[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / CodeGen / ScheduleDAGInstrs.cpp
blob0e8e8338b46dbfdefefab3361971676c045ad511
1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This implements the ScheduleDAGInstrs class, which implements
10 /// re-scheduling of MachineInstrs.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
15 #include "llvm/ADT/IntEqClasses.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBundle.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/PseudoSourceValue.h"
34 #include "llvm/CodeGen/RegisterPressure.h"
35 #include "llvm/CodeGen/ScheduleDAG.h"
36 #include "llvm/CodeGen/ScheduleDFS.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/MC/LaneBitmask.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/Format.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <iterator>
60 #include <string>
61 #include <utility>
62 #include <vector>
64 using namespace llvm;
66 #define DEBUG_TYPE "machine-scheduler"
68 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
69 cl::ZeroOrMore, cl::init(false),
70 cl::desc("Enable use of AA during MI DAG construction"));
72 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
73 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
75 // Note: the two options below might be used in tuning compile time vs
76 // output quality. Setting HugeRegion so large that it will never be
77 // reached means best-effort, but may be slow.
79 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
80 // together hold this many SUs, a reduction of maps will be done.
81 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
82 cl::init(1000), cl::desc("The limit to use while constructing the DAG "
83 "prior to scheduling, at which point a trade-off "
84 "is made to avoid excessive compile time."));
86 static cl::opt<unsigned> ReductionSize(
87 "dag-maps-reduction-size", cl::Hidden,
88 cl::desc("A huge scheduling region will have maps reduced by this many "
89 "nodes at a time. Defaults to HugeRegion / 2."));
91 static unsigned getReductionSize() {
92 // Always reduce a huge region with half of the elements, except
93 // when user sets this number explicitly.
94 if (ReductionSize.getNumOccurrences() == 0)
95 return HugeRegion / 2;
96 return ReductionSize;
99 static void dumpSUList(ScheduleDAGInstrs::SUList &L) {
100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
101 dbgs() << "{ ";
102 for (const SUnit *su : L) {
103 dbgs() << "SU(" << su->NodeNum << ")";
104 if (su != L.back())
105 dbgs() << ", ";
107 dbgs() << "}\n";
108 #endif
111 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
112 const MachineLoopInfo *mli,
113 bool RemoveKillFlags)
114 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
115 RemoveKillFlags(RemoveKillFlags),
116 UnknownValue(UndefValue::get(
117 Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) {
118 DbgValues.clear();
120 const TargetSubtargetInfo &ST = mf.getSubtarget();
121 SchedModel.init(&ST);
124 /// If this machine instr has memory reference information and it can be
125 /// tracked to a normal reference to a known object, return the Value
126 /// for that object. This function returns false the memory location is
127 /// unknown or may alias anything.
128 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI,
129 const MachineFrameInfo &MFI,
130 UnderlyingObjectsVector &Objects,
131 const DataLayout &DL) {
132 auto allMMOsOkay = [&]() {
133 for (const MachineMemOperand *MMO : MI->memoperands()) {
134 // TODO: Figure out whether isAtomic is really necessary (see D57601).
135 if (MMO->isVolatile() || MMO->isAtomic())
136 return false;
138 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
139 // Function that contain tail calls don't have unique PseudoSourceValue
140 // objects. Two PseudoSourceValues might refer to the same or
141 // overlapping locations. The client code calling this function assumes
142 // this is not the case. So return a conservative answer of no known
143 // object.
144 if (MFI.hasTailCall())
145 return false;
147 // For now, ignore PseudoSourceValues which may alias LLVM IR values
148 // because the code that uses this function has no way to cope with
149 // such aliases.
150 if (PSV->isAliased(&MFI))
151 return false;
153 bool MayAlias = PSV->mayAlias(&MFI);
154 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
155 } else if (const Value *V = MMO->getValue()) {
156 SmallVector<Value *, 4> Objs;
157 if (!getUnderlyingObjectsForCodeGen(V, Objs))
158 return false;
160 for (Value *V : Objs) {
161 assert(isIdentifiedObject(V));
162 Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
164 } else
165 return false;
167 return true;
170 if (!allMMOsOkay()) {
171 Objects.clear();
172 return false;
175 return true;
178 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
179 BB = bb;
182 void ScheduleDAGInstrs::finishBlock() {
183 // Subclasses should no longer refer to the old block.
184 BB = nullptr;
187 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
188 MachineBasicBlock::iterator begin,
189 MachineBasicBlock::iterator end,
190 unsigned regioninstrs) {
191 assert(bb == BB && "startBlock should set BB");
192 RegionBegin = begin;
193 RegionEnd = end;
194 NumRegionInstrs = regioninstrs;
197 void ScheduleDAGInstrs::exitRegion() {
198 // Nothing to do.
201 void ScheduleDAGInstrs::addSchedBarrierDeps() {
202 MachineInstr *ExitMI =
203 RegionEnd != BB->end()
204 ? &*skipDebugInstructionsBackward(RegionEnd, RegionBegin)
205 : nullptr;
206 ExitSU.setInstr(ExitMI);
207 // Add dependencies on the defs and uses of the instruction.
208 if (ExitMI) {
209 for (const MachineOperand &MO : ExitMI->operands()) {
210 if (!MO.isReg() || MO.isDef()) continue;
211 Register Reg = MO.getReg();
212 if (Register::isPhysicalRegister(Reg)) {
213 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
214 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) {
215 addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO));
219 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) {
220 // For others, e.g. fallthrough, conditional branch, assume the exit
221 // uses all the registers that are livein to the successor blocks.
222 for (const MachineBasicBlock *Succ : BB->successors()) {
223 for (const auto &LI : Succ->liveins()) {
224 if (!Uses.contains(LI.PhysReg))
225 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
231 /// MO is an operand of SU's instruction that defines a physical register. Adds
232 /// data dependencies from SU to any uses of the physical register.
233 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
234 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
235 assert(MO.isDef() && "expect physreg def");
237 // Ask the target if address-backscheduling is desirable, and if so how much.
238 const TargetSubtargetInfo &ST = MF.getSubtarget();
240 // Only use any non-zero latency for real defs/uses, in contrast to
241 // "fake" operands added by regalloc.
242 const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc();
243 bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() &&
244 !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg()));
245 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
246 Alias.isValid(); ++Alias) {
247 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
248 SUnit *UseSU = I->SU;
249 if (UseSU == SU)
250 continue;
252 // Adjust the dependence latency using operand def/use information,
253 // then allow the target to perform its own adjustments.
254 int UseOp = I->OpIdx;
255 MachineInstr *RegUse = nullptr;
256 SDep Dep;
257 if (UseOp < 0)
258 Dep = SDep(SU, SDep::Artificial);
259 else {
260 // Set the hasPhysRegDefs only for physreg defs that have a use within
261 // the scheduling region.
262 SU->hasPhysRegDefs = true;
263 Dep = SDep(SU, SDep::Data, *Alias);
264 RegUse = UseSU->getInstr();
266 const MCInstrDesc *UseMIDesc =
267 (RegUse ? &UseSU->getInstr()->getDesc() : nullptr);
268 bool ImplicitPseudoUse =
269 (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) &&
270 !UseMIDesc->hasImplicitUseOfPhysReg(*Alias));
271 if (!ImplicitPseudoDef && !ImplicitPseudoUse) {
272 Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
273 RegUse, UseOp));
274 } else {
275 Dep.setLatency(0);
277 ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOp, Dep);
278 UseSU->addPred(Dep);
283 /// Adds register dependencies (data, anti, and output) from this SUnit
284 /// to following instructions in the same scheduling region that depend the
285 /// physical register referenced at OperIdx.
286 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
287 MachineInstr *MI = SU->getInstr();
288 MachineOperand &MO = MI->getOperand(OperIdx);
289 Register Reg = MO.getReg();
290 // We do not need to track any dependencies for constant registers.
291 if (MRI.isConstantPhysReg(Reg))
292 return;
294 const TargetSubtargetInfo &ST = MF.getSubtarget();
296 // Optionally add output and anti dependencies. For anti
297 // dependencies we use a latency of 0 because for a multi-issue
298 // target we want to allow the defining instruction to issue
299 // in the same cycle as the using instruction.
300 // TODO: Using a latency of 1 here for output dependencies assumes
301 // there's no cost for reusing registers.
302 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
303 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
304 if (!Defs.contains(*Alias))
305 continue;
306 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
307 SUnit *DefSU = I->SU;
308 if (DefSU == &ExitSU)
309 continue;
310 if (DefSU != SU &&
311 (Kind != SDep::Output || !MO.isDead() ||
312 !DefSU->getInstr()->registerDefIsDead(*Alias))) {
313 SDep Dep(SU, Kind, /*Reg=*/*Alias);
314 if (Kind != SDep::Anti)
315 Dep.setLatency(
316 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
317 ST.adjustSchedDependency(SU, OperIdx, DefSU, I->OpIdx, Dep);
318 DefSU->addPred(Dep);
323 if (!MO.isDef()) {
324 SU->hasPhysRegUses = true;
325 // Either insert a new Reg2SUnits entry with an empty SUnits list, or
326 // retrieve the existing SUnits list for this register's uses.
327 // Push this SUnit on the use list.
328 Uses.insert(PhysRegSUOper(SU, OperIdx, Reg));
329 if (RemoveKillFlags)
330 MO.setIsKill(false);
331 } else {
332 addPhysRegDataDeps(SU, OperIdx);
334 // Clear previous uses and defs of this register and its subergisters.
335 for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) {
336 if (Uses.contains(*SubReg))
337 Uses.eraseAll(*SubReg);
338 if (!MO.isDead())
339 Defs.eraseAll(*SubReg);
341 if (MO.isDead() && SU->isCall) {
342 // Calls will not be reordered because of chain dependencies (see
343 // below). Since call operands are dead, calls may continue to be added
344 // to the DefList making dependence checking quadratic in the size of
345 // the block. Instead, we leave only one call at the back of the
346 // DefList.
347 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
348 Reg2SUnitsMap::iterator B = P.first;
349 Reg2SUnitsMap::iterator I = P.second;
350 for (bool isBegin = I == B; !isBegin; /* empty */) {
351 isBegin = (--I) == B;
352 if (!I->SU->isCall)
353 break;
354 I = Defs.erase(I);
358 // Defs are pushed in the order they are visited and never reordered.
359 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
363 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
365 Register Reg = MO.getReg();
366 // No point in tracking lanemasks if we don't have interesting subregisters.
367 const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
368 if (!RC.HasDisjunctSubRegs)
369 return LaneBitmask::getAll();
371 unsigned SubReg = MO.getSubReg();
372 if (SubReg == 0)
373 return RC.getLaneMask();
374 return TRI->getSubRegIndexLaneMask(SubReg);
377 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) {
378 auto RegUse = CurrentVRegUses.find(MO.getReg());
379 if (RegUse == CurrentVRegUses.end())
380 return true;
381 return (RegUse->LaneMask & getLaneMaskForMO(MO)).none();
384 /// Adds register output and data dependencies from this SUnit to instructions
385 /// that occur later in the same scheduling region if they read from or write to
386 /// the virtual register defined at OperIdx.
388 /// TODO: Hoist loop induction variable increments. This has to be
389 /// reevaluated. Generally, IV scheduling should be done before coalescing.
390 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
391 MachineInstr *MI = SU->getInstr();
392 MachineOperand &MO = MI->getOperand(OperIdx);
393 Register Reg = MO.getReg();
395 LaneBitmask DefLaneMask;
396 LaneBitmask KillLaneMask;
397 if (TrackLaneMasks) {
398 bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
399 DefLaneMask = getLaneMaskForMO(MO);
400 // If we have a <read-undef> flag, none of the lane values comes from an
401 // earlier instruction.
402 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask;
404 if (MO.getSubReg() != 0 && MO.isUndef()) {
405 // There may be other subregister defs on the same instruction of the same
406 // register in later operands. The lanes of other defs will now be live
407 // after this instruction, so these should not be treated as killed by the
408 // instruction even though they appear to be killed in this one operand.
409 for (const MachineOperand &OtherMO :
410 llvm::drop_begin(MI->operands(), OperIdx + 1))
411 if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg)
412 KillLaneMask &= ~getLaneMaskForMO(OtherMO);
415 // Clear undef flag, we'll re-add it later once we know which subregister
416 // Def is first.
417 MO.setIsUndef(false);
418 } else {
419 DefLaneMask = LaneBitmask::getAll();
420 KillLaneMask = LaneBitmask::getAll();
423 if (MO.isDead()) {
424 assert(deadDefHasNoUse(MO) && "Dead defs should have no uses");
425 } else {
426 // Add data dependence to all uses we found so far.
427 const TargetSubtargetInfo &ST = MF.getSubtarget();
428 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
429 E = CurrentVRegUses.end(); I != E; /*empty*/) {
430 LaneBitmask LaneMask = I->LaneMask;
431 // Ignore uses of other lanes.
432 if ((LaneMask & KillLaneMask).none()) {
433 ++I;
434 continue;
437 if ((LaneMask & DefLaneMask).any()) {
438 SUnit *UseSU = I->SU;
439 MachineInstr *Use = UseSU->getInstr();
440 SDep Dep(SU, SDep::Data, Reg);
441 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
442 I->OperandIndex));
443 ST.adjustSchedDependency(SU, OperIdx, UseSU, I->OperandIndex, Dep);
444 UseSU->addPred(Dep);
447 LaneMask &= ~KillLaneMask;
448 // If we found a Def for all lanes of this use, remove it from the list.
449 if (LaneMask.any()) {
450 I->LaneMask = LaneMask;
451 ++I;
452 } else
453 I = CurrentVRegUses.erase(I);
457 // Shortcut: Singly defined vregs do not have output/anti dependencies.
458 if (MRI.hasOneDef(Reg))
459 return;
461 // Add output dependence to the next nearest defs of this vreg.
463 // Unless this definition is dead, the output dependence should be
464 // transitively redundant with antidependencies from this definition's
465 // uses. We're conservative for now until we have a way to guarantee the uses
466 // are not eliminated sometime during scheduling. The output dependence edge
467 // is also useful if output latency exceeds def-use latency.
468 LaneBitmask LaneMask = DefLaneMask;
469 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
470 CurrentVRegDefs.end())) {
471 // Ignore defs for other lanes.
472 if ((V2SU.LaneMask & LaneMask).none())
473 continue;
474 // Add an output dependence.
475 SUnit *DefSU = V2SU.SU;
476 // Ignore additional defs of the same lanes in one instruction. This can
477 // happen because lanemasks are shared for targets with too many
478 // subregisters. We also use some representration tricks/hacks where we
479 // add super-register defs/uses, to imply that although we only access parts
480 // of the reg we care about the full one.
481 if (DefSU == SU)
482 continue;
483 SDep Dep(SU, SDep::Output, Reg);
484 Dep.setLatency(
485 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
486 DefSU->addPred(Dep);
488 // Update current definition. This can get tricky if the def was about a
489 // bigger lanemask before. We then have to shrink it and create a new
490 // VReg2SUnit for the non-overlapping part.
491 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
492 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
493 V2SU.SU = SU;
494 V2SU.LaneMask = OverlapMask;
495 if (NonOverlapMask.any())
496 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
498 // If there was no CurrentVRegDefs entry for some lanes yet, create one.
499 if (LaneMask.any())
500 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
503 /// Adds a register data dependency if the instruction that defines the
504 /// virtual register used at OperIdx is mapped to an SUnit. Add a register
505 /// antidependency from this SUnit to instructions that occur later in the same
506 /// scheduling region if they write the virtual register.
508 /// TODO: Handle ExitSU "uses" properly.
509 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
510 const MachineInstr *MI = SU->getInstr();
511 assert(!MI->isDebugOrPseudoInstr());
513 const MachineOperand &MO = MI->getOperand(OperIdx);
514 Register Reg = MO.getReg();
516 // Remember the use. Data dependencies will be added when we find the def.
517 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO)
518 : LaneBitmask::getAll();
519 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
521 // Add antidependences to the following defs of the vreg.
522 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
523 CurrentVRegDefs.end())) {
524 // Ignore defs for unrelated lanes.
525 LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
526 if ((PrevDefLaneMask & LaneMask).none())
527 continue;
528 if (V2SU.SU == SU)
529 continue;
531 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
535 /// Returns true if MI is an instruction we are unable to reason about
536 /// (like a call or something with unmodeled side effects).
537 static inline bool isGlobalMemoryObject(AAResults *AA, MachineInstr *MI) {
538 return MI->isCall() || MI->hasUnmodeledSideEffects() ||
539 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA));
542 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
543 unsigned Latency) {
544 if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) {
545 SDep Dep(SUa, SDep::MayAliasMem);
546 Dep.setLatency(Latency);
547 SUb->addPred(Dep);
551 /// Creates an SUnit for each real instruction, numbered in top-down
552 /// topological order. The instruction order A < B, implies that no edge exists
553 /// from B to A.
555 /// Map each real instruction to its SUnit.
557 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
558 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
559 /// instead of pointers.
561 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
562 /// the original instruction list.
563 void ScheduleDAGInstrs::initSUnits() {
564 // We'll be allocating one SUnit for each real instruction in the region,
565 // which is contained within a basic block.
566 SUnits.reserve(NumRegionInstrs);
568 for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) {
569 if (MI.isDebugOrPseudoInstr())
570 continue;
572 SUnit *SU = newSUnit(&MI);
573 MISUnitMap[&MI] = SU;
575 SU->isCall = MI.isCall();
576 SU->isCommutable = MI.isCommutable();
578 // Assign the Latency field of SU using target-provided information.
579 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
581 // If this SUnit uses a reserved or unbuffered resource, mark it as such.
583 // Reserved resources block an instruction from issuing and stall the
584 // entire pipeline. These are identified by BufferSize=0.
586 // Unbuffered resources prevent execution of subsequent instructions that
587 // require the same resources. This is used for in-order execution pipelines
588 // within an out-of-order core. These are identified by BufferSize=1.
589 if (SchedModel.hasInstrSchedModel()) {
590 const MCSchedClassDesc *SC = getSchedClass(SU);
591 for (const MCWriteProcResEntry &PRE :
592 make_range(SchedModel.getWriteProcResBegin(SC),
593 SchedModel.getWriteProcResEnd(SC))) {
594 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) {
595 case 0:
596 SU->hasReservedResource = true;
597 break;
598 case 1:
599 SU->isUnbuffered = true;
600 break;
601 default:
602 break;
609 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
610 /// Current total number of SUs in map.
611 unsigned NumNodes = 0;
613 /// 1 for loads, 0 for stores. (see comment in SUList)
614 unsigned TrueMemOrderLatency;
616 public:
617 Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {}
619 /// To keep NumNodes up to date, insert() is used instead of
620 /// this operator w/ push_back().
621 ValueType &operator[](const SUList &Key) {
622 llvm_unreachable("Don't use. Use insert() instead."); };
624 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling
625 /// reduce().
626 void inline insert(SUnit *SU, ValueType V) {
627 MapVector::operator[](V).push_back(SU);
628 NumNodes++;
631 /// Clears the list of SUs mapped to V.
632 void inline clearList(ValueType V) {
633 iterator Itr = find(V);
634 if (Itr != end()) {
635 assert(NumNodes >= Itr->second.size());
636 NumNodes -= Itr->second.size();
638 Itr->second.clear();
642 /// Clears map from all contents.
643 void clear() {
644 MapVector<ValueType, SUList>::clear();
645 NumNodes = 0;
648 unsigned inline size() const { return NumNodes; }
650 /// Counts the number of SUs in this map after a reduction.
651 void reComputeSize() {
652 NumNodes = 0;
653 for (auto &I : *this)
654 NumNodes += I.second.size();
657 unsigned inline getTrueMemOrderLatency() const {
658 return TrueMemOrderLatency;
661 void dump();
664 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
665 Value2SUsMap &Val2SUsMap) {
666 for (auto &I : Val2SUsMap)
667 addChainDependencies(SU, I.second,
668 Val2SUsMap.getTrueMemOrderLatency());
671 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
672 Value2SUsMap &Val2SUsMap,
673 ValueType V) {
674 Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
675 if (Itr != Val2SUsMap.end())
676 addChainDependencies(SU, Itr->second,
677 Val2SUsMap.getTrueMemOrderLatency());
680 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
681 assert(BarrierChain != nullptr);
683 for (auto &I : map) {
684 SUList &sus = I.second;
685 for (auto *SU : sus)
686 SU->addPredBarrier(BarrierChain);
688 map.clear();
691 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
692 assert(BarrierChain != nullptr);
694 // Go through all lists of SUs.
695 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
696 Value2SUsMap::iterator CurrItr = I++;
697 SUList &sus = CurrItr->second;
698 SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
699 for (; SUItr != SUEE; ++SUItr) {
700 // Stop on BarrierChain or any instruction above it.
701 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
702 break;
704 (*SUItr)->addPredBarrier(BarrierChain);
707 // Remove also the BarrierChain from list if present.
708 if (SUItr != SUEE && *SUItr == BarrierChain)
709 SUItr++;
711 // Remove all SUs that are now successors of BarrierChain.
712 if (SUItr != sus.begin())
713 sus.erase(sus.begin(), SUItr);
716 // Remove all entries with empty su lists.
717 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
718 return (mapEntry.second.empty()); });
720 // Recompute the size of the map (NumNodes).
721 map.reComputeSize();
724 void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA,
725 RegPressureTracker *RPTracker,
726 PressureDiffs *PDiffs,
727 LiveIntervals *LIS,
728 bool TrackLaneMasks) {
729 const TargetSubtargetInfo &ST = MF.getSubtarget();
730 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
731 : ST.useAA();
732 AAForDep = UseAA ? AA : nullptr;
734 BarrierChain = nullptr;
736 this->TrackLaneMasks = TrackLaneMasks;
737 MISUnitMap.clear();
738 ScheduleDAG::clearDAG();
740 // Create an SUnit for each real instruction.
741 initSUnits();
743 if (PDiffs)
744 PDiffs->init(SUnits.size());
746 // We build scheduling units by walking a block's instruction list
747 // from bottom to top.
749 // Each MIs' memory operand(s) is analyzed to a list of underlying
750 // objects. The SU is then inserted in the SUList(s) mapped from the
751 // Value(s). Each Value thus gets mapped to lists of SUs depending
752 // on it, stores and loads kept separately. Two SUs are trivially
753 // non-aliasing if they both depend on only identified Values and do
754 // not share any common Value.
755 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
757 // Certain memory accesses are known to not alias any SU in Stores
758 // or Loads, and have therefore their own 'NonAlias'
759 // domain. E.g. spill / reload instructions never alias LLVM I/R
760 // Values. It would be nice to assume that this type of memory
761 // accesses always have a proper memory operand modelling, and are
762 // therefore never unanalyzable, but this is conservatively not
763 // done.
764 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
766 // Track all instructions that may raise floating-point exceptions.
767 // These do not depend on one other (or normal loads or stores), but
768 // must not be rescheduled across global barriers. Note that we don't
769 // really need a "map" here since we don't track those MIs by value;
770 // using the same Value2SUsMap data type here is simply a matter of
771 // convenience.
772 Value2SUsMap FPExceptions;
774 // Remove any stale debug info; sometimes BuildSchedGraph is called again
775 // without emitting the info from the previous call.
776 DbgValues.clear();
777 FirstDbgValue = nullptr;
779 assert(Defs.empty() && Uses.empty() &&
780 "Only BuildGraph should update Defs/Uses");
781 Defs.setUniverse(TRI->getNumRegs());
782 Uses.setUniverse(TRI->getNumRegs());
784 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
785 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
786 unsigned NumVirtRegs = MRI.getNumVirtRegs();
787 CurrentVRegDefs.setUniverse(NumVirtRegs);
788 CurrentVRegUses.setUniverse(NumVirtRegs);
790 // Model data dependencies between instructions being scheduled and the
791 // ExitSU.
792 addSchedBarrierDeps();
794 // Walk the list of instructions, from bottom moving up.
795 MachineInstr *DbgMI = nullptr;
796 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
797 MII != MIE; --MII) {
798 MachineInstr &MI = *std::prev(MII);
799 if (DbgMI) {
800 DbgValues.push_back(std::make_pair(DbgMI, &MI));
801 DbgMI = nullptr;
804 if (MI.isDebugValue() || MI.isDebugPHI()) {
805 DbgMI = &MI;
806 continue;
809 if (MI.isDebugLabel() || MI.isDebugRef() || MI.isPseudoProbe())
810 continue;
812 SUnit *SU = MISUnitMap[&MI];
813 assert(SU && "No SUnit mapped to this MI");
815 if (RPTracker) {
816 RegisterOperands RegOpers;
817 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
818 if (TrackLaneMasks) {
819 SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
820 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
822 if (PDiffs != nullptr)
823 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
825 if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI)
826 RPTracker->recedeSkipDebugValues();
827 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
828 RPTracker->recede(RegOpers);
831 assert(
832 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
833 "Cannot schedule terminators or labels!");
835 // Add register-based dependencies (data, anti, and output).
836 // For some instructions (calls, returns, inline-asm, etc.) there can
837 // be explicit uses and implicit defs, in which case the use will appear
838 // on the operand list before the def. Do two passes over the operand
839 // list to make sure that defs are processed before any uses.
840 bool HasVRegDef = false;
841 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
842 const MachineOperand &MO = MI.getOperand(j);
843 if (!MO.isReg() || !MO.isDef())
844 continue;
845 Register Reg = MO.getReg();
846 if (Register::isPhysicalRegister(Reg)) {
847 addPhysRegDeps(SU, j);
848 } else if (Register::isVirtualRegister(Reg)) {
849 HasVRegDef = true;
850 addVRegDefDeps(SU, j);
853 // Now process all uses.
854 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
855 const MachineOperand &MO = MI.getOperand(j);
856 // Only look at use operands.
857 // We do not need to check for MO.readsReg() here because subsequent
858 // subregister defs will get output dependence edges and need no
859 // additional use dependencies.
860 if (!MO.isReg() || !MO.isUse())
861 continue;
862 Register Reg = MO.getReg();
863 if (Register::isPhysicalRegister(Reg)) {
864 addPhysRegDeps(SU, j);
865 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) {
866 addVRegUseDeps(SU, j);
870 // If we haven't seen any uses in this scheduling region, create a
871 // dependence edge to ExitSU to model the live-out latency. This is required
872 // for vreg defs with no in-region use, and prefetches with no vreg def.
874 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
875 // check currently relies on being called before adding chain deps.
876 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
877 SDep Dep(SU, SDep::Artificial);
878 Dep.setLatency(SU->Latency - 1);
879 ExitSU.addPred(Dep);
882 // Add memory dependencies (Note: isStoreToStackSlot and
883 // isLoadFromStackSLot are not usable after stack slots are lowered to
884 // actual addresses).
886 // This is a barrier event that acts as a pivotal node in the DAG.
887 if (isGlobalMemoryObject(AA, &MI)) {
889 // Become the barrier chain.
890 if (BarrierChain)
891 BarrierChain->addPredBarrier(SU);
892 BarrierChain = SU;
894 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
895 << BarrierChain->NodeNum << ").\n";);
897 // Add dependencies against everything below it and clear maps.
898 addBarrierChain(Stores);
899 addBarrierChain(Loads);
900 addBarrierChain(NonAliasStores);
901 addBarrierChain(NonAliasLoads);
902 addBarrierChain(FPExceptions);
904 continue;
907 // Instructions that may raise FP exceptions may not be moved
908 // across any global barriers.
909 if (MI.mayRaiseFPException()) {
910 if (BarrierChain)
911 BarrierChain->addPredBarrier(SU);
913 FPExceptions.insert(SU, UnknownValue);
915 if (FPExceptions.size() >= HugeRegion) {
916 LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";);
917 Value2SUsMap empty;
918 reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize());
922 // If it's not a store or a variant load, we're done.
923 if (!MI.mayStore() &&
924 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)))
925 continue;
927 // Always add dependecy edge to BarrierChain if present.
928 if (BarrierChain)
929 BarrierChain->addPredBarrier(SU);
931 // Find the underlying objects for MI. The Objs vector is either
932 // empty, or filled with the Values of memory locations which this
933 // SU depends on.
934 UnderlyingObjectsVector Objs;
935 bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs,
936 MF.getDataLayout());
938 if (MI.mayStore()) {
939 if (!ObjsFound) {
940 // An unknown store depends on all stores and loads.
941 addChainDependencies(SU, Stores);
942 addChainDependencies(SU, NonAliasStores);
943 addChainDependencies(SU, Loads);
944 addChainDependencies(SU, NonAliasLoads);
946 // Map this store to 'UnknownValue'.
947 Stores.insert(SU, UnknownValue);
948 } else {
949 // Add precise dependencies against all previously seen memory
950 // accesses mapped to the same Value(s).
951 for (const UnderlyingObject &UnderlObj : Objs) {
952 ValueType V = UnderlObj.getValue();
953 bool ThisMayAlias = UnderlObj.mayAlias();
955 // Add dependencies to previous stores and loads mapped to V.
956 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
957 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
959 // Update the store map after all chains have been added to avoid adding
960 // self-loop edge if multiple underlying objects are present.
961 for (const UnderlyingObject &UnderlObj : Objs) {
962 ValueType V = UnderlObj.getValue();
963 bool ThisMayAlias = UnderlObj.mayAlias();
965 // Map this store to V.
966 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
968 // The store may have dependencies to unanalyzable loads and
969 // stores.
970 addChainDependencies(SU, Loads, UnknownValue);
971 addChainDependencies(SU, Stores, UnknownValue);
973 } else { // SU is a load.
974 if (!ObjsFound) {
975 // An unknown load depends on all stores.
976 addChainDependencies(SU, Stores);
977 addChainDependencies(SU, NonAliasStores);
979 Loads.insert(SU, UnknownValue);
980 } else {
981 for (const UnderlyingObject &UnderlObj : Objs) {
982 ValueType V = UnderlObj.getValue();
983 bool ThisMayAlias = UnderlObj.mayAlias();
985 // Add precise dependencies against all previously seen stores
986 // mapping to the same Value(s).
987 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
989 // Map this load to V.
990 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
992 // The load may have dependencies to unanalyzable stores.
993 addChainDependencies(SU, Stores, UnknownValue);
997 // Reduce maps if they grow huge.
998 if (Stores.size() + Loads.size() >= HugeRegion) {
999 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
1000 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
1002 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
1003 LLVM_DEBUG(
1004 dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
1005 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
1009 if (DbgMI)
1010 FirstDbgValue = DbgMI;
1012 Defs.clear();
1013 Uses.clear();
1014 CurrentVRegDefs.clear();
1015 CurrentVRegUses.clear();
1017 Topo.MarkDirty();
1020 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
1021 PSV->printCustom(OS);
1022 return OS;
1025 void ScheduleDAGInstrs::Value2SUsMap::dump() {
1026 for (auto &Itr : *this) {
1027 if (Itr.first.is<const Value*>()) {
1028 const Value *V = Itr.first.get<const Value*>();
1029 if (isa<UndefValue>(V))
1030 dbgs() << "Unknown";
1031 else
1032 V->printAsOperand(dbgs());
1034 else if (Itr.first.is<const PseudoSourceValue*>())
1035 dbgs() << Itr.first.get<const PseudoSourceValue*>();
1036 else
1037 llvm_unreachable("Unknown Value type.");
1039 dbgs() << " : ";
1040 dumpSUList(Itr.second);
1044 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
1045 Value2SUsMap &loads, unsigned N) {
1046 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump();
1047 dbgs() << "Loading SUnits:\n"; loads.dump());
1049 // Insert all SU's NodeNums into a vector and sort it.
1050 std::vector<unsigned> NodeNums;
1051 NodeNums.reserve(stores.size() + loads.size());
1052 for (auto &I : stores)
1053 for (auto *SU : I.second)
1054 NodeNums.push_back(SU->NodeNum);
1055 for (auto &I : loads)
1056 for (auto *SU : I.second)
1057 NodeNums.push_back(SU->NodeNum);
1058 llvm::sort(NodeNums);
1060 // The N last elements in NodeNums will be removed, and the SU with
1061 // the lowest NodeNum of them will become the new BarrierChain to
1062 // let the not yet seen SUs have a dependency to the removed SUs.
1063 assert(N <= NodeNums.size());
1064 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
1065 if (BarrierChain) {
1066 // The aliasing and non-aliasing maps reduce independently of each
1067 // other, but share a common BarrierChain. Check if the
1068 // newBarrierChain is above the former one. If it is not, it may
1069 // introduce a loop to use newBarrierChain, so keep the old one.
1070 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
1071 BarrierChain->addPredBarrier(newBarrierChain);
1072 BarrierChain = newBarrierChain;
1073 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU("
1074 << BarrierChain->NodeNum << ").\n";);
1076 else
1077 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU("
1078 << BarrierChain->NodeNum << ").\n";);
1080 else
1081 BarrierChain = newBarrierChain;
1083 insertBarrierChain(stores);
1084 insertBarrierChain(loads);
1086 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump();
1087 dbgs() << "Loading SUnits:\n"; loads.dump());
1090 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs,
1091 MachineInstr &MI, bool addToLiveRegs) {
1092 for (MachineOperand &MO : MI.operands()) {
1093 if (!MO.isReg() || !MO.readsReg())
1094 continue;
1095 Register Reg = MO.getReg();
1096 if (!Reg)
1097 continue;
1099 // Things that are available after the instruction are killed by it.
1100 bool IsKill = LiveRegs.available(MRI, Reg);
1101 MO.setIsKill(IsKill);
1102 if (addToLiveRegs)
1103 LiveRegs.addReg(Reg);
1107 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) {
1108 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n');
1110 LiveRegs.init(*TRI);
1111 LiveRegs.addLiveOuts(MBB);
1113 // Examine block from end to start...
1114 for (MachineInstr &MI : llvm::reverse(MBB)) {
1115 if (MI.isDebugOrPseudoInstr())
1116 continue;
1118 // Update liveness. Registers that are defed but not used in this
1119 // instruction are now dead. Mark register and all subregs as they
1120 // are completely defined.
1121 for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
1122 const MachineOperand &MO = *O;
1123 if (MO.isReg()) {
1124 if (!MO.isDef())
1125 continue;
1126 Register Reg = MO.getReg();
1127 if (!Reg)
1128 continue;
1129 LiveRegs.removeReg(Reg);
1130 } else if (MO.isRegMask()) {
1131 LiveRegs.removeRegsInMask(MO);
1135 // If there is a bundle header fix it up first.
1136 if (!MI.isBundled()) {
1137 toggleKills(MRI, LiveRegs, MI, true);
1138 } else {
1139 MachineBasicBlock::instr_iterator Bundle = MI.getIterator();
1140 if (MI.isBundle())
1141 toggleKills(MRI, LiveRegs, MI, false);
1143 // Some targets make the (questionable) assumtion that the instructions
1144 // inside the bundle are ordered and consequently only the last use of
1145 // a register inside the bundle can kill it.
1146 MachineBasicBlock::instr_iterator I = std::next(Bundle);
1147 while (I->isBundledWithSucc())
1148 ++I;
1149 do {
1150 if (!I->isDebugOrPseudoInstr())
1151 toggleKills(MRI, LiveRegs, *I, true);
1152 --I;
1153 } while (I != Bundle);
1158 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const {
1159 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1160 dumpNodeName(SU);
1161 dbgs() << ": ";
1162 SU.getInstr()->dump();
1163 #endif
1166 void ScheduleDAGInstrs::dump() const {
1167 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1168 if (EntrySU.getInstr() != nullptr)
1169 dumpNodeAll(EntrySU);
1170 for (const SUnit &SU : SUnits)
1171 dumpNodeAll(SU);
1172 if (ExitSU.getInstr() != nullptr)
1173 dumpNodeAll(ExitSU);
1174 #endif
1177 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1178 std::string s;
1179 raw_string_ostream oss(s);
1180 if (SU == &EntrySU)
1181 oss << "<entry>";
1182 else if (SU == &ExitSU)
1183 oss << "<exit>";
1184 else
1185 SU->getInstr()->print(oss, /*IsStandalone=*/true);
1186 return oss.str();
1189 /// Return the basic block label. It is not necessarilly unique because a block
1190 /// contains multiple scheduling regions. But it is fine for visualization.
1191 std::string ScheduleDAGInstrs::getDAGName() const {
1192 return "dag." + BB->getFullName();
1195 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
1196 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
1199 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) {
1200 if (SuccSU != &ExitSU) {
1201 // Do not use WillCreateCycle, it assumes SD scheduling.
1202 // If Pred is reachable from Succ, then the edge creates a cycle.
1203 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
1204 return false;
1205 Topo.AddPredQueued(SuccSU, PredDep.getSUnit());
1207 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
1208 // Return true regardless of whether a new edge needed to be inserted.
1209 return true;
1212 //===----------------------------------------------------------------------===//
1213 // SchedDFSResult Implementation
1214 //===----------------------------------------------------------------------===//
1216 namespace llvm {
1218 /// Internal state used to compute SchedDFSResult.
1219 class SchedDFSImpl {
1220 SchedDFSResult &R;
1222 /// Join DAG nodes into equivalence classes by their subtree.
1223 IntEqClasses SubtreeClasses;
1224 /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1225 std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs;
1227 struct RootData {
1228 unsigned NodeID;
1229 unsigned ParentNodeID; ///< Parent node (member of the parent subtree).
1230 unsigned SubInstrCount = 0; ///< Instr count in this tree only, not
1231 /// children.
1233 RootData(unsigned id): NodeID(id),
1234 ParentNodeID(SchedDFSResult::InvalidSubtreeID) {}
1236 unsigned getSparseSetIndex() const { return NodeID; }
1239 SparseSet<RootData> RootSet;
1241 public:
1242 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1243 RootSet.setUniverse(R.DFSNodeData.size());
1246 /// Returns true if this node been visited by the DFS traversal.
1248 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1249 /// ID. Later, SubtreeID is updated but remains valid.
1250 bool isVisited(const SUnit *SU) const {
1251 return R.DFSNodeData[SU->NodeNum].SubtreeID
1252 != SchedDFSResult::InvalidSubtreeID;
1255 /// Initializes this node's instruction count. We don't need to flag the node
1256 /// visited until visitPostorder because the DAG cannot have cycles.
1257 void visitPreorder(const SUnit *SU) {
1258 R.DFSNodeData[SU->NodeNum].InstrCount =
1259 SU->getInstr()->isTransient() ? 0 : 1;
1262 /// Called once for each node after all predecessors are visited. Revisit this
1263 /// node's predecessors and potentially join them now that we know the ILP of
1264 /// the other predecessors.
1265 void visitPostorderNode(const SUnit *SU) {
1266 // Mark this node as the root of a subtree. It may be joined with its
1267 // successors later.
1268 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1269 RootData RData(SU->NodeNum);
1270 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1272 // If any predecessors are still in their own subtree, they either cannot be
1273 // joined or are large enough to remain separate. If this parent node's
1274 // total instruction count is not greater than a child subtree by at least
1275 // the subtree limit, then try to join it now since splitting subtrees is
1276 // only useful if multiple high-pressure paths are possible.
1277 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1278 for (const SDep &PredDep : SU->Preds) {
1279 if (PredDep.getKind() != SDep::Data)
1280 continue;
1281 unsigned PredNum = PredDep.getSUnit()->NodeNum;
1282 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1283 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false);
1285 // Either link or merge the TreeData entry from the child to the parent.
1286 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1287 // If the predecessor's parent is invalid, this is a tree edge and the
1288 // current node is the parent.
1289 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1290 RootSet[PredNum].ParentNodeID = SU->NodeNum;
1292 else if (RootSet.count(PredNum)) {
1293 // The predecessor is not a root, but is still in the root set. This
1294 // must be the new parent that it was just joined to. Note that
1295 // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1296 // set to the original parent.
1297 RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1298 RootSet.erase(PredNum);
1301 RootSet[SU->NodeNum] = RData;
1304 /// Called once for each tree edge after calling visitPostOrderNode on
1305 /// the predecessor. Increment the parent node's instruction count and
1306 /// preemptively join this subtree to its parent's if it is small enough.
1307 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1308 R.DFSNodeData[Succ->NodeNum].InstrCount
1309 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1310 joinPredSubtree(PredDep, Succ);
1313 /// Adds a connection for cross edges.
1314 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1315 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1318 /// Sets each node's subtree ID to the representative ID and record
1319 /// connections between trees.
1320 void finalize() {
1321 SubtreeClasses.compress();
1322 R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1323 assert(SubtreeClasses.getNumClasses() == RootSet.size()
1324 && "number of roots should match trees");
1325 for (const RootData &Root : RootSet) {
1326 unsigned TreeID = SubtreeClasses[Root.NodeID];
1327 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1328 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID];
1329 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount;
1330 // Note that SubInstrCount may be greater than InstrCount if we joined
1331 // subtrees across a cross edge. InstrCount will be attributed to the
1332 // original parent, while SubInstrCount will be attributed to the joined
1333 // parent.
1335 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1336 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1337 LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1338 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1339 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1340 LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree "
1341 << R.DFSNodeData[Idx].SubtreeID << '\n');
1343 for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) {
1344 unsigned PredTree = SubtreeClasses[P.first->NodeNum];
1345 unsigned SuccTree = SubtreeClasses[P.second->NodeNum];
1346 if (PredTree == SuccTree)
1347 continue;
1348 unsigned Depth = P.first->getDepth();
1349 addConnection(PredTree, SuccTree, Depth);
1350 addConnection(SuccTree, PredTree, Depth);
1354 protected:
1355 /// Joins the predecessor subtree with the successor that is its DFS parent.
1356 /// Applies some heuristics before joining.
1357 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1358 bool CheckLimit = true) {
1359 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1361 // Check if the predecessor is already joined.
1362 const SUnit *PredSU = PredDep.getSUnit();
1363 unsigned PredNum = PredSU->NodeNum;
1364 if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1365 return false;
1367 // Four is the magic number of successors before a node is considered a
1368 // pinch point.
1369 unsigned NumDataSucs = 0;
1370 for (const SDep &SuccDep : PredSU->Succs) {
1371 if (SuccDep.getKind() == SDep::Data) {
1372 if (++NumDataSucs >= 4)
1373 return false;
1376 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1377 return false;
1378 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1379 SubtreeClasses.join(Succ->NodeNum, PredNum);
1380 return true;
1383 /// Called by finalize() to record a connection between trees.
1384 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1385 if (!Depth)
1386 return;
1388 do {
1389 SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1390 R.SubtreeConnections[FromTree];
1391 for (SchedDFSResult::Connection &C : Connections) {
1392 if (C.TreeID == ToTree) {
1393 C.Level = std::max(C.Level, Depth);
1394 return;
1397 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1398 FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1399 } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1403 } // end namespace llvm
1405 namespace {
1407 /// Manage the stack used by a reverse depth-first search over the DAG.
1408 class SchedDAGReverseDFS {
1409 std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack;
1411 public:
1412 bool isComplete() const { return DFSStack.empty(); }
1414 void follow(const SUnit *SU) {
1415 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1417 void advance() { ++DFSStack.back().second; }
1419 const SDep *backtrack() {
1420 DFSStack.pop_back();
1421 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1424 const SUnit *getCurr() const { return DFSStack.back().first; }
1426 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1428 SUnit::const_pred_iterator getPredEnd() const {
1429 return getCurr()->Preds.end();
1433 } // end anonymous namespace
1435 static bool hasDataSucc(const SUnit *SU) {
1436 for (const SDep &SuccDep : SU->Succs) {
1437 if (SuccDep.getKind() == SDep::Data &&
1438 !SuccDep.getSUnit()->isBoundaryNode())
1439 return true;
1441 return false;
1444 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first
1445 /// search from this root.
1446 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1447 if (!IsBottomUp)
1448 llvm_unreachable("Top-down ILP metric is unimplemented");
1450 SchedDFSImpl Impl(*this);
1451 for (const SUnit &SU : SUnits) {
1452 if (Impl.isVisited(&SU) || hasDataSucc(&SU))
1453 continue;
1455 SchedDAGReverseDFS DFS;
1456 Impl.visitPreorder(&SU);
1457 DFS.follow(&SU);
1458 while (true) {
1459 // Traverse the leftmost path as far as possible.
1460 while (DFS.getPred() != DFS.getPredEnd()) {
1461 const SDep &PredDep = *DFS.getPred();
1462 DFS.advance();
1463 // Ignore non-data edges.
1464 if (PredDep.getKind() != SDep::Data
1465 || PredDep.getSUnit()->isBoundaryNode()) {
1466 continue;
1468 // An already visited edge is a cross edge, assuming an acyclic DAG.
1469 if (Impl.isVisited(PredDep.getSUnit())) {
1470 Impl.visitCrossEdge(PredDep, DFS.getCurr());
1471 continue;
1473 Impl.visitPreorder(PredDep.getSUnit());
1474 DFS.follow(PredDep.getSUnit());
1476 // Visit the top of the stack in postorder and backtrack.
1477 const SUnit *Child = DFS.getCurr();
1478 const SDep *PredDep = DFS.backtrack();
1479 Impl.visitPostorderNode(Child);
1480 if (PredDep)
1481 Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1482 if (DFS.isComplete())
1483 break;
1486 Impl.finalize();
1489 /// The root of the given SubtreeID was just scheduled. For all subtrees
1490 /// connected to this tree, record the depth of the connection so that the
1491 /// nearest connected subtrees can be prioritized.
1492 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1493 for (const Connection &C : SubtreeConnections[SubtreeID]) {
1494 SubtreeConnectLevels[C.TreeID] =
1495 std::max(SubtreeConnectLevels[C.TreeID], C.Level);
1496 LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @"
1497 << SubtreeConnectLevels[C.TreeID] << '\n');
1501 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1502 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const {
1503 OS << InstrCount << " / " << Length << " = ";
1504 if (!Length)
1505 OS << "BADILP";
1506 else
1507 OS << format("%g", ((double)InstrCount / Length));
1510 LLVM_DUMP_METHOD void ILPValue::dump() const {
1511 dbgs() << *this << '\n';
1514 namespace llvm {
1516 LLVM_DUMP_METHOD
1517 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1518 Val.print(OS);
1519 return OS;
1522 } // end namespace llvm
1524 #endif