1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// \file This implements the ScheduleDAGInstrs class, which implements
10 /// re-scheduling of MachineInstrs.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
15 #include "llvm/ADT/IntEqClasses.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBundle.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/PseudoSourceValue.h"
34 #include "llvm/CodeGen/RegisterPressure.h"
35 #include "llvm/CodeGen/ScheduleDAG.h"
36 #include "llvm/CodeGen/ScheduleDFS.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/MC/LaneBitmask.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/Format.h"
56 #include "llvm/Support/raw_ostream.h"
66 #define DEBUG_TYPE "machine-scheduler"
68 static cl::opt
<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden
,
69 cl::ZeroOrMore
, cl::init(false),
70 cl::desc("Enable use of AA during MI DAG construction"));
72 static cl::opt
<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden
,
73 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
75 // Note: the two options below might be used in tuning compile time vs
76 // output quality. Setting HugeRegion so large that it will never be
77 // reached means best-effort, but may be slow.
79 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
80 // together hold this many SUs, a reduction of maps will be done.
81 static cl::opt
<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden
,
82 cl::init(1000), cl::desc("The limit to use while constructing the DAG "
83 "prior to scheduling, at which point a trade-off "
84 "is made to avoid excessive compile time."));
86 static cl::opt
<unsigned> ReductionSize(
87 "dag-maps-reduction-size", cl::Hidden
,
88 cl::desc("A huge scheduling region will have maps reduced by this many "
89 "nodes at a time. Defaults to HugeRegion / 2."));
91 static unsigned getReductionSize() {
92 // Always reduce a huge region with half of the elements, except
93 // when user sets this number explicitly.
94 if (ReductionSize
.getNumOccurrences() == 0)
95 return HugeRegion
/ 2;
99 static void dumpSUList(ScheduleDAGInstrs::SUList
&L
) {
100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
102 for (const SUnit
*su
: L
) {
103 dbgs() << "SU(" << su
->NodeNum
<< ")";
111 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction
&mf
,
112 const MachineLoopInfo
*mli
,
113 bool RemoveKillFlags
)
114 : ScheduleDAG(mf
), MLI(mli
), MFI(mf
.getFrameInfo()),
115 RemoveKillFlags(RemoveKillFlags
),
116 UnknownValue(UndefValue::get(
117 Type::getVoidTy(mf
.getFunction().getContext()))), Topo(SUnits
, &ExitSU
) {
120 const TargetSubtargetInfo
&ST
= mf
.getSubtarget();
121 SchedModel
.init(&ST
);
124 /// If this machine instr has memory reference information and it can be
125 /// tracked to a normal reference to a known object, return the Value
126 /// for that object. This function returns false the memory location is
127 /// unknown or may alias anything.
128 static bool getUnderlyingObjectsForInstr(const MachineInstr
*MI
,
129 const MachineFrameInfo
&MFI
,
130 UnderlyingObjectsVector
&Objects
,
131 const DataLayout
&DL
) {
132 auto allMMOsOkay
= [&]() {
133 for (const MachineMemOperand
*MMO
: MI
->memoperands()) {
134 // TODO: Figure out whether isAtomic is really necessary (see D57601).
135 if (MMO
->isVolatile() || MMO
->isAtomic())
138 if (const PseudoSourceValue
*PSV
= MMO
->getPseudoValue()) {
139 // Function that contain tail calls don't have unique PseudoSourceValue
140 // objects. Two PseudoSourceValues might refer to the same or
141 // overlapping locations. The client code calling this function assumes
142 // this is not the case. So return a conservative answer of no known
144 if (MFI
.hasTailCall())
147 // For now, ignore PseudoSourceValues which may alias LLVM IR values
148 // because the code that uses this function has no way to cope with
150 if (PSV
->isAliased(&MFI
))
153 bool MayAlias
= PSV
->mayAlias(&MFI
);
154 Objects
.push_back(UnderlyingObjectsVector::value_type(PSV
, MayAlias
));
155 } else if (const Value
*V
= MMO
->getValue()) {
156 SmallVector
<Value
*, 4> Objs
;
157 if (!getUnderlyingObjectsForCodeGen(V
, Objs
))
160 for (Value
*V
: Objs
) {
161 assert(isIdentifiedObject(V
));
162 Objects
.push_back(UnderlyingObjectsVector::value_type(V
, true));
170 if (!allMMOsOkay()) {
178 void ScheduleDAGInstrs::startBlock(MachineBasicBlock
*bb
) {
182 void ScheduleDAGInstrs::finishBlock() {
183 // Subclasses should no longer refer to the old block.
187 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock
*bb
,
188 MachineBasicBlock::iterator begin
,
189 MachineBasicBlock::iterator end
,
190 unsigned regioninstrs
) {
191 assert(bb
== BB
&& "startBlock should set BB");
194 NumRegionInstrs
= regioninstrs
;
197 void ScheduleDAGInstrs::exitRegion() {
201 void ScheduleDAGInstrs::addSchedBarrierDeps() {
202 MachineInstr
*ExitMI
=
203 RegionEnd
!= BB
->end()
204 ? &*skipDebugInstructionsBackward(RegionEnd
, RegionBegin
)
206 ExitSU
.setInstr(ExitMI
);
207 // Add dependencies on the defs and uses of the instruction.
209 for (const MachineOperand
&MO
: ExitMI
->operands()) {
210 if (!MO
.isReg() || MO
.isDef()) continue;
211 Register Reg
= MO
.getReg();
212 if (Register::isPhysicalRegister(Reg
)) {
213 Uses
.insert(PhysRegSUOper(&ExitSU
, -1, Reg
));
214 } else if (Register::isVirtualRegister(Reg
) && MO
.readsReg()) {
215 addVRegUseDeps(&ExitSU
, ExitMI
->getOperandNo(&MO
));
219 if (!ExitMI
|| (!ExitMI
->isCall() && !ExitMI
->isBarrier())) {
220 // For others, e.g. fallthrough, conditional branch, assume the exit
221 // uses all the registers that are livein to the successor blocks.
222 for (const MachineBasicBlock
*Succ
: BB
->successors()) {
223 for (const auto &LI
: Succ
->liveins()) {
224 if (!Uses
.contains(LI
.PhysReg
))
225 Uses
.insert(PhysRegSUOper(&ExitSU
, -1, LI
.PhysReg
));
231 /// MO is an operand of SU's instruction that defines a physical register. Adds
232 /// data dependencies from SU to any uses of the physical register.
233 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit
*SU
, unsigned OperIdx
) {
234 const MachineOperand
&MO
= SU
->getInstr()->getOperand(OperIdx
);
235 assert(MO
.isDef() && "expect physreg def");
237 // Ask the target if address-backscheduling is desirable, and if so how much.
238 const TargetSubtargetInfo
&ST
= MF
.getSubtarget();
240 // Only use any non-zero latency for real defs/uses, in contrast to
241 // "fake" operands added by regalloc.
242 const MCInstrDesc
*DefMIDesc
= &SU
->getInstr()->getDesc();
243 bool ImplicitPseudoDef
= (OperIdx
>= DefMIDesc
->getNumOperands() &&
244 !DefMIDesc
->hasImplicitDefOfPhysReg(MO
.getReg()));
245 for (MCRegAliasIterator
Alias(MO
.getReg(), TRI
, true);
246 Alias
.isValid(); ++Alias
) {
247 for (Reg2SUnitsMap::iterator I
= Uses
.find(*Alias
); I
!= Uses
.end(); ++I
) {
248 SUnit
*UseSU
= I
->SU
;
252 // Adjust the dependence latency using operand def/use information,
253 // then allow the target to perform its own adjustments.
254 int UseOp
= I
->OpIdx
;
255 MachineInstr
*RegUse
= nullptr;
258 Dep
= SDep(SU
, SDep::Artificial
);
260 // Set the hasPhysRegDefs only for physreg defs that have a use within
261 // the scheduling region.
262 SU
->hasPhysRegDefs
= true;
263 Dep
= SDep(SU
, SDep::Data
, *Alias
);
264 RegUse
= UseSU
->getInstr();
266 const MCInstrDesc
*UseMIDesc
=
267 (RegUse
? &UseSU
->getInstr()->getDesc() : nullptr);
268 bool ImplicitPseudoUse
=
269 (UseMIDesc
&& UseOp
>= ((int)UseMIDesc
->getNumOperands()) &&
270 !UseMIDesc
->hasImplicitUseOfPhysReg(*Alias
));
271 if (!ImplicitPseudoDef
&& !ImplicitPseudoUse
) {
272 Dep
.setLatency(SchedModel
.computeOperandLatency(SU
->getInstr(), OperIdx
,
277 ST
.adjustSchedDependency(SU
, OperIdx
, UseSU
, UseOp
, Dep
);
283 /// Adds register dependencies (data, anti, and output) from this SUnit
284 /// to following instructions in the same scheduling region that depend the
285 /// physical register referenced at OperIdx.
286 void ScheduleDAGInstrs::addPhysRegDeps(SUnit
*SU
, unsigned OperIdx
) {
287 MachineInstr
*MI
= SU
->getInstr();
288 MachineOperand
&MO
= MI
->getOperand(OperIdx
);
289 Register Reg
= MO
.getReg();
290 // We do not need to track any dependencies for constant registers.
291 if (MRI
.isConstantPhysReg(Reg
))
294 const TargetSubtargetInfo
&ST
= MF
.getSubtarget();
296 // Optionally add output and anti dependencies. For anti
297 // dependencies we use a latency of 0 because for a multi-issue
298 // target we want to allow the defining instruction to issue
299 // in the same cycle as the using instruction.
300 // TODO: Using a latency of 1 here for output dependencies assumes
301 // there's no cost for reusing registers.
302 SDep::Kind Kind
= MO
.isUse() ? SDep::Anti
: SDep::Output
;
303 for (MCRegAliasIterator
Alias(Reg
, TRI
, true); Alias
.isValid(); ++Alias
) {
304 if (!Defs
.contains(*Alias
))
306 for (Reg2SUnitsMap::iterator I
= Defs
.find(*Alias
); I
!= Defs
.end(); ++I
) {
307 SUnit
*DefSU
= I
->SU
;
308 if (DefSU
== &ExitSU
)
311 (Kind
!= SDep::Output
|| !MO
.isDead() ||
312 !DefSU
->getInstr()->registerDefIsDead(*Alias
))) {
313 SDep
Dep(SU
, Kind
, /*Reg=*/*Alias
);
314 if (Kind
!= SDep::Anti
)
316 SchedModel
.computeOutputLatency(MI
, OperIdx
, DefSU
->getInstr()));
317 ST
.adjustSchedDependency(SU
, OperIdx
, DefSU
, I
->OpIdx
, Dep
);
324 SU
->hasPhysRegUses
= true;
325 // Either insert a new Reg2SUnits entry with an empty SUnits list, or
326 // retrieve the existing SUnits list for this register's uses.
327 // Push this SUnit on the use list.
328 Uses
.insert(PhysRegSUOper(SU
, OperIdx
, Reg
));
332 addPhysRegDataDeps(SU
, OperIdx
);
334 // Clear previous uses and defs of this register and its subergisters.
335 for (MCSubRegIterator
SubReg(Reg
, TRI
, true); SubReg
.isValid(); ++SubReg
) {
336 if (Uses
.contains(*SubReg
))
337 Uses
.eraseAll(*SubReg
);
339 Defs
.eraseAll(*SubReg
);
341 if (MO
.isDead() && SU
->isCall
) {
342 // Calls will not be reordered because of chain dependencies (see
343 // below). Since call operands are dead, calls may continue to be added
344 // to the DefList making dependence checking quadratic in the size of
345 // the block. Instead, we leave only one call at the back of the
347 Reg2SUnitsMap::RangePair P
= Defs
.equal_range(Reg
);
348 Reg2SUnitsMap::iterator B
= P
.first
;
349 Reg2SUnitsMap::iterator I
= P
.second
;
350 for (bool isBegin
= I
== B
; !isBegin
; /* empty */) {
351 isBegin
= (--I
) == B
;
358 // Defs are pushed in the order they are visited and never reordered.
359 Defs
.insert(PhysRegSUOper(SU
, OperIdx
, Reg
));
363 LaneBitmask
ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand
&MO
) const
365 Register Reg
= MO
.getReg();
366 // No point in tracking lanemasks if we don't have interesting subregisters.
367 const TargetRegisterClass
&RC
= *MRI
.getRegClass(Reg
);
368 if (!RC
.HasDisjunctSubRegs
)
369 return LaneBitmask::getAll();
371 unsigned SubReg
= MO
.getSubReg();
373 return RC
.getLaneMask();
374 return TRI
->getSubRegIndexLaneMask(SubReg
);
377 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand
&MO
) {
378 auto RegUse
= CurrentVRegUses
.find(MO
.getReg());
379 if (RegUse
== CurrentVRegUses
.end())
381 return (RegUse
->LaneMask
& getLaneMaskForMO(MO
)).none();
384 /// Adds register output and data dependencies from this SUnit to instructions
385 /// that occur later in the same scheduling region if they read from or write to
386 /// the virtual register defined at OperIdx.
388 /// TODO: Hoist loop induction variable increments. This has to be
389 /// reevaluated. Generally, IV scheduling should be done before coalescing.
390 void ScheduleDAGInstrs::addVRegDefDeps(SUnit
*SU
, unsigned OperIdx
) {
391 MachineInstr
*MI
= SU
->getInstr();
392 MachineOperand
&MO
= MI
->getOperand(OperIdx
);
393 Register Reg
= MO
.getReg();
395 LaneBitmask DefLaneMask
;
396 LaneBitmask KillLaneMask
;
397 if (TrackLaneMasks
) {
398 bool IsKill
= MO
.getSubReg() == 0 || MO
.isUndef();
399 DefLaneMask
= getLaneMaskForMO(MO
);
400 // If we have a <read-undef> flag, none of the lane values comes from an
401 // earlier instruction.
402 KillLaneMask
= IsKill
? LaneBitmask::getAll() : DefLaneMask
;
404 if (MO
.getSubReg() != 0 && MO
.isUndef()) {
405 // There may be other subregister defs on the same instruction of the same
406 // register in later operands. The lanes of other defs will now be live
407 // after this instruction, so these should not be treated as killed by the
408 // instruction even though they appear to be killed in this one operand.
409 for (const MachineOperand
&OtherMO
:
410 llvm::drop_begin(MI
->operands(), OperIdx
+ 1))
411 if (OtherMO
.isReg() && OtherMO
.isDef() && OtherMO
.getReg() == Reg
)
412 KillLaneMask
&= ~getLaneMaskForMO(OtherMO
);
415 // Clear undef flag, we'll re-add it later once we know which subregister
417 MO
.setIsUndef(false);
419 DefLaneMask
= LaneBitmask::getAll();
420 KillLaneMask
= LaneBitmask::getAll();
424 assert(deadDefHasNoUse(MO
) && "Dead defs should have no uses");
426 // Add data dependence to all uses we found so far.
427 const TargetSubtargetInfo
&ST
= MF
.getSubtarget();
428 for (VReg2SUnitOperIdxMultiMap::iterator I
= CurrentVRegUses
.find(Reg
),
429 E
= CurrentVRegUses
.end(); I
!= E
; /*empty*/) {
430 LaneBitmask LaneMask
= I
->LaneMask
;
431 // Ignore uses of other lanes.
432 if ((LaneMask
& KillLaneMask
).none()) {
437 if ((LaneMask
& DefLaneMask
).any()) {
438 SUnit
*UseSU
= I
->SU
;
439 MachineInstr
*Use
= UseSU
->getInstr();
440 SDep
Dep(SU
, SDep::Data
, Reg
);
441 Dep
.setLatency(SchedModel
.computeOperandLatency(MI
, OperIdx
, Use
,
443 ST
.adjustSchedDependency(SU
, OperIdx
, UseSU
, I
->OperandIndex
, Dep
);
447 LaneMask
&= ~KillLaneMask
;
448 // If we found a Def for all lanes of this use, remove it from the list.
449 if (LaneMask
.any()) {
450 I
->LaneMask
= LaneMask
;
453 I
= CurrentVRegUses
.erase(I
);
457 // Shortcut: Singly defined vregs do not have output/anti dependencies.
458 if (MRI
.hasOneDef(Reg
))
461 // Add output dependence to the next nearest defs of this vreg.
463 // Unless this definition is dead, the output dependence should be
464 // transitively redundant with antidependencies from this definition's
465 // uses. We're conservative for now until we have a way to guarantee the uses
466 // are not eliminated sometime during scheduling. The output dependence edge
467 // is also useful if output latency exceeds def-use latency.
468 LaneBitmask LaneMask
= DefLaneMask
;
469 for (VReg2SUnit
&V2SU
: make_range(CurrentVRegDefs
.find(Reg
),
470 CurrentVRegDefs
.end())) {
471 // Ignore defs for other lanes.
472 if ((V2SU
.LaneMask
& LaneMask
).none())
474 // Add an output dependence.
475 SUnit
*DefSU
= V2SU
.SU
;
476 // Ignore additional defs of the same lanes in one instruction. This can
477 // happen because lanemasks are shared for targets with too many
478 // subregisters. We also use some representration tricks/hacks where we
479 // add super-register defs/uses, to imply that although we only access parts
480 // of the reg we care about the full one.
483 SDep
Dep(SU
, SDep::Output
, Reg
);
485 SchedModel
.computeOutputLatency(MI
, OperIdx
, DefSU
->getInstr()));
488 // Update current definition. This can get tricky if the def was about a
489 // bigger lanemask before. We then have to shrink it and create a new
490 // VReg2SUnit for the non-overlapping part.
491 LaneBitmask OverlapMask
= V2SU
.LaneMask
& LaneMask
;
492 LaneBitmask NonOverlapMask
= V2SU
.LaneMask
& ~LaneMask
;
494 V2SU
.LaneMask
= OverlapMask
;
495 if (NonOverlapMask
.any())
496 CurrentVRegDefs
.insert(VReg2SUnit(Reg
, NonOverlapMask
, DefSU
));
498 // If there was no CurrentVRegDefs entry for some lanes yet, create one.
500 CurrentVRegDefs
.insert(VReg2SUnit(Reg
, LaneMask
, SU
));
503 /// Adds a register data dependency if the instruction that defines the
504 /// virtual register used at OperIdx is mapped to an SUnit. Add a register
505 /// antidependency from this SUnit to instructions that occur later in the same
506 /// scheduling region if they write the virtual register.
508 /// TODO: Handle ExitSU "uses" properly.
509 void ScheduleDAGInstrs::addVRegUseDeps(SUnit
*SU
, unsigned OperIdx
) {
510 const MachineInstr
*MI
= SU
->getInstr();
511 assert(!MI
->isDebugOrPseudoInstr());
513 const MachineOperand
&MO
= MI
->getOperand(OperIdx
);
514 Register Reg
= MO
.getReg();
516 // Remember the use. Data dependencies will be added when we find the def.
517 LaneBitmask LaneMask
= TrackLaneMasks
? getLaneMaskForMO(MO
)
518 : LaneBitmask::getAll();
519 CurrentVRegUses
.insert(VReg2SUnitOperIdx(Reg
, LaneMask
, OperIdx
, SU
));
521 // Add antidependences to the following defs of the vreg.
522 for (VReg2SUnit
&V2SU
: make_range(CurrentVRegDefs
.find(Reg
),
523 CurrentVRegDefs
.end())) {
524 // Ignore defs for unrelated lanes.
525 LaneBitmask PrevDefLaneMask
= V2SU
.LaneMask
;
526 if ((PrevDefLaneMask
& LaneMask
).none())
531 V2SU
.SU
->addPred(SDep(SU
, SDep::Anti
, Reg
));
535 /// Returns true if MI is an instruction we are unable to reason about
536 /// (like a call or something with unmodeled side effects).
537 static inline bool isGlobalMemoryObject(AAResults
*AA
, MachineInstr
*MI
) {
538 return MI
->isCall() || MI
->hasUnmodeledSideEffects() ||
539 (MI
->hasOrderedMemoryRef() && !MI
->isDereferenceableInvariantLoad(AA
));
542 void ScheduleDAGInstrs::addChainDependency (SUnit
*SUa
, SUnit
*SUb
,
544 if (SUa
->getInstr()->mayAlias(AAForDep
, *SUb
->getInstr(), UseTBAA
)) {
545 SDep
Dep(SUa
, SDep::MayAliasMem
);
546 Dep
.setLatency(Latency
);
551 /// Creates an SUnit for each real instruction, numbered in top-down
552 /// topological order. The instruction order A < B, implies that no edge exists
555 /// Map each real instruction to its SUnit.
557 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
558 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
559 /// instead of pointers.
561 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
562 /// the original instruction list.
563 void ScheduleDAGInstrs::initSUnits() {
564 // We'll be allocating one SUnit for each real instruction in the region,
565 // which is contained within a basic block.
566 SUnits
.reserve(NumRegionInstrs
);
568 for (MachineInstr
&MI
: make_range(RegionBegin
, RegionEnd
)) {
569 if (MI
.isDebugOrPseudoInstr())
572 SUnit
*SU
= newSUnit(&MI
);
573 MISUnitMap
[&MI
] = SU
;
575 SU
->isCall
= MI
.isCall();
576 SU
->isCommutable
= MI
.isCommutable();
578 // Assign the Latency field of SU using target-provided information.
579 SU
->Latency
= SchedModel
.computeInstrLatency(SU
->getInstr());
581 // If this SUnit uses a reserved or unbuffered resource, mark it as such.
583 // Reserved resources block an instruction from issuing and stall the
584 // entire pipeline. These are identified by BufferSize=0.
586 // Unbuffered resources prevent execution of subsequent instructions that
587 // require the same resources. This is used for in-order execution pipelines
588 // within an out-of-order core. These are identified by BufferSize=1.
589 if (SchedModel
.hasInstrSchedModel()) {
590 const MCSchedClassDesc
*SC
= getSchedClass(SU
);
591 for (const MCWriteProcResEntry
&PRE
:
592 make_range(SchedModel
.getWriteProcResBegin(SC
),
593 SchedModel
.getWriteProcResEnd(SC
))) {
594 switch (SchedModel
.getProcResource(PRE
.ProcResourceIdx
)->BufferSize
) {
596 SU
->hasReservedResource
= true;
599 SU
->isUnbuffered
= true;
609 class ScheduleDAGInstrs::Value2SUsMap
: public MapVector
<ValueType
, SUList
> {
610 /// Current total number of SUs in map.
611 unsigned NumNodes
= 0;
613 /// 1 for loads, 0 for stores. (see comment in SUList)
614 unsigned TrueMemOrderLatency
;
617 Value2SUsMap(unsigned lat
= 0) : TrueMemOrderLatency(lat
) {}
619 /// To keep NumNodes up to date, insert() is used instead of
620 /// this operator w/ push_back().
621 ValueType
&operator[](const SUList
&Key
) {
622 llvm_unreachable("Don't use. Use insert() instead."); };
624 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling
626 void inline insert(SUnit
*SU
, ValueType V
) {
627 MapVector::operator[](V
).push_back(SU
);
631 /// Clears the list of SUs mapped to V.
632 void inline clearList(ValueType V
) {
633 iterator Itr
= find(V
);
635 assert(NumNodes
>= Itr
->second
.size());
636 NumNodes
-= Itr
->second
.size();
642 /// Clears map from all contents.
644 MapVector
<ValueType
, SUList
>::clear();
648 unsigned inline size() const { return NumNodes
; }
650 /// Counts the number of SUs in this map after a reduction.
651 void reComputeSize() {
653 for (auto &I
: *this)
654 NumNodes
+= I
.second
.size();
657 unsigned inline getTrueMemOrderLatency() const {
658 return TrueMemOrderLatency
;
664 void ScheduleDAGInstrs::addChainDependencies(SUnit
*SU
,
665 Value2SUsMap
&Val2SUsMap
) {
666 for (auto &I
: Val2SUsMap
)
667 addChainDependencies(SU
, I
.second
,
668 Val2SUsMap
.getTrueMemOrderLatency());
671 void ScheduleDAGInstrs::addChainDependencies(SUnit
*SU
,
672 Value2SUsMap
&Val2SUsMap
,
674 Value2SUsMap::iterator Itr
= Val2SUsMap
.find(V
);
675 if (Itr
!= Val2SUsMap
.end())
676 addChainDependencies(SU
, Itr
->second
,
677 Val2SUsMap
.getTrueMemOrderLatency());
680 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap
&map
) {
681 assert(BarrierChain
!= nullptr);
683 for (auto &I
: map
) {
684 SUList
&sus
= I
.second
;
686 SU
->addPredBarrier(BarrierChain
);
691 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap
&map
) {
692 assert(BarrierChain
!= nullptr);
694 // Go through all lists of SUs.
695 for (Value2SUsMap::iterator I
= map
.begin(), EE
= map
.end(); I
!= EE
;) {
696 Value2SUsMap::iterator CurrItr
= I
++;
697 SUList
&sus
= CurrItr
->second
;
698 SUList::iterator SUItr
= sus
.begin(), SUEE
= sus
.end();
699 for (; SUItr
!= SUEE
; ++SUItr
) {
700 // Stop on BarrierChain or any instruction above it.
701 if ((*SUItr
)->NodeNum
<= BarrierChain
->NodeNum
)
704 (*SUItr
)->addPredBarrier(BarrierChain
);
707 // Remove also the BarrierChain from list if present.
708 if (SUItr
!= SUEE
&& *SUItr
== BarrierChain
)
711 // Remove all SUs that are now successors of BarrierChain.
712 if (SUItr
!= sus
.begin())
713 sus
.erase(sus
.begin(), SUItr
);
716 // Remove all entries with empty su lists.
717 map
.remove_if([&](std::pair
<ValueType
, SUList
> &mapEntry
) {
718 return (mapEntry
.second
.empty()); });
720 // Recompute the size of the map (NumNodes).
724 void ScheduleDAGInstrs::buildSchedGraph(AAResults
*AA
,
725 RegPressureTracker
*RPTracker
,
726 PressureDiffs
*PDiffs
,
728 bool TrackLaneMasks
) {
729 const TargetSubtargetInfo
&ST
= MF
.getSubtarget();
730 bool UseAA
= EnableAASchedMI
.getNumOccurrences() > 0 ? EnableAASchedMI
732 AAForDep
= UseAA
? AA
: nullptr;
734 BarrierChain
= nullptr;
736 this->TrackLaneMasks
= TrackLaneMasks
;
738 ScheduleDAG::clearDAG();
740 // Create an SUnit for each real instruction.
744 PDiffs
->init(SUnits
.size());
746 // We build scheduling units by walking a block's instruction list
747 // from bottom to top.
749 // Each MIs' memory operand(s) is analyzed to a list of underlying
750 // objects. The SU is then inserted in the SUList(s) mapped from the
751 // Value(s). Each Value thus gets mapped to lists of SUs depending
752 // on it, stores and loads kept separately. Two SUs are trivially
753 // non-aliasing if they both depend on only identified Values and do
754 // not share any common Value.
755 Value2SUsMap Stores
, Loads(1 /*TrueMemOrderLatency*/);
757 // Certain memory accesses are known to not alias any SU in Stores
758 // or Loads, and have therefore their own 'NonAlias'
759 // domain. E.g. spill / reload instructions never alias LLVM I/R
760 // Values. It would be nice to assume that this type of memory
761 // accesses always have a proper memory operand modelling, and are
762 // therefore never unanalyzable, but this is conservatively not
764 Value2SUsMap NonAliasStores
, NonAliasLoads(1 /*TrueMemOrderLatency*/);
766 // Track all instructions that may raise floating-point exceptions.
767 // These do not depend on one other (or normal loads or stores), but
768 // must not be rescheduled across global barriers. Note that we don't
769 // really need a "map" here since we don't track those MIs by value;
770 // using the same Value2SUsMap data type here is simply a matter of
772 Value2SUsMap FPExceptions
;
774 // Remove any stale debug info; sometimes BuildSchedGraph is called again
775 // without emitting the info from the previous call.
777 FirstDbgValue
= nullptr;
779 assert(Defs
.empty() && Uses
.empty() &&
780 "Only BuildGraph should update Defs/Uses");
781 Defs
.setUniverse(TRI
->getNumRegs());
782 Uses
.setUniverse(TRI
->getNumRegs());
784 assert(CurrentVRegDefs
.empty() && "nobody else should use CurrentVRegDefs");
785 assert(CurrentVRegUses
.empty() && "nobody else should use CurrentVRegUses");
786 unsigned NumVirtRegs
= MRI
.getNumVirtRegs();
787 CurrentVRegDefs
.setUniverse(NumVirtRegs
);
788 CurrentVRegUses
.setUniverse(NumVirtRegs
);
790 // Model data dependencies between instructions being scheduled and the
792 addSchedBarrierDeps();
794 // Walk the list of instructions, from bottom moving up.
795 MachineInstr
*DbgMI
= nullptr;
796 for (MachineBasicBlock::iterator MII
= RegionEnd
, MIE
= RegionBegin
;
798 MachineInstr
&MI
= *std::prev(MII
);
800 DbgValues
.push_back(std::make_pair(DbgMI
, &MI
));
804 if (MI
.isDebugValue() || MI
.isDebugPHI()) {
809 if (MI
.isDebugLabel() || MI
.isDebugRef() || MI
.isPseudoProbe())
812 SUnit
*SU
= MISUnitMap
[&MI
];
813 assert(SU
&& "No SUnit mapped to this MI");
816 RegisterOperands RegOpers
;
817 RegOpers
.collect(MI
, *TRI
, MRI
, TrackLaneMasks
, false);
818 if (TrackLaneMasks
) {
819 SlotIndex SlotIdx
= LIS
->getInstructionIndex(MI
);
820 RegOpers
.adjustLaneLiveness(*LIS
, MRI
, SlotIdx
);
822 if (PDiffs
!= nullptr)
823 PDiffs
->addInstruction(SU
->NodeNum
, RegOpers
, MRI
);
825 if (RPTracker
->getPos() == RegionEnd
|| &*RPTracker
->getPos() != &MI
)
826 RPTracker
->recedeSkipDebugValues();
827 assert(&*RPTracker
->getPos() == &MI
&& "RPTracker in sync");
828 RPTracker
->recede(RegOpers
);
832 (CanHandleTerminators
|| (!MI
.isTerminator() && !MI
.isPosition())) &&
833 "Cannot schedule terminators or labels!");
835 // Add register-based dependencies (data, anti, and output).
836 // For some instructions (calls, returns, inline-asm, etc.) there can
837 // be explicit uses and implicit defs, in which case the use will appear
838 // on the operand list before the def. Do two passes over the operand
839 // list to make sure that defs are processed before any uses.
840 bool HasVRegDef
= false;
841 for (unsigned j
= 0, n
= MI
.getNumOperands(); j
!= n
; ++j
) {
842 const MachineOperand
&MO
= MI
.getOperand(j
);
843 if (!MO
.isReg() || !MO
.isDef())
845 Register Reg
= MO
.getReg();
846 if (Register::isPhysicalRegister(Reg
)) {
847 addPhysRegDeps(SU
, j
);
848 } else if (Register::isVirtualRegister(Reg
)) {
850 addVRegDefDeps(SU
, j
);
853 // Now process all uses.
854 for (unsigned j
= 0, n
= MI
.getNumOperands(); j
!= n
; ++j
) {
855 const MachineOperand
&MO
= MI
.getOperand(j
);
856 // Only look at use operands.
857 // We do not need to check for MO.readsReg() here because subsequent
858 // subregister defs will get output dependence edges and need no
859 // additional use dependencies.
860 if (!MO
.isReg() || !MO
.isUse())
862 Register Reg
= MO
.getReg();
863 if (Register::isPhysicalRegister(Reg
)) {
864 addPhysRegDeps(SU
, j
);
865 } else if (Register::isVirtualRegister(Reg
) && MO
.readsReg()) {
866 addVRegUseDeps(SU
, j
);
870 // If we haven't seen any uses in this scheduling region, create a
871 // dependence edge to ExitSU to model the live-out latency. This is required
872 // for vreg defs with no in-region use, and prefetches with no vreg def.
874 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
875 // check currently relies on being called before adding chain deps.
876 if (SU
->NumSuccs
== 0 && SU
->Latency
> 1 && (HasVRegDef
|| MI
.mayLoad())) {
877 SDep
Dep(SU
, SDep::Artificial
);
878 Dep
.setLatency(SU
->Latency
- 1);
882 // Add memory dependencies (Note: isStoreToStackSlot and
883 // isLoadFromStackSLot are not usable after stack slots are lowered to
884 // actual addresses).
886 // This is a barrier event that acts as a pivotal node in the DAG.
887 if (isGlobalMemoryObject(AA
, &MI
)) {
889 // Become the barrier chain.
891 BarrierChain
->addPredBarrier(SU
);
894 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
895 << BarrierChain
->NodeNum
<< ").\n";);
897 // Add dependencies against everything below it and clear maps.
898 addBarrierChain(Stores
);
899 addBarrierChain(Loads
);
900 addBarrierChain(NonAliasStores
);
901 addBarrierChain(NonAliasLoads
);
902 addBarrierChain(FPExceptions
);
907 // Instructions that may raise FP exceptions may not be moved
908 // across any global barriers.
909 if (MI
.mayRaiseFPException()) {
911 BarrierChain
->addPredBarrier(SU
);
913 FPExceptions
.insert(SU
, UnknownValue
);
915 if (FPExceptions
.size() >= HugeRegion
) {
916 LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";);
918 reduceHugeMemNodeMaps(FPExceptions
, empty
, getReductionSize());
922 // If it's not a store or a variant load, we're done.
923 if (!MI
.mayStore() &&
924 !(MI
.mayLoad() && !MI
.isDereferenceableInvariantLoad(AA
)))
927 // Always add dependecy edge to BarrierChain if present.
929 BarrierChain
->addPredBarrier(SU
);
931 // Find the underlying objects for MI. The Objs vector is either
932 // empty, or filled with the Values of memory locations which this
934 UnderlyingObjectsVector Objs
;
935 bool ObjsFound
= getUnderlyingObjectsForInstr(&MI
, MFI
, Objs
,
940 // An unknown store depends on all stores and loads.
941 addChainDependencies(SU
, Stores
);
942 addChainDependencies(SU
, NonAliasStores
);
943 addChainDependencies(SU
, Loads
);
944 addChainDependencies(SU
, NonAliasLoads
);
946 // Map this store to 'UnknownValue'.
947 Stores
.insert(SU
, UnknownValue
);
949 // Add precise dependencies against all previously seen memory
950 // accesses mapped to the same Value(s).
951 for (const UnderlyingObject
&UnderlObj
: Objs
) {
952 ValueType V
= UnderlObj
.getValue();
953 bool ThisMayAlias
= UnderlObj
.mayAlias();
955 // Add dependencies to previous stores and loads mapped to V.
956 addChainDependencies(SU
, (ThisMayAlias
? Stores
: NonAliasStores
), V
);
957 addChainDependencies(SU
, (ThisMayAlias
? Loads
: NonAliasLoads
), V
);
959 // Update the store map after all chains have been added to avoid adding
960 // self-loop edge if multiple underlying objects are present.
961 for (const UnderlyingObject
&UnderlObj
: Objs
) {
962 ValueType V
= UnderlObj
.getValue();
963 bool ThisMayAlias
= UnderlObj
.mayAlias();
965 // Map this store to V.
966 (ThisMayAlias
? Stores
: NonAliasStores
).insert(SU
, V
);
968 // The store may have dependencies to unanalyzable loads and
970 addChainDependencies(SU
, Loads
, UnknownValue
);
971 addChainDependencies(SU
, Stores
, UnknownValue
);
973 } else { // SU is a load.
975 // An unknown load depends on all stores.
976 addChainDependencies(SU
, Stores
);
977 addChainDependencies(SU
, NonAliasStores
);
979 Loads
.insert(SU
, UnknownValue
);
981 for (const UnderlyingObject
&UnderlObj
: Objs
) {
982 ValueType V
= UnderlObj
.getValue();
983 bool ThisMayAlias
= UnderlObj
.mayAlias();
985 // Add precise dependencies against all previously seen stores
986 // mapping to the same Value(s).
987 addChainDependencies(SU
, (ThisMayAlias
? Stores
: NonAliasStores
), V
);
989 // Map this load to V.
990 (ThisMayAlias
? Loads
: NonAliasLoads
).insert(SU
, V
);
992 // The load may have dependencies to unanalyzable stores.
993 addChainDependencies(SU
, Stores
, UnknownValue
);
997 // Reduce maps if they grow huge.
998 if (Stores
.size() + Loads
.size() >= HugeRegion
) {
999 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
1000 reduceHugeMemNodeMaps(Stores
, Loads
, getReductionSize());
1002 if (NonAliasStores
.size() + NonAliasLoads
.size() >= HugeRegion
) {
1004 dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
1005 reduceHugeMemNodeMaps(NonAliasStores
, NonAliasLoads
, getReductionSize());
1010 FirstDbgValue
= DbgMI
;
1014 CurrentVRegDefs
.clear();
1015 CurrentVRegUses
.clear();
1020 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, const PseudoSourceValue
* PSV
) {
1021 PSV
->printCustom(OS
);
1025 void ScheduleDAGInstrs::Value2SUsMap::dump() {
1026 for (auto &Itr
: *this) {
1027 if (Itr
.first
.is
<const Value
*>()) {
1028 const Value
*V
= Itr
.first
.get
<const Value
*>();
1029 if (isa
<UndefValue
>(V
))
1030 dbgs() << "Unknown";
1032 V
->printAsOperand(dbgs());
1034 else if (Itr
.first
.is
<const PseudoSourceValue
*>())
1035 dbgs() << Itr
.first
.get
<const PseudoSourceValue
*>();
1037 llvm_unreachable("Unknown Value type.");
1040 dumpSUList(Itr
.second
);
1044 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap
&stores
,
1045 Value2SUsMap
&loads
, unsigned N
) {
1046 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores
.dump();
1047 dbgs() << "Loading SUnits:\n"; loads
.dump());
1049 // Insert all SU's NodeNums into a vector and sort it.
1050 std::vector
<unsigned> NodeNums
;
1051 NodeNums
.reserve(stores
.size() + loads
.size());
1052 for (auto &I
: stores
)
1053 for (auto *SU
: I
.second
)
1054 NodeNums
.push_back(SU
->NodeNum
);
1055 for (auto &I
: loads
)
1056 for (auto *SU
: I
.second
)
1057 NodeNums
.push_back(SU
->NodeNum
);
1058 llvm::sort(NodeNums
);
1060 // The N last elements in NodeNums will be removed, and the SU with
1061 // the lowest NodeNum of them will become the new BarrierChain to
1062 // let the not yet seen SUs have a dependency to the removed SUs.
1063 assert(N
<= NodeNums
.size());
1064 SUnit
*newBarrierChain
= &SUnits
[*(NodeNums
.end() - N
)];
1066 // The aliasing and non-aliasing maps reduce independently of each
1067 // other, but share a common BarrierChain. Check if the
1068 // newBarrierChain is above the former one. If it is not, it may
1069 // introduce a loop to use newBarrierChain, so keep the old one.
1070 if (newBarrierChain
->NodeNum
< BarrierChain
->NodeNum
) {
1071 BarrierChain
->addPredBarrier(newBarrierChain
);
1072 BarrierChain
= newBarrierChain
;
1073 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU("
1074 << BarrierChain
->NodeNum
<< ").\n";);
1077 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU("
1078 << BarrierChain
->NodeNum
<< ").\n";);
1081 BarrierChain
= newBarrierChain
;
1083 insertBarrierChain(stores
);
1084 insertBarrierChain(loads
);
1086 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores
.dump();
1087 dbgs() << "Loading SUnits:\n"; loads
.dump());
1090 static void toggleKills(const MachineRegisterInfo
&MRI
, LivePhysRegs
&LiveRegs
,
1091 MachineInstr
&MI
, bool addToLiveRegs
) {
1092 for (MachineOperand
&MO
: MI
.operands()) {
1093 if (!MO
.isReg() || !MO
.readsReg())
1095 Register Reg
= MO
.getReg();
1099 // Things that are available after the instruction are killed by it.
1100 bool IsKill
= LiveRegs
.available(MRI
, Reg
);
1101 MO
.setIsKill(IsKill
);
1103 LiveRegs
.addReg(Reg
);
1107 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock
&MBB
) {
1108 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB
) << '\n');
1110 LiveRegs
.init(*TRI
);
1111 LiveRegs
.addLiveOuts(MBB
);
1113 // Examine block from end to start...
1114 for (MachineInstr
&MI
: llvm::reverse(MBB
)) {
1115 if (MI
.isDebugOrPseudoInstr())
1118 // Update liveness. Registers that are defed but not used in this
1119 // instruction are now dead. Mark register and all subregs as they
1120 // are completely defined.
1121 for (ConstMIBundleOperands
O(MI
); O
.isValid(); ++O
) {
1122 const MachineOperand
&MO
= *O
;
1126 Register Reg
= MO
.getReg();
1129 LiveRegs
.removeReg(Reg
);
1130 } else if (MO
.isRegMask()) {
1131 LiveRegs
.removeRegsInMask(MO
);
1135 // If there is a bundle header fix it up first.
1136 if (!MI
.isBundled()) {
1137 toggleKills(MRI
, LiveRegs
, MI
, true);
1139 MachineBasicBlock::instr_iterator Bundle
= MI
.getIterator();
1141 toggleKills(MRI
, LiveRegs
, MI
, false);
1143 // Some targets make the (questionable) assumtion that the instructions
1144 // inside the bundle are ordered and consequently only the last use of
1145 // a register inside the bundle can kill it.
1146 MachineBasicBlock::instr_iterator I
= std::next(Bundle
);
1147 while (I
->isBundledWithSucc())
1150 if (!I
->isDebugOrPseudoInstr())
1151 toggleKills(MRI
, LiveRegs
, *I
, true);
1153 } while (I
!= Bundle
);
1158 void ScheduleDAGInstrs::dumpNode(const SUnit
&SU
) const {
1159 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1162 SU
.getInstr()->dump();
1166 void ScheduleDAGInstrs::dump() const {
1167 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1168 if (EntrySU
.getInstr() != nullptr)
1169 dumpNodeAll(EntrySU
);
1170 for (const SUnit
&SU
: SUnits
)
1172 if (ExitSU
.getInstr() != nullptr)
1173 dumpNodeAll(ExitSU
);
1177 std::string
ScheduleDAGInstrs::getGraphNodeLabel(const SUnit
*SU
) const {
1179 raw_string_ostream
oss(s
);
1182 else if (SU
== &ExitSU
)
1185 SU
->getInstr()->print(oss
, /*IsStandalone=*/true);
1189 /// Return the basic block label. It is not necessarilly unique because a block
1190 /// contains multiple scheduling regions. But it is fine for visualization.
1191 std::string
ScheduleDAGInstrs::getDAGName() const {
1192 return "dag." + BB
->getFullName();
1195 bool ScheduleDAGInstrs::canAddEdge(SUnit
*SuccSU
, SUnit
*PredSU
) {
1196 return SuccSU
== &ExitSU
|| !Topo
.IsReachable(PredSU
, SuccSU
);
1199 bool ScheduleDAGInstrs::addEdge(SUnit
*SuccSU
, const SDep
&PredDep
) {
1200 if (SuccSU
!= &ExitSU
) {
1201 // Do not use WillCreateCycle, it assumes SD scheduling.
1202 // If Pred is reachable from Succ, then the edge creates a cycle.
1203 if (Topo
.IsReachable(PredDep
.getSUnit(), SuccSU
))
1205 Topo
.AddPredQueued(SuccSU
, PredDep
.getSUnit());
1207 SuccSU
->addPred(PredDep
, /*Required=*/!PredDep
.isArtificial());
1208 // Return true regardless of whether a new edge needed to be inserted.
1212 //===----------------------------------------------------------------------===//
1213 // SchedDFSResult Implementation
1214 //===----------------------------------------------------------------------===//
1218 /// Internal state used to compute SchedDFSResult.
1219 class SchedDFSImpl
{
1222 /// Join DAG nodes into equivalence classes by their subtree.
1223 IntEqClasses SubtreeClasses
;
1224 /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1225 std::vector
<std::pair
<const SUnit
*, const SUnit
*>> ConnectionPairs
;
1229 unsigned ParentNodeID
; ///< Parent node (member of the parent subtree).
1230 unsigned SubInstrCount
= 0; ///< Instr count in this tree only, not
1233 RootData(unsigned id
): NodeID(id
),
1234 ParentNodeID(SchedDFSResult::InvalidSubtreeID
) {}
1236 unsigned getSparseSetIndex() const { return NodeID
; }
1239 SparseSet
<RootData
> RootSet
;
1242 SchedDFSImpl(SchedDFSResult
&r
): R(r
), SubtreeClasses(R
.DFSNodeData
.size()) {
1243 RootSet
.setUniverse(R
.DFSNodeData
.size());
1246 /// Returns true if this node been visited by the DFS traversal.
1248 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1249 /// ID. Later, SubtreeID is updated but remains valid.
1250 bool isVisited(const SUnit
*SU
) const {
1251 return R
.DFSNodeData
[SU
->NodeNum
].SubtreeID
1252 != SchedDFSResult::InvalidSubtreeID
;
1255 /// Initializes this node's instruction count. We don't need to flag the node
1256 /// visited until visitPostorder because the DAG cannot have cycles.
1257 void visitPreorder(const SUnit
*SU
) {
1258 R
.DFSNodeData
[SU
->NodeNum
].InstrCount
=
1259 SU
->getInstr()->isTransient() ? 0 : 1;
1262 /// Called once for each node after all predecessors are visited. Revisit this
1263 /// node's predecessors and potentially join them now that we know the ILP of
1264 /// the other predecessors.
1265 void visitPostorderNode(const SUnit
*SU
) {
1266 // Mark this node as the root of a subtree. It may be joined with its
1267 // successors later.
1268 R
.DFSNodeData
[SU
->NodeNum
].SubtreeID
= SU
->NodeNum
;
1269 RootData
RData(SU
->NodeNum
);
1270 RData
.SubInstrCount
= SU
->getInstr()->isTransient() ? 0 : 1;
1272 // If any predecessors are still in their own subtree, they either cannot be
1273 // joined or are large enough to remain separate. If this parent node's
1274 // total instruction count is not greater than a child subtree by at least
1275 // the subtree limit, then try to join it now since splitting subtrees is
1276 // only useful if multiple high-pressure paths are possible.
1277 unsigned InstrCount
= R
.DFSNodeData
[SU
->NodeNum
].InstrCount
;
1278 for (const SDep
&PredDep
: SU
->Preds
) {
1279 if (PredDep
.getKind() != SDep::Data
)
1281 unsigned PredNum
= PredDep
.getSUnit()->NodeNum
;
1282 if ((InstrCount
- R
.DFSNodeData
[PredNum
].InstrCount
) < R
.SubtreeLimit
)
1283 joinPredSubtree(PredDep
, SU
, /*CheckLimit=*/false);
1285 // Either link or merge the TreeData entry from the child to the parent.
1286 if (R
.DFSNodeData
[PredNum
].SubtreeID
== PredNum
) {
1287 // If the predecessor's parent is invalid, this is a tree edge and the
1288 // current node is the parent.
1289 if (RootSet
[PredNum
].ParentNodeID
== SchedDFSResult::InvalidSubtreeID
)
1290 RootSet
[PredNum
].ParentNodeID
= SU
->NodeNum
;
1292 else if (RootSet
.count(PredNum
)) {
1293 // The predecessor is not a root, but is still in the root set. This
1294 // must be the new parent that it was just joined to. Note that
1295 // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1296 // set to the original parent.
1297 RData
.SubInstrCount
+= RootSet
[PredNum
].SubInstrCount
;
1298 RootSet
.erase(PredNum
);
1301 RootSet
[SU
->NodeNum
] = RData
;
1304 /// Called once for each tree edge after calling visitPostOrderNode on
1305 /// the predecessor. Increment the parent node's instruction count and
1306 /// preemptively join this subtree to its parent's if it is small enough.
1307 void visitPostorderEdge(const SDep
&PredDep
, const SUnit
*Succ
) {
1308 R
.DFSNodeData
[Succ
->NodeNum
].InstrCount
1309 += R
.DFSNodeData
[PredDep
.getSUnit()->NodeNum
].InstrCount
;
1310 joinPredSubtree(PredDep
, Succ
);
1313 /// Adds a connection for cross edges.
1314 void visitCrossEdge(const SDep
&PredDep
, const SUnit
*Succ
) {
1315 ConnectionPairs
.push_back(std::make_pair(PredDep
.getSUnit(), Succ
));
1318 /// Sets each node's subtree ID to the representative ID and record
1319 /// connections between trees.
1321 SubtreeClasses
.compress();
1322 R
.DFSTreeData
.resize(SubtreeClasses
.getNumClasses());
1323 assert(SubtreeClasses
.getNumClasses() == RootSet
.size()
1324 && "number of roots should match trees");
1325 for (const RootData
&Root
: RootSet
) {
1326 unsigned TreeID
= SubtreeClasses
[Root
.NodeID
];
1327 if (Root
.ParentNodeID
!= SchedDFSResult::InvalidSubtreeID
)
1328 R
.DFSTreeData
[TreeID
].ParentTreeID
= SubtreeClasses
[Root
.ParentNodeID
];
1329 R
.DFSTreeData
[TreeID
].SubInstrCount
= Root
.SubInstrCount
;
1330 // Note that SubInstrCount may be greater than InstrCount if we joined
1331 // subtrees across a cross edge. InstrCount will be attributed to the
1332 // original parent, while SubInstrCount will be attributed to the joined
1335 R
.SubtreeConnections
.resize(SubtreeClasses
.getNumClasses());
1336 R
.SubtreeConnectLevels
.resize(SubtreeClasses
.getNumClasses());
1337 LLVM_DEBUG(dbgs() << R
.getNumSubtrees() << " subtrees:\n");
1338 for (unsigned Idx
= 0, End
= R
.DFSNodeData
.size(); Idx
!= End
; ++Idx
) {
1339 R
.DFSNodeData
[Idx
].SubtreeID
= SubtreeClasses
[Idx
];
1340 LLVM_DEBUG(dbgs() << " SU(" << Idx
<< ") in tree "
1341 << R
.DFSNodeData
[Idx
].SubtreeID
<< '\n');
1343 for (const std::pair
<const SUnit
*, const SUnit
*> &P
: ConnectionPairs
) {
1344 unsigned PredTree
= SubtreeClasses
[P
.first
->NodeNum
];
1345 unsigned SuccTree
= SubtreeClasses
[P
.second
->NodeNum
];
1346 if (PredTree
== SuccTree
)
1348 unsigned Depth
= P
.first
->getDepth();
1349 addConnection(PredTree
, SuccTree
, Depth
);
1350 addConnection(SuccTree
, PredTree
, Depth
);
1355 /// Joins the predecessor subtree with the successor that is its DFS parent.
1356 /// Applies some heuristics before joining.
1357 bool joinPredSubtree(const SDep
&PredDep
, const SUnit
*Succ
,
1358 bool CheckLimit
= true) {
1359 assert(PredDep
.getKind() == SDep::Data
&& "Subtrees are for data edges");
1361 // Check if the predecessor is already joined.
1362 const SUnit
*PredSU
= PredDep
.getSUnit();
1363 unsigned PredNum
= PredSU
->NodeNum
;
1364 if (R
.DFSNodeData
[PredNum
].SubtreeID
!= PredNum
)
1367 // Four is the magic number of successors before a node is considered a
1369 unsigned NumDataSucs
= 0;
1370 for (const SDep
&SuccDep
: PredSU
->Succs
) {
1371 if (SuccDep
.getKind() == SDep::Data
) {
1372 if (++NumDataSucs
>= 4)
1376 if (CheckLimit
&& R
.DFSNodeData
[PredNum
].InstrCount
> R
.SubtreeLimit
)
1378 R
.DFSNodeData
[PredNum
].SubtreeID
= Succ
->NodeNum
;
1379 SubtreeClasses
.join(Succ
->NodeNum
, PredNum
);
1383 /// Called by finalize() to record a connection between trees.
1384 void addConnection(unsigned FromTree
, unsigned ToTree
, unsigned Depth
) {
1389 SmallVectorImpl
<SchedDFSResult::Connection
> &Connections
=
1390 R
.SubtreeConnections
[FromTree
];
1391 for (SchedDFSResult::Connection
&C
: Connections
) {
1392 if (C
.TreeID
== ToTree
) {
1393 C
.Level
= std::max(C
.Level
, Depth
);
1397 Connections
.push_back(SchedDFSResult::Connection(ToTree
, Depth
));
1398 FromTree
= R
.DFSTreeData
[FromTree
].ParentTreeID
;
1399 } while (FromTree
!= SchedDFSResult::InvalidSubtreeID
);
1403 } // end namespace llvm
1407 /// Manage the stack used by a reverse depth-first search over the DAG.
1408 class SchedDAGReverseDFS
{
1409 std::vector
<std::pair
<const SUnit
*, SUnit::const_pred_iterator
>> DFSStack
;
1412 bool isComplete() const { return DFSStack
.empty(); }
1414 void follow(const SUnit
*SU
) {
1415 DFSStack
.push_back(std::make_pair(SU
, SU
->Preds
.begin()));
1417 void advance() { ++DFSStack
.back().second
; }
1419 const SDep
*backtrack() {
1420 DFSStack
.pop_back();
1421 return DFSStack
.empty() ? nullptr : std::prev(DFSStack
.back().second
);
1424 const SUnit
*getCurr() const { return DFSStack
.back().first
; }
1426 SUnit::const_pred_iterator
getPred() const { return DFSStack
.back().second
; }
1428 SUnit::const_pred_iterator
getPredEnd() const {
1429 return getCurr()->Preds
.end();
1433 } // end anonymous namespace
1435 static bool hasDataSucc(const SUnit
*SU
) {
1436 for (const SDep
&SuccDep
: SU
->Succs
) {
1437 if (SuccDep
.getKind() == SDep::Data
&&
1438 !SuccDep
.getSUnit()->isBoundaryNode())
1444 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first
1445 /// search from this root.
1446 void SchedDFSResult::compute(ArrayRef
<SUnit
> SUnits
) {
1448 llvm_unreachable("Top-down ILP metric is unimplemented");
1450 SchedDFSImpl
Impl(*this);
1451 for (const SUnit
&SU
: SUnits
) {
1452 if (Impl
.isVisited(&SU
) || hasDataSucc(&SU
))
1455 SchedDAGReverseDFS DFS
;
1456 Impl
.visitPreorder(&SU
);
1459 // Traverse the leftmost path as far as possible.
1460 while (DFS
.getPred() != DFS
.getPredEnd()) {
1461 const SDep
&PredDep
= *DFS
.getPred();
1463 // Ignore non-data edges.
1464 if (PredDep
.getKind() != SDep::Data
1465 || PredDep
.getSUnit()->isBoundaryNode()) {
1468 // An already visited edge is a cross edge, assuming an acyclic DAG.
1469 if (Impl
.isVisited(PredDep
.getSUnit())) {
1470 Impl
.visitCrossEdge(PredDep
, DFS
.getCurr());
1473 Impl
.visitPreorder(PredDep
.getSUnit());
1474 DFS
.follow(PredDep
.getSUnit());
1476 // Visit the top of the stack in postorder and backtrack.
1477 const SUnit
*Child
= DFS
.getCurr();
1478 const SDep
*PredDep
= DFS
.backtrack();
1479 Impl
.visitPostorderNode(Child
);
1481 Impl
.visitPostorderEdge(*PredDep
, DFS
.getCurr());
1482 if (DFS
.isComplete())
1489 /// The root of the given SubtreeID was just scheduled. For all subtrees
1490 /// connected to this tree, record the depth of the connection so that the
1491 /// nearest connected subtrees can be prioritized.
1492 void SchedDFSResult::scheduleTree(unsigned SubtreeID
) {
1493 for (const Connection
&C
: SubtreeConnections
[SubtreeID
]) {
1494 SubtreeConnectLevels
[C
.TreeID
] =
1495 std::max(SubtreeConnectLevels
[C
.TreeID
], C
.Level
);
1496 LLVM_DEBUG(dbgs() << " Tree: " << C
.TreeID
<< " @"
1497 << SubtreeConnectLevels
[C
.TreeID
] << '\n');
1501 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1502 LLVM_DUMP_METHOD
void ILPValue::print(raw_ostream
&OS
) const {
1503 OS
<< InstrCount
<< " / " << Length
<< " = ";
1507 OS
<< format("%g", ((double)InstrCount
/ Length
));
1510 LLVM_DUMP_METHOD
void ILPValue::dump() const {
1511 dbgs() << *this << '\n';
1517 raw_ostream
&operator<<(raw_ostream
&OS
, const ILPValue
&Val
) {
1522 } // end namespace llvm