. The output "SrcInt" will not have been modified, so we
254 /// can use this information below to update aliases.
255 bool joinIntervals(CoalescerPair
&CP
);
257 /// Attempt joining two virtual registers. Return true on success.
258 bool joinVirtRegs(CoalescerPair
&CP
);
260 /// If a live interval has many valnos and is coalesced with other
261 /// live intervals many times, we regard such live interval as having
262 /// high compile time cost.
263 bool isHighCostLiveInterval(LiveInterval
&LI
);
265 /// Attempt joining with a reserved physreg.
266 bool joinReservedPhysReg(CoalescerPair
&CP
);
268 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
269 /// Subranges in @p LI which only partially interfere with the desired
270 /// LaneMask are split as necessary. @p LaneMask are the lanes that
271 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
272 /// lanemasks already adjusted to the coalesced register.
273 void mergeSubRangeInto(LiveInterval
&LI
, const LiveRange
&ToMerge
,
274 LaneBitmask LaneMask
, CoalescerPair
&CP
,
277 /// Join the liveranges of two subregisters. Joins @p RRange into
278 /// @p LRange, @p RRange may be invalid afterwards.
279 void joinSubRegRanges(LiveRange
&LRange
, LiveRange
&RRange
,
280 LaneBitmask LaneMask
, const CoalescerPair
&CP
);
282 /// We found a non-trivially-coalescable copy. If the source value number is
283 /// defined by a copy from the destination reg see if we can merge these two
284 /// destination reg valno# into a single value number, eliminating a copy.
285 /// This returns true if an interval was modified.
286 bool adjustCopiesBackFrom(const CoalescerPair
&CP
, MachineInstr
*CopyMI
);
288 /// Return true if there are definitions of IntB
289 /// other than BValNo val# that can reach uses of AValno val# of IntA.
290 bool hasOtherReachingDefs(LiveInterval
&IntA
, LiveInterval
&IntB
,
291 VNInfo
*AValNo
, VNInfo
*BValNo
);
293 /// We found a non-trivially-coalescable copy.
294 /// If the source value number is defined by a commutable instruction and
295 /// its other operand is coalesced to the copy dest register, see if we
296 /// can transform the copy into a noop by commuting the definition.
297 /// This returns a pair of two flags:
298 /// - the first element is true if an interval was modified,
299 /// - the second element is true if the destination interval needs
300 /// to be shrunk after deleting the copy.
301 std::pair
<bool,bool> removeCopyByCommutingDef(const CoalescerPair
&CP
,
302 MachineInstr
*CopyMI
);
304 /// We found a copy which can be moved to its less frequent predecessor.
305 bool removePartialRedundancy(const CoalescerPair
&CP
, MachineInstr
&CopyMI
);
307 /// If the source of a copy is defined by a
308 /// trivial computation, replace the copy by rematerialize the definition.
309 bool reMaterializeTrivialDef(const CoalescerPair
&CP
, MachineInstr
*CopyMI
,
312 /// Return true if a copy involving a physreg should be joined.
313 bool canJoinPhys(const CoalescerPair
&CP
);
315 /// Replace all defs and uses of SrcReg to DstReg and update the subregister
316 /// number if it is not zero. If DstReg is a physical register and the
317 /// existing subregister number of the def / use being updated is not zero,
318 /// make sure to set it to the correct physical subregister.
319 void updateRegDefsUses(Register SrcReg
, Register DstReg
, unsigned SubIdx
);
321 /// If the given machine operand reads only undefined lanes add an undef
323 /// This can happen when undef uses were previously concealed by a copy
324 /// which we coalesced. Example:
325 /// %0:sub0<def,read-undef> = ...
326 /// %1 = COPY %0 <-- Coalescing COPY reveals undef
327 /// = use %1:sub1 <-- hidden undef use
328 void addUndefFlag(const LiveInterval
&Int
, SlotIndex UseIdx
,
329 MachineOperand
&MO
, unsigned SubRegIdx
);
331 /// Handle copies of undef values. If the undef value is an incoming
332 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
333 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
334 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
335 MachineInstr
*eliminateUndefCopy(MachineInstr
*CopyMI
);
337 /// Check whether or not we should apply the terminal rule on the
338 /// destination (Dst) of \p Copy.
339 /// When the terminal rule applies, Copy is not profitable to
341 /// Dst is terminal if it has exactly one affinity (Dst, Src) and
342 /// at least one interference (Dst, Dst2). If Dst is terminal, the
343 /// terminal rule consists in checking that at least one of
344 /// interfering node, say Dst2, has an affinity of equal or greater
346 /// In that case, Dst2 and Dst will not be able to be both coalesced
347 /// with Src. Since Dst2 exposes more coalescing opportunities than
348 /// Dst, we can drop \p Copy.
349 bool applyTerminalRule(const MachineInstr
&Copy
) const;
351 /// Wrapper method for \see LiveIntervals::shrinkToUses.
352 /// This method does the proper fixing of the live-ranges when the afore
353 /// mentioned method returns true.
354 void shrinkToUses(LiveInterval
*LI
,
355 SmallVectorImpl
<MachineInstr
* > *Dead
= nullptr) {
357 if (LIS
->shrinkToUses(LI
, Dead
)) {
358 /// Check whether or not \p LI is composed by multiple connected
359 /// components and if that is the case, fix that.
360 SmallVector
<LiveInterval
*, 8> SplitLIs
;
361 LIS
->splitSeparateComponents(*LI
, SplitLIs
);
365 /// Wrapper Method to do all the necessary work when an Instruction is
367 /// Optimizations should use this to make sure that deleted instructions
368 /// are always accounted for.
369 void deleteInstr(MachineInstr
* MI
) {
370 ErasedInstrs
.insert(MI
);
371 LIS
->RemoveMachineInstrFromMaps(*MI
);
372 MI
->eraseFromParent();
375 /// Walk over function and initialize the DbgVRegToValues map.
376 void buildVRegToDbgValueMap(MachineFunction
&MF
);
378 /// Test whether, after merging, any DBG_VALUEs would refer to a
379 /// different value number than before merging, and whether this can
380 /// be resolved. If not, mark the DBG_VALUE as being undef.
381 void checkMergingChangesDbgValues(CoalescerPair
&CP
, LiveRange
&LHS
,
382 JoinVals
&LHSVals
, LiveRange
&RHS
,
385 void checkMergingChangesDbgValuesImpl(Register Reg
, LiveRange
&OtherRange
,
386 LiveRange
&RegRange
, JoinVals
&Vals2
);
389 static char ID
; ///< Class identification, replacement for typeinfo
391 RegisterCoalescer() : MachineFunctionPass(ID
) {
392 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
395 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
397 void releaseMemory() override
;
399 /// This is the pass entry point.
400 bool runOnMachineFunction(MachineFunction
&) override
;
402 /// Implement the dump method.
403 void print(raw_ostream
&O
, const Module
* = nullptr) const override
;
406 } // end anonymous namespace
408 char RegisterCoalescer::ID
= 0;
410 char &llvm::RegisterCoalescerID
= RegisterCoalescer::ID
;
412 INITIALIZE_PASS_BEGIN(RegisterCoalescer
, "simple-register-coalescing",
413 "Simple Register Coalescing", false, false)
414 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
415 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
416 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
417 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
418 INITIALIZE_PASS_END(RegisterCoalescer
, "simple-register-coalescing",
419 "Simple Register Coalescing", false, false)
421 LLVM_NODISCARD
static bool isMoveInstr(const TargetRegisterInfo
&tri
,
422 const MachineInstr
*MI
, Register
&Src
,
423 Register
&Dst
, unsigned &SrcSub
,
426 Dst
= MI
->getOperand(0).getReg();
427 DstSub
= MI
->getOperand(0).getSubReg();
428 Src
= MI
->getOperand(1).getReg();
429 SrcSub
= MI
->getOperand(1).getSubReg();
430 } else if (MI
->isSubregToReg()) {
431 Dst
= MI
->getOperand(0).getReg();
432 DstSub
= tri
.composeSubRegIndices(MI
->getOperand(0).getSubReg(),
433 MI
->getOperand(3).getImm());
434 Src
= MI
->getOperand(2).getReg();
435 SrcSub
= MI
->getOperand(2).getSubReg();
441 /// Return true if this block should be vacated by the coalescer to eliminate
442 /// branches. The important cases to handle in the coalescer are critical edges
443 /// split during phi elimination which contain only copies. Simple blocks that
444 /// contain non-branches should also be vacated, but this can be handled by an
445 /// earlier pass similar to early if-conversion.
446 static bool isSplitEdge(const MachineBasicBlock
*MBB
) {
447 if (MBB
->pred_size() != 1 || MBB
->succ_size() != 1)
450 for (const auto &MI
: *MBB
) {
451 if (!MI
.isCopyLike() && !MI
.isUnconditionalBranch())
457 bool CoalescerPair::setRegisters(const MachineInstr
*MI
) {
458 SrcReg
= DstReg
= Register();
461 Flipped
= CrossClass
= false;
464 unsigned SrcSub
= 0, DstSub
= 0;
465 if (!isMoveInstr(TRI
, MI
, Src
, Dst
, SrcSub
, DstSub
))
467 Partial
= SrcSub
|| DstSub
;
469 // If one register is a physreg, it must be Dst.
470 if (Register::isPhysicalRegister(Src
)) {
471 if (Register::isPhysicalRegister(Dst
))
474 std::swap(SrcSub
, DstSub
);
478 const MachineRegisterInfo
&MRI
= MI
->getMF()->getRegInfo();
480 if (Register::isPhysicalRegister(Dst
)) {
481 // Eliminate DstSub on a physreg.
483 Dst
= TRI
.getSubReg(Dst
, DstSub
);
484 if (!Dst
) return false;
488 // Eliminate SrcSub by picking a corresponding Dst superregister.
490 Dst
= TRI
.getMatchingSuperReg(Dst
, SrcSub
, MRI
.getRegClass(Src
));
491 if (!Dst
) return false;
492 } else if (!MRI
.getRegClass(Src
)->contains(Dst
)) {
496 // Both registers are virtual.
497 const TargetRegisterClass
*SrcRC
= MRI
.getRegClass(Src
);
498 const TargetRegisterClass
*DstRC
= MRI
.getRegClass(Dst
);
500 // Both registers have subreg indices.
501 if (SrcSub
&& DstSub
) {
502 // Copies between different sub-registers are never coalescable.
503 if (Src
== Dst
&& SrcSub
!= DstSub
)
506 NewRC
= TRI
.getCommonSuperRegClass(SrcRC
, SrcSub
, DstRC
, DstSub
,
511 // SrcReg will be merged with a sub-register of DstReg.
513 NewRC
= TRI
.getMatchingSuperRegClass(DstRC
, SrcRC
, DstSub
);
515 // DstReg will be merged with a sub-register of SrcReg.
517 NewRC
= TRI
.getMatchingSuperRegClass(SrcRC
, DstRC
, SrcSub
);
519 // This is a straight copy without sub-registers.
520 NewRC
= TRI
.getCommonSubClass(DstRC
, SrcRC
);
523 // The combined constraint may be impossible to satisfy.
527 // Prefer SrcReg to be a sub-register of DstReg.
528 // FIXME: Coalescer should support subregs symmetrically.
529 if (DstIdx
&& !SrcIdx
) {
531 std::swap(SrcIdx
, DstIdx
);
535 CrossClass
= NewRC
!= DstRC
|| NewRC
!= SrcRC
;
537 // Check our invariants
538 assert(Register::isVirtualRegister(Src
) && "Src must be virtual");
539 assert(!(Register::isPhysicalRegister(Dst
) && DstSub
) &&
540 "Cannot have a physical SubIdx");
546 bool CoalescerPair::flip() {
547 if (Register::isPhysicalRegister(DstReg
))
549 std::swap(SrcReg
, DstReg
);
550 std::swap(SrcIdx
, DstIdx
);
555 bool CoalescerPair::isCoalescable(const MachineInstr
*MI
) const {
559 unsigned SrcSub
= 0, DstSub
= 0;
560 if (!isMoveInstr(TRI
, MI
, Src
, Dst
, SrcSub
, DstSub
))
563 // Find the virtual register that is SrcReg.
566 std::swap(SrcSub
, DstSub
);
567 } else if (Src
!= SrcReg
) {
571 // Now check that Dst matches DstReg.
572 if (DstReg
.isPhysical()) {
573 if (!Dst
.isPhysical())
575 assert(!DstIdx
&& !SrcIdx
&& "Inconsistent CoalescerPair state.");
576 // DstSub could be set for a physreg from INSERT_SUBREG.
578 Dst
= TRI
.getSubReg(Dst
, DstSub
);
581 return DstReg
== Dst
;
582 // This is a partial register copy. Check that the parts match.
583 return Register(TRI
.getSubReg(DstReg
, SrcSub
)) == Dst
;
585 // DstReg is virtual.
588 // Registers match, do the subregisters line up?
589 return TRI
.composeSubRegIndices(SrcIdx
, SrcSub
) ==
590 TRI
.composeSubRegIndices(DstIdx
, DstSub
);
594 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage
&AU
) const {
595 AU
.setPreservesCFG();
596 AU
.addRequired
<AAResultsWrapperPass
>();
597 AU
.addRequired
<LiveIntervals
>();
598 AU
.addPreserved
<LiveIntervals
>();
599 AU
.addPreserved
<SlotIndexes
>();
600 AU
.addRequired
<MachineLoopInfo
>();
601 AU
.addPreserved
<MachineLoopInfo
>();
602 AU
.addPreservedID(MachineDominatorsID
);
603 MachineFunctionPass::getAnalysisUsage(AU
);
606 void RegisterCoalescer::eliminateDeadDefs() {
607 SmallVector
<Register
, 8> NewRegs
;
608 LiveRangeEdit(nullptr, NewRegs
, *MF
, *LIS
,
609 nullptr, this).eliminateDeadDefs(DeadDefs
);
612 bool RegisterCoalescer::allUsesAvailableAt(const MachineInstr
*OrigMI
,
615 SmallVector
<Register
, 8> NewRegs
;
616 return LiveRangeEdit(nullptr, NewRegs
, *MF
, *LIS
, nullptr, this)
617 .allUsesAvailableAt(OrigMI
, OrigIdx
, UseIdx
);
620 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr
*MI
) {
621 // MI may be in WorkList. Make sure we don't visit it.
622 ErasedInstrs
.insert(MI
);
625 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair
&CP
,
626 MachineInstr
*CopyMI
) {
627 assert(!CP
.isPartial() && "This doesn't work for partial copies.");
628 assert(!CP
.isPhys() && "This doesn't work for physreg copies.");
631 LIS
->getInterval(CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg());
633 LIS
->getInterval(CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg());
634 SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
).getRegSlot();
636 // We have a non-trivially-coalescable copy with IntA being the source and
637 // IntB being the dest, thus this defines a value number in IntB. If the
638 // source value number (in IntA) is defined by a copy from B, see if we can
639 // merge these two pieces of B into a single value number, eliminating a copy.
644 // B1 = A3 <- this copy
646 // In this case, B0 can be extended to where the B1 copy lives, allowing the
647 // B1 value number to be replaced with B0 (which simplifies the B
650 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
651 // the example above.
652 LiveInterval::iterator BS
= IntB
.FindSegmentContaining(CopyIdx
);
653 if (BS
== IntB
.end()) return false;
654 VNInfo
*BValNo
= BS
->valno
;
656 // Get the location that B is defined at. Two options: either this value has
657 // an unknown definition point or it is defined at CopyIdx. If unknown, we
659 if (BValNo
->def
!= CopyIdx
) return false;
661 // AValNo is the value number in A that defines the copy, A3 in the example.
662 SlotIndex CopyUseIdx
= CopyIdx
.getRegSlot(true);
663 LiveInterval::iterator AS
= IntA
.FindSegmentContaining(CopyUseIdx
);
664 // The live segment might not exist after fun with physreg coalescing.
665 if (AS
== IntA
.end()) return false;
666 VNInfo
*AValNo
= AS
->valno
;
668 // If AValNo is defined as a copy from IntB, we can potentially process this.
669 // Get the instruction that defines this value number.
670 MachineInstr
*ACopyMI
= LIS
->getInstructionFromIndex(AValNo
->def
);
671 // Don't allow any partial copies, even if isCoalescable() allows them.
672 if (!CP
.isCoalescable(ACopyMI
) || !ACopyMI
->isFullCopy())
675 // Get the Segment in IntB that this value number starts with.
676 LiveInterval::iterator ValS
=
677 IntB
.FindSegmentContaining(AValNo
->def
.getPrevSlot());
678 if (ValS
== IntB
.end())
681 // Make sure that the end of the live segment is inside the same block as
683 MachineInstr
*ValSEndInst
=
684 LIS
->getInstructionFromIndex(ValS
->end
.getPrevSlot());
685 if (!ValSEndInst
|| ValSEndInst
->getParent() != CopyMI
->getParent())
688 // Okay, we now know that ValS ends in the same block that the CopyMI
689 // live-range starts. If there are no intervening live segments between them
690 // in IntB, we can merge them.
691 if (ValS
+1 != BS
) return false;
693 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB
.reg(), TRI
));
695 SlotIndex FillerStart
= ValS
->end
, FillerEnd
= BS
->start
;
696 // We are about to delete CopyMI, so need to remove it as the 'instruction
697 // that defines this value #'. Update the valnum with the new defining
699 BValNo
->def
= FillerStart
;
701 // Okay, we can merge them. We need to insert a new liverange:
702 // [ValS.end, BS.begin) of either value number, then we merge the
703 // two value numbers.
704 IntB
.addSegment(LiveInterval::Segment(FillerStart
, FillerEnd
, BValNo
));
706 // Okay, merge "B1" into the same value number as "B0".
707 if (BValNo
!= ValS
->valno
)
708 IntB
.MergeValueNumberInto(BValNo
, ValS
->valno
);
710 // Do the same for the subregister segments.
711 for (LiveInterval::SubRange
&S
: IntB
.subranges()) {
712 // Check for SubRange Segments of the form [1234r,1234d:0) which can be
713 // removed to prevent creating bogus SubRange Segments.
714 LiveInterval::iterator SS
= S
.FindSegmentContaining(CopyIdx
);
715 if (SS
!= S
.end() && SlotIndex::isSameInstr(SS
->start
, SS
->end
)) {
716 S
.removeSegment(*SS
, true);
719 // The subrange may have ended before FillerStart. If so, extend it.
720 if (!S
.getVNInfoAt(FillerStart
)) {
722 LIS
->getMBBStartIdx(LIS
->getMBBFromIndex(FillerStart
));
723 S
.extendInBlock(BBStart
, FillerStart
);
725 VNInfo
*SubBValNo
= S
.getVNInfoAt(CopyIdx
);
726 S
.addSegment(LiveInterval::Segment(FillerStart
, FillerEnd
, SubBValNo
));
727 VNInfo
*SubValSNo
= S
.getVNInfoAt(AValNo
->def
.getPrevSlot());
728 if (SubBValNo
!= SubValSNo
)
729 S
.MergeValueNumberInto(SubBValNo
, SubValSNo
);
732 LLVM_DEBUG(dbgs() << " result = " << IntB
<< '\n');
734 // If the source instruction was killing the source register before the
735 // merge, unset the isKill marker given the live range has been extended.
736 int UIdx
= ValSEndInst
->findRegisterUseOperandIdx(IntB
.reg(), true);
738 ValSEndInst
->getOperand(UIdx
).setIsKill(false);
742 CopyMI
->substituteRegister(IntA
.reg(), IntB
.reg(), 0, *TRI
);
743 // If the copy instruction was killing the destination register or any
744 // subrange before the merge trim the live range.
745 bool RecomputeLiveRange
= AS
->end
== CopyIdx
;
746 if (!RecomputeLiveRange
) {
747 for (LiveInterval::SubRange
&S
: IntA
.subranges()) {
748 LiveInterval::iterator SS
= S
.FindSegmentContaining(CopyUseIdx
);
749 if (SS
!= S
.end() && SS
->end
== CopyIdx
) {
750 RecomputeLiveRange
= true;
755 if (RecomputeLiveRange
)
762 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval
&IntA
,
766 // If AValNo has PHI kills, conservatively assume that IntB defs can reach
768 if (LIS
->hasPHIKill(IntA
, AValNo
))
771 for (LiveRange::Segment
&ASeg
: IntA
.segments
) {
772 if (ASeg
.valno
!= AValNo
) continue;
773 LiveInterval::iterator BI
= llvm::upper_bound(IntB
, ASeg
.start
);
774 if (BI
!= IntB
.begin())
776 for (; BI
!= IntB
.end() && ASeg
.end
>= BI
->start
; ++BI
) {
777 if (BI
->valno
== BValNo
)
779 if (BI
->start
<= ASeg
.start
&& BI
->end
> ASeg
.start
)
781 if (BI
->start
> ASeg
.start
&& BI
->start
< ASeg
.end
)
788 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
789 /// range @Dst and use value number @p DstValNo there.
790 static std::pair
<bool,bool>
791 addSegmentsWithValNo(LiveRange
&Dst
, VNInfo
*DstValNo
, const LiveRange
&Src
,
792 const VNInfo
*SrcValNo
) {
793 bool Changed
= false;
794 bool MergedWithDead
= false;
795 for (const LiveRange::Segment
&S
: Src
.segments
) {
796 if (S
.valno
!= SrcValNo
)
798 // This is adding a segment from Src that ends in a copy that is about
799 // to be removed. This segment is going to be merged with a pre-existing
800 // segment in Dst. This works, except in cases when the corresponding
801 // segment in Dst is dead. For example: adding [192r,208r:1) from Src
802 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
803 // Recognized such cases, so that the segments can be shrunk.
804 LiveRange::Segment Added
= LiveRange::Segment(S
.start
, S
.end
, DstValNo
);
805 LiveRange::Segment
&Merged
= *Dst
.addSegment(Added
);
806 if (Merged
.end
.isDead())
807 MergedWithDead
= true;
810 return std::make_pair(Changed
, MergedWithDead
);
814 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair
&CP
,
815 MachineInstr
*CopyMI
) {
816 assert(!CP
.isPhys());
819 LIS
->getInterval(CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg());
821 LIS
->getInterval(CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg());
823 // We found a non-trivially-coalescable copy with IntA being the source and
824 // IntB being the dest, thus this defines a value number in IntB. If the
825 // source value number (in IntA) is defined by a commutable instruction and
826 // its other operand is coalesced to the copy dest register, see if we can
827 // transform the copy into a noop by commuting the definition. For example,
829 // A3 = op A2 killed B0
831 // B1 = A3 <- this copy
833 // = op A3 <- more uses
837 // B2 = op B0 killed A2
839 // B1 = B2 <- now an identity copy
841 // = op B2 <- more uses
843 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
844 // the example above.
845 SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
).getRegSlot();
846 VNInfo
*BValNo
= IntB
.getVNInfoAt(CopyIdx
);
847 assert(BValNo
!= nullptr && BValNo
->def
== CopyIdx
);
849 // AValNo is the value number in A that defines the copy, A3 in the example.
850 VNInfo
*AValNo
= IntA
.getVNInfoAt(CopyIdx
.getRegSlot(true));
851 assert(AValNo
&& !AValNo
->isUnused() && "COPY source not live");
852 if (AValNo
->isPHIDef())
853 return { false, false };
854 MachineInstr
*DefMI
= LIS
->getInstructionFromIndex(AValNo
->def
);
856 return { false, false };
857 if (!DefMI
->isCommutable())
858 return { false, false };
859 // If DefMI is a two-address instruction then commuting it will change the
860 // destination register.
861 int DefIdx
= DefMI
->findRegisterDefOperandIdx(IntA
.reg());
862 assert(DefIdx
!= -1);
864 if (!DefMI
->isRegTiedToUseOperand(DefIdx
, &UseOpIdx
))
865 return { false, false };
867 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
868 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
869 // passed to the method. That _other_ operand is chosen by
870 // the findCommutedOpIndices() method.
872 // That is obviously an area for improvement in case of instructions having
873 // more than 2 operands. For example, if some instruction has 3 commutable
874 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
875 // op#2<->op#3) of commute transformation should be considered/tried here.
876 unsigned NewDstIdx
= TargetInstrInfo::CommuteAnyOperandIndex
;
877 if (!TII
->findCommutedOpIndices(*DefMI
, UseOpIdx
, NewDstIdx
))
878 return { false, false };
880 MachineOperand
&NewDstMO
= DefMI
->getOperand(NewDstIdx
);
881 Register NewReg
= NewDstMO
.getReg();
882 if (NewReg
!= IntB
.reg() || !IntB
.Query(AValNo
->def
).isKill())
883 return { false, false };
885 // Make sure there are no other definitions of IntB that would reach the
886 // uses which the new definition can reach.
887 if (hasOtherReachingDefs(IntA
, IntB
, AValNo
, BValNo
))
888 return { false, false };
890 // If some of the uses of IntA.reg is already coalesced away, return false.
891 // It's not possible to determine whether it's safe to perform the coalescing.
892 for (MachineOperand
&MO
: MRI
->use_nodbg_operands(IntA
.reg())) {
893 MachineInstr
*UseMI
= MO
.getParent();
894 unsigned OpNo
= &MO
- &UseMI
->getOperand(0);
895 SlotIndex UseIdx
= LIS
->getInstructionIndex(*UseMI
);
896 LiveInterval::iterator US
= IntA
.FindSegmentContaining(UseIdx
);
897 if (US
== IntA
.end() || US
->valno
!= AValNo
)
899 // If this use is tied to a def, we can't rewrite the register.
900 if (UseMI
->isRegTiedToDefOperand(OpNo
))
901 return { false, false };
904 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo
->def
<< '\t'
907 // At this point we have decided that it is legal to do this
908 // transformation. Start by commuting the instruction.
909 MachineBasicBlock
*MBB
= DefMI
->getParent();
910 MachineInstr
*NewMI
=
911 TII
->commuteInstruction(*DefMI
, false, UseOpIdx
, NewDstIdx
);
913 return { false, false };
914 if (Register::isVirtualRegister(IntA
.reg()) &&
915 Register::isVirtualRegister(IntB
.reg()) &&
916 !MRI
->constrainRegClass(IntB
.reg(), MRI
->getRegClass(IntA
.reg())))
917 return { false, false };
918 if (NewMI
!= DefMI
) {
919 LIS
->ReplaceMachineInstrInMaps(*DefMI
, *NewMI
);
920 MachineBasicBlock::iterator Pos
= DefMI
;
921 MBB
->insert(Pos
, NewMI
);
925 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
934 // Update uses of IntA of the specific Val# with IntB.
935 for (MachineOperand
&UseMO
:
936 llvm::make_early_inc_range(MRI
->use_operands(IntA
.reg()))) {
939 MachineInstr
*UseMI
= UseMO
.getParent();
940 if (UseMI
->isDebugInstr()) {
941 // FIXME These don't have an instruction index. Not clear we have enough
942 // info to decide whether to do this replacement or not. For now do it.
943 UseMO
.setReg(NewReg
);
946 SlotIndex UseIdx
= LIS
->getInstructionIndex(*UseMI
).getRegSlot(true);
947 LiveInterval::iterator US
= IntA
.FindSegmentContaining(UseIdx
);
948 assert(US
!= IntA
.end() && "Use must be live");
949 if (US
->valno
!= AValNo
)
951 // Kill flags are no longer accurate. They are recomputed after RA.
952 UseMO
.setIsKill(false);
953 if (Register::isPhysicalRegister(NewReg
))
954 UseMO
.substPhysReg(NewReg
, *TRI
);
956 UseMO
.setReg(NewReg
);
959 if (!UseMI
->isCopy())
961 if (UseMI
->getOperand(0).getReg() != IntB
.reg() ||
962 UseMI
->getOperand(0).getSubReg())
965 // This copy will become a noop. If it's defining a new val#, merge it into
967 SlotIndex DefIdx
= UseIdx
.getRegSlot();
968 VNInfo
*DVNI
= IntB
.getVNInfoAt(DefIdx
);
971 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx
<< '\t' << *UseMI
);
972 assert(DVNI
->def
== DefIdx
);
973 BValNo
= IntB
.MergeValueNumberInto(DVNI
, BValNo
);
974 for (LiveInterval::SubRange
&S
: IntB
.subranges()) {
975 VNInfo
*SubDVNI
= S
.getVNInfoAt(DefIdx
);
978 VNInfo
*SubBValNo
= S
.getVNInfoAt(CopyIdx
);
979 assert(SubBValNo
->def
== CopyIdx
);
980 S
.MergeValueNumberInto(SubDVNI
, SubBValNo
);
986 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
988 bool ShrinkB
= false;
989 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
990 if (IntA
.hasSubRanges() || IntB
.hasSubRanges()) {
991 if (!IntA
.hasSubRanges()) {
992 LaneBitmask Mask
= MRI
->getMaxLaneMaskForVReg(IntA
.reg());
993 IntA
.createSubRangeFrom(Allocator
, Mask
, IntA
);
994 } else if (!IntB
.hasSubRanges()) {
995 LaneBitmask Mask
= MRI
->getMaxLaneMaskForVReg(IntB
.reg());
996 IntB
.createSubRangeFrom(Allocator
, Mask
, IntB
);
998 SlotIndex AIdx
= CopyIdx
.getRegSlot(true);
1000 const SlotIndexes
&Indexes
= *LIS
->getSlotIndexes();
1001 for (LiveInterval::SubRange
&SA
: IntA
.subranges()) {
1002 VNInfo
*ASubValNo
= SA
.getVNInfoAt(AIdx
);
1003 // Even if we are dealing with a full copy, some lanes can
1004 // still be undefined.
1006 // undef A.subLow = ...
1007 // B = COPY A <== A.subHigh is undefined here and does
1008 // not have a value number.
1011 MaskA
|= SA
.LaneMask
;
1013 IntB
.refineSubRanges(
1014 Allocator
, SA
.LaneMask
,
1015 [&Allocator
, &SA
, CopyIdx
, ASubValNo
,
1016 &ShrinkB
](LiveInterval::SubRange
&SR
) {
1017 VNInfo
*BSubValNo
= SR
.empty() ? SR
.getNextValue(CopyIdx
, Allocator
)
1018 : SR
.getVNInfoAt(CopyIdx
);
1019 assert(BSubValNo
!= nullptr);
1020 auto P
= addSegmentsWithValNo(SR
, BSubValNo
, SA
, ASubValNo
);
1021 ShrinkB
|= P
.second
;
1023 BSubValNo
->def
= ASubValNo
->def
;
1027 // Go over all subranges of IntB that have not been covered by IntA,
1028 // and delete the segments starting at CopyIdx. This can happen if
1029 // IntA has undef lanes that are defined in IntB.
1030 for (LiveInterval::SubRange
&SB
: IntB
.subranges()) {
1031 if ((SB
.LaneMask
& MaskA
).any())
1033 if (LiveRange::Segment
*S
= SB
.getSegmentContaining(CopyIdx
))
1034 if (S
->start
.getBaseIndex() == CopyIdx
.getBaseIndex())
1035 SB
.removeSegment(*S
, true);
1039 BValNo
->def
= AValNo
->def
;
1040 auto P
= addSegmentsWithValNo(IntB
, BValNo
, IntA
, AValNo
);
1041 ShrinkB
|= P
.second
;
1042 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB
<< '\n');
1044 LIS
->removeVRegDefAt(IntA
, AValNo
->def
);
1046 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA
<< '\n');
1048 return { true, ShrinkB
};
1051 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1052 /// predecessor of BB2, and if B is not redefined on the way from A = B
1053 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1054 /// execution goes through the path from BB0 to BB2. We may move B = A
1055 /// to the predecessor without such reversed copy.
1056 /// So we will transform the program from:
1074 /// A special case is when BB0 and BB2 are the same BB which is the only
1084 /// We may hoist B = A from BB0/BB2 to BB1.
1086 /// The major preconditions for correctness to remove such partial
1087 /// redundancy include:
1088 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1089 /// the PHI is defined by the reversed copy A = B in BB0.
1090 /// 2. No B is referenced from the start of BB2 to B = A.
1091 /// 3. No B is defined from A = B to the end of BB0.
1092 /// 4. BB1 has only one successor.
1094 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1095 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1096 /// colder place, which not only prevent endless loop, but also make sure
1097 /// the movement of copy is beneficial.
1098 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair
&CP
,
1099 MachineInstr
&CopyMI
) {
1100 assert(!CP
.isPhys());
1101 if (!CopyMI
.isFullCopy())
1104 MachineBasicBlock
&MBB
= *CopyMI
.getParent();
1105 // If this block is the target of an invoke/inlineasm_br, moving the copy into
1106 // the predecessor is tricker, and we don't handle it.
1107 if (MBB
.isEHPad() || MBB
.isInlineAsmBrIndirectTarget())
1110 if (MBB
.pred_size() != 2)
1113 LiveInterval
&IntA
=
1114 LIS
->getInterval(CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg());
1115 LiveInterval
&IntB
=
1116 LIS
->getInterval(CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg());
1118 // A is defined by PHI at the entry of MBB.
1119 SlotIndex CopyIdx
= LIS
->getInstructionIndex(CopyMI
).getRegSlot(true);
1120 VNInfo
*AValNo
= IntA
.getVNInfoAt(CopyIdx
);
1121 assert(AValNo
&& !AValNo
->isUnused() && "COPY source not live");
1122 if (!AValNo
->isPHIDef())
1125 // No B is referenced before CopyMI in MBB.
1126 if (IntB
.overlaps(LIS
->getMBBStartIdx(&MBB
), CopyIdx
))
1129 // MBB has two predecessors: one contains A = B so no copy will be inserted
1130 // for it. The other one will have a copy moved from MBB.
1131 bool FoundReverseCopy
= false;
1132 MachineBasicBlock
*CopyLeftBB
= nullptr;
1133 for (MachineBasicBlock
*Pred
: MBB
.predecessors()) {
1134 VNInfo
*PVal
= IntA
.getVNInfoBefore(LIS
->getMBBEndIdx(Pred
));
1135 MachineInstr
*DefMI
= LIS
->getInstructionFromIndex(PVal
->def
);
1136 if (!DefMI
|| !DefMI
->isFullCopy()) {
1140 // Check DefMI is a reverse copy and it is in BB Pred.
1141 if (DefMI
->getOperand(0).getReg() != IntA
.reg() ||
1142 DefMI
->getOperand(1).getReg() != IntB
.reg() ||
1143 DefMI
->getParent() != Pred
) {
1147 // If there is any other def of B after DefMI and before the end of Pred,
1148 // we need to keep the copy of B = A at the end of Pred if we remove
1150 bool ValB_Changed
= false;
1151 for (auto VNI
: IntB
.valnos
) {
1152 if (VNI
->isUnused())
1154 if (PVal
->def
< VNI
->def
&& VNI
->def
< LIS
->getMBBEndIdx(Pred
)) {
1155 ValB_Changed
= true;
1163 FoundReverseCopy
= true;
1166 // If no reverse copy is found in predecessors, nothing to do.
1167 if (!FoundReverseCopy
)
1170 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1171 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1172 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1173 // update IntA/IntB.
1175 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1176 // MBB is hotter than CopyLeftBB.
1177 if (CopyLeftBB
&& CopyLeftBB
->succ_size() > 1)
1180 // Now (almost sure it's) ok to move copy.
1182 // Position in CopyLeftBB where we should insert new copy.
1183 auto InsPos
= CopyLeftBB
->getFirstTerminator();
1185 // Make sure that B isn't referenced in the terminators (if any) at the end
1186 // of the predecessor since we're about to insert a new definition of B
1188 if (InsPos
!= CopyLeftBB
->end()) {
1189 SlotIndex InsPosIdx
= LIS
->getInstructionIndex(*InsPos
).getRegSlot(true);
1190 if (IntB
.overlaps(InsPosIdx
, LIS
->getMBBEndIdx(CopyLeftBB
)))
1194 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1195 << printMBBReference(*CopyLeftBB
) << '\t' << CopyMI
);
1197 // Insert new copy to CopyLeftBB.
1198 MachineInstr
*NewCopyMI
= BuildMI(*CopyLeftBB
, InsPos
, CopyMI
.getDebugLoc(),
1199 TII
->get(TargetOpcode::COPY
), IntB
.reg())
1200 .addReg(IntA
.reg());
1201 SlotIndex NewCopyIdx
=
1202 LIS
->InsertMachineInstrInMaps(*NewCopyMI
).getRegSlot();
1203 IntB
.createDeadDef(NewCopyIdx
, LIS
->getVNInfoAllocator());
1204 for (LiveInterval::SubRange
&SR
: IntB
.subranges())
1205 SR
.createDeadDef(NewCopyIdx
, LIS
->getVNInfoAllocator());
1207 // If the newly created Instruction has an address of an instruction that was
1208 // deleted before (object recycled by the allocator) it needs to be removed from
1209 // the deleted list.
1210 ErasedInstrs
.erase(NewCopyMI
);
1212 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1213 << printMBBReference(MBB
) << '\t' << CopyMI
);
1217 // Note: This is fine to remove the copy before updating the live-ranges.
1218 // While updating the live-ranges, we only look at slot indices and
1219 // never go back to the instruction.
1220 // Mark instructions as deleted.
1221 deleteInstr(&CopyMI
);
1223 // Update the liveness.
1224 SmallVector
<SlotIndex
, 8> EndPoints
;
1225 VNInfo
*BValNo
= IntB
.Query(CopyIdx
).valueOutOrDead();
1226 LIS
->pruneValue(*static_cast<LiveRange
*>(&IntB
), CopyIdx
.getRegSlot(),
1228 BValNo
->markUnused();
1229 // Extend IntB to the EndPoints of its original live interval.
1230 LIS
->extendToIndices(IntB
, EndPoints
);
1232 // Now, do the same for its subranges.
1233 for (LiveInterval::SubRange
&SR
: IntB
.subranges()) {
1235 VNInfo
*BValNo
= SR
.Query(CopyIdx
).valueOutOrDead();
1236 assert(BValNo
&& "All sublanes should be live");
1237 LIS
->pruneValue(SR
, CopyIdx
.getRegSlot(), &EndPoints
);
1238 BValNo
->markUnused();
1239 // We can have a situation where the result of the original copy is live,
1240 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1241 // the copy appear as an endpoint from pruneValue(), but we don't want it
1242 // to because the copy has been removed. We can go ahead and remove that
1243 // endpoint; there is no other situation here that there could be a use at
1244 // the same place as we know that the copy is a full copy.
1245 for (unsigned I
= 0; I
!= EndPoints
.size(); ) {
1246 if (SlotIndex::isSameInstr(EndPoints
[I
], CopyIdx
)) {
1247 EndPoints
[I
] = EndPoints
.back();
1248 EndPoints
.pop_back();
1253 SmallVector
<SlotIndex
, 8> Undefs
;
1254 IntB
.computeSubRangeUndefs(Undefs
, SR
.LaneMask
, *MRI
,
1255 *LIS
->getSlotIndexes());
1256 LIS
->extendToIndices(SR
, EndPoints
, Undefs
);
1258 // If any dead defs were extended, truncate them.
1259 shrinkToUses(&IntB
);
1261 // Finally, update the live-range of IntA.
1262 shrinkToUses(&IntA
);
1266 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1267 /// defining a subregister.
1268 static bool definesFullReg(const MachineInstr
&MI
, Register Reg
) {
1269 assert(!Reg
.isPhysical() && "This code cannot handle physreg aliasing");
1271 for (const MachineOperand
&Op
: MI
.operands()) {
1272 if (!Op
.isReg() || !Op
.isDef() || Op
.getReg() != Reg
)
1274 // Return true if we define the full register or don't care about the value
1275 // inside other subregisters.
1276 if (Op
.getSubReg() == 0 || Op
.isUndef())
1282 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair
&CP
,
1283 MachineInstr
*CopyMI
,
1286 Register SrcReg
= CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg();
1287 unsigned SrcIdx
= CP
.isFlipped() ? CP
.getDstIdx() : CP
.getSrcIdx();
1288 Register DstReg
= CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg();
1289 unsigned DstIdx
= CP
.isFlipped() ? CP
.getSrcIdx() : CP
.getDstIdx();
1290 if (Register::isPhysicalRegister(SrcReg
))
1293 LiveInterval
&SrcInt
= LIS
->getInterval(SrcReg
);
1294 SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
);
1295 VNInfo
*ValNo
= SrcInt
.Query(CopyIdx
).valueIn();
1298 if (ValNo
->isPHIDef() || ValNo
->isUnused())
1300 MachineInstr
*DefMI
= LIS
->getInstructionFromIndex(ValNo
->def
);
1303 if (DefMI
->isCopyLike()) {
1307 if (!TII
->isAsCheapAsAMove(*DefMI
))
1309 if (!TII
->isTriviallyReMaterializable(*DefMI
, AA
))
1311 if (!definesFullReg(*DefMI
, SrcReg
))
1313 bool SawStore
= false;
1314 if (!DefMI
->isSafeToMove(AA
, SawStore
))
1316 const MCInstrDesc
&MCID
= DefMI
->getDesc();
1317 if (MCID
.getNumDefs() != 1)
1319 // Only support subregister destinations when the def is read-undef.
1320 MachineOperand
&DstOperand
= CopyMI
->getOperand(0);
1321 Register CopyDstReg
= DstOperand
.getReg();
1322 if (DstOperand
.getSubReg() && !DstOperand
.isUndef())
1325 // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1326 // the register substantially (beyond both source and dest size). This is bad
1327 // for performance since it can cascade through a function, introducing many
1328 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1329 // around after a few subreg copies).
1330 if (SrcIdx
&& DstIdx
)
1333 const TargetRegisterClass
*DefRC
= TII
->getRegClass(MCID
, 0, TRI
, *MF
);
1334 if (!DefMI
->isImplicitDef()) {
1335 if (DstReg
.isPhysical()) {
1336 Register NewDstReg
= DstReg
;
1338 unsigned NewDstIdx
= TRI
->composeSubRegIndices(CP
.getSrcIdx(),
1339 DefMI
->getOperand(0).getSubReg());
1341 NewDstReg
= TRI
->getSubReg(DstReg
, NewDstIdx
);
1343 // Finally, make sure that the physical subregister that will be
1344 // constructed later is permitted for the instruction.
1345 if (!DefRC
->contains(NewDstReg
))
1348 // Theoretically, some stack frame reference could exist. Just make sure
1349 // it hasn't actually happened.
1350 assert(Register::isVirtualRegister(DstReg
) &&
1351 "Only expect to deal with virtual or physical registers");
1355 if (!allUsesAvailableAt(DefMI
, ValNo
->def
, CopyIdx
))
1358 DebugLoc DL
= CopyMI
->getDebugLoc();
1359 MachineBasicBlock
*MBB
= CopyMI
->getParent();
1360 MachineBasicBlock::iterator MII
=
1361 std::next(MachineBasicBlock::iterator(CopyMI
));
1362 TII
->reMaterialize(*MBB
, MII
, DstReg
, SrcIdx
, *DefMI
, *TRI
);
1363 MachineInstr
&NewMI
= *std::prev(MII
);
1364 NewMI
.setDebugLoc(DL
);
1366 // In a situation like the following:
1367 // %0:subreg = instr ; DefMI, subreg = DstIdx
1368 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
1369 // instead of widening %1 to the register class of %0 simply do:
1371 const TargetRegisterClass
*NewRC
= CP
.getNewRC();
1373 MachineOperand
&DefMO
= NewMI
.getOperand(0);
1374 if (DefMO
.getSubReg() == DstIdx
) {
1375 assert(SrcIdx
== 0 && CP
.isFlipped()
1376 && "Shouldn't have SrcIdx+DstIdx at this point");
1377 const TargetRegisterClass
*DstRC
= MRI
->getRegClass(DstReg
);
1378 const TargetRegisterClass
*CommonRC
=
1379 TRI
->getCommonSubClass(DefRC
, DstRC
);
1380 if (CommonRC
!= nullptr) {
1384 DefMO
.setIsUndef(false); // Only subregs can have def+undef.
1389 // CopyMI may have implicit operands, save them so that we can transfer them
1390 // over to the newly materialized instruction after CopyMI is removed.
1391 SmallVector
<MachineOperand
, 4> ImplicitOps
;
1392 ImplicitOps
.reserve(CopyMI
->getNumOperands() -
1393 CopyMI
->getDesc().getNumOperands());
1394 for (unsigned I
= CopyMI
->getDesc().getNumOperands(),
1395 E
= CopyMI
->getNumOperands();
1397 MachineOperand
&MO
= CopyMI
->getOperand(I
);
1399 assert(MO
.isImplicit() && "No explicit operands after implicit operands.");
1400 // Discard VReg implicit defs.
1401 if (Register::isPhysicalRegister(MO
.getReg()))
1402 ImplicitOps
.push_back(MO
);
1406 LIS
->ReplaceMachineInstrInMaps(*CopyMI
, NewMI
);
1407 CopyMI
->eraseFromParent();
1408 ErasedInstrs
.insert(CopyMI
);
1410 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1411 // We need to remember these so we can add intervals once we insert
1412 // NewMI into SlotIndexes.
1413 SmallVector
<MCRegister
, 4> NewMIImplDefs
;
1414 for (unsigned i
= NewMI
.getDesc().getNumOperands(),
1415 e
= NewMI
.getNumOperands();
1417 MachineOperand
&MO
= NewMI
.getOperand(i
);
1418 if (MO
.isReg() && MO
.isDef()) {
1419 assert(MO
.isImplicit() && MO
.isDead() &&
1420 Register::isPhysicalRegister(MO
.getReg()));
1421 NewMIImplDefs
.push_back(MO
.getReg().asMCReg());
1425 if (DstReg
.isVirtual()) {
1426 unsigned NewIdx
= NewMI
.getOperand(0).getSubReg();
1428 if (DefRC
!= nullptr) {
1430 NewRC
= TRI
->getMatchingSuperRegClass(NewRC
, DefRC
, NewIdx
);
1432 NewRC
= TRI
->getCommonSubClass(NewRC
, DefRC
);
1433 assert(NewRC
&& "subreg chosen for remat incompatible with instruction");
1435 // Remap subranges to new lanemask and change register class.
1436 LiveInterval
&DstInt
= LIS
->getInterval(DstReg
);
1437 for (LiveInterval::SubRange
&SR
: DstInt
.subranges()) {
1438 SR
.LaneMask
= TRI
->composeSubRegIndexLaneMask(DstIdx
, SR
.LaneMask
);
1440 MRI
->setRegClass(DstReg
, NewRC
);
1442 // Update machine operands and add flags.
1443 updateRegDefsUses(DstReg
, DstReg
, DstIdx
);
1444 NewMI
.getOperand(0).setSubReg(NewIdx
);
1445 // updateRegDefUses can add an "undef" flag to the definition, since
1446 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1447 // sure that "undef" is not set.
1449 NewMI
.getOperand(0).setIsUndef(false);
1450 // Add dead subregister definitions if we are defining the whole register
1451 // but only part of it is live.
1452 // This could happen if the rematerialization instruction is rematerializing
1453 // more than actually is used in the register.
1454 // An example would be:
1455 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1456 // ; Copying only part of the register here, but the rest is undef.
1457 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1459 // ; Materialize all the constants but only using one
1460 // %2 = LOAD_CONSTANTS 5, 8
1462 // at this point for the part that wasn't defined before we could have
1463 // subranges missing the definition.
1464 if (NewIdx
== 0 && DstInt
.hasSubRanges()) {
1465 SlotIndex CurrIdx
= LIS
->getInstructionIndex(NewMI
);
1466 SlotIndex DefIndex
=
1467 CurrIdx
.getRegSlot(NewMI
.getOperand(0).isEarlyClobber());
1468 LaneBitmask MaxMask
= MRI
->getMaxLaneMaskForVReg(DstReg
);
1469 VNInfo::Allocator
& Alloc
= LIS
->getVNInfoAllocator();
1470 for (LiveInterval::SubRange
&SR
: DstInt
.subranges()) {
1471 if (!SR
.liveAt(DefIndex
))
1472 SR
.createDeadDef(DefIndex
, Alloc
);
1473 MaxMask
&= ~SR
.LaneMask
;
1475 if (MaxMask
.any()) {
1476 LiveInterval::SubRange
*SR
= DstInt
.createSubRange(Alloc
, MaxMask
);
1477 SR
->createDeadDef(DefIndex
, Alloc
);
1481 // Make sure that the subrange for resultant undef is removed
1483 // %1:sub1<def,read-undef> = LOAD CONSTANT 1
1486 // %2:sub1<def, read-undef> = LOAD CONSTANT 1
1487 // ; Correct but need to remove the subrange for %2:sub0
1488 // ; as it is now undef
1489 if (NewIdx
!= 0 && DstInt
.hasSubRanges()) {
1490 // The affected subregister segments can be removed.
1491 SlotIndex CurrIdx
= LIS
->getInstructionIndex(NewMI
);
1492 LaneBitmask DstMask
= TRI
->getSubRegIndexLaneMask(NewIdx
);
1493 bool UpdatedSubRanges
= false;
1494 SlotIndex DefIndex
=
1495 CurrIdx
.getRegSlot(NewMI
.getOperand(0).isEarlyClobber());
1496 VNInfo::Allocator
&Alloc
= LIS
->getVNInfoAllocator();
1497 for (LiveInterval::SubRange
&SR
: DstInt
.subranges()) {
1498 if ((SR
.LaneMask
& DstMask
).none()) {
1500 << "Removing undefined SubRange "
1501 << PrintLaneMask(SR
.LaneMask
) << " : " << SR
<< "\n");
1502 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1503 if (VNInfo
*RmValNo
= SR
.getVNInfoAt(CurrIdx
.getRegSlot())) {
1504 SR
.removeValNo(RmValNo
);
1505 UpdatedSubRanges
= true;
1508 // We know that this lane is defined by this instruction,
1509 // but at this point it may be empty because it is not used by
1510 // anything. This happens when updateRegDefUses adds the missing
1511 // lanes. Assign that lane a dead def so that the interferences
1512 // are properly modeled.
1514 SR
.createDeadDef(DefIndex
, Alloc
);
1517 if (UpdatedSubRanges
)
1518 DstInt
.removeEmptySubRanges();
1520 } else if (NewMI
.getOperand(0).getReg() != CopyDstReg
) {
1521 // The New instruction may be defining a sub-register of what's actually
1522 // been asked for. If so it must implicitly define the whole thing.
1523 assert(Register::isPhysicalRegister(DstReg
) &&
1524 "Only expect virtual or physical registers in remat");
1525 NewMI
.getOperand(0).setIsDead(true);
1526 NewMI
.addOperand(MachineOperand::CreateReg(
1527 CopyDstReg
, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1528 // Record small dead def live-ranges for all the subregisters
1529 // of the destination register.
1530 // Otherwise, variables that live through may miss some
1531 // interferences, thus creating invalid allocation.
1533 // %1 = somedef ; %1 GR8
1534 // %2 = remat ; %2 GR32
1535 // CL = COPY %2.sub_8bit
1536 // = somedef %1 ; %1 GR8
1538 // %1 = somedef ; %1 GR8
1539 // dead ECX = remat ; implicit-def CL
1540 // = somedef %1 ; %1 GR8
1541 // %1 will see the interferences with CL but not with CH since
1542 // no live-ranges would have been created for ECX.
1544 SlotIndex NewMIIdx
= LIS
->getInstructionIndex(NewMI
);
1545 for (MCRegUnitIterator
Units(NewMI
.getOperand(0).getReg(), TRI
);
1546 Units
.isValid(); ++Units
)
1547 if (LiveRange
*LR
= LIS
->getCachedRegUnit(*Units
))
1548 LR
->createDeadDef(NewMIIdx
.getRegSlot(), LIS
->getVNInfoAllocator());
1551 if (NewMI
.getOperand(0).getSubReg())
1552 NewMI
.getOperand(0).setIsUndef();
1554 // Transfer over implicit operands to the rematerialized instruction.
1555 for (MachineOperand
&MO
: ImplicitOps
)
1556 NewMI
.addOperand(MO
);
1558 SlotIndex NewMIIdx
= LIS
->getInstructionIndex(NewMI
);
1559 for (unsigned i
= 0, e
= NewMIImplDefs
.size(); i
!= e
; ++i
) {
1560 MCRegister Reg
= NewMIImplDefs
[i
];
1561 for (MCRegUnitIterator
Units(Reg
, TRI
); Units
.isValid(); ++Units
)
1562 if (LiveRange
*LR
= LIS
->getCachedRegUnit(*Units
))
1563 LR
->createDeadDef(NewMIIdx
.getRegSlot(), LIS
->getVNInfoAllocator());
1566 LLVM_DEBUG(dbgs() << "Remat: " << NewMI
);
1569 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1570 // to describe DstReg instead.
1571 if (MRI
->use_nodbg_empty(SrcReg
)) {
1572 for (MachineOperand
&UseMO
:
1573 llvm::make_early_inc_range(MRI
->use_operands(SrcReg
))) {
1574 MachineInstr
*UseMI
= UseMO
.getParent();
1575 if (UseMI
->isDebugInstr()) {
1576 if (Register::isPhysicalRegister(DstReg
))
1577 UseMO
.substPhysReg(DstReg
, *TRI
);
1579 UseMO
.setReg(DstReg
);
1580 // Move the debug value directly after the def of the rematerialized
1582 MBB
->splice(std::next(NewMI
.getIterator()), UseMI
->getParent(), UseMI
);
1583 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI
);
1588 if (ToBeUpdated
.count(SrcReg
))
1591 unsigned NumCopyUses
= 0;
1592 for (MachineOperand
&UseMO
: MRI
->use_nodbg_operands(SrcReg
)) {
1593 if (UseMO
.getParent()->isCopyLike())
1596 if (NumCopyUses
< LateRematUpdateThreshold
) {
1597 // The source interval can become smaller because we removed a use.
1598 shrinkToUses(&SrcInt
, &DeadDefs
);
1599 if (!DeadDefs
.empty())
1600 eliminateDeadDefs();
1602 ToBeUpdated
.insert(SrcReg
);
1607 MachineInstr
*RegisterCoalescer::eliminateUndefCopy(MachineInstr
*CopyMI
) {
1608 // ProcessImplicitDefs may leave some copies of <undef> values, it only
1609 // removes local variables. When we have a copy like:
1611 // %1 = COPY undef %2
1613 // We delete the copy and remove the corresponding value number from %1.
1614 // Any uses of that value number are marked as <undef>.
1616 // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1617 // CoalescerPair may have a new register class with adjusted subreg indices
1619 Register SrcReg
, DstReg
;
1620 unsigned SrcSubIdx
= 0, DstSubIdx
= 0;
1621 if(!isMoveInstr(*TRI
, CopyMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
1624 SlotIndex Idx
= LIS
->getInstructionIndex(*CopyMI
);
1625 const LiveInterval
&SrcLI
= LIS
->getInterval(SrcReg
);
1626 // CopyMI is undef iff SrcReg is not live before the instruction.
1627 if (SrcSubIdx
!= 0 && SrcLI
.hasSubRanges()) {
1628 LaneBitmask SrcMask
= TRI
->getSubRegIndexLaneMask(SrcSubIdx
);
1629 for (const LiveInterval::SubRange
&SR
: SrcLI
.subranges()) {
1630 if ((SR
.LaneMask
& SrcMask
).none())
1635 } else if (SrcLI
.liveAt(Idx
))
1638 // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1639 // then replace it with an IMPLICIT_DEF.
1640 LiveInterval
&DstLI
= LIS
->getInterval(DstReg
);
1641 SlotIndex RegIndex
= Idx
.getRegSlot();
1642 LiveRange::Segment
*Seg
= DstLI
.getSegmentContaining(RegIndex
);
1643 assert(Seg
!= nullptr && "No segment for defining instruction");
1644 if (VNInfo
*V
= DstLI
.getVNInfoAt(Seg
->end
)) {
1645 if (V
->isPHIDef()) {
1646 CopyMI
->setDesc(TII
->get(TargetOpcode::IMPLICIT_DEF
));
1647 for (unsigned i
= CopyMI
->getNumOperands(); i
!= 0; --i
) {
1648 MachineOperand
&MO
= CopyMI
->getOperand(i
-1);
1649 if (MO
.isReg() && MO
.isUse())
1650 CopyMI
->RemoveOperand(i
-1);
1652 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1658 // Remove any DstReg segments starting at the instruction.
1659 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1661 // Remove value or merge with previous one in case of a subregister def.
1662 if (VNInfo
*PrevVNI
= DstLI
.getVNInfoAt(Idx
)) {
1663 VNInfo
*VNI
= DstLI
.getVNInfoAt(RegIndex
);
1664 DstLI
.MergeValueNumberInto(VNI
, PrevVNI
);
1666 // The affected subregister segments can be removed.
1667 LaneBitmask DstMask
= TRI
->getSubRegIndexLaneMask(DstSubIdx
);
1668 for (LiveInterval::SubRange
&SR
: DstLI
.subranges()) {
1669 if ((SR
.LaneMask
& DstMask
).none())
1672 VNInfo
*SVNI
= SR
.getVNInfoAt(RegIndex
);
1673 assert(SVNI
!= nullptr && SlotIndex::isSameInstr(SVNI
->def
, RegIndex
));
1674 SR
.removeValNo(SVNI
);
1676 DstLI
.removeEmptySubRanges();
1678 LIS
->removeVRegDefAt(DstLI
, RegIndex
);
1680 // Mark uses as undef.
1681 for (MachineOperand
&MO
: MRI
->reg_nodbg_operands(DstReg
)) {
1682 if (MO
.isDef() /*|| MO.isUndef()*/)
1684 const MachineInstr
&MI
= *MO
.getParent();
1685 SlotIndex UseIdx
= LIS
->getInstructionIndex(MI
);
1686 LaneBitmask UseMask
= TRI
->getSubRegIndexLaneMask(MO
.getSubReg());
1688 if (!UseMask
.all() && DstLI
.hasSubRanges()) {
1690 for (const LiveInterval::SubRange
&SR
: DstLI
.subranges()) {
1691 if ((SR
.LaneMask
& UseMask
).none())
1693 if (SR
.liveAt(UseIdx
)) {
1699 isLive
= DstLI
.liveAt(UseIdx
);
1702 MO
.setIsUndef(true);
1703 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx
<< '\t' << MI
);
1706 // A def of a subregister may be a use of the other subregisters, so
1707 // deleting a def of a subregister may also remove uses. Since CopyMI
1708 // is still part of the function (but about to be erased), mark all
1709 // defs of DstReg in it as <undef>, so that shrinkToUses would
1711 for (MachineOperand
&MO
: CopyMI
->operands())
1712 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == DstReg
)
1713 MO
.setIsUndef(true);
1714 LIS
->shrinkToUses(&DstLI
);
1719 void RegisterCoalescer::addUndefFlag(const LiveInterval
&Int
, SlotIndex UseIdx
,
1720 MachineOperand
&MO
, unsigned SubRegIdx
) {
1721 LaneBitmask Mask
= TRI
->getSubRegIndexLaneMask(SubRegIdx
);
1724 bool IsUndef
= true;
1725 for (const LiveInterval::SubRange
&S
: Int
.subranges()) {
1726 if ((S
.LaneMask
& Mask
).none())
1728 if (S
.liveAt(UseIdx
)) {
1734 MO
.setIsUndef(true);
1735 // We found out some subregister use is actually reading an undefined
1736 // value. In some cases the whole vreg has become undefined at this
1737 // point so we have to potentially shrink the main range if the
1738 // use was ending a live segment there.
1739 LiveQueryResult Q
= Int
.Query(UseIdx
);
1740 if (Q
.valueOut() == nullptr)
1741 ShrinkMainRange
= true;
1745 void RegisterCoalescer::updateRegDefsUses(Register SrcReg
, Register DstReg
,
1747 bool DstIsPhys
= Register::isPhysicalRegister(DstReg
);
1748 LiveInterval
*DstInt
= DstIsPhys
? nullptr : &LIS
->getInterval(DstReg
);
1750 if (DstInt
&& DstInt
->hasSubRanges() && DstReg
!= SrcReg
) {
1751 for (MachineOperand
&MO
: MRI
->reg_operands(DstReg
)) {
1752 unsigned SubReg
= MO
.getSubReg();
1753 if (SubReg
== 0 || MO
.isUndef())
1755 MachineInstr
&MI
= *MO
.getParent();
1756 if (MI
.isDebugInstr())
1758 SlotIndex UseIdx
= LIS
->getInstructionIndex(MI
).getRegSlot(true);
1759 addUndefFlag(*DstInt
, UseIdx
, MO
, SubReg
);
1763 SmallPtrSet
<MachineInstr
*, 8> Visited
;
1764 for (MachineRegisterInfo::reg_instr_iterator
1765 I
= MRI
->reg_instr_begin(SrcReg
), E
= MRI
->reg_instr_end();
1767 MachineInstr
*UseMI
= &*(I
++);
1769 // Each instruction can only be rewritten once because sub-register
1770 // composition is not always idempotent. When SrcReg != DstReg, rewriting
1771 // the UseMI operands removes them from the SrcReg use-def chain, but when
1772 // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1773 // operands mentioning the virtual register.
1774 if (SrcReg
== DstReg
&& !Visited
.insert(UseMI
).second
)
1777 SmallVector
<unsigned,8> Ops
;
1779 std::tie(Reads
, Writes
) = UseMI
->readsWritesVirtualRegister(SrcReg
, &Ops
);
1781 // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1782 // because SrcReg is a sub-register.
1783 if (DstInt
&& !Reads
&& SubIdx
&& !UseMI
->isDebugInstr())
1784 Reads
= DstInt
->liveAt(LIS
->getInstructionIndex(*UseMI
));
1786 // Replace SrcReg with DstReg in all UseMI operands.
1787 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1788 MachineOperand
&MO
= UseMI
->getOperand(Ops
[i
]);
1790 // Adjust <undef> flags in case of sub-register joins. We don't want to
1791 // turn a full def into a read-modify-write sub-register def and vice
1793 if (SubIdx
&& MO
.isDef())
1794 MO
.setIsUndef(!Reads
);
1796 // A subreg use of a partially undef (super) register may be a complete
1797 // undef use now and then has to be marked that way.
1798 if (MO
.isUse() && !DstIsPhys
) {
1799 unsigned SubUseIdx
= TRI
->composeSubRegIndices(SubIdx
, MO
.getSubReg());
1800 if (SubUseIdx
!= 0 && MRI
->shouldTrackSubRegLiveness(DstReg
)) {
1801 if (!DstInt
->hasSubRanges()) {
1802 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
1803 LaneBitmask FullMask
= MRI
->getMaxLaneMaskForVReg(DstInt
->reg());
1804 LaneBitmask UsedLanes
= TRI
->getSubRegIndexLaneMask(SubIdx
);
1805 LaneBitmask UnusedLanes
= FullMask
& ~UsedLanes
;
1806 DstInt
->createSubRangeFrom(Allocator
, UsedLanes
, *DstInt
);
1807 // The unused lanes are just empty live-ranges at this point.
1808 // It is the caller responsibility to set the proper
1809 // dead segments if there is an actual dead def of the
1810 // unused lanes. This may happen with rematerialization.
1811 DstInt
->createSubRange(Allocator
, UnusedLanes
);
1813 SlotIndex MIIdx
= UseMI
->isDebugInstr()
1814 ? LIS
->getSlotIndexes()->getIndexBefore(*UseMI
)
1815 : LIS
->getInstructionIndex(*UseMI
);
1816 SlotIndex UseIdx
= MIIdx
.getRegSlot(true);
1817 addUndefFlag(*DstInt
, UseIdx
, MO
, SubUseIdx
);
1822 MO
.substPhysReg(DstReg
, *TRI
);
1824 MO
.substVirtReg(DstReg
, SubIdx
, *TRI
);
1828 dbgs() << "\t\tupdated: ";
1829 if (!UseMI
->isDebugInstr())
1830 dbgs() << LIS
->getInstructionIndex(*UseMI
) << "\t";
1836 bool RegisterCoalescer::canJoinPhys(const CoalescerPair
&CP
) {
1837 // Always join simple intervals that are defined by a single copy from a
1838 // reserved register. This doesn't increase register pressure, so it is
1839 // always beneficial.
1840 if (!MRI
->isReserved(CP
.getDstReg())) {
1841 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1845 LiveInterval
&JoinVInt
= LIS
->getInterval(CP
.getSrcReg());
1846 if (JoinVInt
.containsOneValue())
1850 dbgs() << "\tCannot join complex intervals into reserved register.\n");
1854 bool RegisterCoalescer::copyValueUndefInPredecessors(
1855 LiveRange
&S
, const MachineBasicBlock
*MBB
, LiveQueryResult SLRQ
) {
1856 for (const MachineBasicBlock
*Pred
: MBB
->predecessors()) {
1857 SlotIndex PredEnd
= LIS
->getMBBEndIdx(Pred
);
1858 if (VNInfo
*V
= S
.getVNInfoAt(PredEnd
.getPrevSlot())) {
1859 // If this is a self loop, we may be reading the same value.
1860 if (V
->id
!= SLRQ
.valueOutOrDead()->id
)
1868 void RegisterCoalescer::setUndefOnPrunedSubRegUses(LiveInterval
&LI
,
1870 LaneBitmask PrunedLanes
) {
1871 // If we had other instructions in the segment reading the undef sublane
1872 // value, we need to mark them with undef.
1873 for (MachineOperand
&MO
: MRI
->use_nodbg_operands(Reg
)) {
1874 unsigned SubRegIdx
= MO
.getSubReg();
1875 if (SubRegIdx
== 0 || MO
.isUndef())
1878 LaneBitmask SubRegMask
= TRI
->getSubRegIndexLaneMask(SubRegIdx
);
1879 SlotIndex Pos
= LIS
->getInstructionIndex(*MO
.getParent());
1880 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
1881 if (!S
.liveAt(Pos
) && (PrunedLanes
& SubRegMask
).any()) {
1888 LI
.removeEmptySubRanges();
1890 // A def of a subregister may be a use of other register lanes. Replacing
1891 // such a def with a def of a different register will eliminate the use,
1892 // and may cause the recorded live range to be larger than the actual
1893 // liveness in the program IR.
1894 LIS
->shrinkToUses(&LI
);
1897 bool RegisterCoalescer::joinCopy(MachineInstr
*CopyMI
, bool &Again
) {
1899 LLVM_DEBUG(dbgs() << LIS
->getInstructionIndex(*CopyMI
) << '\t' << *CopyMI
);
1901 CoalescerPair
CP(*TRI
);
1902 if (!CP
.setRegisters(CopyMI
)) {
1903 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1907 if (CP
.getNewRC()) {
1908 auto SrcRC
= MRI
->getRegClass(CP
.getSrcReg());
1909 auto DstRC
= MRI
->getRegClass(CP
.getDstReg());
1910 unsigned SrcIdx
= CP
.getSrcIdx();
1911 unsigned DstIdx
= CP
.getDstIdx();
1912 if (CP
.isFlipped()) {
1913 std::swap(SrcIdx
, DstIdx
);
1914 std::swap(SrcRC
, DstRC
);
1916 if (!TRI
->shouldCoalesce(CopyMI
, SrcRC
, SrcIdx
, DstRC
, DstIdx
,
1917 CP
.getNewRC(), *LIS
)) {
1918 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1923 // Dead code elimination. This really should be handled by MachineDCE, but
1924 // sometimes dead copies slip through, and we can't generate invalid live
1926 if (!CP
.isPhys() && CopyMI
->allDefsAreDead()) {
1927 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1928 DeadDefs
.push_back(CopyMI
);
1929 eliminateDeadDefs();
1933 // Eliminate undefs.
1935 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1936 if (MachineInstr
*UndefMI
= eliminateUndefCopy(CopyMI
)) {
1937 if (UndefMI
->isImplicitDef())
1939 deleteInstr(CopyMI
);
1940 return false; // Not coalescable.
1944 // Coalesced copies are normally removed immediately, but transformations
1945 // like removeCopyByCommutingDef() can inadvertently create identity copies.
1946 // When that happens, just join the values and remove the copy.
1947 if (CP
.getSrcReg() == CP
.getDstReg()) {
1948 LiveInterval
&LI
= LIS
->getInterval(CP
.getSrcReg());
1949 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI
<< '\n');
1950 const SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
);
1951 LiveQueryResult LRQ
= LI
.Query(CopyIdx
);
1952 if (VNInfo
*DefVNI
= LRQ
.valueDefined()) {
1953 VNInfo
*ReadVNI
= LRQ
.valueIn();
1954 assert(ReadVNI
&& "No value before copy and no <undef> flag.");
1955 assert(ReadVNI
!= DefVNI
&& "Cannot read and define the same value.");
1957 // Track incoming undef lanes we need to eliminate from the subrange.
1958 LaneBitmask PrunedLanes
;
1959 MachineBasicBlock
*MBB
= CopyMI
->getParent();
1961 // Process subregister liveranges.
1962 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
1963 LiveQueryResult SLRQ
= S
.Query(CopyIdx
);
1964 if (VNInfo
*SDefVNI
= SLRQ
.valueDefined()) {
1965 if (VNInfo
*SReadVNI
= SLRQ
.valueIn())
1966 SDefVNI
= S
.MergeValueNumberInto(SDefVNI
, SReadVNI
);
1968 // If this copy introduced an undef subrange from an incoming value,
1969 // we need to eliminate the undef live in values from the subrange.
1970 if (copyValueUndefInPredecessors(S
, MBB
, SLRQ
)) {
1971 LLVM_DEBUG(dbgs() << "Incoming sublane value is undef at copy\n");
1972 PrunedLanes
|= S
.LaneMask
;
1973 S
.removeValNo(SDefVNI
);
1978 LI
.MergeValueNumberInto(DefVNI
, ReadVNI
);
1979 if (PrunedLanes
.any()) {
1980 LLVM_DEBUG(dbgs() << "Pruning undef incoming lanes: "
1981 << PrunedLanes
<< '\n');
1982 setUndefOnPrunedSubRegUses(LI
, CP
.getSrcReg(), PrunedLanes
);
1985 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI
<< '\n');
1987 deleteInstr(CopyMI
);
1991 // Enforce policies.
1993 LLVM_DEBUG(dbgs() << "\tConsidering merging "
1994 << printReg(CP
.getSrcReg(), TRI
) << " with "
1995 << printReg(CP
.getDstReg(), TRI
, CP
.getSrcIdx()) << '\n');
1996 if (!canJoinPhys(CP
)) {
1997 // Before giving up coalescing, if definition of source is defined by
1998 // trivial computation, try rematerializing it.
1999 bool IsDefCopy
= false;
2000 if (reMaterializeTrivialDef(CP
, CopyMI
, IsDefCopy
))
2003 Again
= true; // May be possible to coalesce later.
2007 // When possible, let DstReg be the larger interval.
2008 if (!CP
.isPartial() && LIS
->getInterval(CP
.getSrcReg()).size() >
2009 LIS
->getInterval(CP
.getDstReg()).size())
2013 dbgs() << "\tConsidering merging to "
2014 << TRI
->getRegClassName(CP
.getNewRC()) << " with ";
2015 if (CP
.getDstIdx() && CP
.getSrcIdx())
2016 dbgs() << printReg(CP
.getDstReg()) << " in "
2017 << TRI
->getSubRegIndexName(CP
.getDstIdx()) << " and "
2018 << printReg(CP
.getSrcReg()) << " in "
2019 << TRI
->getSubRegIndexName(CP
.getSrcIdx()) << '\n';
2021 dbgs() << printReg(CP
.getSrcReg(), TRI
) << " in "
2022 << printReg(CP
.getDstReg(), TRI
, CP
.getSrcIdx()) << '\n';
2026 ShrinkMask
= LaneBitmask::getNone();
2027 ShrinkMainRange
= false;
2029 // Okay, attempt to join these two intervals. On failure, this returns false.
2030 // Otherwise, if one of the intervals being joined is a physreg, this method
2031 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
2032 // been modified, so we can use this information below to update aliases.
2033 if (!joinIntervals(CP
)) {
2034 // Coalescing failed.
2036 // If definition of source is defined by trivial computation, try
2037 // rematerializing it.
2038 bool IsDefCopy
= false;
2039 if (reMaterializeTrivialDef(CP
, CopyMI
, IsDefCopy
))
2042 // If we can eliminate the copy without merging the live segments, do so
2044 if (!CP
.isPartial() && !CP
.isPhys()) {
2045 bool Changed
= adjustCopiesBackFrom(CP
, CopyMI
);
2046 bool Shrink
= false;
2048 std::tie(Changed
, Shrink
) = removeCopyByCommutingDef(CP
, CopyMI
);
2050 deleteInstr(CopyMI
);
2052 Register DstReg
= CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg();
2053 LiveInterval
&DstLI
= LIS
->getInterval(DstReg
);
2054 shrinkToUses(&DstLI
);
2055 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI
<< '\n');
2057 LLVM_DEBUG(dbgs() << "\tTrivial!\n");
2062 // Try and see if we can partially eliminate the copy by moving the copy to
2064 if (!CP
.isPartial() && !CP
.isPhys())
2065 if (removePartialRedundancy(CP
, *CopyMI
))
2068 // Otherwise, we are unable to join the intervals.
2069 LLVM_DEBUG(dbgs() << "\tInterference!\n");
2070 Again
= true; // May be possible to coalesce later.
2074 // Coalescing to a virtual register that is of a sub-register class of the
2075 // other. Make sure the resulting register is set to the right register class.
2076 if (CP
.isCrossClass()) {
2078 MRI
->setRegClass(CP
.getDstReg(), CP
.getNewRC());
2081 // Removing sub-register copies can ease the register class constraints.
2082 // Make sure we attempt to inflate the register class of DstReg.
2083 if (!CP
.isPhys() && RegClassInfo
.isProperSubClass(CP
.getNewRC()))
2084 InflateRegs
.push_back(CP
.getDstReg());
2086 // CopyMI has been erased by joinIntervals at this point. Remove it from
2087 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
2088 // to the work list. This keeps ErasedInstrs from growing needlessly.
2089 ErasedInstrs
.erase(CopyMI
);
2091 // Rewrite all SrcReg operands to DstReg.
2092 // Also update DstReg operands to include DstIdx if it is set.
2094 updateRegDefsUses(CP
.getDstReg(), CP
.getDstReg(), CP
.getDstIdx());
2095 updateRegDefsUses(CP
.getSrcReg(), CP
.getDstReg(), CP
.getSrcIdx());
2097 // Shrink subregister ranges if necessary.
2098 if (ShrinkMask
.any()) {
2099 LiveInterval
&LI
= LIS
->getInterval(CP
.getDstReg());
2100 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
2101 if ((S
.LaneMask
& ShrinkMask
).none())
2103 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S
.LaneMask
)
2105 LIS
->shrinkToUses(S
, LI
.reg());
2107 LI
.removeEmptySubRanges();
2110 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
2111 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
2112 // is not up-to-date, need to update the merged live interval here.
2113 if (ToBeUpdated
.count(CP
.getSrcReg()))
2114 ShrinkMainRange
= true;
2116 if (ShrinkMainRange
) {
2117 LiveInterval
&LI
= LIS
->getInterval(CP
.getDstReg());
2121 // SrcReg is guaranteed to be the register whose live interval that is
2123 LIS
->removeInterval(CP
.getSrcReg());
2125 // Update regalloc hint.
2126 TRI
->updateRegAllocHint(CP
.getSrcReg(), CP
.getDstReg(), *MF
);
2129 dbgs() << "\tSuccess: " << printReg(CP
.getSrcReg(), TRI
, CP
.getSrcIdx())
2130 << " -> " << printReg(CP
.getDstReg(), TRI
, CP
.getDstIdx()) << '\n';
2131 dbgs() << "\tResult = ";
2133 dbgs() << printReg(CP
.getDstReg(), TRI
);
2135 dbgs() << LIS
->getInterval(CP
.getDstReg());
2143 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair
&CP
) {
2144 Register DstReg
= CP
.getDstReg();
2145 Register SrcReg
= CP
.getSrcReg();
2146 assert(CP
.isPhys() && "Must be a physreg copy");
2147 assert(MRI
->isReserved(DstReg
) && "Not a reserved register");
2148 LiveInterval
&RHS
= LIS
->getInterval(SrcReg
);
2149 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS
<< '\n');
2151 assert(RHS
.containsOneValue() && "Invalid join with reserved register");
2153 // Optimization for reserved registers like ESP. We can only merge with a
2154 // reserved physreg if RHS has a single value that is a copy of DstReg.
2155 // The live range of the reserved register will look like a set of dead defs
2156 // - we don't properly track the live range of reserved registers.
2158 // Deny any overlapping intervals. This depends on all the reserved
2159 // register live ranges to look like dead defs.
2160 if (!MRI
->isConstantPhysReg(DstReg
)) {
2161 for (MCRegUnitIterator
UI(DstReg
, TRI
); UI
.isValid(); ++UI
) {
2162 // Abort if not all the regunits are reserved.
2163 for (MCRegUnitRootIterator
RI(*UI
, TRI
); RI
.isValid(); ++RI
) {
2164 if (!MRI
->isReserved(*RI
))
2167 if (RHS
.overlaps(LIS
->getRegUnit(*UI
))) {
2168 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI
, TRI
)
2174 // We must also check for overlaps with regmask clobbers.
2175 BitVector RegMaskUsable
;
2176 if (LIS
->checkRegMaskInterference(RHS
, RegMaskUsable
) &&
2177 !RegMaskUsable
.test(DstReg
)) {
2178 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2183 // Skip any value computations, we are not adding new values to the
2184 // reserved register. Also skip merging the live ranges, the reserved
2185 // register live range doesn't need to be accurate as long as all the
2188 // Delete the identity copy.
2189 MachineInstr
*CopyMI
;
2190 if (CP
.isFlipped()) {
2191 // Physreg is copied into vreg
2192 // %y = COPY %physreg_x
2193 // ... //< no other def of %physreg_x here
2198 CopyMI
= MRI
->getVRegDef(SrcReg
);
2200 // VReg is copied into physreg:
2202 // ... //< no other def or use of %physreg_x here
2203 // %physreg_x = COPY %y
2207 if (!MRI
->hasOneNonDBGUse(SrcReg
)) {
2208 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2212 if (!LIS
->intervalIsInOneMBB(RHS
)) {
2213 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2217 MachineInstr
&DestMI
= *MRI
->getVRegDef(SrcReg
);
2218 CopyMI
= &*MRI
->use_instr_nodbg_begin(SrcReg
);
2219 SlotIndex CopyRegIdx
= LIS
->getInstructionIndex(*CopyMI
).getRegSlot();
2220 SlotIndex DestRegIdx
= LIS
->getInstructionIndex(DestMI
).getRegSlot();
2222 if (!MRI
->isConstantPhysReg(DstReg
)) {
2223 // We checked above that there are no interfering defs of the physical
2224 // register. However, for this case, where we intend to move up the def of
2225 // the physical register, we also need to check for interfering uses.
2226 SlotIndexes
*Indexes
= LIS
->getSlotIndexes();
2227 for (SlotIndex SI
= Indexes
->getNextNonNullIndex(DestRegIdx
);
2228 SI
!= CopyRegIdx
; SI
= Indexes
->getNextNonNullIndex(SI
)) {
2229 MachineInstr
*MI
= LIS
->getInstructionFromIndex(SI
);
2230 if (MI
->readsRegister(DstReg
, TRI
)) {
2231 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI
);
2237 // We're going to remove the copy which defines a physical reserved
2238 // register, so remove its valno, etc.
2239 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2240 << printReg(DstReg
, TRI
) << " at " << CopyRegIdx
<< "\n");
2242 LIS
->removePhysRegDefAt(DstReg
.asMCReg(), CopyRegIdx
);
2243 // Create a new dead def at the new def location.
2244 for (MCRegUnitIterator
UI(DstReg
, TRI
); UI
.isValid(); ++UI
) {
2245 LiveRange
&LR
= LIS
->getRegUnit(*UI
);
2246 LR
.createDeadDef(DestRegIdx
, LIS
->getVNInfoAllocator());
2250 deleteInstr(CopyMI
);
2252 // We don't track kills for reserved registers.
2253 MRI
->clearKillFlags(CP
.getSrcReg());
2258 //===----------------------------------------------------------------------===//
2259 // Interference checking and interval joining
2260 //===----------------------------------------------------------------------===//
2262 // In the easiest case, the two live ranges being joined are disjoint, and
2263 // there is no interference to consider. It is quite common, though, to have
2264 // overlapping live ranges, and we need to check if the interference can be
2267 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2268 // This means that two SSA values overlap if and only if the def of one value
2269 // is contained in the live range of the other value. As a special case, the
2270 // overlapping values can be defined at the same index.
2272 // The interference from an overlapping def can be resolved in these cases:
2274 // 1. Coalescable copies. The value is defined by a copy that would become an
2275 // identity copy after joining SrcReg and DstReg. The copy instruction will
2276 // be removed, and the value will be merged with the source value.
2278 // There can be several copies back and forth, causing many values to be
2279 // merged into one. We compute a list of ultimate values in the joined live
2280 // range as well as a mappings from the old value numbers.
2282 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2283 // predecessors have a live out value. It doesn't cause real interference,
2284 // and can be merged into the value it overlaps. Like a coalescable copy, it
2285 // can be erased after joining.
2287 // 3. Copy of external value. The overlapping def may be a copy of a value that
2288 // is already in the other register. This is like a coalescable copy, but
2289 // the live range of the source register must be trimmed after erasing the
2290 // copy instruction:
2293 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
2295 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2296 // defining one lane at a time:
2298 // %dst:ssub0<def,read-undef> = FOO
2300 // %dst:ssub1 = COPY %src
2302 // The live range of %src overlaps the %dst value defined by FOO, but
2303 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2304 // which was undef anyway.
2306 // The value mapping is more complicated in this case. The final live range
2307 // will have different value numbers for both FOO and BAR, but there is no
2308 // simple mapping from old to new values. It may even be necessary to add
2311 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2312 // is live, but never read. This can happen because we don't compute
2313 // individual live ranges per lane.
2317 // %dst:ssub1 = COPY %src
2319 // This kind of interference is only resolved locally. If the clobbered
2320 // lane value escapes the block, the join is aborted.
2324 /// Track information about values in a single virtual register about to be
2325 /// joined. Objects of this class are always created in pairs - one for each
2326 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2329 /// Live range we work on.
2332 /// (Main) register we work on.
2335 /// Reg (and therefore the values in this liverange) will end up as
2336 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2338 const unsigned SubIdx
;
2340 /// The LaneMask that this liverange will occupy the coalesced register. May
2341 /// be smaller than the lanemask produced by SubIdx when merging subranges.
2342 const LaneBitmask LaneMask
;
2344 /// This is true when joining sub register ranges, false when joining main
2346 const bool SubRangeJoin
;
2348 /// Whether the current LiveInterval tracks subregister liveness.
2349 const bool TrackSubRegLiveness
;
2351 /// Values that will be present in the final live range.
2352 SmallVectorImpl
<VNInfo
*> &NewVNInfo
;
2354 const CoalescerPair
&CP
;
2356 SlotIndexes
*Indexes
;
2357 const TargetRegisterInfo
*TRI
;
2359 /// Value number assignments. Maps value numbers in LI to entries in
2360 /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2361 SmallVector
<int, 8> Assignments
;
2364 /// Conflict resolution for overlapping values.
2365 enum ConflictResolution
{
2366 /// No overlap, simply keep this value.
2369 /// Merge this value into OtherVNI and erase the defining instruction.
2370 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2374 /// Merge this value into OtherVNI but keep the defining instruction.
2375 /// This is for the special case where OtherVNI is defined by the same
2379 /// Keep this value, and have it replace OtherVNI where possible. This
2380 /// complicates value mapping since OtherVNI maps to two different values
2381 /// before and after this def.
2382 /// Used when clobbering undefined or dead lanes.
2385 /// Unresolved conflict. Visit later when all values have been mapped.
2388 /// Unresolvable conflict. Abort the join.
2393 /// Per-value info for LI. The lane bit masks are all relative to the final
2394 /// joined register, so they can be compared directly between SrcReg and
2397 ConflictResolution Resolution
= CR_Keep
;
2399 /// Lanes written by this def, 0 for unanalyzed values.
2400 LaneBitmask WriteLanes
;
2402 /// Lanes with defined values in this register. Other lanes are undef and
2403 /// safe to clobber.
2404 LaneBitmask ValidLanes
;
2406 /// Value in LI being redefined by this def.
2407 VNInfo
*RedefVNI
= nullptr;
2409 /// Value in the other live range that overlaps this def, if any.
2410 VNInfo
*OtherVNI
= nullptr;
2412 /// Is this value an IMPLICIT_DEF that can be erased?
2414 /// IMPLICIT_DEF values should only exist at the end of a basic block that
2415 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2416 /// safely erased if they are overlapping a live value in the other live
2419 /// Weird control flow graphs and incomplete PHI handling in
2420 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2421 /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2423 bool ErasableImplicitDef
= false;
2425 /// True when the live range of this value will be pruned because of an
2426 /// overlapping CR_Replace value in the other live range.
2427 bool Pruned
= false;
2429 /// True once Pruned above has been computed.
2430 bool PrunedComputed
= false;
2432 /// True if this value is determined to be identical to OtherVNI
2433 /// (in valuesIdentical). This is used with CR_Erase where the erased
2434 /// copy is redundant, i.e. the source value is already the same as
2435 /// the destination. In such cases the subranges need to be updated
2436 /// properly. See comment at pruneSubRegValues for more info.
2437 bool Identical
= false;
2441 bool isAnalyzed() const { return WriteLanes
.any(); }
2444 /// One entry per value number in LI.
2445 SmallVector
<Val
, 8> Vals
;
2447 /// Compute the bitmask of lanes actually written by DefMI.
2448 /// Set Redef if there are any partial register definitions that depend on the
2449 /// previous value of the register.
2450 LaneBitmask
computeWriteLanes(const MachineInstr
*DefMI
, bool &Redef
) const;
2452 /// Find the ultimate value that VNI was copied from.
2453 std::pair
<const VNInfo
*, Register
> followCopyChain(const VNInfo
*VNI
) const;
2455 bool valuesIdentical(VNInfo
*Value0
, VNInfo
*Value1
, const JoinVals
&Other
) const;
2457 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2458 /// Return a conflict resolution when possible, but leave the hard cases as
2460 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2461 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2462 /// The recursion always goes upwards in the dominator tree, making loops
2464 ConflictResolution
analyzeValue(unsigned ValNo
, JoinVals
&Other
);
2466 /// Compute the value assignment for ValNo in RI.
2467 /// This may be called recursively by analyzeValue(), but never for a ValNo on
2469 void computeAssignment(unsigned ValNo
, JoinVals
&Other
);
2471 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2472 /// the extent of the tainted lanes in the block.
2474 /// Multiple values in Other.LR can be affected since partial redefinitions
2475 /// can preserve previously tainted lanes.
2477 /// 1 %dst = VLOAD <-- Define all lanes in %dst
2478 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
2479 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
2480 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2482 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2483 /// entry to TaintedVals.
2485 /// Returns false if the tainted lanes extend beyond the basic block.
2487 taintExtent(unsigned ValNo
, LaneBitmask TaintedLanes
, JoinVals
&Other
,
2488 SmallVectorImpl
<std::pair
<SlotIndex
, LaneBitmask
>> &TaintExtent
);
2490 /// Return true if MI uses any of the given Lanes from Reg.
2491 /// This does not include partial redefinitions of Reg.
2492 bool usesLanes(const MachineInstr
&MI
, Register
, unsigned, LaneBitmask
) const;
2494 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2497 /// %dst = COPY %src
2498 /// %src = COPY %dst <-- This value to be pruned.
2499 /// %dst = COPY %src <-- This value is a copy of a pruned value.
2500 bool isPrunedValue(unsigned ValNo
, JoinVals
&Other
);
2503 JoinVals(LiveRange
&LR
, Register Reg
, unsigned SubIdx
, LaneBitmask LaneMask
,
2504 SmallVectorImpl
<VNInfo
*> &newVNInfo
, const CoalescerPair
&cp
,
2505 LiveIntervals
*lis
, const TargetRegisterInfo
*TRI
, bool SubRangeJoin
,
2506 bool TrackSubRegLiveness
)
2507 : LR(LR
), Reg(Reg
), SubIdx(SubIdx
), LaneMask(LaneMask
),
2508 SubRangeJoin(SubRangeJoin
), TrackSubRegLiveness(TrackSubRegLiveness
),
2509 NewVNInfo(newVNInfo
), CP(cp
), LIS(lis
), Indexes(LIS
->getSlotIndexes()),
2510 TRI(TRI
), Assignments(LR
.getNumValNums(), -1),
2511 Vals(LR
.getNumValNums()) {}
2513 /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2514 /// Returns false if any conflicts were impossible to resolve.
2515 bool mapValues(JoinVals
&Other
);
2517 /// Try to resolve conflicts that require all values to be mapped.
2518 /// Returns false if any conflicts were impossible to resolve.
2519 bool resolveConflicts(JoinVals
&Other
);
2521 /// Prune the live range of values in Other.LR where they would conflict with
2522 /// CR_Replace values in LR. Collect end points for restoring the live range
2524 void pruneValues(JoinVals
&Other
, SmallVectorImpl
<SlotIndex
> &EndPoints
,
2527 /// Removes subranges starting at copies that get removed. This sometimes
2528 /// happens when undefined subranges are copied around. These ranges contain
2529 /// no useful information and can be removed.
2530 void pruneSubRegValues(LiveInterval
&LI
, LaneBitmask
&ShrinkMask
);
2532 /// Pruning values in subranges can lead to removing segments in these
2533 /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2534 /// the main range also need to be removed. This function will mark
2535 /// the corresponding values in the main range as pruned, so that
2536 /// eraseInstrs can do the final cleanup.
2537 /// The parameter @p LI must be the interval whose main range is the
2539 void pruneMainSegments(LiveInterval
&LI
, bool &ShrinkMainRange
);
2541 /// Erase any machine instructions that have been coalesced away.
2542 /// Add erased instructions to ErasedInstrs.
2543 /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2544 /// the erased instrs.
2545 void eraseInstrs(SmallPtrSetImpl
<MachineInstr
*> &ErasedInstrs
,
2546 SmallVectorImpl
<Register
> &ShrinkRegs
,
2547 LiveInterval
*LI
= nullptr);
2549 /// Remove liverange defs at places where implicit defs will be removed.
2550 void removeImplicitDefs();
2552 /// Get the value assignments suitable for passing to LiveInterval::join.
2553 const int *getAssignments() const { return Assignments
.data(); }
2555 /// Get the conflict resolution for a value number.
2556 ConflictResolution
getResolution(unsigned Num
) const {
2557 return Vals
[Num
].Resolution
;
2561 } // end anonymous namespace
2563 LaneBitmask
JoinVals::computeWriteLanes(const MachineInstr
*DefMI
, bool &Redef
)
2566 for (const MachineOperand
&MO
: DefMI
->operands()) {
2567 if (!MO
.isReg() || MO
.getReg() != Reg
|| !MO
.isDef())
2569 L
|= TRI
->getSubRegIndexLaneMask(
2570 TRI
->composeSubRegIndices(SubIdx
, MO
.getSubReg()));
2577 std::pair
<const VNInfo
*, Register
>
2578 JoinVals::followCopyChain(const VNInfo
*VNI
) const {
2579 Register TrackReg
= Reg
;
2581 while (!VNI
->isPHIDef()) {
2582 SlotIndex Def
= VNI
->def
;
2583 MachineInstr
*MI
= Indexes
->getInstructionFromIndex(Def
);
2584 assert(MI
&& "No defining instruction");
2585 if (!MI
->isFullCopy())
2586 return std::make_pair(VNI
, TrackReg
);
2587 Register SrcReg
= MI
->getOperand(1).getReg();
2588 if (!SrcReg
.isVirtual())
2589 return std::make_pair(VNI
, TrackReg
);
2591 const LiveInterval
&LI
= LIS
->getInterval(SrcReg
);
2592 const VNInfo
*ValueIn
;
2593 // No subrange involved.
2594 if (!SubRangeJoin
|| !LI
.hasSubRanges()) {
2595 LiveQueryResult LRQ
= LI
.Query(Def
);
2596 ValueIn
= LRQ
.valueIn();
2598 // Query subranges. Ensure that all matching ones take us to the same def
2599 // (allowing some of them to be undef).
2601 for (const LiveInterval::SubRange
&S
: LI
.subranges()) {
2602 // Transform lanemask to a mask in the joined live interval.
2603 LaneBitmask SMask
= TRI
->composeSubRegIndexLaneMask(SubIdx
, S
.LaneMask
);
2604 if ((SMask
& LaneMask
).none())
2606 LiveQueryResult LRQ
= S
.Query(Def
);
2608 ValueIn
= LRQ
.valueIn();
2611 if (LRQ
.valueIn() && ValueIn
!= LRQ
.valueIn())
2612 return std::make_pair(VNI
, TrackReg
);
2615 if (ValueIn
== nullptr) {
2616 // Reaching an undefined value is legitimate, for example:
2618 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef
2619 // 2 %1 = COPY %0 ;; %1 is defined here.
2620 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition,
2621 // ;; but it's equivalent to "undef".
2622 return std::make_pair(nullptr, SrcReg
);
2627 return std::make_pair(VNI
, TrackReg
);
2630 bool JoinVals::valuesIdentical(VNInfo
*Value0
, VNInfo
*Value1
,
2631 const JoinVals
&Other
) const {
2632 const VNInfo
*Orig0
;
2634 std::tie(Orig0
, Reg0
) = followCopyChain(Value0
);
2635 if (Orig0
== Value1
&& Reg0
== Other
.Reg
)
2638 const VNInfo
*Orig1
;
2640 std::tie(Orig1
, Reg1
) = Other
.followCopyChain(Value1
);
2641 // If both values are undefined, and the source registers are the same
2642 // register, the values are identical. Filter out cases where only one
2643 // value is defined.
2644 if (Orig0
== nullptr || Orig1
== nullptr)
2645 return Orig0
== Orig1
&& Reg0
== Reg1
;
2647 // The values are equal if they are defined at the same place and use the
2648 // same register. Note that we cannot compare VNInfos directly as some of
2649 // them might be from a copy created in mergeSubRangeInto() while the other
2650 // is from the original LiveInterval.
2651 return Orig0
->def
== Orig1
->def
&& Reg0
== Reg1
;
2654 JoinVals::ConflictResolution
2655 JoinVals::analyzeValue(unsigned ValNo
, JoinVals
&Other
) {
2656 Val
&V
= Vals
[ValNo
];
2657 assert(!V
.isAnalyzed() && "Value has already been analyzed!");
2658 VNInfo
*VNI
= LR
.getValNumInfo(ValNo
);
2659 if (VNI
->isUnused()) {
2660 V
.WriteLanes
= LaneBitmask::getAll();
2664 // Get the instruction defining this value, compute the lanes written.
2665 const MachineInstr
*DefMI
= nullptr;
2666 if (VNI
->isPHIDef()) {
2667 // Conservatively assume that all lanes in a PHI are valid.
2668 LaneBitmask Lanes
= SubRangeJoin
? LaneBitmask::getLane(0)
2669 : TRI
->getSubRegIndexLaneMask(SubIdx
);
2670 V
.ValidLanes
= V
.WriteLanes
= Lanes
;
2672 DefMI
= Indexes
->getInstructionFromIndex(VNI
->def
);
2673 assert(DefMI
!= nullptr);
2675 // We don't care about the lanes when joining subregister ranges.
2676 V
.WriteLanes
= V
.ValidLanes
= LaneBitmask::getLane(0);
2677 if (DefMI
->isImplicitDef()) {
2678 V
.ValidLanes
= LaneBitmask::getNone();
2679 V
.ErasableImplicitDef
= true;
2683 V
.ValidLanes
= V
.WriteLanes
= computeWriteLanes(DefMI
, Redef
);
2685 // If this is a read-modify-write instruction, there may be more valid
2686 // lanes than the ones written by this instruction.
2687 // This only covers partial redef operands. DefMI may have normal use
2688 // operands reading the register. They don't contribute valid lanes.
2690 // This adds ssub1 to the set of valid lanes in %src:
2694 // This leaves only ssub1 valid, making any other lanes undef:
2696 // %src:ssub1<def,read-undef> = FOO %src:ssub2
2698 // The <read-undef> flag on the def operand means that old lane values are
2701 V
.RedefVNI
= LR
.Query(VNI
->def
).valueIn();
2702 assert((TrackSubRegLiveness
|| V
.RedefVNI
) &&
2703 "Instruction is reading nonexistent value");
2704 if (V
.RedefVNI
!= nullptr) {
2705 computeAssignment(V
.RedefVNI
->id
, Other
);
2706 V
.ValidLanes
|= Vals
[V
.RedefVNI
->id
].ValidLanes
;
2710 // An IMPLICIT_DEF writes undef values.
2711 if (DefMI
->isImplicitDef()) {
2712 // We normally expect IMPLICIT_DEF values to be live only until the end
2713 // of their block. If the value is really live longer and gets pruned in
2714 // another block, this flag is cleared again.
2716 // Clearing the valid lanes is deferred until it is sure this can be
2718 V
.ErasableImplicitDef
= true;
2723 // Find the value in Other that overlaps VNI->def, if any.
2724 LiveQueryResult OtherLRQ
= Other
.LR
.Query(VNI
->def
);
2726 // It is possible that both values are defined by the same instruction, or
2727 // the values are PHIs defined in the same block. When that happens, the two
2728 // values should be merged into one, but not into any preceding value.
2729 // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2730 if (VNInfo
*OtherVNI
= OtherLRQ
.valueDefined()) {
2731 assert(SlotIndex::isSameInstr(VNI
->def
, OtherVNI
->def
) && "Broken LRQ");
2733 // One value stays, the other is merged. Keep the earlier one, or the first
2735 if (OtherVNI
->def
< VNI
->def
)
2736 Other
.computeAssignment(OtherVNI
->id
, *this);
2737 else if (VNI
->def
< OtherVNI
->def
&& OtherLRQ
.valueIn()) {
2738 // This is an early-clobber def overlapping a live-in value in the other
2739 // register. Not mergeable.
2740 V
.OtherVNI
= OtherLRQ
.valueIn();
2741 return CR_Impossible
;
2743 V
.OtherVNI
= OtherVNI
;
2744 Val
&OtherV
= Other
.Vals
[OtherVNI
->id
];
2745 // Keep this value, check for conflicts when analyzing OtherVNI.
2746 if (!OtherV
.isAnalyzed())
2748 // Both sides have been analyzed now.
2749 // Allow overlapping PHI values. Any real interference would show up in a
2750 // predecessor, the PHI itself can't introduce any conflicts.
2751 if (VNI
->isPHIDef())
2753 if ((V
.ValidLanes
& OtherV
.ValidLanes
).any())
2754 // Overlapping lanes can't be resolved.
2755 return CR_Impossible
;
2760 // No simultaneous def. Is Other live at the def?
2761 V
.OtherVNI
= OtherLRQ
.valueIn();
2763 // No overlap, no conflict.
2766 assert(!SlotIndex::isSameInstr(VNI
->def
, V
.OtherVNI
->def
) && "Broken LRQ");
2768 // We have overlapping values, or possibly a kill of Other.
2769 // Recursively compute assignments up the dominator tree.
2770 Other
.computeAssignment(V
.OtherVNI
->id
, *this);
2771 Val
&OtherV
= Other
.Vals
[V
.OtherVNI
->id
];
2773 if (OtherV
.ErasableImplicitDef
) {
2774 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2775 // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2776 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2779 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2780 // to erase the IMPLICIT_DEF instruction.
2782 DefMI
->getParent() != Indexes
->getMBBFromIndex(V
.OtherVNI
->def
)) {
2783 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V
.OtherVNI
->def
2785 << printMBBReference(*DefMI
->getParent())
2786 << ", keeping it.\n");
2787 OtherV
.ErasableImplicitDef
= false;
2789 // We deferred clearing these lanes in case we needed to save them
2790 OtherV
.ValidLanes
&= ~OtherV
.WriteLanes
;
2794 // Allow overlapping PHI values. Any real interference would show up in a
2795 // predecessor, the PHI itself can't introduce any conflicts.
2796 if (VNI
->isPHIDef())
2799 // Check for simple erasable conflicts.
2800 if (DefMI
->isImplicitDef())
2803 // Include the non-conflict where DefMI is a coalescable copy that kills
2804 // OtherVNI. We still want the copy erased and value numbers merged.
2805 if (CP
.isCoalescable(DefMI
)) {
2806 // Some of the lanes copied from OtherVNI may be undef, making them undef
2808 V
.ValidLanes
&= ~V
.WriteLanes
| OtherV
.ValidLanes
;
2812 // This may not be a real conflict if DefMI simply kills Other and defines
2814 if (OtherLRQ
.isKill() && OtherLRQ
.endPoint() <= VNI
->def
)
2817 // Handle the case where VNI and OtherVNI can be proven to be identical:
2819 // %other = COPY %ext
2820 // %this = COPY %ext <-- Erase this copy
2822 if (DefMI
->isFullCopy() && !CP
.isPartial() &&
2823 valuesIdentical(VNI
, V
.OtherVNI
, Other
)) {
2828 // The remaining checks apply to the lanes, which aren't tracked here. This
2829 // was already decided to be OK via the following CR_Replace condition.
2834 // If the lanes written by this instruction were all undef in OtherVNI, it is
2835 // still safe to join the live ranges. This can't be done with a simple value
2836 // mapping, though - OtherVNI will map to multiple values:
2838 // 1 %dst:ssub0 = FOO <-- OtherVNI
2839 // 2 %src = BAR <-- VNI
2840 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
2841 // 4 BAZ killed %dst
2842 // 5 QUUX killed %src
2844 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2845 // handles this complex value mapping.
2846 if ((V
.WriteLanes
& OtherV
.ValidLanes
).none())
2849 // If the other live range is killed by DefMI and the live ranges are still
2850 // overlapping, it must be because we're looking at an early clobber def:
2852 // %dst<def,early-clobber> = ASM killed %src
2854 // In this case, it is illegal to merge the two live ranges since the early
2855 // clobber def would clobber %src before it was read.
2856 if (OtherLRQ
.isKill()) {
2857 // This case where the def doesn't overlap the kill is handled above.
2858 assert(VNI
->def
.isEarlyClobber() &&
2859 "Only early clobber defs can overlap a kill");
2860 return CR_Impossible
;
2863 // VNI is clobbering live lanes in OtherVNI, but there is still the
2864 // possibility that no instructions actually read the clobbered lanes.
2865 // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2866 // Otherwise Other.RI wouldn't be live here.
2867 if ((TRI
->getSubRegIndexLaneMask(Other
.SubIdx
) & ~V
.WriteLanes
).none())
2868 return CR_Impossible
;
2870 if (TrackSubRegLiveness
) {
2871 auto &OtherLI
= LIS
->getInterval(Other
.Reg
);
2872 // If OtherVNI does not have subranges, it means all the lanes of OtherVNI
2873 // share the same live range, so we just need to check whether they have
2874 // any conflict bit in their LaneMask.
2875 if (!OtherLI
.hasSubRanges()) {
2876 LaneBitmask OtherMask
= TRI
->getSubRegIndexLaneMask(Other
.SubIdx
);
2877 return (OtherMask
& V
.WriteLanes
).none() ? CR_Replace
: CR_Impossible
;
2880 // If we are clobbering some active lanes of OtherVNI at VNI->def, it is
2881 // impossible to resolve the conflict. Otherwise, we can just replace
2882 // OtherVNI because of no real conflict.
2883 for (LiveInterval::SubRange
&OtherSR
: OtherLI
.subranges()) {
2884 LaneBitmask OtherMask
=
2885 TRI
->composeSubRegIndexLaneMask(Other
.SubIdx
, OtherSR
.LaneMask
);
2886 if ((OtherMask
& V
.WriteLanes
).none())
2889 auto OtherSRQ
= OtherSR
.Query(VNI
->def
);
2890 if (OtherSRQ
.valueIn() && OtherSRQ
.endPoint() > VNI
->def
) {
2891 // VNI is clobbering some lanes of OtherVNI, they have real conflict.
2892 return CR_Impossible
;
2896 // VNI is NOT clobbering any lane of OtherVNI, just replace OtherVNI.
2900 // We need to verify that no instructions are reading the clobbered lanes.
2901 // To save compile time, we'll only check that locally. Don't allow the
2902 // tainted value to escape the basic block.
2903 MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(VNI
->def
);
2904 if (OtherLRQ
.endPoint() >= Indexes
->getMBBEndIdx(MBB
))
2905 return CR_Impossible
;
2907 // There are still some things that could go wrong besides clobbered lanes
2908 // being read, for example OtherVNI may be only partially redefined in MBB,
2909 // and some clobbered lanes could escape the block. Save this analysis for
2910 // resolveConflicts() when all values have been mapped. We need to know
2911 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2912 // that now - the recursive analyzeValue() calls must go upwards in the
2914 return CR_Unresolved
;
2917 void JoinVals::computeAssignment(unsigned ValNo
, JoinVals
&Other
) {
2918 Val
&V
= Vals
[ValNo
];
2919 if (V
.isAnalyzed()) {
2920 // Recursion should always move up the dominator tree, so ValNo is not
2921 // supposed to reappear before it has been assigned.
2922 assert(Assignments
[ValNo
] != -1 && "Bad recursion?");
2925 switch ((V
.Resolution
= analyzeValue(ValNo
, Other
))) {
2928 // Merge this ValNo into OtherVNI.
2929 assert(V
.OtherVNI
&& "OtherVNI not assigned, can't merge.");
2930 assert(Other
.Vals
[V
.OtherVNI
->id
].isAnalyzed() && "Missing recursion");
2931 Assignments
[ValNo
] = Other
.Assignments
[V
.OtherVNI
->id
];
2932 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg
) << ':' << ValNo
<< '@'
2933 << LR
.getValNumInfo(ValNo
)->def
<< " into "
2934 << printReg(Other
.Reg
) << ':' << V
.OtherVNI
->id
<< '@'
2935 << V
.OtherVNI
->def
<< " --> @"
2936 << NewVNInfo
[Assignments
[ValNo
]]->def
<< '\n');
2939 case CR_Unresolved
: {
2940 // The other value is going to be pruned if this join is successful.
2941 assert(V
.OtherVNI
&& "OtherVNI not assigned, can't prune");
2942 Val
&OtherV
= Other
.Vals
[V
.OtherVNI
->id
];
2943 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2945 if (OtherV
.ErasableImplicitDef
&&
2946 TrackSubRegLiveness
&&
2947 (OtherV
.WriteLanes
& ~V
.ValidLanes
).any()) {
2948 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2950 OtherV
.ErasableImplicitDef
= false;
2951 // The valid lanes written by the implicit_def were speculatively cleared
2952 // before, so make this more conservative. It may be better to track this,
2953 // I haven't found a testcase where it matters.
2954 OtherV
.ValidLanes
= LaneBitmask::getAll();
2957 OtherV
.Pruned
= true;
2961 // This value number needs to go in the final joined live range.
2962 Assignments
[ValNo
] = NewVNInfo
.size();
2963 NewVNInfo
.push_back(LR
.getValNumInfo(ValNo
));
2968 bool JoinVals::mapValues(JoinVals
&Other
) {
2969 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
2970 computeAssignment(i
, Other
);
2971 if (Vals
[i
].Resolution
== CR_Impossible
) {
2972 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg
) << ':' << i
2973 << '@' << LR
.getValNumInfo(i
)->def
<< '\n');
2981 taintExtent(unsigned ValNo
, LaneBitmask TaintedLanes
, JoinVals
&Other
,
2982 SmallVectorImpl
<std::pair
<SlotIndex
, LaneBitmask
>> &TaintExtent
) {
2983 VNInfo
*VNI
= LR
.getValNumInfo(ValNo
);
2984 MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(VNI
->def
);
2985 SlotIndex MBBEnd
= Indexes
->getMBBEndIdx(MBB
);
2987 // Scan Other.LR from VNI.def to MBBEnd.
2988 LiveInterval::iterator OtherI
= Other
.LR
.find(VNI
->def
);
2989 assert(OtherI
!= Other
.LR
.end() && "No conflict?");
2991 // OtherI is pointing to a tainted value. Abort the join if the tainted
2992 // lanes escape the block.
2993 SlotIndex End
= OtherI
->end
;
2994 if (End
>= MBBEnd
) {
2995 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other
.Reg
) << ':'
2996 << OtherI
->valno
->id
<< '@' << OtherI
->start
<< '\n');
2999 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other
.Reg
) << ':'
3000 << OtherI
->valno
->id
<< '@' << OtherI
->start
<< " to "
3002 // A dead def is not a problem.
3005 TaintExtent
.push_back(std::make_pair(End
, TaintedLanes
));
3007 // Check for another def in the MBB.
3008 if (++OtherI
== Other
.LR
.end() || OtherI
->start
>= MBBEnd
)
3011 // Lanes written by the new def are no longer tainted.
3012 const Val
&OV
= Other
.Vals
[OtherI
->valno
->id
];
3013 TaintedLanes
&= ~OV
.WriteLanes
;
3016 } while (TaintedLanes
.any());
3020 bool JoinVals::usesLanes(const MachineInstr
&MI
, Register Reg
, unsigned SubIdx
,
3021 LaneBitmask Lanes
) const {
3022 if (MI
.isDebugOrPseudoInstr())
3024 for (const MachineOperand
&MO
: MI
.operands()) {
3025 if (!MO
.isReg() || MO
.isDef() || MO
.getReg() != Reg
)
3029 unsigned S
= TRI
->composeSubRegIndices(SubIdx
, MO
.getSubReg());
3030 if ((Lanes
& TRI
->getSubRegIndexLaneMask(S
)).any())
3036 bool JoinVals::resolveConflicts(JoinVals
&Other
) {
3037 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3039 assert(V
.Resolution
!= CR_Impossible
&& "Unresolvable conflict");
3040 if (V
.Resolution
!= CR_Unresolved
)
3042 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg
) << ':' << i
<< '@'
3043 << LR
.getValNumInfo(i
)->def
3044 << ' ' << PrintLaneMask(LaneMask
) << '\n');
3049 assert(V
.OtherVNI
&& "Inconsistent conflict resolution.");
3050 VNInfo
*VNI
= LR
.getValNumInfo(i
);
3051 const Val
&OtherV
= Other
.Vals
[V
.OtherVNI
->id
];
3053 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
3054 // join, those lanes will be tainted with a wrong value. Get the extent of
3055 // the tainted lanes.
3056 LaneBitmask TaintedLanes
= V
.WriteLanes
& OtherV
.ValidLanes
;
3057 SmallVector
<std::pair
<SlotIndex
, LaneBitmask
>, 8> TaintExtent
;
3058 if (!taintExtent(i
, TaintedLanes
, Other
, TaintExtent
))
3059 // Tainted lanes would extend beyond the basic block.
3062 assert(!TaintExtent
.empty() && "There should be at least one conflict.");
3064 // Now look at the instructions from VNI->def to TaintExtent (inclusive).
3065 MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(VNI
->def
);
3066 MachineBasicBlock::iterator MI
= MBB
->begin();
3067 if (!VNI
->isPHIDef()) {
3068 MI
= Indexes
->getInstructionFromIndex(VNI
->def
);
3069 if (!VNI
->def
.isEarlyClobber()) {
3070 // No need to check the instruction defining VNI for reads.
3074 assert(!SlotIndex::isSameInstr(VNI
->def
, TaintExtent
.front().first
) &&
3075 "Interference ends on VNI->def. Should have been handled earlier");
3076 MachineInstr
*LastMI
=
3077 Indexes
->getInstructionFromIndex(TaintExtent
.front().first
);
3078 assert(LastMI
&& "Range must end at a proper instruction");
3079 unsigned TaintNum
= 0;
3081 assert(MI
!= MBB
->end() && "Bad LastMI");
3082 if (usesLanes(*MI
, Other
.Reg
, Other
.SubIdx
, TaintedLanes
)) {
3083 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI
);
3086 // LastMI is the last instruction to use the current value.
3087 if (&*MI
== LastMI
) {
3088 if (++TaintNum
== TaintExtent
.size())
3090 LastMI
= Indexes
->getInstructionFromIndex(TaintExtent
[TaintNum
].first
);
3091 assert(LastMI
&& "Range must end at a proper instruction");
3092 TaintedLanes
= TaintExtent
[TaintNum
].second
;
3097 // The tainted lanes are unused.
3098 V
.Resolution
= CR_Replace
;
3104 bool JoinVals::isPrunedValue(unsigned ValNo
, JoinVals
&Other
) {
3105 Val
&V
= Vals
[ValNo
];
3106 if (V
.Pruned
|| V
.PrunedComputed
)
3109 if (V
.Resolution
!= CR_Erase
&& V
.Resolution
!= CR_Merge
)
3112 // Follow copies up the dominator tree and check if any intermediate value
3114 V
.PrunedComputed
= true;
3115 V
.Pruned
= Other
.isPrunedValue(V
.OtherVNI
->id
, *this);
3119 void JoinVals::pruneValues(JoinVals
&Other
,
3120 SmallVectorImpl
<SlotIndex
> &EndPoints
,
3121 bool changeInstrs
) {
3122 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3123 SlotIndex Def
= LR
.getValNumInfo(i
)->def
;
3124 switch (Vals
[i
].Resolution
) {
3128 // This value takes precedence over the value in Other.LR.
3129 LIS
->pruneValue(Other
.LR
, Def
, &EndPoints
);
3130 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
3131 // instructions are only inserted to provide a live-out value for PHI
3132 // predecessors, so the instruction should simply go away once its value
3133 // has been replaced.
3134 Val
&OtherV
= Other
.Vals
[Vals
[i
].OtherVNI
->id
];
3135 bool EraseImpDef
= OtherV
.ErasableImplicitDef
&&
3136 OtherV
.Resolution
== CR_Keep
;
3137 if (!Def
.isBlock()) {
3139 // Remove <def,read-undef> flags. This def is now a partial redef.
3140 // Also remove dead flags since the joined live range will
3141 // continue past this instruction.
3142 for (MachineOperand
&MO
:
3143 Indexes
->getInstructionFromIndex(Def
)->operands()) {
3144 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == Reg
) {
3145 if (MO
.getSubReg() != 0 && MO
.isUndef() && !EraseImpDef
)
3146 MO
.setIsUndef(false);
3147 MO
.setIsDead(false);
3151 // This value will reach instructions below, but we need to make sure
3152 // the live range also reaches the instruction at Def.
3154 EndPoints
.push_back(Def
);
3156 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other
.Reg
) << " at " << Def
3157 << ": " << Other
.LR
<< '\n');
3162 if (isPrunedValue(i
, Other
)) {
3163 // This value is ultimately a copy of a pruned value in LR or Other.LR.
3164 // We can no longer trust the value mapping computed by
3165 // computeAssignment(), the value that was originally copied could have
3167 LIS
->pruneValue(LR
, Def
, &EndPoints
);
3168 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg
) << " at "
3169 << Def
<< ": " << LR
<< '\n');
3174 llvm_unreachable("Unresolved conflicts");
3179 // Check if the segment consists of a copied live-through value (i.e. the copy
3180 // in the block only extended the liveness, of an undef value which we may need
3182 static bool isLiveThrough(const LiveQueryResult Q
) {
3183 return Q
.valueIn() && Q
.valueIn()->isPHIDef() && Q
.valueIn() == Q
.valueOut();
3186 /// Consider the following situation when coalescing the copy between
3187 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
3189 /// Main range Subrange 0004 (sub2)
3191 /// 544 %45 = COPY %28 + +
3194 /// 624 = %45.sub2 | v2 | v2
3195 /// 800 %31 = COPY %45 + + + +
3197 /// 816 %31.sub1 = ... + |
3198 /// 880 %30 = COPY %31 | v1 +
3199 /// 928 %45 = COPY %30 | + +
3200 /// | | v0 | v0 <--+
3201 /// 992B ; backedge -> bb.1 | + + |
3202 /// 1040 = %31.sub0 + |
3203 /// This value must remain
3206 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3207 /// redundant, since it copies the value from %45 back into it. The
3208 /// conflict resolution for the main range determines that %45.v0 is
3209 /// to be erased, which is ok since %31.v1 is identical to it.
3210 /// The problem happens with the subrange for sub2: it has to be live
3211 /// on exit from the block, but since 928 was actually a point of
3212 /// definition of %45.sub2, %45.sub2 was not live immediately prior
3213 /// to that definition. As a result, when 928 was erased, the value v0
3214 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3215 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3216 /// providing an incorrect value to the use at 624.
3218 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3219 /// identical, the corresponding values in subranges must also be the
3220 /// same. A redundant copy is removed because it's not needed, and not
3221 /// because it copied an undefined value, so any liveness that originated
3222 /// from that copy cannot disappear. When pruning a value that started
3223 /// at the removed copy, the corresponding identical value must be
3224 /// extended to replace it.
3225 void JoinVals::pruneSubRegValues(LiveInterval
&LI
, LaneBitmask
&ShrinkMask
) {
3226 // Look for values being erased.
3227 bool DidPrune
= false;
3228 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3230 // We should trigger in all cases in which eraseInstrs() does something.
3231 // match what eraseInstrs() is doing, print a message so
3232 if (V
.Resolution
!= CR_Erase
&&
3233 (V
.Resolution
!= CR_Keep
|| !V
.ErasableImplicitDef
|| !V
.Pruned
))
3236 // Check subranges at the point where the copy will be removed.
3237 SlotIndex Def
= LR
.getValNumInfo(i
)->def
;
3240 OtherDef
= V
.OtherVNI
->def
;
3242 // Print message so mismatches with eraseInstrs() can be diagnosed.
3243 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3245 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
3246 LiveQueryResult Q
= S
.Query(Def
);
3248 // If a subrange starts at the copy then an undefined value has been
3249 // copied and we must remove that subrange value as well.
3250 VNInfo
*ValueOut
= Q
.valueOutOrDead();
3251 if (ValueOut
!= nullptr && (Q
.valueIn() == nullptr ||
3252 (V
.Identical
&& V
.Resolution
== CR_Erase
&&
3253 ValueOut
->def
== Def
))) {
3254 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S
.LaneMask
)
3255 << " at " << Def
<< "\n");
3256 SmallVector
<SlotIndex
,8> EndPoints
;
3257 LIS
->pruneValue(S
, Def
, &EndPoints
);
3259 // Mark value number as unused.
3260 ValueOut
->markUnused();
3262 if (V
.Identical
&& S
.Query(OtherDef
).valueOutOrDead()) {
3263 // If V is identical to V.OtherVNI (and S was live at OtherDef),
3264 // then we can't simply prune V from S. V needs to be replaced
3266 LIS
->extendToIndices(S
, EndPoints
);
3269 // We may need to eliminate the subrange if the copy introduced a live
3271 if (ValueOut
->isPHIDef())
3272 ShrinkMask
|= S
.LaneMask
;
3276 // If a subrange ends at the copy, then a value was copied but only
3277 // partially used later. Shrink the subregister range appropriately.
3279 // Ultimately this calls shrinkToUses, so assuming ShrinkMask is
3280 // conservatively correct.
3281 if ((Q
.valueIn() != nullptr && Q
.valueOut() == nullptr) ||
3282 (V
.Resolution
== CR_Erase
&& isLiveThrough(Q
))) {
3283 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3284 << PrintLaneMask(S
.LaneMask
) << " at " << Def
3286 ShrinkMask
|= S
.LaneMask
;
3291 LI
.removeEmptySubRanges();
3294 /// Check if any of the subranges of @p LI contain a definition at @p Def.
3295 static bool isDefInSubRange(LiveInterval
&LI
, SlotIndex Def
) {
3296 for (LiveInterval::SubRange
&SR
: LI
.subranges()) {
3297 if (VNInfo
*VNI
= SR
.Query(Def
).valueOutOrDead())
3298 if (VNI
->def
== Def
)
3304 void JoinVals::pruneMainSegments(LiveInterval
&LI
, bool &ShrinkMainRange
) {
3305 assert(&static_cast<LiveRange
&>(LI
) == &LR
);
3307 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3308 if (Vals
[i
].Resolution
!= CR_Keep
)
3310 VNInfo
*VNI
= LR
.getValNumInfo(i
);
3311 if (VNI
->isUnused() || VNI
->isPHIDef() || isDefInSubRange(LI
, VNI
->def
))
3313 Vals
[i
].Pruned
= true;
3314 ShrinkMainRange
= true;
3318 void JoinVals::removeImplicitDefs() {
3319 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3321 if (V
.Resolution
!= CR_Keep
|| !V
.ErasableImplicitDef
|| !V
.Pruned
)
3324 VNInfo
*VNI
= LR
.getValNumInfo(i
);
3326 LR
.removeValNo(VNI
);
3330 void JoinVals::eraseInstrs(SmallPtrSetImpl
<MachineInstr
*> &ErasedInstrs
,
3331 SmallVectorImpl
<Register
> &ShrinkRegs
,
3333 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3334 // Get the def location before markUnused() below invalidates it.
3335 VNInfo
*VNI
= LR
.getValNumInfo(i
);
3336 SlotIndex Def
= VNI
->def
;
3337 switch (Vals
[i
].Resolution
) {
3339 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3340 // longer. The IMPLICIT_DEF instructions are only inserted by
3341 // PHIElimination to guarantee that all PHI predecessors have a value.
3342 if (!Vals
[i
].ErasableImplicitDef
|| !Vals
[i
].Pruned
)
3344 // Remove value number i from LR.
3345 // For intervals with subranges, removing a segment from the main range
3346 // may require extending the previous segment: for each definition of
3347 // a subregister, there will be a corresponding def in the main range.
3348 // That def may fall in the middle of a segment from another subrange.
3349 // In such cases, removing this def from the main range must be
3350 // complemented by extending the main range to account for the liveness
3351 // of the other subrange.
3352 // The new end point of the main range segment to be extended.
3354 if (LI
!= nullptr) {
3355 LiveRange::iterator I
= LR
.FindSegmentContaining(Def
);
3356 assert(I
!= LR
.end());
3357 // Do not extend beyond the end of the segment being removed.
3358 // The segment may have been pruned in preparation for joining
3363 LR
.removeValNo(VNI
);
3364 // Note that this VNInfo is reused and still referenced in NewVNInfo,
3365 // make it appear like an unused value number.
3368 if (LI
!= nullptr && LI
->hasSubRanges()) {
3369 assert(static_cast<LiveRange
*>(LI
) == &LR
);
3370 // Determine the end point based on the subrange information:
3371 // minimum of (earliest def of next segment,
3372 // latest end point of containing segment)
3374 for (LiveInterval::SubRange
&SR
: LI
->subranges()) {
3375 LiveRange::iterator I
= SR
.find(Def
);
3379 ED
= ED
.isValid() ? std::min(ED
, I
->start
) : I
->start
;
3381 LE
= LE
.isValid() ? std::max(LE
, I
->end
) : I
->end
;
3384 NewEnd
= std::min(NewEnd
, LE
);
3386 NewEnd
= std::min(NewEnd
, ED
);
3388 // We only want to do the extension if there was a subrange that
3389 // was live across Def.
3391 LiveRange::iterator S
= LR
.find(Def
);
3392 if (S
!= LR
.begin())
3393 std::prev(S
)->end
= NewEnd
;
3397 dbgs() << "\t\tremoved " << i
<< '@' << Def
<< ": " << LR
<< '\n';
3399 dbgs() << "\t\t LHS = " << *LI
<< '\n';
3405 MachineInstr
*MI
= Indexes
->getInstructionFromIndex(Def
);
3406 assert(MI
&& "No instruction to erase");
3408 Register Reg
= MI
->getOperand(1).getReg();
3409 if (Register::isVirtualRegister(Reg
) && Reg
!= CP
.getSrcReg() &&
3410 Reg
!= CP
.getDstReg())
3411 ShrinkRegs
.push_back(Reg
);
3413 ErasedInstrs
.insert(MI
);
3414 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def
<< '\t' << *MI
);
3415 LIS
->RemoveMachineInstrFromMaps(*MI
);
3416 MI
->eraseFromParent();
3425 void RegisterCoalescer::joinSubRegRanges(LiveRange
&LRange
, LiveRange
&RRange
,
3426 LaneBitmask LaneMask
,
3427 const CoalescerPair
&CP
) {
3428 SmallVector
<VNInfo
*, 16> NewVNInfo
;
3429 JoinVals
RHSVals(RRange
, CP
.getSrcReg(), CP
.getSrcIdx(), LaneMask
,
3430 NewVNInfo
, CP
, LIS
, TRI
, true, true);
3431 JoinVals
LHSVals(LRange
, CP
.getDstReg(), CP
.getDstIdx(), LaneMask
,
3432 NewVNInfo
, CP
, LIS
, TRI
, true, true);
3434 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3435 // We should be able to resolve all conflicts here as we could successfully do
3436 // it on the mainrange already. There is however a problem when multiple
3437 // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3439 if (!LHSVals
.mapValues(RHSVals
) || !RHSVals
.mapValues(LHSVals
)) {
3440 // We already determined that it is legal to merge the intervals, so this
3441 // should never fail.
3442 llvm_unreachable("*** Couldn't join subrange!\n");
3444 if (!LHSVals
.resolveConflicts(RHSVals
) ||
3445 !RHSVals
.resolveConflicts(LHSVals
)) {
3446 // We already determined that it is legal to merge the intervals, so this
3447 // should never fail.
3448 llvm_unreachable("*** Couldn't join subrange!\n");
3451 // The merging algorithm in LiveInterval::join() can't handle conflicting
3452 // value mappings, so we need to remove any live ranges that overlap a
3453 // CR_Replace resolution. Collect a set of end points that can be used to
3454 // restore the live range after joining.
3455 SmallVector
<SlotIndex
, 8> EndPoints
;
3456 LHSVals
.pruneValues(RHSVals
, EndPoints
, false);
3457 RHSVals
.pruneValues(LHSVals
, EndPoints
, false);
3459 LHSVals
.removeImplicitDefs();
3460 RHSVals
.removeImplicitDefs();
3465 // Join RRange into LHS.
3466 LRange
.join(RRange
, LHSVals
.getAssignments(), RHSVals
.getAssignments(),
3469 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask
)
3470 << ' ' << LRange
<< "\n");
3471 if (EndPoints
.empty())
3474 // Recompute the parts of the live range we had to remove because of
3475 // CR_Replace conflicts.
3477 dbgs() << "\t\trestoring liveness to " << EndPoints
.size() << " points: ";
3478 for (unsigned i
= 0, n
= EndPoints
.size(); i
!= n
; ++i
) {
3479 dbgs() << EndPoints
[i
];
3483 dbgs() << ": " << LRange
<< '\n';
3485 LIS
->extendToIndices(LRange
, EndPoints
);
3488 void RegisterCoalescer::mergeSubRangeInto(LiveInterval
&LI
,
3489 const LiveRange
&ToMerge
,
3490 LaneBitmask LaneMask
,
3492 unsigned ComposeSubRegIdx
) {
3493 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
3495 Allocator
, LaneMask
,
3496 [this, &Allocator
, &ToMerge
, &CP
](LiveInterval::SubRange
&SR
) {
3498 SR
.assign(ToMerge
, Allocator
);
3500 // joinSubRegRange() destroys the merged range, so we need a copy.
3501 LiveRange
RangeCopy(ToMerge
, Allocator
);
3502 joinSubRegRanges(SR
, RangeCopy
, SR
.LaneMask
, CP
);
3505 *LIS
->getSlotIndexes(), *TRI
, ComposeSubRegIdx
);
3508 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval
&LI
) {
3509 if (LI
.valnos
.size() < LargeIntervalSizeThreshold
)
3511 auto &Counter
= LargeLIVisitCounter
[LI
.reg()];
3512 if (Counter
< LargeIntervalFreqThreshold
) {
3519 bool RegisterCoalescer::joinVirtRegs(CoalescerPair
&CP
) {
3520 SmallVector
<VNInfo
*, 16> NewVNInfo
;
3521 LiveInterval
&RHS
= LIS
->getInterval(CP
.getSrcReg());
3522 LiveInterval
&LHS
= LIS
->getInterval(CP
.getDstReg());
3523 bool TrackSubRegLiveness
= MRI
->shouldTrackSubRegLiveness(*CP
.getNewRC());
3524 JoinVals
RHSVals(RHS
, CP
.getSrcReg(), CP
.getSrcIdx(), LaneBitmask::getNone(),
3525 NewVNInfo
, CP
, LIS
, TRI
, false, TrackSubRegLiveness
);
3526 JoinVals
LHSVals(LHS
, CP
.getDstReg(), CP
.getDstIdx(), LaneBitmask::getNone(),
3527 NewVNInfo
, CP
, LIS
, TRI
, false, TrackSubRegLiveness
);
3529 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS
<< "\n\t\tLHS = " << LHS
<< '\n');
3531 if (isHighCostLiveInterval(LHS
) || isHighCostLiveInterval(RHS
))
3534 // First compute NewVNInfo and the simple value mappings.
3535 // Detect impossible conflicts early.
3536 if (!LHSVals
.mapValues(RHSVals
) || !RHSVals
.mapValues(LHSVals
))
3539 // Some conflicts can only be resolved after all values have been mapped.
3540 if (!LHSVals
.resolveConflicts(RHSVals
) || !RHSVals
.resolveConflicts(LHSVals
))
3543 // All clear, the live ranges can be merged.
3544 if (RHS
.hasSubRanges() || LHS
.hasSubRanges()) {
3545 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
3547 // Transform lanemasks from the LHS to masks in the coalesced register and
3548 // create initial subranges if necessary.
3549 unsigned DstIdx
= CP
.getDstIdx();
3550 if (!LHS
.hasSubRanges()) {
3551 LaneBitmask Mask
= DstIdx
== 0 ? CP
.getNewRC()->getLaneMask()
3552 : TRI
->getSubRegIndexLaneMask(DstIdx
);
3553 // LHS must support subregs or we wouldn't be in this codepath.
3555 LHS
.createSubRangeFrom(Allocator
, Mask
, LHS
);
3556 } else if (DstIdx
!= 0) {
3557 // Transform LHS lanemasks to new register class if necessary.
3558 for (LiveInterval::SubRange
&R
: LHS
.subranges()) {
3559 LaneBitmask Mask
= TRI
->composeSubRegIndexLaneMask(DstIdx
, R
.LaneMask
);
3563 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP
.getDstReg()) << ' ' << LHS
3566 // Determine lanemasks of RHS in the coalesced register and merge subranges.
3567 unsigned SrcIdx
= CP
.getSrcIdx();
3568 if (!RHS
.hasSubRanges()) {
3569 LaneBitmask Mask
= SrcIdx
== 0 ? CP
.getNewRC()->getLaneMask()
3570 : TRI
->getSubRegIndexLaneMask(SrcIdx
);
3571 mergeSubRangeInto(LHS
, RHS
, Mask
, CP
, DstIdx
);
3573 // Pair up subranges and merge.
3574 for (LiveInterval::SubRange
&R
: RHS
.subranges()) {
3575 LaneBitmask Mask
= TRI
->composeSubRegIndexLaneMask(SrcIdx
, R
.LaneMask
);
3576 mergeSubRangeInto(LHS
, R
, Mask
, CP
, DstIdx
);
3579 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS
<< "\n");
3581 // Pruning implicit defs from subranges may result in the main range
3582 // having stale segments.
3583 LHSVals
.pruneMainSegments(LHS
, ShrinkMainRange
);
3585 LHSVals
.pruneSubRegValues(LHS
, ShrinkMask
);
3586 RHSVals
.pruneSubRegValues(LHS
, ShrinkMask
);
3589 // The merging algorithm in LiveInterval::join() can't handle conflicting
3590 // value mappings, so we need to remove any live ranges that overlap a
3591 // CR_Replace resolution. Collect a set of end points that can be used to
3592 // restore the live range after joining.
3593 SmallVector
<SlotIndex
, 8> EndPoints
;
3594 LHSVals
.pruneValues(RHSVals
, EndPoints
, true);
3595 RHSVals
.pruneValues(LHSVals
, EndPoints
, true);
3597 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3598 // registers to require trimming.
3599 SmallVector
<Register
, 8> ShrinkRegs
;
3600 LHSVals
.eraseInstrs(ErasedInstrs
, ShrinkRegs
, &LHS
);
3601 RHSVals
.eraseInstrs(ErasedInstrs
, ShrinkRegs
);
3602 while (!ShrinkRegs
.empty())
3603 shrinkToUses(&LIS
->getInterval(ShrinkRegs
.pop_back_val()));
3605 // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3606 checkMergingChangesDbgValues(CP
, LHS
, LHSVals
, RHS
, RHSVals
);
3608 // If the RHS covers any PHI locations that were tracked for debug-info, we
3609 // must update tracking information to reflect the join.
3610 auto RegIt
= RegToPHIIdx
.find(CP
.getSrcReg());
3611 if (RegIt
!= RegToPHIIdx
.end()) {
3612 // Iterate over all the debug instruction numbers assigned this register.
3613 for (unsigned InstID
: RegIt
->second
) {
3614 auto PHIIt
= PHIValToPos
.find(InstID
);
3615 assert(PHIIt
!= PHIValToPos
.end());
3616 const SlotIndex
&SI
= PHIIt
->second
.SI
;
3618 // Does the RHS cover the position of this PHI?
3619 auto LII
= RHS
.find(SI
);
3620 if (LII
== RHS
.end() || LII
->start
> SI
)
3623 // Accept two kinds of subregister movement:
3624 // * When we merge from one register class into a larger register:
3625 // %1:gr16 = some-inst
3627 // %2:gr32.sub_16bit = some-inst
3628 // * When the PHI is already in a subregister, and the larger class
3630 // %2:gr32.sub_16bit = some-inst
3631 // %3:gr32 = COPY %2
3633 // %3:gr32.sub_16bit = some-inst
3634 // Test for subregister move:
3635 if (CP
.getSrcIdx() != 0 || CP
.getDstIdx() != 0)
3636 // If we're moving between different subregisters, ignore this join.
3637 // The PHI will not get a location, dropping variable locations.
3638 if (PHIIt
->second
.SubReg
&& PHIIt
->second
.SubReg
!= CP
.getSrcIdx())
3641 // Update our tracking of where the PHI is.
3642 PHIIt
->second
.Reg
= CP
.getDstReg();
3644 // If we merge into a sub-register of a larger class (test above),
3646 if (CP
.getSrcIdx() != 0)
3647 PHIIt
->second
.SubReg
= CP
.getSrcIdx();
3650 // Rebuild the register index in RegToPHIIdx to account for PHIs tracking
3651 // different VRegs now. Copy old collection of debug instruction numbers and
3652 // erase the old one:
3653 auto InstrNums
= RegIt
->second
;
3654 RegToPHIIdx
.erase(RegIt
);
3656 // There might already be PHIs being tracked in the destination VReg. Insert
3657 // into an existing tracking collection, or insert a new one.
3658 RegIt
= RegToPHIIdx
.find(CP
.getDstReg());
3659 if (RegIt
!= RegToPHIIdx
.end())
3660 RegIt
->second
.insert(RegIt
->second
.end(), InstrNums
.begin(),
3663 RegToPHIIdx
.insert({CP
.getDstReg(), InstrNums
});
3666 // Join RHS into LHS.
3667 LHS
.join(RHS
, LHSVals
.getAssignments(), RHSVals
.getAssignments(), NewVNInfo
);
3669 // Kill flags are going to be wrong if the live ranges were overlapping.
3670 // Eventually, we should simply clear all kill flags when computing live
3671 // ranges. They are reinserted after register allocation.
3672 MRI
->clearKillFlags(LHS
.reg());
3673 MRI
->clearKillFlags(RHS
.reg());
3675 if (!EndPoints
.empty()) {
3676 // Recompute the parts of the live range we had to remove because of
3677 // CR_Replace conflicts.
3679 dbgs() << "\t\trestoring liveness to " << EndPoints
.size() << " points: ";
3680 for (unsigned i
= 0, n
= EndPoints
.size(); i
!= n
; ++i
) {
3681 dbgs() << EndPoints
[i
];
3685 dbgs() << ": " << LHS
<< '\n';
3687 LIS
->extendToIndices((LiveRange
&)LHS
, EndPoints
);
3693 bool RegisterCoalescer::joinIntervals(CoalescerPair
&CP
) {
3694 return CP
.isPhys() ? joinReservedPhysReg(CP
) : joinVirtRegs(CP
);
3697 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction
&MF
)
3699 const SlotIndexes
&Slots
= *LIS
->getSlotIndexes();
3700 SmallVector
<MachineInstr
*, 8> ToInsert
;
3702 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3703 // vreg => DbgValueLoc map.
3704 auto CloseNewDVRange
= [this, &ToInsert
](SlotIndex Slot
) {
3705 for (auto *X
: ToInsert
) {
3706 for (const auto &Op
: X
->debug_operands()) {
3707 if (Op
.isReg() && Op
.getReg().isVirtual())
3708 DbgVRegToValues
[Op
.getReg()].push_back({Slot
, X
});
3715 // Iterate over all instructions, collecting them into the ToInsert vector.
3716 // Once a non-debug instruction is found, record the slot index of the
3717 // collected DBG_VALUEs.
3718 for (auto &MBB
: MF
) {
3719 SlotIndex CurrentSlot
= Slots
.getMBBStartIdx(&MBB
);
3721 for (auto &MI
: MBB
) {
3722 if (MI
.isDebugValue()) {
3723 if (any_of(MI
.debug_operands(), [](const MachineOperand
&MO
) {
3724 return MO
.isReg() && MO
.getReg().isVirtual();
3726 ToInsert
.push_back(&MI
);
3727 } else if (!MI
.isDebugOrPseudoInstr()) {
3728 CurrentSlot
= Slots
.getInstructionIndex(MI
);
3729 CloseNewDVRange(CurrentSlot
);
3733 // Close range of DBG_VALUEs at the end of blocks.
3734 CloseNewDVRange(Slots
.getMBBEndIdx(&MBB
));
3737 // Sort all DBG_VALUEs we've seen by slot number.
3738 for (auto &Pair
: DbgVRegToValues
)
3739 llvm::sort(Pair
.second
);
3742 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair
&CP
,
3746 JoinVals
&RHSVals
) {
3747 auto ScanForDstReg
= [&](Register Reg
) {
3748 checkMergingChangesDbgValuesImpl(Reg
, RHS
, LHS
, LHSVals
);
3751 auto ScanForSrcReg
= [&](Register Reg
) {
3752 checkMergingChangesDbgValuesImpl(Reg
, LHS
, RHS
, RHSVals
);
3755 // Scan for potentially unsound DBG_VALUEs: examine first the register number
3756 // Reg, and then any other vregs that may have been merged into it.
3757 auto PerformScan
= [this](Register Reg
, std::function
<void(Register
)> Func
) {
3759 if (DbgMergedVRegNums
.count(Reg
))
3760 for (Register X
: DbgMergedVRegNums
[Reg
])
3764 // Scan for unsound updates of both the source and destination register.
3765 PerformScan(CP
.getSrcReg(), ScanForSrcReg
);
3766 PerformScan(CP
.getDstReg(), ScanForDstReg
);
3769 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg
,
3772 JoinVals
&RegVals
) {
3773 // Are there any DBG_VALUEs to examine?
3774 auto VRegMapIt
= DbgVRegToValues
.find(Reg
);
3775 if (VRegMapIt
== DbgVRegToValues
.end())
3778 auto &DbgValueSet
= VRegMapIt
->second
;
3779 auto DbgValueSetIt
= DbgValueSet
.begin();
3780 auto SegmentIt
= OtherLR
.begin();
3782 bool LastUndefResult
= false;
3783 SlotIndex LastUndefIdx
;
3785 // If the "Other" register is live at a slot Idx, test whether Reg can
3786 // safely be merged with it, or should be marked undef.
3787 auto ShouldUndef
= [&RegVals
, &RegLR
, &LastUndefResult
,
3788 &LastUndefIdx
](SlotIndex Idx
) -> bool {
3789 // Our worst-case performance typically happens with asan, causing very
3790 // many DBG_VALUEs of the same location. Cache a copy of the most recent
3791 // result for this edge-case.
3792 if (LastUndefIdx
== Idx
)
3793 return LastUndefResult
;
3795 // If the other range was live, and Reg's was not, the register coalescer
3796 // will not have tried to resolve any conflicts. We don't know whether
3797 // the DBG_VALUE will refer to the same value number, so it must be made
3799 auto OtherIt
= RegLR
.find(Idx
);
3800 if (OtherIt
== RegLR
.end())
3803 // Both the registers were live: examine the conflict resolution record for
3804 // the value number Reg refers to. CR_Keep meant that this value number
3805 // "won" and the merged register definitely refers to that value. CR_Erase
3806 // means the value number was a redundant copy of the other value, which
3807 // was coalesced and Reg deleted. It's safe to refer to the other register
3808 // (which will be the source of the copy).
3809 auto Resolution
= RegVals
.getResolution(OtherIt
->valno
->id
);
3810 LastUndefResult
= Resolution
!= JoinVals::CR_Keep
&&
3811 Resolution
!= JoinVals::CR_Erase
;
3813 return LastUndefResult
;
3816 // Iterate over both the live-range of the "Other" register, and the set of
3817 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3818 // slot index. This relies on the DbgValueSet being ordered.
3819 while (DbgValueSetIt
!= DbgValueSet
.end() && SegmentIt
!= OtherLR
.end()) {
3820 if (DbgValueSetIt
->first
< SegmentIt
->end
) {
3821 // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3823 if (DbgValueSetIt
->first
>= SegmentIt
->start
) {
3824 bool HasReg
= DbgValueSetIt
->second
->hasDebugOperandForReg(Reg
);
3825 bool ShouldUndefReg
= ShouldUndef(DbgValueSetIt
->first
);
3826 if (HasReg
&& ShouldUndefReg
) {
3827 // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3828 DbgValueSetIt
->second
->setDebugValueUndef();
3841 /// Information concerning MBB coalescing priority.
3842 struct MBBPriorityInfo
{
3843 MachineBasicBlock
*MBB
;
3847 MBBPriorityInfo(MachineBasicBlock
*mbb
, unsigned depth
, bool issplit
)
3848 : MBB(mbb
), Depth(depth
), IsSplit(issplit
) {}
3851 } // end anonymous namespace
3853 /// C-style comparator that sorts first based on the loop depth of the basic
3854 /// block (the unsigned), and then on the MBB number.
3856 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
3857 static int compareMBBPriority(const MBBPriorityInfo
*LHS
,
3858 const MBBPriorityInfo
*RHS
) {
3859 // Deeper loops first
3860 if (LHS
->Depth
!= RHS
->Depth
)
3861 return LHS
->Depth
> RHS
->Depth
? -1 : 1;
3863 // Try to unsplit critical edges next.
3864 if (LHS
->IsSplit
!= RHS
->IsSplit
)
3865 return LHS
->IsSplit
? -1 : 1;
3867 // Prefer blocks that are more connected in the CFG. This takes care of
3868 // the most difficult copies first while intervals are short.
3869 unsigned cl
= LHS
->MBB
->pred_size() + LHS
->MBB
->succ_size();
3870 unsigned cr
= RHS
->MBB
->pred_size() + RHS
->MBB
->succ_size();
3872 return cl
> cr
? -1 : 1;
3874 // As a last resort, sort by block number.
3875 return LHS
->MBB
->getNumber() < RHS
->MBB
->getNumber() ? -1 : 1;
3878 /// \returns true if the given copy uses or defines a local live range.
3879 static bool isLocalCopy(MachineInstr
*Copy
, const LiveIntervals
*LIS
) {
3880 if (!Copy
->isCopy())
3883 if (Copy
->getOperand(1).isUndef())
3886 Register SrcReg
= Copy
->getOperand(1).getReg();
3887 Register DstReg
= Copy
->getOperand(0).getReg();
3888 if (Register::isPhysicalRegister(SrcReg
) ||
3889 Register::isPhysicalRegister(DstReg
))
3892 return LIS
->intervalIsInOneMBB(LIS
->getInterval(SrcReg
))
3893 || LIS
->intervalIsInOneMBB(LIS
->getInterval(DstReg
));
3896 void RegisterCoalescer::lateLiveIntervalUpdate() {
3897 for (Register reg
: ToBeUpdated
) {
3898 if (!LIS
->hasInterval(reg
))
3900 LiveInterval
&LI
= LIS
->getInterval(reg
);
3901 shrinkToUses(&LI
, &DeadDefs
);
3902 if (!DeadDefs
.empty())
3903 eliminateDeadDefs();
3905 ToBeUpdated
.clear();
3908 bool RegisterCoalescer::
3909 copyCoalesceWorkList(MutableArrayRef
<MachineInstr
*> CurrList
) {
3910 bool Progress
= false;
3911 for (MachineInstr
*&MI
: CurrList
) {
3914 // Skip instruction pointers that have already been erased, for example by
3915 // dead code elimination.
3916 if (ErasedInstrs
.count(MI
)) {
3921 bool Success
= joinCopy(MI
, Again
);
3922 Progress
|= Success
;
3923 if (Success
|| !Again
)
3929 /// Check if DstReg is a terminal node.
3930 /// I.e., it does not have any affinity other than \p Copy.
3931 static bool isTerminalReg(Register DstReg
, const MachineInstr
&Copy
,
3932 const MachineRegisterInfo
*MRI
) {
3933 assert(Copy
.isCopyLike());
3934 // Check if the destination of this copy as any other affinity.
3935 for (const MachineInstr
&MI
: MRI
->reg_nodbg_instructions(DstReg
))
3936 if (&MI
!= &Copy
&& MI
.isCopyLike())
3941 bool RegisterCoalescer::applyTerminalRule(const MachineInstr
&Copy
) const {
3942 assert(Copy
.isCopyLike());
3943 if (!UseTerminalRule
)
3945 Register SrcReg
, DstReg
;
3946 unsigned SrcSubReg
= 0, DstSubReg
= 0;
3947 if (!isMoveInstr(*TRI
, &Copy
, SrcReg
, DstReg
, SrcSubReg
, DstSubReg
))
3949 // Check if the destination of this copy has any other affinity.
3950 if (DstReg
.isPhysical() ||
3951 // If SrcReg is a physical register, the copy won't be coalesced.
3952 // Ignoring it may have other side effect (like missing
3953 // rematerialization). So keep it.
3954 SrcReg
.isPhysical() || !isTerminalReg(DstReg
, Copy
, MRI
))
3957 // DstReg is a terminal node. Check if it interferes with any other
3958 // copy involving SrcReg.
3959 const MachineBasicBlock
*OrigBB
= Copy
.getParent();
3960 const LiveInterval
&DstLI
= LIS
->getInterval(DstReg
);
3961 for (const MachineInstr
&MI
: MRI
->reg_nodbg_instructions(SrcReg
)) {
3962 // Technically we should check if the weight of the new copy is
3963 // interesting compared to the other one and update the weight
3964 // of the copies accordingly. However, this would only work if
3965 // we would gather all the copies first then coalesce, whereas
3966 // right now we interleave both actions.
3967 // For now, just consider the copies that are in the same block.
3968 if (&MI
== &Copy
|| !MI
.isCopyLike() || MI
.getParent() != OrigBB
)
3970 Register OtherSrcReg
, OtherReg
;
3971 unsigned OtherSrcSubReg
= 0, OtherSubReg
= 0;
3972 if (!isMoveInstr(*TRI
, &Copy
, OtherSrcReg
, OtherReg
, OtherSrcSubReg
,
3975 if (OtherReg
== SrcReg
)
3976 OtherReg
= OtherSrcReg
;
3977 // Check if OtherReg is a non-terminal.
3978 if (Register::isPhysicalRegister(OtherReg
) ||
3979 isTerminalReg(OtherReg
, MI
, MRI
))
3981 // Check that OtherReg interfere with DstReg.
3982 if (LIS
->getInterval(OtherReg
).overlaps(DstLI
)) {
3983 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg
)
3992 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock
*MBB
) {
3993 LLVM_DEBUG(dbgs() << MBB
->getName() << ":\n");
3995 // Collect all copy-like instructions in MBB. Don't start coalescing anything
3996 // yet, it might invalidate the iterator.
3997 const unsigned PrevSize
= WorkList
.size();
3998 if (JoinGlobalCopies
) {
3999 SmallVector
<MachineInstr
*, 2> LocalTerminals
;
4000 SmallVector
<MachineInstr
*, 2> GlobalTerminals
;
4001 // Coalesce copies bottom-up to coalesce local defs before local uses. They
4002 // are not inherently easier to resolve, but slightly preferable until we
4003 // have local live range splitting. In particular this is required by
4004 // cmp+jmp macro fusion.
4005 for (MachineInstr
&MI
: *MBB
) {
4006 if (!MI
.isCopyLike())
4008 bool ApplyTerminalRule
= applyTerminalRule(MI
);
4009 if (isLocalCopy(&MI
, LIS
)) {
4010 if (ApplyTerminalRule
)
4011 LocalTerminals
.push_back(&MI
);
4013 LocalWorkList
.push_back(&MI
);
4015 if (ApplyTerminalRule
)
4016 GlobalTerminals
.push_back(&MI
);
4018 WorkList
.push_back(&MI
);
4021 // Append the copies evicted by the terminal rule at the end of the list.
4022 LocalWorkList
.append(LocalTerminals
.begin(), LocalTerminals
.end());
4023 WorkList
.append(GlobalTerminals
.begin(), GlobalTerminals
.end());
4026 SmallVector
<MachineInstr
*, 2> Terminals
;
4027 for (MachineInstr
&MII
: *MBB
)
4028 if (MII
.isCopyLike()) {
4029 if (applyTerminalRule(MII
))
4030 Terminals
.push_back(&MII
);
4032 WorkList
.push_back(&MII
);
4034 // Append the copies evicted by the terminal rule at the end of the list.
4035 WorkList
.append(Terminals
.begin(), Terminals
.end());
4037 // Try coalescing the collected copies immediately, and remove the nulls.
4038 // This prevents the WorkList from getting too large since most copies are
4039 // joinable on the first attempt.
4040 MutableArrayRef
<MachineInstr
*>
4041 CurrList(WorkList
.begin() + PrevSize
, WorkList
.end());
4042 if (copyCoalesceWorkList(CurrList
))
4043 WorkList
.erase(std::remove(WorkList
.begin() + PrevSize
, WorkList
.end(),
4044 nullptr), WorkList
.end());
4047 void RegisterCoalescer::coalesceLocals() {
4048 copyCoalesceWorkList(LocalWorkList
);
4049 for (unsigned j
= 0, je
= LocalWorkList
.size(); j
!= je
; ++j
) {
4050 if (LocalWorkList
[j
])
4051 WorkList
.push_back(LocalWorkList
[j
]);
4053 LocalWorkList
.clear();
4056 void RegisterCoalescer::joinAllIntervals() {
4057 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
4058 assert(WorkList
.empty() && LocalWorkList
.empty() && "Old data still around.");
4060 std::vector
<MBBPriorityInfo
> MBBs
;
4061 MBBs
.reserve(MF
->size());
4062 for (MachineBasicBlock
&MBB
: *MF
) {
4063 MBBs
.push_back(MBBPriorityInfo(&MBB
, Loops
->getLoopDepth(&MBB
),
4064 JoinSplitEdges
&& isSplitEdge(&MBB
)));
4066 array_pod_sort(MBBs
.begin(), MBBs
.end(), compareMBBPriority
);
4068 // Coalesce intervals in MBB priority order.
4069 unsigned CurrDepth
= std::numeric_limits
<unsigned>::max();
4070 for (MBBPriorityInfo
&MBB
: MBBs
) {
4071 // Try coalescing the collected local copies for deeper loops.
4072 if (JoinGlobalCopies
&& MBB
.Depth
< CurrDepth
) {
4074 CurrDepth
= MBB
.Depth
;
4076 copyCoalesceInMBB(MBB
.MBB
);
4078 lateLiveIntervalUpdate();
4081 // Joining intervals can allow other intervals to be joined. Iteratively join
4082 // until we make no progress.
4083 while (copyCoalesceWorkList(WorkList
))
4085 lateLiveIntervalUpdate();
4088 void RegisterCoalescer::releaseMemory() {
4089 ErasedInstrs
.clear();
4092 InflateRegs
.clear();
4093 LargeLIVisitCounter
.clear();
4096 bool RegisterCoalescer::runOnMachineFunction(MachineFunction
&fn
) {
4097 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
4098 << "********** Function: " << fn
.getName() << '\n');
4100 // Variables changed between a setjmp and a longjump can have undefined value
4101 // after the longjmp. This behaviour can be observed if such a variable is
4102 // spilled, so longjmp won't restore the value in the spill slot.
4103 // RegisterCoalescer should not run in functions with a setjmp to avoid
4104 // merging such undefined variables with predictable ones.
4106 // TODO: Could specifically disable coalescing registers live across setjmp
4108 if (fn
.exposesReturnsTwice()) {
4110 dbgs() << "* Skipped as it exposes funcions that returns twice.\n");
4115 MRI
= &fn
.getRegInfo();
4116 const TargetSubtargetInfo
&STI
= fn
.getSubtarget();
4117 TRI
= STI
.getRegisterInfo();
4118 TII
= STI
.getInstrInfo();
4119 LIS
= &getAnalysis
<LiveIntervals
>();
4120 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
4121 Loops
= &getAnalysis
<MachineLoopInfo
>();
4122 if (EnableGlobalCopies
== cl::BOU_UNSET
)
4123 JoinGlobalCopies
= STI
.enableJoinGlobalCopies();
4125 JoinGlobalCopies
= (EnableGlobalCopies
== cl::BOU_TRUE
);
4127 // If there are PHIs tracked by debug-info, they will need updating during
4128 // coalescing. Build an index of those PHIs to ease updating.
4129 SlotIndexes
*Slots
= LIS
->getSlotIndexes();
4130 for (const auto &DebugPHI
: MF
->DebugPHIPositions
) {
4131 MachineBasicBlock
*MBB
= DebugPHI
.second
.MBB
;
4132 Register Reg
= DebugPHI
.second
.Reg
;
4133 unsigned SubReg
= DebugPHI
.second
.SubReg
;
4134 SlotIndex SI
= Slots
->getMBBStartIdx(MBB
);
4135 PHIValPos P
= {SI
, Reg
, SubReg
};
4136 PHIValToPos
.insert(std::make_pair(DebugPHI
.first
, P
));
4137 RegToPHIIdx
[Reg
].push_back(DebugPHI
.first
);
4140 // The MachineScheduler does not currently require JoinSplitEdges. This will
4141 // either be enabled unconditionally or replaced by a more general live range
4142 // splitting optimization.
4143 JoinSplitEdges
= EnableJoinSplits
;
4145 if (VerifyCoalescing
)
4146 MF
->verify(this, "Before register coalescing");
4148 DbgVRegToValues
.clear();
4149 DbgMergedVRegNums
.clear();
4150 buildVRegToDbgValueMap(fn
);
4152 RegClassInfo
.runOnMachineFunction(fn
);
4154 // Join (coalesce) intervals if requested.
4158 // After deleting a lot of copies, register classes may be less constrained.
4159 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
4161 array_pod_sort(InflateRegs
.begin(), InflateRegs
.end());
4162 InflateRegs
.erase(std::unique(InflateRegs
.begin(), InflateRegs
.end()),
4164 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs
.size()
4166 for (unsigned i
= 0, e
= InflateRegs
.size(); i
!= e
; ++i
) {
4167 Register Reg
= InflateRegs
[i
];
4168 if (MRI
->reg_nodbg_empty(Reg
))
4170 if (MRI
->recomputeRegClass(Reg
)) {
4171 LLVM_DEBUG(dbgs() << printReg(Reg
) << " inflated to "
4172 << TRI
->getRegClassName(MRI
->getRegClass(Reg
)) << '\n');
4175 LiveInterval
&LI
= LIS
->getInterval(Reg
);
4176 if (LI
.hasSubRanges()) {
4177 // If the inflated register class does not support subregisters anymore
4178 // remove the subranges.
4179 if (!MRI
->shouldTrackSubRegLiveness(Reg
)) {
4180 LI
.clearSubRanges();
4183 LaneBitmask MaxMask
= MRI
->getMaxLaneMaskForVReg(Reg
);
4184 // If subranges are still supported, then the same subregs
4185 // should still be supported.
4186 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
4187 assert((S
.LaneMask
& ~MaxMask
).none());
4195 // After coalescing, update any PHIs that are being tracked by debug-info
4196 // with their new VReg locations.
4197 for (auto &p
: MF
->DebugPHIPositions
) {
4198 auto it
= PHIValToPos
.find(p
.first
);
4199 assert(it
!= PHIValToPos
.end());
4200 p
.second
.Reg
= it
->second
.Reg
;
4201 p
.second
.SubReg
= it
->second
.SubReg
;
4204 PHIValToPos
.clear();
4205 RegToPHIIdx
.clear();
4208 if (VerifyCoalescing
)
4209 MF
->verify(this, "After register coalescing");
4213 void RegisterCoalescer::print(raw_ostream
&O
, const Module
* m
) const {