1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
10 // both before and after the DAG is legalized.
12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
13 // primarily intended to handle simplification opportunities that are implicit
14 // in the LLVM IR and exposed by the various codegen lowering phases.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/IntervalMap.h"
23 #include "llvm/ADT/None.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/MemoryLocation.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/CodeGen/DAGCombine.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/RuntimeLibcalls.h"
42 #include "llvm/CodeGen/SelectionDAG.h"
43 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
44 #include "llvm/CodeGen/SelectionDAGNodes.h"
45 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/CodeGen/ValueTypes.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/Constant.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
80 #define DEBUG_TYPE "dagcombine"
82 STATISTIC(NodesCombined
, "Number of dag nodes combined");
83 STATISTIC(PreIndexedNodes
, "Number of pre-indexed nodes created");
84 STATISTIC(PostIndexedNodes
, "Number of post-indexed nodes created");
85 STATISTIC(OpsNarrowed
, "Number of load/op/store narrowed");
86 STATISTIC(LdStFP2Int
, "Number of fp load/store pairs transformed to int");
87 STATISTIC(SlicedLoads
, "Number of load sliced");
88 STATISTIC(NumFPLogicOpsConv
, "Number of logic ops converted to fp ops");
91 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden
,
92 cl::desc("Enable DAG combiner's use of IR alias analysis"));
95 UseTBAA("combiner-use-tbaa", cl::Hidden
, cl::init(true),
96 cl::desc("Enable DAG combiner's use of TBAA"));
99 static cl::opt
<std::string
>
100 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden
,
101 cl::desc("Only use DAG-combiner alias analysis in this"
105 /// Hidden option to stress test load slicing, i.e., when this option
106 /// is enabled, load slicing bypasses most of its profitability guards.
108 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden
,
109 cl::desc("Bypass the profitability model of load slicing"),
113 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden
, cl::init(true),
114 cl::desc("DAG combiner may split indexing from loads"));
117 EnableStoreMerging("combiner-store-merging", cl::Hidden
, cl::init(true),
118 cl::desc("DAG combiner enable merging multiple stores "
119 "into a wider store"));
121 static cl::opt
<unsigned> TokenFactorInlineLimit(
122 "combiner-tokenfactor-inline-limit", cl::Hidden
, cl::init(2048),
123 cl::desc("Limit the number of operands to inline for Token Factors"));
125 static cl::opt
<unsigned> StoreMergeDependenceLimit(
126 "combiner-store-merge-dependence-limit", cl::Hidden
, cl::init(10),
127 cl::desc("Limit the number of times for the same StoreNode and RootNode "
128 "to bail out in store merging dependence check"));
130 static cl::opt
<bool> EnableReduceLoadOpStoreWidth(
131 "combiner-reduce-load-op-store-width", cl::Hidden
, cl::init(true),
132 cl::desc("DAG combiner enable reducing the width of load/op/store "
135 static cl::opt
<bool> EnableShrinkLoadReplaceStoreWithStore(
136 "combiner-shrink-load-replace-store-with-store", cl::Hidden
, cl::init(true),
137 cl::desc("DAG combiner enable load/<replace bytes>/store with "
138 "a narrower store"));
144 const TargetLowering
&TLI
;
145 const SelectionDAGTargetInfo
*STI
;
147 CodeGenOpt::Level OptLevel
;
148 bool LegalDAG
= false;
149 bool LegalOperations
= false;
150 bool LegalTypes
= false;
152 bool DisableGenericCombines
;
154 /// Worklist of all of the nodes that need to be simplified.
156 /// This must behave as a stack -- new nodes to process are pushed onto the
157 /// back and when processing we pop off of the back.
159 /// The worklist will not contain duplicates but may contain null entries
160 /// due to nodes being deleted from the underlying DAG.
161 SmallVector
<SDNode
*, 64> Worklist
;
163 /// Mapping from an SDNode to its position on the worklist.
165 /// This is used to find and remove nodes from the worklist (by nulling
166 /// them) when they are deleted from the underlying DAG. It relies on
167 /// stable indices of nodes within the worklist.
168 DenseMap
<SDNode
*, unsigned> WorklistMap
;
169 /// This records all nodes attempted to add to the worklist since we
170 /// considered a new worklist entry. As we keep do not add duplicate nodes
171 /// in the worklist, this is different from the tail of the worklist.
172 SmallSetVector
<SDNode
*, 32> PruningList
;
174 /// Set of nodes which have been combined (at least once).
176 /// This is used to allow us to reliably add any operands of a DAG node
177 /// which have not yet been combined to the worklist.
178 SmallPtrSet
<SDNode
*, 32> CombinedNodes
;
180 /// Map from candidate StoreNode to the pair of RootNode and count.
181 /// The count is used to track how many times we have seen the StoreNode
182 /// with the same RootNode bail out in dependence check. If we have seen
183 /// the bail out for the same pair many times over a limit, we won't
184 /// consider the StoreNode with the same RootNode as store merging
186 DenseMap
<SDNode
*, std::pair
<SDNode
*, unsigned>> StoreRootCountMap
;
188 // AA - Used for DAG load/store alias analysis.
191 /// When an instruction is simplified, add all users of the instruction to
192 /// the work lists because they might get more simplified now.
193 void AddUsersToWorklist(SDNode
*N
) {
194 for (SDNode
*Node
: N
->uses())
198 /// Convenient shorthand to add a node and all of its user to the worklist.
199 void AddToWorklistWithUsers(SDNode
*N
) {
200 AddUsersToWorklist(N
);
204 // Prune potentially dangling nodes. This is called after
205 // any visit to a node, but should also be called during a visit after any
206 // failed combine which may have created a DAG node.
207 void clearAddedDanglingWorklistEntries() {
208 // Check any nodes added to the worklist to see if they are prunable.
209 while (!PruningList
.empty()) {
210 auto *N
= PruningList
.pop_back_val();
212 recursivelyDeleteUnusedNodes(N
);
216 SDNode
*getNextWorklistEntry() {
217 // Before we do any work, remove nodes that are not in use.
218 clearAddedDanglingWorklistEntries();
220 // The Worklist holds the SDNodes in order, but it may contain null
222 while (!N
&& !Worklist
.empty()) {
223 N
= Worklist
.pop_back_val();
227 bool GoodWorklistEntry
= WorklistMap
.erase(N
);
228 (void)GoodWorklistEntry
;
229 assert(GoodWorklistEntry
&&
230 "Found a worklist entry without a corresponding map entry!");
235 /// Call the node-specific routine that folds each particular type of node.
236 SDValue
visit(SDNode
*N
);
239 DAGCombiner(SelectionDAG
&D
, AliasAnalysis
*AA
, CodeGenOpt::Level OL
)
240 : DAG(D
), TLI(D
.getTargetLoweringInfo()),
241 STI(D
.getSubtarget().getSelectionDAGInfo()),
242 Level(BeforeLegalizeTypes
), OptLevel(OL
), AA(AA
) {
243 ForCodeSize
= DAG
.shouldOptForSize();
244 DisableGenericCombines
= STI
&& STI
->disableGenericCombines(OptLevel
);
246 MaximumLegalStoreInBits
= 0;
247 // We use the minimum store size here, since that's all we can guarantee
248 // for the scalable vector types.
249 for (MVT VT
: MVT::all_valuetypes())
250 if (EVT(VT
).isSimple() && VT
!= MVT::Other
&&
251 TLI
.isTypeLegal(EVT(VT
)) &&
252 VT
.getSizeInBits().getKnownMinSize() >= MaximumLegalStoreInBits
)
253 MaximumLegalStoreInBits
= VT
.getSizeInBits().getKnownMinSize();
256 void ConsiderForPruning(SDNode
*N
) {
257 // Mark this for potential pruning.
258 PruningList
.insert(N
);
261 /// Add to the worklist making sure its instance is at the back (next to be
263 void AddToWorklist(SDNode
*N
) {
264 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
265 "Deleted Node added to Worklist");
267 // Skip handle nodes as they can't usefully be combined and confuse the
268 // zero-use deletion strategy.
269 if (N
->getOpcode() == ISD::HANDLENODE
)
272 ConsiderForPruning(N
);
274 if (WorklistMap
.insert(std::make_pair(N
, Worklist
.size())).second
)
275 Worklist
.push_back(N
);
278 /// Remove all instances of N from the worklist.
279 void removeFromWorklist(SDNode
*N
) {
280 CombinedNodes
.erase(N
);
281 PruningList
.remove(N
);
282 StoreRootCountMap
.erase(N
);
284 auto It
= WorklistMap
.find(N
);
285 if (It
== WorklistMap
.end())
286 return; // Not in the worklist.
288 // Null out the entry rather than erasing it to avoid a linear operation.
289 Worklist
[It
->second
] = nullptr;
290 WorklistMap
.erase(It
);
293 void deleteAndRecombine(SDNode
*N
);
294 bool recursivelyDeleteUnusedNodes(SDNode
*N
);
296 /// Replaces all uses of the results of one DAG node with new values.
297 SDValue
CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
300 /// Replaces all uses of the results of one DAG node with new values.
301 SDValue
CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
= true) {
302 return CombineTo(N
, &Res
, 1, AddTo
);
305 /// Replaces all uses of the results of one DAG node with new values.
306 SDValue
CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
,
308 SDValue To
[] = { Res0
, Res1
};
309 return CombineTo(N
, To
, 2, AddTo
);
312 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
);
315 unsigned MaximumLegalStoreInBits
;
317 /// Check the specified integer node value to see if it can be simplified or
318 /// if things it uses can be simplified by bit propagation.
319 /// If so, return true.
320 bool SimplifyDemandedBits(SDValue Op
) {
321 unsigned BitWidth
= Op
.getScalarValueSizeInBits();
322 APInt DemandedBits
= APInt::getAllOnes(BitWidth
);
323 return SimplifyDemandedBits(Op
, DemandedBits
);
326 bool SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
) {
327 TargetLowering::TargetLoweringOpt
TLO(DAG
, LegalTypes
, LegalOperations
);
329 if (!TLI
.SimplifyDemandedBits(Op
, DemandedBits
, Known
, TLO
, 0, false))
333 AddToWorklist(Op
.getNode());
335 CommitTargetLoweringOpt(TLO
);
339 /// Check the specified vector node value to see if it can be simplified or
340 /// if things it uses can be simplified as it only uses some of the
341 /// elements. If so, return true.
342 bool SimplifyDemandedVectorElts(SDValue Op
) {
343 // TODO: For now just pretend it cannot be simplified.
344 if (Op
.getValueType().isScalableVector())
347 unsigned NumElts
= Op
.getValueType().getVectorNumElements();
348 APInt DemandedElts
= APInt::getAllOnes(NumElts
);
349 return SimplifyDemandedVectorElts(Op
, DemandedElts
);
352 bool SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
353 const APInt
&DemandedElts
,
354 bool AssumeSingleUse
= false);
355 bool SimplifyDemandedVectorElts(SDValue Op
, const APInt
&DemandedElts
,
356 bool AssumeSingleUse
= false);
358 bool CombineToPreIndexedLoadStore(SDNode
*N
);
359 bool CombineToPostIndexedLoadStore(SDNode
*N
);
360 SDValue
SplitIndexingFromLoad(LoadSDNode
*LD
);
361 bool SliceUpLoad(SDNode
*N
);
363 // Scalars have size 0 to distinguish from singleton vectors.
364 SDValue
ForwardStoreValueToDirectLoad(LoadSDNode
*LD
);
365 bool getTruncatedStoreValue(StoreSDNode
*ST
, SDValue
&Val
);
366 bool extendLoadedValueToExtension(LoadSDNode
*LD
, SDValue
&Val
);
368 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
371 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
372 /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
373 /// \param EltNo index of the vector element to load.
374 /// \param OriginalLoad load that EVE came from to be replaced.
375 /// \returns EVE on success SDValue() on failure.
376 SDValue
scalarizeExtractedVectorLoad(SDNode
*EVE
, EVT InVecVT
,
378 LoadSDNode
*OriginalLoad
);
379 void ReplaceLoadWithPromotedLoad(SDNode
*Load
, SDNode
*ExtLoad
);
380 SDValue
PromoteOperand(SDValue Op
, EVT PVT
, bool &Replace
);
381 SDValue
SExtPromoteOperand(SDValue Op
, EVT PVT
);
382 SDValue
ZExtPromoteOperand(SDValue Op
, EVT PVT
);
383 SDValue
PromoteIntBinOp(SDValue Op
);
384 SDValue
PromoteIntShiftOp(SDValue Op
);
385 SDValue
PromoteExtend(SDValue Op
);
386 bool PromoteLoad(SDValue Op
);
388 /// Call the node-specific routine that knows how to fold each
389 /// particular type of node. If that doesn't do anything, try the
390 /// target-specific DAG combines.
391 SDValue
combine(SDNode
*N
);
393 // Visitation implementation - Implement dag node combining for different
394 // node types. The semantics are as follows:
396 // SDValue.getNode() == 0 - No change was made
397 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
398 // otherwise - N should be replaced by the returned Operand.
400 SDValue
visitTokenFactor(SDNode
*N
);
401 SDValue
visitMERGE_VALUES(SDNode
*N
);
402 SDValue
visitADD(SDNode
*N
);
403 SDValue
visitADDLike(SDNode
*N
);
404 SDValue
visitADDLikeCommutative(SDValue N0
, SDValue N1
, SDNode
*LocReference
);
405 SDValue
visitSUB(SDNode
*N
);
406 SDValue
visitADDSAT(SDNode
*N
);
407 SDValue
visitSUBSAT(SDNode
*N
);
408 SDValue
visitADDC(SDNode
*N
);
409 SDValue
visitADDO(SDNode
*N
);
410 SDValue
visitUADDOLike(SDValue N0
, SDValue N1
, SDNode
*N
);
411 SDValue
visitSUBC(SDNode
*N
);
412 SDValue
visitSUBO(SDNode
*N
);
413 SDValue
visitADDE(SDNode
*N
);
414 SDValue
visitADDCARRY(SDNode
*N
);
415 SDValue
visitSADDO_CARRY(SDNode
*N
);
416 SDValue
visitADDCARRYLike(SDValue N0
, SDValue N1
, SDValue CarryIn
, SDNode
*N
);
417 SDValue
visitSUBE(SDNode
*N
);
418 SDValue
visitSUBCARRY(SDNode
*N
);
419 SDValue
visitSSUBO_CARRY(SDNode
*N
);
420 SDValue
visitMUL(SDNode
*N
);
421 SDValue
visitMULFIX(SDNode
*N
);
422 SDValue
useDivRem(SDNode
*N
);
423 SDValue
visitSDIV(SDNode
*N
);
424 SDValue
visitSDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
);
425 SDValue
visitUDIV(SDNode
*N
);
426 SDValue
visitUDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
);
427 SDValue
visitREM(SDNode
*N
);
428 SDValue
visitMULHU(SDNode
*N
);
429 SDValue
visitMULHS(SDNode
*N
);
430 SDValue
visitSMUL_LOHI(SDNode
*N
);
431 SDValue
visitUMUL_LOHI(SDNode
*N
);
432 SDValue
visitMULO(SDNode
*N
);
433 SDValue
visitIMINMAX(SDNode
*N
);
434 SDValue
visitAND(SDNode
*N
);
435 SDValue
visitANDLike(SDValue N0
, SDValue N1
, SDNode
*N
);
436 SDValue
visitOR(SDNode
*N
);
437 SDValue
visitORLike(SDValue N0
, SDValue N1
, SDNode
*N
);
438 SDValue
visitXOR(SDNode
*N
);
439 SDValue
SimplifyVBinOp(SDNode
*N
, const SDLoc
&DL
);
440 SDValue
visitSHL(SDNode
*N
);
441 SDValue
visitSRA(SDNode
*N
);
442 SDValue
visitSRL(SDNode
*N
);
443 SDValue
visitFunnelShift(SDNode
*N
);
444 SDValue
visitRotate(SDNode
*N
);
445 SDValue
visitABS(SDNode
*N
);
446 SDValue
visitBSWAP(SDNode
*N
);
447 SDValue
visitBITREVERSE(SDNode
*N
);
448 SDValue
visitCTLZ(SDNode
*N
);
449 SDValue
visitCTLZ_ZERO_UNDEF(SDNode
*N
);
450 SDValue
visitCTTZ(SDNode
*N
);
451 SDValue
visitCTTZ_ZERO_UNDEF(SDNode
*N
);
452 SDValue
visitCTPOP(SDNode
*N
);
453 SDValue
visitSELECT(SDNode
*N
);
454 SDValue
visitVSELECT(SDNode
*N
);
455 SDValue
visitSELECT_CC(SDNode
*N
);
456 SDValue
visitSETCC(SDNode
*N
);
457 SDValue
visitSETCCCARRY(SDNode
*N
);
458 SDValue
visitSIGN_EXTEND(SDNode
*N
);
459 SDValue
visitZERO_EXTEND(SDNode
*N
);
460 SDValue
visitANY_EXTEND(SDNode
*N
);
461 SDValue
visitAssertExt(SDNode
*N
);
462 SDValue
visitAssertAlign(SDNode
*N
);
463 SDValue
visitSIGN_EXTEND_INREG(SDNode
*N
);
464 SDValue
visitEXTEND_VECTOR_INREG(SDNode
*N
);
465 SDValue
visitTRUNCATE(SDNode
*N
);
466 SDValue
visitBITCAST(SDNode
*N
);
467 SDValue
visitFREEZE(SDNode
*N
);
468 SDValue
visitBUILD_PAIR(SDNode
*N
);
469 SDValue
visitFADD(SDNode
*N
);
470 SDValue
visitSTRICT_FADD(SDNode
*N
);
471 SDValue
visitFSUB(SDNode
*N
);
472 SDValue
visitFMUL(SDNode
*N
);
473 SDValue
visitFMA(SDNode
*N
);
474 SDValue
visitFDIV(SDNode
*N
);
475 SDValue
visitFREM(SDNode
*N
);
476 SDValue
visitFSQRT(SDNode
*N
);
477 SDValue
visitFCOPYSIGN(SDNode
*N
);
478 SDValue
visitFPOW(SDNode
*N
);
479 SDValue
visitSINT_TO_FP(SDNode
*N
);
480 SDValue
visitUINT_TO_FP(SDNode
*N
);
481 SDValue
visitFP_TO_SINT(SDNode
*N
);
482 SDValue
visitFP_TO_UINT(SDNode
*N
);
483 SDValue
visitFP_ROUND(SDNode
*N
);
484 SDValue
visitFP_EXTEND(SDNode
*N
);
485 SDValue
visitFNEG(SDNode
*N
);
486 SDValue
visitFABS(SDNode
*N
);
487 SDValue
visitFCEIL(SDNode
*N
);
488 SDValue
visitFTRUNC(SDNode
*N
);
489 SDValue
visitFFLOOR(SDNode
*N
);
490 SDValue
visitFMinMax(SDNode
*N
);
491 SDValue
visitBRCOND(SDNode
*N
);
492 SDValue
visitBR_CC(SDNode
*N
);
493 SDValue
visitLOAD(SDNode
*N
);
495 SDValue
replaceStoreChain(StoreSDNode
*ST
, SDValue BetterChain
);
496 SDValue
replaceStoreOfFPConstant(StoreSDNode
*ST
);
498 SDValue
visitSTORE(SDNode
*N
);
499 SDValue
visitLIFETIME_END(SDNode
*N
);
500 SDValue
visitINSERT_VECTOR_ELT(SDNode
*N
);
501 SDValue
visitEXTRACT_VECTOR_ELT(SDNode
*N
);
502 SDValue
visitBUILD_VECTOR(SDNode
*N
);
503 SDValue
visitCONCAT_VECTORS(SDNode
*N
);
504 SDValue
visitEXTRACT_SUBVECTOR(SDNode
*N
);
505 SDValue
visitVECTOR_SHUFFLE(SDNode
*N
);
506 SDValue
visitSCALAR_TO_VECTOR(SDNode
*N
);
507 SDValue
visitINSERT_SUBVECTOR(SDNode
*N
);
508 SDValue
visitMLOAD(SDNode
*N
);
509 SDValue
visitMSTORE(SDNode
*N
);
510 SDValue
visitMGATHER(SDNode
*N
);
511 SDValue
visitMSCATTER(SDNode
*N
);
512 SDValue
visitFP_TO_FP16(SDNode
*N
);
513 SDValue
visitFP16_TO_FP(SDNode
*N
);
514 SDValue
visitVECREDUCE(SDNode
*N
);
515 SDValue
visitVPOp(SDNode
*N
);
517 SDValue
visitFADDForFMACombine(SDNode
*N
);
518 SDValue
visitFSUBForFMACombine(SDNode
*N
);
519 SDValue
visitFMULForFMADistributiveCombine(SDNode
*N
);
521 SDValue
XformToShuffleWithZero(SDNode
*N
);
522 bool reassociationCanBreakAddressingModePattern(unsigned Opc
,
523 const SDLoc
&DL
, SDValue N0
,
525 SDValue
reassociateOpsCommutative(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
527 SDValue
reassociateOps(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
528 SDValue N1
, SDNodeFlags Flags
);
530 SDValue
visitShiftByConstant(SDNode
*N
);
532 SDValue
foldSelectOfConstants(SDNode
*N
);
533 SDValue
foldVSelectOfConstants(SDNode
*N
);
534 SDValue
foldBinOpIntoSelect(SDNode
*BO
);
535 bool SimplifySelectOps(SDNode
*SELECT
, SDValue LHS
, SDValue RHS
);
536 SDValue
hoistLogicOpWithSameOpcodeHands(SDNode
*N
);
537 SDValue
SimplifySelect(const SDLoc
&DL
, SDValue N0
, SDValue N1
, SDValue N2
);
538 SDValue
SimplifySelectCC(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
539 SDValue N2
, SDValue N3
, ISD::CondCode CC
,
540 bool NotExtCompare
= false);
541 SDValue
convertSelectOfFPConstantsToLoadOffset(
542 const SDLoc
&DL
, SDValue N0
, SDValue N1
, SDValue N2
, SDValue N3
,
544 SDValue
foldSignChangeInBitcast(SDNode
*N
);
545 SDValue
foldSelectCCToShiftAnd(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
546 SDValue N2
, SDValue N3
, ISD::CondCode CC
);
547 SDValue
foldSelectOfBinops(SDNode
*N
);
548 SDValue
foldSextSetcc(SDNode
*N
);
549 SDValue
foldLogicOfSetCCs(bool IsAnd
, SDValue N0
, SDValue N1
,
551 SDValue
foldSubToUSubSat(EVT DstVT
, SDNode
*N
);
552 SDValue
unfoldMaskedMerge(SDNode
*N
);
553 SDValue
unfoldExtremeBitClearingToShifts(SDNode
*N
);
554 SDValue
SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
,
555 const SDLoc
&DL
, bool foldBooleans
);
556 SDValue
rebuildSetCC(SDValue N
);
558 bool isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
559 SDValue
&CC
, bool MatchStrict
= false) const;
560 bool isOneUseSetCC(SDValue N
) const;
562 SDValue
SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
564 SDValue
CombineConsecutiveLoads(SDNode
*N
, EVT VT
);
565 SDValue
CombineExtLoad(SDNode
*N
);
566 SDValue
CombineZExtLogicopShiftLoad(SDNode
*N
);
567 SDValue
combineRepeatedFPDivisors(SDNode
*N
);
568 SDValue
combineInsertEltToShuffle(SDNode
*N
, unsigned InsIndex
);
569 SDValue
ConstantFoldBITCASTofBUILD_VECTOR(SDNode
*, EVT
);
570 SDValue
BuildSDIV(SDNode
*N
);
571 SDValue
BuildSDIVPow2(SDNode
*N
);
572 SDValue
BuildUDIV(SDNode
*N
);
573 SDValue
BuildLogBase2(SDValue V
, const SDLoc
&DL
);
574 SDValue
BuildDivEstimate(SDValue N
, SDValue Op
, SDNodeFlags Flags
);
575 SDValue
buildRsqrtEstimate(SDValue Op
, SDNodeFlags Flags
);
576 SDValue
buildSqrtEstimate(SDValue Op
, SDNodeFlags Flags
);
577 SDValue
buildSqrtEstimateImpl(SDValue Op
, SDNodeFlags Flags
, bool Recip
);
578 SDValue
buildSqrtNROneConst(SDValue Arg
, SDValue Est
, unsigned Iterations
,
579 SDNodeFlags Flags
, bool Reciprocal
);
580 SDValue
buildSqrtNRTwoConst(SDValue Arg
, SDValue Est
, unsigned Iterations
,
581 SDNodeFlags Flags
, bool Reciprocal
);
582 SDValue
MatchBSwapHWordLow(SDNode
*N
, SDValue N0
, SDValue N1
,
583 bool DemandHighBits
= true);
584 SDValue
MatchBSwapHWord(SDNode
*N
, SDValue N0
, SDValue N1
);
585 SDValue
MatchRotatePosNeg(SDValue Shifted
, SDValue Pos
, SDValue Neg
,
586 SDValue InnerPos
, SDValue InnerNeg
,
587 unsigned PosOpcode
, unsigned NegOpcode
,
589 SDValue
MatchFunnelPosNeg(SDValue N0
, SDValue N1
, SDValue Pos
, SDValue Neg
,
590 SDValue InnerPos
, SDValue InnerNeg
,
591 unsigned PosOpcode
, unsigned NegOpcode
,
593 SDValue
MatchRotate(SDValue LHS
, SDValue RHS
, const SDLoc
&DL
);
594 SDValue
MatchLoadCombine(SDNode
*N
);
595 SDValue
mergeTruncStores(StoreSDNode
*N
);
596 SDValue
reduceLoadWidth(SDNode
*N
);
597 SDValue
ReduceLoadOpStoreWidth(SDNode
*N
);
598 SDValue
splitMergedValStore(StoreSDNode
*ST
);
599 SDValue
TransformFPLoadStorePair(SDNode
*N
);
600 SDValue
convertBuildVecZextToZext(SDNode
*N
);
601 SDValue
reduceBuildVecExtToExtBuildVec(SDNode
*N
);
602 SDValue
reduceBuildVecTruncToBitCast(SDNode
*N
);
603 SDValue
reduceBuildVecToShuffle(SDNode
*N
);
604 SDValue
createBuildVecShuffle(const SDLoc
&DL
, SDNode
*N
,
605 ArrayRef
<int> VectorMask
, SDValue VecIn1
,
606 SDValue VecIn2
, unsigned LeftIdx
,
608 SDValue
matchVSelectOpSizesWithSetCC(SDNode
*Cast
);
610 /// Walk up chain skipping non-aliasing memory nodes,
611 /// looking for aliasing nodes and adding them to the Aliases vector.
612 void GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
613 SmallVectorImpl
<SDValue
> &Aliases
);
615 /// Return true if there is any possibility that the two addresses overlap.
616 bool mayAlias(SDNode
*Op0
, SDNode
*Op1
) const;
618 /// Walk up chain skipping non-aliasing memory nodes, looking for a better
619 /// chain (aliasing node.)
620 SDValue
FindBetterChain(SDNode
*N
, SDValue Chain
);
622 /// Try to replace a store and any possibly adjacent stores on
623 /// consecutive chains with better chains. Return true only if St is
626 /// Notice that other chains may still be replaced even if the function
628 bool findBetterNeighborChains(StoreSDNode
*St
);
630 // Helper for findBetterNeighborChains. Walk up store chain add additional
631 // chained stores that do not overlap and can be parallelized.
632 bool parallelizeChainedStores(StoreSDNode
*St
);
634 /// Holds a pointer to an LSBaseSDNode as well as information on where it
635 /// is located in a sequence of memory operations connected by a chain.
637 // Ptr to the mem node.
638 LSBaseSDNode
*MemNode
;
640 // Offset from the base ptr.
641 int64_t OffsetFromBase
;
643 MemOpLink(LSBaseSDNode
*N
, int64_t Offset
)
644 : MemNode(N
), OffsetFromBase(Offset
) {}
647 // Classify the origin of a stored value.
648 enum class StoreSource
{ Unknown
, Constant
, Extract
, Load
};
649 StoreSource
getStoreSource(SDValue StoreVal
) {
650 switch (StoreVal
.getOpcode()) {
652 case ISD::ConstantFP
:
653 return StoreSource::Constant
;
654 case ISD::EXTRACT_VECTOR_ELT
:
655 case ISD::EXTRACT_SUBVECTOR
:
656 return StoreSource::Extract
;
658 return StoreSource::Load
;
660 return StoreSource::Unknown
;
664 /// This is a helper function for visitMUL to check the profitability
665 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
666 /// MulNode is the original multiply, AddNode is (add x, c1),
667 /// and ConstNode is c2.
668 bool isMulAddWithConstProfitable(SDNode
*MulNode
,
672 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns
673 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns
674 /// the type of the loaded value to be extended.
675 bool isAndLoadExtLoad(ConstantSDNode
*AndC
, LoadSDNode
*LoadN
,
676 EVT LoadResultTy
, EVT
&ExtVT
);
678 /// Helper function to calculate whether the given Load/Store can have its
679 /// width reduced to ExtVT.
680 bool isLegalNarrowLdSt(LSBaseSDNode
*LDSTN
, ISD::LoadExtType ExtType
,
681 EVT
&MemVT
, unsigned ShAmt
= 0);
683 /// Used by BackwardsPropagateMask to find suitable loads.
684 bool SearchForAndLoads(SDNode
*N
, SmallVectorImpl
<LoadSDNode
*> &Loads
,
685 SmallPtrSetImpl
<SDNode
*> &NodesWithConsts
,
686 ConstantSDNode
*Mask
, SDNode
*&NodeToMask
);
687 /// Attempt to propagate a given AND node back to load leaves so that they
688 /// can be combined into narrow loads.
689 bool BackwardsPropagateMask(SDNode
*N
);
691 /// Helper function for mergeConsecutiveStores which merges the component
693 SDValue
getMergeStoreChains(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
696 /// This is a helper function for mergeConsecutiveStores. When the source
697 /// elements of the consecutive stores are all constants or all extracted
698 /// vector elements, try to merge them into one larger store introducing
699 /// bitcasts if necessary. \return True if a merged store was created.
700 bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
701 EVT MemVT
, unsigned NumStores
,
702 bool IsConstantSrc
, bool UseVector
,
705 /// This is a helper function for mergeConsecutiveStores. Stores that
706 /// potentially may be merged with St are placed in StoreNodes. RootNode is
707 /// a chain predecessor to all store candidates.
708 void getStoreMergeCandidates(StoreSDNode
*St
,
709 SmallVectorImpl
<MemOpLink
> &StoreNodes
,
712 /// Helper function for mergeConsecutiveStores. Checks if candidate stores
713 /// have indirect dependency through their operands. RootNode is the
714 /// predecessor to all stores calculated by getStoreMergeCandidates and is
715 /// used to prune the dependency check. \return True if safe to merge.
716 bool checkMergeStoreCandidatesForDependencies(
717 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumStores
,
720 /// This is a helper function for mergeConsecutiveStores. Given a list of
721 /// store candidates, find the first N that are consecutive in memory.
722 /// Returns 0 if there are not at least 2 consecutive stores to try merging.
723 unsigned getConsecutiveStores(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
724 int64_t ElementSizeBytes
) const;
726 /// This is a helper function for mergeConsecutiveStores. It is used for
727 /// store chains that are composed entirely of constant values.
728 bool tryStoreMergeOfConstants(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
729 unsigned NumConsecutiveStores
,
730 EVT MemVT
, SDNode
*Root
, bool AllowVectors
);
732 /// This is a helper function for mergeConsecutiveStores. It is used for
733 /// store chains that are composed entirely of extracted vector elements.
734 /// When extracting multiple vector elements, try to store them in one
735 /// vector store rather than a sequence of scalar stores.
736 bool tryStoreMergeOfExtracts(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
737 unsigned NumConsecutiveStores
, EVT MemVT
,
740 /// This is a helper function for mergeConsecutiveStores. It is used for
741 /// store chains that are composed entirely of loaded values.
742 bool tryStoreMergeOfLoads(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
743 unsigned NumConsecutiveStores
, EVT MemVT
,
744 SDNode
*Root
, bool AllowVectors
,
745 bool IsNonTemporalStore
, bool IsNonTemporalLoad
);
747 /// Merge consecutive store operations into a wide store.
748 /// This optimization uses wide integers or vectors when possible.
749 /// \return true if stores were merged.
750 bool mergeConsecutiveStores(StoreSDNode
*St
);
752 /// Try to transform a truncation where C is a constant:
753 /// (trunc (and X, C)) -> (and (trunc X), (trunc C))
755 /// \p N needs to be a truncation and its first operand an AND. Other
756 /// requirements are checked by the function (e.g. that trunc is
757 /// single-use) and if missed an empty SDValue is returned.
758 SDValue
distributeTruncateThroughAnd(SDNode
*N
);
760 /// Helper function to determine whether the target supports operation
761 /// given by \p Opcode for type \p VT, that is, whether the operation
762 /// is legal or custom before legalizing operations, and whether is
763 /// legal (but not custom) after legalization.
764 bool hasOperation(unsigned Opcode
, EVT VT
) {
765 return TLI
.isOperationLegalOrCustom(Opcode
, VT
, LegalOperations
);
769 /// Runs the dag combiner on all nodes in the work list
770 void Run(CombineLevel AtLevel
);
772 SelectionDAG
&getDAG() const { return DAG
; }
774 /// Returns a type large enough to hold any valid shift amount - before type
775 /// legalization these can be huge.
776 EVT
getShiftAmountTy(EVT LHSTy
) {
777 assert(LHSTy
.isInteger() && "Shift amount is not an integer type!");
778 return TLI
.getShiftAmountTy(LHSTy
, DAG
.getDataLayout(), LegalTypes
);
781 /// This method returns true if we are running before type legalization or
782 /// if the specified VT is legal.
783 bool isTypeLegal(const EVT
&VT
) {
784 if (!LegalTypes
) return true;
785 return TLI
.isTypeLegal(VT
);
788 /// Convenience wrapper around TargetLowering::getSetCCResultType
789 EVT
getSetCCResultType(EVT VT
) const {
790 return TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
793 void ExtendSetCCUses(const SmallVectorImpl
<SDNode
*> &SetCCs
,
794 SDValue OrigLoad
, SDValue ExtLoad
,
795 ISD::NodeType ExtType
);
798 /// This class is a DAGUpdateListener that removes any deleted
799 /// nodes from the worklist.
800 class WorklistRemover
: public SelectionDAG::DAGUpdateListener
{
804 explicit WorklistRemover(DAGCombiner
&dc
)
805 : SelectionDAG::DAGUpdateListener(dc
.getDAG()), DC(dc
) {}
807 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
808 DC
.removeFromWorklist(N
);
812 class WorklistInserter
: public SelectionDAG::DAGUpdateListener
{
816 explicit WorklistInserter(DAGCombiner
&dc
)
817 : SelectionDAG::DAGUpdateListener(dc
.getDAG()), DC(dc
) {}
819 // FIXME: Ideally we could add N to the worklist, but this causes exponential
820 // compile time costs in large DAGs, e.g. Halide.
821 void NodeInserted(SDNode
*N
) override
{ DC
.ConsiderForPruning(N
); }
824 } // end anonymous namespace
826 //===----------------------------------------------------------------------===//
827 // TargetLowering::DAGCombinerInfo implementation
828 //===----------------------------------------------------------------------===//
830 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode
*N
) {
831 ((DAGCombiner
*)DC
)->AddToWorklist(N
);
834 SDValue
TargetLowering::DAGCombinerInfo::
835 CombineTo(SDNode
*N
, ArrayRef
<SDValue
> To
, bool AddTo
) {
836 return ((DAGCombiner
*)DC
)->CombineTo(N
, &To
[0], To
.size(), AddTo
);
839 SDValue
TargetLowering::DAGCombinerInfo::
840 CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
) {
841 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res
, AddTo
);
844 SDValue
TargetLowering::DAGCombinerInfo::
845 CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
, bool AddTo
) {
846 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res0
, Res1
, AddTo
);
849 bool TargetLowering::DAGCombinerInfo::
850 recursivelyDeleteUnusedNodes(SDNode
*N
) {
851 return ((DAGCombiner
*)DC
)->recursivelyDeleteUnusedNodes(N
);
854 void TargetLowering::DAGCombinerInfo::
855 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
856 return ((DAGCombiner
*)DC
)->CommitTargetLoweringOpt(TLO
);
859 //===----------------------------------------------------------------------===//
861 //===----------------------------------------------------------------------===//
863 void DAGCombiner::deleteAndRecombine(SDNode
*N
) {
864 removeFromWorklist(N
);
866 // If the operands of this node are only used by the node, they will now be
867 // dead. Make sure to re-visit them and recursively delete dead nodes.
868 for (const SDValue
&Op
: N
->ops())
869 // For an operand generating multiple values, one of the values may
870 // become dead allowing further simplification (e.g. split index
871 // arithmetic from an indexed load).
872 if (Op
->hasOneUse() || Op
->getNumValues() > 1)
873 AddToWorklist(Op
.getNode());
878 // APInts must be the same size for most operations, this helper
879 // function zero extends the shorter of the pair so that they match.
880 // We provide an Offset so that we can create bitwidths that won't overflow.
881 static void zeroExtendToMatch(APInt
&LHS
, APInt
&RHS
, unsigned Offset
= 0) {
882 unsigned Bits
= Offset
+ std::max(LHS
.getBitWidth(), RHS
.getBitWidth());
883 LHS
= LHS
.zextOrSelf(Bits
);
884 RHS
= RHS
.zextOrSelf(Bits
);
887 // Return true if this node is a setcc, or is a select_cc
888 // that selects between the target values used for true and false, making it
889 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
890 // the appropriate nodes based on the type of node we are checking. This
891 // simplifies life a bit for the callers.
892 bool DAGCombiner::isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
893 SDValue
&CC
, bool MatchStrict
) const {
894 if (N
.getOpcode() == ISD::SETCC
) {
895 LHS
= N
.getOperand(0);
896 RHS
= N
.getOperand(1);
897 CC
= N
.getOperand(2);
902 (N
.getOpcode() == ISD::STRICT_FSETCC
||
903 N
.getOpcode() == ISD::STRICT_FSETCCS
)) {
904 LHS
= N
.getOperand(1);
905 RHS
= N
.getOperand(2);
906 CC
= N
.getOperand(3);
910 if (N
.getOpcode() != ISD::SELECT_CC
||
911 !TLI
.isConstTrueVal(N
.getOperand(2).getNode()) ||
912 !TLI
.isConstFalseVal(N
.getOperand(3).getNode()))
915 if (TLI
.getBooleanContents(N
.getValueType()) ==
916 TargetLowering::UndefinedBooleanContent
)
919 LHS
= N
.getOperand(0);
920 RHS
= N
.getOperand(1);
921 CC
= N
.getOperand(4);
925 /// Return true if this is a SetCC-equivalent operation with only one use.
926 /// If this is true, it allows the users to invert the operation for free when
927 /// it is profitable to do so.
928 bool DAGCombiner::isOneUseSetCC(SDValue N
) const {
930 if (isSetCCEquivalent(N
, N0
, N1
, N2
) && N
.getNode()->hasOneUse())
935 static bool isConstantSplatVectorMaskForType(SDNode
*N
, EVT ScalarTy
) {
936 if (!ScalarTy
.isSimple())
939 uint64_t MaskForTy
= 0ULL;
940 switch (ScalarTy
.getSimpleVT().SimpleTy
) {
945 MaskForTy
= 0xFFFFULL
;
948 MaskForTy
= 0xFFFFFFFFULL
;
956 if (ISD::isConstantSplatVector(N
, Val
))
957 return Val
.getLimitedValue() == MaskForTy
;
962 // Determines if it is a constant integer or a splat/build vector of constant
963 // integers (and undefs).
964 // Do not permit build vector implicit truncation.
965 static bool isConstantOrConstantVector(SDValue N
, bool NoOpaques
= false) {
966 if (ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(N
))
967 return !(Const
->isOpaque() && NoOpaques
);
968 if (N
.getOpcode() != ISD::BUILD_VECTOR
&& N
.getOpcode() != ISD::SPLAT_VECTOR
)
970 unsigned BitWidth
= N
.getScalarValueSizeInBits();
971 for (const SDValue
&Op
: N
->op_values()) {
974 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(Op
);
975 if (!Const
|| Const
->getAPIntValue().getBitWidth() != BitWidth
||
976 (Const
->isOpaque() && NoOpaques
))
982 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
984 static bool isAnyConstantBuildVector(SDValue V
, bool NoOpaques
= false) {
985 if (V
.getOpcode() != ISD::BUILD_VECTOR
)
987 return isConstantOrConstantVector(V
, NoOpaques
) ||
988 ISD::isBuildVectorOfConstantFPSDNodes(V
.getNode());
991 // Determine if this an indexed load with an opaque target constant index.
992 static bool canSplitIdx(LoadSDNode
*LD
) {
993 return MaySplitLoadIndex
&&
994 (LD
->getOperand(2).getOpcode() != ISD::TargetConstant
||
995 !cast
<ConstantSDNode
>(LD
->getOperand(2))->isOpaque());
998 bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc
,
1002 // Currently this only tries to ensure we don't undo the GEP splits done by
1003 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this,
1004 // we check if the following transformation would be problematic:
1005 // (load/store (add, (add, x, offset1), offset2)) ->
1006 // (load/store (add, x, offset1+offset2)).
1008 if (Opc
!= ISD::ADD
|| N0
.getOpcode() != ISD::ADD
)
1014 auto *C1
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
1015 auto *C2
= dyn_cast
<ConstantSDNode
>(N1
);
1019 const APInt
&C1APIntVal
= C1
->getAPIntValue();
1020 const APInt
&C2APIntVal
= C2
->getAPIntValue();
1021 if (C1APIntVal
.getBitWidth() > 64 || C2APIntVal
.getBitWidth() > 64)
1024 const APInt CombinedValueIntVal
= C1APIntVal
+ C2APIntVal
;
1025 if (CombinedValueIntVal
.getBitWidth() > 64)
1027 const int64_t CombinedValue
= CombinedValueIntVal
.getSExtValue();
1029 for (SDNode
*Node
: N0
->uses()) {
1030 auto LoadStore
= dyn_cast
<MemSDNode
>(Node
);
1032 // Is x[offset2] already not a legal addressing mode? If so then
1033 // reassociating the constants breaks nothing (we test offset2 because
1034 // that's the one we hope to fold into the load or store).
1035 TargetLoweringBase::AddrMode AM
;
1036 AM
.HasBaseReg
= true;
1037 AM
.BaseOffs
= C2APIntVal
.getSExtValue();
1038 EVT VT
= LoadStore
->getMemoryVT();
1039 unsigned AS
= LoadStore
->getAddressSpace();
1040 Type
*AccessTy
= VT
.getTypeForEVT(*DAG
.getContext());
1041 if (!TLI
.isLegalAddressingMode(DAG
.getDataLayout(), AM
, AccessTy
, AS
))
1044 // Would x[offset1+offset2] still be a legal addressing mode?
1045 AM
.BaseOffs
= CombinedValue
;
1046 if (!TLI
.isLegalAddressingMode(DAG
.getDataLayout(), AM
, AccessTy
, AS
))
1054 // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression
1055 // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc.
1056 SDValue
DAGCombiner::reassociateOpsCommutative(unsigned Opc
, const SDLoc
&DL
,
1057 SDValue N0
, SDValue N1
) {
1058 EVT VT
= N0
.getValueType();
1060 if (N0
.getOpcode() != Opc
)
1063 SDValue N00
= N0
.getOperand(0);
1064 SDValue N01
= N0
.getOperand(1);
1066 if (DAG
.isConstantIntBuildVectorOrConstantInt(peekThroughBitcasts(N01
))) {
1067 if (DAG
.isConstantIntBuildVectorOrConstantInt(peekThroughBitcasts(N1
))) {
1068 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2))
1069 if (SDValue OpNode
= DAG
.FoldConstantArithmetic(Opc
, DL
, VT
, {N01
, N1
}))
1070 return DAG
.getNode(Opc
, DL
, VT
, N00
, OpNode
);
1073 if (N0
.hasOneUse()) {
1074 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
1075 // iff (op x, c1) has one use
1076 if (SDValue OpNode
= DAG
.getNode(Opc
, SDLoc(N0
), VT
, N00
, N1
))
1077 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N01
);
1084 // Try to reassociate commutative binops.
1085 SDValue
DAGCombiner::reassociateOps(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
1086 SDValue N1
, SDNodeFlags Flags
) {
1087 assert(TLI
.isCommutativeBinOp(Opc
) && "Operation not commutative.");
1089 // Floating-point reassociation is not allowed without loose FP math.
1090 if (N0
.getValueType().isFloatingPoint() ||
1091 N1
.getValueType().isFloatingPoint())
1092 if (!Flags
.hasAllowReassociation() || !Flags
.hasNoSignedZeros())
1095 if (SDValue Combined
= reassociateOpsCommutative(Opc
, DL
, N0
, N1
))
1097 if (SDValue Combined
= reassociateOpsCommutative(Opc
, DL
, N1
, N0
))
1102 SDValue
DAGCombiner::CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
1104 assert(N
->getNumValues() == NumTo
&& "Broken CombineTo call!");
1106 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N
->dump(&DAG
); dbgs() << "\nWith: ";
1107 To
[0].getNode()->dump(&DAG
);
1108 dbgs() << " and " << NumTo
- 1 << " other values\n");
1109 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
)
1110 assert((!To
[i
].getNode() ||
1111 N
->getValueType(i
) == To
[i
].getValueType()) &&
1112 "Cannot combine value to value of different type!");
1114 WorklistRemover
DeadNodes(*this);
1115 DAG
.ReplaceAllUsesWith(N
, To
);
1117 // Push the new nodes and any users onto the worklist
1118 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
) {
1119 if (To
[i
].getNode()) {
1120 AddToWorklist(To
[i
].getNode());
1121 AddUsersToWorklist(To
[i
].getNode());
1126 // Finally, if the node is now dead, remove it from the graph. The node
1127 // may not be dead if the replacement process recursively simplified to
1128 // something else needing this node.
1130 deleteAndRecombine(N
);
1131 return SDValue(N
, 0);
1135 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
1136 // Replace the old value with the new one.
1138 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO
.Old
.getNode()->dump(&DAG
);
1139 dbgs() << "\nWith: "; TLO
.New
.getNode()->dump(&DAG
);
1142 // Replace all uses. If any nodes become isomorphic to other nodes and
1143 // are deleted, make sure to remove them from our worklist.
1144 WorklistRemover
DeadNodes(*this);
1145 DAG
.ReplaceAllUsesOfValueWith(TLO
.Old
, TLO
.New
);
1147 // Push the new node and any (possibly new) users onto the worklist.
1148 AddToWorklistWithUsers(TLO
.New
.getNode());
1150 // Finally, if the node is now dead, remove it from the graph. The node
1151 // may not be dead if the replacement process recursively simplified to
1152 // something else needing this node.
1153 if (TLO
.Old
.getNode()->use_empty())
1154 deleteAndRecombine(TLO
.Old
.getNode());
1157 /// Check the specified integer node value to see if it can be simplified or if
1158 /// things it uses can be simplified by bit propagation. If so, return true.
1159 bool DAGCombiner::SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
1160 const APInt
&DemandedElts
,
1161 bool AssumeSingleUse
) {
1162 TargetLowering::TargetLoweringOpt
TLO(DAG
, LegalTypes
, LegalOperations
);
1164 if (!TLI
.SimplifyDemandedBits(Op
, DemandedBits
, DemandedElts
, Known
, TLO
, 0,
1168 // Revisit the node.
1169 AddToWorklist(Op
.getNode());
1171 CommitTargetLoweringOpt(TLO
);
1175 /// Check the specified vector node value to see if it can be simplified or
1176 /// if things it uses can be simplified as it only uses some of the elements.
1177 /// If so, return true.
1178 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op
,
1179 const APInt
&DemandedElts
,
1180 bool AssumeSingleUse
) {
1181 TargetLowering::TargetLoweringOpt
TLO(DAG
, LegalTypes
, LegalOperations
);
1182 APInt KnownUndef
, KnownZero
;
1183 if (!TLI
.SimplifyDemandedVectorElts(Op
, DemandedElts
, KnownUndef
, KnownZero
,
1184 TLO
, 0, AssumeSingleUse
))
1187 // Revisit the node.
1188 AddToWorklist(Op
.getNode());
1190 CommitTargetLoweringOpt(TLO
);
1194 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode
*Load
, SDNode
*ExtLoad
) {
1196 EVT VT
= Load
->getValueType(0);
1197 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, SDValue(ExtLoad
, 0));
1199 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load
->dump(&DAG
); dbgs() << "\nWith: ";
1200 Trunc
.getNode()->dump(&DAG
); dbgs() << '\n');
1201 WorklistRemover
DeadNodes(*this);
1202 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 0), Trunc
);
1203 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 1), SDValue(ExtLoad
, 1));
1204 deleteAndRecombine(Load
);
1205 AddToWorklist(Trunc
.getNode());
1208 SDValue
DAGCombiner::PromoteOperand(SDValue Op
, EVT PVT
, bool &Replace
) {
1211 if (ISD::isUNINDEXEDLoad(Op
.getNode())) {
1212 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
1213 EVT MemVT
= LD
->getMemoryVT();
1214 ISD::LoadExtType ExtType
= ISD::isNON_EXTLoad(LD
) ? ISD::EXTLOAD
1215 : LD
->getExtensionType();
1217 return DAG
.getExtLoad(ExtType
, DL
, PVT
,
1218 LD
->getChain(), LD
->getBasePtr(),
1219 MemVT
, LD
->getMemOperand());
1222 unsigned Opc
= Op
.getOpcode();
1225 case ISD::AssertSext
:
1226 if (SDValue Op0
= SExtPromoteOperand(Op
.getOperand(0), PVT
))
1227 return DAG
.getNode(ISD::AssertSext
, DL
, PVT
, Op0
, Op
.getOperand(1));
1229 case ISD::AssertZext
:
1230 if (SDValue Op0
= ZExtPromoteOperand(Op
.getOperand(0), PVT
))
1231 return DAG
.getNode(ISD::AssertZext
, DL
, PVT
, Op0
, Op
.getOperand(1));
1233 case ISD::Constant
: {
1235 Op
.getValueType().isByteSized() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
1236 return DAG
.getNode(ExtOpc
, DL
, PVT
, Op
);
1240 if (!TLI
.isOperationLegal(ISD::ANY_EXTEND
, PVT
))
1242 return DAG
.getNode(ISD::ANY_EXTEND
, DL
, PVT
, Op
);
1245 SDValue
DAGCombiner::SExtPromoteOperand(SDValue Op
, EVT PVT
) {
1246 if (!TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
, PVT
))
1248 EVT OldVT
= Op
.getValueType();
1250 bool Replace
= false;
1251 SDValue NewOp
= PromoteOperand(Op
, PVT
, Replace
);
1252 if (!NewOp
.getNode())
1254 AddToWorklist(NewOp
.getNode());
1257 ReplaceLoadWithPromotedLoad(Op
.getNode(), NewOp
.getNode());
1258 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, NewOp
.getValueType(), NewOp
,
1259 DAG
.getValueType(OldVT
));
1262 SDValue
DAGCombiner::ZExtPromoteOperand(SDValue Op
, EVT PVT
) {
1263 EVT OldVT
= Op
.getValueType();
1265 bool Replace
= false;
1266 SDValue NewOp
= PromoteOperand(Op
, PVT
, Replace
);
1267 if (!NewOp
.getNode())
1269 AddToWorklist(NewOp
.getNode());
1272 ReplaceLoadWithPromotedLoad(Op
.getNode(), NewOp
.getNode());
1273 return DAG
.getZeroExtendInReg(NewOp
, DL
, OldVT
);
1276 /// Promote the specified integer binary operation if the target indicates it is
1277 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1278 /// i32 since i16 instructions are longer.
1279 SDValue
DAGCombiner::PromoteIntBinOp(SDValue Op
) {
1280 if (!LegalOperations
)
1283 EVT VT
= Op
.getValueType();
1284 if (VT
.isVector() || !VT
.isInteger())
1287 // If operation type is 'undesirable', e.g. i16 on x86, consider
1289 unsigned Opc
= Op
.getOpcode();
1290 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1294 // Consult target whether it is a good idea to promote this operation and
1295 // what's the right type to promote it to.
1296 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1297 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1299 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1301 bool Replace0
= false;
1302 SDValue N0
= Op
.getOperand(0);
1303 SDValue NN0
= PromoteOperand(N0
, PVT
, Replace0
);
1305 bool Replace1
= false;
1306 SDValue N1
= Op
.getOperand(1);
1307 SDValue NN1
= PromoteOperand(N1
, PVT
, Replace1
);
1311 DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, DAG
.getNode(Opc
, DL
, PVT
, NN0
, NN1
));
1313 // We are always replacing N0/N1's use in N and only need additional
1314 // replacements if there are additional uses.
1315 // Note: We are checking uses of the *nodes* (SDNode) rather than values
1316 // (SDValue) here because the node may reference multiple values
1317 // (for example, the chain value of a load node).
1318 Replace0
&= !N0
->hasOneUse();
1319 Replace1
&= (N0
!= N1
) && !N1
->hasOneUse();
1321 // Combine Op here so it is preserved past replacements.
1322 CombineTo(Op
.getNode(), RV
);
1324 // If operands have a use ordering, make sure we deal with
1325 // predecessor first.
1326 if (Replace0
&& Replace1
&& N0
.getNode()->isPredecessorOf(N1
.getNode())) {
1328 std::swap(NN0
, NN1
);
1332 AddToWorklist(NN0
.getNode());
1333 ReplaceLoadWithPromotedLoad(N0
.getNode(), NN0
.getNode());
1336 AddToWorklist(NN1
.getNode());
1337 ReplaceLoadWithPromotedLoad(N1
.getNode(), NN1
.getNode());
1344 /// Promote the specified integer shift operation if the target indicates it is
1345 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1346 /// i32 since i16 instructions are longer.
1347 SDValue
DAGCombiner::PromoteIntShiftOp(SDValue Op
) {
1348 if (!LegalOperations
)
1351 EVT VT
= Op
.getValueType();
1352 if (VT
.isVector() || !VT
.isInteger())
1355 // If operation type is 'undesirable', e.g. i16 on x86, consider
1357 unsigned Opc
= Op
.getOpcode();
1358 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1362 // Consult target whether it is a good idea to promote this operation and
1363 // what's the right type to promote it to.
1364 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1365 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1367 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1369 bool Replace
= false;
1370 SDValue N0
= Op
.getOperand(0);
1371 SDValue N1
= Op
.getOperand(1);
1372 if (Opc
== ISD::SRA
)
1373 N0
= SExtPromoteOperand(N0
, PVT
);
1374 else if (Opc
== ISD::SRL
)
1375 N0
= ZExtPromoteOperand(N0
, PVT
);
1377 N0
= PromoteOperand(N0
, PVT
, Replace
);
1384 DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, DAG
.getNode(Opc
, DL
, PVT
, N0
, N1
));
1387 ReplaceLoadWithPromotedLoad(Op
.getOperand(0).getNode(), N0
.getNode());
1389 // Deal with Op being deleted.
1390 if (Op
&& Op
.getOpcode() != ISD::DELETED_NODE
)
1396 SDValue
DAGCombiner::PromoteExtend(SDValue Op
) {
1397 if (!LegalOperations
)
1400 EVT VT
= Op
.getValueType();
1401 if (VT
.isVector() || !VT
.isInteger())
1404 // If operation type is 'undesirable', e.g. i16 on x86, consider
1406 unsigned Opc
= Op
.getOpcode();
1407 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1411 // Consult target whether it is a good idea to promote this operation and
1412 // what's the right type to promote it to.
1413 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1414 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1415 // fold (aext (aext x)) -> (aext x)
1416 // fold (aext (zext x)) -> (zext x)
1417 // fold (aext (sext x)) -> (sext x)
1418 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1419 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), VT
, Op
.getOperand(0));
1424 bool DAGCombiner::PromoteLoad(SDValue Op
) {
1425 if (!LegalOperations
)
1428 if (!ISD::isUNINDEXEDLoad(Op
.getNode()))
1431 EVT VT
= Op
.getValueType();
1432 if (VT
.isVector() || !VT
.isInteger())
1435 // If operation type is 'undesirable', e.g. i16 on x86, consider
1437 unsigned Opc
= Op
.getOpcode();
1438 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1442 // Consult target whether it is a good idea to promote this operation and
1443 // what's the right type to promote it to.
1444 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1445 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1448 SDNode
*N
= Op
.getNode();
1449 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1450 EVT MemVT
= LD
->getMemoryVT();
1451 ISD::LoadExtType ExtType
= ISD::isNON_EXTLoad(LD
) ? ISD::EXTLOAD
1452 : LD
->getExtensionType();
1453 SDValue NewLD
= DAG
.getExtLoad(ExtType
, DL
, PVT
,
1454 LD
->getChain(), LD
->getBasePtr(),
1455 MemVT
, LD
->getMemOperand());
1456 SDValue Result
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, NewLD
);
1458 LLVM_DEBUG(dbgs() << "\nPromoting "; N
->dump(&DAG
); dbgs() << "\nTo: ";
1459 Result
.getNode()->dump(&DAG
); dbgs() << '\n');
1460 WorklistRemover
DeadNodes(*this);
1461 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
);
1462 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), NewLD
.getValue(1));
1463 deleteAndRecombine(N
);
1464 AddToWorklist(Result
.getNode());
1470 /// Recursively delete a node which has no uses and any operands for
1471 /// which it is the only use.
1473 /// Note that this both deletes the nodes and removes them from the worklist.
1474 /// It also adds any nodes who have had a user deleted to the worklist as they
1475 /// may now have only one use and subject to other combines.
1476 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode
*N
) {
1477 if (!N
->use_empty())
1480 SmallSetVector
<SDNode
*, 16> Nodes
;
1483 N
= Nodes
.pop_back_val();
1487 if (N
->use_empty()) {
1488 for (const SDValue
&ChildN
: N
->op_values())
1489 Nodes
.insert(ChildN
.getNode());
1491 removeFromWorklist(N
);
1496 } while (!Nodes
.empty());
1500 //===----------------------------------------------------------------------===//
1501 // Main DAG Combiner implementation
1502 //===----------------------------------------------------------------------===//
1504 void DAGCombiner::Run(CombineLevel AtLevel
) {
1505 // set the instance variables, so that the various visit routines may use it.
1507 LegalDAG
= Level
>= AfterLegalizeDAG
;
1508 LegalOperations
= Level
>= AfterLegalizeVectorOps
;
1509 LegalTypes
= Level
>= AfterLegalizeTypes
;
1511 WorklistInserter
AddNodes(*this);
1513 // Add all the dag nodes to the worklist.
1514 for (SDNode
&Node
: DAG
.allnodes())
1515 AddToWorklist(&Node
);
1517 // Create a dummy node (which is not added to allnodes), that adds a reference
1518 // to the root node, preventing it from being deleted, and tracking any
1519 // changes of the root.
1520 HandleSDNode
Dummy(DAG
.getRoot());
1522 // While we have a valid worklist entry node, try to combine it.
1523 while (SDNode
*N
= getNextWorklistEntry()) {
1524 // If N has no uses, it is dead. Make sure to revisit all N's operands once
1525 // N is deleted from the DAG, since they too may now be dead or may have a
1526 // reduced number of uses, allowing other xforms.
1527 if (recursivelyDeleteUnusedNodes(N
))
1530 WorklistRemover
DeadNodes(*this);
1532 // If this combine is running after legalizing the DAG, re-legalize any
1533 // nodes pulled off the worklist.
1535 SmallSetVector
<SDNode
*, 16> UpdatedNodes
;
1536 bool NIsValid
= DAG
.LegalizeOp(N
, UpdatedNodes
);
1538 for (SDNode
*LN
: UpdatedNodes
)
1539 AddToWorklistWithUsers(LN
);
1545 LLVM_DEBUG(dbgs() << "\nCombining: "; N
->dump(&DAG
));
1547 // Add any operands of the new node which have not yet been combined to the
1548 // worklist as well. Because the worklist uniques things already, this
1549 // won't repeatedly process the same operand.
1550 CombinedNodes
.insert(N
);
1551 for (const SDValue
&ChildN
: N
->op_values())
1552 if (!CombinedNodes
.count(ChildN
.getNode()))
1553 AddToWorklist(ChildN
.getNode());
1555 SDValue RV
= combine(N
);
1562 // If we get back the same node we passed in, rather than a new node or
1563 // zero, we know that the node must have defined multiple values and
1564 // CombineTo was used. Since CombineTo takes care of the worklist
1565 // mechanics for us, we have no work to do in this case.
1566 if (RV
.getNode() == N
)
1569 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
1570 RV
.getOpcode() != ISD::DELETED_NODE
&&
1571 "Node was deleted but visit returned new node!");
1573 LLVM_DEBUG(dbgs() << " ... into: "; RV
.getNode()->dump(&DAG
));
1575 if (N
->getNumValues() == RV
.getNode()->getNumValues())
1576 DAG
.ReplaceAllUsesWith(N
, RV
.getNode());
1578 assert(N
->getValueType(0) == RV
.getValueType() &&
1579 N
->getNumValues() == 1 && "Type mismatch");
1580 DAG
.ReplaceAllUsesWith(N
, &RV
);
1583 // Push the new node and any users onto the worklist. Omit this if the
1584 // new node is the EntryToken (e.g. if a store managed to get optimized
1585 // out), because re-visiting the EntryToken and its users will not uncover
1586 // any additional opportunities, but there may be a large number of such
1587 // users, potentially causing compile time explosion.
1588 if (RV
.getOpcode() != ISD::EntryToken
) {
1589 AddToWorklist(RV
.getNode());
1590 AddUsersToWorklist(RV
.getNode());
1593 // Finally, if the node is now dead, remove it from the graph. The node
1594 // may not be dead if the replacement process recursively simplified to
1595 // something else needing this node. This will also take care of adding any
1596 // operands which have lost a user to the worklist.
1597 recursivelyDeleteUnusedNodes(N
);
1600 // If the root changed (e.g. it was a dead load, update the root).
1601 DAG
.setRoot(Dummy
.getValue());
1602 DAG
.RemoveDeadNodes();
1605 SDValue
DAGCombiner::visit(SDNode
*N
) {
1606 switch (N
->getOpcode()) {
1608 case ISD::TokenFactor
: return visitTokenFactor(N
);
1609 case ISD::MERGE_VALUES
: return visitMERGE_VALUES(N
);
1610 case ISD::ADD
: return visitADD(N
);
1611 case ISD::SUB
: return visitSUB(N
);
1613 case ISD::UADDSAT
: return visitADDSAT(N
);
1615 case ISD::USUBSAT
: return visitSUBSAT(N
);
1616 case ISD::ADDC
: return visitADDC(N
);
1618 case ISD::UADDO
: return visitADDO(N
);
1619 case ISD::SUBC
: return visitSUBC(N
);
1621 case ISD::USUBO
: return visitSUBO(N
);
1622 case ISD::ADDE
: return visitADDE(N
);
1623 case ISD::ADDCARRY
: return visitADDCARRY(N
);
1624 case ISD::SADDO_CARRY
: return visitSADDO_CARRY(N
);
1625 case ISD::SUBE
: return visitSUBE(N
);
1626 case ISD::SUBCARRY
: return visitSUBCARRY(N
);
1627 case ISD::SSUBO_CARRY
: return visitSSUBO_CARRY(N
);
1629 case ISD::SMULFIXSAT
:
1631 case ISD::UMULFIXSAT
: return visitMULFIX(N
);
1632 case ISD::MUL
: return visitMUL(N
);
1633 case ISD::SDIV
: return visitSDIV(N
);
1634 case ISD::UDIV
: return visitUDIV(N
);
1636 case ISD::UREM
: return visitREM(N
);
1637 case ISD::MULHU
: return visitMULHU(N
);
1638 case ISD::MULHS
: return visitMULHS(N
);
1639 case ISD::SMUL_LOHI
: return visitSMUL_LOHI(N
);
1640 case ISD::UMUL_LOHI
: return visitUMUL_LOHI(N
);
1642 case ISD::UMULO
: return visitMULO(N
);
1646 case ISD::UMAX
: return visitIMINMAX(N
);
1647 case ISD::AND
: return visitAND(N
);
1648 case ISD::OR
: return visitOR(N
);
1649 case ISD::XOR
: return visitXOR(N
);
1650 case ISD::SHL
: return visitSHL(N
);
1651 case ISD::SRA
: return visitSRA(N
);
1652 case ISD::SRL
: return visitSRL(N
);
1654 case ISD::ROTL
: return visitRotate(N
);
1656 case ISD::FSHR
: return visitFunnelShift(N
);
1657 case ISD::ABS
: return visitABS(N
);
1658 case ISD::BSWAP
: return visitBSWAP(N
);
1659 case ISD::BITREVERSE
: return visitBITREVERSE(N
);
1660 case ISD::CTLZ
: return visitCTLZ(N
);
1661 case ISD::CTLZ_ZERO_UNDEF
: return visitCTLZ_ZERO_UNDEF(N
);
1662 case ISD::CTTZ
: return visitCTTZ(N
);
1663 case ISD::CTTZ_ZERO_UNDEF
: return visitCTTZ_ZERO_UNDEF(N
);
1664 case ISD::CTPOP
: return visitCTPOP(N
);
1665 case ISD::SELECT
: return visitSELECT(N
);
1666 case ISD::VSELECT
: return visitVSELECT(N
);
1667 case ISD::SELECT_CC
: return visitSELECT_CC(N
);
1668 case ISD::SETCC
: return visitSETCC(N
);
1669 case ISD::SETCCCARRY
: return visitSETCCCARRY(N
);
1670 case ISD::SIGN_EXTEND
: return visitSIGN_EXTEND(N
);
1671 case ISD::ZERO_EXTEND
: return visitZERO_EXTEND(N
);
1672 case ISD::ANY_EXTEND
: return visitANY_EXTEND(N
);
1673 case ISD::AssertSext
:
1674 case ISD::AssertZext
: return visitAssertExt(N
);
1675 case ISD::AssertAlign
: return visitAssertAlign(N
);
1676 case ISD::SIGN_EXTEND_INREG
: return visitSIGN_EXTEND_INREG(N
);
1677 case ISD::SIGN_EXTEND_VECTOR_INREG
:
1678 case ISD::ZERO_EXTEND_VECTOR_INREG
: return visitEXTEND_VECTOR_INREG(N
);
1679 case ISD::TRUNCATE
: return visitTRUNCATE(N
);
1680 case ISD::BITCAST
: return visitBITCAST(N
);
1681 case ISD::BUILD_PAIR
: return visitBUILD_PAIR(N
);
1682 case ISD::FADD
: return visitFADD(N
);
1683 case ISD::STRICT_FADD
: return visitSTRICT_FADD(N
);
1684 case ISD::FSUB
: return visitFSUB(N
);
1685 case ISD::FMUL
: return visitFMUL(N
);
1686 case ISD::FMA
: return visitFMA(N
);
1687 case ISD::FDIV
: return visitFDIV(N
);
1688 case ISD::FREM
: return visitFREM(N
);
1689 case ISD::FSQRT
: return visitFSQRT(N
);
1690 case ISD::FCOPYSIGN
: return visitFCOPYSIGN(N
);
1691 case ISD::FPOW
: return visitFPOW(N
);
1692 case ISD::SINT_TO_FP
: return visitSINT_TO_FP(N
);
1693 case ISD::UINT_TO_FP
: return visitUINT_TO_FP(N
);
1694 case ISD::FP_TO_SINT
: return visitFP_TO_SINT(N
);
1695 case ISD::FP_TO_UINT
: return visitFP_TO_UINT(N
);
1696 case ISD::FP_ROUND
: return visitFP_ROUND(N
);
1697 case ISD::FP_EXTEND
: return visitFP_EXTEND(N
);
1698 case ISD::FNEG
: return visitFNEG(N
);
1699 case ISD::FABS
: return visitFABS(N
);
1700 case ISD::FFLOOR
: return visitFFLOOR(N
);
1704 case ISD::FMAXIMUM
: return visitFMinMax(N
);
1705 case ISD::FCEIL
: return visitFCEIL(N
);
1706 case ISD::FTRUNC
: return visitFTRUNC(N
);
1707 case ISD::BRCOND
: return visitBRCOND(N
);
1708 case ISD::BR_CC
: return visitBR_CC(N
);
1709 case ISD::LOAD
: return visitLOAD(N
);
1710 case ISD::STORE
: return visitSTORE(N
);
1711 case ISD::INSERT_VECTOR_ELT
: return visitINSERT_VECTOR_ELT(N
);
1712 case ISD::EXTRACT_VECTOR_ELT
: return visitEXTRACT_VECTOR_ELT(N
);
1713 case ISD::BUILD_VECTOR
: return visitBUILD_VECTOR(N
);
1714 case ISD::CONCAT_VECTORS
: return visitCONCAT_VECTORS(N
);
1715 case ISD::EXTRACT_SUBVECTOR
: return visitEXTRACT_SUBVECTOR(N
);
1716 case ISD::VECTOR_SHUFFLE
: return visitVECTOR_SHUFFLE(N
);
1717 case ISD::SCALAR_TO_VECTOR
: return visitSCALAR_TO_VECTOR(N
);
1718 case ISD::INSERT_SUBVECTOR
: return visitINSERT_SUBVECTOR(N
);
1719 case ISD::MGATHER
: return visitMGATHER(N
);
1720 case ISD::MLOAD
: return visitMLOAD(N
);
1721 case ISD::MSCATTER
: return visitMSCATTER(N
);
1722 case ISD::MSTORE
: return visitMSTORE(N
);
1723 case ISD::LIFETIME_END
: return visitLIFETIME_END(N
);
1724 case ISD::FP_TO_FP16
: return visitFP_TO_FP16(N
);
1725 case ISD::FP16_TO_FP
: return visitFP16_TO_FP(N
);
1726 case ISD::FREEZE
: return visitFREEZE(N
);
1727 case ISD::VECREDUCE_FADD
:
1728 case ISD::VECREDUCE_FMUL
:
1729 case ISD::VECREDUCE_ADD
:
1730 case ISD::VECREDUCE_MUL
:
1731 case ISD::VECREDUCE_AND
:
1732 case ISD::VECREDUCE_OR
:
1733 case ISD::VECREDUCE_XOR
:
1734 case ISD::VECREDUCE_SMAX
:
1735 case ISD::VECREDUCE_SMIN
:
1736 case ISD::VECREDUCE_UMAX
:
1737 case ISD::VECREDUCE_UMIN
:
1738 case ISD::VECREDUCE_FMAX
:
1739 case ISD::VECREDUCE_FMIN
: return visitVECREDUCE(N
);
1740 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) case ISD::SDOPC:
1741 #include "llvm/IR/VPIntrinsics.def"
1742 return visitVPOp(N
);
1747 SDValue
DAGCombiner::combine(SDNode
*N
) {
1749 if (!DisableGenericCombines
)
1752 // If nothing happened, try a target-specific DAG combine.
1753 if (!RV
.getNode()) {
1754 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
1755 "Node was deleted but visit returned NULL!");
1757 if (N
->getOpcode() >= ISD::BUILTIN_OP_END
||
1758 TLI
.hasTargetDAGCombine((ISD::NodeType
)N
->getOpcode())) {
1760 // Expose the DAG combiner to the target combiner impls.
1761 TargetLowering::DAGCombinerInfo
1762 DagCombineInfo(DAG
, Level
, false, this);
1764 RV
= TLI
.PerformDAGCombine(N
, DagCombineInfo
);
1768 // If nothing happened still, try promoting the operation.
1769 if (!RV
.getNode()) {
1770 switch (N
->getOpcode()) {
1778 RV
= PromoteIntBinOp(SDValue(N
, 0));
1783 RV
= PromoteIntShiftOp(SDValue(N
, 0));
1785 case ISD::SIGN_EXTEND
:
1786 case ISD::ZERO_EXTEND
:
1787 case ISD::ANY_EXTEND
:
1788 RV
= PromoteExtend(SDValue(N
, 0));
1791 if (PromoteLoad(SDValue(N
, 0)))
1797 // If N is a commutative binary node, try to eliminate it if the commuted
1798 // version is already present in the DAG.
1799 if (!RV
.getNode() && TLI
.isCommutativeBinOp(N
->getOpcode()) &&
1800 N
->getNumValues() == 1) {
1801 SDValue N0
= N
->getOperand(0);
1802 SDValue N1
= N
->getOperand(1);
1804 // Constant operands are canonicalized to RHS.
1805 if (N0
!= N1
&& (isa
<ConstantSDNode
>(N0
) || !isa
<ConstantSDNode
>(N1
))) {
1806 SDValue Ops
[] = {N1
, N0
};
1807 SDNode
*CSENode
= DAG
.getNodeIfExists(N
->getOpcode(), N
->getVTList(), Ops
,
1810 return SDValue(CSENode
, 0);
1817 /// Given a node, return its input chain if it has one, otherwise return a null
1819 static SDValue
getInputChainForNode(SDNode
*N
) {
1820 if (unsigned NumOps
= N
->getNumOperands()) {
1821 if (N
->getOperand(0).getValueType() == MVT::Other
)
1822 return N
->getOperand(0);
1823 if (N
->getOperand(NumOps
-1).getValueType() == MVT::Other
)
1824 return N
->getOperand(NumOps
-1);
1825 for (unsigned i
= 1; i
< NumOps
-1; ++i
)
1826 if (N
->getOperand(i
).getValueType() == MVT::Other
)
1827 return N
->getOperand(i
);
1832 SDValue
DAGCombiner::visitTokenFactor(SDNode
*N
) {
1833 // If N has two operands, where one has an input chain equal to the other,
1834 // the 'other' chain is redundant.
1835 if (N
->getNumOperands() == 2) {
1836 if (getInputChainForNode(N
->getOperand(0).getNode()) == N
->getOperand(1))
1837 return N
->getOperand(0);
1838 if (getInputChainForNode(N
->getOperand(1).getNode()) == N
->getOperand(0))
1839 return N
->getOperand(1);
1842 // Don't simplify token factors if optnone.
1843 if (OptLevel
== CodeGenOpt::None
)
1846 // Don't simplify the token factor if the node itself has too many operands.
1847 if (N
->getNumOperands() > TokenFactorInlineLimit
)
1850 // If the sole user is a token factor, we should make sure we have a
1851 // chance to merge them together. This prevents TF chains from inhibiting
1853 if (N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::TokenFactor
)
1854 AddToWorklist(*(N
->use_begin()));
1856 SmallVector
<SDNode
*, 8> TFs
; // List of token factors to visit.
1857 SmallVector
<SDValue
, 8> Ops
; // Ops for replacing token factor.
1858 SmallPtrSet
<SDNode
*, 16> SeenOps
;
1859 bool Changed
= false; // If we should replace this token factor.
1861 // Start out with this token factor.
1864 // Iterate through token factors. The TFs grows when new token factors are
1866 for (unsigned i
= 0; i
< TFs
.size(); ++i
) {
1867 // Limit number of nodes to inline, to avoid quadratic compile times.
1868 // We have to add the outstanding Token Factors to Ops, otherwise we might
1869 // drop Ops from the resulting Token Factors.
1870 if (Ops
.size() > TokenFactorInlineLimit
) {
1871 for (unsigned j
= i
; j
< TFs
.size(); j
++)
1872 Ops
.emplace_back(TFs
[j
], 0);
1873 // Drop unprocessed Token Factors from TFs, so we do not add them to the
1874 // combiner worklist later.
1879 SDNode
*TF
= TFs
[i
];
1880 // Check each of the operands.
1881 for (const SDValue
&Op
: TF
->op_values()) {
1882 switch (Op
.getOpcode()) {
1883 case ISD::EntryToken
:
1884 // Entry tokens don't need to be added to the list. They are
1889 case ISD::TokenFactor
:
1890 if (Op
.hasOneUse() && !is_contained(TFs
, Op
.getNode())) {
1891 // Queue up for processing.
1892 TFs
.push_back(Op
.getNode());
1899 // Only add if it isn't already in the list.
1900 if (SeenOps
.insert(Op
.getNode()).second
)
1909 // Re-visit inlined Token Factors, to clean them up in case they have been
1910 // removed. Skip the first Token Factor, as this is the current node.
1911 for (unsigned i
= 1, e
= TFs
.size(); i
< e
; i
++)
1912 AddToWorklist(TFs
[i
]);
1914 // Remove Nodes that are chained to another node in the list. Do so
1915 // by walking up chains breath-first stopping when we've seen
1916 // another operand. In general we must climb to the EntryNode, but we can exit
1917 // early if we find all remaining work is associated with just one operand as
1918 // no further pruning is possible.
1920 // List of nodes to search through and original Ops from which they originate.
1921 SmallVector
<std::pair
<SDNode
*, unsigned>, 8> Worklist
;
1922 SmallVector
<unsigned, 8> OpWorkCount
; // Count of work for each Op.
1923 SmallPtrSet
<SDNode
*, 16> SeenChains
;
1924 bool DidPruneOps
= false;
1926 unsigned NumLeftToConsider
= 0;
1927 for (const SDValue
&Op
: Ops
) {
1928 Worklist
.push_back(std::make_pair(Op
.getNode(), NumLeftToConsider
++));
1929 OpWorkCount
.push_back(1);
1932 auto AddToWorklist
= [&](unsigned CurIdx
, SDNode
*Op
, unsigned OpNumber
) {
1933 // If this is an Op, we can remove the op from the list. Remark any
1934 // search associated with it as from the current OpNumber.
1935 if (SeenOps
.contains(Op
)) {
1938 unsigned OrigOpNumber
= 0;
1939 while (OrigOpNumber
< Ops
.size() && Ops
[OrigOpNumber
].getNode() != Op
)
1941 assert((OrigOpNumber
!= Ops
.size()) &&
1942 "expected to find TokenFactor Operand");
1943 // Re-mark worklist from OrigOpNumber to OpNumber
1944 for (unsigned i
= CurIdx
+ 1; i
< Worklist
.size(); ++i
) {
1945 if (Worklist
[i
].second
== OrigOpNumber
) {
1946 Worklist
[i
].second
= OpNumber
;
1949 OpWorkCount
[OpNumber
] += OpWorkCount
[OrigOpNumber
];
1950 OpWorkCount
[OrigOpNumber
] = 0;
1951 NumLeftToConsider
--;
1953 // Add if it's a new chain
1954 if (SeenChains
.insert(Op
).second
) {
1955 OpWorkCount
[OpNumber
]++;
1956 Worklist
.push_back(std::make_pair(Op
, OpNumber
));
1960 for (unsigned i
= 0; i
< Worklist
.size() && i
< 1024; ++i
) {
1961 // We need at least be consider at least 2 Ops to prune.
1962 if (NumLeftToConsider
<= 1)
1964 auto CurNode
= Worklist
[i
].first
;
1965 auto CurOpNumber
= Worklist
[i
].second
;
1966 assert((OpWorkCount
[CurOpNumber
] > 0) &&
1967 "Node should not appear in worklist");
1968 switch (CurNode
->getOpcode()) {
1969 case ISD::EntryToken
:
1970 // Hitting EntryToken is the only way for the search to terminate without
1972 // another operand's search. Prevent us from marking this operand
1974 NumLeftToConsider
++;
1976 case ISD::TokenFactor
:
1977 for (const SDValue
&Op
: CurNode
->op_values())
1978 AddToWorklist(i
, Op
.getNode(), CurOpNumber
);
1980 case ISD::LIFETIME_START
:
1981 case ISD::LIFETIME_END
:
1982 case ISD::CopyFromReg
:
1983 case ISD::CopyToReg
:
1984 AddToWorklist(i
, CurNode
->getOperand(0).getNode(), CurOpNumber
);
1987 if (auto *MemNode
= dyn_cast
<MemSDNode
>(CurNode
))
1988 AddToWorklist(i
, MemNode
->getChain().getNode(), CurOpNumber
);
1991 OpWorkCount
[CurOpNumber
]--;
1992 if (OpWorkCount
[CurOpNumber
] == 0)
1993 NumLeftToConsider
--;
1996 // If we've changed things around then replace token factor.
2000 // The entry token is the only possible outcome.
2001 Result
= DAG
.getEntryNode();
2004 SmallVector
<SDValue
, 8> PrunedOps
;
2006 for (const SDValue
&Op
: Ops
) {
2007 if (SeenChains
.count(Op
.getNode()) == 0)
2008 PrunedOps
.push_back(Op
);
2010 Result
= DAG
.getTokenFactor(SDLoc(N
), PrunedOps
);
2012 Result
= DAG
.getTokenFactor(SDLoc(N
), Ops
);
2020 /// MERGE_VALUES can always be eliminated.
2021 SDValue
DAGCombiner::visitMERGE_VALUES(SDNode
*N
) {
2022 WorklistRemover
DeadNodes(*this);
2023 // Replacing results may cause a different MERGE_VALUES to suddenly
2024 // be CSE'd with N, and carry its uses with it. Iterate until no
2025 // uses remain, to ensure that the node can be safely deleted.
2026 // First add the users of this node to the work list so that they
2027 // can be tried again once they have new operands.
2028 AddUsersToWorklist(N
);
2030 // Do as a single replacement to avoid rewalking use lists.
2031 SmallVector
<SDValue
, 8> Ops
;
2032 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
2033 Ops
.push_back(N
->getOperand(i
));
2034 DAG
.ReplaceAllUsesWith(N
, Ops
.data());
2035 } while (!N
->use_empty());
2036 deleteAndRecombine(N
);
2037 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
2040 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
2041 /// ConstantSDNode pointer else nullptr.
2042 static ConstantSDNode
*getAsNonOpaqueConstant(SDValue N
) {
2043 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(N
);
2044 return Const
!= nullptr && !Const
->isOpaque() ? Const
: nullptr;
2047 /// Return true if 'Use' is a load or a store that uses N as its base pointer
2048 /// and that N may be folded in the load / store addressing mode.
2049 static bool canFoldInAddressingMode(SDNode
*N
, SDNode
*Use
, SelectionDAG
&DAG
,
2050 const TargetLowering
&TLI
) {
2054 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Use
)) {
2055 if (LD
->isIndexed() || LD
->getBasePtr().getNode() != N
)
2057 VT
= LD
->getMemoryVT();
2058 AS
= LD
->getAddressSpace();
2059 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(Use
)) {
2060 if (ST
->isIndexed() || ST
->getBasePtr().getNode() != N
)
2062 VT
= ST
->getMemoryVT();
2063 AS
= ST
->getAddressSpace();
2064 } else if (MaskedLoadSDNode
*LD
= dyn_cast
<MaskedLoadSDNode
>(Use
)) {
2065 if (LD
->isIndexed() || LD
->getBasePtr().getNode() != N
)
2067 VT
= LD
->getMemoryVT();
2068 AS
= LD
->getAddressSpace();
2069 } else if (MaskedStoreSDNode
*ST
= dyn_cast
<MaskedStoreSDNode
>(Use
)) {
2070 if (ST
->isIndexed() || ST
->getBasePtr().getNode() != N
)
2072 VT
= ST
->getMemoryVT();
2073 AS
= ST
->getAddressSpace();
2077 TargetLowering::AddrMode AM
;
2078 if (N
->getOpcode() == ISD::ADD
) {
2079 AM
.HasBaseReg
= true;
2080 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2083 AM
.BaseOffs
= Offset
->getSExtValue();
2087 } else if (N
->getOpcode() == ISD::SUB
) {
2088 AM
.HasBaseReg
= true;
2089 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2092 AM
.BaseOffs
= -Offset
->getSExtValue();
2099 return TLI
.isLegalAddressingMode(DAG
.getDataLayout(), AM
,
2100 VT
.getTypeForEVT(*DAG
.getContext()), AS
);
2103 SDValue
DAGCombiner::foldBinOpIntoSelect(SDNode
*BO
) {
2104 assert(TLI
.isBinOp(BO
->getOpcode()) && BO
->getNumValues() == 1 &&
2105 "Unexpected binary operator");
2107 // Don't do this unless the old select is going away. We want to eliminate the
2108 // binary operator, not replace a binop with a select.
2109 // TODO: Handle ISD::SELECT_CC.
2110 unsigned SelOpNo
= 0;
2111 SDValue Sel
= BO
->getOperand(0);
2112 if (Sel
.getOpcode() != ISD::SELECT
|| !Sel
.hasOneUse()) {
2114 Sel
= BO
->getOperand(1);
2117 if (Sel
.getOpcode() != ISD::SELECT
|| !Sel
.hasOneUse())
2120 SDValue CT
= Sel
.getOperand(1);
2121 if (!isConstantOrConstantVector(CT
, true) &&
2122 !DAG
.isConstantFPBuildVectorOrConstantFP(CT
))
2125 SDValue CF
= Sel
.getOperand(2);
2126 if (!isConstantOrConstantVector(CF
, true) &&
2127 !DAG
.isConstantFPBuildVectorOrConstantFP(CF
))
2130 // Bail out if any constants are opaque because we can't constant fold those.
2131 // The exception is "and" and "or" with either 0 or -1 in which case we can
2132 // propagate non constant operands into select. I.e.:
2133 // and (select Cond, 0, -1), X --> select Cond, 0, X
2134 // or X, (select Cond, -1, 0) --> select Cond, -1, X
2135 auto BinOpcode
= BO
->getOpcode();
2136 bool CanFoldNonConst
=
2137 (BinOpcode
== ISD::AND
|| BinOpcode
== ISD::OR
) &&
2138 (isNullOrNullSplat(CT
) || isAllOnesOrAllOnesSplat(CT
)) &&
2139 (isNullOrNullSplat(CF
) || isAllOnesOrAllOnesSplat(CF
));
2141 SDValue CBO
= BO
->getOperand(SelOpNo
^ 1);
2142 if (!CanFoldNonConst
&&
2143 !isConstantOrConstantVector(CBO
, true) &&
2144 !DAG
.isConstantFPBuildVectorOrConstantFP(CBO
))
2147 EVT VT
= BO
->getValueType(0);
2149 // We have a select-of-constants followed by a binary operator with a
2150 // constant. Eliminate the binop by pulling the constant math into the select.
2151 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
2153 SDValue NewCT
= SelOpNo
? DAG
.getNode(BinOpcode
, DL
, VT
, CBO
, CT
)
2154 : DAG
.getNode(BinOpcode
, DL
, VT
, CT
, CBO
);
2155 if (!CanFoldNonConst
&& !NewCT
.isUndef() &&
2156 !isConstantOrConstantVector(NewCT
, true) &&
2157 !DAG
.isConstantFPBuildVectorOrConstantFP(NewCT
))
2160 SDValue NewCF
= SelOpNo
? DAG
.getNode(BinOpcode
, DL
, VT
, CBO
, CF
)
2161 : DAG
.getNode(BinOpcode
, DL
, VT
, CF
, CBO
);
2162 if (!CanFoldNonConst
&& !NewCF
.isUndef() &&
2163 !isConstantOrConstantVector(NewCF
, true) &&
2164 !DAG
.isConstantFPBuildVectorOrConstantFP(NewCF
))
2167 SDValue SelectOp
= DAG
.getSelect(DL
, VT
, Sel
.getOperand(0), NewCT
, NewCF
);
2168 SelectOp
->setFlags(BO
->getFlags());
2172 static SDValue
foldAddSubBoolOfMaskedVal(SDNode
*N
, SelectionDAG
&DAG
) {
2173 assert((N
->getOpcode() == ISD::ADD
|| N
->getOpcode() == ISD::SUB
) &&
2174 "Expecting add or sub");
2176 // Match a constant operand and a zext operand for the math instruction:
2179 bool IsAdd
= N
->getOpcode() == ISD::ADD
;
2180 SDValue C
= IsAdd
? N
->getOperand(1) : N
->getOperand(0);
2181 SDValue Z
= IsAdd
? N
->getOperand(0) : N
->getOperand(1);
2182 auto *CN
= dyn_cast
<ConstantSDNode
>(C
);
2183 if (!CN
|| Z
.getOpcode() != ISD::ZERO_EXTEND
)
2186 // Match the zext operand as a setcc of a boolean.
2187 if (Z
.getOperand(0).getOpcode() != ISD::SETCC
||
2188 Z
.getOperand(0).getValueType() != MVT::i1
)
2191 // Match the compare as: setcc (X & 1), 0, eq.
2192 SDValue SetCC
= Z
.getOperand(0);
2193 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
->getOperand(2))->get();
2194 if (CC
!= ISD::SETEQ
|| !isNullConstant(SetCC
.getOperand(1)) ||
2195 SetCC
.getOperand(0).getOpcode() != ISD::AND
||
2196 !isOneConstant(SetCC
.getOperand(0).getOperand(1)))
2199 // We are adding/subtracting a constant and an inverted low bit. Turn that
2200 // into a subtract/add of the low bit with incremented/decremented constant:
2201 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
2202 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
2203 EVT VT
= C
.getValueType();
2205 SDValue LowBit
= DAG
.getZExtOrTrunc(SetCC
.getOperand(0), DL
, VT
);
2206 SDValue C1
= IsAdd
? DAG
.getConstant(CN
->getAPIntValue() + 1, DL
, VT
) :
2207 DAG
.getConstant(CN
->getAPIntValue() - 1, DL
, VT
);
2208 return DAG
.getNode(IsAdd
? ISD::SUB
: ISD::ADD
, DL
, VT
, C1
, LowBit
);
2211 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
2212 /// a shift and add with a different constant.
2213 static SDValue
foldAddSubOfSignBit(SDNode
*N
, SelectionDAG
&DAG
) {
2214 assert((N
->getOpcode() == ISD::ADD
|| N
->getOpcode() == ISD::SUB
) &&
2215 "Expecting add or sub");
2217 // We need a constant operand for the add/sub, and the other operand is a
2218 // logical shift right: add (srl), C or sub C, (srl).
2219 bool IsAdd
= N
->getOpcode() == ISD::ADD
;
2220 SDValue ConstantOp
= IsAdd
? N
->getOperand(1) : N
->getOperand(0);
2221 SDValue ShiftOp
= IsAdd
? N
->getOperand(0) : N
->getOperand(1);
2222 if (!DAG
.isConstantIntBuildVectorOrConstantInt(ConstantOp
) ||
2223 ShiftOp
.getOpcode() != ISD::SRL
)
2226 // The shift must be of a 'not' value.
2227 SDValue Not
= ShiftOp
.getOperand(0);
2228 if (!Not
.hasOneUse() || !isBitwiseNot(Not
))
2231 // The shift must be moving the sign bit to the least-significant-bit.
2232 EVT VT
= ShiftOp
.getValueType();
2233 SDValue ShAmt
= ShiftOp
.getOperand(1);
2234 ConstantSDNode
*ShAmtC
= isConstOrConstSplat(ShAmt
);
2235 if (!ShAmtC
|| ShAmtC
->getAPIntValue() != (VT
.getScalarSizeInBits() - 1))
2238 // Eliminate the 'not' by adjusting the shift and add/sub constant:
2239 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
2240 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
2242 auto ShOpcode
= IsAdd
? ISD::SRA
: ISD::SRL
;
2243 SDValue NewShift
= DAG
.getNode(ShOpcode
, DL
, VT
, Not
.getOperand(0), ShAmt
);
2245 DAG
.FoldConstantArithmetic(IsAdd
? ISD::ADD
: ISD::SUB
, DL
, VT
,
2246 {ConstantOp
, DAG
.getConstant(1, DL
, VT
)}))
2247 return DAG
.getNode(ISD::ADD
, DL
, VT
, NewShift
, NewC
);
2251 /// Try to fold a node that behaves like an ADD (note that N isn't necessarily
2252 /// an ISD::ADD here, it could for example be an ISD::OR if we know that there
2253 /// are no common bits set in the operands).
2254 SDValue
DAGCombiner::visitADDLike(SDNode
*N
) {
2255 SDValue N0
= N
->getOperand(0);
2256 SDValue N1
= N
->getOperand(1);
2257 EVT VT
= N0
.getValueType();
2260 // fold (add x, undef) -> undef
2266 // fold (add c1, c2) -> c1+c2
2267 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::ADD
, DL
, VT
, {N0
, N1
}))
2270 // canonicalize constant to RHS
2271 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
2272 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2273 return DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, N0
);
2276 if (VT
.isVector()) {
2277 if (SDValue FoldedVOp
= SimplifyVBinOp(N
, DL
))
2280 // fold (add x, 0) -> x, vector edition
2281 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
2285 // fold (add x, 0) -> x
2286 if (isNullConstant(N1
))
2289 if (isConstantOrConstantVector(N1
, /* NoOpaque */ true)) {
2290 // fold ((A-c1)+c2) -> (A+(c2-c1))
2291 if (N0
.getOpcode() == ISD::SUB
&&
2292 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaque */ true)) {
2294 DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, {N1
, N0
.getOperand(1)});
2295 assert(Sub
&& "Constant folding failed");
2296 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), Sub
);
2299 // fold ((c1-A)+c2) -> (c1+c2)-A
2300 if (N0
.getOpcode() == ISD::SUB
&&
2301 isConstantOrConstantVector(N0
.getOperand(0), /* NoOpaque */ true)) {
2303 DAG
.FoldConstantArithmetic(ISD::ADD
, DL
, VT
, {N1
, N0
.getOperand(0)});
2304 assert(Add
&& "Constant folding failed");
2305 return DAG
.getNode(ISD::SUB
, DL
, VT
, Add
, N0
.getOperand(1));
2308 // add (sext i1 X), 1 -> zext (not i1 X)
2309 // We don't transform this pattern:
2310 // add (zext i1 X), -1 -> sext (not i1 X)
2311 // because most (?) targets generate better code for the zext form.
2312 if (N0
.getOpcode() == ISD::SIGN_EXTEND
&& N0
.hasOneUse() &&
2313 isOneOrOneSplat(N1
)) {
2314 SDValue X
= N0
.getOperand(0);
2315 if ((!LegalOperations
||
2316 (TLI
.isOperationLegal(ISD::XOR
, X
.getValueType()) &&
2317 TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
))) &&
2318 X
.getScalarValueSizeInBits() == 1) {
2319 SDValue Not
= DAG
.getNOT(DL
, X
, X
.getValueType());
2320 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Not
);
2324 // Fold (add (or x, c0), c1) -> (add x, (c0 + c1)) if (or x, c0) is
2325 // equivalent to (add x, c0).
2326 if (N0
.getOpcode() == ISD::OR
&&
2327 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaque */ true) &&
2328 DAG
.haveNoCommonBitsSet(N0
.getOperand(0), N0
.getOperand(1))) {
2329 if (SDValue Add0
= DAG
.FoldConstantArithmetic(ISD::ADD
, DL
, VT
,
2330 {N1
, N0
.getOperand(1)}))
2331 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), Add0
);
2335 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
2339 if (!reassociationCanBreakAddressingModePattern(ISD::ADD
, DL
, N0
, N1
)) {
2340 if (SDValue RADD
= reassociateOps(ISD::ADD
, DL
, N0
, N1
, N
->getFlags()))
2343 // Reassociate (add (or x, c), y) -> (add add(x, y), c)) if (or x, c) is
2344 // equivalent to (add x, c).
2345 auto ReassociateAddOr
= [&](SDValue N0
, SDValue N1
) {
2346 if (N0
.getOpcode() == ISD::OR
&& N0
.hasOneUse() &&
2347 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaque */ true) &&
2348 DAG
.haveNoCommonBitsSet(N0
.getOperand(0), N0
.getOperand(1))) {
2349 return DAG
.getNode(ISD::ADD
, DL
, VT
,
2350 DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, N0
.getOperand(0)),
2355 if (SDValue Add
= ReassociateAddOr(N0
, N1
))
2357 if (SDValue Add
= ReassociateAddOr(N1
, N0
))
2360 // fold ((0-A) + B) -> B-A
2361 if (N0
.getOpcode() == ISD::SUB
&& isNullOrNullSplat(N0
.getOperand(0)))
2362 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, N0
.getOperand(1));
2364 // fold (A + (0-B)) -> A-B
2365 if (N1
.getOpcode() == ISD::SUB
&& isNullOrNullSplat(N1
.getOperand(0)))
2366 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
.getOperand(1));
2368 // fold (A+(B-A)) -> B
2369 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(1))
2370 return N1
.getOperand(0);
2372 // fold ((B-A)+A) -> B
2373 if (N0
.getOpcode() == ISD::SUB
&& N1
== N0
.getOperand(1))
2374 return N0
.getOperand(0);
2376 // fold ((A-B)+(C-A)) -> (C-B)
2377 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
&&
2378 N0
.getOperand(0) == N1
.getOperand(1))
2379 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2382 // fold ((A-B)+(B-C)) -> (A-C)
2383 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
&&
2384 N0
.getOperand(1) == N1
.getOperand(0))
2385 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0),
2388 // fold (A+(B-(A+C))) to (B-C)
2389 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
2390 N0
== N1
.getOperand(1).getOperand(0))
2391 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2392 N1
.getOperand(1).getOperand(1));
2394 // fold (A+(B-(C+A))) to (B-C)
2395 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
2396 N0
== N1
.getOperand(1).getOperand(1))
2397 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2398 N1
.getOperand(1).getOperand(0));
2400 // fold (A+((B-A)+or-C)) to (B+or-C)
2401 if ((N1
.getOpcode() == ISD::SUB
|| N1
.getOpcode() == ISD::ADD
) &&
2402 N1
.getOperand(0).getOpcode() == ISD::SUB
&&
2403 N0
== N1
.getOperand(0).getOperand(1))
2404 return DAG
.getNode(N1
.getOpcode(), DL
, VT
, N1
.getOperand(0).getOperand(0),
2407 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
2408 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
) {
2409 SDValue N00
= N0
.getOperand(0);
2410 SDValue N01
= N0
.getOperand(1);
2411 SDValue N10
= N1
.getOperand(0);
2412 SDValue N11
= N1
.getOperand(1);
2414 if (isConstantOrConstantVector(N00
) || isConstantOrConstantVector(N10
))
2415 return DAG
.getNode(ISD::SUB
, DL
, VT
,
2416 DAG
.getNode(ISD::ADD
, SDLoc(N0
), VT
, N00
, N10
),
2417 DAG
.getNode(ISD::ADD
, SDLoc(N1
), VT
, N01
, N11
));
2420 // fold (add (umax X, C), -C) --> (usubsat X, C)
2421 if (N0
.getOpcode() == ISD::UMAX
&& hasOperation(ISD::USUBSAT
, VT
)) {
2422 auto MatchUSUBSAT
= [](ConstantSDNode
*Max
, ConstantSDNode
*Op
) {
2423 return (!Max
&& !Op
) ||
2424 (Max
&& Op
&& Max
->getAPIntValue() == (-Op
->getAPIntValue()));
2426 if (ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchUSUBSAT
,
2427 /*AllowUndefs*/ true))
2428 return DAG
.getNode(ISD::USUBSAT
, DL
, VT
, N0
.getOperand(0),
2432 if (SimplifyDemandedBits(SDValue(N
, 0)))
2433 return SDValue(N
, 0);
2435 if (isOneOrOneSplat(N1
)) {
2436 // fold (add (xor a, -1), 1) -> (sub 0, a)
2437 if (isBitwiseNot(N0
))
2438 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
),
2441 // fold (add (add (xor a, -1), b), 1) -> (sub b, a)
2442 if (N0
.getOpcode() == ISD::ADD
) {
2445 if (isBitwiseNot(N0
.getOperand(0))) {
2446 A
= N0
.getOperand(1);
2447 Xor
= N0
.getOperand(0);
2448 } else if (isBitwiseNot(N0
.getOperand(1))) {
2449 A
= N0
.getOperand(0);
2450 Xor
= N0
.getOperand(1);
2454 return DAG
.getNode(ISD::SUB
, DL
, VT
, A
, Xor
.getOperand(0));
2458 // add (add x, y), 1
2459 // And if the target does not like this form then turn into:
2460 // sub y, (xor x, -1)
2461 if (!TLI
.preferIncOfAddToSubOfNot(VT
) && N0
.hasOneUse() &&
2462 N0
.getOpcode() == ISD::ADD
) {
2463 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(0),
2464 DAG
.getAllOnesConstant(DL
, VT
));
2465 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(1), Not
);
2469 // (x - y) + -1 -> add (xor y, -1), x
2470 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
2471 isAllOnesOrAllOnesSplat(N1
)) {
2472 SDValue Xor
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(1), N1
);
2473 return DAG
.getNode(ISD::ADD
, DL
, VT
, Xor
, N0
.getOperand(0));
2476 if (SDValue Combined
= visitADDLikeCommutative(N0
, N1
, N
))
2479 if (SDValue Combined
= visitADDLikeCommutative(N1
, N0
, N
))
2485 SDValue
DAGCombiner::visitADD(SDNode
*N
) {
2486 SDValue N0
= N
->getOperand(0);
2487 SDValue N1
= N
->getOperand(1);
2488 EVT VT
= N0
.getValueType();
2491 if (SDValue Combined
= visitADDLike(N
))
2494 if (SDValue V
= foldAddSubBoolOfMaskedVal(N
, DAG
))
2497 if (SDValue V
= foldAddSubOfSignBit(N
, DAG
))
2500 // fold (a+b) -> (a|b) iff a and b share no bits.
2501 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::OR
, VT
)) &&
2502 DAG
.haveNoCommonBitsSet(N0
, N1
))
2503 return DAG
.getNode(ISD::OR
, DL
, VT
, N0
, N1
);
2505 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)).
2506 if (N0
.getOpcode() == ISD::VSCALE
&& N1
.getOpcode() == ISD::VSCALE
) {
2507 const APInt
&C0
= N0
->getConstantOperandAPInt(0);
2508 const APInt
&C1
= N1
->getConstantOperandAPInt(0);
2509 return DAG
.getVScale(DL
, VT
, C0
+ C1
);
2512 // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2)
2513 if ((N0
.getOpcode() == ISD::ADD
) &&
2514 (N0
.getOperand(1).getOpcode() == ISD::VSCALE
) &&
2515 (N1
.getOpcode() == ISD::VSCALE
)) {
2516 const APInt
&VS0
= N0
.getOperand(1)->getConstantOperandAPInt(0);
2517 const APInt
&VS1
= N1
->getConstantOperandAPInt(0);
2518 SDValue VS
= DAG
.getVScale(DL
, VT
, VS0
+ VS1
);
2519 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), VS
);
2522 // Fold (add step_vector(c1), step_vector(c2) to step_vector(c1+c2))
2523 if (N0
.getOpcode() == ISD::STEP_VECTOR
&&
2524 N1
.getOpcode() == ISD::STEP_VECTOR
) {
2525 const APInt
&C0
= N0
->getConstantOperandAPInt(0);
2526 const APInt
&C1
= N1
->getConstantOperandAPInt(0);
2527 APInt NewStep
= C0
+ C1
;
2528 return DAG
.getStepVector(DL
, VT
, NewStep
);
2531 // Fold a + step_vector(c1) + step_vector(c2) to a + step_vector(c1+c2)
2532 if ((N0
.getOpcode() == ISD::ADD
) &&
2533 (N0
.getOperand(1).getOpcode() == ISD::STEP_VECTOR
) &&
2534 (N1
.getOpcode() == ISD::STEP_VECTOR
)) {
2535 const APInt
&SV0
= N0
.getOperand(1)->getConstantOperandAPInt(0);
2536 const APInt
&SV1
= N1
->getConstantOperandAPInt(0);
2537 APInt NewStep
= SV0
+ SV1
;
2538 SDValue SV
= DAG
.getStepVector(DL
, VT
, NewStep
);
2539 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), SV
);
2545 SDValue
DAGCombiner::visitADDSAT(SDNode
*N
) {
2546 unsigned Opcode
= N
->getOpcode();
2547 SDValue N0
= N
->getOperand(0);
2548 SDValue N1
= N
->getOperand(1);
2549 EVT VT
= N0
.getValueType();
2552 // fold (add_sat x, undef) -> -1
2553 if (N0
.isUndef() || N1
.isUndef())
2554 return DAG
.getAllOnesConstant(DL
, VT
);
2556 // fold (add_sat c1, c2) -> c3
2557 if (SDValue C
= DAG
.FoldConstantArithmetic(Opcode
, DL
, VT
, {N0
, N1
}))
2560 // canonicalize constant to RHS
2561 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
2562 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2563 return DAG
.getNode(Opcode
, DL
, VT
, N1
, N0
);
2566 if (VT
.isVector()) {
2567 // TODO SimplifyVBinOp
2569 // fold (add_sat x, 0) -> x, vector edition
2570 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
2574 // fold (add_sat x, 0) -> x
2575 if (isNullConstant(N1
))
2578 // If it cannot overflow, transform into an add.
2579 if (Opcode
== ISD::UADDSAT
)
2580 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2581 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
);
2586 static SDValue
getAsCarry(const TargetLowering
&TLI
, SDValue V
) {
2587 bool Masked
= false;
2589 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
2591 if (V
.getOpcode() == ISD::TRUNCATE
|| V
.getOpcode() == ISD::ZERO_EXTEND
) {
2592 V
= V
.getOperand(0);
2596 if (V
.getOpcode() == ISD::AND
&& isOneConstant(V
.getOperand(1))) {
2598 V
= V
.getOperand(0);
2605 // If this is not a carry, return.
2606 if (V
.getResNo() != 1)
2609 if (V
.getOpcode() != ISD::ADDCARRY
&& V
.getOpcode() != ISD::SUBCARRY
&&
2610 V
.getOpcode() != ISD::UADDO
&& V
.getOpcode() != ISD::USUBO
)
2613 EVT VT
= V
.getNode()->getValueType(0);
2614 if (!TLI
.isOperationLegalOrCustom(V
.getOpcode(), VT
))
2617 // If the result is masked, then no matter what kind of bool it is we can
2618 // return. If it isn't, then we need to make sure the bool type is either 0 or
2619 // 1 and not other values.
2621 TLI
.getBooleanContents(V
.getValueType()) ==
2622 TargetLoweringBase::ZeroOrOneBooleanContent
)
2628 /// Given the operands of an add/sub operation, see if the 2nd operand is a
2629 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert
2630 /// the opcode and bypass the mask operation.
2631 static SDValue
foldAddSubMasked1(bool IsAdd
, SDValue N0
, SDValue N1
,
2632 SelectionDAG
&DAG
, const SDLoc
&DL
) {
2633 if (N1
.getOpcode() != ISD::AND
|| !isOneOrOneSplat(N1
->getOperand(1)))
2636 EVT VT
= N0
.getValueType();
2637 if (DAG
.ComputeNumSignBits(N1
.getOperand(0)) != VT
.getScalarSizeInBits())
2640 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X
2641 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X
2642 return DAG
.getNode(IsAdd
? ISD::SUB
: ISD::ADD
, DL
, VT
, N0
, N1
.getOperand(0));
2645 /// Helper for doing combines based on N0 and N1 being added to each other.
2646 SDValue
DAGCombiner::visitADDLikeCommutative(SDValue N0
, SDValue N1
,
2647 SDNode
*LocReference
) {
2648 EVT VT
= N0
.getValueType();
2649 SDLoc
DL(LocReference
);
2651 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
2652 if (N1
.getOpcode() == ISD::SHL
&& N1
.getOperand(0).getOpcode() == ISD::SUB
&&
2653 isNullOrNullSplat(N1
.getOperand(0).getOperand(0)))
2654 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
,
2655 DAG
.getNode(ISD::SHL
, DL
, VT
,
2656 N1
.getOperand(0).getOperand(1),
2659 if (SDValue V
= foldAddSubMasked1(true, N0
, N1
, DAG
, DL
))
2663 // add (add x, 1), y
2664 // And if the target does not like this form then turn into:
2665 // sub y, (xor x, -1)
2666 if (!TLI
.preferIncOfAddToSubOfNot(VT
) && N0
.hasOneUse() &&
2667 N0
.getOpcode() == ISD::ADD
&& isOneOrOneSplat(N0
.getOperand(1))) {
2668 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(0),
2669 DAG
.getAllOnesConstant(DL
, VT
));
2670 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, Not
);
2673 // Hoist one-use subtraction by non-opaque constant:
2674 // (x - C) + y -> (x + y) - C
2675 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
2676 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
2677 isConstantOrConstantVector(N0
.getOperand(1), /*NoOpaques=*/true)) {
2678 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), N1
);
2679 return DAG
.getNode(ISD::SUB
, DL
, VT
, Add
, N0
.getOperand(1));
2681 // Hoist one-use subtraction from non-opaque constant:
2682 // (C - x) + y -> (y - x) + C
2683 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
2684 isConstantOrConstantVector(N0
.getOperand(0), /*NoOpaques=*/true)) {
2685 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, N0
.getOperand(1));
2686 return DAG
.getNode(ISD::ADD
, DL
, VT
, Sub
, N0
.getOperand(0));
2689 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1'
2690 // rather than 'add 0/-1' (the zext should get folded).
2691 // add (sext i1 Y), X --> sub X, (zext i1 Y)
2692 if (N0
.getOpcode() == ISD::SIGN_EXTEND
&&
2693 N0
.getOperand(0).getScalarValueSizeInBits() == 1 &&
2694 TLI
.getBooleanContents(VT
) == TargetLowering::ZeroOrOneBooleanContent
) {
2695 SDValue ZExt
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
.getOperand(0));
2696 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, ZExt
);
2699 // add X, (sextinreg Y i1) -> sub X, (and Y 1)
2700 if (N1
.getOpcode() == ISD::SIGN_EXTEND_INREG
) {
2701 VTSDNode
*TN
= cast
<VTSDNode
>(N1
.getOperand(1));
2702 if (TN
->getVT() == MVT::i1
) {
2703 SDValue ZExt
= DAG
.getNode(ISD::AND
, DL
, VT
, N1
.getOperand(0),
2704 DAG
.getConstant(1, DL
, VT
));
2705 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, ZExt
);
2709 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2710 if (N1
.getOpcode() == ISD::ADDCARRY
&& isNullConstant(N1
.getOperand(1)) &&
2712 return DAG
.getNode(ISD::ADDCARRY
, DL
, N1
->getVTList(),
2713 N0
, N1
.getOperand(0), N1
.getOperand(2));
2715 // (add X, Carry) -> (addcarry X, 0, Carry)
2716 if (TLI
.isOperationLegalOrCustom(ISD::ADDCARRY
, VT
))
2717 if (SDValue Carry
= getAsCarry(TLI
, N1
))
2718 return DAG
.getNode(ISD::ADDCARRY
, DL
,
2719 DAG
.getVTList(VT
, Carry
.getValueType()), N0
,
2720 DAG
.getConstant(0, DL
, VT
), Carry
);
2725 SDValue
DAGCombiner::visitADDC(SDNode
*N
) {
2726 SDValue N0
= N
->getOperand(0);
2727 SDValue N1
= N
->getOperand(1);
2728 EVT VT
= N0
.getValueType();
2731 // If the flag result is dead, turn this into an ADD.
2732 if (!N
->hasAnyUseOfValue(1))
2733 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2734 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
2736 // canonicalize constant to RHS.
2737 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2738 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2740 return DAG
.getNode(ISD::ADDC
, DL
, N
->getVTList(), N1
, N0
);
2742 // fold (addc x, 0) -> x + no carry out
2743 if (isNullConstant(N1
))
2744 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
,
2747 // If it cannot overflow, transform into an add.
2748 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2749 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2750 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
2756 * Flips a boolean if it is cheaper to compute. If the Force parameters is set,
2757 * then the flip also occurs if computing the inverse is the same cost.
2758 * This function returns an empty SDValue in case it cannot flip the boolean
2759 * without increasing the cost of the computation. If you want to flip a boolean
2760 * no matter what, use DAG.getLogicalNOT.
2762 static SDValue
extractBooleanFlip(SDValue V
, SelectionDAG
&DAG
,
2763 const TargetLowering
&TLI
,
2765 if (Force
&& isa
<ConstantSDNode
>(V
))
2766 return DAG
.getLogicalNOT(SDLoc(V
), V
, V
.getValueType());
2768 if (V
.getOpcode() != ISD::XOR
)
2771 ConstantSDNode
*Const
= isConstOrConstSplat(V
.getOperand(1), false);
2775 EVT VT
= V
.getValueType();
2777 bool IsFlip
= false;
2778 switch(TLI
.getBooleanContents(VT
)) {
2779 case TargetLowering::ZeroOrOneBooleanContent
:
2780 IsFlip
= Const
->isOne();
2782 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
2783 IsFlip
= Const
->isAllOnes();
2785 case TargetLowering::UndefinedBooleanContent
:
2786 IsFlip
= (Const
->getAPIntValue() & 0x01) == 1;
2791 return V
.getOperand(0);
2793 return DAG
.getLogicalNOT(SDLoc(V
), V
, V
.getValueType());
2797 SDValue
DAGCombiner::visitADDO(SDNode
*N
) {
2798 SDValue N0
= N
->getOperand(0);
2799 SDValue N1
= N
->getOperand(1);
2800 EVT VT
= N0
.getValueType();
2801 bool IsSigned
= (ISD::SADDO
== N
->getOpcode());
2803 EVT CarryVT
= N
->getValueType(1);
2806 // If the flag result is dead, turn this into an ADD.
2807 if (!N
->hasAnyUseOfValue(1))
2808 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2809 DAG
.getUNDEF(CarryVT
));
2811 // canonicalize constant to RHS.
2812 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
2813 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2814 return DAG
.getNode(N
->getOpcode(), DL
, N
->getVTList(), N1
, N0
);
2816 // fold (addo x, 0) -> x + no carry out
2817 if (isNullOrNullSplat(N1
))
2818 return CombineTo(N
, N0
, DAG
.getConstant(0, DL
, CarryVT
));
2821 // If it cannot overflow, transform into an add.
2822 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2823 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2824 DAG
.getConstant(0, DL
, CarryVT
));
2826 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
2827 if (isBitwiseNot(N0
) && isOneOrOneSplat(N1
)) {
2828 SDValue Sub
= DAG
.getNode(ISD::USUBO
, DL
, N
->getVTList(),
2829 DAG
.getConstant(0, DL
, VT
), N0
.getOperand(0));
2831 N
, Sub
, DAG
.getLogicalNOT(DL
, Sub
.getValue(1), Sub
->getValueType(1)));
2834 if (SDValue Combined
= visitUADDOLike(N0
, N1
, N
))
2837 if (SDValue Combined
= visitUADDOLike(N1
, N0
, N
))
2844 SDValue
DAGCombiner::visitUADDOLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
2845 EVT VT
= N0
.getValueType();
2849 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2850 // If Y + 1 cannot overflow.
2851 if (N1
.getOpcode() == ISD::ADDCARRY
&& isNullConstant(N1
.getOperand(1))) {
2852 SDValue Y
= N1
.getOperand(0);
2853 SDValue One
= DAG
.getConstant(1, SDLoc(N
), Y
.getValueType());
2854 if (DAG
.computeOverflowKind(Y
, One
) == SelectionDAG::OFK_Never
)
2855 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(), N0
, Y
,
2859 // (uaddo X, Carry) -> (addcarry X, 0, Carry)
2860 if (TLI
.isOperationLegalOrCustom(ISD::ADDCARRY
, VT
))
2861 if (SDValue Carry
= getAsCarry(TLI
, N1
))
2862 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(), N0
,
2863 DAG
.getConstant(0, SDLoc(N
), VT
), Carry
);
2868 SDValue
DAGCombiner::visitADDE(SDNode
*N
) {
2869 SDValue N0
= N
->getOperand(0);
2870 SDValue N1
= N
->getOperand(1);
2871 SDValue CarryIn
= N
->getOperand(2);
2873 // canonicalize constant to RHS
2874 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2875 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2877 return DAG
.getNode(ISD::ADDE
, SDLoc(N
), N
->getVTList(),
2880 // fold (adde x, y, false) -> (addc x, y)
2881 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
2882 return DAG
.getNode(ISD::ADDC
, SDLoc(N
), N
->getVTList(), N0
, N1
);
2887 SDValue
DAGCombiner::visitADDCARRY(SDNode
*N
) {
2888 SDValue N0
= N
->getOperand(0);
2889 SDValue N1
= N
->getOperand(1);
2890 SDValue CarryIn
= N
->getOperand(2);
2893 // canonicalize constant to RHS
2894 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2895 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2897 return DAG
.getNode(ISD::ADDCARRY
, DL
, N
->getVTList(), N1
, N0
, CarryIn
);
2899 // fold (addcarry x, y, false) -> (uaddo x, y)
2900 if (isNullConstant(CarryIn
)) {
2901 if (!LegalOperations
||
2902 TLI
.isOperationLegalOrCustom(ISD::UADDO
, N
->getValueType(0)))
2903 return DAG
.getNode(ISD::UADDO
, DL
, N
->getVTList(), N0
, N1
);
2906 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
2907 if (isNullConstant(N0
) && isNullConstant(N1
)) {
2908 EVT VT
= N0
.getValueType();
2909 EVT CarryVT
= CarryIn
.getValueType();
2910 SDValue CarryExt
= DAG
.getBoolExtOrTrunc(CarryIn
, DL
, VT
, CarryVT
);
2911 AddToWorklist(CarryExt
.getNode());
2912 return CombineTo(N
, DAG
.getNode(ISD::AND
, DL
, VT
, CarryExt
,
2913 DAG
.getConstant(1, DL
, VT
)),
2914 DAG
.getConstant(0, DL
, CarryVT
));
2917 if (SDValue Combined
= visitADDCARRYLike(N0
, N1
, CarryIn
, N
))
2920 if (SDValue Combined
= visitADDCARRYLike(N1
, N0
, CarryIn
, N
))
2926 SDValue
DAGCombiner::visitSADDO_CARRY(SDNode
*N
) {
2927 SDValue N0
= N
->getOperand(0);
2928 SDValue N1
= N
->getOperand(1);
2929 SDValue CarryIn
= N
->getOperand(2);
2932 // canonicalize constant to RHS
2933 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2934 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2936 return DAG
.getNode(ISD::SADDO_CARRY
, DL
, N
->getVTList(), N1
, N0
, CarryIn
);
2938 // fold (saddo_carry x, y, false) -> (saddo x, y)
2939 if (isNullConstant(CarryIn
)) {
2940 if (!LegalOperations
||
2941 TLI
.isOperationLegalOrCustom(ISD::SADDO
, N
->getValueType(0)))
2942 return DAG
.getNode(ISD::SADDO
, DL
, N
->getVTList(), N0
, N1
);
2949 * If we are facing some sort of diamond carry propapagtion pattern try to
2950 * break it up to generate something like:
2951 * (addcarry X, 0, (addcarry A, B, Z):Carry)
2953 * The end result is usually an increase in operation required, but because the
2954 * carry is now linearized, other tranforms can kick in and optimize the DAG.
2956 * Patterns typically look something like
2961 * | (addcarry *, 0, Z)
2965 * (addcarry X, *, *)
2967 * But numerous variation exist. Our goal is to identify A, B, X and Z and
2968 * produce a combine with a single path for carry propagation.
2970 static SDValue
combineADDCARRYDiamond(DAGCombiner
&Combiner
, SelectionDAG
&DAG
,
2971 SDValue X
, SDValue Carry0
, SDValue Carry1
,
2973 if (Carry1
.getResNo() != 1 || Carry0
.getResNo() != 1)
2975 if (Carry1
.getOpcode() != ISD::UADDO
)
2981 * First look for a suitable Z. It will present itself in the form of
2982 * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true
2984 if (Carry0
.getOpcode() == ISD::ADDCARRY
&&
2985 isNullConstant(Carry0
.getOperand(1))) {
2986 Z
= Carry0
.getOperand(2);
2987 } else if (Carry0
.getOpcode() == ISD::UADDO
&&
2988 isOneConstant(Carry0
.getOperand(1))) {
2989 EVT VT
= Combiner
.getSetCCResultType(Carry0
.getValueType());
2990 Z
= DAG
.getConstant(1, SDLoc(Carry0
.getOperand(1)), VT
);
2992 // We couldn't find a suitable Z.
2997 auto cancelDiamond
= [&](SDValue A
,SDValue B
) {
2999 SDValue NewY
= DAG
.getNode(ISD::ADDCARRY
, DL
, Carry0
->getVTList(), A
, B
, Z
);
3000 Combiner
.AddToWorklist(NewY
.getNode());
3001 return DAG
.getNode(ISD::ADDCARRY
, DL
, N
->getVTList(), X
,
3002 DAG
.getConstant(0, DL
, X
.getValueType()),
3011 * (addcarry *, 0, Z)
3013 if (Carry0
.getOperand(0) == Carry1
.getValue(0)) {
3014 return cancelDiamond(Carry1
.getOperand(0), Carry1
.getOperand(1));
3018 * (addcarry A, 0, Z)
3024 if (Carry1
.getOperand(0) == Carry0
.getValue(0)) {
3025 return cancelDiamond(Carry0
.getOperand(0), Carry1
.getOperand(1));
3028 if (Carry1
.getOperand(1) == Carry0
.getValue(0)) {
3029 return cancelDiamond(Carry1
.getOperand(0), Carry0
.getOperand(0));
3035 // If we are facing some sort of diamond carry/borrow in/out pattern try to
3036 // match patterns like:
3038 // (uaddo A, B) CarryIn
3041 // PartialSum PartialCarryOutX /
3043 // | ____|____________/
3045 // (uaddo *, *) \________
3048 // | PartialCarryOutY |
3051 // AddCarrySum | ______/
3053 // CarryOut = (or *, *)
3055 // And generate ADDCARRY (or SUBCARRY) with two result values:
3057 // {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn)
3059 // Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with
3060 // a single path for carry/borrow out propagation:
3061 static SDValue
combineCarryDiamond(DAGCombiner
&Combiner
, SelectionDAG
&DAG
,
3062 const TargetLowering
&TLI
, SDValue Carry0
,
3063 SDValue Carry1
, SDNode
*N
) {
3064 if (Carry0
.getResNo() != 1 || Carry1
.getResNo() != 1)
3066 unsigned Opcode
= Carry0
.getOpcode();
3067 if (Opcode
!= Carry1
.getOpcode())
3069 if (Opcode
!= ISD::UADDO
&& Opcode
!= ISD::USUBO
)
3072 // Canonicalize the add/sub of A and B as Carry0 and the add/sub of the
3073 // carry/borrow in as Carry1. (The top and middle uaddo nodes respectively in
3074 // the above ASCII art.)
3075 if (Carry1
.getOperand(0) != Carry0
.getValue(0) &&
3076 Carry1
.getOperand(1) != Carry0
.getValue(0))
3077 std::swap(Carry0
, Carry1
);
3078 if (Carry1
.getOperand(0) != Carry0
.getValue(0) &&
3079 Carry1
.getOperand(1) != Carry0
.getValue(0))
3082 // The carry in value must be on the righthand side for subtraction.
3083 unsigned CarryInOperandNum
=
3084 Carry1
.getOperand(0) == Carry0
.getValue(0) ? 1 : 0;
3085 if (Opcode
== ISD::USUBO
&& CarryInOperandNum
!= 1)
3087 SDValue CarryIn
= Carry1
.getOperand(CarryInOperandNum
);
3089 unsigned NewOp
= Opcode
== ISD::UADDO
? ISD::ADDCARRY
: ISD::SUBCARRY
;
3090 if (!TLI
.isOperationLegalOrCustom(NewOp
, Carry0
.getValue(0).getValueType()))
3093 // Verify that the carry/borrow in is plausibly a carry/borrow bit.
3094 // TODO: make getAsCarry() aware of how partial carries are merged.
3095 if (CarryIn
.getOpcode() != ISD::ZERO_EXTEND
)
3097 CarryIn
= CarryIn
.getOperand(0);
3098 if (CarryIn
.getValueType() != MVT::i1
)
3103 DAG
.getNode(NewOp
, DL
, Carry1
->getVTList(), Carry0
.getOperand(0),
3104 Carry0
.getOperand(1), CarryIn
);
3106 // Please note that because we have proven that the result of the UADDO/USUBO
3107 // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can
3108 // therefore prove that if the first UADDO/USUBO overflows, the second
3109 // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the
3112 // 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry
3113 // 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow)
3115 // This is important because it means that OR and XOR can be used to merge
3116 // carry flags; and that AND can return a constant zero.
3118 // TODO: match other operations that can merge flags (ADD, etc)
3119 DAG
.ReplaceAllUsesOfValueWith(Carry1
.getValue(0), Merged
.getValue(0));
3120 if (N
->getOpcode() == ISD::AND
)
3121 return DAG
.getConstant(0, DL
, MVT::i1
);
3122 return Merged
.getValue(1);
3125 SDValue
DAGCombiner::visitADDCARRYLike(SDValue N0
, SDValue N1
, SDValue CarryIn
,
3127 // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry.
3128 if (isBitwiseNot(N0
))
3129 if (SDValue NotC
= extractBooleanFlip(CarryIn
, DAG
, TLI
, true)) {
3131 SDValue Sub
= DAG
.getNode(ISD::SUBCARRY
, DL
, N
->getVTList(), N1
,
3132 N0
.getOperand(0), NotC
);
3134 N
, Sub
, DAG
.getLogicalNOT(DL
, Sub
.getValue(1), Sub
->getValueType(1)));
3137 // Iff the flag result is dead:
3138 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry)
3139 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo
3140 // or the dependency between the instructions.
3141 if ((N0
.getOpcode() == ISD::ADD
||
3142 (N0
.getOpcode() == ISD::UADDO
&& N0
.getResNo() == 0 &&
3143 N0
.getValue(1) != CarryIn
)) &&
3144 isNullConstant(N1
) && !N
->hasAnyUseOfValue(1))
3145 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(),
3146 N0
.getOperand(0), N0
.getOperand(1), CarryIn
);
3149 * When one of the addcarry argument is itself a carry, we may be facing
3150 * a diamond carry propagation. In which case we try to transform the DAG
3151 * to ensure linear carry propagation if that is possible.
3153 if (auto Y
= getAsCarry(TLI
, N1
)) {
3154 // Because both are carries, Y and Z can be swapped.
3155 if (auto R
= combineADDCARRYDiamond(*this, DAG
, N0
, Y
, CarryIn
, N
))
3157 if (auto R
= combineADDCARRYDiamond(*this, DAG
, N0
, CarryIn
, Y
, N
))
3164 // Attempt to create a USUBSAT(LHS, RHS) node with DstVT, performing a
3165 // clamp/truncation if necessary.
3166 static SDValue
getTruncatedUSUBSAT(EVT DstVT
, EVT SrcVT
, SDValue LHS
,
3167 SDValue RHS
, SelectionDAG
&DAG
,
3169 assert(DstVT
.getScalarSizeInBits() <= SrcVT
.getScalarSizeInBits() &&
3170 "Illegal truncation");
3173 return DAG
.getNode(ISD::USUBSAT
, DL
, DstVT
, LHS
, RHS
);
3175 // If the LHS is zero-extended then we can perform the USUBSAT as DstVT by
3177 APInt UpperBits
= APInt::getBitsSetFrom(SrcVT
.getScalarSizeInBits(),
3178 DstVT
.getScalarSizeInBits());
3179 if (!DAG
.MaskedValueIsZero(LHS
, UpperBits
))
3183 DAG
.getConstant(APInt::getLowBitsSet(SrcVT
.getScalarSizeInBits(),
3184 DstVT
.getScalarSizeInBits()),
3186 RHS
= DAG
.getNode(ISD::UMIN
, DL
, SrcVT
, RHS
, SatLimit
);
3187 RHS
= DAG
.getNode(ISD::TRUNCATE
, DL
, DstVT
, RHS
);
3188 LHS
= DAG
.getNode(ISD::TRUNCATE
, DL
, DstVT
, LHS
);
3189 return DAG
.getNode(ISD::USUBSAT
, DL
, DstVT
, LHS
, RHS
);
3192 // Try to find umax(a,b) - b or a - umin(a,b) patterns that may be converted to
3193 // usubsat(a,b), optionally as a truncated type.
3194 SDValue
DAGCombiner::foldSubToUSubSat(EVT DstVT
, SDNode
*N
) {
3195 if (N
->getOpcode() != ISD::SUB
||
3196 !(!LegalOperations
|| hasOperation(ISD::USUBSAT
, DstVT
)))
3199 EVT SubVT
= N
->getValueType(0);
3200 SDValue Op0
= N
->getOperand(0);
3201 SDValue Op1
= N
->getOperand(1);
3203 // Try to find umax(a,b) - b or a - umin(a,b) patterns
3204 // they may be converted to usubsat(a,b).
3205 if (Op0
.getOpcode() == ISD::UMAX
&& Op0
.hasOneUse()) {
3206 SDValue MaxLHS
= Op0
.getOperand(0);
3207 SDValue MaxRHS
= Op0
.getOperand(1);
3209 return getTruncatedUSUBSAT(DstVT
, SubVT
, MaxRHS
, Op1
, DAG
, SDLoc(N
));
3211 return getTruncatedUSUBSAT(DstVT
, SubVT
, MaxLHS
, Op1
, DAG
, SDLoc(N
));
3214 if (Op1
.getOpcode() == ISD::UMIN
&& Op1
.hasOneUse()) {
3215 SDValue MinLHS
= Op1
.getOperand(0);
3216 SDValue MinRHS
= Op1
.getOperand(1);
3218 return getTruncatedUSUBSAT(DstVT
, SubVT
, Op0
, MinRHS
, DAG
, SDLoc(N
));
3220 return getTruncatedUSUBSAT(DstVT
, SubVT
, Op0
, MinLHS
, DAG
, SDLoc(N
));
3223 // sub(a,trunc(umin(zext(a),b))) -> usubsat(a,trunc(umin(b,SatLimit)))
3224 if (Op1
.getOpcode() == ISD::TRUNCATE
&&
3225 Op1
.getOperand(0).getOpcode() == ISD::UMIN
&&
3226 Op1
.getOperand(0).hasOneUse()) {
3227 SDValue MinLHS
= Op1
.getOperand(0).getOperand(0);
3228 SDValue MinRHS
= Op1
.getOperand(0).getOperand(1);
3229 if (MinLHS
.getOpcode() == ISD::ZERO_EXTEND
&& MinLHS
.getOperand(0) == Op0
)
3230 return getTruncatedUSUBSAT(DstVT
, MinLHS
.getValueType(), MinLHS
, MinRHS
,
3232 if (MinRHS
.getOpcode() == ISD::ZERO_EXTEND
&& MinRHS
.getOperand(0) == Op0
)
3233 return getTruncatedUSUBSAT(DstVT
, MinLHS
.getValueType(), MinRHS
, MinLHS
,
3240 // Since it may not be valid to emit a fold to zero for vector initializers
3241 // check if we can before folding.
3242 static SDValue
tryFoldToZero(const SDLoc
&DL
, const TargetLowering
&TLI
, EVT VT
,
3243 SelectionDAG
&DAG
, bool LegalOperations
) {
3245 return DAG
.getConstant(0, DL
, VT
);
3246 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
))
3247 return DAG
.getConstant(0, DL
, VT
);
3251 SDValue
DAGCombiner::visitSUB(SDNode
*N
) {
3252 SDValue N0
= N
->getOperand(0);
3253 SDValue N1
= N
->getOperand(1);
3254 EVT VT
= N0
.getValueType();
3257 // fold (sub x, x) -> 0
3258 // FIXME: Refactor this and xor and other similar operations together.
3260 return tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
3262 // fold (sub c1, c2) -> c3
3263 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, {N0
, N1
}))
3267 if (VT
.isVector()) {
3268 if (SDValue FoldedVOp
= SimplifyVBinOp(N
, DL
))
3271 // fold (sub x, 0) -> x, vector edition
3272 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
3276 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3279 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
3281 // fold (sub x, c) -> (add x, -c)
3283 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
,
3284 DAG
.getConstant(-N1C
->getAPIntValue(), DL
, VT
));
3287 if (isNullOrNullSplat(N0
)) {
3288 unsigned BitWidth
= VT
.getScalarSizeInBits();
3289 // Right-shifting everything out but the sign bit followed by negation is
3290 // the same as flipping arithmetic/logical shift type without the negation:
3291 // -(X >>u 31) -> (X >>s 31)
3292 // -(X >>s 31) -> (X >>u 31)
3293 if (N1
->getOpcode() == ISD::SRA
|| N1
->getOpcode() == ISD::SRL
) {
3294 ConstantSDNode
*ShiftAmt
= isConstOrConstSplat(N1
.getOperand(1));
3295 if (ShiftAmt
&& ShiftAmt
->getAPIntValue() == (BitWidth
- 1)) {
3296 auto NewSh
= N1
->getOpcode() == ISD::SRA
? ISD::SRL
: ISD::SRA
;
3297 if (!LegalOperations
|| TLI
.isOperationLegal(NewSh
, VT
))
3298 return DAG
.getNode(NewSh
, DL
, VT
, N1
.getOperand(0), N1
.getOperand(1));
3302 // 0 - X --> 0 if the sub is NUW.
3303 if (N
->getFlags().hasNoUnsignedWrap())
3306 if (DAG
.MaskedValueIsZero(N1
, ~APInt::getSignMask(BitWidth
))) {
3307 // N1 is either 0 or the minimum signed value. If the sub is NSW, then
3308 // N1 must be 0 because negating the minimum signed value is undefined.
3309 if (N
->getFlags().hasNoSignedWrap())
3312 // 0 - X --> X if X is 0 or the minimum signed value.
3316 // Convert 0 - abs(x).
3317 if (N1
->getOpcode() == ISD::ABS
&&
3318 !TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
))
3319 if (SDValue Result
= TLI
.expandABS(N1
.getNode(), DAG
, true))
3322 // Fold neg(splat(neg(x)) -> splat(x)
3323 if (VT
.isVector()) {
3324 SDValue N1S
= DAG
.getSplatValue(N1
, true);
3325 if (N1S
&& N1S
.getOpcode() == ISD::SUB
&&
3326 isNullConstant(N1S
.getOperand(0))) {
3327 if (VT
.isScalableVector())
3328 return DAG
.getSplatVector(VT
, DL
, N1S
.getOperand(1));
3329 return DAG
.getSplatBuildVector(VT
, DL
, N1S
.getOperand(1));
3334 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
3335 if (isAllOnesOrAllOnesSplat(N0
))
3336 return DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
);
3338 // fold (A - (0-B)) -> A+B
3339 if (N1
.getOpcode() == ISD::SUB
&& isNullOrNullSplat(N1
.getOperand(0)))
3340 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
.getOperand(1));
3342 // fold A-(A-B) -> B
3343 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(0))
3344 return N1
.getOperand(1);
3346 // fold (A+B)-A -> B
3347 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(0) == N1
)
3348 return N0
.getOperand(1);
3350 // fold (A+B)-B -> A
3351 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1) == N1
)
3352 return N0
.getOperand(0);
3354 // fold (A+C1)-C2 -> A+(C1-C2)
3355 if (N0
.getOpcode() == ISD::ADD
&&
3356 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3357 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaques */ true)) {
3359 DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, {N0
.getOperand(1), N1
});
3360 assert(NewC
&& "Constant folding failed");
3361 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), NewC
);
3364 // fold C2-(A+C1) -> (C2-C1)-A
3365 if (N1
.getOpcode() == ISD::ADD
) {
3366 SDValue N11
= N1
.getOperand(1);
3367 if (isConstantOrConstantVector(N0
, /* NoOpaques */ true) &&
3368 isConstantOrConstantVector(N11
, /* NoOpaques */ true)) {
3369 SDValue NewC
= DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, {N0
, N11
});
3370 assert(NewC
&& "Constant folding failed");
3371 return DAG
.getNode(ISD::SUB
, DL
, VT
, NewC
, N1
.getOperand(0));
3375 // fold (A-C1)-C2 -> A-(C1+C2)
3376 if (N0
.getOpcode() == ISD::SUB
&&
3377 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3378 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaques */ true)) {
3380 DAG
.FoldConstantArithmetic(ISD::ADD
, DL
, VT
, {N0
.getOperand(1), N1
});
3381 assert(NewC
&& "Constant folding failed");
3382 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), NewC
);
3385 // fold (c1-A)-c2 -> (c1-c2)-A
3386 if (N0
.getOpcode() == ISD::SUB
&&
3387 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3388 isConstantOrConstantVector(N0
.getOperand(0), /* NoOpaques */ true)) {
3390 DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, {N0
.getOperand(0), N1
});
3391 assert(NewC
&& "Constant folding failed");
3392 return DAG
.getNode(ISD::SUB
, DL
, VT
, NewC
, N0
.getOperand(1));
3395 // fold ((A+(B+or-C))-B) -> A+or-C
3396 if (N0
.getOpcode() == ISD::ADD
&&
3397 (N0
.getOperand(1).getOpcode() == ISD::SUB
||
3398 N0
.getOperand(1).getOpcode() == ISD::ADD
) &&
3399 N0
.getOperand(1).getOperand(0) == N1
)
3400 return DAG
.getNode(N0
.getOperand(1).getOpcode(), DL
, VT
, N0
.getOperand(0),
3401 N0
.getOperand(1).getOperand(1));
3403 // fold ((A+(C+B))-B) -> A+C
3404 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1).getOpcode() == ISD::ADD
&&
3405 N0
.getOperand(1).getOperand(1) == N1
)
3406 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0),
3407 N0
.getOperand(1).getOperand(0));
3409 // fold ((A-(B-C))-C) -> A-B
3410 if (N0
.getOpcode() == ISD::SUB
&& N0
.getOperand(1).getOpcode() == ISD::SUB
&&
3411 N0
.getOperand(1).getOperand(1) == N1
)
3412 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0),
3413 N0
.getOperand(1).getOperand(0));
3415 // fold (A-(B-C)) -> A+(C-B)
3416 if (N1
.getOpcode() == ISD::SUB
&& N1
.hasOneUse())
3417 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
,
3418 DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(1),
3421 // A - (A & B) -> A & (~B)
3422 if (N1
.getOpcode() == ISD::AND
) {
3423 SDValue A
= N1
.getOperand(0);
3424 SDValue B
= N1
.getOperand(1);
3428 (N1
.hasOneUse() || isConstantOrConstantVector(B
, /*NoOpaques=*/true))) {
3430 DAG
.getNode(ISD::XOR
, DL
, VT
, B
, DAG
.getAllOnesConstant(DL
, VT
));
3431 return DAG
.getNode(ISD::AND
, DL
, VT
, A
, InvB
);
3435 // fold (X - (-Y * Z)) -> (X + (Y * Z))
3436 if (N1
.getOpcode() == ISD::MUL
&& N1
.hasOneUse()) {
3437 if (N1
.getOperand(0).getOpcode() == ISD::SUB
&&
3438 isNullOrNullSplat(N1
.getOperand(0).getOperand(0))) {
3439 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
,
3440 N1
.getOperand(0).getOperand(1),
3442 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Mul
);
3444 if (N1
.getOperand(1).getOpcode() == ISD::SUB
&&
3445 isNullOrNullSplat(N1
.getOperand(1).getOperand(0))) {
3446 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
,
3448 N1
.getOperand(1).getOperand(1));
3449 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Mul
);
3453 // If either operand of a sub is undef, the result is undef
3459 if (SDValue V
= foldAddSubBoolOfMaskedVal(N
, DAG
))
3462 if (SDValue V
= foldAddSubOfSignBit(N
, DAG
))
3465 if (SDValue V
= foldAddSubMasked1(false, N0
, N1
, DAG
, SDLoc(N
)))
3468 if (SDValue V
= foldSubToUSubSat(VT
, N
))
3471 // (x - y) - 1 -> add (xor y, -1), x
3472 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&& isOneOrOneSplat(N1
)) {
3473 SDValue Xor
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(1),
3474 DAG
.getAllOnesConstant(DL
, VT
));
3475 return DAG
.getNode(ISD::ADD
, DL
, VT
, Xor
, N0
.getOperand(0));
3479 // sub y, (xor x, -1)
3480 // And if the target does not like this form then turn into:
3481 // add (add x, y), 1
3482 if (TLI
.preferIncOfAddToSubOfNot(VT
) && N1
.hasOneUse() && isBitwiseNot(N1
)) {
3483 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
.getOperand(0));
3484 return DAG
.getNode(ISD::ADD
, DL
, VT
, Add
, DAG
.getConstant(1, DL
, VT
));
3487 // Hoist one-use addition by non-opaque constant:
3488 // (x + C) - y -> (x - y) + C
3489 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::ADD
&&
3490 isConstantOrConstantVector(N0
.getOperand(1), /*NoOpaques=*/true)) {
3491 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), N1
);
3492 return DAG
.getNode(ISD::ADD
, DL
, VT
, Sub
, N0
.getOperand(1));
3494 // y - (x + C) -> (y - x) - C
3495 if (N1
.hasOneUse() && N1
.getOpcode() == ISD::ADD
&&
3496 isConstantOrConstantVector(N1
.getOperand(1), /*NoOpaques=*/true)) {
3497 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
.getOperand(0));
3498 return DAG
.getNode(ISD::SUB
, DL
, VT
, Sub
, N1
.getOperand(1));
3500 // (x - C) - y -> (x - y) - C
3501 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
3502 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
3503 isConstantOrConstantVector(N0
.getOperand(1), /*NoOpaques=*/true)) {
3504 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), N1
);
3505 return DAG
.getNode(ISD::SUB
, DL
, VT
, Sub
, N0
.getOperand(1));
3507 // (C - x) - y -> C - (x + y)
3508 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
3509 isConstantOrConstantVector(N0
.getOperand(0), /*NoOpaques=*/true)) {
3510 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(1), N1
);
3511 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), Add
);
3514 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1'
3515 // rather than 'sub 0/1' (the sext should get folded).
3516 // sub X, (zext i1 Y) --> add X, (sext i1 Y)
3517 if (N1
.getOpcode() == ISD::ZERO_EXTEND
&&
3518 N1
.getOperand(0).getScalarValueSizeInBits() == 1 &&
3519 TLI
.getBooleanContents(VT
) ==
3520 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
3521 SDValue SExt
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, N1
.getOperand(0));
3522 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, SExt
);
3525 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X)
3526 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
)) {
3527 if (N0
.getOpcode() == ISD::XOR
&& N1
.getOpcode() == ISD::SRA
) {
3528 SDValue X0
= N0
.getOperand(0), X1
= N0
.getOperand(1);
3529 SDValue S0
= N1
.getOperand(0);
3530 if ((X0
== S0
&& X1
== N1
) || (X0
== N1
&& X1
== S0
))
3531 if (ConstantSDNode
*C
= isConstOrConstSplat(N1
.getOperand(1)))
3532 if (C
->getAPIntValue() == (VT
.getScalarSizeInBits() - 1))
3533 return DAG
.getNode(ISD::ABS
, SDLoc(N
), VT
, S0
);
3537 // If the relocation model supports it, consider symbol offsets.
3538 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N0
))
3539 if (!LegalOperations
&& TLI
.isOffsetFoldingLegal(GA
)) {
3540 // fold (sub Sym, c) -> Sym-c
3541 if (N1C
&& GA
->getOpcode() == ISD::GlobalAddress
)
3542 return DAG
.getGlobalAddress(GA
->getGlobal(), SDLoc(N1C
), VT
,
3544 (uint64_t)N1C
->getSExtValue());
3545 // fold (sub Sym+c1, Sym+c2) -> c1-c2
3546 if (GlobalAddressSDNode
*GB
= dyn_cast
<GlobalAddressSDNode
>(N1
))
3547 if (GA
->getGlobal() == GB
->getGlobal())
3548 return DAG
.getConstant((uint64_t)GA
->getOffset() - GB
->getOffset(),
3552 // sub X, (sextinreg Y i1) -> add X, (and Y 1)
3553 if (N1
.getOpcode() == ISD::SIGN_EXTEND_INREG
) {
3554 VTSDNode
*TN
= cast
<VTSDNode
>(N1
.getOperand(1));
3555 if (TN
->getVT() == MVT::i1
) {
3556 SDValue ZExt
= DAG
.getNode(ISD::AND
, DL
, VT
, N1
.getOperand(0),
3557 DAG
.getConstant(1, DL
, VT
));
3558 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, ZExt
);
3562 // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C))
3563 if (N1
.getOpcode() == ISD::VSCALE
) {
3564 const APInt
&IntVal
= N1
.getConstantOperandAPInt(0);
3565 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, DAG
.getVScale(DL
, VT
, -IntVal
));
3568 // canonicalize (sub X, step_vector(C)) to (add X, step_vector(-C))
3569 if (N1
.getOpcode() == ISD::STEP_VECTOR
&& N1
.hasOneUse()) {
3570 APInt NewStep
= -N1
.getConstantOperandAPInt(0);
3571 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
,
3572 DAG
.getStepVector(DL
, VT
, NewStep
));
3575 // Prefer an add for more folding potential and possibly better codegen:
3576 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
3577 if (!LegalOperations
&& N1
.getOpcode() == ISD::SRL
&& N1
.hasOneUse()) {
3578 SDValue ShAmt
= N1
.getOperand(1);
3579 ConstantSDNode
*ShAmtC
= isConstOrConstSplat(ShAmt
);
3581 ShAmtC
->getAPIntValue() == (N1
.getScalarValueSizeInBits() - 1)) {
3582 SDValue SRA
= DAG
.getNode(ISD::SRA
, DL
, VT
, N1
.getOperand(0), ShAmt
);
3583 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, SRA
);
3587 if (TLI
.isOperationLegalOrCustom(ISD::ADDCARRY
, VT
)) {
3588 // (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry)
3589 if (SDValue Carry
= getAsCarry(TLI
, N0
)) {
3591 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
3592 SDValue NegX
= DAG
.getNode(ISD::SUB
, DL
, VT
, Zero
, X
);
3593 return DAG
.getNode(ISD::ADDCARRY
, DL
,
3594 DAG
.getVTList(VT
, Carry
.getValueType()), NegX
, Zero
,
3602 SDValue
DAGCombiner::visitSUBSAT(SDNode
*N
) {
3603 SDValue N0
= N
->getOperand(0);
3604 SDValue N1
= N
->getOperand(1);
3605 EVT VT
= N0
.getValueType();
3608 // fold (sub_sat x, undef) -> 0
3609 if (N0
.isUndef() || N1
.isUndef())
3610 return DAG
.getConstant(0, DL
, VT
);
3612 // fold (sub_sat x, x) -> 0
3614 return DAG
.getConstant(0, DL
, VT
);
3616 // fold (sub_sat c1, c2) -> c3
3617 if (SDValue C
= DAG
.FoldConstantArithmetic(N
->getOpcode(), DL
, VT
, {N0
, N1
}))
3621 if (VT
.isVector()) {
3622 // TODO SimplifyVBinOp
3624 // fold (sub_sat x, 0) -> x, vector edition
3625 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
3629 // fold (sub_sat x, 0) -> x
3630 if (isNullConstant(N1
))
3636 SDValue
DAGCombiner::visitSUBC(SDNode
*N
) {
3637 SDValue N0
= N
->getOperand(0);
3638 SDValue N1
= N
->getOperand(1);
3639 EVT VT
= N0
.getValueType();
3642 // If the flag result is dead, turn this into an SUB.
3643 if (!N
->hasAnyUseOfValue(1))
3644 return CombineTo(N
, DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
),
3645 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3647 // fold (subc x, x) -> 0 + no borrow
3649 return CombineTo(N
, DAG
.getConstant(0, DL
, VT
),
3650 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3652 // fold (subc x, 0) -> x + no borrow
3653 if (isNullConstant(N1
))
3654 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3656 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3657 if (isAllOnesConstant(N0
))
3658 return CombineTo(N
, DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
),
3659 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3664 SDValue
DAGCombiner::visitSUBO(SDNode
*N
) {
3665 SDValue N0
= N
->getOperand(0);
3666 SDValue N1
= N
->getOperand(1);
3667 EVT VT
= N0
.getValueType();
3668 bool IsSigned
= (ISD::SSUBO
== N
->getOpcode());
3670 EVT CarryVT
= N
->getValueType(1);
3673 // If the flag result is dead, turn this into an SUB.
3674 if (!N
->hasAnyUseOfValue(1))
3675 return CombineTo(N
, DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
),
3676 DAG
.getUNDEF(CarryVT
));
3678 // fold (subo x, x) -> 0 + no borrow
3680 return CombineTo(N
, DAG
.getConstant(0, DL
, VT
),
3681 DAG
.getConstant(0, DL
, CarryVT
));
3683 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
3685 // fold (subox, c) -> (addo x, -c)
3686 if (IsSigned
&& N1C
&& !N1C
->getAPIntValue().isMinSignedValue()) {
3687 return DAG
.getNode(ISD::SADDO
, DL
, N
->getVTList(), N0
,
3688 DAG
.getConstant(-N1C
->getAPIntValue(), DL
, VT
));
3691 // fold (subo x, 0) -> x + no borrow
3692 if (isNullOrNullSplat(N1
))
3693 return CombineTo(N
, N0
, DAG
.getConstant(0, DL
, CarryVT
));
3695 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3696 if (!IsSigned
&& isAllOnesOrAllOnesSplat(N0
))
3697 return CombineTo(N
, DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
),
3698 DAG
.getConstant(0, DL
, CarryVT
));
3703 SDValue
DAGCombiner::visitSUBE(SDNode
*N
) {
3704 SDValue N0
= N
->getOperand(0);
3705 SDValue N1
= N
->getOperand(1);
3706 SDValue CarryIn
= N
->getOperand(2);
3708 // fold (sube x, y, false) -> (subc x, y)
3709 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
3710 return DAG
.getNode(ISD::SUBC
, SDLoc(N
), N
->getVTList(), N0
, N1
);
3715 SDValue
DAGCombiner::visitSUBCARRY(SDNode
*N
) {
3716 SDValue N0
= N
->getOperand(0);
3717 SDValue N1
= N
->getOperand(1);
3718 SDValue CarryIn
= N
->getOperand(2);
3720 // fold (subcarry x, y, false) -> (usubo x, y)
3721 if (isNullConstant(CarryIn
)) {
3722 if (!LegalOperations
||
3723 TLI
.isOperationLegalOrCustom(ISD::USUBO
, N
->getValueType(0)))
3724 return DAG
.getNode(ISD::USUBO
, SDLoc(N
), N
->getVTList(), N0
, N1
);
3730 SDValue
DAGCombiner::visitSSUBO_CARRY(SDNode
*N
) {
3731 SDValue N0
= N
->getOperand(0);
3732 SDValue N1
= N
->getOperand(1);
3733 SDValue CarryIn
= N
->getOperand(2);
3735 // fold (ssubo_carry x, y, false) -> (ssubo x, y)
3736 if (isNullConstant(CarryIn
)) {
3737 if (!LegalOperations
||
3738 TLI
.isOperationLegalOrCustom(ISD::SSUBO
, N
->getValueType(0)))
3739 return DAG
.getNode(ISD::SSUBO
, SDLoc(N
), N
->getVTList(), N0
, N1
);
3745 // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and
3747 SDValue
DAGCombiner::visitMULFIX(SDNode
*N
) {
3748 SDValue N0
= N
->getOperand(0);
3749 SDValue N1
= N
->getOperand(1);
3750 SDValue Scale
= N
->getOperand(2);
3751 EVT VT
= N0
.getValueType();
3753 // fold (mulfix x, undef, scale) -> 0
3754 if (N0
.isUndef() || N1
.isUndef())
3755 return DAG
.getConstant(0, SDLoc(N
), VT
);
3757 // Canonicalize constant to RHS (vector doesn't have to splat)
3758 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
3759 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
3760 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N1
, N0
, Scale
);
3762 // fold (mulfix x, 0, scale) -> 0
3763 if (isNullConstant(N1
))
3764 return DAG
.getConstant(0, SDLoc(N
), VT
);
3769 SDValue
DAGCombiner::visitMUL(SDNode
*N
) {
3770 SDValue N0
= N
->getOperand(0);
3771 SDValue N1
= N
->getOperand(1);
3772 EVT VT
= N0
.getValueType();
3774 // fold (mul x, undef) -> 0
3775 if (N0
.isUndef() || N1
.isUndef())
3776 return DAG
.getConstant(0, SDLoc(N
), VT
);
3778 // fold (mul c1, c2) -> c1*c2
3779 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::MUL
, SDLoc(N
), VT
, {N0
, N1
}))
3782 // canonicalize constant to RHS (vector doesn't have to splat)
3783 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
3784 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
3785 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N1
, N0
);
3787 bool N1IsConst
= false;
3788 bool N1IsOpaqueConst
= false;
3792 if (VT
.isVector()) {
3793 if (SDValue FoldedVOp
= SimplifyVBinOp(N
, SDLoc(N
)))
3796 N1IsConst
= ISD::isConstantSplatVector(N1
.getNode(), ConstValue1
);
3797 assert((!N1IsConst
||
3798 ConstValue1
.getBitWidth() == VT
.getScalarSizeInBits()) &&
3799 "Splat APInt should be element width");
3801 N1IsConst
= isa
<ConstantSDNode
>(N1
);
3803 ConstValue1
= cast
<ConstantSDNode
>(N1
)->getAPIntValue();
3804 N1IsOpaqueConst
= cast
<ConstantSDNode
>(N1
)->isOpaque();
3808 // fold (mul x, 0) -> 0
3809 if (N1IsConst
&& ConstValue1
.isZero())
3812 // fold (mul x, 1) -> x
3813 if (N1IsConst
&& ConstValue1
.isOne())
3816 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3819 // fold (mul x, -1) -> 0-x
3820 if (N1IsConst
&& ConstValue1
.isAllOnes()) {
3822 return DAG
.getNode(ISD::SUB
, DL
, VT
,
3823 DAG
.getConstant(0, DL
, VT
), N0
);
3826 // fold (mul x, (1 << c)) -> x << c
3827 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
3828 DAG
.isKnownToBeAPowerOfTwo(N1
) &&
3829 (!VT
.isVector() || Level
<= AfterLegalizeVectorOps
)) {
3831 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
3832 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
3833 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ShiftVT
);
3834 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
, Trunc
);
3837 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
3838 if (N1IsConst
&& !N1IsOpaqueConst
&& ConstValue1
.isNegatedPowerOf2()) {
3839 unsigned Log2Val
= (-ConstValue1
).logBase2();
3841 // FIXME: If the input is something that is easily negated (e.g. a
3842 // single-use add), we should put the negate there.
3843 return DAG
.getNode(ISD::SUB
, DL
, VT
,
3844 DAG
.getConstant(0, DL
, VT
),
3845 DAG
.getNode(ISD::SHL
, DL
, VT
, N0
,
3846 DAG
.getConstant(Log2Val
, DL
,
3847 getShiftAmountTy(N0
.getValueType()))));
3850 // Try to transform:
3851 // (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub.
3852 // mul x, (2^N + 1) --> add (shl x, N), x
3853 // mul x, (2^N - 1) --> sub (shl x, N), x
3854 // Examples: x * 33 --> (x << 5) + x
3855 // x * 15 --> (x << 4) - x
3856 // x * -33 --> -((x << 5) + x)
3857 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
3858 // (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub.
3859 // mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M))
3860 // mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M))
3861 // Examples: x * 0x8800 --> (x << 15) + (x << 11)
3862 // x * 0xf800 --> (x << 16) - (x << 11)
3863 // x * -0x8800 --> -((x << 15) + (x << 11))
3864 // x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16)
3865 if (N1IsConst
&& TLI
.decomposeMulByConstant(*DAG
.getContext(), VT
, N1
)) {
3866 // TODO: We could handle more general decomposition of any constant by
3867 // having the target set a limit on number of ops and making a
3868 // callback to determine that sequence (similar to sqrt expansion).
3869 unsigned MathOp
= ISD::DELETED_NODE
;
3870 APInt MulC
= ConstValue1
.abs();
3871 // The constant `2` should be treated as (2^0 + 1).
3872 unsigned TZeros
= MulC
== 2 ? 0 : MulC
.countTrailingZeros();
3873 MulC
.lshrInPlace(TZeros
);
3874 if ((MulC
- 1).isPowerOf2())
3876 else if ((MulC
+ 1).isPowerOf2())
3879 if (MathOp
!= ISD::DELETED_NODE
) {
3881 MathOp
== ISD::ADD
? (MulC
- 1).logBase2() : (MulC
+ 1).logBase2();
3883 assert(ShAmt
< VT
.getScalarSizeInBits() &&
3884 "multiply-by-constant generated out of bounds shift");
3887 DAG
.getNode(ISD::SHL
, DL
, VT
, N0
, DAG
.getConstant(ShAmt
, DL
, VT
));
3889 TZeros
? DAG
.getNode(MathOp
, DL
, VT
, Shl
,
3890 DAG
.getNode(ISD::SHL
, DL
, VT
, N0
,
3891 DAG
.getConstant(TZeros
, DL
, VT
)))
3892 : DAG
.getNode(MathOp
, DL
, VT
, Shl
, N0
);
3893 if (ConstValue1
.isNegative())
3894 R
= DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), R
);
3899 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
3900 if (N0
.getOpcode() == ISD::SHL
&&
3901 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3902 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaques */ true)) {
3903 SDValue C3
= DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N1
, N0
.getOperand(1));
3904 if (isConstantOrConstantVector(C3
))
3905 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N0
.getOperand(0), C3
);
3908 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
3913 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
3914 if (N0
.getOpcode() == ISD::SHL
&&
3915 isConstantOrConstantVector(N0
.getOperand(1)) &&
3916 N0
.getNode()->hasOneUse()) {
3918 } else if (N1
.getOpcode() == ISD::SHL
&&
3919 isConstantOrConstantVector(N1
.getOperand(1)) &&
3920 N1
.getNode()->hasOneUse()) {
3925 SDValue Mul
= DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, Sh
.getOperand(0), Y
);
3926 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, Mul
, Sh
.getOperand(1));
3930 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
3931 if (DAG
.isConstantIntBuildVectorOrConstantInt(N1
) &&
3932 N0
.getOpcode() == ISD::ADD
&&
3933 DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1)) &&
3934 isMulAddWithConstProfitable(N
, N0
, N1
))
3935 return DAG
.getNode(ISD::ADD
, SDLoc(N
), VT
,
3936 DAG
.getNode(ISD::MUL
, SDLoc(N0
), VT
,
3937 N0
.getOperand(0), N1
),
3938 DAG
.getNode(ISD::MUL
, SDLoc(N1
), VT
,
3939 N0
.getOperand(1), N1
));
3941 // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)).
3942 if (N0
.getOpcode() == ISD::VSCALE
)
3943 if (ConstantSDNode
*NC1
= isConstOrConstSplat(N1
)) {
3944 const APInt
&C0
= N0
.getConstantOperandAPInt(0);
3945 const APInt
&C1
= NC1
->getAPIntValue();
3946 return DAG
.getVScale(SDLoc(N
), VT
, C0
* C1
);
3949 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
3951 if (N0
.getOpcode() == ISD::STEP_VECTOR
)
3952 if (ISD::isConstantSplatVector(N1
.getNode(), MulVal
)) {
3953 const APInt
&C0
= N0
.getConstantOperandAPInt(0);
3954 APInt NewStep
= C0
* MulVal
;
3955 return DAG
.getStepVector(SDLoc(N
), VT
, NewStep
);
3958 // Fold ((mul x, 0/undef) -> 0,
3959 // (mul x, 1) -> x) -> x)
3961 // We can replace vectors with '0' and '1' factors with a clearing mask.
3962 if (VT
.isFixedLengthVector()) {
3963 unsigned NumElts
= VT
.getVectorNumElements();
3964 SmallBitVector ClearMask
;
3965 ClearMask
.reserve(NumElts
);
3966 auto IsClearMask
= [&ClearMask
](ConstantSDNode
*V
) {
3967 if (!V
|| V
->isZero()) {
3968 ClearMask
.push_back(true);
3971 ClearMask
.push_back(false);
3974 if ((!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::AND
, VT
)) &&
3975 ISD::matchUnaryPredicate(N1
, IsClearMask
, /*AllowUndefs*/ true)) {
3976 assert(N1
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown constant vector");
3978 EVT LegalSVT
= N1
.getOperand(0).getValueType();
3979 SDValue Zero
= DAG
.getConstant(0, DL
, LegalSVT
);
3980 SDValue AllOnes
= DAG
.getAllOnesConstant(DL
, LegalSVT
);
3981 SmallVector
<SDValue
, 16> Mask(NumElts
, AllOnes
);
3982 for (unsigned I
= 0; I
!= NumElts
; ++I
)
3985 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, DAG
.getBuildVector(VT
, DL
, Mask
));
3990 if (SDValue RMUL
= reassociateOps(ISD::MUL
, SDLoc(N
), N0
, N1
, N
->getFlags()))
3996 /// Return true if divmod libcall is available.
3997 static bool isDivRemLibcallAvailable(SDNode
*Node
, bool isSigned
,
3998 const TargetLowering
&TLI
) {
4000 EVT NodeType
= Node
->getValueType(0);
4001 if (!NodeType
.isSimple())
4003 switch (NodeType
.getSimpleVT().SimpleTy
) {
4004 default: return false; // No libcall for vector types.
4005 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
4006 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
4007 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
4008 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
4009 case MVT::i128
: LC
= isSigned
? RTLIB::SDIVREM_I128
:RTLIB::UDIVREM_I128
; break;
4012 return TLI
.getLibcallName(LC
) != nullptr;
4015 /// Issue divrem if both quotient and remainder are needed.
4016 SDValue
DAGCombiner::useDivRem(SDNode
*Node
) {
4017 if (Node
->use_empty())
4018 return SDValue(); // This is a dead node, leave it alone.
4020 unsigned Opcode
= Node
->getOpcode();
4021 bool isSigned
= (Opcode
== ISD::SDIV
) || (Opcode
== ISD::SREM
);
4022 unsigned DivRemOpc
= isSigned
? ISD::SDIVREM
: ISD::UDIVREM
;
4024 // DivMod lib calls can still work on non-legal types if using lib-calls.
4025 EVT VT
= Node
->getValueType(0);
4026 if (VT
.isVector() || !VT
.isInteger())
4029 if (!TLI
.isTypeLegal(VT
) && !TLI
.isOperationCustom(DivRemOpc
, VT
))
4032 // If DIVREM is going to get expanded into a libcall,
4033 // but there is no libcall available, then don't combine.
4034 if (!TLI
.isOperationLegalOrCustom(DivRemOpc
, VT
) &&
4035 !isDivRemLibcallAvailable(Node
, isSigned
, TLI
))
4038 // If div is legal, it's better to do the normal expansion
4039 unsigned OtherOpcode
= 0;
4040 if ((Opcode
== ISD::SDIV
) || (Opcode
== ISD::UDIV
)) {
4041 OtherOpcode
= isSigned
? ISD::SREM
: ISD::UREM
;
4042 if (TLI
.isOperationLegalOrCustom(Opcode
, VT
))
4045 OtherOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
4046 if (TLI
.isOperationLegalOrCustom(OtherOpcode
, VT
))
4050 SDValue Op0
= Node
->getOperand(0);
4051 SDValue Op1
= Node
->getOperand(1);
4053 for (SDNode
*User
: Op0
.getNode()->uses()) {
4054 if (User
== Node
|| User
->getOpcode() == ISD::DELETED_NODE
||
4057 // Convert the other matching node(s), too;
4058 // otherwise, the DIVREM may get target-legalized into something
4059 // target-specific that we won't be able to recognize.
4060 unsigned UserOpc
= User
->getOpcode();
4061 if ((UserOpc
== Opcode
|| UserOpc
== OtherOpcode
|| UserOpc
== DivRemOpc
) &&
4062 User
->getOperand(0) == Op0
&&
4063 User
->getOperand(1) == Op1
) {
4065 if (UserOpc
== OtherOpcode
) {
4066 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
4067 combined
= DAG
.getNode(DivRemOpc
, SDLoc(Node
), VTs
, Op0
, Op1
);
4068 } else if (UserOpc
== DivRemOpc
) {
4069 combined
= SDValue(User
, 0);
4071 assert(UserOpc
== Opcode
);
4075 if (UserOpc
== ISD::SDIV
|| UserOpc
== ISD::UDIV
)
4076 CombineTo(User
, combined
);
4077 else if (UserOpc
== ISD::SREM
|| UserOpc
== ISD::UREM
)
4078 CombineTo(User
, combined
.getValue(1));
4084 static SDValue
simplifyDivRem(SDNode
*N
, SelectionDAG
&DAG
) {
4085 SDValue N0
= N
->getOperand(0);
4086 SDValue N1
= N
->getOperand(1);
4087 EVT VT
= N
->getValueType(0);
4090 unsigned Opc
= N
->getOpcode();
4091 bool IsDiv
= (ISD::SDIV
== Opc
) || (ISD::UDIV
== Opc
);
4092 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4094 // X / undef -> undef
4095 // X % undef -> undef
4098 // NOTE: This includes vectors where any divisor element is zero/undef.
4099 if (DAG
.isUndef(Opc
, {N0
, N1
}))
4100 return DAG
.getUNDEF(VT
);
4105 return DAG
.getConstant(0, DL
, VT
);
4109 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
4110 if (N0C
&& N0C
->isZero())
4116 return DAG
.getConstant(IsDiv
? 1 : 0, DL
, VT
);
4120 // If this is a boolean op (single-bit element type), we can't have
4121 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
4122 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume
4124 if ((N1C
&& N1C
->isOne()) || (VT
.getScalarType() == MVT::i1
))
4125 return IsDiv
? N0
: DAG
.getConstant(0, DL
, VT
);
4130 SDValue
DAGCombiner::visitSDIV(SDNode
*N
) {
4131 SDValue N0
= N
->getOperand(0);
4132 SDValue N1
= N
->getOperand(1);
4133 EVT VT
= N
->getValueType(0);
4134 EVT CCVT
= getSetCCResultType(VT
);
4137 // fold (sdiv c1, c2) -> c1/c2
4138 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::SDIV
, DL
, VT
, {N0
, N1
}))
4143 if (SDValue FoldedVOp
= SimplifyVBinOp(N
, DL
))
4146 // fold (sdiv X, -1) -> 0-X
4147 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4148 if (N1C
&& N1C
->isAllOnes())
4149 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), N0
);
4151 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
4152 if (N1C
&& N1C
->getAPIntValue().isMinSignedValue())
4153 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
4154 DAG
.getConstant(1, DL
, VT
),
4155 DAG
.getConstant(0, DL
, VT
));
4157 if (SDValue V
= simplifyDivRem(N
, DAG
))
4160 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
4163 // If we know the sign bits of both operands are zero, strength reduce to a
4164 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
4165 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
4166 return DAG
.getNode(ISD::UDIV
, DL
, N1
.getValueType(), N0
, N1
);
4168 if (SDValue V
= visitSDIVLike(N0
, N1
, N
)) {
4169 // If the corresponding remainder node exists, update its users with
4170 // (Dividend - (Quotient * Divisor).
4171 if (SDNode
*RemNode
= DAG
.getNodeIfExists(ISD::SREM
, N
->getVTList(),
4173 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
, V
, N1
);
4174 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, Mul
);
4175 AddToWorklist(Mul
.getNode());
4176 AddToWorklist(Sub
.getNode());
4177 CombineTo(RemNode
, Sub
);
4182 // sdiv, srem -> sdivrem
4183 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
4184 // true. Otherwise, we break the simplification logic in visitREM().
4185 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4186 if (!N1C
|| TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
4187 if (SDValue DivRem
= useDivRem(N
))
4193 SDValue
DAGCombiner::visitSDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
4195 EVT VT
= N
->getValueType(0);
4196 EVT CCVT
= getSetCCResultType(VT
);
4197 unsigned BitWidth
= VT
.getScalarSizeInBits();
4199 // Helper for determining whether a value is a power-2 constant scalar or a
4200 // vector of such elements.
4201 auto IsPowerOfTwo
= [](ConstantSDNode
*C
) {
4202 if (C
->isZero() || C
->isOpaque())
4204 if (C
->getAPIntValue().isPowerOf2())
4206 if (C
->getAPIntValue().isNegatedPowerOf2())
4211 // fold (sdiv X, pow2) -> simple ops after legalize
4212 // FIXME: We check for the exact bit here because the generic lowering gives
4213 // better results in that case. The target-specific lowering should learn how
4214 // to handle exact sdivs efficiently.
4215 if (!N
->getFlags().hasExact() && ISD::matchUnaryPredicate(N1
, IsPowerOfTwo
)) {
4216 // Target-specific implementation of sdiv x, pow2.
4217 if (SDValue Res
= BuildSDIVPow2(N
))
4220 // Create constants that are functions of the shift amount value.
4221 EVT ShiftAmtTy
= getShiftAmountTy(N0
.getValueType());
4222 SDValue Bits
= DAG
.getConstant(BitWidth
, DL
, ShiftAmtTy
);
4223 SDValue C1
= DAG
.getNode(ISD::CTTZ
, DL
, VT
, N1
);
4224 C1
= DAG
.getZExtOrTrunc(C1
, DL
, ShiftAmtTy
);
4225 SDValue Inexact
= DAG
.getNode(ISD::SUB
, DL
, ShiftAmtTy
, Bits
, C1
);
4226 if (!isConstantOrConstantVector(Inexact
))
4229 // Splat the sign bit into the register
4230 SDValue Sign
= DAG
.getNode(ISD::SRA
, DL
, VT
, N0
,
4231 DAG
.getConstant(BitWidth
- 1, DL
, ShiftAmtTy
));
4232 AddToWorklist(Sign
.getNode());
4234 // Add (N0 < 0) ? abs2 - 1 : 0;
4235 SDValue Srl
= DAG
.getNode(ISD::SRL
, DL
, VT
, Sign
, Inexact
);
4236 AddToWorklist(Srl
.getNode());
4237 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Srl
);
4238 AddToWorklist(Add
.getNode());
4239 SDValue Sra
= DAG
.getNode(ISD::SRA
, DL
, VT
, Add
, C1
);
4240 AddToWorklist(Sra
.getNode());
4242 // Special case: (sdiv X, 1) -> X
4243 // Special Case: (sdiv X, -1) -> 0-X
4244 SDValue One
= DAG
.getConstant(1, DL
, VT
);
4245 SDValue AllOnes
= DAG
.getAllOnesConstant(DL
, VT
);
4246 SDValue IsOne
= DAG
.getSetCC(DL
, CCVT
, N1
, One
, ISD::SETEQ
);
4247 SDValue IsAllOnes
= DAG
.getSetCC(DL
, CCVT
, N1
, AllOnes
, ISD::SETEQ
);
4248 SDValue IsOneOrAllOnes
= DAG
.getNode(ISD::OR
, DL
, CCVT
, IsOne
, IsAllOnes
);
4249 Sra
= DAG
.getSelect(DL
, VT
, IsOneOrAllOnes
, N0
, Sra
);
4251 // If dividing by a positive value, we're done. Otherwise, the result must
4253 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
4254 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, Zero
, Sra
);
4256 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
4257 SDValue IsNeg
= DAG
.getSetCC(DL
, CCVT
, N1
, Zero
, ISD::SETLT
);
4258 SDValue Res
= DAG
.getSelect(DL
, VT
, IsNeg
, Sub
, Sra
);
4262 // If integer divide is expensive and we satisfy the requirements, emit an
4263 // alternate sequence. Targets may check function attributes for size/speed
4265 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4266 if (isConstantOrConstantVector(N1
) &&
4267 !TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
4268 if (SDValue Op
= BuildSDIV(N
))
4274 SDValue
DAGCombiner::visitUDIV(SDNode
*N
) {
4275 SDValue N0
= N
->getOperand(0);
4276 SDValue N1
= N
->getOperand(1);
4277 EVT VT
= N
->getValueType(0);
4278 EVT CCVT
= getSetCCResultType(VT
);
4281 // fold (udiv c1, c2) -> c1/c2
4282 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::UDIV
, DL
, VT
, {N0
, N1
}))
4287 if (SDValue FoldedVOp
= SimplifyVBinOp(N
, DL
))
4290 // fold (udiv X, -1) -> select(X == -1, 1, 0)
4291 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4292 if (N1C
&& N1C
->isAllOnes())
4293 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
4294 DAG
.getConstant(1, DL
, VT
),
4295 DAG
.getConstant(0, DL
, VT
));
4297 if (SDValue V
= simplifyDivRem(N
, DAG
))
4300 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
4303 if (SDValue V
= visitUDIVLike(N0
, N1
, N
)) {
4304 // If the corresponding remainder node exists, update its users with
4305 // (Dividend - (Quotient * Divisor).
4306 if (SDNode
*RemNode
= DAG
.getNodeIfExists(ISD::UREM
, N
->getVTList(),
4308 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
, V
, N1
);
4309 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, Mul
);
4310 AddToWorklist(Mul
.getNode());
4311 AddToWorklist(Sub
.getNode());
4312 CombineTo(RemNode
, Sub
);
4317 // sdiv, srem -> sdivrem
4318 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
4319 // true. Otherwise, we break the simplification logic in visitREM().
4320 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4321 if (!N1C
|| TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
4322 if (SDValue DivRem
= useDivRem(N
))
4328 SDValue
DAGCombiner::visitUDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
4330 EVT VT
= N
->getValueType(0);
4332 // fold (udiv x, (1 << c)) -> x >>u c
4333 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
4334 DAG
.isKnownToBeAPowerOfTwo(N1
)) {
4335 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
4336 AddToWorklist(LogBase2
.getNode());
4338 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
4339 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ShiftVT
);
4340 AddToWorklist(Trunc
.getNode());
4341 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Trunc
);
4344 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
4345 if (N1
.getOpcode() == ISD::SHL
) {
4346 SDValue N10
= N1
.getOperand(0);
4347 if (isConstantOrConstantVector(N10
, /*NoOpaques*/ true) &&
4348 DAG
.isKnownToBeAPowerOfTwo(N10
)) {
4349 SDValue LogBase2
= BuildLogBase2(N10
, DL
);
4350 AddToWorklist(LogBase2
.getNode());
4352 EVT ADDVT
= N1
.getOperand(1).getValueType();
4353 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ADDVT
);
4354 AddToWorklist(Trunc
.getNode());
4355 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, ADDVT
, N1
.getOperand(1), Trunc
);
4356 AddToWorklist(Add
.getNode());
4357 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Add
);
4361 // fold (udiv x, c) -> alternate
4362 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4363 if (isConstantOrConstantVector(N1
) &&
4364 !TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
4365 if (SDValue Op
= BuildUDIV(N
))
4371 // handles ISD::SREM and ISD::UREM
4372 SDValue
DAGCombiner::visitREM(SDNode
*N
) {
4373 unsigned Opcode
= N
->getOpcode();
4374 SDValue N0
= N
->getOperand(0);
4375 SDValue N1
= N
->getOperand(1);
4376 EVT VT
= N
->getValueType(0);
4377 EVT CCVT
= getSetCCResultType(VT
);
4379 bool isSigned
= (Opcode
== ISD::SREM
);
4382 // fold (rem c1, c2) -> c1%c2
4383 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4384 if (SDValue C
= DAG
.FoldConstantArithmetic(Opcode
, DL
, VT
, {N0
, N1
}))
4387 // fold (urem X, -1) -> select(X == -1, 0, x)
4388 if (!isSigned
&& N1C
&& N1C
->isAllOnes())
4389 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
4390 DAG
.getConstant(0, DL
, VT
), N0
);
4392 if (SDValue V
= simplifyDivRem(N
, DAG
))
4395 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
4399 // If we know the sign bits of both operands are zero, strength reduce to a
4400 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
4401 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
4402 return DAG
.getNode(ISD::UREM
, DL
, VT
, N0
, N1
);
4404 if (DAG
.isKnownToBeAPowerOfTwo(N1
)) {
4405 // fold (urem x, pow2) -> (and x, pow2-1)
4406 SDValue NegOne
= DAG
.getAllOnesConstant(DL
, VT
);
4407 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, NegOne
);
4408 AddToWorklist(Add
.getNode());
4409 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, Add
);
4411 if (N1
.getOpcode() == ISD::SHL
&&
4412 DAG
.isKnownToBeAPowerOfTwo(N1
.getOperand(0))) {
4413 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
4414 SDValue NegOne
= DAG
.getAllOnesConstant(DL
, VT
);
4415 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, NegOne
);
4416 AddToWorklist(Add
.getNode());
4417 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, Add
);
4421 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4423 // If X/C can be simplified by the division-by-constant logic, lower
4424 // X%C to the equivalent of X-X/C*C.
4425 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
4426 // speculative DIV must not cause a DIVREM conversion. We guard against this
4427 // by skipping the simplification if isIntDivCheap(). When div is not cheap,
4428 // combine will not return a DIVREM. Regardless, checking cheapness here
4429 // makes sense since the simplification results in fatter code.
4430 if (DAG
.isKnownNeverZero(N1
) && !TLI
.isIntDivCheap(VT
, Attr
)) {
4431 SDValue OptimizedDiv
=
4432 isSigned
? visitSDIVLike(N0
, N1
, N
) : visitUDIVLike(N0
, N1
, N
);
4433 if (OptimizedDiv
.getNode() && OptimizedDiv
.getNode() != N
) {
4434 // If the equivalent Div node also exists, update its users.
4435 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
4436 if (SDNode
*DivNode
= DAG
.getNodeIfExists(DivOpcode
, N
->getVTList(),
4438 CombineTo(DivNode
, OptimizedDiv
);
4439 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
, OptimizedDiv
, N1
);
4440 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, Mul
);
4441 AddToWorklist(OptimizedDiv
.getNode());
4442 AddToWorklist(Mul
.getNode());
4447 // sdiv, srem -> sdivrem
4448 if (SDValue DivRem
= useDivRem(N
))
4449 return DivRem
.getValue(1);
4454 SDValue
DAGCombiner::visitMULHS(SDNode
*N
) {
4455 SDValue N0
= N
->getOperand(0);
4456 SDValue N1
= N
->getOperand(1);
4457 EVT VT
= N
->getValueType(0);
4460 // fold (mulhs c1, c2)
4461 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::MULHS
, DL
, VT
, {N0
, N1
}))
4464 // canonicalize constant to RHS.
4465 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
4466 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
4467 return DAG
.getNode(ISD::MULHS
, DL
, N
->getVTList(), N1
, N0
);
4469 if (VT
.isVector()) {
4470 if (SDValue FoldedVOp
= SimplifyVBinOp(N
, DL
))
4473 // fold (mulhs x, 0) -> 0
4474 // do not return N0/N1, because undef node may exist.
4475 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()) ||
4476 ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
4477 return DAG
.getConstant(0, DL
, VT
);
4480 // fold (mulhs x, 0) -> 0
4481 if (isNullConstant(N1
))
4483 // fold (mulhs x, 1) -> (sra x, size(x)-1)
4484 if (isOneConstant(N1
))
4485 return DAG
.getNode(ISD::SRA
, DL
, N0
.getValueType(), N0
,
4486 DAG
.getConstant(N0
.getScalarValueSizeInBits() - 1, DL
,
4487 getShiftAmountTy(N0
.getValueType())));
4489 // fold (mulhs x, undef) -> 0
4490 if (N0
.isUndef() || N1
.isUndef())
4491 return DAG
.getConstant(0, DL
, VT
);
4493 // If the type twice as wide is legal, transform the mulhs to a wider multiply
4495 if (!TLI
.isOperationLegalOrCustom(ISD::MULHS
, VT
) && VT
.isSimple() &&
4497 MVT Simple
= VT
.getSimpleVT();
4498 unsigned SimpleSize
= Simple
.getSizeInBits();
4499 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4500 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4501 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N0
);
4502 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N1
);
4503 N1
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, N0
, N1
);
4504 N1
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, N1
,
4505 DAG
.getConstant(SimpleSize
, DL
,
4506 getShiftAmountTy(N1
.getValueType())));
4507 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N1
);
4514 SDValue
DAGCombiner::visitMULHU(SDNode
*N
) {
4515 SDValue N0
= N
->getOperand(0);
4516 SDValue N1
= N
->getOperand(1);
4517 EVT VT
= N
->getValueType(0);
4520 // fold (mulhu c1, c2)
4521 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::MULHU
, DL
, VT
, {N0
, N1
}))
4524 // canonicalize constant to RHS.
4525 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
4526 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
4527 return DAG
.getNode(ISD::MULHU
, DL
, N
->getVTList(), N1
, N0
);
4529 if (VT
.isVector()) {
4530 if (SDValue FoldedVOp
= SimplifyVBinOp(N
, DL
))
4533 // fold (mulhu x, 0) -> 0
4534 // do not return N0/N1, because undef node may exist.
4535 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()) ||
4536 ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
4537 return DAG
.getConstant(0, DL
, VT
);
4540 // fold (mulhu x, 0) -> 0
4541 if (isNullConstant(N1
))
4543 // fold (mulhu x, 1) -> 0
4544 if (isOneConstant(N1
))
4545 return DAG
.getConstant(0, DL
, N0
.getValueType());
4546 // fold (mulhu x, undef) -> 0
4547 if (N0
.isUndef() || N1
.isUndef())
4548 return DAG
.getConstant(0, DL
, VT
);
4550 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
4551 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
4552 DAG
.isKnownToBeAPowerOfTwo(N1
) && hasOperation(ISD::SRL
, VT
)) {
4553 unsigned NumEltBits
= VT
.getScalarSizeInBits();
4554 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
4555 SDValue SRLAmt
= DAG
.getNode(
4556 ISD::SUB
, DL
, VT
, DAG
.getConstant(NumEltBits
, DL
, VT
), LogBase2
);
4557 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
4558 SDValue Trunc
= DAG
.getZExtOrTrunc(SRLAmt
, DL
, ShiftVT
);
4559 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Trunc
);
4562 // If the type twice as wide is legal, transform the mulhu to a wider multiply
4564 if (!TLI
.isOperationLegalOrCustom(ISD::MULHU
, VT
) && VT
.isSimple() &&
4566 MVT Simple
= VT
.getSimpleVT();
4567 unsigned SimpleSize
= Simple
.getSizeInBits();
4568 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4569 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4570 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N0
);
4571 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N1
);
4572 N1
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, N0
, N1
);
4573 N1
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, N1
,
4574 DAG
.getConstant(SimpleSize
, DL
,
4575 getShiftAmountTy(N1
.getValueType())));
4576 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N1
);
4580 // Simplify the operands using demanded-bits information.
4581 // We don't have demanded bits support for MULHU so this just enables constant
4582 // folding based on known bits.
4583 if (SimplifyDemandedBits(SDValue(N
, 0)))
4584 return SDValue(N
, 0);
4589 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp
4590 /// give the opcodes for the two computations that are being performed. Return
4591 /// true if a simplification was made.
4592 SDValue
DAGCombiner::SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
4594 // If the high half is not needed, just compute the low half.
4595 bool HiExists
= N
->hasAnyUseOfValue(1);
4596 if (!HiExists
&& (!LegalOperations
||
4597 TLI
.isOperationLegalOrCustom(LoOp
, N
->getValueType(0)))) {
4598 SDValue Res
= DAG
.getNode(LoOp
, SDLoc(N
), N
->getValueType(0), N
->ops());
4599 return CombineTo(N
, Res
, Res
);
4602 // If the low half is not needed, just compute the high half.
4603 bool LoExists
= N
->hasAnyUseOfValue(0);
4604 if (!LoExists
&& (!LegalOperations
||
4605 TLI
.isOperationLegalOrCustom(HiOp
, N
->getValueType(1)))) {
4606 SDValue Res
= DAG
.getNode(HiOp
, SDLoc(N
), N
->getValueType(1), N
->ops());
4607 return CombineTo(N
, Res
, Res
);
4610 // If both halves are used, return as it is.
4611 if (LoExists
&& HiExists
)
4614 // If the two computed results can be simplified separately, separate them.
4616 SDValue Lo
= DAG
.getNode(LoOp
, SDLoc(N
), N
->getValueType(0), N
->ops());
4617 AddToWorklist(Lo
.getNode());
4618 SDValue LoOpt
= combine(Lo
.getNode());
4619 if (LoOpt
.getNode() && LoOpt
.getNode() != Lo
.getNode() &&
4620 (!LegalOperations
||
4621 TLI
.isOperationLegalOrCustom(LoOpt
.getOpcode(), LoOpt
.getValueType())))
4622 return CombineTo(N
, LoOpt
, LoOpt
);
4626 SDValue Hi
= DAG
.getNode(HiOp
, SDLoc(N
), N
->getValueType(1), N
->ops());
4627 AddToWorklist(Hi
.getNode());
4628 SDValue HiOpt
= combine(Hi
.getNode());
4629 if (HiOpt
.getNode() && HiOpt
!= Hi
&&
4630 (!LegalOperations
||
4631 TLI
.isOperationLegalOrCustom(HiOpt
.getOpcode(), HiOpt
.getValueType())))
4632 return CombineTo(N
, HiOpt
, HiOpt
);
4638 SDValue
DAGCombiner::visitSMUL_LOHI(SDNode
*N
) {
4639 if (SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHS
))
4642 EVT VT
= N
->getValueType(0);
4645 // If the type is twice as wide is legal, transform the mulhu to a wider
4646 // multiply plus a shift.
4647 if (VT
.isSimple() && !VT
.isVector()) {
4648 MVT Simple
= VT
.getSimpleVT();
4649 unsigned SimpleSize
= Simple
.getSizeInBits();
4650 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4651 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4652 SDValue Lo
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N
->getOperand(0));
4653 SDValue Hi
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N
->getOperand(1));
4654 Lo
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, Lo
, Hi
);
4655 // Compute the high part as N1.
4656 Hi
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, Lo
,
4657 DAG
.getConstant(SimpleSize
, DL
,
4658 getShiftAmountTy(Lo
.getValueType())));
4659 Hi
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Hi
);
4660 // Compute the low part as N0.
4661 Lo
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Lo
);
4662 return CombineTo(N
, Lo
, Hi
);
4669 SDValue
DAGCombiner::visitUMUL_LOHI(SDNode
*N
) {
4670 if (SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHU
))
4673 EVT VT
= N
->getValueType(0);
4676 // (umul_lohi N0, 0) -> (0, 0)
4677 if (isNullConstant(N
->getOperand(1))) {
4678 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
4679 return CombineTo(N
, Zero
, Zero
);
4682 // (umul_lohi N0, 1) -> (N0, 0)
4683 if (isOneConstant(N
->getOperand(1))) {
4684 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
4685 return CombineTo(N
, N
->getOperand(0), Zero
);
4688 // If the type is twice as wide is legal, transform the mulhu to a wider
4689 // multiply plus a shift.
4690 if (VT
.isSimple() && !VT
.isVector()) {
4691 MVT Simple
= VT
.getSimpleVT();
4692 unsigned SimpleSize
= Simple
.getSizeInBits();
4693 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4694 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4695 SDValue Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N
->getOperand(0));
4696 SDValue Hi
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N
->getOperand(1));
4697 Lo
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, Lo
, Hi
);
4698 // Compute the high part as N1.
4699 Hi
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, Lo
,
4700 DAG
.getConstant(SimpleSize
, DL
,
4701 getShiftAmountTy(Lo
.getValueType())));
4702 Hi
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Hi
);
4703 // Compute the low part as N0.
4704 Lo
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Lo
);
4705 return CombineTo(N
, Lo
, Hi
);
4712 SDValue
DAGCombiner::visitMULO(SDNode
*N
) {
4713 SDValue N0
= N
->getOperand(0);
4714 SDValue N1
= N
->getOperand(1);
4715 EVT VT
= N0
.getValueType();
4716 bool IsSigned
= (ISD::SMULO
== N
->getOpcode());
4718 EVT CarryVT
= N
->getValueType(1);
4721 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
4722 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4724 // fold operation with constant operands.
4725 // TODO: Move this to FoldConstantArithmetic when it supports nodes with
4726 // multiple results.
4730 IsSigned
? N0C
->getAPIntValue().smul_ov(N1C
->getAPIntValue(), Overflow
)
4731 : N0C
->getAPIntValue().umul_ov(N1C
->getAPIntValue(), Overflow
);
4732 return CombineTo(N
, DAG
.getConstant(Result
, DL
, VT
),
4733 DAG
.getBoolConstant(Overflow
, DL
, CarryVT
, CarryVT
));
4736 // canonicalize constant to RHS.
4737 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
4738 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
4739 return DAG
.getNode(N
->getOpcode(), DL
, N
->getVTList(), N1
, N0
);
4741 // fold (mulo x, 0) -> 0 + no carry out
4742 if (isNullOrNullSplat(N1
))
4743 return CombineTo(N
, DAG
.getConstant(0, DL
, VT
),
4744 DAG
.getConstant(0, DL
, CarryVT
));
4746 // (mulo x, 2) -> (addo x, x)
4747 if (N1C
&& N1C
->getAPIntValue() == 2)
4748 return DAG
.getNode(IsSigned
? ISD::SADDO
: ISD::UADDO
, DL
,
4749 N
->getVTList(), N0
, N0
);
4752 // A 1 bit SMULO overflows if both inputs are 1.
4753 if (VT
.getScalarSizeInBits() == 1) {
4754 SDValue And
= DAG
.getNode(ISD::AND
, DL
, VT
, N0
, N1
);
4755 return CombineTo(N
, And
,
4756 DAG
.getSetCC(DL
, CarryVT
, And
,
4757 DAG
.getConstant(0, DL
, VT
), ISD::SETNE
));
4760 // Multiplying n * m significant bits yields a result of n + m significant
4761 // bits. If the total number of significant bits does not exceed the
4762 // result bit width (minus 1), there is no overflow.
4763 unsigned SignBits
= DAG
.ComputeNumSignBits(N0
);
4765 SignBits
+= DAG
.ComputeNumSignBits(N1
);
4766 if (SignBits
> VT
.getScalarSizeInBits() + 1)
4767 return CombineTo(N
, DAG
.getNode(ISD::MUL
, DL
, VT
, N0
, N1
),
4768 DAG
.getConstant(0, DL
, CarryVT
));
4770 KnownBits N1Known
= DAG
.computeKnownBits(N1
);
4771 KnownBits N0Known
= DAG
.computeKnownBits(N0
);
4773 (void)N0Known
.getMaxValue().umul_ov(N1Known
.getMaxValue(), Overflow
);
4775 return CombineTo(N
, DAG
.getNode(ISD::MUL
, DL
, VT
, N0
, N1
),
4776 DAG
.getConstant(0, DL
, CarryVT
));
4782 // Function to calculate whether the Min/Max pair of SDNodes (potentially
4783 // swapped around) make a signed saturate pattern, clamping to between a signed
4784 // saturate of -2^(BW-1) and 2^(BW-1)-1, or an unsigned saturate of 0 and 2^BW.
4785 // Returns the node being clamped and the bitwidth of the clamp in BW. Should
4786 // work with both SMIN/SMAX nodes and setcc/select combo. The operands are the
4787 // same as SimplifySelectCC. N0<N1 ? N2 : N3.
4788 static SDValue
isSaturatingMinMax(SDValue N0
, SDValue N1
, SDValue N2
,
4789 SDValue N3
, ISD::CondCode CC
, unsigned &BW
,
4791 auto isSignedMinMax
= [&](SDValue N0
, SDValue N1
, SDValue N2
, SDValue N3
,
4793 // The compare and select operand should be the same or the select operands
4794 // should be truncated versions of the comparison.
4795 if (N0
!= N2
&& (N2
.getOpcode() != ISD::TRUNCATE
|| N0
!= N2
.getOperand(0)))
4797 // The constants need to be the same or a truncated version of each other.
4798 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4799 ConstantSDNode
*N3C
= isConstOrConstSplat(N3
);
4802 const APInt
&C1
= N1C
->getAPIntValue();
4803 const APInt
&C2
= N3C
->getAPIntValue();
4804 if (C1
.getBitWidth() < C2
.getBitWidth() ||
4805 C1
!= C2
.sextOrSelf(C1
.getBitWidth()))
4807 return CC
== ISD::SETLT
? ISD::SMIN
: (CC
== ISD::SETGT
? ISD::SMAX
: 0);
4810 // Check the initial value is a SMIN/SMAX equivalent.
4811 unsigned Opcode0
= isSignedMinMax(N0
, N1
, N2
, N3
, CC
);
4815 SDValue N00
, N01
, N02
, N03
;
4817 switch (N0
.getOpcode()) {
4820 N00
= N02
= N0
.getOperand(0);
4821 N01
= N03
= N0
.getOperand(1);
4822 N0CC
= N0
.getOpcode() == ISD::SMIN
? ISD::SETLT
: ISD::SETGT
;
4824 case ISD::SELECT_CC
:
4825 N00
= N0
.getOperand(0);
4826 N01
= N0
.getOperand(1);
4827 N02
= N0
.getOperand(2);
4828 N03
= N0
.getOperand(3);
4829 N0CC
= cast
<CondCodeSDNode
>(N0
.getOperand(4))->get();
4833 if (N0
.getOperand(0).getOpcode() != ISD::SETCC
)
4835 N00
= N0
.getOperand(0).getOperand(0);
4836 N01
= N0
.getOperand(0).getOperand(1);
4837 N02
= N0
.getOperand(1);
4838 N03
= N0
.getOperand(2);
4839 N0CC
= cast
<CondCodeSDNode
>(N0
.getOperand(0).getOperand(2))->get();
4845 unsigned Opcode1
= isSignedMinMax(N00
, N01
, N02
, N03
, N0CC
);
4846 if (!Opcode1
|| Opcode0
== Opcode1
)
4849 ConstantSDNode
*MinCOp
= isConstOrConstSplat(Opcode0
== ISD::SMIN
? N1
: N01
);
4850 ConstantSDNode
*MaxCOp
= isConstOrConstSplat(Opcode0
== ISD::SMIN
? N01
: N1
);
4851 if (!MinCOp
|| !MaxCOp
|| MinCOp
->getValueType(0) != MaxCOp
->getValueType(0))
4854 const APInt
&MinC
= MinCOp
->getAPIntValue();
4855 const APInt
&MaxC
= MaxCOp
->getAPIntValue();
4856 APInt MinCPlus1
= MinC
+ 1;
4857 if (-MaxC
== MinCPlus1
&& MinCPlus1
.isPowerOf2()) {
4858 BW
= MinCPlus1
.exactLogBase2() + 1;
4863 if (MaxC
== 0 && MinCPlus1
.isPowerOf2()) {
4864 BW
= MinCPlus1
.exactLogBase2();
4872 static SDValue
PerformMinMaxFpToSatCombine(SDValue N0
, SDValue N1
, SDValue N2
,
4873 SDValue N3
, ISD::CondCode CC
,
4874 SelectionDAG
&DAG
) {
4877 SDValue Fp
= isSaturatingMinMax(N0
, N1
, N2
, N3
, CC
, BW
, Unsigned
);
4878 if (!Fp
|| Fp
.getOpcode() != ISD::FP_TO_SINT
)
4880 EVT FPVT
= Fp
.getOperand(0).getValueType();
4881 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), BW
);
4882 if (FPVT
.isVector())
4883 NewVT
= EVT::getVectorVT(*DAG
.getContext(), NewVT
,
4884 FPVT
.getVectorElementCount());
4885 unsigned NewOpc
= Unsigned
? ISD::FP_TO_UINT_SAT
: ISD::FP_TO_SINT_SAT
;
4886 if (!DAG
.getTargetLoweringInfo().shouldConvertFpToSat(NewOpc
, FPVT
, NewVT
))
4889 SDValue Sat
= DAG
.getNode(NewOpc
, DL
, NewVT
, Fp
.getOperand(0),
4890 DAG
.getValueType(NewVT
.getScalarType()));
4891 return Unsigned
? DAG
.getZExtOrTrunc(Sat
, DL
, N2
->getValueType(0))
4892 : DAG
.getSExtOrTrunc(Sat
, DL
, N2
->getValueType(0));
4895 SDValue
DAGCombiner::visitIMINMAX(SDNode
*N
) {
4896 SDValue N0
= N
->getOperand(0);
4897 SDValue N1
= N
->getOperand(1);
4898 EVT VT
= N0
.getValueType();
4899 unsigned Opcode
= N
->getOpcode();
4902 // fold operation with constant operands.
4903 if (SDValue C
= DAG
.FoldConstantArithmetic(Opcode
, DL
, VT
, {N0
, N1
}))
4906 // canonicalize constant to RHS
4907 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
4908 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
4909 return DAG
.getNode(Opcode
, DL
, VT
, N1
, N0
);
4913 if (SDValue FoldedVOp
= SimplifyVBinOp(N
, DL
))
4916 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
4917 // Only do this if the current op isn't legal and the flipped is.
4918 if (!TLI
.isOperationLegal(Opcode
, VT
) &&
4919 (N0
.isUndef() || DAG
.SignBitIsZero(N0
)) &&
4920 (N1
.isUndef() || DAG
.SignBitIsZero(N1
))) {
4923 case ISD::SMIN
: AltOpcode
= ISD::UMIN
; break;
4924 case ISD::SMAX
: AltOpcode
= ISD::UMAX
; break;
4925 case ISD::UMIN
: AltOpcode
= ISD::SMIN
; break;
4926 case ISD::UMAX
: AltOpcode
= ISD::SMAX
; break;
4927 default: llvm_unreachable("Unknown MINMAX opcode");
4929 if (TLI
.isOperationLegal(AltOpcode
, VT
))
4930 return DAG
.getNode(AltOpcode
, DL
, VT
, N0
, N1
);
4933 if (Opcode
== ISD::SMIN
|| Opcode
== ISD::SMAX
)
4934 if (SDValue S
= PerformMinMaxFpToSatCombine(
4935 N0
, N1
, N0
, N1
, Opcode
== ISD::SMIN
? ISD::SETLT
: ISD::SETGT
, DAG
))
4938 // Simplify the operands using demanded-bits information.
4939 if (SimplifyDemandedBits(SDValue(N
, 0)))
4940 return SDValue(N
, 0);
4945 /// If this is a bitwise logic instruction and both operands have the same
4946 /// opcode, try to sink the other opcode after the logic instruction.
4947 SDValue
DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode
*N
) {
4948 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
4949 EVT VT
= N0
.getValueType();
4950 unsigned LogicOpcode
= N
->getOpcode();
4951 unsigned HandOpcode
= N0
.getOpcode();
4952 assert((LogicOpcode
== ISD::AND
|| LogicOpcode
== ISD::OR
||
4953 LogicOpcode
== ISD::XOR
) && "Expected logic opcode");
4954 assert(HandOpcode
== N1
.getOpcode() && "Bad input!");
4956 // Bail early if none of these transforms apply.
4957 if (N0
.getNumOperands() == 0)
4960 // FIXME: We should check number of uses of the operands to not increase
4961 // the instruction count for all transforms.
4963 // Handle size-changing casts.
4964 SDValue X
= N0
.getOperand(0);
4965 SDValue Y
= N1
.getOperand(0);
4966 EVT XVT
= X
.getValueType();
4968 if (HandOpcode
== ISD::ANY_EXTEND
|| HandOpcode
== ISD::ZERO_EXTEND
||
4969 HandOpcode
== ISD::SIGN_EXTEND
) {
4970 // If both operands have other uses, this transform would create extra
4971 // instructions without eliminating anything.
4972 if (!N0
.hasOneUse() && !N1
.hasOneUse())
4974 // We need matching integer source types.
4975 if (XVT
!= Y
.getValueType())
4977 // Don't create an illegal op during or after legalization. Don't ever
4978 // create an unsupported vector op.
4979 if ((VT
.isVector() || LegalOperations
) &&
4980 !TLI
.isOperationLegalOrCustom(LogicOpcode
, XVT
))
4982 // Avoid infinite looping with PromoteIntBinOp.
4983 // TODO: Should we apply desirable/legal constraints to all opcodes?
4984 if (HandOpcode
== ISD::ANY_EXTEND
&& LegalTypes
&&
4985 !TLI
.isTypeDesirableForOp(LogicOpcode
, XVT
))
4987 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
4988 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4989 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4992 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
4993 if (HandOpcode
== ISD::TRUNCATE
) {
4994 // If both operands have other uses, this transform would create extra
4995 // instructions without eliminating anything.
4996 if (!N0
.hasOneUse() && !N1
.hasOneUse())
4998 // We need matching source types.
4999 if (XVT
!= Y
.getValueType())
5001 // Don't create an illegal op during or after legalization.
5002 if (LegalOperations
&& !TLI
.isOperationLegal(LogicOpcode
, XVT
))
5004 // Be extra careful sinking truncate. If it's free, there's no benefit in
5005 // widening a binop. Also, don't create a logic op on an illegal type.
5006 if (TLI
.isZExtFree(VT
, XVT
) && TLI
.isTruncateFree(XVT
, VT
))
5008 if (!TLI
.isTypeLegal(XVT
))
5010 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
5011 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
5014 // For binops SHL/SRL/SRA/AND:
5015 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
5016 if ((HandOpcode
== ISD::SHL
|| HandOpcode
== ISD::SRL
||
5017 HandOpcode
== ISD::SRA
|| HandOpcode
== ISD::AND
) &&
5018 N0
.getOperand(1) == N1
.getOperand(1)) {
5019 // If either operand has other uses, this transform is not an improvement.
5020 if (!N0
.hasOneUse() || !N1
.hasOneUse())
5022 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
5023 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
, N0
.getOperand(1));
5026 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
5027 if (HandOpcode
== ISD::BSWAP
) {
5028 // If either operand has other uses, this transform is not an improvement.
5029 if (!N0
.hasOneUse() || !N1
.hasOneUse())
5031 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
5032 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
5035 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
5036 // Only perform this optimization up until type legalization, before
5037 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
5038 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
5039 // we don't want to undo this promotion.
5040 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
5042 if ((HandOpcode
== ISD::BITCAST
|| HandOpcode
== ISD::SCALAR_TO_VECTOR
) &&
5043 Level
<= AfterLegalizeTypes
) {
5044 // Input types must be integer and the same.
5045 if (XVT
.isInteger() && XVT
== Y
.getValueType() &&
5046 !(VT
.isVector() && TLI
.isTypeLegal(VT
) &&
5047 !XVT
.isVector() && !TLI
.isTypeLegal(XVT
))) {
5048 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
5049 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
5053 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
5054 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
5055 // If both shuffles use the same mask, and both shuffle within a single
5056 // vector, then it is worthwhile to move the swizzle after the operation.
5057 // The type-legalizer generates this pattern when loading illegal
5058 // vector types from memory. In many cases this allows additional shuffle
5060 // There are other cases where moving the shuffle after the xor/and/or
5061 // is profitable even if shuffles don't perform a swizzle.
5062 // If both shuffles use the same mask, and both shuffles have the same first
5063 // or second operand, then it might still be profitable to move the shuffle
5064 // after the xor/and/or operation.
5065 if (HandOpcode
== ISD::VECTOR_SHUFFLE
&& Level
< AfterLegalizeDAG
) {
5066 auto *SVN0
= cast
<ShuffleVectorSDNode
>(N0
);
5067 auto *SVN1
= cast
<ShuffleVectorSDNode
>(N1
);
5068 assert(X
.getValueType() == Y
.getValueType() &&
5069 "Inputs to shuffles are not the same type");
5071 // Check that both shuffles use the same mask. The masks are known to be of
5072 // the same length because the result vector type is the same.
5073 // Check also that shuffles have only one use to avoid introducing extra
5075 if (!SVN0
->hasOneUse() || !SVN1
->hasOneUse() ||
5076 !SVN0
->getMask().equals(SVN1
->getMask()))
5079 // Don't try to fold this node if it requires introducing a
5080 // build vector of all zeros that might be illegal at this stage.
5081 SDValue ShOp
= N0
.getOperand(1);
5082 if (LogicOpcode
== ISD::XOR
&& !ShOp
.isUndef())
5083 ShOp
= tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
5085 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
5086 if (N0
.getOperand(1) == N1
.getOperand(1) && ShOp
.getNode()) {
5087 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, VT
,
5088 N0
.getOperand(0), N1
.getOperand(0));
5089 return DAG
.getVectorShuffle(VT
, DL
, Logic
, ShOp
, SVN0
->getMask());
5092 // Don't try to fold this node if it requires introducing a
5093 // build vector of all zeros that might be illegal at this stage.
5094 ShOp
= N0
.getOperand(0);
5095 if (LogicOpcode
== ISD::XOR
&& !ShOp
.isUndef())
5096 ShOp
= tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
5098 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
5099 if (N0
.getOperand(0) == N1
.getOperand(0) && ShOp
.getNode()) {
5100 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, VT
, N0
.getOperand(1),
5102 return DAG
.getVectorShuffle(VT
, DL
, ShOp
, Logic
, SVN0
->getMask());
5109 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
5110 SDValue
DAGCombiner::foldLogicOfSetCCs(bool IsAnd
, SDValue N0
, SDValue N1
,
5112 SDValue LL
, LR
, RL
, RR
, N0CC
, N1CC
;
5113 if (!isSetCCEquivalent(N0
, LL
, LR
, N0CC
) ||
5114 !isSetCCEquivalent(N1
, RL
, RR
, N1CC
))
5117 assert(N0
.getValueType() == N1
.getValueType() &&
5118 "Unexpected operand types for bitwise logic op");
5119 assert(LL
.getValueType() == LR
.getValueType() &&
5120 RL
.getValueType() == RR
.getValueType() &&
5121 "Unexpected operand types for setcc");
5123 // If we're here post-legalization or the logic op type is not i1, the logic
5124 // op type must match a setcc result type. Also, all folds require new
5125 // operations on the left and right operands, so those types must match.
5126 EVT VT
= N0
.getValueType();
5127 EVT OpVT
= LL
.getValueType();
5128 if (LegalOperations
|| VT
.getScalarType() != MVT::i1
)
5129 if (VT
!= getSetCCResultType(OpVT
))
5131 if (OpVT
!= RL
.getValueType())
5134 ISD::CondCode CC0
= cast
<CondCodeSDNode
>(N0CC
)->get();
5135 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(N1CC
)->get();
5136 bool IsInteger
= OpVT
.isInteger();
5137 if (LR
== RR
&& CC0
== CC1
&& IsInteger
) {
5138 bool IsZero
= isNullOrNullSplat(LR
);
5139 bool IsNeg1
= isAllOnesOrAllOnesSplat(LR
);
5142 bool AndEqZero
= IsAnd
&& CC1
== ISD::SETEQ
&& IsZero
;
5143 // All sign bits clear?
5144 bool AndGtNeg1
= IsAnd
&& CC1
== ISD::SETGT
&& IsNeg1
;
5146 bool OrNeZero
= !IsAnd
&& CC1
== ISD::SETNE
&& IsZero
;
5147 // Any sign bits set?
5148 bool OrLtZero
= !IsAnd
&& CC1
== ISD::SETLT
&& IsZero
;
5150 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
5151 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
5152 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
5153 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
5154 if (AndEqZero
|| AndGtNeg1
|| OrNeZero
|| OrLtZero
) {
5155 SDValue Or
= DAG
.getNode(ISD::OR
, SDLoc(N0
), OpVT
, LL
, RL
);
5156 AddToWorklist(Or
.getNode());
5157 return DAG
.getSetCC(DL
, VT
, Or
, LR
, CC1
);
5161 bool AndEqNeg1
= IsAnd
&& CC1
== ISD::SETEQ
&& IsNeg1
;
5162 // All sign bits set?
5163 bool AndLtZero
= IsAnd
&& CC1
== ISD::SETLT
&& IsZero
;
5165 bool OrNeNeg1
= !IsAnd
&& CC1
== ISD::SETNE
&& IsNeg1
;
5166 // Any sign bits clear?
5167 bool OrGtNeg1
= !IsAnd
&& CC1
== ISD::SETGT
&& IsNeg1
;
5169 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
5170 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
5171 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
5172 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
5173 if (AndEqNeg1
|| AndLtZero
|| OrNeNeg1
|| OrGtNeg1
) {
5174 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(N0
), OpVT
, LL
, RL
);
5175 AddToWorklist(And
.getNode());
5176 return DAG
.getSetCC(DL
, VT
, And
, LR
, CC1
);
5180 // TODO: What is the 'or' equivalent of this fold?
5181 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
5182 if (IsAnd
&& LL
== RL
&& CC0
== CC1
&& OpVT
.getScalarSizeInBits() > 1 &&
5183 IsInteger
&& CC0
== ISD::SETNE
&&
5184 ((isNullConstant(LR
) && isAllOnesConstant(RR
)) ||
5185 (isAllOnesConstant(LR
) && isNullConstant(RR
)))) {
5186 SDValue One
= DAG
.getConstant(1, DL
, OpVT
);
5187 SDValue Two
= DAG
.getConstant(2, DL
, OpVT
);
5188 SDValue Add
= DAG
.getNode(ISD::ADD
, SDLoc(N0
), OpVT
, LL
, One
);
5189 AddToWorklist(Add
.getNode());
5190 return DAG
.getSetCC(DL
, VT
, Add
, Two
, ISD::SETUGE
);
5193 // Try more general transforms if the predicates match and the only user of
5194 // the compares is the 'and' or 'or'.
5195 if (IsInteger
&& TLI
.convertSetCCLogicToBitwiseLogic(OpVT
) && CC0
== CC1
&&
5196 N0
.hasOneUse() && N1
.hasOneUse()) {
5197 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
5198 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
5199 if ((IsAnd
&& CC1
== ISD::SETEQ
) || (!IsAnd
&& CC1
== ISD::SETNE
)) {
5200 SDValue XorL
= DAG
.getNode(ISD::XOR
, SDLoc(N0
), OpVT
, LL
, LR
);
5201 SDValue XorR
= DAG
.getNode(ISD::XOR
, SDLoc(N1
), OpVT
, RL
, RR
);
5202 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, OpVT
, XorL
, XorR
);
5203 SDValue Zero
= DAG
.getConstant(0, DL
, OpVT
);
5204 return DAG
.getSetCC(DL
, VT
, Or
, Zero
, CC1
);
5207 // Turn compare of constants whose difference is 1 bit into add+and+setcc.
5208 // TODO - support non-uniform vector amounts.
5209 if ((IsAnd
&& CC1
== ISD::SETNE
) || (!IsAnd
&& CC1
== ISD::SETEQ
)) {
5210 // Match a shared variable operand and 2 non-opaque constant operands.
5211 ConstantSDNode
*C0
= isConstOrConstSplat(LR
);
5212 ConstantSDNode
*C1
= isConstOrConstSplat(RR
);
5213 if (LL
== RL
&& C0
&& C1
&& !C0
->isOpaque() && !C1
->isOpaque()) {
5215 APIntOps::umax(C0
->getAPIntValue(), C1
->getAPIntValue());
5217 APIntOps::umin(C0
->getAPIntValue(), C1
->getAPIntValue());
5218 // The difference of the constants must be a single bit.
5219 if ((CMax
- CMin
).isPowerOf2()) {
5220 // and/or (setcc X, CMax, ne), (setcc X, CMin, ne/eq) -->
5221 // setcc ((sub X, CMin), ~(CMax - CMin)), 0, ne/eq
5222 SDValue Max
= DAG
.getNode(ISD::UMAX
, DL
, OpVT
, LR
, RR
);
5223 SDValue Min
= DAG
.getNode(ISD::UMIN
, DL
, OpVT
, LR
, RR
);
5224 SDValue Offset
= DAG
.getNode(ISD::SUB
, DL
, OpVT
, LL
, Min
);
5225 SDValue Diff
= DAG
.getNode(ISD::SUB
, DL
, OpVT
, Max
, Min
);
5226 SDValue Mask
= DAG
.getNOT(DL
, Diff
, OpVT
);
5227 SDValue And
= DAG
.getNode(ISD::AND
, DL
, OpVT
, Offset
, Mask
);
5228 SDValue Zero
= DAG
.getConstant(0, DL
, OpVT
);
5229 return DAG
.getSetCC(DL
, VT
, And
, Zero
, CC0
);
5235 // Canonicalize equivalent operands to LL == RL.
5236 if (LL
== RR
&& LR
== RL
) {
5237 CC1
= ISD::getSetCCSwappedOperands(CC1
);
5241 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
5242 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
5243 if (LL
== RL
&& LR
== RR
) {
5244 ISD::CondCode NewCC
= IsAnd
? ISD::getSetCCAndOperation(CC0
, CC1
, OpVT
)
5245 : ISD::getSetCCOrOperation(CC0
, CC1
, OpVT
);
5246 if (NewCC
!= ISD::SETCC_INVALID
&&
5247 (!LegalOperations
||
5248 (TLI
.isCondCodeLegal(NewCC
, LL
.getSimpleValueType()) &&
5249 TLI
.isOperationLegal(ISD::SETCC
, OpVT
))))
5250 return DAG
.getSetCC(DL
, VT
, LL
, LR
, NewCC
);
5256 /// This contains all DAGCombine rules which reduce two values combined by
5257 /// an And operation to a single value. This makes them reusable in the context
5258 /// of visitSELECT(). Rules involving constants are not included as
5259 /// visitSELECT() already handles those cases.
5260 SDValue
DAGCombiner::visitANDLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
5261 EVT VT
= N1
.getValueType();
5264 // fold (and x, undef) -> 0
5265 if (N0
.isUndef() || N1
.isUndef())
5266 return DAG
.getConstant(0, DL
, VT
);
5268 if (SDValue V
= foldLogicOfSetCCs(true, N0
, N1
, DL
))
5271 // TODO: Rewrite this to return a new 'AND' instead of using CombineTo.
5272 if (N0
.getOpcode() == ISD::ADD
&& N1
.getOpcode() == ISD::SRL
&&
5273 VT
.getSizeInBits() <= 64 && N0
->hasOneUse()) {
5274 if (ConstantSDNode
*ADDI
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
5275 if (ConstantSDNode
*SRLI
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1))) {
5276 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
5277 // immediate for an add, but it is legal if its top c2 bits are set,
5278 // transform the ADD so the immediate doesn't need to be materialized
5280 APInt ADDC
= ADDI
->getAPIntValue();
5281 APInt SRLC
= SRLI
->getAPIntValue();
5282 if (ADDC
.getMinSignedBits() <= 64 &&
5283 SRLC
.ult(VT
.getSizeInBits()) &&
5284 !TLI
.isLegalAddImmediate(ADDC
.getSExtValue())) {
5285 APInt Mask
= APInt::getHighBitsSet(VT
.getSizeInBits(),
5286 SRLC
.getZExtValue());
5287 if (DAG
.MaskedValueIsZero(N0
.getOperand(1), Mask
)) {
5289 if (TLI
.isLegalAddImmediate(ADDC
.getSExtValue())) {
5292 DAG
.getNode(ISD::ADD
, DL0
, VT
,
5293 N0
.getOperand(0), DAG
.getConstant(ADDC
, DL
, VT
));
5294 CombineTo(N0
.getNode(), NewAdd
);
5295 // Return N so it doesn't get rechecked!
5296 return SDValue(N
, 0);
5304 // Reduce bit extract of low half of an integer to the narrower type.
5305 // (and (srl i64:x, K), KMask) ->
5306 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
5307 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse()) {
5308 if (ConstantSDNode
*CAnd
= dyn_cast
<ConstantSDNode
>(N1
)) {
5309 if (ConstantSDNode
*CShift
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
5310 unsigned Size
= VT
.getSizeInBits();
5311 const APInt
&AndMask
= CAnd
->getAPIntValue();
5312 unsigned ShiftBits
= CShift
->getZExtValue();
5314 // Bail out, this node will probably disappear anyway.
5318 unsigned MaskBits
= AndMask
.countTrailingOnes();
5319 EVT HalfVT
= EVT::getIntegerVT(*DAG
.getContext(), Size
/ 2);
5321 if (AndMask
.isMask() &&
5322 // Required bits must not span the two halves of the integer and
5323 // must fit in the half size type.
5324 (ShiftBits
+ MaskBits
<= Size
/ 2) &&
5325 TLI
.isNarrowingProfitable(VT
, HalfVT
) &&
5326 TLI
.isTypeDesirableForOp(ISD::AND
, HalfVT
) &&
5327 TLI
.isTypeDesirableForOp(ISD::SRL
, HalfVT
) &&
5328 TLI
.isTruncateFree(VT
, HalfVT
) &&
5329 TLI
.isZExtFree(HalfVT
, VT
)) {
5330 // The isNarrowingProfitable is to avoid regressions on PPC and
5331 // AArch64 which match a few 64-bit bit insert / bit extract patterns
5332 // on downstream users of this. Those patterns could probably be
5333 // extended to handle extensions mixed in.
5336 assert(MaskBits
<= Size
);
5338 // Extracting the highest bit of the low half.
5339 EVT ShiftVT
= TLI
.getShiftAmountTy(HalfVT
, DAG
.getDataLayout());
5340 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, HalfVT
,
5343 SDValue NewMask
= DAG
.getConstant(AndMask
.trunc(Size
/ 2), SL
, HalfVT
);
5344 SDValue ShiftK
= DAG
.getConstant(ShiftBits
, SL
, ShiftVT
);
5345 SDValue Shift
= DAG
.getNode(ISD::SRL
, SL
, HalfVT
, Trunc
, ShiftK
);
5346 SDValue And
= DAG
.getNode(ISD::AND
, SL
, HalfVT
, Shift
, NewMask
);
5347 return DAG
.getNode(ISD::ZERO_EXTEND
, SL
, VT
, And
);
5356 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode
*AndC
, LoadSDNode
*LoadN
,
5357 EVT LoadResultTy
, EVT
&ExtVT
) {
5358 if (!AndC
->getAPIntValue().isMask())
5361 unsigned ActiveBits
= AndC
->getAPIntValue().countTrailingOnes();
5363 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
5364 EVT LoadedVT
= LoadN
->getMemoryVT();
5366 if (ExtVT
== LoadedVT
&&
5367 (!LegalOperations
||
5368 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultTy
, ExtVT
))) {
5369 // ZEXTLOAD will match without needing to change the size of the value being
5374 // Do not change the width of a volatile or atomic loads.
5375 if (!LoadN
->isSimple())
5378 // Do not generate loads of non-round integer types since these can
5379 // be expensive (and would be wrong if the type is not byte sized).
5380 if (!LoadedVT
.bitsGT(ExtVT
) || !ExtVT
.isRound())
5383 if (LegalOperations
&&
5384 !TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultTy
, ExtVT
))
5387 if (!TLI
.shouldReduceLoadWidth(LoadN
, ISD::ZEXTLOAD
, ExtVT
))
5393 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode
*LDST
,
5394 ISD::LoadExtType ExtType
, EVT
&MemVT
,
5398 // Only allow byte offsets.
5402 // Do not generate loads of non-round integer types since these can
5403 // be expensive (and would be wrong if the type is not byte sized).
5404 if (!MemVT
.isRound())
5407 // Don't change the width of a volatile or atomic loads.
5408 if (!LDST
->isSimple())
5411 EVT LdStMemVT
= LDST
->getMemoryVT();
5413 // Bail out when changing the scalable property, since we can't be sure that
5414 // we're actually narrowing here.
5415 if (LdStMemVT
.isScalableVector() != MemVT
.isScalableVector())
5418 // Verify that we are actually reducing a load width here.
5419 if (LdStMemVT
.bitsLT(MemVT
))
5422 // Ensure that this isn't going to produce an unsupported memory access.
5424 assert(ShAmt
% 8 == 0 && "ShAmt is byte offset");
5425 const unsigned ByteShAmt
= ShAmt
/ 8;
5426 const Align LDSTAlign
= LDST
->getAlign();
5427 const Align NarrowAlign
= commonAlignment(LDSTAlign
, ByteShAmt
);
5428 if (!TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), MemVT
,
5429 LDST
->getAddressSpace(), NarrowAlign
,
5430 LDST
->getMemOperand()->getFlags()))
5434 // It's not possible to generate a constant of extended or untyped type.
5435 EVT PtrType
= LDST
->getBasePtr().getValueType();
5436 if (PtrType
== MVT::Untyped
|| PtrType
.isExtended())
5439 if (isa
<LoadSDNode
>(LDST
)) {
5440 LoadSDNode
*Load
= cast
<LoadSDNode
>(LDST
);
5441 // Don't transform one with multiple uses, this would require adding a new
5443 if (!SDValue(Load
, 0).hasOneUse())
5446 if (LegalOperations
&&
5447 !TLI
.isLoadExtLegal(ExtType
, Load
->getValueType(0), MemVT
))
5450 // For the transform to be legal, the load must produce only two values
5451 // (the value loaded and the chain). Don't transform a pre-increment
5452 // load, for example, which produces an extra value. Otherwise the
5453 // transformation is not equivalent, and the downstream logic to replace
5454 // uses gets things wrong.
5455 if (Load
->getNumValues() > 2)
5458 // If the load that we're shrinking is an extload and we're not just
5459 // discarding the extension we can't simply shrink the load. Bail.
5460 // TODO: It would be possible to merge the extensions in some cases.
5461 if (Load
->getExtensionType() != ISD::NON_EXTLOAD
&&
5462 Load
->getMemoryVT().getSizeInBits() < MemVT
.getSizeInBits() + ShAmt
)
5465 if (!TLI
.shouldReduceLoadWidth(Load
, ExtType
, MemVT
))
5468 assert(isa
<StoreSDNode
>(LDST
) && "It is not a Load nor a Store SDNode");
5469 StoreSDNode
*Store
= cast
<StoreSDNode
>(LDST
);
5470 // Can't write outside the original store
5471 if (Store
->getMemoryVT().getSizeInBits() < MemVT
.getSizeInBits() + ShAmt
)
5474 if (LegalOperations
&&
5475 !TLI
.isTruncStoreLegal(Store
->getValue().getValueType(), MemVT
))
5481 bool DAGCombiner::SearchForAndLoads(SDNode
*N
,
5482 SmallVectorImpl
<LoadSDNode
*> &Loads
,
5483 SmallPtrSetImpl
<SDNode
*> &NodesWithConsts
,
5484 ConstantSDNode
*Mask
,
5485 SDNode
*&NodeToMask
) {
5486 // Recursively search for the operands, looking for loads which can be
5488 for (SDValue Op
: N
->op_values()) {
5489 if (Op
.getValueType().isVector())
5492 // Some constants may need fixing up later if they are too large.
5493 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
)) {
5494 if (Mask
->getValueType(0) != C
->getValueType(0))
5496 if ((N
->getOpcode() == ISD::OR
|| N
->getOpcode() == ISD::XOR
) &&
5497 (Mask
->getAPIntValue() & C
->getAPIntValue()) != C
->getAPIntValue())
5498 NodesWithConsts
.insert(N
);
5502 if (!Op
.hasOneUse())
5505 switch(Op
.getOpcode()) {
5507 auto *Load
= cast
<LoadSDNode
>(Op
);
5509 if (isAndLoadExtLoad(Mask
, Load
, Load
->getValueType(0), ExtVT
) &&
5510 isLegalNarrowLdSt(Load
, ISD::ZEXTLOAD
, ExtVT
)) {
5512 // ZEXTLOAD is already small enough.
5513 if (Load
->getExtensionType() == ISD::ZEXTLOAD
&&
5514 ExtVT
.bitsGE(Load
->getMemoryVT()))
5517 // Use LE to convert equal sized loads to zext.
5518 if (ExtVT
.bitsLE(Load
->getMemoryVT()))
5519 Loads
.push_back(Load
);
5525 case ISD::ZERO_EXTEND
:
5526 case ISD::AssertZext
: {
5527 unsigned ActiveBits
= Mask
->getAPIntValue().countTrailingOnes();
5528 EVT ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
5529 EVT VT
= Op
.getOpcode() == ISD::AssertZext
5530 ? cast
<VTSDNode
>(Op
.getOperand(1))->getVT()
5531 : Op
.getOperand(0).getValueType();
5533 // We can accept extending nodes if the mask is wider or an equal
5534 // width to the original type.
5535 if (ExtVT
.bitsGE(VT
))
5539 case ISD::ANY_EXTEND
: {
5540 unsigned ActiveBits
= Mask
->getAPIntValue().countTrailingOnes();
5541 EVT ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
5542 EVT VT
= Op
.getOperand(0).getValueType();
5543 if (ExtVT
.bitsGE(VT
))
5545 // Fallthrough to searching for nodes from the operands of the extend.
5551 if (!SearchForAndLoads(Op
.getNode(), Loads
, NodesWithConsts
, Mask
,
5557 // Allow one node which will masked along with any loads found.
5561 // Also ensure that the node to be masked only produces one data result.
5562 NodeToMask
= Op
.getNode();
5563 if (NodeToMask
->getNumValues() > 1) {
5564 bool HasValue
= false;
5565 for (unsigned i
= 0, e
= NodeToMask
->getNumValues(); i
< e
; ++i
) {
5566 MVT VT
= SDValue(NodeToMask
, i
).getSimpleValueType();
5567 if (VT
!= MVT::Glue
&& VT
!= MVT::Other
) {
5569 NodeToMask
= nullptr;
5575 assert(HasValue
&& "Node to be masked has no data result?");
5581 bool DAGCombiner::BackwardsPropagateMask(SDNode
*N
) {
5582 auto *Mask
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
5586 if (!Mask
->getAPIntValue().isMask())
5589 // No need to do anything if the and directly uses a load.
5590 if (isa
<LoadSDNode
>(N
->getOperand(0)))
5593 SmallVector
<LoadSDNode
*, 8> Loads
;
5594 SmallPtrSet
<SDNode
*, 2> NodesWithConsts
;
5595 SDNode
*FixupNode
= nullptr;
5596 if (SearchForAndLoads(N
, Loads
, NodesWithConsts
, Mask
, FixupNode
)) {
5597 if (Loads
.size() == 0)
5600 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N
->dump());
5601 SDValue MaskOp
= N
->getOperand(1);
5603 // If it exists, fixup the single node we allow in the tree that needs
5606 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode
->dump());
5607 SDValue MaskOpT
= DAG
.getZExtOrTrunc(MaskOp
, SDLoc(FixupNode
),
5608 FixupNode
->getValueType(0));
5610 DAG
.getNode(ISD::AND
, SDLoc(FixupNode
), FixupNode
->getValueType(0),
5611 SDValue(FixupNode
, 0), MaskOpT
);
5612 DAG
.ReplaceAllUsesOfValueWith(SDValue(FixupNode
, 0), And
);
5613 if (And
.getOpcode() == ISD ::AND
)
5614 DAG
.UpdateNodeOperands(And
.getNode(), SDValue(FixupNode
, 0), MaskOpT
);
5617 // Narrow any constants that need it.
5618 for (auto *LogicN
: NodesWithConsts
) {
5619 SDValue Op0
= LogicN
->getOperand(0);
5620 SDValue Op1
= LogicN
->getOperand(1);
5622 if (isa
<ConstantSDNode
>(Op0
))
5623 std::swap(Op0
, Op1
);
5626 DAG
.getZExtOrTrunc(MaskOp
, SDLoc(Op1
), Op1
.getValueType());
5628 DAG
.getNode(ISD::AND
, SDLoc(Op1
), Op1
.getValueType(), Op1
, MaskOpT
);
5630 DAG
.UpdateNodeOperands(LogicN
, Op0
, And
);
5633 // Create narrow loads.
5634 for (auto *Load
: Loads
) {
5635 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load
->dump());
5637 DAG
.getZExtOrTrunc(MaskOp
, SDLoc(Load
), Load
->getValueType(0));
5638 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(Load
), Load
->getValueType(0),
5639 SDValue(Load
, 0), MaskOpT
);
5640 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 0), And
);
5641 if (And
.getOpcode() == ISD ::AND
)
5643 DAG
.UpdateNodeOperands(And
.getNode(), SDValue(Load
, 0), MaskOpT
), 0);
5644 SDValue NewLoad
= reduceLoadWidth(And
.getNode());
5646 "Shouldn't be masking the load if it can't be narrowed");
5647 CombineTo(Load
, NewLoad
, NewLoad
.getValue(1));
5649 DAG
.ReplaceAllUsesWith(N
, N
->getOperand(0).getNode());
5656 // x & (-1 'logical shift' y)
5658 // (x 'opposite logical shift' y) 'logical shift' y
5659 // if it is better for performance.
5660 SDValue
DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode
*N
) {
5661 assert(N
->getOpcode() == ISD::AND
);
5663 SDValue N0
= N
->getOperand(0);
5664 SDValue N1
= N
->getOperand(1);
5666 // Do we actually prefer shifts over mask?
5667 if (!TLI
.shouldFoldMaskToVariableShiftPair(N0
))
5670 // Try to match (-1 '[outer] logical shift' y)
5671 unsigned OuterShift
;
5672 unsigned InnerShift
; // The opposite direction to the OuterShift.
5673 SDValue Y
; // Shift amount.
5674 auto matchMask
= [&OuterShift
, &InnerShift
, &Y
](SDValue M
) -> bool {
5677 OuterShift
= M
->getOpcode();
5678 if (OuterShift
== ISD::SHL
)
5679 InnerShift
= ISD::SRL
;
5680 else if (OuterShift
== ISD::SRL
)
5681 InnerShift
= ISD::SHL
;
5684 if (!isAllOnesConstant(M
->getOperand(0)))
5686 Y
= M
->getOperand(1);
5693 else if (matchMask(N0
))
5699 EVT VT
= N
->getValueType(0);
5701 // tmp = x 'opposite logical shift' y
5702 SDValue T0
= DAG
.getNode(InnerShift
, DL
, VT
, X
, Y
);
5703 // ret = tmp 'logical shift' y
5704 SDValue T1
= DAG
.getNode(OuterShift
, DL
, VT
, T0
, Y
);
5709 /// Try to replace shift/logic that tests if a bit is clear with mask + setcc.
5710 /// For a target with a bit test, this is expected to become test + set and save
5711 /// at least 1 instruction.
5712 static SDValue
combineShiftAnd1ToBitTest(SDNode
*And
, SelectionDAG
&DAG
) {
5713 assert(And
->getOpcode() == ISD::AND
&& "Expected an 'and' op");
5715 // This is probably not worthwhile without a supported type.
5716 EVT VT
= And
->getValueType(0);
5717 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5718 if (!TLI
.isTypeLegal(VT
))
5721 // Look through an optional extension and find a 'not'.
5722 // TODO: Should we favor test+set even without the 'not' op?
5723 SDValue Not
= And
->getOperand(0), And1
= And
->getOperand(1);
5724 if (Not
.getOpcode() == ISD::ANY_EXTEND
)
5725 Not
= Not
.getOperand(0);
5726 if (!isBitwiseNot(Not
) || !Not
.hasOneUse() || !isOneConstant(And1
))
5729 // Look though an optional truncation. The source operand may not be the same
5730 // type as the original 'and', but that is ok because we are masking off
5731 // everything but the low bit.
5732 SDValue Srl
= Not
.getOperand(0);
5733 if (Srl
.getOpcode() == ISD::TRUNCATE
)
5734 Srl
= Srl
.getOperand(0);
5736 // Match a shift-right by constant.
5737 if (Srl
.getOpcode() != ISD::SRL
|| !Srl
.hasOneUse() ||
5738 !isa
<ConstantSDNode
>(Srl
.getOperand(1)))
5741 // We might have looked through casts that make this transform invalid.
5742 // TODO: If the source type is wider than the result type, do the mask and
5743 // compare in the source type.
5744 const APInt
&ShiftAmt
= Srl
.getConstantOperandAPInt(1);
5745 unsigned VTBitWidth
= VT
.getSizeInBits();
5746 if (ShiftAmt
.uge(VTBitWidth
))
5749 // Turn this into a bit-test pattern using mask op + setcc:
5750 // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0
5752 SDValue X
= DAG
.getZExtOrTrunc(Srl
.getOperand(0), DL
, VT
);
5753 EVT CCVT
= TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
5754 SDValue Mask
= DAG
.getConstant(
5755 APInt::getOneBitSet(VTBitWidth
, ShiftAmt
.getZExtValue()), DL
, VT
);
5756 SDValue NewAnd
= DAG
.getNode(ISD::AND
, DL
, VT
, X
, Mask
);
5757 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
5758 SDValue Setcc
= DAG
.getSetCC(DL
, CCVT
, NewAnd
, Zero
, ISD::SETEQ
);
5759 return DAG
.getZExtOrTrunc(Setcc
, DL
, VT
);
5762 /// For targets that support usubsat, match a bit-hack form of that operation
5763 /// that ends in 'and' and convert it.
5764 static SDValue
foldAndToUsubsat(SDNode
*N
, SelectionDAG
&DAG
) {
5765 SDValue N0
= N
->getOperand(0);
5766 SDValue N1
= N
->getOperand(1);
5767 EVT VT
= N1
.getValueType();
5769 // Canonicalize SRA as operand 1.
5770 if (N0
.getOpcode() == ISD::SRA
)
5773 // xor/add with SMIN (signmask) are logically equivalent.
5774 if (N0
.getOpcode() != ISD::XOR
&& N0
.getOpcode() != ISD::ADD
)
5777 if (N1
.getOpcode() != ISD::SRA
|| !N0
.hasOneUse() || !N1
.hasOneUse() ||
5778 N0
.getOperand(0) != N1
.getOperand(0))
5781 unsigned BitWidth
= VT
.getScalarSizeInBits();
5782 ConstantSDNode
*XorC
= isConstOrConstSplat(N0
.getOperand(1), true);
5783 ConstantSDNode
*SraC
= isConstOrConstSplat(N1
.getOperand(1), true);
5784 if (!XorC
|| !XorC
->getAPIntValue().isSignMask() ||
5785 !SraC
|| SraC
->getAPIntValue() != BitWidth
- 1)
5788 // (i8 X ^ 128) & (i8 X s>> 7) --> usubsat X, 128
5789 // (i8 X + 128) & (i8 X s>> 7) --> usubsat X, 128
5791 SDValue SignMask
= DAG
.getConstant(XorC
->getAPIntValue(), DL
, VT
);
5792 return DAG
.getNode(ISD::USUBSAT
, DL
, VT
, N0
.getOperand(0), SignMask
);
5795 SDValue
DAGCombiner::visitAND(SDNode
*N
) {
5796 SDValue N0
= N
->getOperand(0);
5797 SDValue N1
= N
->getOperand(1);
5798 EVT VT
= N1
.getValueType();
5804 // fold (and c1, c2) -> c1&c2
5805 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::AND
, SDLoc(N
), VT
, {N0
, N1
}))
5808 // canonicalize constant to RHS
5809 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
5810 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
5811 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, N1
, N0
);
5814 if (VT
.isVector()) {
5815 if (SDValue FoldedVOp
= SimplifyVBinOp(N
, SDLoc(N
)))
5818 // fold (and x, 0) -> 0, vector edition
5819 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()))
5820 // do not return N0, because undef node may exist in N0
5821 return DAG
.getConstant(APInt::getZero(N0
.getScalarValueSizeInBits()),
5822 SDLoc(N
), N0
.getValueType());
5823 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
5824 // do not return N1, because undef node may exist in N1
5825 return DAG
.getConstant(APInt::getZero(N1
.getScalarValueSizeInBits()),
5826 SDLoc(N
), N1
.getValueType());
5828 // fold (and x, -1) -> x, vector edition
5829 if (ISD::isConstantSplatVectorAllOnes(N0
.getNode()))
5831 if (ISD::isConstantSplatVectorAllOnes(N1
.getNode()))
5834 // fold (and (masked_load) (build_vec (x, ...))) to zext_masked_load
5835 auto *MLoad
= dyn_cast
<MaskedLoadSDNode
>(N0
);
5836 auto *BVec
= dyn_cast
<BuildVectorSDNode
>(N1
);
5837 if (MLoad
&& BVec
&& MLoad
->getExtensionType() == ISD::EXTLOAD
&&
5838 N0
.hasOneUse() && N1
.hasOneUse()) {
5839 EVT LoadVT
= MLoad
->getMemoryVT();
5841 if (TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, ExtVT
, LoadVT
)) {
5842 // For this AND to be a zero extension of the masked load the elements
5843 // of the BuildVec must mask the bottom bits of the extended element
5845 if (ConstantSDNode
*Splat
= BVec
->getConstantSplatNode()) {
5846 uint64_t ElementSize
=
5847 LoadVT
.getVectorElementType().getScalarSizeInBits();
5848 if (Splat
->getAPIntValue().isMask(ElementSize
)) {
5849 return DAG
.getMaskedLoad(
5850 ExtVT
, SDLoc(N
), MLoad
->getChain(), MLoad
->getBasePtr(),
5851 MLoad
->getOffset(), MLoad
->getMask(), MLoad
->getPassThru(),
5852 LoadVT
, MLoad
->getMemOperand(), MLoad
->getAddressingMode(),
5853 ISD::ZEXTLOAD
, MLoad
->isExpandingLoad());
5860 // fold (and x, -1) -> x
5861 if (isAllOnesConstant(N1
))
5864 // if (and x, c) is known to be zero, return 0
5865 unsigned BitWidth
= VT
.getScalarSizeInBits();
5866 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
5867 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0), APInt::getAllOnes(BitWidth
)))
5868 return DAG
.getConstant(0, SDLoc(N
), VT
);
5870 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
5874 if (SDValue RAND
= reassociateOps(ISD::AND
, SDLoc(N
), N0
, N1
, N
->getFlags()))
5877 // Try to convert a constant mask AND into a shuffle clear mask.
5879 if (SDValue Shuffle
= XformToShuffleWithZero(N
))
5882 if (SDValue Combined
= combineCarryDiamond(*this, DAG
, TLI
, N0
, N1
, N
))
5885 // fold (and (or x, C), D) -> D if (C & D) == D
5886 auto MatchSubset
= [](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
5887 return RHS
->getAPIntValue().isSubsetOf(LHS
->getAPIntValue());
5889 if (N0
.getOpcode() == ISD::OR
&&
5890 ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchSubset
))
5892 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
5893 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
5894 SDValue N0Op0
= N0
.getOperand(0);
5895 APInt Mask
= ~N1C
->getAPIntValue();
5896 Mask
= Mask
.trunc(N0Op0
.getScalarValueSizeInBits());
5897 if (DAG
.MaskedValueIsZero(N0Op0
, Mask
)) {
5898 SDValue Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
),
5899 N0
.getValueType(), N0Op0
);
5901 // Replace uses of the AND with uses of the Zero extend node.
5904 // We actually want to replace all uses of the any_extend with the
5905 // zero_extend, to avoid duplicating things. This will later cause this
5906 // AND to be folded.
5907 CombineTo(N0
.getNode(), Zext
);
5908 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5912 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
5913 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
5914 // already be zero by virtue of the width of the base type of the load.
5916 // the 'X' node here can either be nothing or an extract_vector_elt to catch
5918 if ((N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
5919 N0
.getValueSizeInBits() == N0
.getOperand(0).getScalarValueSizeInBits() &&
5920 N0
.getOperand(0).getOpcode() == ISD::LOAD
&&
5921 N0
.getOperand(0).getResNo() == 0) ||
5922 (N0
.getOpcode() == ISD::LOAD
&& N0
.getResNo() == 0)) {
5923 LoadSDNode
*Load
= cast
<LoadSDNode
>( (N0
.getOpcode() == ISD::LOAD
) ?
5924 N0
: N0
.getOperand(0) );
5926 // Get the constant (if applicable) the zero'th operand is being ANDed with.
5927 // This can be a pure constant or a vector splat, in which case we treat the
5928 // vector as a scalar and use the splat value.
5929 APInt Constant
= APInt::getZero(1);
5930 if (const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
5931 Constant
= C
->getAPIntValue();
5932 } else if (BuildVectorSDNode
*Vector
= dyn_cast
<BuildVectorSDNode
>(N1
)) {
5933 APInt SplatValue
, SplatUndef
;
5934 unsigned SplatBitSize
;
5936 bool IsSplat
= Vector
->isConstantSplat(SplatValue
, SplatUndef
,
5937 SplatBitSize
, HasAnyUndefs
);
5939 // Undef bits can contribute to a possible optimisation if set, so
5941 SplatValue
|= SplatUndef
;
5943 // The splat value may be something like "0x00FFFFFF", which means 0 for
5944 // the first vector value and FF for the rest, repeating. We need a mask
5945 // that will apply equally to all members of the vector, so AND all the
5946 // lanes of the constant together.
5947 unsigned EltBitWidth
= Vector
->getValueType(0).getScalarSizeInBits();
5949 // If the splat value has been compressed to a bitlength lower
5950 // than the size of the vector lane, we need to re-expand it to
5952 if (EltBitWidth
> SplatBitSize
)
5953 for (SplatValue
= SplatValue
.zextOrTrunc(EltBitWidth
);
5954 SplatBitSize
< EltBitWidth
; SplatBitSize
= SplatBitSize
* 2)
5955 SplatValue
|= SplatValue
.shl(SplatBitSize
);
5957 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
5958 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
5959 if ((SplatBitSize
% EltBitWidth
) == 0) {
5960 Constant
= APInt::getAllOnes(EltBitWidth
);
5961 for (unsigned i
= 0, n
= (SplatBitSize
/ EltBitWidth
); i
< n
; ++i
)
5962 Constant
&= SplatValue
.extractBits(EltBitWidth
, i
* EltBitWidth
);
5967 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
5968 // actually legal and isn't going to get expanded, else this is a false
5970 bool CanZextLoadProfitably
= TLI
.isLoadExtLegal(ISD::ZEXTLOAD
,
5971 Load
->getValueType(0),
5972 Load
->getMemoryVT());
5974 // Resize the constant to the same size as the original memory access before
5975 // extension. If it is still the AllOnesValue then this AND is completely
5977 Constant
= Constant
.zextOrTrunc(Load
->getMemoryVT().getScalarSizeInBits());
5980 switch (Load
->getExtensionType()) {
5981 default: B
= false; break;
5982 case ISD::EXTLOAD
: B
= CanZextLoadProfitably
; break;
5984 case ISD::NON_EXTLOAD
: B
= true; break;
5987 if (B
&& Constant
.isAllOnes()) {
5988 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
5989 // preserve semantics once we get rid of the AND.
5990 SDValue
NewLoad(Load
, 0);
5992 // Fold the AND away. NewLoad may get replaced immediately.
5993 CombineTo(N
, (N0
.getNode() == Load
) ? NewLoad
: N0
);
5995 if (Load
->getExtensionType() == ISD::EXTLOAD
) {
5996 NewLoad
= DAG
.getLoad(Load
->getAddressingMode(), ISD::ZEXTLOAD
,
5997 Load
->getValueType(0), SDLoc(Load
),
5998 Load
->getChain(), Load
->getBasePtr(),
5999 Load
->getOffset(), Load
->getMemoryVT(),
6000 Load
->getMemOperand());
6001 // Replace uses of the EXTLOAD with the new ZEXTLOAD.
6002 if (Load
->getNumValues() == 3) {
6003 // PRE/POST_INC loads have 3 values.
6004 SDValue To
[] = { NewLoad
.getValue(0), NewLoad
.getValue(1),
6005 NewLoad
.getValue(2) };
6006 CombineTo(Load
, To
, 3, true);
6008 CombineTo(Load
, NewLoad
.getValue(0), NewLoad
.getValue(1));
6012 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
6016 // fold (and (masked_gather x)) -> (zext_masked_gather x)
6017 if (auto *GN0
= dyn_cast
<MaskedGatherSDNode
>(N0
)) {
6018 EVT MemVT
= GN0
->getMemoryVT();
6019 EVT ScalarVT
= MemVT
.getScalarType();
6021 if (SDValue(GN0
, 0).hasOneUse() &&
6022 isConstantSplatVectorMaskForType(N1
.getNode(), ScalarVT
) &&
6023 TLI
.isVectorLoadExtDesirable(SDValue(SDValue(GN0
, 0)))) {
6024 SDValue Ops
[] = {GN0
->getChain(), GN0
->getPassThru(), GN0
->getMask(),
6025 GN0
->getBasePtr(), GN0
->getIndex(), GN0
->getScale()};
6027 SDValue ZExtLoad
= DAG
.getMaskedGather(
6028 DAG
.getVTList(VT
, MVT::Other
), MemVT
, SDLoc(N
), Ops
,
6029 GN0
->getMemOperand(), GN0
->getIndexType(), ISD::ZEXTLOAD
);
6031 CombineTo(N
, ZExtLoad
);
6032 AddToWorklist(ZExtLoad
.getNode());
6033 // Avoid recheck of N.
6034 return SDValue(N
, 0);
6038 // fold (and (load x), 255) -> (zextload x, i8)
6039 // fold (and (extload x, i16), 255) -> (zextload x, i8)
6040 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
6041 if (!VT
.isVector() && N1C
&& (N0
.getOpcode() == ISD::LOAD
||
6042 (N0
.getOpcode() == ISD::ANY_EXTEND
&&
6043 N0
.getOperand(0).getOpcode() == ISD::LOAD
))) {
6044 if (SDValue Res
= reduceLoadWidth(N
)) {
6045 LoadSDNode
*LN0
= N0
->getOpcode() == ISD::ANY_EXTEND
6046 ? cast
<LoadSDNode
>(N0
.getOperand(0)) : cast
<LoadSDNode
>(N0
);
6048 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 0), Res
);
6049 return SDValue(N
, 0);
6054 // Attempt to propagate the AND back up to the leaves which, if they're
6055 // loads, can be combined to narrow loads and the AND node can be removed.
6056 // Perform after legalization so that extend nodes will already be
6057 // combined into the loads.
6058 if (BackwardsPropagateMask(N
))
6059 return SDValue(N
, 0);
6062 if (SDValue Combined
= visitANDLike(N0
, N1
, N
))
6065 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
6066 if (N0
.getOpcode() == N1
.getOpcode())
6067 if (SDValue V
= hoistLogicOpWithSameOpcodeHands(N
))
6070 // Masking the negated extension of a boolean is just the zero-extended
6072 // and (sub 0, zext(bool X)), 1 --> zext(bool X)
6073 // and (sub 0, sext(bool X)), 1 --> zext(bool X)
6075 // Note: the SimplifyDemandedBits fold below can make an information-losing
6076 // transform, and then we have no way to find this better fold.
6077 if (N1C
&& N1C
->isOne() && N0
.getOpcode() == ISD::SUB
) {
6078 if (isNullOrNullSplat(N0
.getOperand(0))) {
6079 SDValue SubRHS
= N0
.getOperand(1);
6080 if (SubRHS
.getOpcode() == ISD::ZERO_EXTEND
&&
6081 SubRHS
.getOperand(0).getScalarValueSizeInBits() == 1)
6083 if (SubRHS
.getOpcode() == ISD::SIGN_EXTEND
&&
6084 SubRHS
.getOperand(0).getScalarValueSizeInBits() == 1)
6085 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), VT
, SubRHS
.getOperand(0));
6089 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
6090 // fold (and (sra)) -> (and (srl)) when possible.
6091 if (SimplifyDemandedBits(SDValue(N
, 0)))
6092 return SDValue(N
, 0);
6094 // fold (zext_inreg (extload x)) -> (zextload x)
6095 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
6096 if (ISD::isUNINDEXEDLoad(N0
.getNode()) &&
6097 (ISD::isEXTLoad(N0
.getNode()) ||
6098 (ISD::isSEXTLoad(N0
.getNode()) && N0
.hasOneUse()))) {
6099 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
6100 EVT MemVT
= LN0
->getMemoryVT();
6101 // If we zero all the possible extended bits, then we can turn this into
6102 // a zextload if we are running before legalize or the operation is legal.
6103 unsigned ExtBitSize
= N1
.getScalarValueSizeInBits();
6104 unsigned MemBitSize
= MemVT
.getScalarSizeInBits();
6105 APInt ExtBits
= APInt::getHighBitsSet(ExtBitSize
, ExtBitSize
- MemBitSize
);
6106 if (DAG
.MaskedValueIsZero(N1
, ExtBits
) &&
6107 ((!LegalOperations
&& LN0
->isSimple()) ||
6108 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
))) {
6110 DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(N0
), VT
, LN0
->getChain(),
6111 LN0
->getBasePtr(), MemVT
, LN0
->getMemOperand());
6113 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
6114 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
6118 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
6119 if (N1C
&& N1C
->getAPIntValue() == 0xffff && N0
.getOpcode() == ISD::OR
) {
6120 if (SDValue BSwap
= MatchBSwapHWordLow(N0
.getNode(), N0
.getOperand(0),
6121 N0
.getOperand(1), false))
6125 if (SDValue Shifts
= unfoldExtremeBitClearingToShifts(N
))
6128 if (TLI
.hasBitTest(N0
, N1
))
6129 if (SDValue V
= combineShiftAnd1ToBitTest(N
, DAG
))
6132 // Recognize the following pattern:
6134 // AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask)
6136 // where bitmask is a mask that clears the upper bits of AndVT. The
6137 // number of bits in bitmask must be a power of two.
6138 auto IsAndZeroExtMask
= [](SDValue LHS
, SDValue RHS
) {
6139 if (LHS
->getOpcode() != ISD::SIGN_EXTEND
)
6142 auto *C
= dyn_cast
<ConstantSDNode
>(RHS
);
6146 if (!C
->getAPIntValue().isMask(
6147 LHS
.getOperand(0).getValueType().getFixedSizeInBits()))
6153 // Replace (and (sign_extend ...) #bitmask) with (zero_extend ...).
6154 if (IsAndZeroExtMask(N0
, N1
))
6155 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), VT
, N0
.getOperand(0));
6157 if (hasOperation(ISD::USUBSAT
, VT
))
6158 if (SDValue V
= foldAndToUsubsat(N
, DAG
))
6164 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
6165 SDValue
DAGCombiner::MatchBSwapHWordLow(SDNode
*N
, SDValue N0
, SDValue N1
,
6166 bool DemandHighBits
) {
6167 if (!LegalOperations
)
6170 EVT VT
= N
->getValueType(0);
6171 if (VT
!= MVT::i64
&& VT
!= MVT::i32
&& VT
!= MVT::i16
)
6173 if (!TLI
.isOperationLegalOrCustom(ISD::BSWAP
, VT
))
6176 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
6177 bool LookPassAnd0
= false;
6178 bool LookPassAnd1
= false;
6179 if (N0
.getOpcode() == ISD::AND
&& N0
.getOperand(0).getOpcode() == ISD::SRL
)
6181 if (N1
.getOpcode() == ISD::AND
&& N1
.getOperand(0).getOpcode() == ISD::SHL
)
6183 if (N0
.getOpcode() == ISD::AND
) {
6184 if (!N0
.getNode()->hasOneUse())
6186 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
6187 // Also handle 0xffff since the LHS is guaranteed to have zeros there.
6188 // This is needed for X86.
6189 if (!N01C
|| (N01C
->getZExtValue() != 0xFF00 &&
6190 N01C
->getZExtValue() != 0xFFFF))
6192 N0
= N0
.getOperand(0);
6193 LookPassAnd0
= true;
6196 if (N1
.getOpcode() == ISD::AND
) {
6197 if (!N1
.getNode()->hasOneUse())
6199 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
6200 if (!N11C
|| N11C
->getZExtValue() != 0xFF)
6202 N1
= N1
.getOperand(0);
6203 LookPassAnd1
= true;
6206 if (N0
.getOpcode() == ISD::SRL
&& N1
.getOpcode() == ISD::SHL
)
6208 if (N0
.getOpcode() != ISD::SHL
|| N1
.getOpcode() != ISD::SRL
)
6210 if (!N0
.getNode()->hasOneUse() || !N1
.getNode()->hasOneUse())
6213 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
6214 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
6217 if (N01C
->getZExtValue() != 8 || N11C
->getZExtValue() != 8)
6220 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
6221 SDValue N00
= N0
->getOperand(0);
6222 if (!LookPassAnd0
&& N00
.getOpcode() == ISD::AND
) {
6223 if (!N00
.getNode()->hasOneUse())
6225 ConstantSDNode
*N001C
= dyn_cast
<ConstantSDNode
>(N00
.getOperand(1));
6226 if (!N001C
|| N001C
->getZExtValue() != 0xFF)
6228 N00
= N00
.getOperand(0);
6229 LookPassAnd0
= true;
6232 SDValue N10
= N1
->getOperand(0);
6233 if (!LookPassAnd1
&& N10
.getOpcode() == ISD::AND
) {
6234 if (!N10
.getNode()->hasOneUse())
6236 ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N10
.getOperand(1));
6237 // Also allow 0xFFFF since the bits will be shifted out. This is needed
6239 if (!N101C
|| (N101C
->getZExtValue() != 0xFF00 &&
6240 N101C
->getZExtValue() != 0xFFFF))
6242 N10
= N10
.getOperand(0);
6243 LookPassAnd1
= true;
6249 // Make sure everything beyond the low halfword gets set to zero since the SRL
6250 // 16 will clear the top bits.
6251 unsigned OpSizeInBits
= VT
.getSizeInBits();
6252 if (DemandHighBits
&& OpSizeInBits
> 16) {
6253 // If the left-shift isn't masked out then the only way this is a bswap is
6254 // if all bits beyond the low 8 are 0. In that case the entire pattern
6255 // reduces to a left shift anyway: leave it for other parts of the combiner.
6259 // However, if the right shift isn't masked out then it might be because
6260 // it's not needed. See if we can spot that too.
6261 if (!LookPassAnd1
&&
6262 !DAG
.MaskedValueIsZero(
6263 N10
, APInt::getHighBitsSet(OpSizeInBits
, OpSizeInBits
- 16)))
6267 SDValue Res
= DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, N00
);
6268 if (OpSizeInBits
> 16) {
6270 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, Res
,
6271 DAG
.getConstant(OpSizeInBits
- 16, DL
,
6272 getShiftAmountTy(VT
)));
6277 /// Return true if the specified node is an element that makes up a 32-bit
6278 /// packed halfword byteswap.
6279 /// ((x & 0x000000ff) << 8) |
6280 /// ((x & 0x0000ff00) >> 8) |
6281 /// ((x & 0x00ff0000) << 8) |
6282 /// ((x & 0xff000000) >> 8)
6283 static bool isBSwapHWordElement(SDValue N
, MutableArrayRef
<SDNode
*> Parts
) {
6284 if (!N
.getNode()->hasOneUse())
6287 unsigned Opc
= N
.getOpcode();
6288 if (Opc
!= ISD::AND
&& Opc
!= ISD::SHL
&& Opc
!= ISD::SRL
)
6291 SDValue N0
= N
.getOperand(0);
6292 unsigned Opc0
= N0
.getOpcode();
6293 if (Opc0
!= ISD::AND
&& Opc0
!= ISD::SHL
&& Opc0
!= ISD::SRL
)
6296 ConstantSDNode
*N1C
= nullptr;
6297 // SHL or SRL: look upstream for AND mask operand
6298 if (Opc
== ISD::AND
)
6299 N1C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
6300 else if (Opc0
== ISD::AND
)
6301 N1C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
6305 unsigned MaskByteOffset
;
6306 switch (N1C
->getZExtValue()) {
6309 case 0xFF: MaskByteOffset
= 0; break;
6310 case 0xFF00: MaskByteOffset
= 1; break;
6312 // In case demanded bits didn't clear the bits that will be shifted out.
6313 // This is needed for X86.
6314 if (Opc
== ISD::SRL
|| (Opc
== ISD::AND
&& Opc0
== ISD::SHL
)) {
6319 case 0xFF0000: MaskByteOffset
= 2; break;
6320 case 0xFF000000: MaskByteOffset
= 3; break;
6323 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
6324 if (Opc
== ISD::AND
) {
6325 if (MaskByteOffset
== 0 || MaskByteOffset
== 2) {
6327 // (x >> 8) & 0xff0000
6328 if (Opc0
!= ISD::SRL
)
6330 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
6331 if (!C
|| C
->getZExtValue() != 8)
6334 // (x << 8) & 0xff00
6335 // (x << 8) & 0xff000000
6336 if (Opc0
!= ISD::SHL
)
6338 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
6339 if (!C
|| C
->getZExtValue() != 8)
6342 } else if (Opc
== ISD::SHL
) {
6344 // (x & 0xff0000) << 8
6345 if (MaskByteOffset
!= 0 && MaskByteOffset
!= 2)
6347 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
6348 if (!C
|| C
->getZExtValue() != 8)
6350 } else { // Opc == ISD::SRL
6351 // (x & 0xff00) >> 8
6352 // (x & 0xff000000) >> 8
6353 if (MaskByteOffset
!= 1 && MaskByteOffset
!= 3)
6355 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
6356 if (!C
|| C
->getZExtValue() != 8)
6360 if (Parts
[MaskByteOffset
])
6363 Parts
[MaskByteOffset
] = N0
.getOperand(0).getNode();
6367 // Match 2 elements of a packed halfword bswap.
6368 static bool isBSwapHWordPair(SDValue N
, MutableArrayRef
<SDNode
*> Parts
) {
6369 if (N
.getOpcode() == ISD::OR
)
6370 return isBSwapHWordElement(N
.getOperand(0), Parts
) &&
6371 isBSwapHWordElement(N
.getOperand(1), Parts
);
6373 if (N
.getOpcode() == ISD::SRL
&& N
.getOperand(0).getOpcode() == ISD::BSWAP
) {
6374 ConstantSDNode
*C
= isConstOrConstSplat(N
.getOperand(1));
6375 if (!C
|| C
->getAPIntValue() != 16)
6377 Parts
[0] = Parts
[1] = N
.getOperand(0).getOperand(0).getNode();
6384 // Match this pattern:
6385 // (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff))
6386 // And rewrite this to:
6387 // (rotr (bswap A), 16)
6388 static SDValue
matchBSwapHWordOrAndAnd(const TargetLowering
&TLI
,
6389 SelectionDAG
&DAG
, SDNode
*N
, SDValue N0
,
6390 SDValue N1
, EVT VT
, EVT ShiftAmountTy
) {
6391 assert(N
->getOpcode() == ISD::OR
&& VT
== MVT::i32
&&
6392 "MatchBSwapHWordOrAndAnd: expecting i32");
6393 if (!TLI
.isOperationLegalOrCustom(ISD::ROTR
, VT
))
6395 if (N0
.getOpcode() != ISD::AND
|| N1
.getOpcode() != ISD::AND
)
6397 // TODO: this is too restrictive; lifting this restriction requires more tests
6398 if (!N0
->hasOneUse() || !N1
->hasOneUse())
6400 ConstantSDNode
*Mask0
= isConstOrConstSplat(N0
.getOperand(1));
6401 ConstantSDNode
*Mask1
= isConstOrConstSplat(N1
.getOperand(1));
6402 if (!Mask0
|| !Mask1
)
6404 if (Mask0
->getAPIntValue() != 0xff00ff00 ||
6405 Mask1
->getAPIntValue() != 0x00ff00ff)
6407 SDValue Shift0
= N0
.getOperand(0);
6408 SDValue Shift1
= N1
.getOperand(0);
6409 if (Shift0
.getOpcode() != ISD::SHL
|| Shift1
.getOpcode() != ISD::SRL
)
6411 ConstantSDNode
*ShiftAmt0
= isConstOrConstSplat(Shift0
.getOperand(1));
6412 ConstantSDNode
*ShiftAmt1
= isConstOrConstSplat(Shift1
.getOperand(1));
6413 if (!ShiftAmt0
|| !ShiftAmt1
)
6415 if (ShiftAmt0
->getAPIntValue() != 8 || ShiftAmt1
->getAPIntValue() != 8)
6417 if (Shift0
.getOperand(0) != Shift1
.getOperand(0))
6421 SDValue BSwap
= DAG
.getNode(ISD::BSWAP
, DL
, VT
, Shift0
.getOperand(0));
6422 SDValue ShAmt
= DAG
.getConstant(16, DL
, ShiftAmountTy
);
6423 return DAG
.getNode(ISD::ROTR
, DL
, VT
, BSwap
, ShAmt
);
6426 /// Match a 32-bit packed halfword bswap. That is
6427 /// ((x & 0x000000ff) << 8) |
6428 /// ((x & 0x0000ff00) >> 8) |
6429 /// ((x & 0x00ff0000) << 8) |
6430 /// ((x & 0xff000000) >> 8)
6431 /// => (rotl (bswap x), 16)
6432 SDValue
DAGCombiner::MatchBSwapHWord(SDNode
*N
, SDValue N0
, SDValue N1
) {
6433 if (!LegalOperations
)
6436 EVT VT
= N
->getValueType(0);
6439 if (!TLI
.isOperationLegalOrCustom(ISD::BSWAP
, VT
))
6442 if (SDValue BSwap
= matchBSwapHWordOrAndAnd(TLI
, DAG
, N
, N0
, N1
, VT
,
6443 getShiftAmountTy(VT
)))
6446 // Try again with commuted operands.
6447 if (SDValue BSwap
= matchBSwapHWordOrAndAnd(TLI
, DAG
, N
, N1
, N0
, VT
,
6448 getShiftAmountTy(VT
)))
6453 // (or (bswaphpair), (bswaphpair))
6454 // (or (or (bswaphpair), (and)), (and))
6455 // (or (or (and), (bswaphpair)), (and))
6456 SDNode
*Parts
[4] = {};
6458 if (isBSwapHWordPair(N0
, Parts
)) {
6459 // (or (or (and), (and)), (or (and), (and)))
6460 if (!isBSwapHWordPair(N1
, Parts
))
6462 } else if (N0
.getOpcode() == ISD::OR
) {
6463 // (or (or (or (and), (and)), (and)), (and))
6464 if (!isBSwapHWordElement(N1
, Parts
))
6466 SDValue N00
= N0
.getOperand(0);
6467 SDValue N01
= N0
.getOperand(1);
6468 if (!(isBSwapHWordElement(N01
, Parts
) && isBSwapHWordPair(N00
, Parts
)) &&
6469 !(isBSwapHWordElement(N00
, Parts
) && isBSwapHWordPair(N01
, Parts
)))
6474 // Make sure the parts are all coming from the same node.
6475 if (Parts
[0] != Parts
[1] || Parts
[0] != Parts
[2] || Parts
[0] != Parts
[3])
6479 SDValue BSwap
= DAG
.getNode(ISD::BSWAP
, DL
, VT
,
6480 SDValue(Parts
[0], 0));
6482 // Result of the bswap should be rotated by 16. If it's not legal, then
6483 // do (x << 16) | (x >> 16).
6484 SDValue ShAmt
= DAG
.getConstant(16, DL
, getShiftAmountTy(VT
));
6485 if (TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
))
6486 return DAG
.getNode(ISD::ROTL
, DL
, VT
, BSwap
, ShAmt
);
6487 if (TLI
.isOperationLegalOrCustom(ISD::ROTR
, VT
))
6488 return DAG
.getNode(ISD::ROTR
, DL
, VT
, BSwap
, ShAmt
);
6489 return DAG
.getNode(ISD::OR
, DL
, VT
,
6490 DAG
.getNode(ISD::SHL
, DL
, VT
, BSwap
, ShAmt
),
6491 DAG
.getNode(ISD::SRL
, DL
, VT
, BSwap
, ShAmt
));
6494 /// This contains all DAGCombine rules which reduce two values combined by
6495 /// an Or operation to a single value \see visitANDLike().
6496 SDValue
DAGCombiner::visitORLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
6497 EVT VT
= N1
.getValueType();
6500 // fold (or x, undef) -> -1
6501 if (!LegalOperations
&& (N0
.isUndef() || N1
.isUndef()))
6502 return DAG
.getAllOnesConstant(DL
, VT
);
6504 if (SDValue V
= foldLogicOfSetCCs(false, N0
, N1
, DL
))
6507 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
6508 if (N0
.getOpcode() == ISD::AND
&& N1
.getOpcode() == ISD::AND
&&
6509 // Don't increase # computations.
6510 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
6511 // We can only do this xform if we know that bits from X that are set in C2
6512 // but not in C1 are already zero. Likewise for Y.
6513 if (const ConstantSDNode
*N0O1C
=
6514 getAsNonOpaqueConstant(N0
.getOperand(1))) {
6515 if (const ConstantSDNode
*N1O1C
=
6516 getAsNonOpaqueConstant(N1
.getOperand(1))) {
6517 // We can only do this xform if we know that bits from X that are set in
6518 // C2 but not in C1 are already zero. Likewise for Y.
6519 const APInt
&LHSMask
= N0O1C
->getAPIntValue();
6520 const APInt
&RHSMask
= N1O1C
->getAPIntValue();
6522 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), RHSMask
&~LHSMask
) &&
6523 DAG
.MaskedValueIsZero(N1
.getOperand(0), LHSMask
&~RHSMask
)) {
6524 SDValue X
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
,
6525 N0
.getOperand(0), N1
.getOperand(0));
6526 return DAG
.getNode(ISD::AND
, DL
, VT
, X
,
6527 DAG
.getConstant(LHSMask
| RHSMask
, DL
, VT
));
6533 // (or (and X, M), (and X, N)) -> (and X, (or M, N))
6534 if (N0
.getOpcode() == ISD::AND
&&
6535 N1
.getOpcode() == ISD::AND
&&
6536 N0
.getOperand(0) == N1
.getOperand(0) &&
6537 // Don't increase # computations.
6538 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
6539 SDValue X
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
,
6540 N0
.getOperand(1), N1
.getOperand(1));
6541 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), X
);
6547 /// OR combines for which the commuted variant will be tried as well.
6548 static SDValue
visitORCommutative(
6549 SelectionDAG
&DAG
, SDValue N0
, SDValue N1
, SDNode
*N
) {
6550 EVT VT
= N0
.getValueType();
6551 if (N0
.getOpcode() == ISD::AND
) {
6552 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y)
6553 if (isBitwiseNot(N0
.getOperand(1)) && N0
.getOperand(1).getOperand(0) == N1
)
6554 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
6556 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y)
6557 if (isBitwiseNot(N0
.getOperand(0)) && N0
.getOperand(0).getOperand(0) == N1
)
6558 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, N0
.getOperand(1), N1
);
6564 SDValue
DAGCombiner::visitOR(SDNode
*N
) {
6565 SDValue N0
= N
->getOperand(0);
6566 SDValue N1
= N
->getOperand(1);
6567 EVT VT
= N1
.getValueType();
6573 // fold (or c1, c2) -> c1|c2
6574 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::OR
, SDLoc(N
), VT
, {N0
, N1
}))
6577 // canonicalize constant to RHS
6578 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
6579 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
6580 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, N1
, N0
);
6583 if (VT
.isVector()) {
6584 if (SDValue FoldedVOp
= SimplifyVBinOp(N
, SDLoc(N
)))
6587 // fold (or x, 0) -> x, vector edition
6588 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
6591 // fold (or x, -1) -> -1, vector edition
6592 if (ISD::isConstantSplatVectorAllOnes(N1
.getNode()))
6593 // do not return N1, because undef node may exist in N1
6594 return DAG
.getAllOnesConstant(SDLoc(N
), N1
.getValueType());
6596 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
6597 // Do this only if the resulting shuffle is legal.
6598 if (isa
<ShuffleVectorSDNode
>(N0
) &&
6599 isa
<ShuffleVectorSDNode
>(N1
) &&
6600 // Avoid folding a node with illegal type.
6601 TLI
.isTypeLegal(VT
)) {
6602 bool ZeroN00
= ISD::isBuildVectorAllZeros(N0
.getOperand(0).getNode());
6603 bool ZeroN01
= ISD::isBuildVectorAllZeros(N0
.getOperand(1).getNode());
6604 bool ZeroN10
= ISD::isBuildVectorAllZeros(N1
.getOperand(0).getNode());
6605 bool ZeroN11
= ISD::isBuildVectorAllZeros(N1
.getOperand(1).getNode());
6606 // Ensure both shuffles have a zero input.
6607 if ((ZeroN00
!= ZeroN01
) && (ZeroN10
!= ZeroN11
)) {
6608 assert((!ZeroN00
|| !ZeroN01
) && "Both inputs zero!");
6609 assert((!ZeroN10
|| !ZeroN11
) && "Both inputs zero!");
6610 const ShuffleVectorSDNode
*SV0
= cast
<ShuffleVectorSDNode
>(N0
);
6611 const ShuffleVectorSDNode
*SV1
= cast
<ShuffleVectorSDNode
>(N1
);
6612 bool CanFold
= true;
6613 int NumElts
= VT
.getVectorNumElements();
6614 SmallVector
<int, 4> Mask(NumElts
);
6616 for (int i
= 0; i
!= NumElts
; ++i
) {
6617 int M0
= SV0
->getMaskElt(i
);
6618 int M1
= SV1
->getMaskElt(i
);
6620 // Determine if either index is pointing to a zero vector.
6621 bool M0Zero
= M0
< 0 || (ZeroN00
== (M0
< NumElts
));
6622 bool M1Zero
= M1
< 0 || (ZeroN10
== (M1
< NumElts
));
6624 // If one element is zero and the otherside is undef, keep undef.
6625 // This also handles the case that both are undef.
6626 if ((M0Zero
&& M1
< 0) || (M1Zero
&& M0
< 0)) {
6631 // Make sure only one of the elements is zero.
6632 if (M0Zero
== M1Zero
) {
6637 assert((M0
>= 0 || M1
>= 0) && "Undef index!");
6639 // We have a zero and non-zero element. If the non-zero came from
6640 // SV0 make the index a LHS index. If it came from SV1, make it
6641 // a RHS index. We need to mod by NumElts because we don't care
6642 // which operand it came from in the original shuffles.
6643 Mask
[i
] = M1Zero
? M0
% NumElts
: (M1
% NumElts
) + NumElts
;
6647 SDValue NewLHS
= ZeroN00
? N0
.getOperand(1) : N0
.getOperand(0);
6648 SDValue NewRHS
= ZeroN10
? N1
.getOperand(1) : N1
.getOperand(0);
6650 SDValue LegalShuffle
=
6651 TLI
.buildLegalVectorShuffle(VT
, SDLoc(N
), NewLHS
, NewRHS
,
6654 return LegalShuffle
;
6660 // fold (or x, 0) -> x
6661 if (isNullConstant(N1
))
6664 // fold (or x, -1) -> -1
6665 if (isAllOnesConstant(N1
))
6668 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
6671 // fold (or x, c) -> c iff (x & ~c) == 0
6672 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
6673 if (N1C
&& DAG
.MaskedValueIsZero(N0
, ~N1C
->getAPIntValue()))
6676 if (SDValue Combined
= visitORLike(N0
, N1
, N
))
6679 if (SDValue Combined
= combineCarryDiamond(*this, DAG
, TLI
, N0
, N1
, N
))
6682 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
6683 if (SDValue BSwap
= MatchBSwapHWord(N
, N0
, N1
))
6685 if (SDValue BSwap
= MatchBSwapHWordLow(N
, N0
, N1
))
6689 if (SDValue ROR
= reassociateOps(ISD::OR
, SDLoc(N
), N0
, N1
, N
->getFlags()))
6692 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
6693 // iff (c1 & c2) != 0 or c1/c2 are undef.
6694 auto MatchIntersect
= [](ConstantSDNode
*C1
, ConstantSDNode
*C2
) {
6695 return !C1
|| !C2
|| C1
->getAPIntValue().intersects(C2
->getAPIntValue());
6697 if (N0
.getOpcode() == ISD::AND
&& N0
.getNode()->hasOneUse() &&
6698 ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchIntersect
, true)) {
6699 if (SDValue COR
= DAG
.FoldConstantArithmetic(ISD::OR
, SDLoc(N1
), VT
,
6700 {N1
, N0
.getOperand(1)})) {
6701 SDValue IOR
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
6702 AddToWorklist(IOR
.getNode());
6703 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, COR
, IOR
);
6707 if (SDValue Combined
= visitORCommutative(DAG
, N0
, N1
, N
))
6709 if (SDValue Combined
= visitORCommutative(DAG
, N1
, N0
, N
))
6712 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
6713 if (N0
.getOpcode() == N1
.getOpcode())
6714 if (SDValue V
= hoistLogicOpWithSameOpcodeHands(N
))
6717 // See if this is some rotate idiom.
6718 if (SDValue Rot
= MatchRotate(N0
, N1
, SDLoc(N
)))
6721 if (SDValue Load
= MatchLoadCombine(N
))
6724 // Simplify the operands using demanded-bits information.
6725 if (SimplifyDemandedBits(SDValue(N
, 0)))
6726 return SDValue(N
, 0);
6728 // If OR can be rewritten into ADD, try combines based on ADD.
6729 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::ADD
, VT
)) &&
6730 DAG
.haveNoCommonBitsSet(N0
, N1
))
6731 if (SDValue Combined
= visitADDLike(N
))
6737 static SDValue
stripConstantMask(SelectionDAG
&DAG
, SDValue Op
, SDValue
&Mask
) {
6738 if (Op
.getOpcode() == ISD::AND
&&
6739 DAG
.isConstantIntBuildVectorOrConstantInt(Op
.getOperand(1))) {
6740 Mask
= Op
.getOperand(1);
6741 return Op
.getOperand(0);
6746 /// Match "(X shl/srl V1) & V2" where V2 may not be present.
6747 static bool matchRotateHalf(SelectionDAG
&DAG
, SDValue Op
, SDValue
&Shift
,
6749 Op
= stripConstantMask(DAG
, Op
, Mask
);
6750 if (Op
.getOpcode() == ISD::SRL
|| Op
.getOpcode() == ISD::SHL
) {
6757 /// Helper function for visitOR to extract the needed side of a rotate idiom
6758 /// from a shl/srl/mul/udiv. This is meant to handle cases where
6759 /// InstCombine merged some outside op with one of the shifts from
6760 /// the rotate pattern.
6761 /// \returns An empty \c SDValue if the needed shift couldn't be extracted.
6762 /// Otherwise, returns an expansion of \p ExtractFrom based on the following
6765 /// (or (add v v) (shrl v bitwidth-1)):
6766 /// expands (add v v) -> (shl v 1)
6768 /// (or (mul v c0) (shrl (mul v c1) c2)):
6769 /// expands (mul v c0) -> (shl (mul v c1) c3)
6771 /// (or (udiv v c0) (shl (udiv v c1) c2)):
6772 /// expands (udiv v c0) -> (shrl (udiv v c1) c3)
6774 /// (or (shl v c0) (shrl (shl v c1) c2)):
6775 /// expands (shl v c0) -> (shl (shl v c1) c3)
6777 /// (or (shrl v c0) (shl (shrl v c1) c2)):
6778 /// expands (shrl v c0) -> (shrl (shrl v c1) c3)
6780 /// Such that in all cases, c3+c2==bitwidth(op v c1).
6781 static SDValue
extractShiftForRotate(SelectionDAG
&DAG
, SDValue OppShift
,
6782 SDValue ExtractFrom
, SDValue
&Mask
,
6784 assert(OppShift
&& ExtractFrom
&& "Empty SDValue");
6786 (OppShift
.getOpcode() == ISD::SHL
|| OppShift
.getOpcode() == ISD::SRL
) &&
6787 "Existing shift must be valid as a rotate half");
6789 ExtractFrom
= stripConstantMask(DAG
, ExtractFrom
, Mask
);
6791 // Value and Type of the shift.
6792 SDValue OppShiftLHS
= OppShift
.getOperand(0);
6793 EVT ShiftedVT
= OppShiftLHS
.getValueType();
6795 // Amount of the existing shift.
6796 ConstantSDNode
*OppShiftCst
= isConstOrConstSplat(OppShift
.getOperand(1));
6798 // (add v v) -> (shl v 1)
6799 // TODO: Should this be a general DAG canonicalization?
6800 if (OppShift
.getOpcode() == ISD::SRL
&& OppShiftCst
&&
6801 ExtractFrom
.getOpcode() == ISD::ADD
&&
6802 ExtractFrom
.getOperand(0) == ExtractFrom
.getOperand(1) &&
6803 ExtractFrom
.getOperand(0) == OppShiftLHS
&&
6804 OppShiftCst
->getAPIntValue() == ShiftedVT
.getScalarSizeInBits() - 1)
6805 return DAG
.getNode(ISD::SHL
, DL
, ShiftedVT
, OppShiftLHS
,
6806 DAG
.getShiftAmountConstant(1, ShiftedVT
, DL
));
6809 // (or (op0 v c0) (shiftl/r (op0 v c1) c2))
6811 // Find opcode of the needed shift to be extracted from (op0 v c0).
6812 unsigned Opcode
= ISD::DELETED_NODE
;
6813 bool IsMulOrDiv
= false;
6814 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
6815 // opcode or its arithmetic (mul or udiv) variant.
6816 auto SelectOpcode
= [&](unsigned NeededShift
, unsigned MulOrDivVariant
) {
6817 IsMulOrDiv
= ExtractFrom
.getOpcode() == MulOrDivVariant
;
6818 if (!IsMulOrDiv
&& ExtractFrom
.getOpcode() != NeededShift
)
6820 Opcode
= NeededShift
;
6823 // op0 must be either the needed shift opcode or the mul/udiv equivalent
6824 // that the needed shift can be extracted from.
6825 if ((OppShift
.getOpcode() != ISD::SRL
|| !SelectOpcode(ISD::SHL
, ISD::MUL
)) &&
6826 (OppShift
.getOpcode() != ISD::SHL
|| !SelectOpcode(ISD::SRL
, ISD::UDIV
)))
6829 // op0 must be the same opcode on both sides, have the same LHS argument,
6830 // and produce the same value type.
6831 if (OppShiftLHS
.getOpcode() != ExtractFrom
.getOpcode() ||
6832 OppShiftLHS
.getOperand(0) != ExtractFrom
.getOperand(0) ||
6833 ShiftedVT
!= ExtractFrom
.getValueType())
6836 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
6837 ConstantSDNode
*OppLHSCst
= isConstOrConstSplat(OppShiftLHS
.getOperand(1));
6838 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
6839 ConstantSDNode
*ExtractFromCst
=
6840 isConstOrConstSplat(ExtractFrom
.getOperand(1));
6841 // TODO: We should be able to handle non-uniform constant vectors for these values
6842 // Check that we have constant values.
6843 if (!OppShiftCst
|| !OppShiftCst
->getAPIntValue() ||
6844 !OppLHSCst
|| !OppLHSCst
->getAPIntValue() ||
6845 !ExtractFromCst
|| !ExtractFromCst
->getAPIntValue())
6848 // Compute the shift amount we need to extract to complete the rotate.
6849 const unsigned VTWidth
= ShiftedVT
.getScalarSizeInBits();
6850 if (OppShiftCst
->getAPIntValue().ugt(VTWidth
))
6852 APInt NeededShiftAmt
= VTWidth
- OppShiftCst
->getAPIntValue();
6853 // Normalize the bitwidth of the two mul/udiv/shift constant operands.
6854 APInt ExtractFromAmt
= ExtractFromCst
->getAPIntValue();
6855 APInt OppLHSAmt
= OppLHSCst
->getAPIntValue();
6856 zeroExtendToMatch(ExtractFromAmt
, OppLHSAmt
);
6858 // Now try extract the needed shift from the ExtractFrom op and see if the
6859 // result matches up with the existing shift's LHS op.
6861 // Op to extract from is a mul or udiv by a constant.
6863 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
6864 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
6865 const APInt ExtractDiv
= APInt::getOneBitSet(ExtractFromAmt
.getBitWidth(),
6866 NeededShiftAmt
.getZExtValue());
6869 APInt::udivrem(ExtractFromAmt
, ExtractDiv
, ResultAmt
, Rem
);
6870 if (Rem
!= 0 || ResultAmt
!= OppLHSAmt
)
6873 // Op to extract from is a shift by a constant.
6875 // c2 - (bitwidth(op0 v c0) - c1) == c0
6876 if (OppLHSAmt
!= ExtractFromAmt
- NeededShiftAmt
.zextOrTrunc(
6877 ExtractFromAmt
.getBitWidth()))
6881 // Return the expanded shift op that should allow a rotate to be formed.
6882 EVT ShiftVT
= OppShift
.getOperand(1).getValueType();
6883 EVT ResVT
= ExtractFrom
.getValueType();
6884 SDValue NewShiftNode
= DAG
.getConstant(NeededShiftAmt
, DL
, ShiftVT
);
6885 return DAG
.getNode(Opcode
, DL
, ResVT
, OppShiftLHS
, NewShiftNode
);
6888 // Return true if we can prove that, whenever Neg and Pos are both in the
6889 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
6890 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
6892 // (or (shift1 X, Neg), (shift2 X, Pos))
6894 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
6895 // in direction shift1 by Neg. The range [0, EltSize) means that we only need
6896 // to consider shift amounts with defined behavior.
6898 // The IsRotate flag should be set when the LHS of both shifts is the same.
6899 // Otherwise if matching a general funnel shift, it should be clear.
6900 static bool matchRotateSub(SDValue Pos
, SDValue Neg
, unsigned EltSize
,
6901 SelectionDAG
&DAG
, bool IsRotate
) {
6902 // If EltSize is a power of 2 then:
6904 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
6905 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
6907 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
6908 // for the stronger condition:
6910 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
6912 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
6913 // we can just replace Neg with Neg' for the rest of the function.
6915 // In other cases we check for the even stronger condition:
6917 // Neg == EltSize - Pos [B]
6919 // for all Neg and Pos. Note that the (or ...) then invokes undefined
6920 // behavior if Pos == 0 (and consequently Neg == EltSize).
6922 // We could actually use [A] whenever EltSize is a power of 2, but the
6923 // only extra cases that it would match are those uninteresting ones
6924 // where Neg and Pos are never in range at the same time. E.g. for
6925 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
6926 // as well as (sub 32, Pos), but:
6928 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
6930 // always invokes undefined behavior for 32-bit X.
6932 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
6934 // NOTE: We can only do this when matching an AND and not a general
6936 unsigned MaskLoBits
= 0;
6937 if (IsRotate
&& Neg
.getOpcode() == ISD::AND
&& isPowerOf2_64(EltSize
)) {
6938 if (ConstantSDNode
*NegC
= isConstOrConstSplat(Neg
.getOperand(1))) {
6939 KnownBits Known
= DAG
.computeKnownBits(Neg
.getOperand(0));
6940 unsigned Bits
= Log2_64(EltSize
);
6941 if (NegC
->getAPIntValue().getActiveBits() <= Bits
&&
6942 ((NegC
->getAPIntValue() | Known
.Zero
).countTrailingOnes() >= Bits
)) {
6943 Neg
= Neg
.getOperand(0);
6949 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
6950 if (Neg
.getOpcode() != ISD::SUB
)
6952 ConstantSDNode
*NegC
= isConstOrConstSplat(Neg
.getOperand(0));
6955 SDValue NegOp1
= Neg
.getOperand(1);
6957 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
6958 // Pos'. The truncation is redundant for the purpose of the equality.
6959 if (MaskLoBits
&& Pos
.getOpcode() == ISD::AND
) {
6960 if (ConstantSDNode
*PosC
= isConstOrConstSplat(Pos
.getOperand(1))) {
6961 KnownBits Known
= DAG
.computeKnownBits(Pos
.getOperand(0));
6962 if (PosC
->getAPIntValue().getActiveBits() <= MaskLoBits
&&
6963 ((PosC
->getAPIntValue() | Known
.Zero
).countTrailingOnes() >=
6965 Pos
= Pos
.getOperand(0);
6969 // The condition we need is now:
6971 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
6973 // If NegOp1 == Pos then we need:
6975 // EltSize & Mask == NegC & Mask
6977 // (because "x & Mask" is a truncation and distributes through subtraction).
6979 // We also need to account for a potential truncation of NegOp1 if the amount
6980 // has already been legalized to a shift amount type.
6982 if ((Pos
== NegOp1
) ||
6983 (NegOp1
.getOpcode() == ISD::TRUNCATE
&& Pos
== NegOp1
.getOperand(0)))
6984 Width
= NegC
->getAPIntValue();
6986 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
6987 // Then the condition we want to prove becomes:
6989 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
6991 // which, again because "x & Mask" is a truncation, becomes:
6993 // NegC & Mask == (EltSize - PosC) & Mask
6994 // EltSize & Mask == (NegC + PosC) & Mask
6995 else if (Pos
.getOpcode() == ISD::ADD
&& Pos
.getOperand(0) == NegOp1
) {
6996 if (ConstantSDNode
*PosC
= isConstOrConstSplat(Pos
.getOperand(1)))
6997 Width
= PosC
->getAPIntValue() + NegC
->getAPIntValue();
7003 // Now we just need to check that EltSize & Mask == Width & Mask.
7005 // EltSize & Mask is 0 since Mask is EltSize - 1.
7006 return Width
.getLoBits(MaskLoBits
) == 0;
7007 return Width
== EltSize
;
7010 // A subroutine of MatchRotate used once we have found an OR of two opposite
7011 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
7012 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
7013 // former being preferred if supported. InnerPos and InnerNeg are Pos and
7014 // Neg with outer conversions stripped away.
7015 SDValue
DAGCombiner::MatchRotatePosNeg(SDValue Shifted
, SDValue Pos
,
7016 SDValue Neg
, SDValue InnerPos
,
7017 SDValue InnerNeg
, unsigned PosOpcode
,
7018 unsigned NegOpcode
, const SDLoc
&DL
) {
7019 // fold (or (shl x, (*ext y)),
7020 // (srl x, (*ext (sub 32, y)))) ->
7021 // (rotl x, y) or (rotr x, (sub 32, y))
7023 // fold (or (shl x, (*ext (sub 32, y))),
7024 // (srl x, (*ext y))) ->
7025 // (rotr x, y) or (rotl x, (sub 32, y))
7026 EVT VT
= Shifted
.getValueType();
7027 if (matchRotateSub(InnerPos
, InnerNeg
, VT
.getScalarSizeInBits(), DAG
,
7028 /*IsRotate*/ true)) {
7029 bool HasPos
= TLI
.isOperationLegalOrCustom(PosOpcode
, VT
);
7030 return DAG
.getNode(HasPos
? PosOpcode
: NegOpcode
, DL
, VT
, Shifted
,
7031 HasPos
? Pos
: Neg
);
7037 // A subroutine of MatchRotate used once we have found an OR of two opposite
7038 // shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces
7039 // to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the
7040 // former being preferred if supported. InnerPos and InnerNeg are Pos and
7041 // Neg with outer conversions stripped away.
7042 // TODO: Merge with MatchRotatePosNeg.
7043 SDValue
DAGCombiner::MatchFunnelPosNeg(SDValue N0
, SDValue N1
, SDValue Pos
,
7044 SDValue Neg
, SDValue InnerPos
,
7045 SDValue InnerNeg
, unsigned PosOpcode
,
7046 unsigned NegOpcode
, const SDLoc
&DL
) {
7047 EVT VT
= N0
.getValueType();
7048 unsigned EltBits
= VT
.getScalarSizeInBits();
7050 // fold (or (shl x0, (*ext y)),
7051 // (srl x1, (*ext (sub 32, y)))) ->
7052 // (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y))
7054 // fold (or (shl x0, (*ext (sub 32, y))),
7055 // (srl x1, (*ext y))) ->
7056 // (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y))
7057 if (matchRotateSub(InnerPos
, InnerNeg
, EltBits
, DAG
, /*IsRotate*/ N0
== N1
)) {
7058 bool HasPos
= TLI
.isOperationLegalOrCustom(PosOpcode
, VT
);
7059 return DAG
.getNode(HasPos
? PosOpcode
: NegOpcode
, DL
, VT
, N0
, N1
,
7060 HasPos
? Pos
: Neg
);
7063 // Matching the shift+xor cases, we can't easily use the xor'd shift amount
7064 // so for now just use the PosOpcode case if its legal.
7065 // TODO: When can we use the NegOpcode case?
7066 if (PosOpcode
== ISD::FSHL
&& isPowerOf2_32(EltBits
)) {
7067 auto IsBinOpImm
= [](SDValue Op
, unsigned BinOpc
, unsigned Imm
) {
7068 if (Op
.getOpcode() != BinOpc
)
7070 ConstantSDNode
*Cst
= isConstOrConstSplat(Op
.getOperand(1));
7071 return Cst
&& (Cst
->getAPIntValue() == Imm
);
7074 // fold (or (shl x0, y), (srl (srl x1, 1), (xor y, 31)))
7075 // -> (fshl x0, x1, y)
7076 if (IsBinOpImm(N1
, ISD::SRL
, 1) &&
7077 IsBinOpImm(InnerNeg
, ISD::XOR
, EltBits
- 1) &&
7078 InnerPos
== InnerNeg
.getOperand(0) &&
7079 TLI
.isOperationLegalOrCustom(ISD::FSHL
, VT
)) {
7080 return DAG
.getNode(ISD::FSHL
, DL
, VT
, N0
, N1
.getOperand(0), Pos
);
7083 // fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y))
7084 // -> (fshr x0, x1, y)
7085 if (IsBinOpImm(N0
, ISD::SHL
, 1) &&
7086 IsBinOpImm(InnerPos
, ISD::XOR
, EltBits
- 1) &&
7087 InnerNeg
== InnerPos
.getOperand(0) &&
7088 TLI
.isOperationLegalOrCustom(ISD::FSHR
, VT
)) {
7089 return DAG
.getNode(ISD::FSHR
, DL
, VT
, N0
.getOperand(0), N1
, Neg
);
7092 // fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y))
7093 // -> (fshr x0, x1, y)
7094 // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization?
7095 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(0) == N0
.getOperand(1) &&
7096 IsBinOpImm(InnerPos
, ISD::XOR
, EltBits
- 1) &&
7097 InnerNeg
== InnerPos
.getOperand(0) &&
7098 TLI
.isOperationLegalOrCustom(ISD::FSHR
, VT
)) {
7099 return DAG
.getNode(ISD::FSHR
, DL
, VT
, N0
.getOperand(0), N1
, Neg
);
7106 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
7107 // idioms for rotate, and if the target supports rotation instructions, generate
7108 // a rot[lr]. This also matches funnel shift patterns, similar to rotation but
7109 // with different shifted sources.
7110 SDValue
DAGCombiner::MatchRotate(SDValue LHS
, SDValue RHS
, const SDLoc
&DL
) {
7111 EVT VT
= LHS
.getValueType();
7113 // The target must have at least one rotate/funnel flavor.
7114 // We still try to match rotate by constant pre-legalization.
7115 // TODO: Support pre-legalization funnel-shift by constant.
7116 bool HasROTL
= hasOperation(ISD::ROTL
, VT
);
7117 bool HasROTR
= hasOperation(ISD::ROTR
, VT
);
7118 bool HasFSHL
= hasOperation(ISD::FSHL
, VT
);
7119 bool HasFSHR
= hasOperation(ISD::FSHR
, VT
);
7120 if (LegalOperations
&& !HasROTL
&& !HasROTR
&& !HasFSHL
&& !HasFSHR
)
7123 // Check for truncated rotate.
7124 if (LHS
.getOpcode() == ISD::TRUNCATE
&& RHS
.getOpcode() == ISD::TRUNCATE
&&
7125 LHS
.getOperand(0).getValueType() == RHS
.getOperand(0).getValueType()) {
7126 assert(LHS
.getValueType() == RHS
.getValueType());
7127 if (SDValue Rot
= MatchRotate(LHS
.getOperand(0), RHS
.getOperand(0), DL
)) {
7128 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(LHS
), LHS
.getValueType(), Rot
);
7132 // Match "(X shl/srl V1) & V2" where V2 may not be present.
7133 SDValue LHSShift
; // The shift.
7134 SDValue LHSMask
; // AND value if any.
7135 matchRotateHalf(DAG
, LHS
, LHSShift
, LHSMask
);
7137 SDValue RHSShift
; // The shift.
7138 SDValue RHSMask
; // AND value if any.
7139 matchRotateHalf(DAG
, RHS
, RHSShift
, RHSMask
);
7141 // If neither side matched a rotate half, bail
7142 if (!LHSShift
&& !RHSShift
)
7145 // InstCombine may have combined a constant shl, srl, mul, or udiv with one
7146 // side of the rotate, so try to handle that here. In all cases we need to
7147 // pass the matched shift from the opposite side to compute the opcode and
7148 // needed shift amount to extract. We still want to do this if both sides
7149 // matched a rotate half because one half may be a potential overshift that
7150 // can be broken down (ie if InstCombine merged two shl or srl ops into a
7153 // Have LHS side of the rotate, try to extract the needed shift from the RHS.
7155 if (SDValue NewRHSShift
=
7156 extractShiftForRotate(DAG
, LHSShift
, RHS
, RHSMask
, DL
))
7157 RHSShift
= NewRHSShift
;
7158 // Have RHS side of the rotate, try to extract the needed shift from the LHS.
7160 if (SDValue NewLHSShift
=
7161 extractShiftForRotate(DAG
, RHSShift
, LHS
, LHSMask
, DL
))
7162 LHSShift
= NewLHSShift
;
7164 // If a side is still missing, nothing else we can do.
7165 if (!RHSShift
|| !LHSShift
)
7168 // At this point we've matched or extracted a shift op on each side.
7170 if (LHSShift
.getOpcode() == RHSShift
.getOpcode())
7171 return SDValue(); // Shifts must disagree.
7173 // TODO: Support pre-legalization funnel-shift by constant.
7174 bool IsRotate
= LHSShift
.getOperand(0) == RHSShift
.getOperand(0);
7175 if (!IsRotate
&& !(HasFSHL
|| HasFSHR
))
7176 return SDValue(); // Requires funnel shift support.
7178 // Canonicalize shl to left side in a shl/srl pair.
7179 if (RHSShift
.getOpcode() == ISD::SHL
) {
7180 std::swap(LHS
, RHS
);
7181 std::swap(LHSShift
, RHSShift
);
7182 std::swap(LHSMask
, RHSMask
);
7185 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
7186 SDValue LHSShiftArg
= LHSShift
.getOperand(0);
7187 SDValue LHSShiftAmt
= LHSShift
.getOperand(1);
7188 SDValue RHSShiftArg
= RHSShift
.getOperand(0);
7189 SDValue RHSShiftAmt
= RHSShift
.getOperand(1);
7191 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
7192 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
7193 // fold (or (shl x, C1), (srl y, C2)) -> (fshl x, y, C1)
7194 // fold (or (shl x, C1), (srl y, C2)) -> (fshr x, y, C2)
7195 // iff C1+C2 == EltSizeInBits
7196 auto MatchRotateSum
= [EltSizeInBits
](ConstantSDNode
*LHS
,
7197 ConstantSDNode
*RHS
) {
7198 return (LHS
->getAPIntValue() + RHS
->getAPIntValue()) == EltSizeInBits
;
7200 if (ISD::matchBinaryPredicate(LHSShiftAmt
, RHSShiftAmt
, MatchRotateSum
)) {
7202 if (IsRotate
&& (HasROTL
|| HasROTR
|| !(HasFSHL
|| HasFSHR
))) {
7203 bool UseROTL
= !LegalOperations
|| HasROTL
;
7204 Res
= DAG
.getNode(UseROTL
? ISD::ROTL
: ISD::ROTR
, DL
, VT
, LHSShiftArg
,
7205 UseROTL
? LHSShiftAmt
: RHSShiftAmt
);
7207 bool UseFSHL
= !LegalOperations
|| HasFSHL
;
7208 Res
= DAG
.getNode(UseFSHL
? ISD::FSHL
: ISD::FSHR
, DL
, VT
, LHSShiftArg
,
7209 RHSShiftArg
, UseFSHL
? LHSShiftAmt
: RHSShiftAmt
);
7212 // If there is an AND of either shifted operand, apply it to the result.
7213 if (LHSMask
.getNode() || RHSMask
.getNode()) {
7214 SDValue AllOnes
= DAG
.getAllOnesConstant(DL
, VT
);
7215 SDValue Mask
= AllOnes
;
7217 if (LHSMask
.getNode()) {
7218 SDValue RHSBits
= DAG
.getNode(ISD::SRL
, DL
, VT
, AllOnes
, RHSShiftAmt
);
7219 Mask
= DAG
.getNode(ISD::AND
, DL
, VT
, Mask
,
7220 DAG
.getNode(ISD::OR
, DL
, VT
, LHSMask
, RHSBits
));
7222 if (RHSMask
.getNode()) {
7223 SDValue LHSBits
= DAG
.getNode(ISD::SHL
, DL
, VT
, AllOnes
, LHSShiftAmt
);
7224 Mask
= DAG
.getNode(ISD::AND
, DL
, VT
, Mask
,
7225 DAG
.getNode(ISD::OR
, DL
, VT
, RHSMask
, LHSBits
));
7228 Res
= DAG
.getNode(ISD::AND
, DL
, VT
, Res
, Mask
);
7234 // Even pre-legalization, we can't easily rotate/funnel-shift by a variable
7236 if (!HasROTL
&& !HasROTR
&& !HasFSHL
&& !HasFSHR
)
7239 // If there is a mask here, and we have a variable shift, we can't be sure
7240 // that we're masking out the right stuff.
7241 if (LHSMask
.getNode() || RHSMask
.getNode())
7244 // If the shift amount is sign/zext/any-extended just peel it off.
7245 SDValue LExtOp0
= LHSShiftAmt
;
7246 SDValue RExtOp0
= RHSShiftAmt
;
7247 if ((LHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
||
7248 LHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
||
7249 LHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
||
7250 LHSShiftAmt
.getOpcode() == ISD::TRUNCATE
) &&
7251 (RHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
||
7252 RHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
||
7253 RHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
||
7254 RHSShiftAmt
.getOpcode() == ISD::TRUNCATE
)) {
7255 LExtOp0
= LHSShiftAmt
.getOperand(0);
7256 RExtOp0
= RHSShiftAmt
.getOperand(0);
7259 if (IsRotate
&& (HasROTL
|| HasROTR
)) {
7261 MatchRotatePosNeg(LHSShiftArg
, LHSShiftAmt
, RHSShiftAmt
, LExtOp0
,
7262 RExtOp0
, ISD::ROTL
, ISD::ROTR
, DL
);
7267 MatchRotatePosNeg(RHSShiftArg
, RHSShiftAmt
, LHSShiftAmt
, RExtOp0
,
7268 LExtOp0
, ISD::ROTR
, ISD::ROTL
, DL
);
7274 MatchFunnelPosNeg(LHSShiftArg
, RHSShiftArg
, LHSShiftAmt
, RHSShiftAmt
,
7275 LExtOp0
, RExtOp0
, ISD::FSHL
, ISD::FSHR
, DL
);
7280 MatchFunnelPosNeg(LHSShiftArg
, RHSShiftArg
, RHSShiftAmt
, LHSShiftAmt
,
7281 RExtOp0
, LExtOp0
, ISD::FSHR
, ISD::FSHL
, DL
);
7290 /// Represents known origin of an individual byte in load combine pattern. The
7291 /// value of the byte is either constant zero or comes from memory.
7292 struct ByteProvider
{
7293 // For constant zero providers Load is set to nullptr. For memory providers
7294 // Load represents the node which loads the byte from memory.
7295 // ByteOffset is the offset of the byte in the value produced by the load.
7296 LoadSDNode
*Load
= nullptr;
7297 unsigned ByteOffset
= 0;
7299 ByteProvider() = default;
7301 static ByteProvider
getMemory(LoadSDNode
*Load
, unsigned ByteOffset
) {
7302 return ByteProvider(Load
, ByteOffset
);
7305 static ByteProvider
getConstantZero() { return ByteProvider(nullptr, 0); }
7307 bool isConstantZero() const { return !Load
; }
7308 bool isMemory() const { return Load
; }
7310 bool operator==(const ByteProvider
&Other
) const {
7311 return Other
.Load
== Load
&& Other
.ByteOffset
== ByteOffset
;
7315 ByteProvider(LoadSDNode
*Load
, unsigned ByteOffset
)
7316 : Load(Load
), ByteOffset(ByteOffset
) {}
7319 } // end anonymous namespace
7321 /// Recursively traverses the expression calculating the origin of the requested
7322 /// byte of the given value. Returns None if the provider can't be calculated.
7324 /// For all the values except the root of the expression verifies that the value
7325 /// has exactly one use and if it's not true return None. This way if the origin
7326 /// of the byte is returned it's guaranteed that the values which contribute to
7327 /// the byte are not used outside of this expression.
7329 /// Because the parts of the expression are not allowed to have more than one
7330 /// use this function iterates over trees, not DAGs. So it never visits the same
7331 /// node more than once.
7332 static const Optional
<ByteProvider
>
7333 calculateByteProvider(SDValue Op
, unsigned Index
, unsigned Depth
,
7334 bool Root
= false) {
7335 // Typical i64 by i8 pattern requires recursion up to 8 calls depth
7339 if (!Root
&& !Op
.hasOneUse())
7342 assert(Op
.getValueType().isScalarInteger() && "can't handle other types");
7343 unsigned BitWidth
= Op
.getValueSizeInBits();
7344 if (BitWidth
% 8 != 0)
7346 unsigned ByteWidth
= BitWidth
/ 8;
7347 assert(Index
< ByteWidth
&& "invalid index requested");
7350 switch (Op
.getOpcode()) {
7352 auto LHS
= calculateByteProvider(Op
->getOperand(0), Index
, Depth
+ 1);
7355 auto RHS
= calculateByteProvider(Op
->getOperand(1), Index
, Depth
+ 1);
7359 if (LHS
->isConstantZero())
7361 if (RHS
->isConstantZero())
7366 auto ShiftOp
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
7370 uint64_t BitShift
= ShiftOp
->getZExtValue();
7371 if (BitShift
% 8 != 0)
7373 uint64_t ByteShift
= BitShift
/ 8;
7375 return Index
< ByteShift
7376 ? ByteProvider::getConstantZero()
7377 : calculateByteProvider(Op
->getOperand(0), Index
- ByteShift
,
7380 case ISD::ANY_EXTEND
:
7381 case ISD::SIGN_EXTEND
:
7382 case ISD::ZERO_EXTEND
: {
7383 SDValue NarrowOp
= Op
->getOperand(0);
7384 unsigned NarrowBitWidth
= NarrowOp
.getScalarValueSizeInBits();
7385 if (NarrowBitWidth
% 8 != 0)
7387 uint64_t NarrowByteWidth
= NarrowBitWidth
/ 8;
7389 if (Index
>= NarrowByteWidth
)
7390 return Op
.getOpcode() == ISD::ZERO_EXTEND
7391 ? Optional
<ByteProvider
>(ByteProvider::getConstantZero())
7393 return calculateByteProvider(NarrowOp
, Index
, Depth
+ 1);
7396 return calculateByteProvider(Op
->getOperand(0), ByteWidth
- Index
- 1,
7399 auto L
= cast
<LoadSDNode
>(Op
.getNode());
7400 if (!L
->isSimple() || L
->isIndexed())
7403 unsigned NarrowBitWidth
= L
->getMemoryVT().getSizeInBits();
7404 if (NarrowBitWidth
% 8 != 0)
7406 uint64_t NarrowByteWidth
= NarrowBitWidth
/ 8;
7408 if (Index
>= NarrowByteWidth
)
7409 return L
->getExtensionType() == ISD::ZEXTLOAD
7410 ? Optional
<ByteProvider
>(ByteProvider::getConstantZero())
7412 return ByteProvider::getMemory(L
, Index
);
7419 static unsigned littleEndianByteAt(unsigned BW
, unsigned i
) {
7423 static unsigned bigEndianByteAt(unsigned BW
, unsigned i
) {
7427 // Check if the bytes offsets we are looking at match with either big or
7428 // little endian value loaded. Return true for big endian, false for little
7429 // endian, and None if match failed.
7430 static Optional
<bool> isBigEndian(const ArrayRef
<int64_t> ByteOffsets
,
7431 int64_t FirstOffset
) {
7432 // The endian can be decided only when it is 2 bytes at least.
7433 unsigned Width
= ByteOffsets
.size();
7437 bool BigEndian
= true, LittleEndian
= true;
7438 for (unsigned i
= 0; i
< Width
; i
++) {
7439 int64_t CurrentByteOffset
= ByteOffsets
[i
] - FirstOffset
;
7440 LittleEndian
&= CurrentByteOffset
== littleEndianByteAt(Width
, i
);
7441 BigEndian
&= CurrentByteOffset
== bigEndianByteAt(Width
, i
);
7442 if (!BigEndian
&& !LittleEndian
)
7446 assert((BigEndian
!= LittleEndian
) && "It should be either big endian or"
7451 static SDValue
stripTruncAndExt(SDValue Value
) {
7452 switch (Value
.getOpcode()) {
7454 case ISD::ZERO_EXTEND
:
7455 case ISD::SIGN_EXTEND
:
7456 case ISD::ANY_EXTEND
:
7457 return stripTruncAndExt(Value
.getOperand(0));
7462 /// Match a pattern where a wide type scalar value is stored by several narrow
7463 /// stores. Fold it into a single store or a BSWAP and a store if the targets
7466 /// Assuming little endian target:
7469 /// p[0] = (val >> 0) & 0xFF;
7470 /// p[1] = (val >> 8) & 0xFF;
7471 /// p[2] = (val >> 16) & 0xFF;
7472 /// p[3] = (val >> 24) & 0xFF;
7474 /// *((i32)p) = val;
7478 /// p[0] = (val >> 24) & 0xFF;
7479 /// p[1] = (val >> 16) & 0xFF;
7480 /// p[2] = (val >> 8) & 0xFF;
7481 /// p[3] = (val >> 0) & 0xFF;
7483 /// *((i32)p) = BSWAP(val);
7484 SDValue
DAGCombiner::mergeTruncStores(StoreSDNode
*N
) {
7485 // The matching looks for "store (trunc x)" patterns that appear early but are
7486 // likely to be replaced by truncating store nodes during combining.
7487 // TODO: If there is evidence that running this later would help, this
7488 // limitation could be removed. Legality checks may need to be added
7489 // for the created store and optional bswap/rotate.
7490 if (LegalOperations
|| OptLevel
== CodeGenOpt::None
)
7493 // We only handle merging simple stores of 1-4 bytes.
7494 // TODO: Allow unordered atomics when wider type is legal (see D66309)
7495 EVT MemVT
= N
->getMemoryVT();
7496 if (!(MemVT
== MVT::i8
|| MemVT
== MVT::i16
|| MemVT
== MVT::i32
) ||
7497 !N
->isSimple() || N
->isIndexed())
7500 // Collect all of the stores in the chain.
7501 SDValue Chain
= N
->getChain();
7502 SmallVector
<StoreSDNode
*, 8> Stores
= {N
};
7503 while (auto *Store
= dyn_cast
<StoreSDNode
>(Chain
)) {
7504 // All stores must be the same size to ensure that we are writing all of the
7505 // bytes in the wide value.
7506 // TODO: We could allow multiple sizes by tracking each stored byte.
7507 if (Store
->getMemoryVT() != MemVT
|| !Store
->isSimple() ||
7510 Stores
.push_back(Store
);
7511 Chain
= Store
->getChain();
7513 // There is no reason to continue if we do not have at least a pair of stores.
7514 if (Stores
.size() < 2)
7517 // Handle simple types only.
7518 LLVMContext
&Context
= *DAG
.getContext();
7519 unsigned NumStores
= Stores
.size();
7520 unsigned NarrowNumBits
= N
->getMemoryVT().getScalarSizeInBits();
7521 unsigned WideNumBits
= NumStores
* NarrowNumBits
;
7522 EVT WideVT
= EVT::getIntegerVT(Context
, WideNumBits
);
7523 if (WideVT
!= MVT::i16
&& WideVT
!= MVT::i32
&& WideVT
!= MVT::i64
)
7526 // Check if all bytes of the source value that we are looking at are stored
7527 // to the same base address. Collect offsets from Base address into OffsetMap.
7528 SDValue SourceValue
;
7529 SmallVector
<int64_t, 8> OffsetMap(NumStores
, INT64_MAX
);
7530 int64_t FirstOffset
= INT64_MAX
;
7531 StoreSDNode
*FirstStore
= nullptr;
7532 Optional
<BaseIndexOffset
> Base
;
7533 for (auto Store
: Stores
) {
7534 // All the stores store different parts of the CombinedValue. A truncate is
7535 // required to get the partial value.
7536 SDValue Trunc
= Store
->getValue();
7537 if (Trunc
.getOpcode() != ISD::TRUNCATE
)
7539 // Other than the first/last part, a shift operation is required to get the
7542 SDValue WideVal
= Trunc
.getOperand(0);
7543 if ((WideVal
.getOpcode() == ISD::SRL
|| WideVal
.getOpcode() == ISD::SRA
) &&
7544 isa
<ConstantSDNode
>(WideVal
.getOperand(1))) {
7545 // The shift amount must be a constant multiple of the narrow type.
7546 // It is translated to the offset address in the wide source value "y".
7548 // x = srl y, ShiftAmtC
7551 uint64_t ShiftAmtC
= WideVal
.getConstantOperandVal(1);
7552 if (ShiftAmtC
% NarrowNumBits
!= 0)
7555 Offset
= ShiftAmtC
/ NarrowNumBits
;
7556 WideVal
= WideVal
.getOperand(0);
7559 // Stores must share the same source value with different offsets.
7560 // Truncate and extends should be stripped to get the single source value.
7562 SourceValue
= WideVal
;
7563 else if (stripTruncAndExt(SourceValue
) != stripTruncAndExt(WideVal
))
7565 else if (SourceValue
.getValueType() != WideVT
) {
7566 if (WideVal
.getValueType() == WideVT
||
7567 WideVal
.getScalarValueSizeInBits() >
7568 SourceValue
.getScalarValueSizeInBits())
7569 SourceValue
= WideVal
;
7570 // Give up if the source value type is smaller than the store size.
7571 if (SourceValue
.getScalarValueSizeInBits() < WideVT
.getScalarSizeInBits())
7575 // Stores must share the same base address.
7576 BaseIndexOffset Ptr
= BaseIndexOffset::match(Store
, DAG
);
7577 int64_t ByteOffsetFromBase
= 0;
7580 else if (!Base
->equalBaseIndex(Ptr
, DAG
, ByteOffsetFromBase
))
7583 // Remember the first store.
7584 if (ByteOffsetFromBase
< FirstOffset
) {
7586 FirstOffset
= ByteOffsetFromBase
;
7588 // Map the offset in the store and the offset in the combined value, and
7589 // early return if it has been set before.
7590 if (Offset
< 0 || Offset
>= NumStores
|| OffsetMap
[Offset
] != INT64_MAX
)
7592 OffsetMap
[Offset
] = ByteOffsetFromBase
;
7595 assert(FirstOffset
!= INT64_MAX
&& "First byte offset must be set");
7596 assert(FirstStore
&& "First store must be set");
7598 // Check that a store of the wide type is both allowed and fast on the target
7599 const DataLayout
&Layout
= DAG
.getDataLayout();
7601 bool Allowed
= TLI
.allowsMemoryAccess(Context
, Layout
, WideVT
,
7602 *FirstStore
->getMemOperand(), &Fast
);
7603 if (!Allowed
|| !Fast
)
7606 // Check if the pieces of the value are going to the expected places in memory
7607 // to merge the stores.
7608 auto checkOffsets
= [&](bool MatchLittleEndian
) {
7609 if (MatchLittleEndian
) {
7610 for (unsigned i
= 0; i
!= NumStores
; ++i
)
7611 if (OffsetMap
[i
] != i
* (NarrowNumBits
/ 8) + FirstOffset
)
7613 } else { // MatchBigEndian by reversing loop counter.
7614 for (unsigned i
= 0, j
= NumStores
- 1; i
!= NumStores
; ++i
, --j
)
7615 if (OffsetMap
[j
] != i
* (NarrowNumBits
/ 8) + FirstOffset
)
7621 // Check if the offsets line up for the native data layout of this target.
7622 bool NeedBswap
= false;
7623 bool NeedRotate
= false;
7624 if (!checkOffsets(Layout
.isLittleEndian())) {
7625 // Special-case: check if byte offsets line up for the opposite endian.
7626 if (NarrowNumBits
== 8 && checkOffsets(Layout
.isBigEndian()))
7628 else if (NumStores
== 2 && checkOffsets(Layout
.isBigEndian()))
7635 if (WideVT
!= SourceValue
.getValueType()) {
7636 assert(SourceValue
.getValueType().getScalarSizeInBits() > WideNumBits
&&
7637 "Unexpected store value to merge");
7638 SourceValue
= DAG
.getNode(ISD::TRUNCATE
, DL
, WideVT
, SourceValue
);
7641 // Before legalize we can introduce illegal bswaps/rotates which will be later
7642 // converted to an explicit bswap sequence. This way we end up with a single
7643 // store and byte shuffling instead of several stores and byte shuffling.
7645 SourceValue
= DAG
.getNode(ISD::BSWAP
, DL
, WideVT
, SourceValue
);
7646 } else if (NeedRotate
) {
7647 assert(WideNumBits
% 2 == 0 && "Unexpected type for rotate");
7648 SDValue RotAmt
= DAG
.getConstant(WideNumBits
/ 2, DL
, WideVT
);
7649 SourceValue
= DAG
.getNode(ISD::ROTR
, DL
, WideVT
, SourceValue
, RotAmt
);
7653 DAG
.getStore(Chain
, DL
, SourceValue
, FirstStore
->getBasePtr(),
7654 FirstStore
->getPointerInfo(), FirstStore
->getAlign());
7656 // Rely on other DAG combine rules to remove the other individual stores.
7657 DAG
.ReplaceAllUsesWith(N
, NewStore
.getNode());
7661 /// Match a pattern where a wide type scalar value is loaded by several narrow
7662 /// loads and combined by shifts and ors. Fold it into a single load or a load
7663 /// and a BSWAP if the targets supports it.
7665 /// Assuming little endian target:
7667 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
7669 /// i32 val = *((i32)a)
7672 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
7674 /// i32 val = BSWAP(*((i32)a))
7676 /// TODO: This rule matches complex patterns with OR node roots and doesn't
7677 /// interact well with the worklist mechanism. When a part of the pattern is
7678 /// updated (e.g. one of the loads) its direct users are put into the worklist,
7679 /// but the root node of the pattern which triggers the load combine is not
7680 /// necessarily a direct user of the changed node. For example, once the address
7681 /// of t28 load is reassociated load combine won't be triggered:
7682 /// t25: i32 = add t4, Constant:i32<2>
7683 /// t26: i64 = sign_extend t25
7684 /// t27: i64 = add t2, t26
7685 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
7686 /// t29: i32 = zero_extend t28
7687 /// t32: i32 = shl t29, Constant:i8<8>
7688 /// t33: i32 = or t23, t32
7689 /// As a possible fix visitLoad can check if the load can be a part of a load
7690 /// combine pattern and add corresponding OR roots to the worklist.
7691 SDValue
DAGCombiner::MatchLoadCombine(SDNode
*N
) {
7692 assert(N
->getOpcode() == ISD::OR
&&
7693 "Can only match load combining against OR nodes");
7695 // Handles simple types only
7696 EVT VT
= N
->getValueType(0);
7697 if (VT
!= MVT::i16
&& VT
!= MVT::i32
&& VT
!= MVT::i64
)
7699 unsigned ByteWidth
= VT
.getSizeInBits() / 8;
7701 bool IsBigEndianTarget
= DAG
.getDataLayout().isBigEndian();
7702 auto MemoryByteOffset
= [&] (ByteProvider P
) {
7703 assert(P
.isMemory() && "Must be a memory byte provider");
7704 unsigned LoadBitWidth
= P
.Load
->getMemoryVT().getSizeInBits();
7705 assert(LoadBitWidth
% 8 == 0 &&
7706 "can only analyze providers for individual bytes not bit");
7707 unsigned LoadByteWidth
= LoadBitWidth
/ 8;
7708 return IsBigEndianTarget
7709 ? bigEndianByteAt(LoadByteWidth
, P
.ByteOffset
)
7710 : littleEndianByteAt(LoadByteWidth
, P
.ByteOffset
);
7713 Optional
<BaseIndexOffset
> Base
;
7716 SmallPtrSet
<LoadSDNode
*, 8> Loads
;
7717 Optional
<ByteProvider
> FirstByteProvider
;
7718 int64_t FirstOffset
= INT64_MAX
;
7720 // Check if all the bytes of the OR we are looking at are loaded from the same
7721 // base address. Collect bytes offsets from Base address in ByteOffsets.
7722 SmallVector
<int64_t, 8> ByteOffsets(ByteWidth
);
7723 unsigned ZeroExtendedBytes
= 0;
7724 for (int i
= ByteWidth
- 1; i
>= 0; --i
) {
7725 auto P
= calculateByteProvider(SDValue(N
, 0), i
, 0, /*Root=*/true);
7729 if (P
->isConstantZero()) {
7730 // It's OK for the N most significant bytes to be 0, we can just
7731 // zero-extend the load.
7732 if (++ZeroExtendedBytes
!= (ByteWidth
- static_cast<unsigned>(i
)))
7736 assert(P
->isMemory() && "provenance should either be memory or zero");
7738 LoadSDNode
*L
= P
->Load
;
7739 assert(L
->hasNUsesOfValue(1, 0) && L
->isSimple() &&
7741 "Must be enforced by calculateByteProvider");
7742 assert(L
->getOffset().isUndef() && "Unindexed load must have undef offset");
7744 // All loads must share the same chain
7745 SDValue LChain
= L
->getChain();
7748 else if (Chain
!= LChain
)
7751 // Loads must share the same base address
7752 BaseIndexOffset Ptr
= BaseIndexOffset::match(L
, DAG
);
7753 int64_t ByteOffsetFromBase
= 0;
7756 else if (!Base
->equalBaseIndex(Ptr
, DAG
, ByteOffsetFromBase
))
7759 // Calculate the offset of the current byte from the base address
7760 ByteOffsetFromBase
+= MemoryByteOffset(*P
);
7761 ByteOffsets
[i
] = ByteOffsetFromBase
;
7763 // Remember the first byte load
7764 if (ByteOffsetFromBase
< FirstOffset
) {
7765 FirstByteProvider
= P
;
7766 FirstOffset
= ByteOffsetFromBase
;
7771 assert(!Loads
.empty() && "All the bytes of the value must be loaded from "
7772 "memory, so there must be at least one load which produces the value");
7773 assert(Base
&& "Base address of the accessed memory location must be set");
7774 assert(FirstOffset
!= INT64_MAX
&& "First byte offset must be set");
7776 bool NeedsZext
= ZeroExtendedBytes
> 0;
7779 EVT::getIntegerVT(*DAG
.getContext(), (ByteWidth
- ZeroExtendedBytes
) * 8);
7781 if (!MemVT
.isSimple())
7784 // Before legalize we can introduce too wide illegal loads which will be later
7785 // split into legal sized loads. This enables us to combine i64 load by i8
7786 // patterns to a couple of i32 loads on 32 bit targets.
7787 if (LegalOperations
&&
7788 !TLI
.isOperationLegal(NeedsZext
? ISD::ZEXTLOAD
: ISD::NON_EXTLOAD
,
7792 // Check if the bytes of the OR we are looking at match with either big or
7793 // little endian value load
7794 Optional
<bool> IsBigEndian
= isBigEndian(
7795 makeArrayRef(ByteOffsets
).drop_back(ZeroExtendedBytes
), FirstOffset
);
7796 if (!IsBigEndian
.hasValue())
7799 assert(FirstByteProvider
&& "must be set");
7801 // Ensure that the first byte is loaded from zero offset of the first load.
7802 // So the combined value can be loaded from the first load address.
7803 if (MemoryByteOffset(*FirstByteProvider
) != 0)
7805 LoadSDNode
*FirstLoad
= FirstByteProvider
->Load
;
7807 // The node we are looking at matches with the pattern, check if we can
7808 // replace it with a single (possibly zero-extended) load and bswap + shift if
7811 // If the load needs byte swap check if the target supports it
7812 bool NeedsBswap
= IsBigEndianTarget
!= *IsBigEndian
;
7814 // Before legalize we can introduce illegal bswaps which will be later
7815 // converted to an explicit bswap sequence. This way we end up with a single
7816 // load and byte shuffling instead of several loads and byte shuffling.
7817 // We do not introduce illegal bswaps when zero-extending as this tends to
7818 // introduce too many arithmetic instructions.
7819 if (NeedsBswap
&& (LegalOperations
|| NeedsZext
) &&
7820 !TLI
.isOperationLegal(ISD::BSWAP
, VT
))
7823 // If we need to bswap and zero extend, we have to insert a shift. Check that
7825 if (NeedsBswap
&& NeedsZext
&& LegalOperations
&&
7826 !TLI
.isOperationLegal(ISD::SHL
, VT
))
7829 // Check that a load of the wide type is both allowed and fast on the target
7832 TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), MemVT
,
7833 *FirstLoad
->getMemOperand(), &Fast
);
7834 if (!Allowed
|| !Fast
)
7838 DAG
.getExtLoad(NeedsZext
? ISD::ZEXTLOAD
: ISD::NON_EXTLOAD
, SDLoc(N
), VT
,
7839 Chain
, FirstLoad
->getBasePtr(),
7840 FirstLoad
->getPointerInfo(), MemVT
, FirstLoad
->getAlign());
7842 // Transfer chain users from old loads to the new load.
7843 for (LoadSDNode
*L
: Loads
)
7844 DAG
.ReplaceAllUsesOfValueWith(SDValue(L
, 1), SDValue(NewLoad
.getNode(), 1));
7849 SDValue ShiftedLoad
=
7851 ? DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, NewLoad
,
7852 DAG
.getShiftAmountConstant(ZeroExtendedBytes
* 8, VT
,
7853 SDLoc(N
), LegalOperations
))
7855 return DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, ShiftedLoad
);
7858 // If the target has andn, bsl, or a similar bit-select instruction,
7859 // we want to unfold masked merge, with canonical pattern of:
7861 // ((x ^ y) & m) ^ y
7864 // (x & m) | (y & ~m)
7865 // If y is a constant, m is not a 'not', and the 'andn' does not work with
7866 // immediates, we unfold into a different pattern:
7867 // ~(~x & m) & (m | y)
7868 // If x is a constant, m is a 'not', and the 'andn' does not work with
7869 // immediates, we unfold into a different pattern:
7870 // (x | ~m) & ~(~m & ~y)
7871 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
7872 // the very least that breaks andnpd / andnps patterns, and because those
7873 // patterns are simplified in IR and shouldn't be created in the DAG
7874 SDValue
DAGCombiner::unfoldMaskedMerge(SDNode
*N
) {
7875 assert(N
->getOpcode() == ISD::XOR
);
7877 // Don't touch 'not' (i.e. where y = -1).
7878 if (isAllOnesOrAllOnesSplat(N
->getOperand(1)))
7881 EVT VT
= N
->getValueType(0);
7883 // There are 3 commutable operators in the pattern,
7884 // so we have to deal with 8 possible variants of the basic pattern.
7886 auto matchAndXor
= [&X
, &Y
, &M
](SDValue And
, unsigned XorIdx
, SDValue Other
) {
7887 if (And
.getOpcode() != ISD::AND
|| !And
.hasOneUse())
7889 SDValue Xor
= And
.getOperand(XorIdx
);
7890 if (Xor
.getOpcode() != ISD::XOR
|| !Xor
.hasOneUse())
7892 SDValue Xor0
= Xor
.getOperand(0);
7893 SDValue Xor1
= Xor
.getOperand(1);
7894 // Don't touch 'not' (i.e. where y = -1).
7895 if (isAllOnesOrAllOnesSplat(Xor1
))
7898 std::swap(Xor0
, Xor1
);
7903 M
= And
.getOperand(XorIdx
? 0 : 1);
7907 SDValue N0
= N
->getOperand(0);
7908 SDValue N1
= N
->getOperand(1);
7909 if (!matchAndXor(N0
, 0, N1
) && !matchAndXor(N0
, 1, N1
) &&
7910 !matchAndXor(N1
, 0, N0
) && !matchAndXor(N1
, 1, N0
))
7913 // Don't do anything if the mask is constant. This should not be reachable.
7914 // InstCombine should have already unfolded this pattern, and DAGCombiner
7915 // probably shouldn't produce it, too.
7916 if (isa
<ConstantSDNode
>(M
.getNode()))
7919 // We can transform if the target has AndNot
7920 if (!TLI
.hasAndNot(M
))
7925 // If Y is a constant, check that 'andn' works with immediates. Unless M is
7926 // a bitwise not that would already allow ANDN to be used.
7927 if (!TLI
.hasAndNot(Y
) && !isBitwiseNot(M
)) {
7928 assert(TLI
.hasAndNot(X
) && "Only mask is a variable? Unreachable.");
7929 // If not, we need to do a bit more work to make sure andn is still used.
7930 SDValue NotX
= DAG
.getNOT(DL
, X
, VT
);
7931 SDValue LHS
= DAG
.getNode(ISD::AND
, DL
, VT
, NotX
, M
);
7932 SDValue NotLHS
= DAG
.getNOT(DL
, LHS
, VT
);
7933 SDValue RHS
= DAG
.getNode(ISD::OR
, DL
, VT
, M
, Y
);
7934 return DAG
.getNode(ISD::AND
, DL
, VT
, NotLHS
, RHS
);
7937 // If X is a constant and M is a bitwise not, check that 'andn' works with
7939 if (!TLI
.hasAndNot(X
) && isBitwiseNot(M
)) {
7940 assert(TLI
.hasAndNot(Y
) && "Only mask is a variable? Unreachable.");
7941 // If not, we need to do a bit more work to make sure andn is still used.
7942 SDValue NotM
= M
.getOperand(0);
7943 SDValue LHS
= DAG
.getNode(ISD::OR
, DL
, VT
, X
, NotM
);
7944 SDValue NotY
= DAG
.getNOT(DL
, Y
, VT
);
7945 SDValue RHS
= DAG
.getNode(ISD::AND
, DL
, VT
, NotM
, NotY
);
7946 SDValue NotRHS
= DAG
.getNOT(DL
, RHS
, VT
);
7947 return DAG
.getNode(ISD::AND
, DL
, VT
, LHS
, NotRHS
);
7950 SDValue LHS
= DAG
.getNode(ISD::AND
, DL
, VT
, X
, M
);
7951 SDValue NotM
= DAG
.getNOT(DL
, M
, VT
);
7952 SDValue RHS
= DAG
.getNode(ISD::AND
, DL
, VT
, Y
, NotM
);
7954 return DAG
.getNode(ISD::OR
, DL
, VT
, LHS
, RHS
);
7957 SDValue
DAGCombiner::visitXOR(SDNode
*N
) {
7958 SDValue N0
= N
->getOperand(0);
7959 SDValue N1
= N
->getOperand(1);
7960 EVT VT
= N0
.getValueType();
7963 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
7964 if (N0
.isUndef() && N1
.isUndef())
7965 return DAG
.getConstant(0, DL
, VT
);
7967 // fold (xor x, undef) -> undef
7973 // fold (xor c1, c2) -> c1^c2
7974 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::XOR
, DL
, VT
, {N0
, N1
}))
7977 // canonicalize constant to RHS
7978 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
7979 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
7980 return DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
);
7983 if (VT
.isVector()) {
7984 if (SDValue FoldedVOp
= SimplifyVBinOp(N
, DL
))
7987 // fold (xor x, 0) -> x, vector edition
7988 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
7992 // fold (xor x, 0) -> x
7993 if (isNullConstant(N1
))
7996 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
8000 if (SDValue RXOR
= reassociateOps(ISD::XOR
, DL
, N0
, N1
, N
->getFlags()))
8003 // fold !(x cc y) -> (x !cc y)
8004 unsigned N0Opcode
= N0
.getOpcode();
8005 SDValue LHS
, RHS
, CC
;
8006 if (TLI
.isConstTrueVal(N1
.getNode()) &&
8007 isSetCCEquivalent(N0
, LHS
, RHS
, CC
, /*MatchStrict*/true)) {
8008 ISD::CondCode NotCC
= ISD::getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
8009 LHS
.getValueType());
8010 if (!LegalOperations
||
8011 TLI
.isCondCodeLegal(NotCC
, LHS
.getSimpleValueType())) {
8014 llvm_unreachable("Unhandled SetCC Equivalent!");
8016 return DAG
.getSetCC(SDLoc(N0
), VT
, LHS
, RHS
, NotCC
);
8017 case ISD::SELECT_CC
:
8018 return DAG
.getSelectCC(SDLoc(N0
), LHS
, RHS
, N0
.getOperand(2),
8019 N0
.getOperand(3), NotCC
);
8020 case ISD::STRICT_FSETCC
:
8021 case ISD::STRICT_FSETCCS
: {
8022 if (N0
.hasOneUse()) {
8023 // FIXME Can we handle multiple uses? Could we token factor the chain
8024 // results from the new/old setcc?
8026 DAG
.getSetCC(SDLoc(N0
), VT
, LHS
, RHS
, NotCC
,
8027 N0
.getOperand(0), N0Opcode
== ISD::STRICT_FSETCCS
);
8028 CombineTo(N
, SetCC
);
8029 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), SetCC
.getValue(1));
8030 recursivelyDeleteUnusedNodes(N0
.getNode());
8031 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
8039 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
8040 if (isOneConstant(N1
) && N0Opcode
== ISD::ZERO_EXTEND
&& N0
.hasOneUse() &&
8041 isSetCCEquivalent(N0
.getOperand(0), LHS
, RHS
, CC
)){
8042 SDValue V
= N0
.getOperand(0);
8044 V
= DAG
.getNode(ISD::XOR
, DL0
, V
.getValueType(), V
,
8045 DAG
.getConstant(1, DL0
, V
.getValueType()));
8046 AddToWorklist(V
.getNode());
8047 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, V
);
8050 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
8051 if (isOneConstant(N1
) && VT
== MVT::i1
&& N0
.hasOneUse() &&
8052 (N0Opcode
== ISD::OR
|| N0Opcode
== ISD::AND
)) {
8053 SDValue N00
= N0
.getOperand(0), N01
= N0
.getOperand(1);
8054 if (isOneUseSetCC(N01
) || isOneUseSetCC(N00
)) {
8055 unsigned NewOpcode
= N0Opcode
== ISD::AND
? ISD::OR
: ISD::AND
;
8056 N00
= DAG
.getNode(ISD::XOR
, SDLoc(N00
), VT
, N00
, N1
); // N00 = ~N00
8057 N01
= DAG
.getNode(ISD::XOR
, SDLoc(N01
), VT
, N01
, N1
); // N01 = ~N01
8058 AddToWorklist(N00
.getNode()); AddToWorklist(N01
.getNode());
8059 return DAG
.getNode(NewOpcode
, DL
, VT
, N00
, N01
);
8062 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
8063 if (isAllOnesConstant(N1
) && N0
.hasOneUse() &&
8064 (N0Opcode
== ISD::OR
|| N0Opcode
== ISD::AND
)) {
8065 SDValue N00
= N0
.getOperand(0), N01
= N0
.getOperand(1);
8066 if (isa
<ConstantSDNode
>(N01
) || isa
<ConstantSDNode
>(N00
)) {
8067 unsigned NewOpcode
= N0Opcode
== ISD::AND
? ISD::OR
: ISD::AND
;
8068 N00
= DAG
.getNode(ISD::XOR
, SDLoc(N00
), VT
, N00
, N1
); // N00 = ~N00
8069 N01
= DAG
.getNode(ISD::XOR
, SDLoc(N01
), VT
, N01
, N1
); // N01 = ~N01
8070 AddToWorklist(N00
.getNode()); AddToWorklist(N01
.getNode());
8071 return DAG
.getNode(NewOpcode
, DL
, VT
, N00
, N01
);
8075 // fold (not (neg x)) -> (add X, -1)
8076 // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if
8077 // Y is a constant or the subtract has a single use.
8078 if (isAllOnesConstant(N1
) && N0
.getOpcode() == ISD::SUB
&&
8079 isNullConstant(N0
.getOperand(0))) {
8080 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(1),
8081 DAG
.getAllOnesConstant(DL
, VT
));
8084 // fold (not (add X, -1)) -> (neg X)
8085 if (isAllOnesConstant(N1
) && N0
.getOpcode() == ISD::ADD
&&
8086 isAllOnesOrAllOnesSplat(N0
.getOperand(1))) {
8087 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
),
8091 // fold (xor (and x, y), y) -> (and (not x), y)
8092 if (N0Opcode
== ISD::AND
&& N0
.hasOneUse() && N0
->getOperand(1) == N1
) {
8093 SDValue X
= N0
.getOperand(0);
8094 SDValue NotX
= DAG
.getNOT(SDLoc(X
), X
, VT
);
8095 AddToWorklist(NotX
.getNode());
8096 return DAG
.getNode(ISD::AND
, DL
, VT
, NotX
, N1
);
8099 if ((N0Opcode
== ISD::SRL
|| N0Opcode
== ISD::SHL
) && N0
.hasOneUse()) {
8100 ConstantSDNode
*XorC
= isConstOrConstSplat(N1
);
8101 ConstantSDNode
*ShiftC
= isConstOrConstSplat(N0
.getOperand(1));
8102 unsigned BitWidth
= VT
.getScalarSizeInBits();
8103 if (XorC
&& ShiftC
) {
8104 // Don't crash on an oversized shift. We can not guarantee that a bogus
8105 // shift has been simplified to undef.
8106 uint64_t ShiftAmt
= ShiftC
->getLimitedValue();
8107 if (ShiftAmt
< BitWidth
) {
8108 APInt Ones
= APInt::getAllOnes(BitWidth
);
8109 Ones
= N0Opcode
== ISD::SHL
? Ones
.shl(ShiftAmt
) : Ones
.lshr(ShiftAmt
);
8110 if (XorC
->getAPIntValue() == Ones
) {
8111 // If the xor constant is a shifted -1, do a 'not' before the shift:
8112 // xor (X << ShiftC), XorC --> (not X) << ShiftC
8113 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
8114 SDValue Not
= DAG
.getNOT(DL
, N0
.getOperand(0), VT
);
8115 return DAG
.getNode(N0Opcode
, DL
, VT
, Not
, N0
.getOperand(1));
8121 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
8122 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
)) {
8123 SDValue A
= N0Opcode
== ISD::ADD
? N0
: N1
;
8124 SDValue S
= N0Opcode
== ISD::SRA
? N0
: N1
;
8125 if (A
.getOpcode() == ISD::ADD
&& S
.getOpcode() == ISD::SRA
) {
8126 SDValue A0
= A
.getOperand(0), A1
= A
.getOperand(1);
8127 SDValue S0
= S
.getOperand(0);
8128 if ((A0
== S
&& A1
== S0
) || (A1
== S
&& A0
== S0
))
8129 if (ConstantSDNode
*C
= isConstOrConstSplat(S
.getOperand(1)))
8130 if (C
->getAPIntValue() == (VT
.getScalarSizeInBits() - 1))
8131 return DAG
.getNode(ISD::ABS
, DL
, VT
, S0
);
8135 // fold (xor x, x) -> 0
8137 return tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
8139 // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
8140 // Here is a concrete example of this equivalence:
8142 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000
8143 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
8147 // i16 ~1 == 0b1111111111111110
8148 // i16 rol(~1, 14) == 0b1011111111111111
8150 // Some additional tips to help conceptualize this transform:
8151 // - Try to see the operation as placing a single zero in a value of all ones.
8152 // - There exists no value for x which would allow the result to contain zero.
8153 // - Values of x larger than the bitwidth are undefined and do not require a
8154 // consistent result.
8155 // - Pushing the zero left requires shifting one bits in from the right.
8156 // A rotate left of ~1 is a nice way of achieving the desired result.
8157 if (TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
) && N0Opcode
== ISD::SHL
&&
8158 isAllOnesConstant(N1
) && isOneConstant(N0
.getOperand(0))) {
8159 return DAG
.getNode(ISD::ROTL
, DL
, VT
, DAG
.getConstant(~1, DL
, VT
),
8163 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
8164 if (N0Opcode
== N1
.getOpcode())
8165 if (SDValue V
= hoistLogicOpWithSameOpcodeHands(N
))
8168 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
8169 if (SDValue MM
= unfoldMaskedMerge(N
))
8172 // Simplify the expression using non-local knowledge.
8173 if (SimplifyDemandedBits(SDValue(N
, 0)))
8174 return SDValue(N
, 0);
8176 if (SDValue Combined
= combineCarryDiamond(*this, DAG
, TLI
, N0
, N1
, N
))
8182 /// If we have a shift-by-constant of a bitwise logic op that itself has a
8183 /// shift-by-constant operand with identical opcode, we may be able to convert
8184 /// that into 2 independent shifts followed by the logic op. This is a
8185 /// throughput improvement.
8186 static SDValue
combineShiftOfShiftedLogic(SDNode
*Shift
, SelectionDAG
&DAG
) {
8187 // Match a one-use bitwise logic op.
8188 SDValue LogicOp
= Shift
->getOperand(0);
8189 if (!LogicOp
.hasOneUse())
8192 unsigned LogicOpcode
= LogicOp
.getOpcode();
8193 if (LogicOpcode
!= ISD::AND
&& LogicOpcode
!= ISD::OR
&&
8194 LogicOpcode
!= ISD::XOR
)
8197 // Find a matching one-use shift by constant.
8198 unsigned ShiftOpcode
= Shift
->getOpcode();
8199 SDValue C1
= Shift
->getOperand(1);
8200 ConstantSDNode
*C1Node
= isConstOrConstSplat(C1
);
8201 assert(C1Node
&& "Expected a shift with constant operand");
8202 const APInt
&C1Val
= C1Node
->getAPIntValue();
8203 auto matchFirstShift
= [&](SDValue V
, SDValue
&ShiftOp
,
8204 const APInt
*&ShiftAmtVal
) {
8205 if (V
.getOpcode() != ShiftOpcode
|| !V
.hasOneUse())
8208 ConstantSDNode
*ShiftCNode
= isConstOrConstSplat(V
.getOperand(1));
8212 // Capture the shifted operand and shift amount value.
8213 ShiftOp
= V
.getOperand(0);
8214 ShiftAmtVal
= &ShiftCNode
->getAPIntValue();
8216 // Shift amount types do not have to match their operand type, so check that
8217 // the constants are the same width.
8218 if (ShiftAmtVal
->getBitWidth() != C1Val
.getBitWidth())
8221 // The fold is not valid if the sum of the shift values exceeds bitwidth.
8222 if ((*ShiftAmtVal
+ C1Val
).uge(V
.getScalarValueSizeInBits()))
8228 // Logic ops are commutative, so check each operand for a match.
8231 if (matchFirstShift(LogicOp
.getOperand(0), X
, C0Val
))
8232 Y
= LogicOp
.getOperand(1);
8233 else if (matchFirstShift(LogicOp
.getOperand(1), X
, C0Val
))
8234 Y
= LogicOp
.getOperand(0);
8238 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
8240 EVT VT
= Shift
->getValueType(0);
8241 EVT ShiftAmtVT
= Shift
->getOperand(1).getValueType();
8242 SDValue ShiftSumC
= DAG
.getConstant(*C0Val
+ C1Val
, DL
, ShiftAmtVT
);
8243 SDValue NewShift1
= DAG
.getNode(ShiftOpcode
, DL
, VT
, X
, ShiftSumC
);
8244 SDValue NewShift2
= DAG
.getNode(ShiftOpcode
, DL
, VT
, Y
, C1
);
8245 return DAG
.getNode(LogicOpcode
, DL
, VT
, NewShift1
, NewShift2
);
8248 /// Handle transforms common to the three shifts, when the shift amount is a
8250 /// We are looking for: (shift being one of shl/sra/srl)
8251 /// shift (binop X, C0), C1
8252 /// And want to transform into:
8253 /// binop (shift X, C1), (shift C0, C1)
8254 SDValue
DAGCombiner::visitShiftByConstant(SDNode
*N
) {
8255 assert(isConstOrConstSplat(N
->getOperand(1)) && "Expected constant operand");
8257 // Do not turn a 'not' into a regular xor.
8258 if (isBitwiseNot(N
->getOperand(0)))
8261 // The inner binop must be one-use, since we want to replace it.
8262 SDValue LHS
= N
->getOperand(0);
8263 if (!LHS
.hasOneUse() || !TLI
.isDesirableToCommuteWithShift(N
, Level
))
8266 // TODO: This is limited to early combining because it may reveal regressions
8267 // otherwise. But since we just checked a target hook to see if this is
8268 // desirable, that should have filtered out cases where this interferes
8269 // with some other pattern matching.
8271 if (SDValue R
= combineShiftOfShiftedLogic(N
, DAG
))
8274 // We want to pull some binops through shifts, so that we have (and (shift))
8275 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
8276 // thing happens with address calculations, so it's important to canonicalize
8278 switch (LHS
.getOpcode()) {
8286 if (N
->getOpcode() != ISD::SHL
)
8287 return SDValue(); // only shl(add) not sr[al](add).
8291 // We require the RHS of the binop to be a constant and not opaque as well.
8292 ConstantSDNode
*BinOpCst
= getAsNonOpaqueConstant(LHS
.getOperand(1));
8296 // FIXME: disable this unless the input to the binop is a shift by a constant
8297 // or is copy/select. Enable this in other cases when figure out it's exactly
8299 SDValue BinOpLHSVal
= LHS
.getOperand(0);
8300 bool IsShiftByConstant
= (BinOpLHSVal
.getOpcode() == ISD::SHL
||
8301 BinOpLHSVal
.getOpcode() == ISD::SRA
||
8302 BinOpLHSVal
.getOpcode() == ISD::SRL
) &&
8303 isa
<ConstantSDNode
>(BinOpLHSVal
.getOperand(1));
8304 bool IsCopyOrSelect
= BinOpLHSVal
.getOpcode() == ISD::CopyFromReg
||
8305 BinOpLHSVal
.getOpcode() == ISD::SELECT
;
8307 if (!IsShiftByConstant
&& !IsCopyOrSelect
)
8310 if (IsCopyOrSelect
&& N
->hasOneUse())
8313 // Fold the constants, shifting the binop RHS by the shift amount.
8315 EVT VT
= N
->getValueType(0);
8316 SDValue NewRHS
= DAG
.getNode(N
->getOpcode(), DL
, VT
, LHS
.getOperand(1),
8318 assert(isa
<ConstantSDNode
>(NewRHS
) && "Folding was not successful!");
8320 SDValue NewShift
= DAG
.getNode(N
->getOpcode(), DL
, VT
, LHS
.getOperand(0),
8322 return DAG
.getNode(LHS
.getOpcode(), DL
, VT
, NewShift
, NewRHS
);
8325 SDValue
DAGCombiner::distributeTruncateThroughAnd(SDNode
*N
) {
8326 assert(N
->getOpcode() == ISD::TRUNCATE
);
8327 assert(N
->getOperand(0).getOpcode() == ISD::AND
);
8329 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
8330 EVT TruncVT
= N
->getValueType(0);
8331 if (N
->hasOneUse() && N
->getOperand(0).hasOneUse() &&
8332 TLI
.isTypeDesirableForOp(ISD::AND
, TruncVT
)) {
8333 SDValue N01
= N
->getOperand(0).getOperand(1);
8334 if (isConstantOrConstantVector(N01
, /* NoOpaques */ true)) {
8336 SDValue N00
= N
->getOperand(0).getOperand(0);
8337 SDValue Trunc00
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
, N00
);
8338 SDValue Trunc01
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
, N01
);
8339 AddToWorklist(Trunc00
.getNode());
8340 AddToWorklist(Trunc01
.getNode());
8341 return DAG
.getNode(ISD::AND
, DL
, TruncVT
, Trunc00
, Trunc01
);
8348 SDValue
DAGCombiner::visitRotate(SDNode
*N
) {
8350 SDValue N0
= N
->getOperand(0);
8351 SDValue N1
= N
->getOperand(1);
8352 EVT VT
= N
->getValueType(0);
8353 unsigned Bitsize
= VT
.getScalarSizeInBits();
8355 // fold (rot x, 0) -> x
8356 if (isNullOrNullSplat(N1
))
8359 // fold (rot x, c) -> x iff (c % BitSize) == 0
8360 if (isPowerOf2_32(Bitsize
) && Bitsize
> 1) {
8361 APInt
ModuloMask(N1
.getScalarValueSizeInBits(), Bitsize
- 1);
8362 if (DAG
.MaskedValueIsZero(N1
, ModuloMask
))
8366 // fold (rot x, c) -> (rot x, c % BitSize)
8367 bool OutOfRange
= false;
8368 auto MatchOutOfRange
= [Bitsize
, &OutOfRange
](ConstantSDNode
*C
) {
8369 OutOfRange
|= C
->getAPIntValue().uge(Bitsize
);
8372 if (ISD::matchUnaryPredicate(N1
, MatchOutOfRange
) && OutOfRange
) {
8373 EVT AmtVT
= N1
.getValueType();
8374 SDValue Bits
= DAG
.getConstant(Bitsize
, dl
, AmtVT
);
8376 DAG
.FoldConstantArithmetic(ISD::UREM
, dl
, AmtVT
, {N1
, Bits
}))
8377 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
, Amt
);
8380 // rot i16 X, 8 --> bswap X
8381 auto *RotAmtC
= isConstOrConstSplat(N1
);
8382 if (RotAmtC
&& RotAmtC
->getAPIntValue() == 8 &&
8383 VT
.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP
, VT
))
8384 return DAG
.getNode(ISD::BSWAP
, dl
, VT
, N0
);
8386 // Simplify the operands using demanded-bits information.
8387 if (SimplifyDemandedBits(SDValue(N
, 0)))
8388 return SDValue(N
, 0);
8390 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
8391 if (N1
.getOpcode() == ISD::TRUNCATE
&&
8392 N1
.getOperand(0).getOpcode() == ISD::AND
) {
8393 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
8394 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
, NewOp1
);
8397 unsigned NextOp
= N0
.getOpcode();
8398 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize)
8399 if (NextOp
== ISD::ROTL
|| NextOp
== ISD::ROTR
) {
8400 SDNode
*C1
= DAG
.isConstantIntBuildVectorOrConstantInt(N1
);
8401 SDNode
*C2
= DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1));
8402 if (C1
&& C2
&& C1
->getValueType(0) == C2
->getValueType(0)) {
8403 EVT ShiftVT
= C1
->getValueType(0);
8404 bool SameSide
= (N
->getOpcode() == NextOp
);
8405 unsigned CombineOp
= SameSide
? ISD::ADD
: ISD::SUB
;
8406 if (SDValue CombinedShift
= DAG
.FoldConstantArithmetic(
8407 CombineOp
, dl
, ShiftVT
, {N1
, N0
.getOperand(1)})) {
8408 SDValue BitsizeC
= DAG
.getConstant(Bitsize
, dl
, ShiftVT
);
8409 SDValue CombinedShiftNorm
= DAG
.FoldConstantArithmetic(
8410 ISD::SREM
, dl
, ShiftVT
, {CombinedShift
, BitsizeC
});
8411 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
->getOperand(0),
8419 SDValue
DAGCombiner::visitSHL(SDNode
*N
) {
8420 SDValue N0
= N
->getOperand(0);
8421 SDValue N1
= N
->getOperand(1);
8422 if (SDValue V
= DAG
.simplifyShift(N0
, N1
))
8425 EVT VT
= N0
.getValueType();
8426 EVT ShiftVT
= N1
.getValueType();
8427 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
8429 // fold (shl c1, c2) -> c1<<c2
8430 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::SHL
, SDLoc(N
), VT
, {N0
, N1
}))
8434 if (VT
.isVector()) {
8435 if (SDValue FoldedVOp
= SimplifyVBinOp(N
, SDLoc(N
)))
8438 BuildVectorSDNode
*N1CV
= dyn_cast
<BuildVectorSDNode
>(N1
);
8439 // If setcc produces all-one true value then:
8440 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
8441 if (N1CV
&& N1CV
->isConstant()) {
8442 if (N0
.getOpcode() == ISD::AND
) {
8443 SDValue N00
= N0
->getOperand(0);
8444 SDValue N01
= N0
->getOperand(1);
8445 BuildVectorSDNode
*N01CV
= dyn_cast
<BuildVectorSDNode
>(N01
);
8447 if (N01CV
&& N01CV
->isConstant() && N00
.getOpcode() == ISD::SETCC
&&
8448 TLI
.getBooleanContents(N00
.getOperand(0).getValueType()) ==
8449 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
8451 DAG
.FoldConstantArithmetic(ISD::SHL
, SDLoc(N
), VT
, {N01
, N1
}))
8452 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, N00
, C
);
8458 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
8461 // if (shl x, c) is known to be zero, return 0
8462 if (DAG
.MaskedValueIsZero(SDValue(N
, 0), APInt::getAllOnes(OpSizeInBits
)))
8463 return DAG
.getConstant(0, SDLoc(N
), VT
);
8465 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
8466 if (N1
.getOpcode() == ISD::TRUNCATE
&&
8467 N1
.getOperand(0).getOpcode() == ISD::AND
) {
8468 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
8469 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N0
, NewOp1
);
8472 if (SimplifyDemandedBits(SDValue(N
, 0)))
8473 return SDValue(N
, 0);
8475 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
8476 if (N0
.getOpcode() == ISD::SHL
) {
8477 auto MatchOutOfRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
8478 ConstantSDNode
*RHS
) {
8479 APInt c1
= LHS
->getAPIntValue();
8480 APInt c2
= RHS
->getAPIntValue();
8481 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
8482 return (c1
+ c2
).uge(OpSizeInBits
);
8484 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchOutOfRange
))
8485 return DAG
.getConstant(0, SDLoc(N
), VT
);
8487 auto MatchInRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
8488 ConstantSDNode
*RHS
) {
8489 APInt c1
= LHS
->getAPIntValue();
8490 APInt c2
= RHS
->getAPIntValue();
8491 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
8492 return (c1
+ c2
).ult(OpSizeInBits
);
8494 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchInRange
)) {
8496 SDValue Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, N1
, N0
.getOperand(1));
8497 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0), Sum
);
8501 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2))
8502 // For this to be valid, the second form must not preserve any of the bits
8503 // that are shifted out by the inner shift in the first form. This means
8504 // the outer shift size must be >= the number of bits added by the ext.
8505 // As a corollary, we don't care what kind of ext it is.
8506 if ((N0
.getOpcode() == ISD::ZERO_EXTEND
||
8507 N0
.getOpcode() == ISD::ANY_EXTEND
||
8508 N0
.getOpcode() == ISD::SIGN_EXTEND
) &&
8509 N0
.getOperand(0).getOpcode() == ISD::SHL
) {
8510 SDValue N0Op0
= N0
.getOperand(0);
8511 SDValue InnerShiftAmt
= N0Op0
.getOperand(1);
8512 EVT InnerVT
= N0Op0
.getValueType();
8513 uint64_t InnerBitwidth
= InnerVT
.getScalarSizeInBits();
8515 auto MatchOutOfRange
= [OpSizeInBits
, InnerBitwidth
](ConstantSDNode
*LHS
,
8516 ConstantSDNode
*RHS
) {
8517 APInt c1
= LHS
->getAPIntValue();
8518 APInt c2
= RHS
->getAPIntValue();
8519 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
8520 return c2
.uge(OpSizeInBits
- InnerBitwidth
) &&
8521 (c1
+ c2
).uge(OpSizeInBits
);
8523 if (ISD::matchBinaryPredicate(InnerShiftAmt
, N1
, MatchOutOfRange
,
8524 /*AllowUndefs*/ false,
8525 /*AllowTypeMismatch*/ true))
8526 return DAG
.getConstant(0, SDLoc(N
), VT
);
8528 auto MatchInRange
= [OpSizeInBits
, InnerBitwidth
](ConstantSDNode
*LHS
,
8529 ConstantSDNode
*RHS
) {
8530 APInt c1
= LHS
->getAPIntValue();
8531 APInt c2
= RHS
->getAPIntValue();
8532 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
8533 return c2
.uge(OpSizeInBits
- InnerBitwidth
) &&
8534 (c1
+ c2
).ult(OpSizeInBits
);
8536 if (ISD::matchBinaryPredicate(InnerShiftAmt
, N1
, MatchInRange
,
8537 /*AllowUndefs*/ false,
8538 /*AllowTypeMismatch*/ true)) {
8540 SDValue Ext
= DAG
.getNode(N0
.getOpcode(), DL
, VT
, N0Op0
.getOperand(0));
8541 SDValue Sum
= DAG
.getZExtOrTrunc(InnerShiftAmt
, DL
, ShiftVT
);
8542 Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, Sum
, N1
);
8543 return DAG
.getNode(ISD::SHL
, DL
, VT
, Ext
, Sum
);
8547 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
8548 // Only fold this if the inner zext has no other uses to avoid increasing
8549 // the total number of instructions.
8550 if (N0
.getOpcode() == ISD::ZERO_EXTEND
&& N0
.hasOneUse() &&
8551 N0
.getOperand(0).getOpcode() == ISD::SRL
) {
8552 SDValue N0Op0
= N0
.getOperand(0);
8553 SDValue InnerShiftAmt
= N0Op0
.getOperand(1);
8555 auto MatchEqual
= [VT
](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
8556 APInt c1
= LHS
->getAPIntValue();
8557 APInt c2
= RHS
->getAPIntValue();
8558 zeroExtendToMatch(c1
, c2
);
8559 return c1
.ult(VT
.getScalarSizeInBits()) && (c1
== c2
);
8561 if (ISD::matchBinaryPredicate(InnerShiftAmt
, N1
, MatchEqual
,
8562 /*AllowUndefs*/ false,
8563 /*AllowTypeMismatch*/ true)) {
8565 EVT InnerShiftAmtVT
= N0Op0
.getOperand(1).getValueType();
8566 SDValue NewSHL
= DAG
.getZExtOrTrunc(N1
, DL
, InnerShiftAmtVT
);
8567 NewSHL
= DAG
.getNode(ISD::SHL
, DL
, N0Op0
.getValueType(), N0Op0
, NewSHL
);
8568 AddToWorklist(NewSHL
.getNode());
8569 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N0
), VT
, NewSHL
);
8573 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
8574 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2
8575 // TODO - support non-uniform vector shift amounts.
8576 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
8577 if (N1C
&& (N0
.getOpcode() == ISD::SRL
|| N0
.getOpcode() == ISD::SRA
) &&
8578 N0
->getFlags().hasExact()) {
8579 if (ConstantSDNode
*N0C1
= isConstOrConstSplat(N0
.getOperand(1))) {
8580 uint64_t C1
= N0C1
->getZExtValue();
8581 uint64_t C2
= N1C
->getZExtValue();
8584 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0),
8585 DAG
.getConstant(C2
- C1
, DL
, ShiftVT
));
8586 return DAG
.getNode(N0
.getOpcode(), DL
, VT
, N0
.getOperand(0),
8587 DAG
.getConstant(C1
- C2
, DL
, ShiftVT
));
8591 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
8592 // (and (srl x, (sub c1, c2), MASK)
8593 // Only fold this if the inner shift has no other uses -- if it does, folding
8594 // this will increase the total number of instructions.
8595 // TODO - drop hasOneUse requirement if c1 == c2?
8596 // TODO - support non-uniform vector shift amounts.
8597 if (N1C
&& N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse() &&
8598 TLI
.shouldFoldConstantShiftPairToMask(N
, Level
)) {
8599 if (ConstantSDNode
*N0C1
= isConstOrConstSplat(N0
.getOperand(1))) {
8600 if (N0C1
->getAPIntValue().ult(OpSizeInBits
)) {
8601 uint64_t c1
= N0C1
->getZExtValue();
8602 uint64_t c2
= N1C
->getZExtValue();
8603 APInt Mask
= APInt::getHighBitsSet(OpSizeInBits
, OpSizeInBits
- c1
);
8608 Shift
= DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0),
8609 DAG
.getConstant(c2
- c1
, DL
, ShiftVT
));
8611 Mask
.lshrInPlace(c1
- c2
);
8613 Shift
= DAG
.getNode(ISD::SRL
, DL
, VT
, N0
.getOperand(0),
8614 DAG
.getConstant(c1
- c2
, DL
, ShiftVT
));
8617 return DAG
.getNode(ISD::AND
, DL
, VT
, Shift
,
8618 DAG
.getConstant(Mask
, DL
, VT
));
8623 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
8624 if (N0
.getOpcode() == ISD::SRA
&& N1
== N0
.getOperand(1) &&
8625 isConstantOrConstantVector(N1
, /* No Opaques */ true)) {
8627 SDValue AllBits
= DAG
.getAllOnesConstant(DL
, VT
);
8628 SDValue HiBitsMask
= DAG
.getNode(ISD::SHL
, DL
, VT
, AllBits
, N1
);
8629 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), HiBitsMask
);
8632 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8633 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8634 // Variant of version done on multiply, except mul by a power of 2 is turned
8636 if ((N0
.getOpcode() == ISD::ADD
|| N0
.getOpcode() == ISD::OR
) &&
8637 N0
.getNode()->hasOneUse() &&
8638 isConstantOrConstantVector(N1
, /* No Opaques */ true) &&
8639 isConstantOrConstantVector(N0
.getOperand(1), /* No Opaques */ true) &&
8640 TLI
.isDesirableToCommuteWithShift(N
, Level
)) {
8641 SDValue Shl0
= DAG
.getNode(ISD::SHL
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
8642 SDValue Shl1
= DAG
.getNode(ISD::SHL
, SDLoc(N1
), VT
, N0
.getOperand(1), N1
);
8643 AddToWorklist(Shl0
.getNode());
8644 AddToWorklist(Shl1
.getNode());
8645 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, Shl0
, Shl1
);
8648 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
8649 if (N0
.getOpcode() == ISD::MUL
&& N0
.getNode()->hasOneUse() &&
8650 isConstantOrConstantVector(N1
, /* No Opaques */ true) &&
8651 isConstantOrConstantVector(N0
.getOperand(1), /* No Opaques */ true)) {
8652 SDValue Shl
= DAG
.getNode(ISD::SHL
, SDLoc(N1
), VT
, N0
.getOperand(1), N1
);
8653 if (isConstantOrConstantVector(Shl
))
8654 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N0
.getOperand(0), Shl
);
8657 if (N1C
&& !N1C
->isOpaque())
8658 if (SDValue NewSHL
= visitShiftByConstant(N
))
8661 // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)).
8662 if (N0
.getOpcode() == ISD::VSCALE
)
8663 if (ConstantSDNode
*NC1
= isConstOrConstSplat(N
->getOperand(1))) {
8664 const APInt
&C0
= N0
.getConstantOperandAPInt(0);
8665 const APInt
&C1
= NC1
->getAPIntValue();
8666 return DAG
.getVScale(SDLoc(N
), VT
, C0
<< C1
);
8669 // Fold (shl step_vector(C0), C1) to (step_vector(C0 << C1)).
8671 if (N0
.getOpcode() == ISD::STEP_VECTOR
)
8672 if (ISD::isConstantSplatVector(N1
.getNode(), ShlVal
)) {
8673 const APInt
&C0
= N0
.getConstantOperandAPInt(0);
8674 if (ShlVal
.ult(C0
.getBitWidth())) {
8675 APInt NewStep
= C0
<< ShlVal
;
8676 return DAG
.getStepVector(SDLoc(N
), VT
, NewStep
);
8683 // Transform a right shift of a multiply into a multiply-high.
8685 // (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b)
8686 // (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b)
8687 static SDValue
combineShiftToMULH(SDNode
*N
, SelectionDAG
&DAG
,
8688 const TargetLowering
&TLI
) {
8689 assert((N
->getOpcode() == ISD::SRL
|| N
->getOpcode() == ISD::SRA
) &&
8690 "SRL or SRA node is required here!");
8692 // Check the shift amount. Proceed with the transformation if the shift
8693 // amount is constant.
8694 ConstantSDNode
*ShiftAmtSrc
= isConstOrConstSplat(N
->getOperand(1));
8700 // The operation feeding into the shift must be a multiply.
8701 SDValue ShiftOperand
= N
->getOperand(0);
8702 if (ShiftOperand
.getOpcode() != ISD::MUL
)
8705 // Both operands must be equivalent extend nodes.
8706 SDValue LeftOp
= ShiftOperand
.getOperand(0);
8707 SDValue RightOp
= ShiftOperand
.getOperand(1);
8709 bool IsSignExt
= LeftOp
.getOpcode() == ISD::SIGN_EXTEND
;
8710 bool IsZeroExt
= LeftOp
.getOpcode() == ISD::ZERO_EXTEND
;
8712 if (!IsSignExt
&& !IsZeroExt
)
8715 EVT NarrowVT
= LeftOp
.getOperand(0).getValueType();
8716 unsigned NarrowVTSize
= NarrowVT
.getScalarSizeInBits();
8718 SDValue MulhRightOp
;
8719 if (ConstantSDNode
*Constant
= isConstOrConstSplat(RightOp
)) {
8720 unsigned ActiveBits
= IsSignExt
8721 ? Constant
->getAPIntValue().getMinSignedBits()
8722 : Constant
->getAPIntValue().getActiveBits();
8723 if (ActiveBits
> NarrowVTSize
)
8725 MulhRightOp
= DAG
.getConstant(
8726 Constant
->getAPIntValue().trunc(NarrowVT
.getScalarSizeInBits()), DL
,
8729 if (LeftOp
.getOpcode() != RightOp
.getOpcode())
8731 // Check that the two extend nodes are the same type.
8732 if (NarrowVT
!= RightOp
.getOperand(0).getValueType())
8734 MulhRightOp
= RightOp
.getOperand(0);
8737 EVT WideVT
= LeftOp
.getValueType();
8738 // Proceed with the transformation if the wide types match.
8739 assert((WideVT
== RightOp
.getValueType()) &&
8740 "Cannot have a multiply node with two different operand types.");
8742 // Proceed with the transformation if the wide type is twice as large
8743 // as the narrow type.
8744 if (WideVT
.getScalarSizeInBits() != 2 * NarrowVTSize
)
8747 // Check the shift amount with the narrow type size.
8748 // Proceed with the transformation if the shift amount is the width
8749 // of the narrow type.
8750 unsigned ShiftAmt
= ShiftAmtSrc
->getZExtValue();
8751 if (ShiftAmt
!= NarrowVTSize
)
8754 // If the operation feeding into the MUL is a sign extend (sext),
8755 // we use mulhs. Othewise, zero extends (zext) use mulhu.
8756 unsigned MulhOpcode
= IsSignExt
? ISD::MULHS
: ISD::MULHU
;
8758 // Combine to mulh if mulh is legal/custom for the narrow type on the target.
8759 if (!TLI
.isOperationLegalOrCustom(MulhOpcode
, NarrowVT
))
8763 DAG
.getNode(MulhOpcode
, DL
, NarrowVT
, LeftOp
.getOperand(0), MulhRightOp
);
8764 return (N
->getOpcode() == ISD::SRA
? DAG
.getSExtOrTrunc(Result
, DL
, WideVT
)
8765 : DAG
.getZExtOrTrunc(Result
, DL
, WideVT
));
8768 SDValue
DAGCombiner::visitSRA(SDNode
*N
) {
8769 SDValue N0
= N
->getOperand(0);
8770 SDValue N1
= N
->getOperand(1);
8771 if (SDValue V
= DAG
.simplifyShift(N0
, N1
))
8774 EVT VT
= N0
.getValueType();
8775 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
8777 // fold (sra c1, c2) -> (sra c1, c2)
8778 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::SRA
, SDLoc(N
), VT
, {N0
, N1
}))
8781 // Arithmetic shifting an all-sign-bit value is a no-op.
8782 // fold (sra 0, x) -> 0
8783 // fold (sra -1, x) -> -1
8784 if (DAG
.ComputeNumSignBits(N0
) == OpSizeInBits
)
8789 if (SDValue FoldedVOp
= SimplifyVBinOp(N
, SDLoc(N
)))
8792 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
8795 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
8797 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
8798 if (N1C
&& N0
.getOpcode() == ISD::SHL
&& N1
== N0
.getOperand(1)) {
8799 unsigned LowBits
= OpSizeInBits
- (unsigned)N1C
->getZExtValue();
8800 EVT ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), LowBits
);
8802 ExtVT
= EVT::getVectorVT(*DAG
.getContext(), ExtVT
,
8803 VT
.getVectorElementCount());
8804 if (!LegalOperations
||
8805 TLI
.getOperationAction(ISD::SIGN_EXTEND_INREG
, ExtVT
) ==
8806 TargetLowering::Legal
)
8807 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
,
8808 N0
.getOperand(0), DAG
.getValueType(ExtVT
));
8809 // Even if we can't convert to sext_inreg, we might be able to remove
8810 // this shift pair if the input is already sign extended.
8811 if (DAG
.ComputeNumSignBits(N0
.getOperand(0)) > N1C
->getZExtValue())
8812 return N0
.getOperand(0);
8815 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
8816 // clamp (add c1, c2) to max shift.
8817 if (N0
.getOpcode() == ISD::SRA
) {
8819 EVT ShiftVT
= N1
.getValueType();
8820 EVT ShiftSVT
= ShiftVT
.getScalarType();
8821 SmallVector
<SDValue
, 16> ShiftValues
;
8823 auto SumOfShifts
= [&](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
8824 APInt c1
= LHS
->getAPIntValue();
8825 APInt c2
= RHS
->getAPIntValue();
8826 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
8827 APInt Sum
= c1
+ c2
;
8829 Sum
.uge(OpSizeInBits
) ? (OpSizeInBits
- 1) : Sum
.getZExtValue();
8830 ShiftValues
.push_back(DAG
.getConstant(ShiftSum
, DL
, ShiftSVT
));
8833 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), SumOfShifts
)) {
8835 if (N1
.getOpcode() == ISD::BUILD_VECTOR
)
8836 ShiftValue
= DAG
.getBuildVector(ShiftVT
, DL
, ShiftValues
);
8837 else if (N1
.getOpcode() == ISD::SPLAT_VECTOR
) {
8838 assert(ShiftValues
.size() == 1 &&
8839 "Expected matchBinaryPredicate to return one element for "
8841 ShiftValue
= DAG
.getSplatVector(ShiftVT
, DL
, ShiftValues
[0]);
8843 ShiftValue
= ShiftValues
[0];
8844 return DAG
.getNode(ISD::SRA
, DL
, VT
, N0
.getOperand(0), ShiftValue
);
8848 // fold (sra (shl X, m), (sub result_size, n))
8849 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
8850 // result_size - n != m.
8851 // If truncate is free for the target sext(shl) is likely to result in better
8853 if (N0
.getOpcode() == ISD::SHL
&& N1C
) {
8854 // Get the two constanst of the shifts, CN0 = m, CN = n.
8855 const ConstantSDNode
*N01C
= isConstOrConstSplat(N0
.getOperand(1));
8857 LLVMContext
&Ctx
= *DAG
.getContext();
8858 // Determine what the truncate's result bitsize and type would be.
8859 EVT TruncVT
= EVT::getIntegerVT(Ctx
, OpSizeInBits
- N1C
->getZExtValue());
8862 TruncVT
= EVT::getVectorVT(Ctx
, TruncVT
, VT
.getVectorElementCount());
8864 // Determine the residual right-shift amount.
8865 int ShiftAmt
= N1C
->getZExtValue() - N01C
->getZExtValue();
8867 // If the shift is not a no-op (in which case this should be just a sign
8868 // extend already), the truncated to type is legal, sign_extend is legal
8869 // on that type, and the truncate to that type is both legal and free,
8870 // perform the transform.
8871 if ((ShiftAmt
> 0) &&
8872 TLI
.isOperationLegalOrCustom(ISD::SIGN_EXTEND
, TruncVT
) &&
8873 TLI
.isOperationLegalOrCustom(ISD::TRUNCATE
, VT
) &&
8874 TLI
.isTruncateFree(VT
, TruncVT
)) {
8876 SDValue Amt
= DAG
.getConstant(ShiftAmt
, DL
,
8877 getShiftAmountTy(N0
.getOperand(0).getValueType()));
8878 SDValue Shift
= DAG
.getNode(ISD::SRL
, DL
, VT
,
8879 N0
.getOperand(0), Amt
);
8880 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
,
8882 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
,
8883 N
->getValueType(0), Trunc
);
8888 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper.
8889 // sra (add (shl X, N1C), AddC), N1C -->
8890 // sext (add (trunc X to (width - N1C)), AddC')
8891 if (N0
.getOpcode() == ISD::ADD
&& N0
.hasOneUse() && N1C
&&
8892 N0
.getOperand(0).getOpcode() == ISD::SHL
&&
8893 N0
.getOperand(0).getOperand(1) == N1
&& N0
.getOperand(0).hasOneUse()) {
8894 if (ConstantSDNode
*AddC
= isConstOrConstSplat(N0
.getOperand(1))) {
8895 SDValue Shl
= N0
.getOperand(0);
8896 // Determine what the truncate's type would be and ask the target if that
8897 // is a free operation.
8898 LLVMContext
&Ctx
= *DAG
.getContext();
8899 unsigned ShiftAmt
= N1C
->getZExtValue();
8900 EVT TruncVT
= EVT::getIntegerVT(Ctx
, OpSizeInBits
- ShiftAmt
);
8902 TruncVT
= EVT::getVectorVT(Ctx
, TruncVT
, VT
.getVectorElementCount());
8904 // TODO: The simple type check probably belongs in the default hook
8905 // implementation and/or target-specific overrides (because
8906 // non-simple types likely require masking when legalized), but that
8907 // restriction may conflict with other transforms.
8908 if (TruncVT
.isSimple() && isTypeLegal(TruncVT
) &&
8909 TLI
.isTruncateFree(VT
, TruncVT
)) {
8911 SDValue Trunc
= DAG
.getZExtOrTrunc(Shl
.getOperand(0), DL
, TruncVT
);
8912 SDValue ShiftC
= DAG
.getConstant(AddC
->getAPIntValue().lshr(ShiftAmt
).
8913 trunc(TruncVT
.getScalarSizeInBits()), DL
, TruncVT
);
8914 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, TruncVT
, Trunc
, ShiftC
);
8915 return DAG
.getSExtOrTrunc(Add
, DL
, VT
);
8920 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
8921 if (N1
.getOpcode() == ISD::TRUNCATE
&&
8922 N1
.getOperand(0).getOpcode() == ISD::AND
) {
8923 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
8924 return DAG
.getNode(ISD::SRA
, SDLoc(N
), VT
, N0
, NewOp1
);
8927 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2))
8928 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
8929 // if c1 is equal to the number of bits the trunc removes
8930 // TODO - support non-uniform vector shift amounts.
8931 if (N0
.getOpcode() == ISD::TRUNCATE
&&
8932 (N0
.getOperand(0).getOpcode() == ISD::SRL
||
8933 N0
.getOperand(0).getOpcode() == ISD::SRA
) &&
8934 N0
.getOperand(0).hasOneUse() &&
8935 N0
.getOperand(0).getOperand(1).hasOneUse() && N1C
) {
8936 SDValue N0Op0
= N0
.getOperand(0);
8937 if (ConstantSDNode
*LargeShift
= isConstOrConstSplat(N0Op0
.getOperand(1))) {
8938 EVT LargeVT
= N0Op0
.getValueType();
8939 unsigned TruncBits
= LargeVT
.getScalarSizeInBits() - OpSizeInBits
;
8940 if (LargeShift
->getAPIntValue() == TruncBits
) {
8942 SDValue Amt
= DAG
.getConstant(N1C
->getZExtValue() + TruncBits
, DL
,
8943 getShiftAmountTy(LargeVT
));
8945 DAG
.getNode(ISD::SRA
, DL
, LargeVT
, N0Op0
.getOperand(0), Amt
);
8946 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, SRA
);
8951 // Simplify, based on bits shifted out of the LHS.
8952 if (SimplifyDemandedBits(SDValue(N
, 0)))
8953 return SDValue(N
, 0);
8955 // If the sign bit is known to be zero, switch this to a SRL.
8956 if (DAG
.SignBitIsZero(N0
))
8957 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
, N1
);
8959 if (N1C
&& !N1C
->isOpaque())
8960 if (SDValue NewSRA
= visitShiftByConstant(N
))
8963 // Try to transform this shift into a multiply-high if
8964 // it matches the appropriate pattern detected in combineShiftToMULH.
8965 if (SDValue MULH
= combineShiftToMULH(N
, DAG
, TLI
))
8971 SDValue
DAGCombiner::visitSRL(SDNode
*N
) {
8972 SDValue N0
= N
->getOperand(0);
8973 SDValue N1
= N
->getOperand(1);
8974 if (SDValue V
= DAG
.simplifyShift(N0
, N1
))
8977 EVT VT
= N0
.getValueType();
8978 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
8980 // fold (srl c1, c2) -> c1 >>u c2
8981 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::SRL
, SDLoc(N
), VT
, {N0
, N1
}))
8986 if (SDValue FoldedVOp
= SimplifyVBinOp(N
, SDLoc(N
)))
8989 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
8992 // if (srl x, c) is known to be zero, return 0
8993 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
8995 DAG
.MaskedValueIsZero(SDValue(N
, 0), APInt::getAllOnes(OpSizeInBits
)))
8996 return DAG
.getConstant(0, SDLoc(N
), VT
);
8998 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
8999 if (N0
.getOpcode() == ISD::SRL
) {
9000 auto MatchOutOfRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
9001 ConstantSDNode
*RHS
) {
9002 APInt c1
= LHS
->getAPIntValue();
9003 APInt c2
= RHS
->getAPIntValue();
9004 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
9005 return (c1
+ c2
).uge(OpSizeInBits
);
9007 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchOutOfRange
))
9008 return DAG
.getConstant(0, SDLoc(N
), VT
);
9010 auto MatchInRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
9011 ConstantSDNode
*RHS
) {
9012 APInt c1
= LHS
->getAPIntValue();
9013 APInt c2
= RHS
->getAPIntValue();
9014 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
9015 return (c1
+ c2
).ult(OpSizeInBits
);
9017 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchInRange
)) {
9019 EVT ShiftVT
= N1
.getValueType();
9020 SDValue Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, N1
, N0
.getOperand(1));
9021 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
.getOperand(0), Sum
);
9025 if (N1C
&& N0
.getOpcode() == ISD::TRUNCATE
&&
9026 N0
.getOperand(0).getOpcode() == ISD::SRL
) {
9027 SDValue InnerShift
= N0
.getOperand(0);
9028 // TODO - support non-uniform vector shift amounts.
9029 if (auto *N001C
= isConstOrConstSplat(InnerShift
.getOperand(1))) {
9030 uint64_t c1
= N001C
->getZExtValue();
9031 uint64_t c2
= N1C
->getZExtValue();
9032 EVT InnerShiftVT
= InnerShift
.getValueType();
9033 EVT ShiftAmtVT
= InnerShift
.getOperand(1).getValueType();
9034 uint64_t InnerShiftSize
= InnerShiftVT
.getScalarSizeInBits();
9035 // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2)))
9036 // This is only valid if the OpSizeInBits + c1 = size of inner shift.
9037 if (c1
+ OpSizeInBits
== InnerShiftSize
) {
9039 if (c1
+ c2
>= InnerShiftSize
)
9040 return DAG
.getConstant(0, DL
, VT
);
9041 SDValue NewShiftAmt
= DAG
.getConstant(c1
+ c2
, DL
, ShiftAmtVT
);
9042 SDValue NewShift
= DAG
.getNode(ISD::SRL
, DL
, InnerShiftVT
,
9043 InnerShift
.getOperand(0), NewShiftAmt
);
9044 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, NewShift
);
9046 // In the more general case, we can clear the high bits after the shift:
9047 // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask)
9048 if (N0
.hasOneUse() && InnerShift
.hasOneUse() &&
9049 c1
+ c2
< InnerShiftSize
) {
9051 SDValue NewShiftAmt
= DAG
.getConstant(c1
+ c2
, DL
, ShiftAmtVT
);
9052 SDValue NewShift
= DAG
.getNode(ISD::SRL
, DL
, InnerShiftVT
,
9053 InnerShift
.getOperand(0), NewShiftAmt
);
9054 SDValue Mask
= DAG
.getConstant(APInt::getLowBitsSet(InnerShiftSize
,
9057 SDValue And
= DAG
.getNode(ISD::AND
, DL
, InnerShiftVT
, NewShift
, Mask
);
9058 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, And
);
9063 // fold (srl (shl x, c), c) -> (and x, cst2)
9064 // TODO - (srl (shl x, c1), c2).
9065 if (N0
.getOpcode() == ISD::SHL
&& N0
.getOperand(1) == N1
&&
9066 isConstantOrConstantVector(N1
, /* NoOpaques */ true)) {
9069 DAG
.getNode(ISD::SRL
, DL
, VT
, DAG
.getAllOnesConstant(DL
, VT
), N1
);
9070 AddToWorklist(Mask
.getNode());
9071 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), Mask
);
9074 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
9075 // TODO - support non-uniform vector shift amounts.
9076 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
9077 // Shifting in all undef bits?
9078 EVT SmallVT
= N0
.getOperand(0).getValueType();
9079 unsigned BitSize
= SmallVT
.getScalarSizeInBits();
9080 if (N1C
->getAPIntValue().uge(BitSize
))
9081 return DAG
.getUNDEF(VT
);
9083 if (!LegalTypes
|| TLI
.isTypeDesirableForOp(ISD::SRL
, SmallVT
)) {
9084 uint64_t ShiftAmt
= N1C
->getZExtValue();
9086 SDValue SmallShift
= DAG
.getNode(ISD::SRL
, DL0
, SmallVT
,
9088 DAG
.getConstant(ShiftAmt
, DL0
,
9089 getShiftAmountTy(SmallVT
)));
9090 AddToWorklist(SmallShift
.getNode());
9091 APInt Mask
= APInt::getLowBitsSet(OpSizeInBits
, OpSizeInBits
- ShiftAmt
);
9093 return DAG
.getNode(ISD::AND
, DL
, VT
,
9094 DAG
.getNode(ISD::ANY_EXTEND
, DL
, VT
, SmallShift
),
9095 DAG
.getConstant(Mask
, DL
, VT
));
9099 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
9100 // bit, which is unmodified by sra.
9101 if (N1C
&& N1C
->getAPIntValue() == (OpSizeInBits
- 1)) {
9102 if (N0
.getOpcode() == ISD::SRA
)
9103 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
9106 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
9107 if (N1C
&& N0
.getOpcode() == ISD::CTLZ
&&
9108 N1C
->getAPIntValue() == Log2_32(OpSizeInBits
)) {
9109 KnownBits Known
= DAG
.computeKnownBits(N0
.getOperand(0));
9111 // If any of the input bits are KnownOne, then the input couldn't be all
9112 // zeros, thus the result of the srl will always be zero.
9113 if (Known
.One
.getBoolValue()) return DAG
.getConstant(0, SDLoc(N0
), VT
);
9115 // If all of the bits input the to ctlz node are known to be zero, then
9116 // the result of the ctlz is "32" and the result of the shift is one.
9117 APInt UnknownBits
= ~Known
.Zero
;
9118 if (UnknownBits
== 0) return DAG
.getConstant(1, SDLoc(N0
), VT
);
9120 // Otherwise, check to see if there is exactly one bit input to the ctlz.
9121 if (UnknownBits
.isPowerOf2()) {
9122 // Okay, we know that only that the single bit specified by UnknownBits
9123 // could be set on input to the CTLZ node. If this bit is set, the SRL
9124 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
9125 // to an SRL/XOR pair, which is likely to simplify more.
9126 unsigned ShAmt
= UnknownBits
.countTrailingZeros();
9127 SDValue Op
= N0
.getOperand(0);
9131 Op
= DAG
.getNode(ISD::SRL
, DL
, VT
, Op
,
9132 DAG
.getConstant(ShAmt
, DL
,
9133 getShiftAmountTy(Op
.getValueType())));
9134 AddToWorklist(Op
.getNode());
9138 return DAG
.getNode(ISD::XOR
, DL
, VT
,
9139 Op
, DAG
.getConstant(1, DL
, VT
));
9143 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
9144 if (N1
.getOpcode() == ISD::TRUNCATE
&&
9145 N1
.getOperand(0).getOpcode() == ISD::AND
) {
9146 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
9147 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
, NewOp1
);
9150 // fold operands of srl based on knowledge that the low bits are not
9152 if (SimplifyDemandedBits(SDValue(N
, 0)))
9153 return SDValue(N
, 0);
9155 if (N1C
&& !N1C
->isOpaque())
9156 if (SDValue NewSRL
= visitShiftByConstant(N
))
9159 // Attempt to convert a srl of a load into a narrower zero-extending load.
9160 if (SDValue NarrowLoad
= reduceLoadWidth(N
))
9163 // Here is a common situation. We want to optimize:
9166 // %b = and i32 %a, 2
9167 // %c = srl i32 %b, 1
9168 // brcond i32 %c ...
9174 // %c = setcc eq %b, 0
9177 // However when after the source operand of SRL is optimized into AND, the SRL
9178 // itself may not be optimized further. Look for it and add the BRCOND into
9180 if (N
->hasOneUse()) {
9181 SDNode
*Use
= *N
->use_begin();
9182 if (Use
->getOpcode() == ISD::BRCOND
)
9184 else if (Use
->getOpcode() == ISD::TRUNCATE
&& Use
->hasOneUse()) {
9185 // Also look pass the truncate.
9186 Use
= *Use
->use_begin();
9187 if (Use
->getOpcode() == ISD::BRCOND
)
9192 // Try to transform this shift into a multiply-high if
9193 // it matches the appropriate pattern detected in combineShiftToMULH.
9194 if (SDValue MULH
= combineShiftToMULH(N
, DAG
, TLI
))
9200 SDValue
DAGCombiner::visitFunnelShift(SDNode
*N
) {
9201 EVT VT
= N
->getValueType(0);
9202 SDValue N0
= N
->getOperand(0);
9203 SDValue N1
= N
->getOperand(1);
9204 SDValue N2
= N
->getOperand(2);
9205 bool IsFSHL
= N
->getOpcode() == ISD::FSHL
;
9206 unsigned BitWidth
= VT
.getScalarSizeInBits();
9208 // fold (fshl N0, N1, 0) -> N0
9209 // fold (fshr N0, N1, 0) -> N1
9210 if (isPowerOf2_32(BitWidth
))
9211 if (DAG
.MaskedValueIsZero(
9212 N2
, APInt(N2
.getScalarValueSizeInBits(), BitWidth
- 1)))
9213 return IsFSHL
? N0
: N1
;
9215 auto IsUndefOrZero
= [](SDValue V
) {
9216 return V
.isUndef() || isNullOrNullSplat(V
, /*AllowUndefs*/ true);
9219 // TODO - support non-uniform vector shift amounts.
9220 if (ConstantSDNode
*Cst
= isConstOrConstSplat(N2
)) {
9221 EVT ShAmtTy
= N2
.getValueType();
9223 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
9224 if (Cst
->getAPIntValue().uge(BitWidth
)) {
9225 uint64_t RotAmt
= Cst
->getAPIntValue().urem(BitWidth
);
9226 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N0
, N1
,
9227 DAG
.getConstant(RotAmt
, SDLoc(N
), ShAmtTy
));
9230 unsigned ShAmt
= Cst
->getZExtValue();
9232 return IsFSHL
? N0
: N1
;
9234 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C)
9235 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C)
9236 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C)
9237 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C)
9238 if (IsUndefOrZero(N0
))
9239 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N1
,
9240 DAG
.getConstant(IsFSHL
? BitWidth
- ShAmt
: ShAmt
,
9241 SDLoc(N
), ShAmtTy
));
9242 if (IsUndefOrZero(N1
))
9243 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N0
,
9244 DAG
.getConstant(IsFSHL
? ShAmt
: BitWidth
- ShAmt
,
9245 SDLoc(N
), ShAmtTy
));
9247 // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
9248 // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
9249 // TODO - bigendian support once we have test coverage.
9250 // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine?
9251 // TODO - permit LHS EXTLOAD if extensions are shifted out.
9252 if ((BitWidth
% 8) == 0 && (ShAmt
% 8) == 0 && !VT
.isVector() &&
9253 !DAG
.getDataLayout().isBigEndian()) {
9254 auto *LHS
= dyn_cast
<LoadSDNode
>(N0
);
9255 auto *RHS
= dyn_cast
<LoadSDNode
>(N1
);
9256 if (LHS
&& RHS
&& LHS
->isSimple() && RHS
->isSimple() &&
9257 LHS
->getAddressSpace() == RHS
->getAddressSpace() &&
9258 (LHS
->hasOneUse() || RHS
->hasOneUse()) && ISD::isNON_EXTLoad(RHS
) &&
9259 ISD::isNON_EXTLoad(LHS
)) {
9260 if (DAG
.areNonVolatileConsecutiveLoads(LHS
, RHS
, BitWidth
/ 8, 1)) {
9263 IsFSHL
? (((BitWidth
- ShAmt
) % BitWidth
) / 8) : (ShAmt
/ 8);
9264 Align NewAlign
= commonAlignment(RHS
->getAlign(), PtrOff
);
9266 if (TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), VT
,
9267 RHS
->getAddressSpace(), NewAlign
,
9268 RHS
->getMemOperand()->getFlags(), &Fast
) &&
9270 SDValue NewPtr
= DAG
.getMemBasePlusOffset(
9271 RHS
->getBasePtr(), TypeSize::Fixed(PtrOff
), DL
);
9272 AddToWorklist(NewPtr
.getNode());
9273 SDValue Load
= DAG
.getLoad(
9274 VT
, DL
, RHS
->getChain(), NewPtr
,
9275 RHS
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
,
9276 RHS
->getMemOperand()->getFlags(), RHS
->getAAInfo());
9277 // Replace the old load's chain with the new load's chain.
9278 WorklistRemover
DeadNodes(*this);
9279 DAG
.ReplaceAllUsesOfValueWith(N1
.getValue(1), Load
.getValue(1));
9287 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2)
9288 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2)
9289 // iff We know the shift amount is in range.
9290 // TODO: when is it worth doing SUB(BW, N2) as well?
9291 if (isPowerOf2_32(BitWidth
)) {
9292 APInt
ModuloBits(N2
.getScalarValueSizeInBits(), BitWidth
- 1);
9293 if (IsUndefOrZero(N0
) && !IsFSHL
&& DAG
.MaskedValueIsZero(N2
, ~ModuloBits
))
9294 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N1
, N2
);
9295 if (IsUndefOrZero(N1
) && IsFSHL
&& DAG
.MaskedValueIsZero(N2
, ~ModuloBits
))
9296 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N0
, N2
);
9299 // fold (fshl N0, N0, N2) -> (rotl N0, N2)
9300 // fold (fshr N0, N0, N2) -> (rotr N0, N2)
9301 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift
9302 // is legal as well we might be better off avoiding non-constant (BW - N2).
9303 unsigned RotOpc
= IsFSHL
? ISD::ROTL
: ISD::ROTR
;
9304 if (N0
== N1
&& hasOperation(RotOpc
, VT
))
9305 return DAG
.getNode(RotOpc
, SDLoc(N
), VT
, N0
, N2
);
9307 // Simplify, based on bits shifted out of N0/N1.
9308 if (SimplifyDemandedBits(SDValue(N
, 0)))
9309 return SDValue(N
, 0);
9314 // Given a ABS node, detect the following pattern:
9315 // (ABS (SUB (EXTEND a), (EXTEND b))).
9316 // Generates UABD/SABD instruction.
9317 static SDValue
combineABSToABD(SDNode
*N
, SelectionDAG
&DAG
,
9318 const TargetLowering
&TLI
) {
9319 SDValue AbsOp1
= N
->getOperand(0);
9322 if (AbsOp1
.getOpcode() != ISD::SUB
)
9325 Op0
= AbsOp1
.getOperand(0);
9326 Op1
= AbsOp1
.getOperand(1);
9328 unsigned Opc0
= Op0
.getOpcode();
9329 // Check if the operands of the sub are (zero|sign)-extended.
9330 if (Opc0
!= Op1
.getOpcode() ||
9331 (Opc0
!= ISD::ZERO_EXTEND
&& Opc0
!= ISD::SIGN_EXTEND
))
9334 EVT VT1
= Op0
.getOperand(0).getValueType();
9335 EVT VT2
= Op1
.getOperand(0).getValueType();
9336 // Check if the operands are of same type and valid size.
9337 unsigned ABDOpcode
= (Opc0
== ISD::SIGN_EXTEND
) ? ISD::ABDS
: ISD::ABDU
;
9338 if (VT1
!= VT2
|| !TLI
.isOperationLegalOrCustom(ABDOpcode
, VT1
))
9341 Op0
= Op0
.getOperand(0);
9342 Op1
= Op1
.getOperand(0);
9344 DAG
.getNode(ABDOpcode
, SDLoc(N
), Op0
->getValueType(0), Op0
, Op1
);
9345 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), N
->getValueType(0), ABD
);
9348 SDValue
DAGCombiner::visitABS(SDNode
*N
) {
9349 SDValue N0
= N
->getOperand(0);
9350 EVT VT
= N
->getValueType(0);
9352 // fold (abs c1) -> c2
9353 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9354 return DAG
.getNode(ISD::ABS
, SDLoc(N
), VT
, N0
);
9355 // fold (abs (abs x)) -> (abs x)
9356 if (N0
.getOpcode() == ISD::ABS
)
9358 // fold (abs x) -> x iff not-negative
9359 if (DAG
.SignBitIsZero(N0
))
9362 if (SDValue ABD
= combineABSToABD(N
, DAG
, TLI
))
9368 SDValue
DAGCombiner::visitBSWAP(SDNode
*N
) {
9369 SDValue N0
= N
->getOperand(0);
9370 EVT VT
= N
->getValueType(0);
9372 // fold (bswap c1) -> c2
9373 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9374 return DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, N0
);
9375 // fold (bswap (bswap x)) -> x
9376 if (N0
.getOpcode() == ISD::BSWAP
)
9377 return N0
->getOperand(0);
9381 SDValue
DAGCombiner::visitBITREVERSE(SDNode
*N
) {
9382 SDValue N0
= N
->getOperand(0);
9383 EVT VT
= N
->getValueType(0);
9385 // fold (bitreverse c1) -> c2
9386 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9387 return DAG
.getNode(ISD::BITREVERSE
, SDLoc(N
), VT
, N0
);
9388 // fold (bitreverse (bitreverse x)) -> x
9389 if (N0
.getOpcode() == ISD::BITREVERSE
)
9390 return N0
.getOperand(0);
9394 SDValue
DAGCombiner::visitCTLZ(SDNode
*N
) {
9395 SDValue N0
= N
->getOperand(0);
9396 EVT VT
= N
->getValueType(0);
9398 // fold (ctlz c1) -> c2
9399 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9400 return DAG
.getNode(ISD::CTLZ
, SDLoc(N
), VT
, N0
);
9402 // If the value is known never to be zero, switch to the undef version.
9403 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTLZ_ZERO_UNDEF
, VT
)) {
9404 if (DAG
.isKnownNeverZero(N0
))
9405 return DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
9411 SDValue
DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode
*N
) {
9412 SDValue N0
= N
->getOperand(0);
9413 EVT VT
= N
->getValueType(0);
9415 // fold (ctlz_zero_undef c1) -> c2
9416 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9417 return DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
9421 SDValue
DAGCombiner::visitCTTZ(SDNode
*N
) {
9422 SDValue N0
= N
->getOperand(0);
9423 EVT VT
= N
->getValueType(0);
9425 // fold (cttz c1) -> c2
9426 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9427 return DAG
.getNode(ISD::CTTZ
, SDLoc(N
), VT
, N0
);
9429 // If the value is known never to be zero, switch to the undef version.
9430 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTTZ_ZERO_UNDEF
, VT
)) {
9431 if (DAG
.isKnownNeverZero(N0
))
9432 return DAG
.getNode(ISD::CTTZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
9438 SDValue
DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode
*N
) {
9439 SDValue N0
= N
->getOperand(0);
9440 EVT VT
= N
->getValueType(0);
9442 // fold (cttz_zero_undef c1) -> c2
9443 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9444 return DAG
.getNode(ISD::CTTZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
9448 SDValue
DAGCombiner::visitCTPOP(SDNode
*N
) {
9449 SDValue N0
= N
->getOperand(0);
9450 EVT VT
= N
->getValueType(0);
9452 // fold (ctpop c1) -> c2
9453 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9454 return DAG
.getNode(ISD::CTPOP
, SDLoc(N
), VT
, N0
);
9458 // FIXME: This should be checking for no signed zeros on individual operands, as
9460 static bool isLegalToCombineMinNumMaxNum(SelectionDAG
&DAG
, SDValue LHS
,
9462 const TargetLowering
&TLI
) {
9463 const TargetOptions
&Options
= DAG
.getTarget().Options
;
9464 EVT VT
= LHS
.getValueType();
9466 return Options
.NoSignedZerosFPMath
&& VT
.isFloatingPoint() &&
9467 TLI
.isProfitableToCombineMinNumMaxNum(VT
) &&
9468 DAG
.isKnownNeverNaN(LHS
) && DAG
.isKnownNeverNaN(RHS
);
9471 /// Generate Min/Max node
9472 static SDValue
combineMinNumMaxNum(const SDLoc
&DL
, EVT VT
, SDValue LHS
,
9473 SDValue RHS
, SDValue True
, SDValue False
,
9474 ISD::CondCode CC
, const TargetLowering
&TLI
,
9475 SelectionDAG
&DAG
) {
9476 if (!(LHS
== True
&& RHS
== False
) && !(LHS
== False
&& RHS
== True
))
9479 EVT TransformVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), VT
);
9487 // Since it's known never nan to get here already, either fminnum or
9488 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
9489 // expanded in terms of it.
9490 unsigned IEEEOpcode
= (LHS
== True
) ? ISD::FMINNUM_IEEE
: ISD::FMAXNUM_IEEE
;
9491 if (TLI
.isOperationLegalOrCustom(IEEEOpcode
, VT
))
9492 return DAG
.getNode(IEEEOpcode
, DL
, VT
, LHS
, RHS
);
9494 unsigned Opcode
= (LHS
== True
) ? ISD::FMINNUM
: ISD::FMAXNUM
;
9495 if (TLI
.isOperationLegalOrCustom(Opcode
, TransformVT
))
9496 return DAG
.getNode(Opcode
, DL
, VT
, LHS
, RHS
);
9505 unsigned IEEEOpcode
= (LHS
== True
) ? ISD::FMAXNUM_IEEE
: ISD::FMINNUM_IEEE
;
9506 if (TLI
.isOperationLegalOrCustom(IEEEOpcode
, VT
))
9507 return DAG
.getNode(IEEEOpcode
, DL
, VT
, LHS
, RHS
);
9509 unsigned Opcode
= (LHS
== True
) ? ISD::FMAXNUM
: ISD::FMINNUM
;
9510 if (TLI
.isOperationLegalOrCustom(Opcode
, TransformVT
))
9511 return DAG
.getNode(Opcode
, DL
, VT
, LHS
, RHS
);
9519 /// If a (v)select has a condition value that is a sign-bit test, try to smear
9520 /// the condition operand sign-bit across the value width and use it as a mask.
9521 static SDValue
foldSelectOfConstantsUsingSra(SDNode
*N
, SelectionDAG
&DAG
) {
9522 SDValue Cond
= N
->getOperand(0);
9523 SDValue C1
= N
->getOperand(1);
9524 SDValue C2
= N
->getOperand(2);
9525 if (!isConstantOrConstantVector(C1
) || !isConstantOrConstantVector(C2
))
9528 EVT VT
= N
->getValueType(0);
9529 if (Cond
.getOpcode() != ISD::SETCC
|| !Cond
.hasOneUse() ||
9530 VT
!= Cond
.getOperand(0).getValueType())
9533 // The inverted-condition + commuted-select variants of these patterns are
9534 // canonicalized to these forms in IR.
9535 SDValue X
= Cond
.getOperand(0);
9536 SDValue CondC
= Cond
.getOperand(1);
9537 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
9538 if (CC
== ISD::SETGT
&& isAllOnesOrAllOnesSplat(CondC
) &&
9539 isAllOnesOrAllOnesSplat(C2
)) {
9540 // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1
9542 SDValue ShAmtC
= DAG
.getConstant(X
.getScalarValueSizeInBits() - 1, DL
, VT
);
9543 SDValue Sra
= DAG
.getNode(ISD::SRA
, DL
, VT
, X
, ShAmtC
);
9544 return DAG
.getNode(ISD::OR
, DL
, VT
, Sra
, C1
);
9546 if (CC
== ISD::SETLT
&& isNullOrNullSplat(CondC
) && isNullOrNullSplat(C2
)) {
9547 // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1
9549 SDValue ShAmtC
= DAG
.getConstant(X
.getScalarValueSizeInBits() - 1, DL
, VT
);
9550 SDValue Sra
= DAG
.getNode(ISD::SRA
, DL
, VT
, X
, ShAmtC
);
9551 return DAG
.getNode(ISD::AND
, DL
, VT
, Sra
, C1
);
9556 SDValue
DAGCombiner::foldSelectOfConstants(SDNode
*N
) {
9557 SDValue Cond
= N
->getOperand(0);
9558 SDValue N1
= N
->getOperand(1);
9559 SDValue N2
= N
->getOperand(2);
9560 EVT VT
= N
->getValueType(0);
9561 EVT CondVT
= Cond
.getValueType();
9564 if (!VT
.isInteger())
9567 auto *C1
= dyn_cast
<ConstantSDNode
>(N1
);
9568 auto *C2
= dyn_cast
<ConstantSDNode
>(N2
);
9572 // Only do this before legalization to avoid conflicting with target-specific
9573 // transforms in the other direction (create a select from a zext/sext). There
9574 // is also a target-independent combine here in DAGCombiner in the other
9575 // direction for (select Cond, -1, 0) when the condition is not i1.
9576 if (CondVT
== MVT::i1
&& !LegalOperations
) {
9577 if (C1
->isZero() && C2
->isOne()) {
9578 // select Cond, 0, 1 --> zext (!Cond)
9579 SDValue NotCond
= DAG
.getNOT(DL
, Cond
, MVT::i1
);
9581 NotCond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, NotCond
);
9584 if (C1
->isZero() && C2
->isAllOnes()) {
9585 // select Cond, 0, -1 --> sext (!Cond)
9586 SDValue NotCond
= DAG
.getNOT(DL
, Cond
, MVT::i1
);
9588 NotCond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, NotCond
);
9591 if (C1
->isOne() && C2
->isZero()) {
9592 // select Cond, 1, 0 --> zext (Cond)
9594 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Cond
);
9597 if (C1
->isAllOnes() && C2
->isZero()) {
9598 // select Cond, -1, 0 --> sext (Cond)
9600 Cond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Cond
);
9604 // Use a target hook because some targets may prefer to transform in the
9606 if (TLI
.convertSelectOfConstantsToMath(VT
)) {
9607 // For any constants that differ by 1, we can transform the select into an
9609 const APInt
&C1Val
= C1
->getAPIntValue();
9610 const APInt
&C2Val
= C2
->getAPIntValue();
9611 if (C1Val
- 1 == C2Val
) {
9612 // select Cond, C1, C1-1 --> add (zext Cond), C1-1
9614 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Cond
);
9615 return DAG
.getNode(ISD::ADD
, DL
, VT
, Cond
, N2
);
9617 if (C1Val
+ 1 == C2Val
) {
9618 // select Cond, C1, C1+1 --> add (sext Cond), C1+1
9620 Cond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Cond
);
9621 return DAG
.getNode(ISD::ADD
, DL
, VT
, Cond
, N2
);
9624 // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2)
9625 if (C1Val
.isPowerOf2() && C2Val
.isZero()) {
9627 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Cond
);
9628 SDValue ShAmtC
= DAG
.getConstant(C1Val
.exactLogBase2(), DL
, VT
);
9629 return DAG
.getNode(ISD::SHL
, DL
, VT
, Cond
, ShAmtC
);
9632 if (SDValue V
= foldSelectOfConstantsUsingSra(N
, DAG
))
9639 // fold (select Cond, 0, 1) -> (xor Cond, 1)
9640 // We can't do this reliably if integer based booleans have different contents
9641 // to floating point based booleans. This is because we can't tell whether we
9642 // have an integer-based boolean or a floating-point-based boolean unless we
9643 // can find the SETCC that produced it and inspect its operands. This is
9644 // fairly easy if C is the SETCC node, but it can potentially be
9645 // undiscoverable (or not reasonably discoverable). For example, it could be
9646 // in another basic block or it could require searching a complicated
9648 if (CondVT
.isInteger() &&
9649 TLI
.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
9650 TargetLowering::ZeroOrOneBooleanContent
&&
9651 TLI
.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
9652 TargetLowering::ZeroOrOneBooleanContent
&&
9653 C1
->isZero() && C2
->isOne()) {
9655 DAG
.getNode(ISD::XOR
, DL
, CondVT
, Cond
, DAG
.getConstant(1, DL
, CondVT
));
9656 if (VT
.bitsEq(CondVT
))
9658 return DAG
.getZExtOrTrunc(NotCond
, DL
, VT
);
9664 static SDValue
foldBoolSelectToLogic(SDNode
*N
, SelectionDAG
&DAG
) {
9665 assert((N
->getOpcode() == ISD::SELECT
|| N
->getOpcode() == ISD::VSELECT
) &&
9666 "Expected a (v)select");
9667 SDValue Cond
= N
->getOperand(0);
9668 SDValue T
= N
->getOperand(1), F
= N
->getOperand(2);
9669 EVT VT
= N
->getValueType(0);
9670 if (VT
!= Cond
.getValueType() || VT
.getScalarSizeInBits() != 1)
9673 // select Cond, Cond, F --> or Cond, F
9674 // select Cond, 1, F --> or Cond, F
9675 if (Cond
== T
|| isOneOrOneSplat(T
, /* AllowUndefs */ true))
9676 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, Cond
, F
);
9678 // select Cond, T, Cond --> and Cond, T
9679 // select Cond, T, 0 --> and Cond, T
9680 if (Cond
== F
|| isNullOrNullSplat(F
, /* AllowUndefs */ true))
9681 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, Cond
, T
);
9683 // select Cond, T, 1 --> or (not Cond), T
9684 if (isOneOrOneSplat(F
, /* AllowUndefs */ true)) {
9685 SDValue NotCond
= DAG
.getNOT(SDLoc(N
), Cond
, VT
);
9686 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, NotCond
, T
);
9689 // select Cond, 0, F --> and (not Cond), F
9690 if (isNullOrNullSplat(T
, /* AllowUndefs */ true)) {
9691 SDValue NotCond
= DAG
.getNOT(SDLoc(N
), Cond
, VT
);
9692 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, NotCond
, F
);
9698 static SDValue
foldVSelectToSignBitSplatMask(SDNode
*N
, SelectionDAG
&DAG
) {
9699 SDValue N0
= N
->getOperand(0);
9700 SDValue N1
= N
->getOperand(1);
9701 SDValue N2
= N
->getOperand(2);
9702 EVT VT
= N
->getValueType(0);
9703 if (N0
.getOpcode() != ISD::SETCC
|| !N0
.hasOneUse())
9706 SDValue Cond0
= N0
.getOperand(0);
9707 SDValue Cond1
= N0
.getOperand(1);
9708 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
9709 if (VT
!= Cond0
.getValueType())
9712 // Match a signbit check of Cond0 as "Cond0 s<0". Swap select operands if the
9713 // compare is inverted from that pattern ("Cond0 s> -1").
9714 if (CC
== ISD::SETLT
&& isNullOrNullSplat(Cond1
))
9715 ; // This is the pattern we are looking for.
9716 else if (CC
== ISD::SETGT
&& isAllOnesOrAllOnesSplat(Cond1
))
9721 // (Cond0 s< 0) ? N1 : 0 --> (Cond0 s>> BW-1) & N1
9722 if (isNullOrNullSplat(N2
)) {
9724 SDValue ShiftAmt
= DAG
.getConstant(VT
.getScalarSizeInBits() - 1, DL
, VT
);
9725 SDValue Sra
= DAG
.getNode(ISD::SRA
, DL
, VT
, Cond0
, ShiftAmt
);
9726 return DAG
.getNode(ISD::AND
, DL
, VT
, Sra
, N1
);
9729 // (Cond0 s< 0) ? -1 : N2 --> (Cond0 s>> BW-1) | N2
9730 if (isAllOnesOrAllOnesSplat(N1
)) {
9732 SDValue ShiftAmt
= DAG
.getConstant(VT
.getScalarSizeInBits() - 1, DL
, VT
);
9733 SDValue Sra
= DAG
.getNode(ISD::SRA
, DL
, VT
, Cond0
, ShiftAmt
);
9734 return DAG
.getNode(ISD::OR
, DL
, VT
, Sra
, N2
);
9737 // If we have to invert the sign bit mask, only do that transform if the
9738 // target has a bitwise 'and not' instruction (the invert is free).
9739 // (Cond0 s< -0) ? 0 : N2 --> ~(Cond0 s>> BW-1) & N2
9740 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
9741 if (isNullOrNullSplat(N1
) && TLI
.hasAndNot(N1
)) {
9743 SDValue ShiftAmt
= DAG
.getConstant(VT
.getScalarSizeInBits() - 1, DL
, VT
);
9744 SDValue Sra
= DAG
.getNode(ISD::SRA
, DL
, VT
, Cond0
, ShiftAmt
);
9745 SDValue Not
= DAG
.getNOT(DL
, Sra
, VT
);
9746 return DAG
.getNode(ISD::AND
, DL
, VT
, Not
, N2
);
9749 // TODO: There's another pattern in this family, but it may require
9750 // implementing hasOrNot() to check for profitability:
9751 // (Cond0 s> -1) ? -1 : N2 --> ~(Cond0 s>> BW-1) | N2
9756 SDValue
DAGCombiner::visitSELECT(SDNode
*N
) {
9757 SDValue N0
= N
->getOperand(0);
9758 SDValue N1
= N
->getOperand(1);
9759 SDValue N2
= N
->getOperand(2);
9760 EVT VT
= N
->getValueType(0);
9761 EVT VT0
= N0
.getValueType();
9763 SDNodeFlags Flags
= N
->getFlags();
9765 if (SDValue V
= DAG
.simplifySelect(N0
, N1
, N2
))
9768 if (SDValue V
= foldSelectOfConstants(N
))
9771 if (SDValue V
= foldBoolSelectToLogic(N
, DAG
))
9774 // If we can fold this based on the true/false value, do so.
9775 if (SimplifySelectOps(N
, N1
, N2
))
9776 return SDValue(N
, 0); // Don't revisit N.
9778 if (VT0
== MVT::i1
) {
9779 // The code in this block deals with the following 2 equivalences:
9780 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
9781 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
9782 // The target can specify its preferred form with the
9783 // shouldNormalizeToSelectSequence() callback. However we always transform
9784 // to the right anyway if we find the inner select exists in the DAG anyway
9785 // and we always transform to the left side if we know that we can further
9786 // optimize the combination of the conditions.
9787 bool normalizeToSequence
=
9788 TLI
.shouldNormalizeToSelectSequence(*DAG
.getContext(), VT
);
9789 // select (and Cond0, Cond1), X, Y
9790 // -> select Cond0, (select Cond1, X, Y), Y
9791 if (N0
->getOpcode() == ISD::AND
&& N0
->hasOneUse()) {
9792 SDValue Cond0
= N0
->getOperand(0);
9793 SDValue Cond1
= N0
->getOperand(1);
9794 SDValue InnerSelect
=
9795 DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond1
, N1
, N2
, Flags
);
9796 if (normalizeToSequence
|| !InnerSelect
.use_empty())
9797 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond0
,
9798 InnerSelect
, N2
, Flags
);
9799 // Cleanup on failure.
9800 if (InnerSelect
.use_empty())
9801 recursivelyDeleteUnusedNodes(InnerSelect
.getNode());
9803 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
9804 if (N0
->getOpcode() == ISD::OR
&& N0
->hasOneUse()) {
9805 SDValue Cond0
= N0
->getOperand(0);
9806 SDValue Cond1
= N0
->getOperand(1);
9807 SDValue InnerSelect
= DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(),
9808 Cond1
, N1
, N2
, Flags
);
9809 if (normalizeToSequence
|| !InnerSelect
.use_empty())
9810 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond0
, N1
,
9811 InnerSelect
, Flags
);
9812 // Cleanup on failure.
9813 if (InnerSelect
.use_empty())
9814 recursivelyDeleteUnusedNodes(InnerSelect
.getNode());
9817 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
9818 if (N1
->getOpcode() == ISD::SELECT
&& N1
->hasOneUse()) {
9819 SDValue N1_0
= N1
->getOperand(0);
9820 SDValue N1_1
= N1
->getOperand(1);
9821 SDValue N1_2
= N1
->getOperand(2);
9822 if (N1_2
== N2
&& N0
.getValueType() == N1_0
.getValueType()) {
9823 // Create the actual and node if we can generate good code for it.
9824 if (!normalizeToSequence
) {
9825 SDValue And
= DAG
.getNode(ISD::AND
, DL
, N0
.getValueType(), N0
, N1_0
);
9826 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), And
, N1_1
,
9829 // Otherwise see if we can optimize the "and" to a better pattern.
9830 if (SDValue Combined
= visitANDLike(N0
, N1_0
, N
)) {
9831 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Combined
, N1_1
,
9836 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
9837 if (N2
->getOpcode() == ISD::SELECT
&& N2
->hasOneUse()) {
9838 SDValue N2_0
= N2
->getOperand(0);
9839 SDValue N2_1
= N2
->getOperand(1);
9840 SDValue N2_2
= N2
->getOperand(2);
9841 if (N2_1
== N1
&& N0
.getValueType() == N2_0
.getValueType()) {
9842 // Create the actual or node if we can generate good code for it.
9843 if (!normalizeToSequence
) {
9844 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, N0
.getValueType(), N0
, N2_0
);
9845 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Or
, N1
,
9848 // Otherwise see if we can optimize to a better pattern.
9849 if (SDValue Combined
= visitORLike(N0
, N2_0
, N
))
9850 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Combined
, N1
,
9856 // select (not Cond), N1, N2 -> select Cond, N2, N1
9857 if (SDValue F
= extractBooleanFlip(N0
, DAG
, TLI
, false)) {
9858 SDValue SelectOp
= DAG
.getSelect(DL
, VT
, F
, N2
, N1
);
9859 SelectOp
->setFlags(Flags
);
9863 // Fold selects based on a setcc into other things, such as min/max/abs.
9864 if (N0
.getOpcode() == ISD::SETCC
) {
9865 SDValue Cond0
= N0
.getOperand(0), Cond1
= N0
.getOperand(1);
9866 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
9868 // select (fcmp lt x, y), x, y -> fminnum x, y
9869 // select (fcmp gt x, y), x, y -> fmaxnum x, y
9871 // This is OK if we don't care what happens if either operand is a NaN.
9872 if (N0
.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG
, N1
, N2
, TLI
))
9873 if (SDValue FMinMax
= combineMinNumMaxNum(DL
, VT
, Cond0
, Cond1
, N1
, N2
,
9877 // Use 'unsigned add with overflow' to optimize an unsigned saturating add.
9878 // This is conservatively limited to pre-legal-operations to give targets
9879 // a chance to reverse the transform if they want to do that. Also, it is
9880 // unlikely that the pattern would be formed late, so it's probably not
9881 // worth going through the other checks.
9882 if (!LegalOperations
&& TLI
.isOperationLegalOrCustom(ISD::UADDO
, VT
) &&
9883 CC
== ISD::SETUGT
&& N0
.hasOneUse() && isAllOnesConstant(N1
) &&
9884 N2
.getOpcode() == ISD::ADD
&& Cond0
== N2
.getOperand(0)) {
9885 auto *C
= dyn_cast
<ConstantSDNode
>(N2
.getOperand(1));
9886 auto *NotC
= dyn_cast
<ConstantSDNode
>(Cond1
);
9887 if (C
&& NotC
&& C
->getAPIntValue() == ~NotC
->getAPIntValue()) {
9888 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
9889 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0
9891 // The IR equivalent of this transform would have this form:
9893 // %c = icmp ugt %x, ~C
9894 // %r = select %c, -1, %a
9896 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
9897 // %u0 = extractvalue %u, 0
9898 // %u1 = extractvalue %u, 1
9899 // %r = select %u1, -1, %u0
9900 SDVTList VTs
= DAG
.getVTList(VT
, VT0
);
9901 SDValue UAO
= DAG
.getNode(ISD::UADDO
, DL
, VTs
, Cond0
, N2
.getOperand(1));
9902 return DAG
.getSelect(DL
, VT
, UAO
.getValue(1), N1
, UAO
.getValue(0));
9906 if (TLI
.isOperationLegal(ISD::SELECT_CC
, VT
) ||
9907 (!LegalOperations
&&
9908 TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, VT
))) {
9909 // Any flags available in a select/setcc fold will be on the setcc as they
9910 // migrated from fcmp
9911 Flags
= N0
.getNode()->getFlags();
9912 SDValue SelectNode
= DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, Cond0
, Cond1
, N1
,
9913 N2
, N0
.getOperand(2));
9914 SelectNode
->setFlags(Flags
);
9918 if (SDValue NewSel
= SimplifySelect(DL
, N0
, N1
, N2
))
9923 if (SDValue BinOp
= foldSelectOfBinops(N
))
9929 // This function assumes all the vselect's arguments are CONCAT_VECTOR
9930 // nodes and that the condition is a BV of ConstantSDNodes (or undefs).
9931 static SDValue
ConvertSelectToConcatVector(SDNode
*N
, SelectionDAG
&DAG
) {
9933 SDValue Cond
= N
->getOperand(0);
9934 SDValue LHS
= N
->getOperand(1);
9935 SDValue RHS
= N
->getOperand(2);
9936 EVT VT
= N
->getValueType(0);
9937 int NumElems
= VT
.getVectorNumElements();
9938 assert(LHS
.getOpcode() == ISD::CONCAT_VECTORS
&&
9939 RHS
.getOpcode() == ISD::CONCAT_VECTORS
&&
9940 Cond
.getOpcode() == ISD::BUILD_VECTOR
);
9942 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
9943 // binary ones here.
9944 if (LHS
->getNumOperands() != 2 || RHS
->getNumOperands() != 2)
9947 // We're sure we have an even number of elements due to the
9948 // concat_vectors we have as arguments to vselect.
9949 // Skip BV elements until we find one that's not an UNDEF
9950 // After we find an UNDEF element, keep looping until we get to half the
9951 // length of the BV and see if all the non-undef nodes are the same.
9952 ConstantSDNode
*BottomHalf
= nullptr;
9953 for (int i
= 0; i
< NumElems
/ 2; ++i
) {
9954 if (Cond
->getOperand(i
)->isUndef())
9957 if (BottomHalf
== nullptr)
9958 BottomHalf
= cast
<ConstantSDNode
>(Cond
.getOperand(i
));
9959 else if (Cond
->getOperand(i
).getNode() != BottomHalf
)
9963 // Do the same for the second half of the BuildVector
9964 ConstantSDNode
*TopHalf
= nullptr;
9965 for (int i
= NumElems
/ 2; i
< NumElems
; ++i
) {
9966 if (Cond
->getOperand(i
)->isUndef())
9969 if (TopHalf
== nullptr)
9970 TopHalf
= cast
<ConstantSDNode
>(Cond
.getOperand(i
));
9971 else if (Cond
->getOperand(i
).getNode() != TopHalf
)
9975 assert(TopHalf
&& BottomHalf
&&
9976 "One half of the selector was all UNDEFs and the other was all the "
9977 "same value. This should have been addressed before this function.");
9979 ISD::CONCAT_VECTORS
, DL
, VT
,
9980 BottomHalf
->isZero() ? RHS
->getOperand(0) : LHS
->getOperand(0),
9981 TopHalf
->isZero() ? RHS
->getOperand(1) : LHS
->getOperand(1));
9984 bool refineUniformBase(SDValue
&BasePtr
, SDValue
&Index
, SelectionDAG
&DAG
) {
9985 if (!isNullConstant(BasePtr
) || Index
.getOpcode() != ISD::ADD
)
9988 // For now we check only the LHS of the add.
9989 SDValue LHS
= Index
.getOperand(0);
9990 SDValue SplatVal
= DAG
.getSplatValue(LHS
);
9995 Index
= Index
.getOperand(1);
9999 // Fold sext/zext of index into index type.
10000 bool refineIndexType(MaskedGatherScatterSDNode
*MGS
, SDValue
&Index
,
10001 bool Scaled
, SelectionDAG
&DAG
) {
10002 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10004 if (Index
.getOpcode() == ISD::ZERO_EXTEND
) {
10005 SDValue Op
= Index
.getOperand(0);
10006 MGS
->setIndexType(Scaled
? ISD::UNSIGNED_SCALED
: ISD::UNSIGNED_UNSCALED
);
10007 if (TLI
.shouldRemoveExtendFromGSIndex(Op
.getValueType())) {
10013 if (Index
.getOpcode() == ISD::SIGN_EXTEND
) {
10014 SDValue Op
= Index
.getOperand(0);
10015 MGS
->setIndexType(Scaled
? ISD::SIGNED_SCALED
: ISD::SIGNED_UNSCALED
);
10016 if (TLI
.shouldRemoveExtendFromGSIndex(Op
.getValueType())) {
10025 SDValue
DAGCombiner::visitMSCATTER(SDNode
*N
) {
10026 MaskedScatterSDNode
*MSC
= cast
<MaskedScatterSDNode
>(N
);
10027 SDValue Mask
= MSC
->getMask();
10028 SDValue Chain
= MSC
->getChain();
10029 SDValue Index
= MSC
->getIndex();
10030 SDValue Scale
= MSC
->getScale();
10031 SDValue StoreVal
= MSC
->getValue();
10032 SDValue BasePtr
= MSC
->getBasePtr();
10035 // Zap scatters with a zero mask.
10036 if (ISD::isConstantSplatVectorAllZeros(Mask
.getNode()))
10039 if (refineUniformBase(BasePtr
, Index
, DAG
)) {
10040 SDValue Ops
[] = {Chain
, StoreVal
, Mask
, BasePtr
, Index
, Scale
};
10041 return DAG
.getMaskedScatter(
10042 DAG
.getVTList(MVT::Other
), MSC
->getMemoryVT(), DL
, Ops
,
10043 MSC
->getMemOperand(), MSC
->getIndexType(), MSC
->isTruncatingStore());
10046 if (refineIndexType(MSC
, Index
, MSC
->isIndexScaled(), DAG
)) {
10047 SDValue Ops
[] = {Chain
, StoreVal
, Mask
, BasePtr
, Index
, Scale
};
10048 return DAG
.getMaskedScatter(
10049 DAG
.getVTList(MVT::Other
), MSC
->getMemoryVT(), DL
, Ops
,
10050 MSC
->getMemOperand(), MSC
->getIndexType(), MSC
->isTruncatingStore());
10056 SDValue
DAGCombiner::visitMSTORE(SDNode
*N
) {
10057 MaskedStoreSDNode
*MST
= cast
<MaskedStoreSDNode
>(N
);
10058 SDValue Mask
= MST
->getMask();
10059 SDValue Chain
= MST
->getChain();
10060 SDValue Value
= MST
->getValue();
10061 SDValue Ptr
= MST
->getBasePtr();
10064 // Zap masked stores with a zero mask.
10065 if (ISD::isConstantSplatVectorAllZeros(Mask
.getNode()))
10068 // If this is a masked load with an all ones mask, we can use a unmasked load.
10069 // FIXME: Can we do this for indexed, compressing, or truncating stores?
10070 if (ISD::isConstantSplatVectorAllOnes(Mask
.getNode()) && MST
->isUnindexed() &&
10071 !MST
->isCompressingStore() && !MST
->isTruncatingStore())
10072 return DAG
.getStore(MST
->getChain(), SDLoc(N
), MST
->getValue(),
10073 MST
->getBasePtr(), MST
->getPointerInfo(),
10074 MST
->getOriginalAlign(), MachineMemOperand::MOStore
,
10077 // Try transforming N to an indexed store.
10078 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
10079 return SDValue(N
, 0);
10081 if (MST
->isTruncatingStore() && MST
->isUnindexed() &&
10082 Value
.getValueType().isInteger() &&
10083 (!isa
<ConstantSDNode
>(Value
) ||
10084 !cast
<ConstantSDNode
>(Value
)->isOpaque())) {
10085 APInt TruncDemandedBits
=
10086 APInt::getLowBitsSet(Value
.getScalarValueSizeInBits(),
10087 MST
->getMemoryVT().getScalarSizeInBits());
10089 // See if we can simplify the operation with
10090 // SimplifyDemandedBits, which only works if the value has a single use.
10091 if (SimplifyDemandedBits(Value
, TruncDemandedBits
)) {
10092 // Re-visit the store if anything changed and the store hasn't been merged
10093 // with another node (N is deleted) SimplifyDemandedBits will add Value's
10094 // node back to the worklist if necessary, but we also need to re-visit
10095 // the Store node itself.
10096 if (N
->getOpcode() != ISD::DELETED_NODE
)
10098 return SDValue(N
, 0);
10102 // If this is a TRUNC followed by a masked store, fold this into a masked
10103 // truncating store. We can do this even if this is already a masked
10105 if ((Value
.getOpcode() == ISD::TRUNCATE
) && Value
.getNode()->hasOneUse() &&
10106 MST
->isUnindexed() &&
10107 TLI
.canCombineTruncStore(Value
.getOperand(0).getValueType(),
10108 MST
->getMemoryVT(), LegalOperations
)) {
10109 auto Mask
= TLI
.promoteTargetBoolean(DAG
, MST
->getMask(),
10110 Value
.getOperand(0).getValueType());
10111 return DAG
.getMaskedStore(Chain
, SDLoc(N
), Value
.getOperand(0), Ptr
,
10112 MST
->getOffset(), Mask
, MST
->getMemoryVT(),
10113 MST
->getMemOperand(), MST
->getAddressingMode(),
10114 /*IsTruncating=*/true);
10120 SDValue
DAGCombiner::visitMGATHER(SDNode
*N
) {
10121 MaskedGatherSDNode
*MGT
= cast
<MaskedGatherSDNode
>(N
);
10122 SDValue Mask
= MGT
->getMask();
10123 SDValue Chain
= MGT
->getChain();
10124 SDValue Index
= MGT
->getIndex();
10125 SDValue Scale
= MGT
->getScale();
10126 SDValue PassThru
= MGT
->getPassThru();
10127 SDValue BasePtr
= MGT
->getBasePtr();
10130 // Zap gathers with a zero mask.
10131 if (ISD::isConstantSplatVectorAllZeros(Mask
.getNode()))
10132 return CombineTo(N
, PassThru
, MGT
->getChain());
10134 if (refineUniformBase(BasePtr
, Index
, DAG
)) {
10135 SDValue Ops
[] = {Chain
, PassThru
, Mask
, BasePtr
, Index
, Scale
};
10136 return DAG
.getMaskedGather(DAG
.getVTList(N
->getValueType(0), MVT::Other
),
10137 MGT
->getMemoryVT(), DL
, Ops
,
10138 MGT
->getMemOperand(), MGT
->getIndexType(),
10139 MGT
->getExtensionType());
10142 if (refineIndexType(MGT
, Index
, MGT
->isIndexScaled(), DAG
)) {
10143 SDValue Ops
[] = {Chain
, PassThru
, Mask
, BasePtr
, Index
, Scale
};
10144 return DAG
.getMaskedGather(DAG
.getVTList(N
->getValueType(0), MVT::Other
),
10145 MGT
->getMemoryVT(), DL
, Ops
,
10146 MGT
->getMemOperand(), MGT
->getIndexType(),
10147 MGT
->getExtensionType());
10153 SDValue
DAGCombiner::visitMLOAD(SDNode
*N
) {
10154 MaskedLoadSDNode
*MLD
= cast
<MaskedLoadSDNode
>(N
);
10155 SDValue Mask
= MLD
->getMask();
10158 // Zap masked loads with a zero mask.
10159 if (ISD::isConstantSplatVectorAllZeros(Mask
.getNode()))
10160 return CombineTo(N
, MLD
->getPassThru(), MLD
->getChain());
10162 // If this is a masked load with an all ones mask, we can use a unmasked load.
10163 // FIXME: Can we do this for indexed, expanding, or extending loads?
10164 if (ISD::isConstantSplatVectorAllOnes(Mask
.getNode()) && MLD
->isUnindexed() &&
10165 !MLD
->isExpandingLoad() && MLD
->getExtensionType() == ISD::NON_EXTLOAD
) {
10166 SDValue NewLd
= DAG
.getLoad(
10167 N
->getValueType(0), SDLoc(N
), MLD
->getChain(), MLD
->getBasePtr(),
10168 MLD
->getPointerInfo(), MLD
->getOriginalAlign(),
10169 MachineMemOperand::MOLoad
, MLD
->getAAInfo(), MLD
->getRanges());
10170 return CombineTo(N
, NewLd
, NewLd
.getValue(1));
10173 // Try transforming N to an indexed load.
10174 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
10175 return SDValue(N
, 0);
10180 /// A vector select of 2 constant vectors can be simplified to math/logic to
10181 /// avoid a variable select instruction and possibly avoid constant loads.
10182 SDValue
DAGCombiner::foldVSelectOfConstants(SDNode
*N
) {
10183 SDValue Cond
= N
->getOperand(0);
10184 SDValue N1
= N
->getOperand(1);
10185 SDValue N2
= N
->getOperand(2);
10186 EVT VT
= N
->getValueType(0);
10187 if (!Cond
.hasOneUse() || Cond
.getScalarValueSizeInBits() != 1 ||
10188 !TLI
.convertSelectOfConstantsToMath(VT
) ||
10189 !ISD::isBuildVectorOfConstantSDNodes(N1
.getNode()) ||
10190 !ISD::isBuildVectorOfConstantSDNodes(N2
.getNode()))
10193 // Check if we can use the condition value to increment/decrement a single
10194 // constant value. This simplifies a select to an add and removes a constant
10195 // load/materialization from the general case.
10196 bool AllAddOne
= true;
10197 bool AllSubOne
= true;
10198 unsigned Elts
= VT
.getVectorNumElements();
10199 for (unsigned i
= 0; i
!= Elts
; ++i
) {
10200 SDValue N1Elt
= N1
.getOperand(i
);
10201 SDValue N2Elt
= N2
.getOperand(i
);
10202 if (N1Elt
.isUndef() || N2Elt
.isUndef())
10204 if (N1Elt
.getValueType() != N2Elt
.getValueType())
10207 const APInt
&C1
= cast
<ConstantSDNode
>(N1Elt
)->getAPIntValue();
10208 const APInt
&C2
= cast
<ConstantSDNode
>(N2Elt
)->getAPIntValue();
10215 // Further simplifications for the extra-special cases where the constants are
10216 // all 0 or all -1 should be implemented as folds of these patterns.
10218 if (AllAddOne
|| AllSubOne
) {
10219 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
10220 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
10221 auto ExtendOpcode
= AllAddOne
? ISD::ZERO_EXTEND
: ISD::SIGN_EXTEND
;
10222 SDValue ExtendedCond
= DAG
.getNode(ExtendOpcode
, DL
, VT
, Cond
);
10223 return DAG
.getNode(ISD::ADD
, DL
, VT
, ExtendedCond
, N2
);
10226 // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C)
10228 if (ISD::isConstantSplatVector(N1
.getNode(), Pow2C
) && Pow2C
.isPowerOf2() &&
10229 isNullOrNullSplat(N2
)) {
10230 SDValue ZextCond
= DAG
.getZExtOrTrunc(Cond
, DL
, VT
);
10231 SDValue ShAmtC
= DAG
.getConstant(Pow2C
.exactLogBase2(), DL
, VT
);
10232 return DAG
.getNode(ISD::SHL
, DL
, VT
, ZextCond
, ShAmtC
);
10235 if (SDValue V
= foldSelectOfConstantsUsingSra(N
, DAG
))
10238 // The general case for select-of-constants:
10239 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
10240 // ...but that only makes sense if a vselect is slower than 2 logic ops, so
10241 // leave that to a machine-specific pass.
10245 SDValue
DAGCombiner::visitVSELECT(SDNode
*N
) {
10246 SDValue N0
= N
->getOperand(0);
10247 SDValue N1
= N
->getOperand(1);
10248 SDValue N2
= N
->getOperand(2);
10249 EVT VT
= N
->getValueType(0);
10252 if (SDValue V
= DAG
.simplifySelect(N0
, N1
, N2
))
10255 if (SDValue V
= foldBoolSelectToLogic(N
, DAG
))
10258 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1
10259 if (SDValue F
= extractBooleanFlip(N0
, DAG
, TLI
, false))
10260 return DAG
.getSelect(DL
, VT
, F
, N2
, N1
);
10262 // Canonicalize integer abs.
10263 // vselect (setg[te] X, 0), X, -X ->
10264 // vselect (setgt X, -1), X, -X ->
10265 // vselect (setl[te] X, 0), -X, X ->
10266 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
10267 if (N0
.getOpcode() == ISD::SETCC
) {
10268 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
10269 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
10270 bool isAbs
= false;
10271 bool RHSIsAllZeros
= ISD::isBuildVectorAllZeros(RHS
.getNode());
10273 if (((RHSIsAllZeros
&& (CC
== ISD::SETGT
|| CC
== ISD::SETGE
)) ||
10274 (ISD::isBuildVectorAllOnes(RHS
.getNode()) && CC
== ISD::SETGT
)) &&
10275 N1
== LHS
&& N2
.getOpcode() == ISD::SUB
&& N1
== N2
.getOperand(1))
10276 isAbs
= ISD::isBuildVectorAllZeros(N2
.getOperand(0).getNode());
10277 else if ((RHSIsAllZeros
&& (CC
== ISD::SETLT
|| CC
== ISD::SETLE
)) &&
10278 N2
== LHS
&& N1
.getOpcode() == ISD::SUB
&& N2
== N1
.getOperand(1))
10279 isAbs
= ISD::isBuildVectorAllZeros(N1
.getOperand(0).getNode());
10282 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
))
10283 return DAG
.getNode(ISD::ABS
, DL
, VT
, LHS
);
10285 SDValue Shift
= DAG
.getNode(ISD::SRA
, DL
, VT
, LHS
,
10286 DAG
.getConstant(VT
.getScalarSizeInBits() - 1,
10287 DL
, getShiftAmountTy(VT
)));
10288 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, LHS
, Shift
);
10289 AddToWorklist(Shift
.getNode());
10290 AddToWorklist(Add
.getNode());
10291 return DAG
.getNode(ISD::XOR
, DL
, VT
, Add
, Shift
);
10294 // vselect x, y (fcmp lt x, y) -> fminnum x, y
10295 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y
10297 // This is OK if we don't care about what happens if either operand is a
10300 if (N0
.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG
, LHS
, RHS
, TLI
)) {
10301 if (SDValue FMinMax
=
10302 combineMinNumMaxNum(DL
, VT
, LHS
, RHS
, N1
, N2
, CC
, TLI
, DAG
))
10306 if (SDValue S
= PerformMinMaxFpToSatCombine(LHS
, RHS
, N1
, N2
, CC
, DAG
))
10309 // If this select has a condition (setcc) with narrower operands than the
10310 // select, try to widen the compare to match the select width.
10311 // TODO: This should be extended to handle any constant.
10312 // TODO: This could be extended to handle non-loading patterns, but that
10313 // requires thorough testing to avoid regressions.
10314 if (isNullOrNullSplat(RHS
)) {
10315 EVT NarrowVT
= LHS
.getValueType();
10316 EVT WideVT
= N1
.getValueType().changeVectorElementTypeToInteger();
10317 EVT SetCCVT
= getSetCCResultType(LHS
.getValueType());
10318 unsigned SetCCWidth
= SetCCVT
.getScalarSizeInBits();
10319 unsigned WideWidth
= WideVT
.getScalarSizeInBits();
10320 bool IsSigned
= isSignedIntSetCC(CC
);
10321 auto LoadExtOpcode
= IsSigned
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
10322 if (LHS
.getOpcode() == ISD::LOAD
&& LHS
.hasOneUse() &&
10323 SetCCWidth
!= 1 && SetCCWidth
< WideWidth
&&
10324 TLI
.isLoadExtLegalOrCustom(LoadExtOpcode
, WideVT
, NarrowVT
) &&
10325 TLI
.isOperationLegalOrCustom(ISD::SETCC
, WideVT
)) {
10326 // Both compare operands can be widened for free. The LHS can use an
10327 // extended load, and the RHS is a constant:
10328 // vselect (ext (setcc load(X), C)), N1, N2 -->
10329 // vselect (setcc extload(X), C'), N1, N2
10330 auto ExtOpcode
= IsSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
10331 SDValue WideLHS
= DAG
.getNode(ExtOpcode
, DL
, WideVT
, LHS
);
10332 SDValue WideRHS
= DAG
.getNode(ExtOpcode
, DL
, WideVT
, RHS
);
10333 EVT WideSetCCVT
= getSetCCResultType(WideVT
);
10334 SDValue WideSetCC
= DAG
.getSetCC(DL
, WideSetCCVT
, WideLHS
, WideRHS
, CC
);
10335 return DAG
.getSelect(DL
, N1
.getValueType(), WideSetCC
, N1
, N2
);
10339 // Match VSELECTs into add with unsigned saturation.
10340 if (hasOperation(ISD::UADDSAT
, VT
)) {
10341 // Check if one of the arms of the VSELECT is vector with all bits set.
10342 // If it's on the left side invert the predicate to simplify logic below.
10344 ISD::CondCode SatCC
= CC
;
10345 if (ISD::isConstantSplatVectorAllOnes(N1
.getNode())) {
10347 SatCC
= ISD::getSetCCInverse(SatCC
, VT
.getScalarType());
10348 } else if (ISD::isConstantSplatVectorAllOnes(N2
.getNode())) {
10352 if (Other
&& Other
.getOpcode() == ISD::ADD
) {
10353 SDValue CondLHS
= LHS
, CondRHS
= RHS
;
10354 SDValue OpLHS
= Other
.getOperand(0), OpRHS
= Other
.getOperand(1);
10356 // Canonicalize condition operands.
10357 if (SatCC
== ISD::SETUGE
) {
10358 std::swap(CondLHS
, CondRHS
);
10359 SatCC
= ISD::SETULE
;
10362 // We can test against either of the addition operands.
10363 // x <= x+y ? x+y : ~0 --> uaddsat x, y
10364 // x+y >= x ? x+y : ~0 --> uaddsat x, y
10365 if (SatCC
== ISD::SETULE
&& Other
== CondRHS
&&
10366 (OpLHS
== CondLHS
|| OpRHS
== CondLHS
))
10367 return DAG
.getNode(ISD::UADDSAT
, DL
, VT
, OpLHS
, OpRHS
);
10369 if (OpRHS
.getOpcode() == CondRHS
.getOpcode() &&
10370 (OpRHS
.getOpcode() == ISD::BUILD_VECTOR
||
10371 OpRHS
.getOpcode() == ISD::SPLAT_VECTOR
) &&
10372 CondLHS
== OpLHS
) {
10373 // If the RHS is a constant we have to reverse the const
10374 // canonicalization.
10375 // x >= ~C ? x+C : ~0 --> uaddsat x, C
10376 auto MatchUADDSAT
= [](ConstantSDNode
*Op
, ConstantSDNode
*Cond
) {
10377 return Cond
->getAPIntValue() == ~Op
->getAPIntValue();
10379 if (SatCC
== ISD::SETULE
&&
10380 ISD::matchBinaryPredicate(OpRHS
, CondRHS
, MatchUADDSAT
))
10381 return DAG
.getNode(ISD::UADDSAT
, DL
, VT
, OpLHS
, OpRHS
);
10386 // Match VSELECTs into sub with unsigned saturation.
10387 if (hasOperation(ISD::USUBSAT
, VT
)) {
10388 // Check if one of the arms of the VSELECT is a zero vector. If it's on
10389 // the left side invert the predicate to simplify logic below.
10391 ISD::CondCode SatCC
= CC
;
10392 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode())) {
10394 SatCC
= ISD::getSetCCInverse(SatCC
, VT
.getScalarType());
10395 } else if (ISD::isConstantSplatVectorAllZeros(N2
.getNode())) {
10399 if (Other
&& Other
.getNumOperands() == 2) {
10400 SDValue CondRHS
= RHS
;
10401 SDValue OpLHS
= Other
.getOperand(0), OpRHS
= Other
.getOperand(1);
10403 if (Other
.getOpcode() == ISD::SUB
&&
10404 LHS
.getOpcode() == ISD::ZERO_EXTEND
&& LHS
.getOperand(0) == OpLHS
&&
10405 OpRHS
.getOpcode() == ISD::TRUNCATE
&& OpRHS
.getOperand(0) == RHS
) {
10406 // Look for a general sub with unsigned saturation first.
10407 // zext(x) >= y ? x - trunc(y) : 0
10408 // --> usubsat(x,trunc(umin(y,SatLimit)))
10409 // zext(x) > y ? x - trunc(y) : 0
10410 // --> usubsat(x,trunc(umin(y,SatLimit)))
10411 if (SatCC
== ISD::SETUGE
|| SatCC
== ISD::SETUGT
)
10412 return getTruncatedUSUBSAT(VT
, LHS
.getValueType(), LHS
, RHS
, DAG
,
10416 if (OpLHS
== LHS
) {
10417 // Look for a general sub with unsigned saturation first.
10418 // x >= y ? x-y : 0 --> usubsat x, y
10419 // x > y ? x-y : 0 --> usubsat x, y
10420 if ((SatCC
== ISD::SETUGE
|| SatCC
== ISD::SETUGT
) &&
10421 Other
.getOpcode() == ISD::SUB
&& OpRHS
== CondRHS
)
10422 return DAG
.getNode(ISD::USUBSAT
, DL
, VT
, OpLHS
, OpRHS
);
10424 if (OpRHS
.getOpcode() == ISD::BUILD_VECTOR
||
10425 OpRHS
.getOpcode() == ISD::SPLAT_VECTOR
) {
10426 if (CondRHS
.getOpcode() == ISD::BUILD_VECTOR
||
10427 CondRHS
.getOpcode() == ISD::SPLAT_VECTOR
) {
10428 // If the RHS is a constant we have to reverse the const
10429 // canonicalization.
10430 // x > C-1 ? x+-C : 0 --> usubsat x, C
10431 auto MatchUSUBSAT
= [](ConstantSDNode
*Op
, ConstantSDNode
*Cond
) {
10432 return (!Op
&& !Cond
) ||
10434 Cond
->getAPIntValue() == (-Op
->getAPIntValue() - 1));
10436 if (SatCC
== ISD::SETUGT
&& Other
.getOpcode() == ISD::ADD
&&
10437 ISD::matchBinaryPredicate(OpRHS
, CondRHS
, MatchUSUBSAT
,
10438 /*AllowUndefs*/ true)) {
10439 OpRHS
= DAG
.getNode(ISD::SUB
, DL
, VT
,
10440 DAG
.getConstant(0, DL
, VT
), OpRHS
);
10441 return DAG
.getNode(ISD::USUBSAT
, DL
, VT
, OpLHS
, OpRHS
);
10444 // Another special case: If C was a sign bit, the sub has been
10445 // canonicalized into a xor.
10446 // FIXME: Would it be better to use computeKnownBits to determine
10447 // whether it's safe to decanonicalize the xor?
10448 // x s< 0 ? x^C : 0 --> usubsat x, C
10450 if (SatCC
== ISD::SETLT
&& Other
.getOpcode() == ISD::XOR
&&
10451 ISD::isConstantSplatVector(OpRHS
.getNode(), SplatValue
) &&
10452 ISD::isConstantSplatVectorAllZeros(CondRHS
.getNode()) &&
10453 SplatValue
.isSignMask()) {
10454 // Note that we have to rebuild the RHS constant here to
10455 // ensure we don't rely on particular values of undef lanes.
10456 OpRHS
= DAG
.getConstant(SplatValue
, DL
, VT
);
10457 return DAG
.getNode(ISD::USUBSAT
, DL
, VT
, OpLHS
, OpRHS
);
10466 if (SimplifySelectOps(N
, N1
, N2
))
10467 return SDValue(N
, 0); // Don't revisit N.
10469 // Fold (vselect all_ones, N1, N2) -> N1
10470 if (ISD::isConstantSplatVectorAllOnes(N0
.getNode()))
10472 // Fold (vselect all_zeros, N1, N2) -> N2
10473 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()))
10476 // The ConvertSelectToConcatVector function is assuming both the above
10477 // checks for (vselect (build_vector all{ones,zeros) ...) have been made
10479 if (N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
10480 N2
.getOpcode() == ISD::CONCAT_VECTORS
&&
10481 ISD::isBuildVectorOfConstantSDNodes(N0
.getNode())) {
10482 if (SDValue CV
= ConvertSelectToConcatVector(N
, DAG
))
10486 if (SDValue V
= foldVSelectOfConstants(N
))
10489 if (hasOperation(ISD::SRA
, VT
))
10490 if (SDValue V
= foldVSelectToSignBitSplatMask(N
, DAG
))
10496 SDValue
DAGCombiner::visitSELECT_CC(SDNode
*N
) {
10497 SDValue N0
= N
->getOperand(0);
10498 SDValue N1
= N
->getOperand(1);
10499 SDValue N2
= N
->getOperand(2);
10500 SDValue N3
= N
->getOperand(3);
10501 SDValue N4
= N
->getOperand(4);
10502 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N4
)->get();
10504 // fold select_cc lhs, rhs, x, x, cc -> x
10508 // Determine if the condition we're dealing with is constant
10509 if (SDValue SCC
= SimplifySetCC(getSetCCResultType(N0
.getValueType()), N0
, N1
,
10510 CC
, SDLoc(N
), false)) {
10511 AddToWorklist(SCC
.getNode());
10513 if (ConstantSDNode
*SCCC
= dyn_cast
<ConstantSDNode
>(SCC
.getNode())) {
10514 if (!SCCC
->isZero())
10515 return N2
; // cond always true -> true val
10517 return N3
; // cond always false -> false val
10518 } else if (SCC
->isUndef()) {
10519 // When the condition is UNDEF, just return the first operand. This is
10520 // coherent the DAG creation, no setcc node is created in this case
10522 } else if (SCC
.getOpcode() == ISD::SETCC
) {
10523 // Fold to a simpler select_cc
10524 SDValue SelectOp
= DAG
.getNode(
10525 ISD::SELECT_CC
, SDLoc(N
), N2
.getValueType(), SCC
.getOperand(0),
10526 SCC
.getOperand(1), N2
, N3
, SCC
.getOperand(2));
10527 SelectOp
->setFlags(SCC
->getFlags());
10532 // If we can fold this based on the true/false value, do so.
10533 if (SimplifySelectOps(N
, N2
, N3
))
10534 return SDValue(N
, 0); // Don't revisit N.
10536 // fold select_cc into other things, such as min/max/abs
10537 return SimplifySelectCC(SDLoc(N
), N0
, N1
, N2
, N3
, CC
);
10540 SDValue
DAGCombiner::visitSETCC(SDNode
*N
) {
10541 // setcc is very commonly used as an argument to brcond. This pattern
10542 // also lend itself to numerous combines and, as a result, it is desired
10543 // we keep the argument to a brcond as a setcc as much as possible.
10545 N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::BRCOND
;
10547 ISD::CondCode Cond
= cast
<CondCodeSDNode
>(N
->getOperand(2))->get();
10548 EVT VT
= N
->getValueType(0);
10550 // SETCC(FREEZE(X), CONST, Cond)
10552 // FREEZE(SETCC(X, CONST, Cond))
10553 // This is correct if FREEZE(X) has one use and SETCC(FREEZE(X), CONST, Cond)
10554 // isn't equivalent to true or false.
10555 // For example, SETCC(FREEZE(X), -128, SETULT) cannot be folded to
10556 // FREEZE(SETCC(X, -128, SETULT)) because X can be poison.
10558 // This transformation is beneficial because visitBRCOND can fold
10559 // BRCOND(FREEZE(X)) to BRCOND(X).
10561 // Conservatively optimize integer comparisons only.
10563 // Do this only when SETCC is going to be used by BRCOND.
10565 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
10566 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
10567 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
10568 bool Updated
= false;
10570 // Is 'X Cond C' always true or false?
10571 auto IsAlwaysTrueOrFalse
= [](ISD::CondCode Cond
, ConstantSDNode
*C
) {
10572 bool False
= (Cond
== ISD::SETULT
&& C
->isZero()) ||
10573 (Cond
== ISD::SETLT
&& C
->isMinSignedValue()) ||
10574 (Cond
== ISD::SETUGT
&& C
->isAllOnes()) ||
10575 (Cond
== ISD::SETGT
&& C
->isMaxSignedValue());
10576 bool True
= (Cond
== ISD::SETULE
&& C
->isAllOnes()) ||
10577 (Cond
== ISD::SETLE
&& C
->isMaxSignedValue()) ||
10578 (Cond
== ISD::SETUGE
&& C
->isZero()) ||
10579 (Cond
== ISD::SETGE
&& C
->isMinSignedValue());
10580 return True
|| False
;
10583 if (N0
->getOpcode() == ISD::FREEZE
&& N0
.hasOneUse() && N1C
) {
10584 if (!IsAlwaysTrueOrFalse(Cond
, N1C
)) {
10585 N0
= N0
->getOperand(0);
10589 if (N1
->getOpcode() == ISD::FREEZE
&& N1
.hasOneUse() && N0C
) {
10590 if (!IsAlwaysTrueOrFalse(ISD::getSetCCSwappedOperands(Cond
),
10592 N1
= N1
->getOperand(0);
10598 return DAG
.getFreeze(DAG
.getSetCC(SDLoc(N
), VT
, N0
, N1
, Cond
));
10601 SDValue Combined
= SimplifySetCC(VT
, N
->getOperand(0), N
->getOperand(1), Cond
,
10602 SDLoc(N
), !PreferSetCC
);
10607 // If we prefer to have a setcc, and we don't, we'll try our best to
10608 // recreate one using rebuildSetCC.
10609 if (PreferSetCC
&& Combined
.getOpcode() != ISD::SETCC
) {
10610 SDValue NewSetCC
= rebuildSetCC(Combined
);
10612 // We don't have anything interesting to combine to.
10613 if (NewSetCC
.getNode() == N
)
10623 SDValue
DAGCombiner::visitSETCCCARRY(SDNode
*N
) {
10624 SDValue LHS
= N
->getOperand(0);
10625 SDValue RHS
= N
->getOperand(1);
10626 SDValue Carry
= N
->getOperand(2);
10627 SDValue Cond
= N
->getOperand(3);
10629 // If Carry is false, fold to a regular SETCC.
10630 if (isNullConstant(Carry
))
10631 return DAG
.getNode(ISD::SETCC
, SDLoc(N
), N
->getVTList(), LHS
, RHS
, Cond
);
10636 /// Check if N satisfies:
10637 /// N is used once.
10639 /// The load is compatible with ExtOpcode. It means
10640 /// If load has explicit zero/sign extension, ExpOpcode must have the same
10642 /// Otherwise returns true.
10643 static bool isCompatibleLoad(SDValue N
, unsigned ExtOpcode
) {
10644 if (!N
.hasOneUse())
10647 if (!isa
<LoadSDNode
>(N
))
10650 LoadSDNode
*Load
= cast
<LoadSDNode
>(N
);
10651 ISD::LoadExtType LoadExt
= Load
->getExtensionType();
10652 if (LoadExt
== ISD::NON_EXTLOAD
|| LoadExt
== ISD::EXTLOAD
)
10655 // Now LoadExt is either SEXTLOAD or ZEXTLOAD, ExtOpcode must have the same
10657 if ((LoadExt
== ISD::SEXTLOAD
&& ExtOpcode
!= ISD::SIGN_EXTEND
) ||
10658 (LoadExt
== ISD::ZEXTLOAD
&& ExtOpcode
!= ISD::ZERO_EXTEND
))
10665 /// (sext (select c, load x, load y)) -> (select c, sextload x, sextload y)
10666 /// (zext (select c, load x, load y)) -> (select c, zextload x, zextload y)
10667 /// (aext (select c, load x, load y)) -> (select c, extload x, extload y)
10668 /// This function is called by the DAGCombiner when visiting sext/zext/aext
10669 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
10670 static SDValue
tryToFoldExtendSelectLoad(SDNode
*N
, const TargetLowering
&TLI
,
10671 SelectionDAG
&DAG
) {
10672 unsigned Opcode
= N
->getOpcode();
10673 SDValue N0
= N
->getOperand(0);
10674 EVT VT
= N
->getValueType(0);
10677 assert((Opcode
== ISD::SIGN_EXTEND
|| Opcode
== ISD::ZERO_EXTEND
||
10678 Opcode
== ISD::ANY_EXTEND
) &&
10679 "Expected EXTEND dag node in input!");
10681 if (!(N0
->getOpcode() == ISD::SELECT
|| N0
->getOpcode() == ISD::VSELECT
) ||
10685 SDValue Op1
= N0
->getOperand(1);
10686 SDValue Op2
= N0
->getOperand(2);
10687 if (!isCompatibleLoad(Op1
, Opcode
) || !isCompatibleLoad(Op2
, Opcode
))
10690 auto ExtLoadOpcode
= ISD::EXTLOAD
;
10691 if (Opcode
== ISD::SIGN_EXTEND
)
10692 ExtLoadOpcode
= ISD::SEXTLOAD
;
10693 else if (Opcode
== ISD::ZERO_EXTEND
)
10694 ExtLoadOpcode
= ISD::ZEXTLOAD
;
10696 LoadSDNode
*Load1
= cast
<LoadSDNode
>(Op1
);
10697 LoadSDNode
*Load2
= cast
<LoadSDNode
>(Op2
);
10698 if (!TLI
.isLoadExtLegal(ExtLoadOpcode
, VT
, Load1
->getMemoryVT()) ||
10699 !TLI
.isLoadExtLegal(ExtLoadOpcode
, VT
, Load2
->getMemoryVT()))
10702 SDValue Ext1
= DAG
.getNode(Opcode
, DL
, VT
, Op1
);
10703 SDValue Ext2
= DAG
.getNode(Opcode
, DL
, VT
, Op2
);
10704 return DAG
.getSelect(DL
, VT
, N0
->getOperand(0), Ext1
, Ext2
);
10707 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
10708 /// a build_vector of constants.
10709 /// This function is called by the DAGCombiner when visiting sext/zext/aext
10710 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
10711 /// Vector extends are not folded if operations are legal; this is to
10712 /// avoid introducing illegal build_vector dag nodes.
10713 static SDValue
tryToFoldExtendOfConstant(SDNode
*N
, const TargetLowering
&TLI
,
10714 SelectionDAG
&DAG
, bool LegalTypes
) {
10715 unsigned Opcode
= N
->getOpcode();
10716 SDValue N0
= N
->getOperand(0);
10717 EVT VT
= N
->getValueType(0);
10720 assert((Opcode
== ISD::SIGN_EXTEND
|| Opcode
== ISD::ZERO_EXTEND
||
10721 Opcode
== ISD::ANY_EXTEND
|| Opcode
== ISD::SIGN_EXTEND_VECTOR_INREG
||
10722 Opcode
== ISD::ZERO_EXTEND_VECTOR_INREG
)
10723 && "Expected EXTEND dag node in input!");
10725 // fold (sext c1) -> c1
10726 // fold (zext c1) -> c1
10727 // fold (aext c1) -> c1
10728 if (isa
<ConstantSDNode
>(N0
))
10729 return DAG
.getNode(Opcode
, DL
, VT
, N0
);
10731 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
10732 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2)
10733 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
10734 if (N0
->getOpcode() == ISD::SELECT
) {
10735 SDValue Op1
= N0
->getOperand(1);
10736 SDValue Op2
= N0
->getOperand(2);
10737 if (isa
<ConstantSDNode
>(Op1
) && isa
<ConstantSDNode
>(Op2
) &&
10738 (Opcode
!= ISD::ZERO_EXTEND
|| !TLI
.isZExtFree(N0
.getValueType(), VT
))) {
10739 // For any_extend, choose sign extension of the constants to allow a
10740 // possible further transform to sign_extend_inreg.i.e.
10742 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0>
10743 // t2: i64 = any_extend t1
10745 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0>
10747 // t4: i64 = sign_extend_inreg t3
10748 unsigned FoldOpc
= Opcode
;
10749 if (FoldOpc
== ISD::ANY_EXTEND
)
10750 FoldOpc
= ISD::SIGN_EXTEND
;
10751 return DAG
.getSelect(DL
, VT
, N0
->getOperand(0),
10752 DAG
.getNode(FoldOpc
, DL
, VT
, Op1
),
10753 DAG
.getNode(FoldOpc
, DL
, VT
, Op2
));
10757 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
10758 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
10759 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
10760 EVT SVT
= VT
.getScalarType();
10761 if (!(VT
.isVector() && (!LegalTypes
|| TLI
.isTypeLegal(SVT
)) &&
10762 ISD::isBuildVectorOfConstantSDNodes(N0
.getNode())))
10765 // We can fold this node into a build_vector.
10766 unsigned VTBits
= SVT
.getSizeInBits();
10767 unsigned EVTBits
= N0
->getValueType(0).getScalarSizeInBits();
10768 SmallVector
<SDValue
, 8> Elts
;
10769 unsigned NumElts
= VT
.getVectorNumElements();
10771 // For zero-extensions, UNDEF elements still guarantee to have the upper
10772 // bits set to zero.
10774 Opcode
== ISD::ZERO_EXTEND
|| Opcode
== ISD::ZERO_EXTEND_VECTOR_INREG
;
10776 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
10777 SDValue Op
= N0
.getOperand(i
);
10778 if (Op
.isUndef()) {
10779 Elts
.push_back(IsZext
? DAG
.getConstant(0, DL
, SVT
) : DAG
.getUNDEF(SVT
));
10784 // Get the constant value and if needed trunc it to the size of the type.
10785 // Nodes like build_vector might have constants wider than the scalar type.
10786 APInt C
= cast
<ConstantSDNode
>(Op
)->getAPIntValue().zextOrTrunc(EVTBits
);
10787 if (Opcode
== ISD::SIGN_EXTEND
|| Opcode
== ISD::SIGN_EXTEND_VECTOR_INREG
)
10788 Elts
.push_back(DAG
.getConstant(C
.sext(VTBits
), DL
, SVT
));
10790 Elts
.push_back(DAG
.getConstant(C
.zext(VTBits
), DL
, SVT
));
10793 return DAG
.getBuildVector(VT
, DL
, Elts
);
10796 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
10797 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
10798 // transformation. Returns true if extension are possible and the above
10799 // mentioned transformation is profitable.
10800 static bool ExtendUsesToFormExtLoad(EVT VT
, SDNode
*N
, SDValue N0
,
10802 SmallVectorImpl
<SDNode
*> &ExtendNodes
,
10803 const TargetLowering
&TLI
) {
10804 bool HasCopyToRegUses
= false;
10805 bool isTruncFree
= TLI
.isTruncateFree(VT
, N0
.getValueType());
10806 for (SDNode::use_iterator UI
= N0
.getNode()->use_begin(),
10807 UE
= N0
.getNode()->use_end();
10809 SDNode
*User
= *UI
;
10812 if (UI
.getUse().getResNo() != N0
.getResNo())
10814 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
10815 if (ExtOpc
!= ISD::ANY_EXTEND
&& User
->getOpcode() == ISD::SETCC
) {
10816 ISD::CondCode CC
= cast
<CondCodeSDNode
>(User
->getOperand(2))->get();
10817 if (ExtOpc
== ISD::ZERO_EXTEND
&& ISD::isSignedIntSetCC(CC
))
10818 // Sign bits will be lost after a zext.
10821 for (unsigned i
= 0; i
!= 2; ++i
) {
10822 SDValue UseOp
= User
->getOperand(i
);
10825 if (!isa
<ConstantSDNode
>(UseOp
))
10830 ExtendNodes
.push_back(User
);
10833 // If truncates aren't free and there are users we can't
10834 // extend, it isn't worthwhile.
10837 // Remember if this value is live-out.
10838 if (User
->getOpcode() == ISD::CopyToReg
)
10839 HasCopyToRegUses
= true;
10842 if (HasCopyToRegUses
) {
10843 bool BothLiveOut
= false;
10844 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
10846 SDUse
&Use
= UI
.getUse();
10847 if (Use
.getResNo() == 0 && Use
.getUser()->getOpcode() == ISD::CopyToReg
) {
10848 BothLiveOut
= true;
10853 // Both unextended and extended values are live out. There had better be
10854 // a good reason for the transformation.
10855 return ExtendNodes
.size();
10860 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl
<SDNode
*> &SetCCs
,
10861 SDValue OrigLoad
, SDValue ExtLoad
,
10862 ISD::NodeType ExtType
) {
10863 // Extend SetCC uses if necessary.
10865 for (SDNode
*SetCC
: SetCCs
) {
10866 SmallVector
<SDValue
, 4> Ops
;
10868 for (unsigned j
= 0; j
!= 2; ++j
) {
10869 SDValue SOp
= SetCC
->getOperand(j
);
10870 if (SOp
== OrigLoad
)
10871 Ops
.push_back(ExtLoad
);
10873 Ops
.push_back(DAG
.getNode(ExtType
, DL
, ExtLoad
->getValueType(0), SOp
));
10876 Ops
.push_back(SetCC
->getOperand(2));
10877 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, DL
, SetCC
->getValueType(0), Ops
));
10881 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
10882 SDValue
DAGCombiner::CombineExtLoad(SDNode
*N
) {
10883 SDValue N0
= N
->getOperand(0);
10884 EVT DstVT
= N
->getValueType(0);
10885 EVT SrcVT
= N0
.getValueType();
10887 assert((N
->getOpcode() == ISD::SIGN_EXTEND
||
10888 N
->getOpcode() == ISD::ZERO_EXTEND
) &&
10889 "Unexpected node type (not an extend)!");
10891 // fold (sext (load x)) to multiple smaller sextloads; same for zext.
10892 // For example, on a target with legal v4i32, but illegal v8i32, turn:
10893 // (v8i32 (sext (v8i16 (load x))))
10895 // (v8i32 (concat_vectors (v4i32 (sextload x)),
10896 // (v4i32 (sextload (x + 16)))))
10897 // Where uses of the original load, i.e.:
10898 // (v8i16 (load x))
10899 // are replaced with:
10900 // (v8i16 (truncate
10901 // (v8i32 (concat_vectors (v4i32 (sextload x)),
10902 // (v4i32 (sextload (x + 16)))))))
10904 // This combine is only applicable to illegal, but splittable, vectors.
10905 // All legal types, and illegal non-vector types, are handled elsewhere.
10906 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
10908 if (N0
->getOpcode() != ISD::LOAD
)
10911 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10913 if (!ISD::isNON_EXTLoad(LN0
) || !ISD::isUNINDEXEDLoad(LN0
) ||
10914 !N0
.hasOneUse() || !LN0
->isSimple() ||
10915 !DstVT
.isVector() || !DstVT
.isPow2VectorType() ||
10916 !TLI
.isVectorLoadExtDesirable(SDValue(N
, 0)))
10919 SmallVector
<SDNode
*, 4> SetCCs
;
10920 if (!ExtendUsesToFormExtLoad(DstVT
, N
, N0
, N
->getOpcode(), SetCCs
, TLI
))
10923 ISD::LoadExtType ExtType
=
10924 N
->getOpcode() == ISD::SIGN_EXTEND
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
10926 // Try to split the vector types to get down to legal types.
10927 EVT SplitSrcVT
= SrcVT
;
10928 EVT SplitDstVT
= DstVT
;
10929 while (!TLI
.isLoadExtLegalOrCustom(ExtType
, SplitDstVT
, SplitSrcVT
) &&
10930 SplitSrcVT
.getVectorNumElements() > 1) {
10931 SplitDstVT
= DAG
.GetSplitDestVTs(SplitDstVT
).first
;
10932 SplitSrcVT
= DAG
.GetSplitDestVTs(SplitSrcVT
).first
;
10935 if (!TLI
.isLoadExtLegalOrCustom(ExtType
, SplitDstVT
, SplitSrcVT
))
10938 assert(!DstVT
.isScalableVector() && "Unexpected scalable vector type");
10941 const unsigned NumSplits
=
10942 DstVT
.getVectorNumElements() / SplitDstVT
.getVectorNumElements();
10943 const unsigned Stride
= SplitSrcVT
.getStoreSize();
10944 SmallVector
<SDValue
, 4> Loads
;
10945 SmallVector
<SDValue
, 4> Chains
;
10947 SDValue BasePtr
= LN0
->getBasePtr();
10948 for (unsigned Idx
= 0; Idx
< NumSplits
; Idx
++) {
10949 const unsigned Offset
= Idx
* Stride
;
10950 const Align Align
= commonAlignment(LN0
->getAlign(), Offset
);
10952 SDValue SplitLoad
= DAG
.getExtLoad(
10953 ExtType
, SDLoc(LN0
), SplitDstVT
, LN0
->getChain(), BasePtr
,
10954 LN0
->getPointerInfo().getWithOffset(Offset
), SplitSrcVT
, Align
,
10955 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
10957 BasePtr
= DAG
.getMemBasePlusOffset(BasePtr
, TypeSize::Fixed(Stride
), DL
);
10959 Loads
.push_back(SplitLoad
.getValue(0));
10960 Chains
.push_back(SplitLoad
.getValue(1));
10963 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
10964 SDValue NewValue
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, DstVT
, Loads
);
10967 AddToWorklist(NewChain
.getNode());
10969 CombineTo(N
, NewValue
);
10971 // Replace uses of the original load (before extension)
10972 // with a truncate of the concatenated sextloaded vectors.
10974 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), N0
.getValueType(), NewValue
);
10975 ExtendSetCCUses(SetCCs
, N0
, NewValue
, (ISD::NodeType
)N
->getOpcode());
10976 CombineTo(N0
.getNode(), Trunc
, NewChain
);
10977 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
10980 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
10981 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
10982 SDValue
DAGCombiner::CombineZExtLogicopShiftLoad(SDNode
*N
) {
10983 assert(N
->getOpcode() == ISD::ZERO_EXTEND
);
10984 EVT VT
= N
->getValueType(0);
10985 EVT OrigVT
= N
->getOperand(0).getValueType();
10986 if (TLI
.isZExtFree(OrigVT
, VT
))
10990 SDValue N0
= N
->getOperand(0);
10991 if (!(N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
10992 N0
.getOpcode() == ISD::XOR
) ||
10993 N0
.getOperand(1).getOpcode() != ISD::Constant
||
10994 (LegalOperations
&& !TLI
.isOperationLegal(N0
.getOpcode(), VT
)))
10998 SDValue N1
= N0
->getOperand(0);
10999 if (!(N1
.getOpcode() == ISD::SHL
|| N1
.getOpcode() == ISD::SRL
) ||
11000 N1
.getOperand(1).getOpcode() != ISD::Constant
||
11001 (LegalOperations
&& !TLI
.isOperationLegal(N1
.getOpcode(), VT
)))
11005 if (!isa
<LoadSDNode
>(N1
.getOperand(0)))
11007 LoadSDNode
*Load
= cast
<LoadSDNode
>(N1
.getOperand(0));
11008 EVT MemVT
= Load
->getMemoryVT();
11009 if (!TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
) ||
11010 Load
->getExtensionType() == ISD::SEXTLOAD
|| Load
->isIndexed())
11014 // If the shift op is SHL, the logic op must be AND, otherwise the result
11016 if (N1
.getOpcode() == ISD::SHL
&& N0
.getOpcode() != ISD::AND
)
11019 if (!N0
.hasOneUse() || !N1
.hasOneUse())
11022 SmallVector
<SDNode
*, 4> SetCCs
;
11023 if (!ExtendUsesToFormExtLoad(VT
, N1
.getNode(), N1
.getOperand(0),
11024 ISD::ZERO_EXTEND
, SetCCs
, TLI
))
11027 // Actually do the transformation.
11028 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(Load
), VT
,
11029 Load
->getChain(), Load
->getBasePtr(),
11030 Load
->getMemoryVT(), Load
->getMemOperand());
11033 SDValue Shift
= DAG
.getNode(N1
.getOpcode(), DL1
, VT
, ExtLoad
,
11036 APInt Mask
= N0
.getConstantOperandAPInt(1).zext(VT
.getSizeInBits());
11038 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL0
, VT
, Shift
,
11039 DAG
.getConstant(Mask
, DL0
, VT
));
11041 ExtendSetCCUses(SetCCs
, N1
.getOperand(0), ExtLoad
, ISD::ZERO_EXTEND
);
11043 if (SDValue(Load
, 0).hasOneUse()) {
11044 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 1), ExtLoad
.getValue(1));
11046 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(Load
),
11047 Load
->getValueType(0), ExtLoad
);
11048 CombineTo(Load
, Trunc
, ExtLoad
.getValue(1));
11051 // N0 is dead at this point.
11052 recursivelyDeleteUnusedNodes(N0
.getNode());
11054 return SDValue(N
,0); // Return N so it doesn't get rechecked!
11057 /// If we're narrowing or widening the result of a vector select and the final
11058 /// size is the same size as a setcc (compare) feeding the select, then try to
11059 /// apply the cast operation to the select's operands because matching vector
11060 /// sizes for a select condition and other operands should be more efficient.
11061 SDValue
DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode
*Cast
) {
11062 unsigned CastOpcode
= Cast
->getOpcode();
11063 assert((CastOpcode
== ISD::SIGN_EXTEND
|| CastOpcode
== ISD::ZERO_EXTEND
||
11064 CastOpcode
== ISD::TRUNCATE
|| CastOpcode
== ISD::FP_EXTEND
||
11065 CastOpcode
== ISD::FP_ROUND
) &&
11066 "Unexpected opcode for vector select narrowing/widening");
11068 // We only do this transform before legal ops because the pattern may be
11069 // obfuscated by target-specific operations after legalization. Do not create
11070 // an illegal select op, however, because that may be difficult to lower.
11071 EVT VT
= Cast
->getValueType(0);
11072 if (LegalOperations
|| !TLI
.isOperationLegalOrCustom(ISD::VSELECT
, VT
))
11075 SDValue VSel
= Cast
->getOperand(0);
11076 if (VSel
.getOpcode() != ISD::VSELECT
|| !VSel
.hasOneUse() ||
11077 VSel
.getOperand(0).getOpcode() != ISD::SETCC
)
11080 // Does the setcc have the same vector size as the casted select?
11081 SDValue SetCC
= VSel
.getOperand(0);
11082 EVT SetCCVT
= getSetCCResultType(SetCC
.getOperand(0).getValueType());
11083 if (SetCCVT
.getSizeInBits() != VT
.getSizeInBits())
11086 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
11087 SDValue A
= VSel
.getOperand(1);
11088 SDValue B
= VSel
.getOperand(2);
11089 SDValue CastA
, CastB
;
11091 if (CastOpcode
== ISD::FP_ROUND
) {
11092 // FP_ROUND (fptrunc) has an extra flag operand to pass along.
11093 CastA
= DAG
.getNode(CastOpcode
, DL
, VT
, A
, Cast
->getOperand(1));
11094 CastB
= DAG
.getNode(CastOpcode
, DL
, VT
, B
, Cast
->getOperand(1));
11096 CastA
= DAG
.getNode(CastOpcode
, DL
, VT
, A
);
11097 CastB
= DAG
.getNode(CastOpcode
, DL
, VT
, B
);
11099 return DAG
.getNode(ISD::VSELECT
, DL
, VT
, SetCC
, CastA
, CastB
);
11102 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
11103 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
11104 static SDValue
tryToFoldExtOfExtload(SelectionDAG
&DAG
, DAGCombiner
&Combiner
,
11105 const TargetLowering
&TLI
, EVT VT
,
11106 bool LegalOperations
, SDNode
*N
,
11107 SDValue N0
, ISD::LoadExtType ExtLoadType
) {
11108 SDNode
*N0Node
= N0
.getNode();
11109 bool isAExtLoad
= (ExtLoadType
== ISD::SEXTLOAD
) ? ISD::isSEXTLoad(N0Node
)
11110 : ISD::isZEXTLoad(N0Node
);
11111 if ((!isAExtLoad
&& !ISD::isEXTLoad(N0Node
)) ||
11112 !ISD::isUNINDEXEDLoad(N0Node
) || !N0
.hasOneUse())
11115 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
11116 EVT MemVT
= LN0
->getMemoryVT();
11117 if ((LegalOperations
|| !LN0
->isSimple() ||
11119 !TLI
.isLoadExtLegal(ExtLoadType
, VT
, MemVT
))
11123 DAG
.getExtLoad(ExtLoadType
, SDLoc(LN0
), VT
, LN0
->getChain(),
11124 LN0
->getBasePtr(), MemVT
, LN0
->getMemOperand());
11125 Combiner
.CombineTo(N
, ExtLoad
);
11126 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
11127 if (LN0
->use_empty())
11128 Combiner
.recursivelyDeleteUnusedNodes(LN0
);
11129 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
11132 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
11133 // Only generate vector extloads when 1) they're legal, and 2) they are
11134 // deemed desirable by the target.
11135 static SDValue
tryToFoldExtOfLoad(SelectionDAG
&DAG
, DAGCombiner
&Combiner
,
11136 const TargetLowering
&TLI
, EVT VT
,
11137 bool LegalOperations
, SDNode
*N
, SDValue N0
,
11138 ISD::LoadExtType ExtLoadType
,
11139 ISD::NodeType ExtOpc
) {
11140 if (!ISD::isNON_EXTLoad(N0
.getNode()) ||
11141 !ISD::isUNINDEXEDLoad(N0
.getNode()) ||
11142 ((LegalOperations
|| VT
.isVector() ||
11143 !cast
<LoadSDNode
>(N0
)->isSimple()) &&
11144 !TLI
.isLoadExtLegal(ExtLoadType
, VT
, N0
.getValueType())))
11147 bool DoXform
= true;
11148 SmallVector
<SDNode
*, 4> SetCCs
;
11149 if (!N0
.hasOneUse())
11150 DoXform
= ExtendUsesToFormExtLoad(VT
, N
, N0
, ExtOpc
, SetCCs
, TLI
);
11152 DoXform
&= TLI
.isVectorLoadExtDesirable(SDValue(N
, 0));
11156 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
11157 SDValue ExtLoad
= DAG
.getExtLoad(ExtLoadType
, SDLoc(LN0
), VT
, LN0
->getChain(),
11158 LN0
->getBasePtr(), N0
.getValueType(),
11159 LN0
->getMemOperand());
11160 Combiner
.ExtendSetCCUses(SetCCs
, N0
, ExtLoad
, ExtOpc
);
11161 // If the load value is used only by N, replace it via CombineTo N.
11162 bool NoReplaceTrunc
= SDValue(LN0
, 0).hasOneUse();
11163 Combiner
.CombineTo(N
, ExtLoad
);
11164 if (NoReplaceTrunc
) {
11165 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
11166 Combiner
.recursivelyDeleteUnusedNodes(LN0
);
11169 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), N0
.getValueType(), ExtLoad
);
11170 Combiner
.CombineTo(LN0
, Trunc
, ExtLoad
.getValue(1));
11172 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
11175 static SDValue
tryToFoldExtOfMaskedLoad(SelectionDAG
&DAG
,
11176 const TargetLowering
&TLI
, EVT VT
,
11177 SDNode
*N
, SDValue N0
,
11178 ISD::LoadExtType ExtLoadType
,
11179 ISD::NodeType ExtOpc
) {
11180 if (!N0
.hasOneUse())
11183 MaskedLoadSDNode
*Ld
= dyn_cast
<MaskedLoadSDNode
>(N0
);
11184 if (!Ld
|| Ld
->getExtensionType() != ISD::NON_EXTLOAD
)
11187 if (!TLI
.isLoadExtLegalOrCustom(ExtLoadType
, VT
, Ld
->getValueType(0)))
11190 if (!TLI
.isVectorLoadExtDesirable(SDValue(N
, 0)))
11194 SDValue PassThru
= DAG
.getNode(ExtOpc
, dl
, VT
, Ld
->getPassThru());
11195 SDValue NewLoad
= DAG
.getMaskedLoad(
11196 VT
, dl
, Ld
->getChain(), Ld
->getBasePtr(), Ld
->getOffset(), Ld
->getMask(),
11197 PassThru
, Ld
->getMemoryVT(), Ld
->getMemOperand(), Ld
->getAddressingMode(),
11198 ExtLoadType
, Ld
->isExpandingLoad());
11199 DAG
.ReplaceAllUsesOfValueWith(SDValue(Ld
, 1), SDValue(NewLoad
.getNode(), 1));
11203 static SDValue
foldExtendedSignBitTest(SDNode
*N
, SelectionDAG
&DAG
,
11204 bool LegalOperations
) {
11205 assert((N
->getOpcode() == ISD::SIGN_EXTEND
||
11206 N
->getOpcode() == ISD::ZERO_EXTEND
) && "Expected sext or zext");
11208 SDValue SetCC
= N
->getOperand(0);
11209 if (LegalOperations
|| SetCC
.getOpcode() != ISD::SETCC
||
11210 !SetCC
.hasOneUse() || SetCC
.getValueType() != MVT::i1
)
11213 SDValue X
= SetCC
.getOperand(0);
11214 SDValue Ones
= SetCC
.getOperand(1);
11215 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
11216 EVT VT
= N
->getValueType(0);
11217 EVT XVT
= X
.getValueType();
11218 // setge X, C is canonicalized to setgt, so we do not need to match that
11219 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does
11220 // not require the 'not' op.
11221 if (CC
== ISD::SETGT
&& isAllOnesConstant(Ones
) && VT
== XVT
) {
11222 // Invert and smear/shift the sign bit:
11223 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
11224 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
11226 unsigned ShCt
= VT
.getSizeInBits() - 1;
11227 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11228 if (!TLI
.shouldAvoidTransformToShift(VT
, ShCt
)) {
11229 SDValue NotX
= DAG
.getNOT(DL
, X
, VT
);
11230 SDValue ShiftAmount
= DAG
.getConstant(ShCt
, DL
, VT
);
11232 N
->getOpcode() == ISD::SIGN_EXTEND
? ISD::SRA
: ISD::SRL
;
11233 return DAG
.getNode(ShiftOpcode
, DL
, VT
, NotX
, ShiftAmount
);
11239 SDValue
DAGCombiner::foldSextSetcc(SDNode
*N
) {
11240 SDValue N0
= N
->getOperand(0);
11241 if (N0
.getOpcode() != ISD::SETCC
)
11244 SDValue N00
= N0
.getOperand(0);
11245 SDValue N01
= N0
.getOperand(1);
11246 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
11247 EVT VT
= N
->getValueType(0);
11248 EVT N00VT
= N00
.getValueType();
11251 // On some architectures (such as SSE/NEON/etc) the SETCC result type is
11252 // the same size as the compared operands. Try to optimize sext(setcc())
11253 // if this is the case.
11254 if (VT
.isVector() && !LegalOperations
&&
11255 TLI
.getBooleanContents(N00VT
) ==
11256 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
11257 EVT SVT
= getSetCCResultType(N00VT
);
11259 // If we already have the desired type, don't change it.
11260 if (SVT
!= N0
.getValueType()) {
11261 // We know that the # elements of the results is the same as the
11262 // # elements of the compare (and the # elements of the compare result
11263 // for that matter). Check to see that they are the same size. If so,
11264 // we know that the element size of the sext'd result matches the
11265 // element size of the compare operands.
11266 if (VT
.getSizeInBits() == SVT
.getSizeInBits())
11267 return DAG
.getSetCC(DL
, VT
, N00
, N01
, CC
);
11269 // If the desired elements are smaller or larger than the source
11270 // elements, we can use a matching integer vector type and then
11271 // truncate/sign extend.
11272 EVT MatchingVecType
= N00VT
.changeVectorElementTypeToInteger();
11273 if (SVT
== MatchingVecType
) {
11274 SDValue VsetCC
= DAG
.getSetCC(DL
, MatchingVecType
, N00
, N01
, CC
);
11275 return DAG
.getSExtOrTrunc(VsetCC
, DL
, VT
);
11279 // Try to eliminate the sext of a setcc by zexting the compare operands.
11280 if (N0
.hasOneUse() && TLI
.isOperationLegalOrCustom(ISD::SETCC
, VT
) &&
11281 !TLI
.isOperationLegalOrCustom(ISD::SETCC
, SVT
)) {
11282 bool IsSignedCmp
= ISD::isSignedIntSetCC(CC
);
11283 unsigned LoadOpcode
= IsSignedCmp
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
11284 unsigned ExtOpcode
= IsSignedCmp
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
11286 // We have an unsupported narrow vector compare op that would be legal
11287 // if extended to the destination type. See if the compare operands
11288 // can be freely extended to the destination type.
11289 auto IsFreeToExtend
= [&](SDValue V
) {
11290 if (isConstantOrConstantVector(V
, /*NoOpaques*/ true))
11292 // Match a simple, non-extended load that can be converted to a
11293 // legal {z/s}ext-load.
11294 // TODO: Allow widening of an existing {z/s}ext-load?
11295 if (!(ISD::isNON_EXTLoad(V
.getNode()) &&
11296 ISD::isUNINDEXEDLoad(V
.getNode()) &&
11297 cast
<LoadSDNode
>(V
)->isSimple() &&
11298 TLI
.isLoadExtLegal(LoadOpcode
, VT
, V
.getValueType())))
11301 // Non-chain users of this value must either be the setcc in this
11302 // sequence or extends that can be folded into the new {z/s}ext-load.
11303 for (SDNode::use_iterator UI
= V
->use_begin(), UE
= V
->use_end();
11305 // Skip uses of the chain and the setcc.
11306 SDNode
*User
= *UI
;
11307 if (UI
.getUse().getResNo() != 0 || User
== N0
.getNode())
11309 // Extra users must have exactly the same cast we are about to create.
11310 // TODO: This restriction could be eased if ExtendUsesToFormExtLoad()
11311 // is enhanced similarly.
11312 if (User
->getOpcode() != ExtOpcode
|| User
->getValueType(0) != VT
)
11318 if (IsFreeToExtend(N00
) && IsFreeToExtend(N01
)) {
11319 SDValue Ext0
= DAG
.getNode(ExtOpcode
, DL
, VT
, N00
);
11320 SDValue Ext1
= DAG
.getNode(ExtOpcode
, DL
, VT
, N01
);
11321 return DAG
.getSetCC(DL
, VT
, Ext0
, Ext1
, CC
);
11326 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
11327 // Here, T can be 1 or -1, depending on the type of the setcc and
11328 // getBooleanContents().
11329 unsigned SetCCWidth
= N0
.getScalarValueSizeInBits();
11331 // To determine the "true" side of the select, we need to know the high bit
11332 // of the value returned by the setcc if it evaluates to true.
11333 // If the type of the setcc is i1, then the true case of the select is just
11334 // sext(i1 1), that is, -1.
11335 // If the type of the setcc is larger (say, i8) then the value of the high
11336 // bit depends on getBooleanContents(), so ask TLI for a real "true" value
11337 // of the appropriate width.
11338 SDValue ExtTrueVal
= (SetCCWidth
== 1)
11339 ? DAG
.getAllOnesConstant(DL
, VT
)
11340 : DAG
.getBoolConstant(true, DL
, VT
, N00VT
);
11341 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
11342 if (SDValue SCC
= SimplifySelectCC(DL
, N00
, N01
, ExtTrueVal
, Zero
, CC
, true))
11345 if (!VT
.isVector() && !TLI
.convertSelectOfConstantsToMath(VT
)) {
11346 EVT SetCCVT
= getSetCCResultType(N00VT
);
11347 // Don't do this transform for i1 because there's a select transform
11348 // that would reverse it.
11349 // TODO: We should not do this transform at all without a target hook
11350 // because a sext is likely cheaper than a select?
11351 if (SetCCVT
.getScalarSizeInBits() != 1 &&
11352 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SETCC
, N00VT
))) {
11353 SDValue SetCC
= DAG
.getSetCC(DL
, SetCCVT
, N00
, N01
, CC
);
11354 return DAG
.getSelect(DL
, VT
, SetCC
, ExtTrueVal
, Zero
);
11361 SDValue
DAGCombiner::visitSIGN_EXTEND(SDNode
*N
) {
11362 SDValue N0
= N
->getOperand(0);
11363 EVT VT
= N
->getValueType(0);
11366 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
11369 // fold (sext (sext x)) -> (sext x)
11370 // fold (sext (aext x)) -> (sext x)
11371 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
11372 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, N0
.getOperand(0));
11374 if (N0
.getOpcode() == ISD::TRUNCATE
) {
11375 // fold (sext (truncate (load x))) -> (sext (smaller load x))
11376 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
11377 if (SDValue NarrowLoad
= reduceLoadWidth(N0
.getNode())) {
11378 SDNode
*oye
= N0
.getOperand(0).getNode();
11379 if (NarrowLoad
.getNode() != N0
.getNode()) {
11380 CombineTo(N0
.getNode(), NarrowLoad
);
11381 // CombineTo deleted the truncate, if needed, but not what's under it.
11382 AddToWorklist(oye
);
11384 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
11387 // See if the value being truncated is already sign extended. If so, just
11388 // eliminate the trunc/sext pair.
11389 SDValue Op
= N0
.getOperand(0);
11390 unsigned OpBits
= Op
.getScalarValueSizeInBits();
11391 unsigned MidBits
= N0
.getScalarValueSizeInBits();
11392 unsigned DestBits
= VT
.getScalarSizeInBits();
11393 unsigned NumSignBits
= DAG
.ComputeNumSignBits(Op
);
11395 if (OpBits
== DestBits
) {
11396 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
11397 // bits, it is already ready.
11398 if (NumSignBits
> DestBits
-MidBits
)
11400 } else if (OpBits
< DestBits
) {
11401 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
11402 // bits, just sext from i32.
11403 if (NumSignBits
> OpBits
-MidBits
)
11404 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Op
);
11406 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
11407 // bits, just truncate to i32.
11408 if (NumSignBits
> OpBits
-MidBits
)
11409 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
11412 // fold (sext (truncate x)) -> (sextinreg x).
11413 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
,
11414 N0
.getValueType())) {
11415 if (OpBits
< DestBits
)
11416 Op
= DAG
.getNode(ISD::ANY_EXTEND
, SDLoc(N0
), VT
, Op
);
11417 else if (OpBits
> DestBits
)
11418 Op
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), VT
, Op
);
11419 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Op
,
11420 DAG
.getValueType(N0
.getValueType()));
11424 // Try to simplify (sext (load x)).
11425 if (SDValue foldedExt
=
11426 tryToFoldExtOfLoad(DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
,
11427 ISD::SEXTLOAD
, ISD::SIGN_EXTEND
))
11430 if (SDValue foldedExt
=
11431 tryToFoldExtOfMaskedLoad(DAG
, TLI
, VT
, N
, N0
, ISD::SEXTLOAD
,
11435 // fold (sext (load x)) to multiple smaller sextloads.
11436 // Only on illegal but splittable vectors.
11437 if (SDValue ExtLoad
= CombineExtLoad(N
))
11440 // Try to simplify (sext (sextload x)).
11441 if (SDValue foldedExt
= tryToFoldExtOfExtload(
11442 DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
, ISD::SEXTLOAD
))
11445 // fold (sext (and/or/xor (load x), cst)) ->
11446 // (and/or/xor (sextload x), (sext cst))
11447 if ((N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
11448 N0
.getOpcode() == ISD::XOR
) &&
11449 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
11450 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
11451 (!LegalOperations
&& TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
11452 LoadSDNode
*LN00
= cast
<LoadSDNode
>(N0
.getOperand(0));
11453 EVT MemVT
= LN00
->getMemoryVT();
11454 if (TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, MemVT
) &&
11455 LN00
->getExtensionType() != ISD::ZEXTLOAD
&& LN00
->isUnindexed()) {
11456 SmallVector
<SDNode
*, 4> SetCCs
;
11457 bool DoXform
= ExtendUsesToFormExtLoad(VT
, N0
.getNode(), N0
.getOperand(0),
11458 ISD::SIGN_EXTEND
, SetCCs
, TLI
);
11460 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(LN00
), VT
,
11461 LN00
->getChain(), LN00
->getBasePtr(),
11462 LN00
->getMemoryVT(),
11463 LN00
->getMemOperand());
11464 APInt Mask
= N0
.getConstantOperandAPInt(1).sext(VT
.getSizeInBits());
11465 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL
, VT
,
11466 ExtLoad
, DAG
.getConstant(Mask
, DL
, VT
));
11467 ExtendSetCCUses(SetCCs
, N0
.getOperand(0), ExtLoad
, ISD::SIGN_EXTEND
);
11468 bool NoReplaceTruncAnd
= !N0
.hasOneUse();
11469 bool NoReplaceTrunc
= SDValue(LN00
, 0).hasOneUse();
11471 // If N0 has multiple uses, change other uses as well.
11472 if (NoReplaceTruncAnd
) {
11474 DAG
.getNode(ISD::TRUNCATE
, DL
, N0
.getValueType(), And
);
11475 CombineTo(N0
.getNode(), TruncAnd
);
11477 if (NoReplaceTrunc
) {
11478 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN00
, 1), ExtLoad
.getValue(1));
11480 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LN00
),
11481 LN00
->getValueType(0), ExtLoad
);
11482 CombineTo(LN00
, Trunc
, ExtLoad
.getValue(1));
11484 return SDValue(N
,0); // Return N so it doesn't get rechecked!
11489 if (SDValue V
= foldExtendedSignBitTest(N
, DAG
, LegalOperations
))
11492 if (SDValue V
= foldSextSetcc(N
))
11495 // fold (sext x) -> (zext x) if the sign bit is known zero.
11496 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
)) &&
11497 DAG
.SignBitIsZero(N0
))
11498 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
);
11500 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
11503 // Eliminate this sign extend by doing a negation in the destination type:
11504 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64)
11505 if (N0
.getOpcode() == ISD::SUB
&& N0
.hasOneUse() &&
11506 isNullOrNullSplat(N0
.getOperand(0)) &&
11507 N0
.getOperand(1).getOpcode() == ISD::ZERO_EXTEND
&&
11508 TLI
.isOperationLegalOrCustom(ISD::SUB
, VT
)) {
11509 SDValue Zext
= DAG
.getZExtOrTrunc(N0
.getOperand(1).getOperand(0), DL
, VT
);
11510 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), Zext
);
11512 // Eliminate this sign extend by doing a decrement in the destination type:
11513 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1)
11514 if (N0
.getOpcode() == ISD::ADD
&& N0
.hasOneUse() &&
11515 isAllOnesOrAllOnesSplat(N0
.getOperand(1)) &&
11516 N0
.getOperand(0).getOpcode() == ISD::ZERO_EXTEND
&&
11517 TLI
.isOperationLegalOrCustom(ISD::ADD
, VT
)) {
11518 SDValue Zext
= DAG
.getZExtOrTrunc(N0
.getOperand(0).getOperand(0), DL
, VT
);
11519 return DAG
.getNode(ISD::ADD
, DL
, VT
, Zext
, DAG
.getAllOnesConstant(DL
, VT
));
11522 // fold sext (not i1 X) -> add (zext i1 X), -1
11523 // TODO: This could be extended to handle bool vectors.
11524 if (N0
.getValueType() == MVT::i1
&& isBitwiseNot(N0
) && N0
.hasOneUse() &&
11525 (!LegalOperations
|| (TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
) &&
11526 TLI
.isOperationLegal(ISD::ADD
, VT
)))) {
11527 // If we can eliminate the 'not', the sext form should be better
11528 if (SDValue NewXor
= visitXOR(N0
.getNode())) {
11529 // Returning N0 is a form of in-visit replacement that may have
11531 if (NewXor
.getNode() == N0
.getNode()) {
11532 // Return SDValue here as the xor should have already been replaced in
11536 // Return a new sext with the new xor.
11537 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, NewXor
);
11541 SDValue Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
.getOperand(0));
11542 return DAG
.getNode(ISD::ADD
, DL
, VT
, Zext
, DAG
.getAllOnesConstant(DL
, VT
));
11545 if (SDValue Res
= tryToFoldExtendSelectLoad(N
, TLI
, DAG
))
11551 // isTruncateOf - If N is a truncate of some other value, return true, record
11552 // the value being truncated in Op and which of Op's bits are zero/one in Known.
11553 // This function computes KnownBits to avoid a duplicated call to
11554 // computeKnownBits in the caller.
11555 static bool isTruncateOf(SelectionDAG
&DAG
, SDValue N
, SDValue
&Op
,
11556 KnownBits
&Known
) {
11557 if (N
->getOpcode() == ISD::TRUNCATE
) {
11558 Op
= N
->getOperand(0);
11559 Known
= DAG
.computeKnownBits(Op
);
11563 if (N
.getOpcode() != ISD::SETCC
||
11564 N
.getValueType().getScalarType() != MVT::i1
||
11565 cast
<CondCodeSDNode
>(N
.getOperand(2))->get() != ISD::SETNE
)
11568 SDValue Op0
= N
->getOperand(0);
11569 SDValue Op1
= N
->getOperand(1);
11570 assert(Op0
.getValueType() == Op1
.getValueType());
11572 if (isNullOrNullSplat(Op0
))
11574 else if (isNullOrNullSplat(Op1
))
11579 Known
= DAG
.computeKnownBits(Op
);
11581 return (Known
.Zero
| 1).isAllOnes();
11584 /// Given an extending node with a pop-count operand, if the target does not
11585 /// support a pop-count in the narrow source type but does support it in the
11586 /// destination type, widen the pop-count to the destination type.
11587 static SDValue
widenCtPop(SDNode
*Extend
, SelectionDAG
&DAG
) {
11588 assert((Extend
->getOpcode() == ISD::ZERO_EXTEND
||
11589 Extend
->getOpcode() == ISD::ANY_EXTEND
) && "Expected extend op");
11591 SDValue CtPop
= Extend
->getOperand(0);
11592 if (CtPop
.getOpcode() != ISD::CTPOP
|| !CtPop
.hasOneUse())
11595 EVT VT
= Extend
->getValueType(0);
11596 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11597 if (TLI
.isOperationLegalOrCustom(ISD::CTPOP
, CtPop
.getValueType()) ||
11598 !TLI
.isOperationLegalOrCustom(ISD::CTPOP
, VT
))
11601 // zext (ctpop X) --> ctpop (zext X)
11603 SDValue NewZext
= DAG
.getZExtOrTrunc(CtPop
.getOperand(0), DL
, VT
);
11604 return DAG
.getNode(ISD::CTPOP
, DL
, VT
, NewZext
);
11607 SDValue
DAGCombiner::visitZERO_EXTEND(SDNode
*N
) {
11608 SDValue N0
= N
->getOperand(0);
11609 EVT VT
= N
->getValueType(0);
11611 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
11614 // fold (zext (zext x)) -> (zext x)
11615 // fold (zext (aext x)) -> (zext x)
11616 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
11617 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), VT
,
11620 // fold (zext (truncate x)) -> (zext x) or
11621 // (zext (truncate x)) -> (truncate x)
11622 // This is valid when the truncated bits of x are already zero.
11625 if (isTruncateOf(DAG
, N0
, Op
, Known
)) {
11626 APInt TruncatedBits
=
11627 (Op
.getScalarValueSizeInBits() == N0
.getScalarValueSizeInBits()) ?
11628 APInt(Op
.getScalarValueSizeInBits(), 0) :
11629 APInt::getBitsSet(Op
.getScalarValueSizeInBits(),
11630 N0
.getScalarValueSizeInBits(),
11631 std::min(Op
.getScalarValueSizeInBits(),
11632 VT
.getScalarSizeInBits()));
11633 if (TruncatedBits
.isSubsetOf(Known
.Zero
))
11634 return DAG
.getZExtOrTrunc(Op
, SDLoc(N
), VT
);
11637 // fold (zext (truncate x)) -> (and x, mask)
11638 if (N0
.getOpcode() == ISD::TRUNCATE
) {
11639 // fold (zext (truncate (load x))) -> (zext (smaller load x))
11640 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
11641 if (SDValue NarrowLoad
= reduceLoadWidth(N0
.getNode())) {
11642 SDNode
*oye
= N0
.getOperand(0).getNode();
11643 if (NarrowLoad
.getNode() != N0
.getNode()) {
11644 CombineTo(N0
.getNode(), NarrowLoad
);
11645 // CombineTo deleted the truncate, if needed, but not what's under it.
11646 AddToWorklist(oye
);
11648 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
11651 EVT SrcVT
= N0
.getOperand(0).getValueType();
11652 EVT MinVT
= N0
.getValueType();
11654 // Try to mask before the extension to avoid having to generate a larger mask,
11655 // possibly over several sub-vectors.
11656 if (SrcVT
.bitsLT(VT
) && VT
.isVector()) {
11657 if (!LegalOperations
|| (TLI
.isOperationLegal(ISD::AND
, SrcVT
) &&
11658 TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
))) {
11659 SDValue Op
= N0
.getOperand(0);
11660 Op
= DAG
.getZeroExtendInReg(Op
, SDLoc(N
), MinVT
);
11661 AddToWorklist(Op
.getNode());
11662 SDValue ZExtOrTrunc
= DAG
.getZExtOrTrunc(Op
, SDLoc(N
), VT
);
11663 // Transfer the debug info; the new node is equivalent to N0.
11664 DAG
.transferDbgValues(N0
, ZExtOrTrunc
);
11665 return ZExtOrTrunc
;
11669 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::AND
, VT
)) {
11670 SDValue Op
= DAG
.getAnyExtOrTrunc(N0
.getOperand(0), SDLoc(N
), VT
);
11671 AddToWorklist(Op
.getNode());
11672 SDValue And
= DAG
.getZeroExtendInReg(Op
, SDLoc(N
), MinVT
);
11673 // We may safely transfer the debug info describing the truncate node over
11674 // to the equivalent and operation.
11675 DAG
.transferDbgValues(N0
, And
);
11680 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
11681 // if either of the casts is not free.
11682 if (N0
.getOpcode() == ISD::AND
&&
11683 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
11684 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
11685 (!TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
11686 N0
.getValueType()) ||
11687 !TLI
.isZExtFree(N0
.getValueType(), VT
))) {
11688 SDValue X
= N0
.getOperand(0).getOperand(0);
11689 X
= DAG
.getAnyExtOrTrunc(X
, SDLoc(X
), VT
);
11690 APInt Mask
= N0
.getConstantOperandAPInt(1).zext(VT
.getSizeInBits());
11692 return DAG
.getNode(ISD::AND
, DL
, VT
,
11693 X
, DAG
.getConstant(Mask
, DL
, VT
));
11696 // Try to simplify (zext (load x)).
11697 if (SDValue foldedExt
=
11698 tryToFoldExtOfLoad(DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
,
11699 ISD::ZEXTLOAD
, ISD::ZERO_EXTEND
))
11702 if (SDValue foldedExt
=
11703 tryToFoldExtOfMaskedLoad(DAG
, TLI
, VT
, N
, N0
, ISD::ZEXTLOAD
,
11707 // fold (zext (load x)) to multiple smaller zextloads.
11708 // Only on illegal but splittable vectors.
11709 if (SDValue ExtLoad
= CombineExtLoad(N
))
11712 // fold (zext (and/or/xor (load x), cst)) ->
11713 // (and/or/xor (zextload x), (zext cst))
11714 // Unless (and (load x) cst) will match as a zextload already and has
11715 // additional users.
11716 if ((N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
11717 N0
.getOpcode() == ISD::XOR
) &&
11718 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
11719 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
11720 (!LegalOperations
&& TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
11721 LoadSDNode
*LN00
= cast
<LoadSDNode
>(N0
.getOperand(0));
11722 EVT MemVT
= LN00
->getMemoryVT();
11723 if (TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
) &&
11724 LN00
->getExtensionType() != ISD::SEXTLOAD
&& LN00
->isUnindexed()) {
11725 bool DoXform
= true;
11726 SmallVector
<SDNode
*, 4> SetCCs
;
11727 if (!N0
.hasOneUse()) {
11728 if (N0
.getOpcode() == ISD::AND
) {
11729 auto *AndC
= cast
<ConstantSDNode
>(N0
.getOperand(1));
11730 EVT LoadResultTy
= AndC
->getValueType(0);
11732 if (isAndLoadExtLoad(AndC
, LN00
, LoadResultTy
, ExtVT
))
11737 DoXform
= ExtendUsesToFormExtLoad(VT
, N0
.getNode(), N0
.getOperand(0),
11738 ISD::ZERO_EXTEND
, SetCCs
, TLI
);
11740 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(LN00
), VT
,
11741 LN00
->getChain(), LN00
->getBasePtr(),
11742 LN00
->getMemoryVT(),
11743 LN00
->getMemOperand());
11744 APInt Mask
= N0
.getConstantOperandAPInt(1).zext(VT
.getSizeInBits());
11746 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL
, VT
,
11747 ExtLoad
, DAG
.getConstant(Mask
, DL
, VT
));
11748 ExtendSetCCUses(SetCCs
, N0
.getOperand(0), ExtLoad
, ISD::ZERO_EXTEND
);
11749 bool NoReplaceTruncAnd
= !N0
.hasOneUse();
11750 bool NoReplaceTrunc
= SDValue(LN00
, 0).hasOneUse();
11752 // If N0 has multiple uses, change other uses as well.
11753 if (NoReplaceTruncAnd
) {
11755 DAG
.getNode(ISD::TRUNCATE
, DL
, N0
.getValueType(), And
);
11756 CombineTo(N0
.getNode(), TruncAnd
);
11758 if (NoReplaceTrunc
) {
11759 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN00
, 1), ExtLoad
.getValue(1));
11761 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LN00
),
11762 LN00
->getValueType(0), ExtLoad
);
11763 CombineTo(LN00
, Trunc
, ExtLoad
.getValue(1));
11765 return SDValue(N
,0); // Return N so it doesn't get rechecked!
11770 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
11771 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
11772 if (SDValue ZExtLoad
= CombineZExtLogicopShiftLoad(N
))
11775 // Try to simplify (zext (zextload x)).
11776 if (SDValue foldedExt
= tryToFoldExtOfExtload(
11777 DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
, ISD::ZEXTLOAD
))
11780 if (SDValue V
= foldExtendedSignBitTest(N
, DAG
, LegalOperations
))
11783 if (N0
.getOpcode() == ISD::SETCC
) {
11784 // Only do this before legalize for now.
11785 if (!LegalOperations
&& VT
.isVector() &&
11786 N0
.getValueType().getVectorElementType() == MVT::i1
) {
11787 EVT N00VT
= N0
.getOperand(0).getValueType();
11788 if (getSetCCResultType(N00VT
) == N0
.getValueType())
11791 // We know that the # elements of the results is the same as the #
11792 // elements of the compare (and the # elements of the compare result for
11793 // that matter). Check to see that they are the same size. If so, we know
11794 // that the element size of the sext'd result matches the element size of
11795 // the compare operands.
11797 if (VT
.getSizeInBits() == N00VT
.getSizeInBits()) {
11798 // zext(setcc) -> zext_in_reg(vsetcc) for vectors.
11799 SDValue VSetCC
= DAG
.getNode(ISD::SETCC
, DL
, VT
, N0
.getOperand(0),
11800 N0
.getOperand(1), N0
.getOperand(2));
11801 return DAG
.getZeroExtendInReg(VSetCC
, DL
, N0
.getValueType());
11804 // If the desired elements are smaller or larger than the source
11805 // elements we can use a matching integer vector type and then
11806 // truncate/any extend followed by zext_in_reg.
11807 EVT MatchingVectorType
= N00VT
.changeVectorElementTypeToInteger();
11809 DAG
.getNode(ISD::SETCC
, DL
, MatchingVectorType
, N0
.getOperand(0),
11810 N0
.getOperand(1), N0
.getOperand(2));
11811 return DAG
.getZeroExtendInReg(DAG
.getAnyExtOrTrunc(VsetCC
, DL
, VT
), DL
,
11812 N0
.getValueType());
11815 // zext(setcc x,y,cc) -> zext(select x, y, true, false, cc)
11817 EVT N0VT
= N0
.getValueType();
11818 EVT N00VT
= N0
.getOperand(0).getValueType();
11819 if (SDValue SCC
= SimplifySelectCC(
11820 DL
, N0
.getOperand(0), N0
.getOperand(1),
11821 DAG
.getBoolConstant(true, DL
, N0VT
, N00VT
),
11822 DAG
.getBoolConstant(false, DL
, N0VT
, N00VT
),
11823 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true))
11824 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, SCC
);
11827 // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
11828 if ((N0
.getOpcode() == ISD::SHL
|| N0
.getOpcode() == ISD::SRL
) &&
11829 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
11830 N0
.getOperand(0).getOpcode() == ISD::ZERO_EXTEND
&&
11832 SDValue ShAmt
= N0
.getOperand(1);
11833 if (N0
.getOpcode() == ISD::SHL
) {
11834 SDValue InnerZExt
= N0
.getOperand(0);
11835 // If the original shl may be shifting out bits, do not perform this
11837 unsigned KnownZeroBits
= InnerZExt
.getValueSizeInBits() -
11838 InnerZExt
.getOperand(0).getValueSizeInBits();
11839 if (cast
<ConstantSDNode
>(ShAmt
)->getAPIntValue().ugt(KnownZeroBits
))
11845 // Ensure that the shift amount is wide enough for the shifted value.
11846 if (Log2_32_Ceil(VT
.getSizeInBits()) > ShAmt
.getValueSizeInBits())
11847 ShAmt
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, ShAmt
);
11849 return DAG
.getNode(N0
.getOpcode(), DL
, VT
,
11850 DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
.getOperand(0)),
11854 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
11857 if (SDValue NewCtPop
= widenCtPop(N
, DAG
))
11860 if (SDValue Res
= tryToFoldExtendSelectLoad(N
, TLI
, DAG
))
11866 SDValue
DAGCombiner::visitANY_EXTEND(SDNode
*N
) {
11867 SDValue N0
= N
->getOperand(0);
11868 EVT VT
= N
->getValueType(0);
11870 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
11873 // fold (aext (aext x)) -> (aext x)
11874 // fold (aext (zext x)) -> (zext x)
11875 // fold (aext (sext x)) -> (sext x)
11876 if (N0
.getOpcode() == ISD::ANY_EXTEND
||
11877 N0
.getOpcode() == ISD::ZERO_EXTEND
||
11878 N0
.getOpcode() == ISD::SIGN_EXTEND
)
11879 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, N0
.getOperand(0));
11881 // fold (aext (truncate (load x))) -> (aext (smaller load x))
11882 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
11883 if (N0
.getOpcode() == ISD::TRUNCATE
) {
11884 if (SDValue NarrowLoad
= reduceLoadWidth(N0
.getNode())) {
11885 SDNode
*oye
= N0
.getOperand(0).getNode();
11886 if (NarrowLoad
.getNode() != N0
.getNode()) {
11887 CombineTo(N0
.getNode(), NarrowLoad
);
11888 // CombineTo deleted the truncate, if needed, but not what's under it.
11889 AddToWorklist(oye
);
11891 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
11895 // fold (aext (truncate x))
11896 if (N0
.getOpcode() == ISD::TRUNCATE
)
11897 return DAG
.getAnyExtOrTrunc(N0
.getOperand(0), SDLoc(N
), VT
);
11899 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
11900 // if the trunc is not free.
11901 if (N0
.getOpcode() == ISD::AND
&&
11902 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
11903 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
11904 !TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
11905 N0
.getValueType())) {
11907 SDValue X
= N0
.getOperand(0).getOperand(0);
11908 X
= DAG
.getAnyExtOrTrunc(X
, DL
, VT
);
11909 APInt Mask
= N0
.getConstantOperandAPInt(1).zext(VT
.getSizeInBits());
11910 return DAG
.getNode(ISD::AND
, DL
, VT
,
11911 X
, DAG
.getConstant(Mask
, DL
, VT
));
11914 // fold (aext (load x)) -> (aext (truncate (extload x)))
11915 // None of the supported targets knows how to perform load and any_ext
11916 // on vectors in one instruction, so attempt to fold to zext instead.
11917 if (VT
.isVector()) {
11918 // Try to simplify (zext (load x)).
11919 if (SDValue foldedExt
=
11920 tryToFoldExtOfLoad(DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
,
11921 ISD::ZEXTLOAD
, ISD::ZERO_EXTEND
))
11923 } else if (ISD::isNON_EXTLoad(N0
.getNode()) &&
11924 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
11925 TLI
.isLoadExtLegal(ISD::EXTLOAD
, VT
, N0
.getValueType())) {
11926 bool DoXform
= true;
11927 SmallVector
<SDNode
*, 4> SetCCs
;
11928 if (!N0
.hasOneUse())
11930 ExtendUsesToFormExtLoad(VT
, N
, N0
, ISD::ANY_EXTEND
, SetCCs
, TLI
);
11932 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
11933 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, SDLoc(N
), VT
,
11934 LN0
->getChain(), LN0
->getBasePtr(),
11935 N0
.getValueType(), LN0
->getMemOperand());
11936 ExtendSetCCUses(SetCCs
, N0
, ExtLoad
, ISD::ANY_EXTEND
);
11937 // If the load value is used only by N, replace it via CombineTo N.
11938 bool NoReplaceTrunc
= N0
.hasOneUse();
11939 CombineTo(N
, ExtLoad
);
11940 if (NoReplaceTrunc
) {
11941 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
11942 recursivelyDeleteUnusedNodes(LN0
);
11945 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), N0
.getValueType(), ExtLoad
);
11946 CombineTo(LN0
, Trunc
, ExtLoad
.getValue(1));
11948 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
11952 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
11953 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
11954 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
11955 if (N0
.getOpcode() == ISD::LOAD
&& !ISD::isNON_EXTLoad(N0
.getNode()) &&
11956 ISD::isUNINDEXEDLoad(N0
.getNode()) && N0
.hasOneUse()) {
11957 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
11958 ISD::LoadExtType ExtType
= LN0
->getExtensionType();
11959 EVT MemVT
= LN0
->getMemoryVT();
11960 if (!LegalOperations
|| TLI
.isLoadExtLegal(ExtType
, VT
, MemVT
)) {
11961 SDValue ExtLoad
= DAG
.getExtLoad(ExtType
, SDLoc(N
),
11962 VT
, LN0
->getChain(), LN0
->getBasePtr(),
11963 MemVT
, LN0
->getMemOperand());
11964 CombineTo(N
, ExtLoad
);
11965 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
11966 recursivelyDeleteUnusedNodes(LN0
);
11967 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
11971 if (N0
.getOpcode() == ISD::SETCC
) {
11973 // aext(setcc) -> vsetcc
11974 // aext(setcc) -> truncate(vsetcc)
11975 // aext(setcc) -> aext(vsetcc)
11976 // Only do this before legalize for now.
11977 if (VT
.isVector() && !LegalOperations
) {
11978 EVT N00VT
= N0
.getOperand(0).getValueType();
11979 if (getSetCCResultType(N00VT
) == N0
.getValueType())
11982 // We know that the # elements of the results is the same as the
11983 // # elements of the compare (and the # elements of the compare result
11984 // for that matter). Check to see that they are the same size. If so,
11985 // we know that the element size of the sext'd result matches the
11986 // element size of the compare operands.
11987 if (VT
.getSizeInBits() == N00VT
.getSizeInBits())
11988 return DAG
.getSetCC(SDLoc(N
), VT
, N0
.getOperand(0),
11990 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
11992 // If the desired elements are smaller or larger than the source
11993 // elements we can use a matching integer vector type and then
11994 // truncate/any extend
11995 EVT MatchingVectorType
= N00VT
.changeVectorElementTypeToInteger();
11997 DAG
.getSetCC(SDLoc(N
), MatchingVectorType
, N0
.getOperand(0),
11999 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
12000 return DAG
.getAnyExtOrTrunc(VsetCC
, SDLoc(N
), VT
);
12003 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
12005 if (SDValue SCC
= SimplifySelectCC(
12006 DL
, N0
.getOperand(0), N0
.getOperand(1), DAG
.getConstant(1, DL
, VT
),
12007 DAG
.getConstant(0, DL
, VT
),
12008 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true))
12012 if (SDValue NewCtPop
= widenCtPop(N
, DAG
))
12015 if (SDValue Res
= tryToFoldExtendSelectLoad(N
, TLI
, DAG
))
12021 SDValue
DAGCombiner::visitAssertExt(SDNode
*N
) {
12022 unsigned Opcode
= N
->getOpcode();
12023 SDValue N0
= N
->getOperand(0);
12024 SDValue N1
= N
->getOperand(1);
12025 EVT AssertVT
= cast
<VTSDNode
>(N1
)->getVT();
12027 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
12028 if (N0
.getOpcode() == Opcode
&&
12029 AssertVT
== cast
<VTSDNode
>(N0
.getOperand(1))->getVT())
12032 if (N0
.getOpcode() == ISD::TRUNCATE
&& N0
.hasOneUse() &&
12033 N0
.getOperand(0).getOpcode() == Opcode
) {
12034 // We have an assert, truncate, assert sandwich. Make one stronger assert
12035 // by asserting on the smallest asserted type to the larger source type.
12036 // This eliminates the later assert:
12037 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
12038 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
12039 SDValue BigA
= N0
.getOperand(0);
12040 EVT BigA_AssertVT
= cast
<VTSDNode
>(BigA
.getOperand(1))->getVT();
12041 assert(BigA_AssertVT
.bitsLE(N0
.getValueType()) &&
12042 "Asserting zero/sign-extended bits to a type larger than the "
12043 "truncated destination does not provide information");
12046 EVT MinAssertVT
= AssertVT
.bitsLT(BigA_AssertVT
) ? AssertVT
: BigA_AssertVT
;
12047 SDValue MinAssertVTVal
= DAG
.getValueType(MinAssertVT
);
12048 SDValue NewAssert
= DAG
.getNode(Opcode
, DL
, BigA
.getValueType(),
12049 BigA
.getOperand(0), MinAssertVTVal
);
12050 return DAG
.getNode(ISD::TRUNCATE
, DL
, N
->getValueType(0), NewAssert
);
12053 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller
12054 // than X. Just move the AssertZext in front of the truncate and drop the
12056 if (N0
.getOpcode() == ISD::TRUNCATE
&& N0
.hasOneUse() &&
12057 N0
.getOperand(0).getOpcode() == ISD::AssertSext
&&
12058 Opcode
== ISD::AssertZext
) {
12059 SDValue BigA
= N0
.getOperand(0);
12060 EVT BigA_AssertVT
= cast
<VTSDNode
>(BigA
.getOperand(1))->getVT();
12061 assert(BigA_AssertVT
.bitsLE(N0
.getValueType()) &&
12062 "Asserting zero/sign-extended bits to a type larger than the "
12063 "truncated destination does not provide information");
12065 if (AssertVT
.bitsLT(BigA_AssertVT
)) {
12067 SDValue NewAssert
= DAG
.getNode(Opcode
, DL
, BigA
.getValueType(),
12068 BigA
.getOperand(0), N1
);
12069 return DAG
.getNode(ISD::TRUNCATE
, DL
, N
->getValueType(0), NewAssert
);
12076 SDValue
DAGCombiner::visitAssertAlign(SDNode
*N
) {
12079 Align AL
= cast
<AssertAlignSDNode
>(N
)->getAlign();
12080 SDValue N0
= N
->getOperand(0);
12082 // Fold (assertalign (assertalign x, AL0), AL1) ->
12083 // (assertalign x, max(AL0, AL1))
12084 if (auto *AAN
= dyn_cast
<AssertAlignSDNode
>(N0
))
12085 return DAG
.getAssertAlign(DL
, N0
.getOperand(0),
12086 std::max(AL
, AAN
->getAlign()));
12088 // In rare cases, there are trivial arithmetic ops in source operands. Sink
12089 // this assert down to source operands so that those arithmetic ops could be
12090 // exposed to the DAG combining.
12091 switch (N0
.getOpcode()) {
12096 unsigned AlignShift
= Log2(AL
);
12097 SDValue LHS
= N0
.getOperand(0);
12098 SDValue RHS
= N0
.getOperand(1);
12099 unsigned LHSAlignShift
= DAG
.computeKnownBits(LHS
).countMinTrailingZeros();
12100 unsigned RHSAlignShift
= DAG
.computeKnownBits(RHS
).countMinTrailingZeros();
12101 if (LHSAlignShift
>= AlignShift
|| RHSAlignShift
>= AlignShift
) {
12102 if (LHSAlignShift
< AlignShift
)
12103 LHS
= DAG
.getAssertAlign(DL
, LHS
, AL
);
12104 if (RHSAlignShift
< AlignShift
)
12105 RHS
= DAG
.getAssertAlign(DL
, RHS
, AL
);
12106 return DAG
.getNode(N0
.getOpcode(), DL
, N0
.getValueType(), LHS
, RHS
);
12115 /// If the result of a load is shifted/masked/truncated to an effectively
12116 /// narrower type, try to transform the load to a narrower type and/or
12117 /// use an extending load.
12118 SDValue
DAGCombiner::reduceLoadWidth(SDNode
*N
) {
12119 unsigned Opc
= N
->getOpcode();
12121 ISD::LoadExtType ExtType
= ISD::NON_EXTLOAD
;
12122 SDValue N0
= N
->getOperand(0);
12123 EVT VT
= N
->getValueType(0);
12126 // This transformation isn't valid for vector loads.
12130 // The ShAmt variable is used to indicate that we've consumed a right
12131 // shift. I.e. we want to narrow the width of the load by skipping to load the
12132 // ShAmt least significant bits.
12133 unsigned ShAmt
= 0;
12134 // A special case is when the least significant bits from the load are masked
12135 // away, but using an AND rather than a right shift. HasShiftedOffset is used
12136 // to indicate that the narrowed load should be left-shifted ShAmt bits to get
12138 bool HasShiftedOffset
= false;
12139 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
12141 if (Opc
== ISD::SIGN_EXTEND_INREG
) {
12142 ExtType
= ISD::SEXTLOAD
;
12143 ExtVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
12144 } else if (Opc
== ISD::SRL
) {
12145 // Another special-case: SRL is basically zero-extending a narrower value,
12146 // or it may be shifting a higher subword, half or byte into the lowest
12149 // Only handle shift with constant shift amount, and the shiftee must be a
12151 auto *LN
= dyn_cast
<LoadSDNode
>(N0
);
12152 auto *N1C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
12155 // If the shift amount is larger than the memory type then we're not
12156 // accessing any of the loaded bytes.
12157 ShAmt
= N1C
->getZExtValue();
12158 uint64_t MemoryWidth
= LN
->getMemoryVT().getScalarSizeInBits();
12159 if (MemoryWidth
<= ShAmt
)
12161 // Attempt to fold away the SRL by using ZEXTLOAD.
12162 ExtType
= ISD::ZEXTLOAD
;
12163 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), MemoryWidth
- ShAmt
);
12164 // If original load is a SEXTLOAD then we can't simply replace it by a
12165 // ZEXTLOAD (we could potentially replace it by a more narrow SEXTLOAD
12166 // followed by a ZEXT, but that is not handled at the moment).
12167 if (LN
->getExtensionType() == ISD::SEXTLOAD
)
12169 } else if (Opc
== ISD::AND
) {
12170 // An AND with a constant mask is the same as a truncate + zero-extend.
12171 auto AndC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
12175 const APInt
&Mask
= AndC
->getAPIntValue();
12176 unsigned ActiveBits
= 0;
12177 if (Mask
.isMask()) {
12178 ActiveBits
= Mask
.countTrailingOnes();
12179 } else if (Mask
.isShiftedMask()) {
12180 ShAmt
= Mask
.countTrailingZeros();
12181 APInt ShiftedMask
= Mask
.lshr(ShAmt
);
12182 ActiveBits
= ShiftedMask
.countTrailingOnes();
12183 HasShiftedOffset
= true;
12187 ExtType
= ISD::ZEXTLOAD
;
12188 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
12191 // In case Opc==SRL we've already prepared ExtVT/ExtType/ShAmt based on doing
12192 // a right shift. Here we redo some of those checks, to possibly adjust the
12193 // ExtVT even further based on "a masking AND". We could also end up here for
12194 // other reasons (e.g. based on Opc==TRUNCATE) and that is why some checks
12195 // need to be done here as well.
12196 if (Opc
== ISD::SRL
|| N0
.getOpcode() == ISD::SRL
) {
12197 SDValue SRL
= Opc
== ISD::SRL
? SDValue(N
, 0) : N0
;
12198 // Bail out when the SRL has more than one use. This is done for historical
12199 // (undocumented) reasons. Maybe intent was to guard the AND-masking below
12200 // check below? And maybe it could be non-profitable to do the transform in
12201 // case the SRL has multiple uses and we get here with Opc!=ISD::SRL?
12202 // FIXME: Can't we just skip this check for the Opc==ISD::SRL case.
12203 if (!SRL
.hasOneUse())
12206 // Only handle shift with constant shift amount, and the shiftee must be a
12208 auto *LN
= dyn_cast
<LoadSDNode
>(SRL
.getOperand(0));
12209 auto *SRL1C
= dyn_cast
<ConstantSDNode
>(SRL
.getOperand(1));
12213 // If the shift amount is larger than the input type then we're not
12214 // accessing any of the loaded bytes. If the load was a zextload/extload
12215 // then the result of the shift+trunc is zero/undef (handled elsewhere).
12216 ShAmt
= SRL1C
->getZExtValue();
12217 if (ShAmt
>= LN
->getMemoryVT().getSizeInBits())
12220 // Because a SRL must be assumed to *need* to zero-extend the high bits
12221 // (as opposed to anyext the high bits), we can't combine the zextload
12222 // lowering of SRL and an sextload.
12223 if (LN
->getExtensionType() == ISD::SEXTLOAD
)
12226 unsigned ExtVTBits
= ExtVT
.getScalarSizeInBits();
12227 // Is the shift amount a multiple of size of ExtVT?
12228 if ((ShAmt
& (ExtVTBits
- 1)) != 0)
12230 // Is the load width a multiple of size of ExtVT?
12231 if ((SRL
.getScalarValueSizeInBits() & (ExtVTBits
- 1)) != 0)
12234 // If the SRL is only used by a masking AND, we may be able to adjust
12235 // the ExtVT to make the AND redundant.
12236 SDNode
*Mask
= *(SRL
->use_begin());
12237 if (SRL
.hasOneUse() && Mask
->getOpcode() == ISD::AND
&&
12238 isa
<ConstantSDNode
>(Mask
->getOperand(1))) {
12239 const APInt
& ShiftMask
= Mask
->getConstantOperandAPInt(1);
12240 if (ShiftMask
.isMask()) {
12241 EVT MaskedVT
= EVT::getIntegerVT(*DAG
.getContext(),
12242 ShiftMask
.countTrailingOnes());
12243 // If the mask is smaller, recompute the type.
12244 if ((ExtVTBits
> MaskedVT
.getScalarSizeInBits()) &&
12245 TLI
.isLoadExtLegal(ExtType
, SRL
.getValueType(), MaskedVT
))
12250 N0
= SRL
.getOperand(0);
12253 // If the load is shifted left (and the result isn't shifted back right), we
12254 // can fold a truncate through the shift. The typical scenario is that N
12255 // points at a TRUNCATE here so the attempted fold is:
12256 // (truncate (shl (load x), c))) -> (shl (narrow load x), c)
12257 // ShLeftAmt will indicate how much a narrowed load should be shifted left.
12258 unsigned ShLeftAmt
= 0;
12259 if (ShAmt
== 0 && N0
.getOpcode() == ISD::SHL
&& N0
.hasOneUse() &&
12260 ExtVT
== VT
&& TLI
.isNarrowingProfitable(N0
.getValueType(), VT
)) {
12261 if (ConstantSDNode
*N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
12262 ShLeftAmt
= N01
->getZExtValue();
12263 N0
= N0
.getOperand(0);
12267 // If we haven't found a load, we can't narrow it.
12268 if (!isa
<LoadSDNode
>(N0
))
12271 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
12272 // Reducing the width of a volatile load is illegal. For atomics, we may be
12273 // able to reduce the width provided we never widen again. (see D66309)
12274 if (!LN0
->isSimple() ||
12275 !isLegalNarrowLdSt(LN0
, ExtType
, ExtVT
, ShAmt
))
12278 auto AdjustBigEndianShift
= [&](unsigned ShAmt
) {
12279 unsigned LVTStoreBits
=
12280 LN0
->getMemoryVT().getStoreSizeInBits().getFixedSize();
12281 unsigned EVTStoreBits
= ExtVT
.getStoreSizeInBits().getFixedSize();
12282 return LVTStoreBits
- EVTStoreBits
- ShAmt
;
12285 // We need to adjust the pointer to the load by ShAmt bits in order to load
12286 // the correct bytes.
12287 unsigned PtrAdjustmentInBits
=
12288 DAG
.getDataLayout().isBigEndian() ? AdjustBigEndianShift(ShAmt
) : ShAmt
;
12290 uint64_t PtrOff
= PtrAdjustmentInBits
/ 8;
12291 Align NewAlign
= commonAlignment(LN0
->getAlign(), PtrOff
);
12293 // The original load itself didn't wrap, so an offset within it doesn't.
12295 Flags
.setNoUnsignedWrap(true);
12296 SDValue NewPtr
= DAG
.getMemBasePlusOffset(LN0
->getBasePtr(),
12297 TypeSize::Fixed(PtrOff
), DL
, Flags
);
12298 AddToWorklist(NewPtr
.getNode());
12301 if (ExtType
== ISD::NON_EXTLOAD
)
12302 Load
= DAG
.getLoad(VT
, DL
, LN0
->getChain(), NewPtr
,
12303 LN0
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
,
12304 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
12306 Load
= DAG
.getExtLoad(ExtType
, DL
, VT
, LN0
->getChain(), NewPtr
,
12307 LN0
->getPointerInfo().getWithOffset(PtrOff
), ExtVT
,
12308 NewAlign
, LN0
->getMemOperand()->getFlags(),
12311 // Replace the old load's chain with the new load's chain.
12312 WorklistRemover
DeadNodes(*this);
12313 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1));
12315 // Shift the result left, if we've swallowed a left shift.
12316 SDValue Result
= Load
;
12317 if (ShLeftAmt
!= 0) {
12318 EVT ShImmTy
= getShiftAmountTy(Result
.getValueType());
12319 if (!isUIntN(ShImmTy
.getScalarSizeInBits(), ShLeftAmt
))
12321 // If the shift amount is as large as the result size (but, presumably,
12322 // no larger than the source) then the useful bits of the result are
12323 // zero; we can't simply return the shortened shift, because the result
12324 // of that operation is undefined.
12325 if (ShLeftAmt
>= VT
.getScalarSizeInBits())
12326 Result
= DAG
.getConstant(0, DL
, VT
);
12328 Result
= DAG
.getNode(ISD::SHL
, DL
, VT
,
12329 Result
, DAG
.getConstant(ShLeftAmt
, DL
, ShImmTy
));
12332 if (HasShiftedOffset
) {
12333 // We're using a shifted mask, so the load now has an offset. This means
12334 // that data has been loaded into the lower bytes than it would have been
12335 // before, so we need to shl the loaded data into the correct position in the
12337 SDValue ShiftC
= DAG
.getConstant(ShAmt
, DL
, VT
);
12338 Result
= DAG
.getNode(ISD::SHL
, DL
, VT
, Result
, ShiftC
);
12339 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
);
12342 // Return the new loaded value.
12346 SDValue
DAGCombiner::visitSIGN_EXTEND_INREG(SDNode
*N
) {
12347 SDValue N0
= N
->getOperand(0);
12348 SDValue N1
= N
->getOperand(1);
12349 EVT VT
= N
->getValueType(0);
12350 EVT ExtVT
= cast
<VTSDNode
>(N1
)->getVT();
12351 unsigned VTBits
= VT
.getScalarSizeInBits();
12352 unsigned ExtVTBits
= ExtVT
.getScalarSizeInBits();
12354 // sext_vector_inreg(undef) = 0 because the top bit will all be the same.
12356 return DAG
.getConstant(0, SDLoc(N
), VT
);
12358 // fold (sext_in_reg c1) -> c1
12359 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
12360 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
, N0
, N1
);
12362 // If the input is already sign extended, just drop the extension.
12363 if (ExtVTBits
>= DAG
.ComputeMaxSignificantBits(N0
))
12366 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
12367 if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
12368 ExtVT
.bitsLT(cast
<VTSDNode
>(N0
.getOperand(1))->getVT()))
12369 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
, N0
.getOperand(0),
12372 // fold (sext_in_reg (sext x)) -> (sext x)
12373 // fold (sext_in_reg (aext x)) -> (sext x)
12374 // if x is small enough or if we know that x has more than 1 sign bit and the
12375 // sign_extend_inreg is extending from one of them.
12376 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
) {
12377 SDValue N00
= N0
.getOperand(0);
12378 unsigned N00Bits
= N00
.getScalarValueSizeInBits();
12379 if ((N00Bits
<= ExtVTBits
||
12380 DAG
.ComputeMaxSignificantBits(N00
) <= ExtVTBits
) &&
12381 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND
, VT
)))
12382 return DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, N00
);
12385 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
12386 // if x is small enough or if we know that x has more than 1 sign bit and the
12387 // sign_extend_inreg is extending from one of them.
12388 if (N0
.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG
||
12389 N0
.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG
||
12390 N0
.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG
) {
12391 SDValue N00
= N0
.getOperand(0);
12392 unsigned N00Bits
= N00
.getScalarValueSizeInBits();
12393 unsigned DstElts
= N0
.getValueType().getVectorMinNumElements();
12394 unsigned SrcElts
= N00
.getValueType().getVectorMinNumElements();
12395 bool IsZext
= N0
.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG
;
12396 APInt DemandedSrcElts
= APInt::getLowBitsSet(SrcElts
, DstElts
);
12397 if ((N00Bits
== ExtVTBits
||
12398 (!IsZext
&& (N00Bits
< ExtVTBits
||
12399 DAG
.ComputeMaxSignificantBits(N00
) <= ExtVTBits
))) &&
12400 (!LegalOperations
||
12401 TLI
.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG
, VT
)))
12402 return DAG
.getNode(ISD::SIGN_EXTEND_VECTOR_INREG
, SDLoc(N
), VT
, N00
);
12405 // fold (sext_in_reg (zext x)) -> (sext x)
12406 // iff we are extending the source sign bit.
12407 if (N0
.getOpcode() == ISD::ZERO_EXTEND
) {
12408 SDValue N00
= N0
.getOperand(0);
12409 if (N00
.getScalarValueSizeInBits() == ExtVTBits
&&
12410 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND
, VT
)))
12411 return DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, N00
, N1
);
12414 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
12415 if (DAG
.MaskedValueIsZero(N0
, APInt::getOneBitSet(VTBits
, ExtVTBits
- 1)))
12416 return DAG
.getZeroExtendInReg(N0
, SDLoc(N
), ExtVT
);
12418 // fold operands of sext_in_reg based on knowledge that the top bits are not
12420 if (SimplifyDemandedBits(SDValue(N
, 0)))
12421 return SDValue(N
, 0);
12423 // fold (sext_in_reg (load x)) -> (smaller sextload x)
12424 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
12425 if (SDValue NarrowLoad
= reduceLoadWidth(N
))
12428 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
12429 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
12430 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
12431 if (N0
.getOpcode() == ISD::SRL
) {
12432 if (auto *ShAmt
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
12433 if (ShAmt
->getAPIntValue().ule(VTBits
- ExtVTBits
)) {
12434 // We can turn this into an SRA iff the input to the SRL is already sign
12435 // extended enough.
12436 unsigned InSignBits
= DAG
.ComputeNumSignBits(N0
.getOperand(0));
12437 if (((VTBits
- ExtVTBits
) - ShAmt
->getZExtValue()) < InSignBits
)
12438 return DAG
.getNode(ISD::SRA
, SDLoc(N
), VT
, N0
.getOperand(0),
12443 // fold (sext_inreg (extload x)) -> (sextload x)
12444 // If sextload is not supported by target, we can only do the combine when
12445 // load has one use. Doing otherwise can block folding the extload with other
12446 // extends that the target does support.
12447 if (ISD::isEXTLoad(N0
.getNode()) &&
12448 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
12449 ExtVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
12450 ((!LegalOperations
&& cast
<LoadSDNode
>(N0
)->isSimple() &&
12452 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, ExtVT
))) {
12453 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
12454 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(N
), VT
,
12456 LN0
->getBasePtr(), ExtVT
,
12457 LN0
->getMemOperand());
12458 CombineTo(N
, ExtLoad
);
12459 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
12460 AddToWorklist(ExtLoad
.getNode());
12461 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
12464 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
12465 if (ISD::isZEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
12467 ExtVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
12468 ((!LegalOperations
&& cast
<LoadSDNode
>(N0
)->isSimple()) &&
12469 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, ExtVT
))) {
12470 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
12471 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(N
), VT
,
12473 LN0
->getBasePtr(), ExtVT
,
12474 LN0
->getMemOperand());
12475 CombineTo(N
, ExtLoad
);
12476 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
12477 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
12480 // fold (sext_inreg (masked_load x)) -> (sext_masked_load x)
12481 // ignore it if the masked load is already sign extended
12482 if (MaskedLoadSDNode
*Ld
= dyn_cast
<MaskedLoadSDNode
>(N0
)) {
12483 if (ExtVT
== Ld
->getMemoryVT() && N0
.hasOneUse() &&
12484 Ld
->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD
&&
12485 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, ExtVT
)) {
12486 SDValue ExtMaskedLoad
= DAG
.getMaskedLoad(
12487 VT
, SDLoc(N
), Ld
->getChain(), Ld
->getBasePtr(), Ld
->getOffset(),
12488 Ld
->getMask(), Ld
->getPassThru(), ExtVT
, Ld
->getMemOperand(),
12489 Ld
->getAddressingMode(), ISD::SEXTLOAD
, Ld
->isExpandingLoad());
12490 CombineTo(N
, ExtMaskedLoad
);
12491 CombineTo(N0
.getNode(), ExtMaskedLoad
, ExtMaskedLoad
.getValue(1));
12492 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
12496 // fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x)
12497 if (auto *GN0
= dyn_cast
<MaskedGatherSDNode
>(N0
)) {
12498 if (SDValue(GN0
, 0).hasOneUse() &&
12499 ExtVT
== GN0
->getMemoryVT() &&
12500 TLI
.isVectorLoadExtDesirable(SDValue(SDValue(GN0
, 0)))) {
12501 SDValue Ops
[] = {GN0
->getChain(), GN0
->getPassThru(), GN0
->getMask(),
12502 GN0
->getBasePtr(), GN0
->getIndex(), GN0
->getScale()};
12504 SDValue ExtLoad
= DAG
.getMaskedGather(
12505 DAG
.getVTList(VT
, MVT::Other
), ExtVT
, SDLoc(N
), Ops
,
12506 GN0
->getMemOperand(), GN0
->getIndexType(), ISD::SEXTLOAD
);
12508 CombineTo(N
, ExtLoad
);
12509 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
12510 AddToWorklist(ExtLoad
.getNode());
12511 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
12515 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
12516 if (ExtVTBits
<= 16 && N0
.getOpcode() == ISD::OR
) {
12517 if (SDValue BSwap
= MatchBSwapHWordLow(N0
.getNode(), N0
.getOperand(0),
12518 N0
.getOperand(1), false))
12519 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
, BSwap
, N1
);
12525 SDValue
DAGCombiner::visitEXTEND_VECTOR_INREG(SDNode
*N
) {
12526 SDValue N0
= N
->getOperand(0);
12527 EVT VT
= N
->getValueType(0);
12529 // {s/z}ext_vector_inreg(undef) = 0 because the top bits must be the same.
12531 return DAG
.getConstant(0, SDLoc(N
), VT
);
12533 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
12536 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
12537 return SDValue(N
, 0);
12542 SDValue
DAGCombiner::visitTRUNCATE(SDNode
*N
) {
12543 SDValue N0
= N
->getOperand(0);
12544 EVT VT
= N
->getValueType(0);
12545 EVT SrcVT
= N0
.getValueType();
12546 bool isLE
= DAG
.getDataLayout().isLittleEndian();
12552 // fold (truncate (truncate x)) -> (truncate x)
12553 if (N0
.getOpcode() == ISD::TRUNCATE
)
12554 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
.getOperand(0));
12556 // fold (truncate c1) -> c1
12557 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
)) {
12558 SDValue C
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
);
12559 if (C
.getNode() != N
)
12563 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
12564 if (N0
.getOpcode() == ISD::ZERO_EXTEND
||
12565 N0
.getOpcode() == ISD::SIGN_EXTEND
||
12566 N0
.getOpcode() == ISD::ANY_EXTEND
) {
12567 // if the source is smaller than the dest, we still need an extend.
12568 if (N0
.getOperand(0).getValueType().bitsLT(VT
))
12569 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, N0
.getOperand(0));
12570 // if the source is larger than the dest, than we just need the truncate.
12571 if (N0
.getOperand(0).getValueType().bitsGT(VT
))
12572 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
.getOperand(0));
12573 // if the source and dest are the same type, we can drop both the extend
12574 // and the truncate.
12575 return N0
.getOperand(0);
12578 // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
12579 if (N
->hasOneUse() && (N
->use_begin()->getOpcode() == ISD::ANY_EXTEND
))
12582 // Fold extract-and-trunc into a narrow extract. For example:
12583 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
12584 // i32 y = TRUNCATE(i64 x)
12586 // v16i8 b = BITCAST (v2i64 val)
12587 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
12589 // Note: We only run this optimization after type legalization (which often
12590 // creates this pattern) and before operation legalization after which
12591 // we need to be more careful about the vector instructions that we generate.
12592 if (N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
12593 LegalTypes
&& !LegalOperations
&& N0
->hasOneUse() && VT
!= MVT::i1
) {
12594 EVT VecTy
= N0
.getOperand(0).getValueType();
12595 EVT ExTy
= N0
.getValueType();
12596 EVT TrTy
= N
->getValueType(0);
12598 auto EltCnt
= VecTy
.getVectorElementCount();
12599 unsigned SizeRatio
= ExTy
.getSizeInBits()/TrTy
.getSizeInBits();
12600 auto NewEltCnt
= EltCnt
* SizeRatio
;
12602 EVT NVT
= EVT::getVectorVT(*DAG
.getContext(), TrTy
, NewEltCnt
);
12603 assert(NVT
.getSizeInBits() == VecTy
.getSizeInBits() && "Invalid Size");
12605 SDValue EltNo
= N0
->getOperand(1);
12606 if (isa
<ConstantSDNode
>(EltNo
) && isTypeLegal(NVT
)) {
12607 int Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
12608 int Index
= isLE
? (Elt
*SizeRatio
) : (Elt
*SizeRatio
+ (SizeRatio
-1));
12611 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, TrTy
,
12612 DAG
.getBitcast(NVT
, N0
.getOperand(0)),
12613 DAG
.getVectorIdxConstant(Index
, DL
));
12617 // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
12618 if (N0
.getOpcode() == ISD::SELECT
&& N0
.hasOneUse()) {
12619 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::SELECT
, SrcVT
)) &&
12620 TLI
.isTruncateFree(SrcVT
, VT
)) {
12622 SDValue Cond
= N0
.getOperand(0);
12623 SDValue TruncOp0
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(1));
12624 SDValue TruncOp1
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(2));
12625 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
, Cond
, TruncOp0
, TruncOp1
);
12629 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
12630 if (N0
.getOpcode() == ISD::SHL
&& N0
.hasOneUse() &&
12631 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SHL
, VT
)) &&
12632 TLI
.isTypeDesirableForOp(ISD::SHL
, VT
)) {
12633 SDValue Amt
= N0
.getOperand(1);
12634 KnownBits Known
= DAG
.computeKnownBits(Amt
);
12635 unsigned Size
= VT
.getScalarSizeInBits();
12636 if (Known
.countMaxActiveBits() <= Log2_32(Size
)) {
12638 EVT AmtVT
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
12640 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(0));
12641 if (AmtVT
!= Amt
.getValueType()) {
12642 Amt
= DAG
.getZExtOrTrunc(Amt
, SL
, AmtVT
);
12643 AddToWorklist(Amt
.getNode());
12645 return DAG
.getNode(ISD::SHL
, SL
, VT
, Trunc
, Amt
);
12649 if (SDValue V
= foldSubToUSubSat(VT
, N0
.getNode()))
12652 // Attempt to pre-truncate BUILD_VECTOR sources.
12653 if (N0
.getOpcode() == ISD::BUILD_VECTOR
&& !LegalOperations
&&
12654 TLI
.isTruncateFree(SrcVT
.getScalarType(), VT
.getScalarType()) &&
12655 // Avoid creating illegal types if running after type legalizer.
12656 (!LegalTypes
|| TLI
.isTypeLegal(VT
.getScalarType()))) {
12658 EVT SVT
= VT
.getScalarType();
12659 SmallVector
<SDValue
, 8> TruncOps
;
12660 for (const SDValue
&Op
: N0
->op_values()) {
12661 SDValue TruncOp
= DAG
.getNode(ISD::TRUNCATE
, DL
, SVT
, Op
);
12662 TruncOps
.push_back(TruncOp
);
12664 return DAG
.getBuildVector(VT
, DL
, TruncOps
);
12667 // Fold a series of buildvector, bitcast, and truncate if possible.
12668 // For example fold
12669 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
12670 // (2xi32 (buildvector x, y)).
12671 if (Level
== AfterLegalizeVectorOps
&& VT
.isVector() &&
12672 N0
.getOpcode() == ISD::BITCAST
&& N0
.hasOneUse() &&
12673 N0
.getOperand(0).getOpcode() == ISD::BUILD_VECTOR
&&
12674 N0
.getOperand(0).hasOneUse()) {
12675 SDValue BuildVect
= N0
.getOperand(0);
12676 EVT BuildVectEltTy
= BuildVect
.getValueType().getVectorElementType();
12677 EVT TruncVecEltTy
= VT
.getVectorElementType();
12679 // Check that the element types match.
12680 if (BuildVectEltTy
== TruncVecEltTy
) {
12681 // Now we only need to compute the offset of the truncated elements.
12682 unsigned BuildVecNumElts
= BuildVect
.getNumOperands();
12683 unsigned TruncVecNumElts
= VT
.getVectorNumElements();
12684 unsigned TruncEltOffset
= BuildVecNumElts
/ TruncVecNumElts
;
12686 assert((BuildVecNumElts
% TruncVecNumElts
) == 0 &&
12687 "Invalid number of elements");
12689 SmallVector
<SDValue
, 8> Opnds
;
12690 for (unsigned i
= 0, e
= BuildVecNumElts
; i
!= e
; i
+= TruncEltOffset
)
12691 Opnds
.push_back(BuildVect
.getOperand(i
));
12693 return DAG
.getBuildVector(VT
, SDLoc(N
), Opnds
);
12697 // See if we can simplify the input to this truncate through knowledge that
12698 // only the low bits are being used.
12699 // For example "trunc (or (shl x, 8), y)" // -> trunc y
12700 // Currently we only perform this optimization on scalars because vectors
12701 // may have different active low bits.
12702 if (!VT
.isVector()) {
12704 APInt::getLowBitsSet(N0
.getValueSizeInBits(), VT
.getSizeInBits());
12705 if (SDValue Shorter
= DAG
.GetDemandedBits(N0
, Mask
))
12706 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, Shorter
);
12709 // fold (truncate (load x)) -> (smaller load x)
12710 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
12711 if (!LegalTypes
|| TLI
.isTypeDesirableForOp(N0
.getOpcode(), VT
)) {
12712 if (SDValue Reduced
= reduceLoadWidth(N
))
12715 // Handle the case where the load remains an extending load even
12716 // after truncation.
12717 if (N0
.hasOneUse() && ISD::isUNINDEXEDLoad(N0
.getNode())) {
12718 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
12719 if (LN0
->isSimple() && LN0
->getMemoryVT().bitsLT(VT
)) {
12720 SDValue NewLoad
= DAG
.getExtLoad(LN0
->getExtensionType(), SDLoc(LN0
),
12721 VT
, LN0
->getChain(), LN0
->getBasePtr(),
12722 LN0
->getMemoryVT(),
12723 LN0
->getMemOperand());
12724 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), NewLoad
.getValue(1));
12730 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
12731 // where ... are all 'undef'.
12732 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&& !LegalTypes
) {
12733 SmallVector
<EVT
, 8> VTs
;
12736 unsigned NumDefs
= 0;
12738 for (unsigned i
= 0, e
= N0
.getNumOperands(); i
!= e
; ++i
) {
12739 SDValue X
= N0
.getOperand(i
);
12740 if (!X
.isUndef()) {
12745 // Stop if more than one members are non-undef.
12749 VTs
.push_back(EVT::getVectorVT(*DAG
.getContext(),
12750 VT
.getVectorElementType(),
12751 X
.getValueType().getVectorElementCount()));
12755 return DAG
.getUNDEF(VT
);
12757 if (NumDefs
== 1) {
12758 assert(V
.getNode() && "The single defined operand is empty!");
12759 SmallVector
<SDValue
, 8> Opnds
;
12760 for (unsigned i
= 0, e
= VTs
.size(); i
!= e
; ++i
) {
12762 Opnds
.push_back(DAG
.getUNDEF(VTs
[i
]));
12765 SDValue NV
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(V
), VTs
[i
], V
);
12766 AddToWorklist(NV
.getNode());
12767 Opnds
.push_back(NV
);
12769 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Opnds
);
12773 // Fold truncate of a bitcast of a vector to an extract of the low vector
12776 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
12777 if (N0
.getOpcode() == ISD::BITCAST
&& !VT
.isVector()) {
12778 SDValue VecSrc
= N0
.getOperand(0);
12779 EVT VecSrcVT
= VecSrc
.getValueType();
12780 if (VecSrcVT
.isVector() && VecSrcVT
.getScalarType() == VT
&&
12781 (!LegalOperations
||
12782 TLI
.isOperationLegal(ISD::EXTRACT_VECTOR_ELT
, VecSrcVT
))) {
12785 unsigned Idx
= isLE
? 0 : VecSrcVT
.getVectorNumElements() - 1;
12786 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, VT
, VecSrc
,
12787 DAG
.getVectorIdxConstant(Idx
, SL
));
12791 // Simplify the operands using demanded-bits information.
12792 if (SimplifyDemandedBits(SDValue(N
, 0)))
12793 return SDValue(N
, 0);
12795 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
12796 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry)
12797 // When the adde's carry is not used.
12798 if ((N0
.getOpcode() == ISD::ADDE
|| N0
.getOpcode() == ISD::ADDCARRY
) &&
12799 N0
.hasOneUse() && !N0
.getNode()->hasAnyUseOfValue(1) &&
12800 // We only do for addcarry before legalize operation
12801 ((!LegalOperations
&& N0
.getOpcode() == ISD::ADDCARRY
) ||
12802 TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
12804 auto X
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(0));
12805 auto Y
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(1));
12806 auto VTs
= DAG
.getVTList(VT
, N0
->getValueType(1));
12807 return DAG
.getNode(N0
.getOpcode(), SL
, VTs
, X
, Y
, N0
.getOperand(2));
12810 // fold (truncate (extract_subvector(ext x))) ->
12811 // (extract_subvector x)
12812 // TODO: This can be generalized to cover cases where the truncate and extract
12813 // do not fully cancel each other out.
12814 if (!LegalTypes
&& N0
.getOpcode() == ISD::EXTRACT_SUBVECTOR
) {
12815 SDValue N00
= N0
.getOperand(0);
12816 if (N00
.getOpcode() == ISD::SIGN_EXTEND
||
12817 N00
.getOpcode() == ISD::ZERO_EXTEND
||
12818 N00
.getOpcode() == ISD::ANY_EXTEND
) {
12819 if (N00
.getOperand(0)->getValueType(0).getVectorElementType() ==
12820 VT
.getVectorElementType())
12821 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N0
->getOperand(0)), VT
,
12822 N00
.getOperand(0), N0
.getOperand(1));
12826 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
12829 // Narrow a suitable binary operation with a non-opaque constant operand by
12830 // moving it ahead of the truncate. This is limited to pre-legalization
12831 // because targets may prefer a wider type during later combines and invert
12833 switch (N0
.getOpcode()) {
12840 if (!LegalOperations
&& N0
.hasOneUse() &&
12841 (isConstantOrConstantVector(N0
.getOperand(0), true) ||
12842 isConstantOrConstantVector(N0
.getOperand(1), true))) {
12843 // TODO: We already restricted this to pre-legalization, but for vectors
12844 // we are extra cautious to not create an unsupported operation.
12845 // Target-specific changes are likely needed to avoid regressions here.
12846 if (VT
.isScalarInteger() || TLI
.isOperationLegal(N0
.getOpcode(), VT
)) {
12848 SDValue NarrowL
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N0
.getOperand(0));
12849 SDValue NarrowR
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N0
.getOperand(1));
12850 return DAG
.getNode(N0
.getOpcode(), DL
, VT
, NarrowL
, NarrowR
);
12855 // Truncate the USUBSAT only if LHS is a known zero-extension, its not
12856 // enough to know that the upper bits are zero we must ensure that we don't
12857 // introduce an extra truncate.
12858 if (!LegalOperations
&& N0
.hasOneUse() &&
12859 N0
.getOperand(0).getOpcode() == ISD::ZERO_EXTEND
&&
12860 N0
.getOperand(0).getOperand(0).getScalarValueSizeInBits() <=
12861 VT
.getScalarSizeInBits() &&
12862 hasOperation(N0
.getOpcode(), VT
)) {
12863 return getTruncatedUSUBSAT(VT
, SrcVT
, N0
.getOperand(0), N0
.getOperand(1),
12872 static SDNode
*getBuildPairElt(SDNode
*N
, unsigned i
) {
12873 SDValue Elt
= N
->getOperand(i
);
12874 if (Elt
.getOpcode() != ISD::MERGE_VALUES
)
12875 return Elt
.getNode();
12876 return Elt
.getOperand(Elt
.getResNo()).getNode();
12879 /// build_pair (load, load) -> load
12880 /// if load locations are consecutive.
12881 SDValue
DAGCombiner::CombineConsecutiveLoads(SDNode
*N
, EVT VT
) {
12882 assert(N
->getOpcode() == ISD::BUILD_PAIR
);
12884 auto *LD1
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 0));
12885 auto *LD2
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 1));
12887 // A BUILD_PAIR is always having the least significant part in elt 0 and the
12888 // most significant part in elt 1. So when combining into one large load, we
12889 // need to consider the endianness.
12890 if (DAG
.getDataLayout().isBigEndian())
12891 std::swap(LD1
, LD2
);
12893 if (!LD1
|| !LD2
|| !ISD::isNON_EXTLoad(LD1
) || !ISD::isNON_EXTLoad(LD2
) ||
12894 !LD1
->hasOneUse() || !LD2
->hasOneUse() ||
12895 LD1
->getAddressSpace() != LD2
->getAddressSpace())
12898 bool LD1Fast
= false;
12899 EVT LD1VT
= LD1
->getValueType(0);
12900 unsigned LD1Bytes
= LD1VT
.getStoreSize();
12901 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
)) &&
12902 DAG
.areNonVolatileConsecutiveLoads(LD2
, LD1
, LD1Bytes
, 1) &&
12903 TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), VT
,
12904 *LD1
->getMemOperand(), &LD1Fast
) && LD1Fast
)
12905 return DAG
.getLoad(VT
, SDLoc(N
), LD1
->getChain(), LD1
->getBasePtr(),
12906 LD1
->getPointerInfo(), LD1
->getAlign());
12911 static unsigned getPPCf128HiElementSelector(const SelectionDAG
&DAG
) {
12912 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
12913 // and Lo parts; on big-endian machines it doesn't.
12914 return DAG
.getDataLayout().isBigEndian() ? 1 : 0;
12917 static SDValue
foldBitcastedFPLogic(SDNode
*N
, SelectionDAG
&DAG
,
12918 const TargetLowering
&TLI
) {
12919 // If this is not a bitcast to an FP type or if the target doesn't have
12920 // IEEE754-compliant FP logic, we're done.
12921 EVT VT
= N
->getValueType(0);
12922 if (!VT
.isFloatingPoint() || !TLI
.hasBitPreservingFPLogic(VT
))
12925 // TODO: Handle cases where the integer constant is a different scalar
12926 // bitwidth to the FP.
12927 SDValue N0
= N
->getOperand(0);
12928 EVT SourceVT
= N0
.getValueType();
12929 if (VT
.getScalarSizeInBits() != SourceVT
.getScalarSizeInBits())
12934 switch (N0
.getOpcode()) {
12936 FPOpcode
= ISD::FABS
;
12937 SignMask
= ~APInt::getSignMask(SourceVT
.getScalarSizeInBits());
12940 FPOpcode
= ISD::FNEG
;
12941 SignMask
= APInt::getSignMask(SourceVT
.getScalarSizeInBits());
12944 FPOpcode
= ISD::FABS
;
12945 SignMask
= APInt::getSignMask(SourceVT
.getScalarSizeInBits());
12951 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
12952 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
12953 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
12955 SDValue LogicOp0
= N0
.getOperand(0);
12956 ConstantSDNode
*LogicOp1
= isConstOrConstSplat(N0
.getOperand(1), true);
12957 if (LogicOp1
&& LogicOp1
->getAPIntValue() == SignMask
&&
12958 LogicOp0
.getOpcode() == ISD::BITCAST
&&
12959 LogicOp0
.getOperand(0).getValueType() == VT
) {
12960 SDValue FPOp
= DAG
.getNode(FPOpcode
, SDLoc(N
), VT
, LogicOp0
.getOperand(0));
12961 NumFPLogicOpsConv
++;
12962 if (N0
.getOpcode() == ISD::OR
)
12963 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
, FPOp
);
12970 SDValue
DAGCombiner::visitBITCAST(SDNode
*N
) {
12971 SDValue N0
= N
->getOperand(0);
12972 EVT VT
= N
->getValueType(0);
12975 return DAG
.getUNDEF(VT
);
12977 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
12978 // Only do this before legalize types, unless both types are integer and the
12979 // scalar type is legal. Only do this before legalize ops, since the target
12980 // maybe depending on the bitcast.
12981 // First check to see if this is all constant.
12982 // TODO: Support FP bitcasts after legalize types.
12983 if (VT
.isVector() &&
12985 (!LegalOperations
&& VT
.isInteger() && N0
.getValueType().isInteger() &&
12986 TLI
.isTypeLegal(VT
.getVectorElementType()))) &&
12987 N0
.getOpcode() == ISD::BUILD_VECTOR
&& N0
.getNode()->hasOneUse() &&
12988 cast
<BuildVectorSDNode
>(N0
)->isConstant())
12989 return ConstantFoldBITCASTofBUILD_VECTOR(N0
.getNode(),
12990 VT
.getVectorElementType());
12992 // If the input is a constant, let getNode fold it.
12993 if (isIntOrFPConstant(N0
)) {
12994 // If we can't allow illegal operations, we need to check that this is just
12995 // a fp -> int or int -> conversion and that the resulting operation will
12997 if (!LegalOperations
||
12998 (isa
<ConstantSDNode
>(N0
) && VT
.isFloatingPoint() && !VT
.isVector() &&
12999 TLI
.isOperationLegal(ISD::ConstantFP
, VT
)) ||
13000 (isa
<ConstantFPSDNode
>(N0
) && VT
.isInteger() && !VT
.isVector() &&
13001 TLI
.isOperationLegal(ISD::Constant
, VT
))) {
13002 SDValue C
= DAG
.getBitcast(VT
, N0
);
13003 if (C
.getNode() != N
)
13008 // (conv (conv x, t1), t2) -> (conv x, t2)
13009 if (N0
.getOpcode() == ISD::BITCAST
)
13010 return DAG
.getBitcast(VT
, N0
.getOperand(0));
13012 // fold (conv (load x)) -> (load (conv*)x)
13013 // If the resultant load doesn't need a higher alignment than the original!
13014 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
13015 // Do not remove the cast if the types differ in endian layout.
13016 TLI
.hasBigEndianPartOrdering(N0
.getValueType(), DAG
.getDataLayout()) ==
13017 TLI
.hasBigEndianPartOrdering(VT
, DAG
.getDataLayout()) &&
13018 // If the load is volatile, we only want to change the load type if the
13019 // resulting load is legal. Otherwise we might increase the number of
13020 // memory accesses. We don't care if the original type was legal or not
13021 // as we assume software couldn't rely on the number of accesses of an
13023 ((!LegalOperations
&& cast
<LoadSDNode
>(N0
)->isSimple()) ||
13024 TLI
.isOperationLegal(ISD::LOAD
, VT
))) {
13025 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
13027 if (TLI
.isLoadBitCastBeneficial(N0
.getValueType(), VT
, DAG
,
13028 *LN0
->getMemOperand())) {
13030 DAG
.getLoad(VT
, SDLoc(N
), LN0
->getChain(), LN0
->getBasePtr(),
13031 LN0
->getPointerInfo(), LN0
->getAlign(),
13032 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
13033 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1));
13038 if (SDValue V
= foldBitcastedFPLogic(N
, DAG
, TLI
))
13041 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
13042 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
13045 // fold (bitcast (fneg x)) ->
13046 // flipbit = signbit
13047 // (xor (bitcast x) (build_pair flipbit, flipbit))
13049 // fold (bitcast (fabs x)) ->
13050 // flipbit = (and (extract_element (bitcast x), 0), signbit)
13051 // (xor (bitcast x) (build_pair flipbit, flipbit))
13052 // This often reduces constant pool loads.
13053 if (((N0
.getOpcode() == ISD::FNEG
&& !TLI
.isFNegFree(N0
.getValueType())) ||
13054 (N0
.getOpcode() == ISD::FABS
&& !TLI
.isFAbsFree(N0
.getValueType()))) &&
13055 N0
.getNode()->hasOneUse() && VT
.isInteger() &&
13056 !VT
.isVector() && !N0
.getValueType().isVector()) {
13057 SDValue NewConv
= DAG
.getBitcast(VT
, N0
.getOperand(0));
13058 AddToWorklist(NewConv
.getNode());
13061 if (N0
.getValueType() == MVT::ppcf128
&& !LegalTypes
) {
13062 assert(VT
.getSizeInBits() == 128);
13063 SDValue SignBit
= DAG
.getConstant(
13064 APInt::getSignMask(VT
.getSizeInBits() / 2), SDLoc(N0
), MVT::i64
);
13066 if (N0
.getOpcode() == ISD::FNEG
) {
13068 AddToWorklist(FlipBit
.getNode());
13070 assert(N0
.getOpcode() == ISD::FABS
);
13072 DAG
.getNode(ISD::EXTRACT_ELEMENT
, SDLoc(NewConv
), MVT::i64
, NewConv
,
13073 DAG
.getIntPtrConstant(getPPCf128HiElementSelector(DAG
),
13075 AddToWorklist(Hi
.getNode());
13076 FlipBit
= DAG
.getNode(ISD::AND
, SDLoc(N0
), MVT::i64
, Hi
, SignBit
);
13077 AddToWorklist(FlipBit
.getNode());
13080 DAG
.getNode(ISD::BUILD_PAIR
, SDLoc(N0
), VT
, FlipBit
, FlipBit
);
13081 AddToWorklist(FlipBits
.getNode());
13082 return DAG
.getNode(ISD::XOR
, DL
, VT
, NewConv
, FlipBits
);
13084 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits());
13085 if (N0
.getOpcode() == ISD::FNEG
)
13086 return DAG
.getNode(ISD::XOR
, DL
, VT
,
13087 NewConv
, DAG
.getConstant(SignBit
, DL
, VT
));
13088 assert(N0
.getOpcode() == ISD::FABS
);
13089 return DAG
.getNode(ISD::AND
, DL
, VT
,
13090 NewConv
, DAG
.getConstant(~SignBit
, DL
, VT
));
13093 // fold (bitconvert (fcopysign cst, x)) ->
13094 // (or (and (bitconvert x), sign), (and cst, (not sign)))
13095 // Note that we don't handle (copysign x, cst) because this can always be
13096 // folded to an fneg or fabs.
13099 // fold (bitcast (fcopysign cst, x)) ->
13100 // flipbit = (and (extract_element
13101 // (xor (bitcast cst), (bitcast x)), 0),
13103 // (xor (bitcast cst) (build_pair flipbit, flipbit))
13104 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse() &&
13105 isa
<ConstantFPSDNode
>(N0
.getOperand(0)) &&
13106 VT
.isInteger() && !VT
.isVector()) {
13107 unsigned OrigXWidth
= N0
.getOperand(1).getValueSizeInBits();
13108 EVT IntXVT
= EVT::getIntegerVT(*DAG
.getContext(), OrigXWidth
);
13109 if (isTypeLegal(IntXVT
)) {
13110 SDValue X
= DAG
.getBitcast(IntXVT
, N0
.getOperand(1));
13111 AddToWorklist(X
.getNode());
13113 // If X has a different width than the result/lhs, sext it or truncate it.
13114 unsigned VTWidth
= VT
.getSizeInBits();
13115 if (OrigXWidth
< VTWidth
) {
13116 X
= DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, X
);
13117 AddToWorklist(X
.getNode());
13118 } else if (OrigXWidth
> VTWidth
) {
13119 // To get the sign bit in the right place, we have to shift it right
13120 // before truncating.
13122 X
= DAG
.getNode(ISD::SRL
, DL
,
13123 X
.getValueType(), X
,
13124 DAG
.getConstant(OrigXWidth
-VTWidth
, DL
,
13125 X
.getValueType()));
13126 AddToWorklist(X
.getNode());
13127 X
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(X
), VT
, X
);
13128 AddToWorklist(X
.getNode());
13131 if (N0
.getValueType() == MVT::ppcf128
&& !LegalTypes
) {
13132 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits() / 2);
13133 SDValue Cst
= DAG
.getBitcast(VT
, N0
.getOperand(0));
13134 AddToWorklist(Cst
.getNode());
13135 SDValue X
= DAG
.getBitcast(VT
, N0
.getOperand(1));
13136 AddToWorklist(X
.getNode());
13137 SDValue XorResult
= DAG
.getNode(ISD::XOR
, SDLoc(N0
), VT
, Cst
, X
);
13138 AddToWorklist(XorResult
.getNode());
13139 SDValue XorResult64
= DAG
.getNode(
13140 ISD::EXTRACT_ELEMENT
, SDLoc(XorResult
), MVT::i64
, XorResult
,
13141 DAG
.getIntPtrConstant(getPPCf128HiElementSelector(DAG
),
13142 SDLoc(XorResult
)));
13143 AddToWorklist(XorResult64
.getNode());
13145 DAG
.getNode(ISD::AND
, SDLoc(XorResult64
), MVT::i64
, XorResult64
,
13146 DAG
.getConstant(SignBit
, SDLoc(XorResult64
), MVT::i64
));
13147 AddToWorklist(FlipBit
.getNode());
13149 DAG
.getNode(ISD::BUILD_PAIR
, SDLoc(N0
), VT
, FlipBit
, FlipBit
);
13150 AddToWorklist(FlipBits
.getNode());
13151 return DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, Cst
, FlipBits
);
13153 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits());
13154 X
= DAG
.getNode(ISD::AND
, SDLoc(X
), VT
,
13155 X
, DAG
.getConstant(SignBit
, SDLoc(X
), VT
));
13156 AddToWorklist(X
.getNode());
13158 SDValue Cst
= DAG
.getBitcast(VT
, N0
.getOperand(0));
13159 Cst
= DAG
.getNode(ISD::AND
, SDLoc(Cst
), VT
,
13160 Cst
, DAG
.getConstant(~SignBit
, SDLoc(Cst
), VT
));
13161 AddToWorklist(Cst
.getNode());
13163 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, X
, Cst
);
13167 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
13168 if (N0
.getOpcode() == ISD::BUILD_PAIR
)
13169 if (SDValue CombineLD
= CombineConsecutiveLoads(N0
.getNode(), VT
))
13172 // Remove double bitcasts from shuffles - this is often a legacy of
13173 // XformToShuffleWithZero being used to combine bitmaskings (of
13174 // float vectors bitcast to integer vectors) into shuffles.
13175 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
13176 if (Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
) && VT
.isVector() &&
13177 N0
->getOpcode() == ISD::VECTOR_SHUFFLE
&& N0
.hasOneUse() &&
13178 VT
.getVectorNumElements() >= N0
.getValueType().getVectorNumElements() &&
13179 !(VT
.getVectorNumElements() % N0
.getValueType().getVectorNumElements())) {
13180 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N0
);
13182 // If operands are a bitcast, peek through if it casts the original VT.
13183 // If operands are a constant, just bitcast back to original VT.
13184 auto PeekThroughBitcast
= [&](SDValue Op
) {
13185 if (Op
.getOpcode() == ISD::BITCAST
&&
13186 Op
.getOperand(0).getValueType() == VT
)
13187 return SDValue(Op
.getOperand(0));
13188 if (Op
.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op
.getNode()) ||
13189 ISD::isBuildVectorOfConstantFPSDNodes(Op
.getNode()))
13190 return DAG
.getBitcast(VT
, Op
);
13194 // FIXME: If either input vector is bitcast, try to convert the shuffle to
13195 // the result type of this bitcast. This would eliminate at least one
13196 // bitcast. See the transform in InstCombine.
13197 SDValue SV0
= PeekThroughBitcast(N0
->getOperand(0));
13198 SDValue SV1
= PeekThroughBitcast(N0
->getOperand(1));
13203 VT
.getVectorNumElements() / N0
.getValueType().getVectorNumElements();
13204 SmallVector
<int, 8> NewMask
;
13205 for (int M
: SVN
->getMask())
13206 for (int i
= 0; i
!= MaskScale
; ++i
)
13207 NewMask
.push_back(M
< 0 ? -1 : M
* MaskScale
+ i
);
13209 SDValue LegalShuffle
=
13210 TLI
.buildLegalVectorShuffle(VT
, SDLoc(N
), SV0
, SV1
, NewMask
, DAG
);
13212 return LegalShuffle
;
13218 SDValue
DAGCombiner::visitBUILD_PAIR(SDNode
*N
) {
13219 EVT VT
= N
->getValueType(0);
13220 return CombineConsecutiveLoads(N
, VT
);
13223 SDValue
DAGCombiner::visitFREEZE(SDNode
*N
) {
13224 SDValue N0
= N
->getOperand(0);
13226 if (DAG
.isGuaranteedNotToBeUndefOrPoison(N0
, /*PoisonOnly*/ false))
13232 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef
13233 /// operands. DstEltVT indicates the destination element value type.
13234 SDValue
DAGCombiner::
13235 ConstantFoldBITCASTofBUILD_VECTOR(SDNode
*BV
, EVT DstEltVT
) {
13236 EVT SrcEltVT
= BV
->getValueType(0).getVectorElementType();
13238 // If this is already the right type, we're done.
13239 if (SrcEltVT
== DstEltVT
) return SDValue(BV
, 0);
13241 unsigned SrcBitSize
= SrcEltVT
.getSizeInBits();
13242 unsigned DstBitSize
= DstEltVT
.getSizeInBits();
13244 // If this is a conversion of N elements of one type to N elements of another
13245 // type, convert each element. This handles FP<->INT cases.
13246 if (SrcBitSize
== DstBitSize
) {
13247 SmallVector
<SDValue
, 8> Ops
;
13248 for (SDValue Op
: BV
->op_values()) {
13249 // If the vector element type is not legal, the BUILD_VECTOR operands
13250 // are promoted and implicitly truncated. Make that explicit here.
13251 if (Op
.getValueType() != SrcEltVT
)
13252 Op
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(BV
), SrcEltVT
, Op
);
13253 Ops
.push_back(DAG
.getBitcast(DstEltVT
, Op
));
13254 AddToWorklist(Ops
.back().getNode());
13256 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
,
13257 BV
->getValueType(0).getVectorNumElements());
13258 return DAG
.getBuildVector(VT
, SDLoc(BV
), Ops
);
13261 // Otherwise, we're growing or shrinking the elements. To avoid having to
13262 // handle annoying details of growing/shrinking FP values, we convert them to
13264 if (SrcEltVT
.isFloatingPoint()) {
13265 // Convert the input float vector to a int vector where the elements are the
13267 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), SrcEltVT
.getSizeInBits());
13268 BV
= ConstantFoldBITCASTofBUILD_VECTOR(BV
, IntVT
).getNode();
13272 // Now we know the input is an integer vector. If the output is a FP type,
13273 // convert to integer first, then to FP of the right size.
13274 if (DstEltVT
.isFloatingPoint()) {
13275 EVT TmpVT
= EVT::getIntegerVT(*DAG
.getContext(), DstEltVT
.getSizeInBits());
13276 SDNode
*Tmp
= ConstantFoldBITCASTofBUILD_VECTOR(BV
, TmpVT
).getNode();
13278 // Next, convert to FP elements of the same size.
13279 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp
, DstEltVT
);
13282 // Okay, we know the src/dst types are both integers of differing types.
13283 assert(SrcEltVT
.isInteger() && DstEltVT
.isInteger());
13285 // TODO: Should ConstantFoldBITCASTofBUILD_VECTOR always take a
13286 // BuildVectorSDNode?
13287 auto *BVN
= cast
<BuildVectorSDNode
>(BV
);
13289 // Extract the constant raw bit data.
13290 BitVector UndefElements
;
13291 SmallVector
<APInt
> RawBits
;
13292 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
13293 if (!BVN
->getConstantRawBits(IsLE
, DstBitSize
, RawBits
, UndefElements
))
13297 SmallVector
<SDValue
, 8> Ops
;
13298 for (unsigned I
= 0, E
= RawBits
.size(); I
!= E
; ++I
) {
13299 if (UndefElements
[I
])
13300 Ops
.push_back(DAG
.getUNDEF(DstEltVT
));
13302 Ops
.push_back(DAG
.getConstant(RawBits
[I
], DL
, DstEltVT
));
13305 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
, Ops
.size());
13306 return DAG
.getBuildVector(VT
, DL
, Ops
);
13309 // Returns true if floating point contraction is allowed on the FMUL-SDValue
13311 static bool isContractableFMUL(const TargetOptions
&Options
, SDValue N
) {
13312 assert(N
.getOpcode() == ISD::FMUL
);
13314 return Options
.AllowFPOpFusion
== FPOpFusion::Fast
|| Options
.UnsafeFPMath
||
13315 N
->getFlags().hasAllowContract();
13318 // Returns true if `N` can assume no infinities involved in its computation.
13319 static bool hasNoInfs(const TargetOptions
&Options
, SDValue N
) {
13320 return Options
.NoInfsFPMath
|| N
.getNode()->getFlags().hasNoInfs();
13323 /// Try to perform FMA combining on a given FADD node.
13324 SDValue
DAGCombiner::visitFADDForFMACombine(SDNode
*N
) {
13325 SDValue N0
= N
->getOperand(0);
13326 SDValue N1
= N
->getOperand(1);
13327 EVT VT
= N
->getValueType(0);
13330 const TargetOptions
&Options
= DAG
.getTarget().Options
;
13332 // Floating-point multiply-add with intermediate rounding.
13333 bool HasFMAD
= (LegalOperations
&& TLI
.isFMADLegal(DAG
, N
));
13335 // Floating-point multiply-add without intermediate rounding.
13337 TLI
.isFMAFasterThanFMulAndFAdd(DAG
.getMachineFunction(), VT
) &&
13338 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
13340 // No valid opcode, do not combine.
13341 if (!HasFMAD
&& !HasFMA
)
13344 bool CanReassociate
=
13345 Options
.UnsafeFPMath
|| N
->getFlags().hasAllowReassociation();
13346 bool AllowFusionGlobally
= (Options
.AllowFPOpFusion
== FPOpFusion::Fast
||
13347 Options
.UnsafeFPMath
|| HasFMAD
);
13348 // If the addition is not contractable, do not combine.
13349 if (!AllowFusionGlobally
&& !N
->getFlags().hasAllowContract())
13352 if (TLI
.generateFMAsInMachineCombiner(VT
, OptLevel
))
13355 // Always prefer FMAD to FMA for precision.
13356 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
13357 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
13359 auto isFusedOp
= [&](SDValue N
) {
13360 unsigned Opcode
= N
.getOpcode();
13361 return Opcode
== ISD::FMA
|| Opcode
== ISD::FMAD
;
13364 // Is the node an FMUL and contractable either due to global flags or
13366 auto isContractableFMUL
= [AllowFusionGlobally
](SDValue N
) {
13367 if (N
.getOpcode() != ISD::FMUL
)
13369 return AllowFusionGlobally
|| N
->getFlags().hasAllowContract();
13371 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
13372 // prefer to fold the multiply with fewer uses.
13373 if (Aggressive
&& isContractableFMUL(N0
) && isContractableFMUL(N1
)) {
13374 if (N0
.getNode()->use_size() > N1
.getNode()->use_size())
13378 // fold (fadd (fmul x, y), z) -> (fma x, y, z)
13379 if (isContractableFMUL(N0
) && (Aggressive
|| N0
->hasOneUse())) {
13380 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, N0
.getOperand(0),
13381 N0
.getOperand(1), N1
);
13384 // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
13385 // Note: Commutes FADD operands.
13386 if (isContractableFMUL(N1
) && (Aggressive
|| N1
->hasOneUse())) {
13387 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, N1
.getOperand(0),
13388 N1
.getOperand(1), N0
);
13391 // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E)
13392 // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E)
13393 // This requires reassociation because it changes the order of operations.
13395 if (CanReassociate
&& isFusedOp(N0
) &&
13396 N0
.getOperand(2).getOpcode() == ISD::FMUL
&& N0
.hasOneUse() &&
13397 N0
.getOperand(2).hasOneUse()) {
13400 } else if (CanReassociate
&& isFusedOp(N1
) &&
13401 N1
.getOperand(2).getOpcode() == ISD::FMUL
&& N1
.hasOneUse() &&
13402 N1
.getOperand(2).hasOneUse()) {
13407 SDValue A
= FMA
.getOperand(0);
13408 SDValue B
= FMA
.getOperand(1);
13409 SDValue C
= FMA
.getOperand(2).getOperand(0);
13410 SDValue D
= FMA
.getOperand(2).getOperand(1);
13411 SDValue CDE
= DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, C
, D
, E
);
13412 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, A
, B
, CDE
);
13415 // Look through FP_EXTEND nodes to do more combining.
13417 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
13418 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
13419 SDValue N00
= N0
.getOperand(0);
13420 if (isContractableFMUL(N00
) &&
13421 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13422 N00
.getValueType())) {
13423 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13424 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N00
.getOperand(0)),
13425 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N00
.getOperand(1)),
13430 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
13431 // Note: Commutes FADD operands.
13432 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
13433 SDValue N10
= N1
.getOperand(0);
13434 if (isContractableFMUL(N10
) &&
13435 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13436 N10
.getValueType())) {
13437 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13438 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N10
.getOperand(0)),
13439 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N10
.getOperand(1)),
13444 // More folding opportunities when target permits.
13446 // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
13447 // -> (fma x, y, (fma (fpext u), (fpext v), z))
13448 auto FoldFAddFMAFPExtFMul
= [&](SDValue X
, SDValue Y
, SDValue U
, SDValue V
,
13450 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
, Y
,
13451 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13452 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, U
),
13453 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, V
),
13456 if (isFusedOp(N0
)) {
13457 SDValue N02
= N0
.getOperand(2);
13458 if (N02
.getOpcode() == ISD::FP_EXTEND
) {
13459 SDValue N020
= N02
.getOperand(0);
13460 if (isContractableFMUL(N020
) &&
13461 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13462 N020
.getValueType())) {
13463 return FoldFAddFMAFPExtFMul(N0
.getOperand(0), N0
.getOperand(1),
13464 N020
.getOperand(0), N020
.getOperand(1),
13470 // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
13471 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
13472 // FIXME: This turns two single-precision and one double-precision
13473 // operation into two double-precision operations, which might not be
13474 // interesting for all targets, especially GPUs.
13475 auto FoldFAddFPExtFMAFMul
= [&](SDValue X
, SDValue Y
, SDValue U
, SDValue V
,
13477 return DAG
.getNode(
13478 PreferredFusedOpcode
, SL
, VT
, DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, X
),
13479 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, Y
),
13480 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13481 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, U
),
13482 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, V
), Z
));
13484 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
13485 SDValue N00
= N0
.getOperand(0);
13486 if (isFusedOp(N00
)) {
13487 SDValue N002
= N00
.getOperand(2);
13488 if (isContractableFMUL(N002
) &&
13489 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13490 N00
.getValueType())) {
13491 return FoldFAddFPExtFMAFMul(N00
.getOperand(0), N00
.getOperand(1),
13492 N002
.getOperand(0), N002
.getOperand(1),
13498 // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
13499 // -> (fma y, z, (fma (fpext u), (fpext v), x))
13500 if (isFusedOp(N1
)) {
13501 SDValue N12
= N1
.getOperand(2);
13502 if (N12
.getOpcode() == ISD::FP_EXTEND
) {
13503 SDValue N120
= N12
.getOperand(0);
13504 if (isContractableFMUL(N120
) &&
13505 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13506 N120
.getValueType())) {
13507 return FoldFAddFMAFPExtFMul(N1
.getOperand(0), N1
.getOperand(1),
13508 N120
.getOperand(0), N120
.getOperand(1),
13514 // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
13515 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
13516 // FIXME: This turns two single-precision and one double-precision
13517 // operation into two double-precision operations, which might not be
13518 // interesting for all targets, especially GPUs.
13519 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
13520 SDValue N10
= N1
.getOperand(0);
13521 if (isFusedOp(N10
)) {
13522 SDValue N102
= N10
.getOperand(2);
13523 if (isContractableFMUL(N102
) &&
13524 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13525 N10
.getValueType())) {
13526 return FoldFAddFPExtFMAFMul(N10
.getOperand(0), N10
.getOperand(1),
13527 N102
.getOperand(0), N102
.getOperand(1),
13537 /// Try to perform FMA combining on a given FSUB node.
13538 SDValue
DAGCombiner::visitFSUBForFMACombine(SDNode
*N
) {
13539 SDValue N0
= N
->getOperand(0);
13540 SDValue N1
= N
->getOperand(1);
13541 EVT VT
= N
->getValueType(0);
13544 const TargetOptions
&Options
= DAG
.getTarget().Options
;
13545 // Floating-point multiply-add with intermediate rounding.
13546 bool HasFMAD
= (LegalOperations
&& TLI
.isFMADLegal(DAG
, N
));
13548 // Floating-point multiply-add without intermediate rounding.
13550 TLI
.isFMAFasterThanFMulAndFAdd(DAG
.getMachineFunction(), VT
) &&
13551 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
13553 // No valid opcode, do not combine.
13554 if (!HasFMAD
&& !HasFMA
)
13557 const SDNodeFlags Flags
= N
->getFlags();
13558 bool AllowFusionGlobally
= (Options
.AllowFPOpFusion
== FPOpFusion::Fast
||
13559 Options
.UnsafeFPMath
|| HasFMAD
);
13561 // If the subtraction is not contractable, do not combine.
13562 if (!AllowFusionGlobally
&& !N
->getFlags().hasAllowContract())
13565 if (TLI
.generateFMAsInMachineCombiner(VT
, OptLevel
))
13568 // Always prefer FMAD to FMA for precision.
13569 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
13570 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
13571 bool NoSignedZero
= Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros();
13573 // Is the node an FMUL and contractable either due to global flags or
13575 auto isContractableFMUL
= [AllowFusionGlobally
](SDValue N
) {
13576 if (N
.getOpcode() != ISD::FMUL
)
13578 return AllowFusionGlobally
|| N
->getFlags().hasAllowContract();
13581 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
13582 auto tryToFoldXYSubZ
= [&](SDValue XY
, SDValue Z
) {
13583 if (isContractableFMUL(XY
) && (Aggressive
|| XY
->hasOneUse())) {
13584 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, XY
.getOperand(0),
13585 XY
.getOperand(1), DAG
.getNode(ISD::FNEG
, SL
, VT
, Z
));
13590 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
13591 // Note: Commutes FSUB operands.
13592 auto tryToFoldXSubYZ
= [&](SDValue X
, SDValue YZ
) {
13593 if (isContractableFMUL(YZ
) && (Aggressive
|| YZ
->hasOneUse())) {
13594 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13595 DAG
.getNode(ISD::FNEG
, SL
, VT
, YZ
.getOperand(0)),
13596 YZ
.getOperand(1), X
);
13601 // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)),
13602 // prefer to fold the multiply with fewer uses.
13603 if (isContractableFMUL(N0
) && isContractableFMUL(N1
) &&
13604 (N0
.getNode()->use_size() > N1
.getNode()->use_size())) {
13605 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b))
13606 if (SDValue V
= tryToFoldXSubYZ(N0
, N1
))
13608 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d)))
13609 if (SDValue V
= tryToFoldXYSubZ(N0
, N1
))
13612 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
13613 if (SDValue V
= tryToFoldXYSubZ(N0
, N1
))
13615 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
13616 if (SDValue V
= tryToFoldXSubYZ(N0
, N1
))
13620 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
13621 if (N0
.getOpcode() == ISD::FNEG
&& isContractableFMUL(N0
.getOperand(0)) &&
13622 (Aggressive
|| (N0
->hasOneUse() && N0
.getOperand(0).hasOneUse()))) {
13623 SDValue N00
= N0
.getOperand(0).getOperand(0);
13624 SDValue N01
= N0
.getOperand(0).getOperand(1);
13625 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13626 DAG
.getNode(ISD::FNEG
, SL
, VT
, N00
), N01
,
13627 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
));
13630 // Look through FP_EXTEND nodes to do more combining.
13632 // fold (fsub (fpext (fmul x, y)), z)
13633 // -> (fma (fpext x), (fpext y), (fneg z))
13634 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
13635 SDValue N00
= N0
.getOperand(0);
13636 if (isContractableFMUL(N00
) &&
13637 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13638 N00
.getValueType())) {
13639 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13640 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N00
.getOperand(0)),
13641 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N00
.getOperand(1)),
13642 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
));
13646 // fold (fsub x, (fpext (fmul y, z)))
13647 // -> (fma (fneg (fpext y)), (fpext z), x)
13648 // Note: Commutes FSUB operands.
13649 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
13650 SDValue N10
= N1
.getOperand(0);
13651 if (isContractableFMUL(N10
) &&
13652 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13653 N10
.getValueType())) {
13654 return DAG
.getNode(
13655 PreferredFusedOpcode
, SL
, VT
,
13656 DAG
.getNode(ISD::FNEG
, SL
, VT
,
13657 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N10
.getOperand(0))),
13658 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N10
.getOperand(1)), N0
);
13662 // fold (fsub (fpext (fneg (fmul, x, y))), z)
13663 // -> (fneg (fma (fpext x), (fpext y), z))
13664 // Note: This could be removed with appropriate canonicalization of the
13665 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
13666 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
13667 // from implementing the canonicalization in visitFSUB.
13668 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
13669 SDValue N00
= N0
.getOperand(0);
13670 if (N00
.getOpcode() == ISD::FNEG
) {
13671 SDValue N000
= N00
.getOperand(0);
13672 if (isContractableFMUL(N000
) &&
13673 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13674 N00
.getValueType())) {
13675 return DAG
.getNode(
13677 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13678 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N000
.getOperand(0)),
13679 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N000
.getOperand(1)),
13685 // fold (fsub (fneg (fpext (fmul, x, y))), z)
13686 // -> (fneg (fma (fpext x)), (fpext y), z)
13687 // Note: This could be removed with appropriate canonicalization of the
13688 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
13689 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
13690 // from implementing the canonicalization in visitFSUB.
13691 if (N0
.getOpcode() == ISD::FNEG
) {
13692 SDValue N00
= N0
.getOperand(0);
13693 if (N00
.getOpcode() == ISD::FP_EXTEND
) {
13694 SDValue N000
= N00
.getOperand(0);
13695 if (isContractableFMUL(N000
) &&
13696 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13697 N000
.getValueType())) {
13698 return DAG
.getNode(
13700 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13701 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N000
.getOperand(0)),
13702 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N000
.getOperand(1)),
13708 auto isReassociable
= [Options
](SDNode
*N
) {
13709 return Options
.UnsafeFPMath
|| N
->getFlags().hasAllowReassociation();
13712 auto isContractableAndReassociableFMUL
= [isContractableFMUL
,
13713 isReassociable
](SDValue N
) {
13714 return isContractableFMUL(N
) && isReassociable(N
.getNode());
13717 auto isFusedOp
= [&](SDValue N
) {
13718 unsigned Opcode
= N
.getOpcode();
13719 return Opcode
== ISD::FMA
|| Opcode
== ISD::FMAD
;
13722 // More folding opportunities when target permits.
13723 if (Aggressive
&& isReassociable(N
)) {
13724 bool CanFuse
= Options
.UnsafeFPMath
|| N
->getFlags().hasAllowContract();
13725 // fold (fsub (fma x, y, (fmul u, v)), z)
13726 // -> (fma x, y (fma u, v, (fneg z)))
13727 if (CanFuse
&& isFusedOp(N0
) &&
13728 isContractableAndReassociableFMUL(N0
.getOperand(2)) &&
13729 N0
->hasOneUse() && N0
.getOperand(2)->hasOneUse()) {
13730 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, N0
.getOperand(0),
13732 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13733 N0
.getOperand(2).getOperand(0),
13734 N0
.getOperand(2).getOperand(1),
13735 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
)));
13738 // fold (fsub x, (fma y, z, (fmul u, v)))
13739 // -> (fma (fneg y), z, (fma (fneg u), v, x))
13740 if (CanFuse
&& isFusedOp(N1
) &&
13741 isContractableAndReassociableFMUL(N1
.getOperand(2)) &&
13742 N1
->hasOneUse() && NoSignedZero
) {
13743 SDValue N20
= N1
.getOperand(2).getOperand(0);
13744 SDValue N21
= N1
.getOperand(2).getOperand(1);
13745 return DAG
.getNode(
13746 PreferredFusedOpcode
, SL
, VT
,
13747 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
.getOperand(0)), N1
.getOperand(1),
13748 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13749 DAG
.getNode(ISD::FNEG
, SL
, VT
, N20
), N21
, N0
));
13752 // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
13753 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
13754 if (isFusedOp(N0
) && N0
->hasOneUse()) {
13755 SDValue N02
= N0
.getOperand(2);
13756 if (N02
.getOpcode() == ISD::FP_EXTEND
) {
13757 SDValue N020
= N02
.getOperand(0);
13758 if (isContractableAndReassociableFMUL(N020
) &&
13759 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13760 N020
.getValueType())) {
13761 return DAG
.getNode(
13762 PreferredFusedOpcode
, SL
, VT
, N0
.getOperand(0), N0
.getOperand(1),
13764 PreferredFusedOpcode
, SL
, VT
,
13765 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N020
.getOperand(0)),
13766 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N020
.getOperand(1)),
13767 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
)));
13772 // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
13773 // -> (fma (fpext x), (fpext y),
13774 // (fma (fpext u), (fpext v), (fneg z)))
13775 // FIXME: This turns two single-precision and one double-precision
13776 // operation into two double-precision operations, which might not be
13777 // interesting for all targets, especially GPUs.
13778 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
13779 SDValue N00
= N0
.getOperand(0);
13780 if (isFusedOp(N00
)) {
13781 SDValue N002
= N00
.getOperand(2);
13782 if (isContractableAndReassociableFMUL(N002
) &&
13783 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13784 N00
.getValueType())) {
13785 return DAG
.getNode(
13786 PreferredFusedOpcode
, SL
, VT
,
13787 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N00
.getOperand(0)),
13788 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N00
.getOperand(1)),
13790 PreferredFusedOpcode
, SL
, VT
,
13791 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N002
.getOperand(0)),
13792 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N002
.getOperand(1)),
13793 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
)));
13798 // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
13799 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
13800 if (isFusedOp(N1
) && N1
.getOperand(2).getOpcode() == ISD::FP_EXTEND
&&
13802 SDValue N120
= N1
.getOperand(2).getOperand(0);
13803 if (isContractableAndReassociableFMUL(N120
) &&
13804 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13805 N120
.getValueType())) {
13806 SDValue N1200
= N120
.getOperand(0);
13807 SDValue N1201
= N120
.getOperand(1);
13808 return DAG
.getNode(
13809 PreferredFusedOpcode
, SL
, VT
,
13810 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
.getOperand(0)), N1
.getOperand(1),
13811 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13812 DAG
.getNode(ISD::FNEG
, SL
, VT
,
13813 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N1200
)),
13814 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N1201
), N0
));
13818 // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
13819 // -> (fma (fneg (fpext y)), (fpext z),
13820 // (fma (fneg (fpext u)), (fpext v), x))
13821 // FIXME: This turns two single-precision and one double-precision
13822 // operation into two double-precision operations, which might not be
13823 // interesting for all targets, especially GPUs.
13824 if (N1
.getOpcode() == ISD::FP_EXTEND
&& isFusedOp(N1
.getOperand(0))) {
13825 SDValue CvtSrc
= N1
.getOperand(0);
13826 SDValue N100
= CvtSrc
.getOperand(0);
13827 SDValue N101
= CvtSrc
.getOperand(1);
13828 SDValue N102
= CvtSrc
.getOperand(2);
13829 if (isContractableAndReassociableFMUL(N102
) &&
13830 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13831 CvtSrc
.getValueType())) {
13832 SDValue N1020
= N102
.getOperand(0);
13833 SDValue N1021
= N102
.getOperand(1);
13834 return DAG
.getNode(
13835 PreferredFusedOpcode
, SL
, VT
,
13836 DAG
.getNode(ISD::FNEG
, SL
, VT
,
13837 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N100
)),
13838 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N101
),
13839 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13840 DAG
.getNode(ISD::FNEG
, SL
, VT
,
13841 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N1020
)),
13842 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N1021
), N0
));
13850 /// Try to perform FMA combining on a given FMUL node based on the distributive
13851 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
13852 /// subtraction instead of addition).
13853 SDValue
DAGCombiner::visitFMULForFMADistributiveCombine(SDNode
*N
) {
13854 SDValue N0
= N
->getOperand(0);
13855 SDValue N1
= N
->getOperand(1);
13856 EVT VT
= N
->getValueType(0);
13859 assert(N
->getOpcode() == ISD::FMUL
&& "Expected FMUL Operation");
13861 const TargetOptions
&Options
= DAG
.getTarget().Options
;
13863 // The transforms below are incorrect when x == 0 and y == inf, because the
13864 // intermediate multiplication produces a nan.
13865 SDValue FAdd
= N0
.getOpcode() == ISD::FADD
? N0
: N1
;
13866 if (!hasNoInfs(Options
, FAdd
))
13869 // Floating-point multiply-add without intermediate rounding.
13871 isContractableFMUL(Options
, SDValue(N
, 0)) &&
13872 TLI
.isFMAFasterThanFMulAndFAdd(DAG
.getMachineFunction(), VT
) &&
13873 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
13875 // Floating-point multiply-add with intermediate rounding. This can result
13876 // in a less precise result due to the changed rounding order.
13877 bool HasFMAD
= Options
.UnsafeFPMath
&&
13878 (LegalOperations
&& TLI
.isFMADLegal(DAG
, N
));
13880 // No valid opcode, do not combine.
13881 if (!HasFMAD
&& !HasFMA
)
13884 // Always prefer FMAD to FMA for precision.
13885 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
13886 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
13888 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
13889 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
13890 auto FuseFADD
= [&](SDValue X
, SDValue Y
) {
13891 if (X
.getOpcode() == ISD::FADD
&& (Aggressive
|| X
->hasOneUse())) {
13892 if (auto *C
= isConstOrConstSplatFP(X
.getOperand(1), true)) {
13893 if (C
->isExactlyValue(+1.0))
13894 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
13896 if (C
->isExactlyValue(-1.0))
13897 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
13898 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
));
13904 if (SDValue FMA
= FuseFADD(N0
, N1
))
13906 if (SDValue FMA
= FuseFADD(N1
, N0
))
13909 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
13910 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
13911 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
13912 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
13913 auto FuseFSUB
= [&](SDValue X
, SDValue Y
) {
13914 if (X
.getOpcode() == ISD::FSUB
&& (Aggressive
|| X
->hasOneUse())) {
13915 if (auto *C0
= isConstOrConstSplatFP(X
.getOperand(0), true)) {
13916 if (C0
->isExactlyValue(+1.0))
13917 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13918 DAG
.getNode(ISD::FNEG
, SL
, VT
, X
.getOperand(1)), Y
,
13920 if (C0
->isExactlyValue(-1.0))
13921 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13922 DAG
.getNode(ISD::FNEG
, SL
, VT
, X
.getOperand(1)), Y
,
13923 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
));
13925 if (auto *C1
= isConstOrConstSplatFP(X
.getOperand(1), true)) {
13926 if (C1
->isExactlyValue(+1.0))
13927 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
13928 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
));
13929 if (C1
->isExactlyValue(-1.0))
13930 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
13937 if (SDValue FMA
= FuseFSUB(N0
, N1
))
13939 if (SDValue FMA
= FuseFSUB(N1
, N0
))
13945 SDValue
DAGCombiner::visitFADD(SDNode
*N
) {
13946 SDValue N0
= N
->getOperand(0);
13947 SDValue N1
= N
->getOperand(1);
13948 bool N0CFP
= DAG
.isConstantFPBuildVectorOrConstantFP(N0
);
13949 bool N1CFP
= DAG
.isConstantFPBuildVectorOrConstantFP(N1
);
13950 EVT VT
= N
->getValueType(0);
13952 const TargetOptions
&Options
= DAG
.getTarget().Options
;
13953 SDNodeFlags Flags
= N
->getFlags();
13954 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
13956 if (SDValue R
= DAG
.simplifyFPBinop(N
->getOpcode(), N0
, N1
, Flags
))
13959 // fold (fadd c1, c2) -> c1 + c2
13960 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::FADD
, DL
, VT
, {N0
, N1
}))
13963 // canonicalize constant to RHS
13964 if (N0CFP
&& !N1CFP
)
13965 return DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, N0
);
13969 if (SDValue FoldedVOp
= SimplifyVBinOp(N
, DL
))
13972 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
13973 ConstantFPSDNode
*N1C
= isConstOrConstSplatFP(N1
, true);
13974 if (N1C
&& N1C
->isZero())
13975 if (N1C
->isNegative() || Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros())
13978 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
13981 // fold (fadd A, (fneg B)) -> (fsub A, B)
13982 if (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FSUB
, VT
))
13983 if (SDValue NegN1
= TLI
.getCheaperNegatedExpression(
13984 N1
, DAG
, LegalOperations
, ForCodeSize
))
13985 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N0
, NegN1
);
13987 // fold (fadd (fneg A), B) -> (fsub B, A)
13988 if (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FSUB
, VT
))
13989 if (SDValue NegN0
= TLI
.getCheaperNegatedExpression(
13990 N0
, DAG
, LegalOperations
, ForCodeSize
))
13991 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N1
, NegN0
);
13993 auto isFMulNegTwo
= [](SDValue FMul
) {
13994 if (!FMul
.hasOneUse() || FMul
.getOpcode() != ISD::FMUL
)
13996 auto *C
= isConstOrConstSplatFP(FMul
.getOperand(1), true);
13997 return C
&& C
->isExactlyValue(-2.0);
14000 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
14001 if (isFMulNegTwo(N0
)) {
14002 SDValue B
= N0
.getOperand(0);
14003 SDValue Add
= DAG
.getNode(ISD::FADD
, DL
, VT
, B
, B
);
14004 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N1
, Add
);
14006 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
14007 if (isFMulNegTwo(N1
)) {
14008 SDValue B
= N1
.getOperand(0);
14009 SDValue Add
= DAG
.getNode(ISD::FADD
, DL
, VT
, B
, B
);
14010 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N0
, Add
);
14013 // No FP constant should be created after legalization as Instruction
14014 // Selection pass has a hard time dealing with FP constants.
14015 bool AllowNewConst
= (Level
< AfterLegalizeDAG
);
14017 // If nnan is enabled, fold lots of things.
14018 if ((Options
.NoNaNsFPMath
|| Flags
.hasNoNaNs()) && AllowNewConst
) {
14019 // If allowed, fold (fadd (fneg x), x) -> 0.0
14020 if (N0
.getOpcode() == ISD::FNEG
&& N0
.getOperand(0) == N1
)
14021 return DAG
.getConstantFP(0.0, DL
, VT
);
14023 // If allowed, fold (fadd x, (fneg x)) -> 0.0
14024 if (N1
.getOpcode() == ISD::FNEG
&& N1
.getOperand(0) == N0
)
14025 return DAG
.getConstantFP(0.0, DL
, VT
);
14028 // If 'unsafe math' or reassoc and nsz, fold lots of things.
14029 // TODO: break out portions of the transformations below for which Unsafe is
14030 // considered and which do not require both nsz and reassoc
14031 if (((Options
.UnsafeFPMath
&& Options
.NoSignedZerosFPMath
) ||
14032 (Flags
.hasAllowReassociation() && Flags
.hasNoSignedZeros())) &&
14034 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2
14035 if (N1CFP
&& N0
.getOpcode() == ISD::FADD
&&
14036 DAG
.isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1))) {
14037 SDValue NewC
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1), N1
);
14038 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(0), NewC
);
14041 // We can fold chains of FADD's of the same value into multiplications.
14042 // This transform is not safe in general because we are reducing the number
14043 // of rounding steps.
14044 if (TLI
.isOperationLegalOrCustom(ISD::FMUL
, VT
) && !N0CFP
&& !N1CFP
) {
14045 if (N0
.getOpcode() == ISD::FMUL
) {
14046 bool CFP00
= DAG
.isConstantFPBuildVectorOrConstantFP(N0
.getOperand(0));
14047 bool CFP01
= DAG
.isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1));
14049 // (fadd (fmul x, c), x) -> (fmul x, c+1)
14050 if (CFP01
&& !CFP00
&& N0
.getOperand(0) == N1
) {
14051 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1),
14052 DAG
.getConstantFP(1.0, DL
, VT
));
14053 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, NewCFP
);
14056 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
14057 if (CFP01
&& !CFP00
&& N1
.getOpcode() == ISD::FADD
&&
14058 N1
.getOperand(0) == N1
.getOperand(1) &&
14059 N0
.getOperand(0) == N1
.getOperand(0)) {
14060 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1),
14061 DAG
.getConstantFP(2.0, DL
, VT
));
14062 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0), NewCFP
);
14066 if (N1
.getOpcode() == ISD::FMUL
) {
14067 bool CFP10
= DAG
.isConstantFPBuildVectorOrConstantFP(N1
.getOperand(0));
14068 bool CFP11
= DAG
.isConstantFPBuildVectorOrConstantFP(N1
.getOperand(1));
14070 // (fadd x, (fmul x, c)) -> (fmul x, c+1)
14071 if (CFP11
&& !CFP10
&& N1
.getOperand(0) == N0
) {
14072 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N1
.getOperand(1),
14073 DAG
.getConstantFP(1.0, DL
, VT
));
14074 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, NewCFP
);
14077 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
14078 if (CFP11
&& !CFP10
&& N0
.getOpcode() == ISD::FADD
&&
14079 N0
.getOperand(0) == N0
.getOperand(1) &&
14080 N1
.getOperand(0) == N0
.getOperand(0)) {
14081 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N1
.getOperand(1),
14082 DAG
.getConstantFP(2.0, DL
, VT
));
14083 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
.getOperand(0), NewCFP
);
14087 if (N0
.getOpcode() == ISD::FADD
) {
14088 bool CFP00
= DAG
.isConstantFPBuildVectorOrConstantFP(N0
.getOperand(0));
14089 // (fadd (fadd x, x), x) -> (fmul x, 3.0)
14090 if (!CFP00
&& N0
.getOperand(0) == N0
.getOperand(1) &&
14091 (N0
.getOperand(0) == N1
)) {
14092 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
,
14093 DAG
.getConstantFP(3.0, DL
, VT
));
14097 if (N1
.getOpcode() == ISD::FADD
) {
14098 bool CFP10
= DAG
.isConstantFPBuildVectorOrConstantFP(N1
.getOperand(0));
14099 // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
14100 if (!CFP10
&& N1
.getOperand(0) == N1
.getOperand(1) &&
14101 N1
.getOperand(0) == N0
) {
14102 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
14103 DAG
.getConstantFP(3.0, DL
, VT
));
14107 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
14108 if (N0
.getOpcode() == ISD::FADD
&& N1
.getOpcode() == ISD::FADD
&&
14109 N0
.getOperand(0) == N0
.getOperand(1) &&
14110 N1
.getOperand(0) == N1
.getOperand(1) &&
14111 N0
.getOperand(0) == N1
.getOperand(0)) {
14112 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0),
14113 DAG
.getConstantFP(4.0, DL
, VT
));
14116 } // enable-unsafe-fp-math
14118 // FADD -> FMA combines:
14119 if (SDValue Fused
= visitFADDForFMACombine(N
)) {
14120 AddToWorklist(Fused
.getNode());
14126 SDValue
DAGCombiner::visitSTRICT_FADD(SDNode
*N
) {
14127 SDValue Chain
= N
->getOperand(0);
14128 SDValue N0
= N
->getOperand(1);
14129 SDValue N1
= N
->getOperand(2);
14130 EVT VT
= N
->getValueType(0);
14131 EVT ChainVT
= N
->getValueType(1);
14133 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
14135 // fold (strict_fadd A, (fneg B)) -> (strict_fsub A, B)
14136 if (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::STRICT_FSUB
, VT
))
14137 if (SDValue NegN1
= TLI
.getCheaperNegatedExpression(
14138 N1
, DAG
, LegalOperations
, ForCodeSize
)) {
14139 return DAG
.getNode(ISD::STRICT_FSUB
, DL
, DAG
.getVTList(VT
, ChainVT
),
14140 {Chain
, N0
, NegN1
});
14143 // fold (strict_fadd (fneg A), B) -> (strict_fsub B, A)
14144 if (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::STRICT_FSUB
, VT
))
14145 if (SDValue NegN0
= TLI
.getCheaperNegatedExpression(
14146 N0
, DAG
, LegalOperations
, ForCodeSize
)) {
14147 return DAG
.getNode(ISD::STRICT_FSUB
, DL
, DAG
.getVTList(VT
, ChainVT
),
14148 {Chain
, N1
, NegN0
});
14153 SDValue
DAGCombiner::visitFSUB(SDNode
*N
) {
14154 SDValue N0
= N
->getOperand(0);
14155 SDValue N1
= N
->getOperand(1);
14156 ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
, true);
14157 ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
, true);
14158 EVT VT
= N
->getValueType(0);
14160 const TargetOptions
&Options
= DAG
.getTarget().Options
;
14161 const SDNodeFlags Flags
= N
->getFlags();
14162 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
14164 if (SDValue R
= DAG
.simplifyFPBinop(N
->getOpcode(), N0
, N1
, Flags
))
14167 // fold (fsub c1, c2) -> c1-c2
14168 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::FSUB
, DL
, VT
, {N0
, N1
}))
14173 if (SDValue FoldedVOp
= SimplifyVBinOp(N
, DL
))
14176 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
14179 // (fsub A, 0) -> A
14180 if (N1CFP
&& N1CFP
->isZero()) {
14181 if (!N1CFP
->isNegative() || Options
.NoSignedZerosFPMath
||
14182 Flags
.hasNoSignedZeros()) {
14188 // (fsub x, x) -> 0.0
14189 if (Options
.NoNaNsFPMath
|| Flags
.hasNoNaNs())
14190 return DAG
.getConstantFP(0.0f
, DL
, VT
);
14193 // (fsub -0.0, N1) -> -N1
14194 if (N0CFP
&& N0CFP
->isZero()) {
14195 if (N0CFP
->isNegative() ||
14196 (Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros())) {
14197 // We cannot replace an FSUB(+-0.0,X) with FNEG(X) when denormals are
14198 // flushed to zero, unless all users treat denorms as zero (DAZ).
14199 // FIXME: This transform will change the sign of a NaN and the behavior
14200 // of a signaling NaN. It is only valid when a NoNaN flag is present.
14201 DenormalMode DenormMode
= DAG
.getDenormalMode(VT
);
14202 if (DenormMode
== DenormalMode::getIEEE()) {
14203 if (SDValue NegN1
=
14204 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
))
14206 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
14207 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
);
14212 if (((Options
.UnsafeFPMath
&& Options
.NoSignedZerosFPMath
) ||
14213 (Flags
.hasAllowReassociation() && Flags
.hasNoSignedZeros())) &&
14214 N1
.getOpcode() == ISD::FADD
) {
14215 // X - (X + Y) -> -Y
14216 if (N0
== N1
->getOperand(0))
14217 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
->getOperand(1));
14218 // X - (Y + X) -> -Y
14219 if (N0
== N1
->getOperand(1))
14220 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
->getOperand(0));
14223 // fold (fsub A, (fneg B)) -> (fadd A, B)
14224 if (SDValue NegN1
=
14225 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
))
14226 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, NegN1
);
14228 // FSUB -> FMA combines:
14229 if (SDValue Fused
= visitFSUBForFMACombine(N
)) {
14230 AddToWorklist(Fused
.getNode());
14237 SDValue
DAGCombiner::visitFMUL(SDNode
*N
) {
14238 SDValue N0
= N
->getOperand(0);
14239 SDValue N1
= N
->getOperand(1);
14240 ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
, true);
14241 EVT VT
= N
->getValueType(0);
14243 const TargetOptions
&Options
= DAG
.getTarget().Options
;
14244 const SDNodeFlags Flags
= N
->getFlags();
14245 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
14247 if (SDValue R
= DAG
.simplifyFPBinop(N
->getOpcode(), N0
, N1
, Flags
))
14250 // fold (fmul c1, c2) -> c1*c2
14251 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::FMUL
, DL
, VT
, {N0
, N1
}))
14254 // canonicalize constant to RHS
14255 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
) &&
14256 !DAG
.isConstantFPBuildVectorOrConstantFP(N1
))
14257 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, N0
);
14261 if (SDValue FoldedVOp
= SimplifyVBinOp(N
, DL
))
14264 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
14267 if (Options
.UnsafeFPMath
|| Flags
.hasAllowReassociation()) {
14268 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2
14269 if (DAG
.isConstantFPBuildVectorOrConstantFP(N1
) &&
14270 N0
.getOpcode() == ISD::FMUL
) {
14271 SDValue N00
= N0
.getOperand(0);
14272 SDValue N01
= N0
.getOperand(1);
14273 // Avoid an infinite loop by making sure that N00 is not a constant
14274 // (the inner multiply has not been constant folded yet).
14275 if (DAG
.isConstantFPBuildVectorOrConstantFP(N01
) &&
14276 !DAG
.isConstantFPBuildVectorOrConstantFP(N00
)) {
14277 SDValue MulConsts
= DAG
.getNode(ISD::FMUL
, DL
, VT
, N01
, N1
);
14278 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N00
, MulConsts
);
14282 // Match a special-case: we convert X * 2.0 into fadd.
14283 // fmul (fadd X, X), C -> fmul X, 2.0 * C
14284 if (N0
.getOpcode() == ISD::FADD
&& N0
.hasOneUse() &&
14285 N0
.getOperand(0) == N0
.getOperand(1)) {
14286 const SDValue Two
= DAG
.getConstantFP(2.0, DL
, VT
);
14287 SDValue MulConsts
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Two
, N1
);
14288 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0), MulConsts
);
14292 // fold (fmul X, 2.0) -> (fadd X, X)
14293 if (N1CFP
&& N1CFP
->isExactlyValue(+2.0))
14294 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N0
);
14296 // fold (fmul X, -1.0) -> (fsub -0.0, X)
14297 if (N1CFP
&& N1CFP
->isExactlyValue(-1.0)) {
14298 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FSUB
, VT
)) {
14299 return DAG
.getNode(ISD::FSUB
, DL
, VT
,
14300 DAG
.getConstantFP(-0.0, DL
, VT
), N0
, Flags
);
14304 // -N0 * -N1 --> N0 * N1
14305 TargetLowering::NegatibleCost CostN0
=
14306 TargetLowering::NegatibleCost::Expensive
;
14307 TargetLowering::NegatibleCost CostN1
=
14308 TargetLowering::NegatibleCost::Expensive
;
14310 TLI
.getNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
, CostN0
);
14312 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
, CostN1
);
14313 if (NegN0
&& NegN1
&&
14314 (CostN0
== TargetLowering::NegatibleCost::Cheaper
||
14315 CostN1
== TargetLowering::NegatibleCost::Cheaper
))
14316 return DAG
.getNode(ISD::FMUL
, DL
, VT
, NegN0
, NegN1
);
14318 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
14319 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
14320 if (Flags
.hasNoNaNs() && Flags
.hasNoSignedZeros() &&
14321 (N0
.getOpcode() == ISD::SELECT
|| N1
.getOpcode() == ISD::SELECT
) &&
14322 TLI
.isOperationLegal(ISD::FABS
, VT
)) {
14323 SDValue Select
= N0
, X
= N1
;
14324 if (Select
.getOpcode() != ISD::SELECT
)
14325 std::swap(Select
, X
);
14327 SDValue Cond
= Select
.getOperand(0);
14328 auto TrueOpnd
= dyn_cast
<ConstantFPSDNode
>(Select
.getOperand(1));
14329 auto FalseOpnd
= dyn_cast
<ConstantFPSDNode
>(Select
.getOperand(2));
14331 if (TrueOpnd
&& FalseOpnd
&&
14332 Cond
.getOpcode() == ISD::SETCC
&& Cond
.getOperand(0) == X
&&
14333 isa
<ConstantFPSDNode
>(Cond
.getOperand(1)) &&
14334 cast
<ConstantFPSDNode
>(Cond
.getOperand(1))->isExactlyValue(0.0)) {
14335 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
14344 std::swap(TrueOpnd
, FalseOpnd
);
14352 if (TrueOpnd
->isExactlyValue(-1.0) && FalseOpnd
->isExactlyValue(1.0) &&
14353 TLI
.isOperationLegal(ISD::FNEG
, VT
))
14354 return DAG
.getNode(ISD::FNEG
, DL
, VT
,
14355 DAG
.getNode(ISD::FABS
, DL
, VT
, X
));
14356 if (TrueOpnd
->isExactlyValue(1.0) && FalseOpnd
->isExactlyValue(-1.0))
14357 return DAG
.getNode(ISD::FABS
, DL
, VT
, X
);
14364 // FMUL -> FMA combines:
14365 if (SDValue Fused
= visitFMULForFMADistributiveCombine(N
)) {
14366 AddToWorklist(Fused
.getNode());
14373 SDValue
DAGCombiner::visitFMA(SDNode
*N
) {
14374 SDValue N0
= N
->getOperand(0);
14375 SDValue N1
= N
->getOperand(1);
14376 SDValue N2
= N
->getOperand(2);
14377 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
14378 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
14379 EVT VT
= N
->getValueType(0);
14381 const TargetOptions
&Options
= DAG
.getTarget().Options
;
14382 // FMA nodes have flags that propagate to the created nodes.
14383 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
14385 bool UnsafeFPMath
=
14386 Options
.UnsafeFPMath
|| N
->getFlags().hasAllowReassociation();
14388 // Constant fold FMA.
14389 if (isa
<ConstantFPSDNode
>(N0
) &&
14390 isa
<ConstantFPSDNode
>(N1
) &&
14391 isa
<ConstantFPSDNode
>(N2
)) {
14392 return DAG
.getNode(ISD::FMA
, DL
, VT
, N0
, N1
, N2
);
14395 // (-N0 * -N1) + N2 --> (N0 * N1) + N2
14396 TargetLowering::NegatibleCost CostN0
=
14397 TargetLowering::NegatibleCost::Expensive
;
14398 TargetLowering::NegatibleCost CostN1
=
14399 TargetLowering::NegatibleCost::Expensive
;
14401 TLI
.getNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
, CostN0
);
14403 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
, CostN1
);
14404 if (NegN0
&& NegN1
&&
14405 (CostN0
== TargetLowering::NegatibleCost::Cheaper
||
14406 CostN1
== TargetLowering::NegatibleCost::Cheaper
))
14407 return DAG
.getNode(ISD::FMA
, DL
, VT
, NegN0
, NegN1
, N2
);
14409 if (UnsafeFPMath
) {
14410 if (N0CFP
&& N0CFP
->isZero())
14412 if (N1CFP
&& N1CFP
->isZero())
14416 if (N0CFP
&& N0CFP
->isExactlyValue(1.0))
14417 return DAG
.getNode(ISD::FADD
, SDLoc(N
), VT
, N1
, N2
);
14418 if (N1CFP
&& N1CFP
->isExactlyValue(1.0))
14419 return DAG
.getNode(ISD::FADD
, SDLoc(N
), VT
, N0
, N2
);
14421 // Canonicalize (fma c, x, y) -> (fma x, c, y)
14422 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
) &&
14423 !DAG
.isConstantFPBuildVectorOrConstantFP(N1
))
14424 return DAG
.getNode(ISD::FMA
, SDLoc(N
), VT
, N1
, N0
, N2
);
14426 if (UnsafeFPMath
) {
14427 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
14428 if (N2
.getOpcode() == ISD::FMUL
&& N0
== N2
.getOperand(0) &&
14429 DAG
.isConstantFPBuildVectorOrConstantFP(N1
) &&
14430 DAG
.isConstantFPBuildVectorOrConstantFP(N2
.getOperand(1))) {
14431 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
14432 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, N2
.getOperand(1)));
14435 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
14436 if (N0
.getOpcode() == ISD::FMUL
&&
14437 DAG
.isConstantFPBuildVectorOrConstantFP(N1
) &&
14438 DAG
.isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1))) {
14439 return DAG
.getNode(ISD::FMA
, DL
, VT
, N0
.getOperand(0),
14440 DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, N0
.getOperand(1)),
14445 // (fma x, -1, y) -> (fadd (fneg x), y)
14447 if (N1CFP
->isExactlyValue(1.0))
14448 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N2
);
14450 if (N1CFP
->isExactlyValue(-1.0) &&
14451 (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))) {
14452 SDValue RHSNeg
= DAG
.getNode(ISD::FNEG
, DL
, VT
, N0
);
14453 AddToWorklist(RHSNeg
.getNode());
14454 return DAG
.getNode(ISD::FADD
, DL
, VT
, N2
, RHSNeg
);
14457 // fma (fneg x), K, y -> fma x -K, y
14458 if (N0
.getOpcode() == ISD::FNEG
&&
14459 (TLI
.isOperationLegal(ISD::ConstantFP
, VT
) ||
14460 (N1
.hasOneUse() && !TLI
.isFPImmLegal(N1CFP
->getValueAPF(), VT
,
14462 return DAG
.getNode(ISD::FMA
, DL
, VT
, N0
.getOperand(0),
14463 DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
), N2
);
14467 if (UnsafeFPMath
) {
14468 // (fma x, c, x) -> (fmul x, (c+1))
14469 if (N1CFP
&& N0
== N2
) {
14470 return DAG
.getNode(
14471 ISD::FMUL
, DL
, VT
, N0
,
14472 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, DAG
.getConstantFP(1.0, DL
, VT
)));
14475 // (fma x, c, (fneg x)) -> (fmul x, (c-1))
14476 if (N1CFP
&& N2
.getOpcode() == ISD::FNEG
&& N2
.getOperand(0) == N0
) {
14477 return DAG
.getNode(
14478 ISD::FMUL
, DL
, VT
, N0
,
14479 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, DAG
.getConstantFP(-1.0, DL
, VT
)));
14483 // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z))
14484 // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z))
14485 if (!TLI
.isFNegFree(VT
))
14486 if (SDValue Neg
= TLI
.getCheaperNegatedExpression(
14487 SDValue(N
, 0), DAG
, LegalOperations
, ForCodeSize
))
14488 return DAG
.getNode(ISD::FNEG
, DL
, VT
, Neg
);
14492 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
14494 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
14495 // Notice that this is not always beneficial. One reason is different targets
14496 // may have different costs for FDIV and FMUL, so sometimes the cost of two
14497 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
14498 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
14499 SDValue
DAGCombiner::combineRepeatedFPDivisors(SDNode
*N
) {
14500 // TODO: Limit this transform based on optsize/minsize - it always creates at
14501 // least 1 extra instruction. But the perf win may be substantial enough
14502 // that only minsize should restrict this.
14503 bool UnsafeMath
= DAG
.getTarget().Options
.UnsafeFPMath
;
14504 const SDNodeFlags Flags
= N
->getFlags();
14505 if (LegalDAG
|| (!UnsafeMath
&& !Flags
.hasAllowReciprocal()))
14508 // Skip if current node is a reciprocal/fneg-reciprocal.
14509 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
14510 ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
, /* AllowUndefs */ true);
14511 if (N0CFP
&& (N0CFP
->isExactlyValue(1.0) || N0CFP
->isExactlyValue(-1.0)))
14514 // Exit early if the target does not want this transform or if there can't
14515 // possibly be enough uses of the divisor to make the transform worthwhile.
14516 unsigned MinUses
= TLI
.combineRepeatedFPDivisors();
14518 // For splat vectors, scale the number of uses by the splat factor. If we can
14519 // convert the division into a scalar op, that will likely be much faster.
14520 unsigned NumElts
= 1;
14521 EVT VT
= N
->getValueType(0);
14522 if (VT
.isVector() && DAG
.isSplatValue(N1
))
14523 NumElts
= VT
.getVectorNumElements();
14525 if (!MinUses
|| (N1
->use_size() * NumElts
) < MinUses
)
14528 // Find all FDIV users of the same divisor.
14529 // Use a set because duplicates may be present in the user list.
14530 SetVector
<SDNode
*> Users
;
14531 for (auto *U
: N1
->uses()) {
14532 if (U
->getOpcode() == ISD::FDIV
&& U
->getOperand(1) == N1
) {
14533 // Skip X/sqrt(X) that has not been simplified to sqrt(X) yet.
14534 if (U
->getOperand(1).getOpcode() == ISD::FSQRT
&&
14535 U
->getOperand(0) == U
->getOperand(1).getOperand(0) &&
14536 U
->getFlags().hasAllowReassociation() &&
14537 U
->getFlags().hasNoSignedZeros())
14540 // This division is eligible for optimization only if global unsafe math
14541 // is enabled or if this division allows reciprocal formation.
14542 if (UnsafeMath
|| U
->getFlags().hasAllowReciprocal())
14547 // Now that we have the actual number of divisor uses, make sure it meets
14548 // the minimum threshold specified by the target.
14549 if ((Users
.size() * NumElts
) < MinUses
)
14553 SDValue FPOne
= DAG
.getConstantFP(1.0, DL
, VT
);
14554 SDValue Reciprocal
= DAG
.getNode(ISD::FDIV
, DL
, VT
, FPOne
, N1
, Flags
);
14556 // Dividend / Divisor -> Dividend * Reciprocal
14557 for (auto *U
: Users
) {
14558 SDValue Dividend
= U
->getOperand(0);
14559 if (Dividend
!= FPOne
) {
14560 SDValue NewNode
= DAG
.getNode(ISD::FMUL
, SDLoc(U
), VT
, Dividend
,
14561 Reciprocal
, Flags
);
14562 CombineTo(U
, NewNode
);
14563 } else if (U
!= Reciprocal
.getNode()) {
14564 // In the absence of fast-math-flags, this user node is always the
14565 // same node as Reciprocal, but with FMF they may be different nodes.
14566 CombineTo(U
, Reciprocal
);
14569 return SDValue(N
, 0); // N was replaced.
14572 SDValue
DAGCombiner::visitFDIV(SDNode
*N
) {
14573 SDValue N0
= N
->getOperand(0);
14574 SDValue N1
= N
->getOperand(1);
14575 EVT VT
= N
->getValueType(0);
14577 const TargetOptions
&Options
= DAG
.getTarget().Options
;
14578 SDNodeFlags Flags
= N
->getFlags();
14579 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
14581 if (SDValue R
= DAG
.simplifyFPBinop(N
->getOpcode(), N0
, N1
, Flags
))
14584 // fold (fdiv c1, c2) -> c1/c2
14585 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::FDIV
, DL
, VT
, {N0
, N1
}))
14590 if (SDValue FoldedVOp
= SimplifyVBinOp(N
, DL
))
14593 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
14596 if (SDValue V
= combineRepeatedFPDivisors(N
))
14599 if (Options
.UnsafeFPMath
|| Flags
.hasAllowReciprocal()) {
14600 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
14601 if (auto *N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
)) {
14602 // Compute the reciprocal 1.0 / c2.
14603 const APFloat
&N1APF
= N1CFP
->getValueAPF();
14604 APFloat
Recip(N1APF
.getSemantics(), 1); // 1.0
14605 APFloat::opStatus st
= Recip
.divide(N1APF
, APFloat::rmNearestTiesToEven
);
14606 // Only do the transform if the reciprocal is a legal fp immediate that
14607 // isn't too nasty (eg NaN, denormal, ...).
14608 if ((st
== APFloat::opOK
|| st
== APFloat::opInexact
) && // Not too nasty
14609 (!LegalOperations
||
14610 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
14611 // backend)... we should handle this gracefully after Legalize.
14612 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
14613 TLI
.isOperationLegal(ISD::ConstantFP
, VT
) ||
14614 TLI
.isFPImmLegal(Recip
, VT
, ForCodeSize
)))
14615 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
14616 DAG
.getConstantFP(Recip
, DL
, VT
));
14619 // If this FDIV is part of a reciprocal square root, it may be folded
14620 // into a target-specific square root estimate instruction.
14621 if (N1
.getOpcode() == ISD::FSQRT
) {
14622 if (SDValue RV
= buildRsqrtEstimate(N1
.getOperand(0), Flags
))
14623 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
);
14624 } else if (N1
.getOpcode() == ISD::FP_EXTEND
&&
14625 N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
14627 buildRsqrtEstimate(N1
.getOperand(0).getOperand(0), Flags
)) {
14628 RV
= DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N1
), VT
, RV
);
14629 AddToWorklist(RV
.getNode());
14630 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
);
14632 } else if (N1
.getOpcode() == ISD::FP_ROUND
&&
14633 N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
14635 buildRsqrtEstimate(N1
.getOperand(0).getOperand(0), Flags
)) {
14636 RV
= DAG
.getNode(ISD::FP_ROUND
, SDLoc(N1
), VT
, RV
, N1
.getOperand(1));
14637 AddToWorklist(RV
.getNode());
14638 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
);
14640 } else if (N1
.getOpcode() == ISD::FMUL
) {
14641 // Look through an FMUL. Even though this won't remove the FDIV directly,
14642 // it's still worthwhile to get rid of the FSQRT if possible.
14644 if (N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
14645 Sqrt
= N1
.getOperand(0);
14646 Y
= N1
.getOperand(1);
14647 } else if (N1
.getOperand(1).getOpcode() == ISD::FSQRT
) {
14648 Sqrt
= N1
.getOperand(1);
14649 Y
= N1
.getOperand(0);
14651 if (Sqrt
.getNode()) {
14652 // If the other multiply operand is known positive, pull it into the
14653 // sqrt. That will eliminate the division if we convert to an estimate.
14654 if (Flags
.hasAllowReassociation() && N1
.hasOneUse() &&
14655 N1
->getFlags().hasAllowReassociation() && Sqrt
.hasOneUse()) {
14657 if (Y
.getOpcode() == ISD::FABS
&& Y
.hasOneUse())
14658 A
= Y
.getOperand(0);
14659 else if (Y
== Sqrt
.getOperand(0))
14662 // X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z)
14663 // X / (A * sqrt(A)) --> X / sqrt(A*A*A) --> X * rsqrt(A*A*A)
14664 SDValue AA
= DAG
.getNode(ISD::FMUL
, DL
, VT
, A
, A
);
14666 DAG
.getNode(ISD::FMUL
, DL
, VT
, AA
, Sqrt
.getOperand(0));
14667 if (SDValue Rsqrt
= buildRsqrtEstimate(AAZ
, Flags
))
14668 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, Rsqrt
);
14670 // Estimate creation failed. Clean up speculatively created nodes.
14671 recursivelyDeleteUnusedNodes(AAZ
.getNode());
14675 // We found a FSQRT, so try to make this fold:
14676 // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y)
14677 if (SDValue Rsqrt
= buildRsqrtEstimate(Sqrt
.getOperand(0), Flags
)) {
14678 SDValue Div
= DAG
.getNode(ISD::FDIV
, SDLoc(N1
), VT
, Rsqrt
, Y
);
14679 AddToWorklist(Div
.getNode());
14680 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, Div
);
14685 // Fold into a reciprocal estimate and multiply instead of a real divide.
14686 if (Options
.NoInfsFPMath
|| Flags
.hasNoInfs())
14687 if (SDValue RV
= BuildDivEstimate(N0
, N1
, Flags
))
14691 // Fold X/Sqrt(X) -> Sqrt(X)
14692 if ((Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros()) &&
14693 (Options
.UnsafeFPMath
|| Flags
.hasAllowReassociation()))
14694 if (N1
.getOpcode() == ISD::FSQRT
&& N0
== N1
.getOperand(0))
14697 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
14698 TargetLowering::NegatibleCost CostN0
=
14699 TargetLowering::NegatibleCost::Expensive
;
14700 TargetLowering::NegatibleCost CostN1
=
14701 TargetLowering::NegatibleCost::Expensive
;
14703 TLI
.getNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
, CostN0
);
14705 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
, CostN1
);
14706 if (NegN0
&& NegN1
&&
14707 (CostN0
== TargetLowering::NegatibleCost::Cheaper
||
14708 CostN1
== TargetLowering::NegatibleCost::Cheaper
))
14709 return DAG
.getNode(ISD::FDIV
, SDLoc(N
), VT
, NegN0
, NegN1
);
14714 SDValue
DAGCombiner::visitFREM(SDNode
*N
) {
14715 SDValue N0
= N
->getOperand(0);
14716 SDValue N1
= N
->getOperand(1);
14717 EVT VT
= N
->getValueType(0);
14718 SDNodeFlags Flags
= N
->getFlags();
14719 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
14721 if (SDValue R
= DAG
.simplifyFPBinop(N
->getOpcode(), N0
, N1
, Flags
))
14724 // fold (frem c1, c2) -> fmod(c1,c2)
14725 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::FREM
, SDLoc(N
), VT
, {N0
, N1
}))
14728 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
14734 SDValue
DAGCombiner::visitFSQRT(SDNode
*N
) {
14735 SDNodeFlags Flags
= N
->getFlags();
14736 const TargetOptions
&Options
= DAG
.getTarget().Options
;
14738 // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as:
14739 // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN
14740 if (!Flags
.hasApproximateFuncs() ||
14741 (!Options
.NoInfsFPMath
&& !Flags
.hasNoInfs()))
14744 SDValue N0
= N
->getOperand(0);
14745 if (TLI
.isFsqrtCheap(N0
, DAG
))
14748 // FSQRT nodes have flags that propagate to the created nodes.
14749 // TODO: If this is N0/sqrt(N0), and we reach this node before trying to
14750 // transform the fdiv, we may produce a sub-optimal estimate sequence
14751 // because the reciprocal calculation may not have to filter out a
14753 return buildSqrtEstimate(N0
, Flags
);
14756 /// copysign(x, fp_extend(y)) -> copysign(x, y)
14757 /// copysign(x, fp_round(y)) -> copysign(x, y)
14758 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode
*N
) {
14759 SDValue N1
= N
->getOperand(1);
14760 if ((N1
.getOpcode() == ISD::FP_EXTEND
||
14761 N1
.getOpcode() == ISD::FP_ROUND
)) {
14762 EVT N1VT
= N1
->getValueType(0);
14763 EVT N1Op0VT
= N1
->getOperand(0).getValueType();
14765 // Always fold no-op FP casts.
14766 if (N1VT
== N1Op0VT
)
14769 // Do not optimize out type conversion of f128 type yet.
14770 // For some targets like x86_64, configuration is changed to keep one f128
14771 // value in one SSE register, but instruction selection cannot handle
14772 // FCOPYSIGN on SSE registers yet.
14773 if (N1Op0VT
== MVT::f128
)
14776 // Avoid mismatched vector operand types, for better instruction selection.
14777 if (N1Op0VT
.isVector())
14785 SDValue
DAGCombiner::visitFCOPYSIGN(SDNode
*N
) {
14786 SDValue N0
= N
->getOperand(0);
14787 SDValue N1
= N
->getOperand(1);
14788 EVT VT
= N
->getValueType(0);
14790 // fold (fcopysign c1, c2) -> fcopysign(c1,c2)
14792 DAG
.FoldConstantArithmetic(ISD::FCOPYSIGN
, SDLoc(N
), VT
, {N0
, N1
}))
14795 if (ConstantFPSDNode
*N1C
= isConstOrConstSplatFP(N
->getOperand(1))) {
14796 const APFloat
&V
= N1C
->getValueAPF();
14797 // copysign(x, c1) -> fabs(x) iff ispos(c1)
14798 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
14799 if (!V
.isNegative()) {
14800 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FABS
, VT
))
14801 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
14803 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
14804 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
,
14805 DAG
.getNode(ISD::FABS
, SDLoc(N0
), VT
, N0
));
14809 // copysign(fabs(x), y) -> copysign(x, y)
14810 // copysign(fneg(x), y) -> copysign(x, y)
14811 // copysign(copysign(x,z), y) -> copysign(x, y)
14812 if (N0
.getOpcode() == ISD::FABS
|| N0
.getOpcode() == ISD::FNEG
||
14813 N0
.getOpcode() == ISD::FCOPYSIGN
)
14814 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
14816 // copysign(x, abs(y)) -> abs(x)
14817 if (N1
.getOpcode() == ISD::FABS
)
14818 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
14820 // copysign(x, copysign(y,z)) -> copysign(x, z)
14821 if (N1
.getOpcode() == ISD::FCOPYSIGN
)
14822 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
.getOperand(1));
14824 // copysign(x, fp_extend(y)) -> copysign(x, y)
14825 // copysign(x, fp_round(y)) -> copysign(x, y)
14826 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N
))
14827 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
.getOperand(0));
14832 SDValue
DAGCombiner::visitFPOW(SDNode
*N
) {
14833 ConstantFPSDNode
*ExponentC
= isConstOrConstSplatFP(N
->getOperand(1));
14836 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
14838 // Try to convert x ** (1/3) into cube root.
14839 // TODO: Handle the various flavors of long double.
14840 // TODO: Since we're approximating, we don't need an exact 1/3 exponent.
14841 // Some range near 1/3 should be fine.
14842 EVT VT
= N
->getValueType(0);
14843 if ((VT
== MVT::f32
&& ExponentC
->getValueAPF().isExactlyValue(1.0f
/3.0f
)) ||
14844 (VT
== MVT::f64
&& ExponentC
->getValueAPF().isExactlyValue(1.0/3.0))) {
14845 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
14846 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
14847 // pow(-val, 1/3) = nan; cbrt(-val) = -num.
14848 // For regular numbers, rounding may cause the results to differ.
14849 // Therefore, we require { nsz ninf nnan afn } for this transform.
14850 // TODO: We could select out the special cases if we don't have nsz/ninf.
14851 SDNodeFlags Flags
= N
->getFlags();
14852 if (!Flags
.hasNoSignedZeros() || !Flags
.hasNoInfs() || !Flags
.hasNoNaNs() ||
14853 !Flags
.hasApproximateFuncs())
14856 // Do not create a cbrt() libcall if the target does not have it, and do not
14857 // turn a pow that has lowering support into a cbrt() libcall.
14858 if (!DAG
.getLibInfo().has(LibFunc_cbrt
) ||
14859 (!DAG
.getTargetLoweringInfo().isOperationExpand(ISD::FPOW
, VT
) &&
14860 DAG
.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT
, VT
)))
14863 return DAG
.getNode(ISD::FCBRT
, SDLoc(N
), VT
, N
->getOperand(0));
14866 // Try to convert x ** (1/4) and x ** (3/4) into square roots.
14867 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
14868 // TODO: This could be extended (using a target hook) to handle smaller
14869 // power-of-2 fractional exponents.
14870 bool ExponentIs025
= ExponentC
->getValueAPF().isExactlyValue(0.25);
14871 bool ExponentIs075
= ExponentC
->getValueAPF().isExactlyValue(0.75);
14872 if (ExponentIs025
|| ExponentIs075
) {
14873 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
14874 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN.
14875 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0.
14876 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN.
14877 // For regular numbers, rounding may cause the results to differ.
14878 // Therefore, we require { nsz ninf afn } for this transform.
14879 // TODO: We could select out the special cases if we don't have nsz/ninf.
14880 SDNodeFlags Flags
= N
->getFlags();
14882 // We only need no signed zeros for the 0.25 case.
14883 if ((!Flags
.hasNoSignedZeros() && ExponentIs025
) || !Flags
.hasNoInfs() ||
14884 !Flags
.hasApproximateFuncs())
14887 // Don't double the number of libcalls. We are trying to inline fast code.
14888 if (!DAG
.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT
, VT
))
14891 // Assume that libcalls are the smallest code.
14892 // TODO: This restriction should probably be lifted for vectors.
14896 // pow(X, 0.25) --> sqrt(sqrt(X))
14898 SDValue Sqrt
= DAG
.getNode(ISD::FSQRT
, DL
, VT
, N
->getOperand(0));
14899 SDValue SqrtSqrt
= DAG
.getNode(ISD::FSQRT
, DL
, VT
, Sqrt
);
14902 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X))
14903 return DAG
.getNode(ISD::FMUL
, DL
, VT
, Sqrt
, SqrtSqrt
);
14909 static SDValue
foldFPToIntToFP(SDNode
*N
, SelectionDAG
&DAG
,
14910 const TargetLowering
&TLI
) {
14911 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be
14912 // replacing casts with a libcall. We also must be allowed to ignore -0.0
14913 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
14914 // conversions would return +0.0.
14915 // FIXME: We should be able to use node-level FMF here.
14916 // TODO: If strict math, should we use FABS (+ range check for signed cast)?
14917 EVT VT
= N
->getValueType(0);
14918 if (!TLI
.isOperationLegal(ISD::FTRUNC
, VT
) ||
14919 !DAG
.getTarget().Options
.NoSignedZerosFPMath
)
14922 // fptosi/fptoui round towards zero, so converting from FP to integer and
14923 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
14924 SDValue N0
= N
->getOperand(0);
14925 if (N
->getOpcode() == ISD::SINT_TO_FP
&& N0
.getOpcode() == ISD::FP_TO_SINT
&&
14926 N0
.getOperand(0).getValueType() == VT
)
14927 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
.getOperand(0));
14929 if (N
->getOpcode() == ISD::UINT_TO_FP
&& N0
.getOpcode() == ISD::FP_TO_UINT
&&
14930 N0
.getOperand(0).getValueType() == VT
)
14931 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
.getOperand(0));
14936 SDValue
DAGCombiner::visitSINT_TO_FP(SDNode
*N
) {
14937 SDValue N0
= N
->getOperand(0);
14938 EVT VT
= N
->getValueType(0);
14939 EVT OpVT
= N0
.getValueType();
14941 // [us]itofp(undef) = 0, because the result value is bounded.
14943 return DAG
.getConstantFP(0.0, SDLoc(N
), VT
);
14945 // fold (sint_to_fp c1) -> c1fp
14946 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
14947 // ...but only if the target supports immediate floating-point values
14948 (!LegalOperations
||
14949 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
)))
14950 return DAG
.getNode(ISD::SINT_TO_FP
, SDLoc(N
), VT
, N0
);
14952 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
14953 // but UINT_TO_FP is legal on this target, try to convert.
14954 if (!hasOperation(ISD::SINT_TO_FP
, OpVT
) &&
14955 hasOperation(ISD::UINT_TO_FP
, OpVT
)) {
14956 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
14957 if (DAG
.SignBitIsZero(N0
))
14958 return DAG
.getNode(ISD::UINT_TO_FP
, SDLoc(N
), VT
, N0
);
14961 // The next optimizations are desirable only if SELECT_CC can be lowered.
14962 // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0)
14963 if (N0
.getOpcode() == ISD::SETCC
&& N0
.getValueType() == MVT::i1
&&
14965 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
14967 return DAG
.getSelect(DL
, VT
, N0
, DAG
.getConstantFP(-1.0, DL
, VT
),
14968 DAG
.getConstantFP(0.0, DL
, VT
));
14971 // fold (sint_to_fp (zext (setcc x, y, cc))) ->
14972 // (select (setcc x, y, cc), 1.0, 0.0)
14973 if (N0
.getOpcode() == ISD::ZERO_EXTEND
&&
14974 N0
.getOperand(0).getOpcode() == ISD::SETCC
&& !VT
.isVector() &&
14975 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
14977 return DAG
.getSelect(DL
, VT
, N0
.getOperand(0),
14978 DAG
.getConstantFP(1.0, DL
, VT
),
14979 DAG
.getConstantFP(0.0, DL
, VT
));
14982 if (SDValue FTrunc
= foldFPToIntToFP(N
, DAG
, TLI
))
14988 SDValue
DAGCombiner::visitUINT_TO_FP(SDNode
*N
) {
14989 SDValue N0
= N
->getOperand(0);
14990 EVT VT
= N
->getValueType(0);
14991 EVT OpVT
= N0
.getValueType();
14993 // [us]itofp(undef) = 0, because the result value is bounded.
14995 return DAG
.getConstantFP(0.0, SDLoc(N
), VT
);
14997 // fold (uint_to_fp c1) -> c1fp
14998 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
14999 // ...but only if the target supports immediate floating-point values
15000 (!LegalOperations
||
15001 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
)))
15002 return DAG
.getNode(ISD::UINT_TO_FP
, SDLoc(N
), VT
, N0
);
15004 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
15005 // but SINT_TO_FP is legal on this target, try to convert.
15006 if (!hasOperation(ISD::UINT_TO_FP
, OpVT
) &&
15007 hasOperation(ISD::SINT_TO_FP
, OpVT
)) {
15008 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
15009 if (DAG
.SignBitIsZero(N0
))
15010 return DAG
.getNode(ISD::SINT_TO_FP
, SDLoc(N
), VT
, N0
);
15013 // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0)
15014 if (N0
.getOpcode() == ISD::SETCC
&& !VT
.isVector() &&
15015 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
15017 return DAG
.getSelect(DL
, VT
, N0
, DAG
.getConstantFP(1.0, DL
, VT
),
15018 DAG
.getConstantFP(0.0, DL
, VT
));
15021 if (SDValue FTrunc
= foldFPToIntToFP(N
, DAG
, TLI
))
15027 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
15028 static SDValue
FoldIntToFPToInt(SDNode
*N
, SelectionDAG
&DAG
) {
15029 SDValue N0
= N
->getOperand(0);
15030 EVT VT
= N
->getValueType(0);
15032 if (N0
.getOpcode() != ISD::UINT_TO_FP
&& N0
.getOpcode() != ISD::SINT_TO_FP
)
15035 SDValue Src
= N0
.getOperand(0);
15036 EVT SrcVT
= Src
.getValueType();
15037 bool IsInputSigned
= N0
.getOpcode() == ISD::SINT_TO_FP
;
15038 bool IsOutputSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
15040 // We can safely assume the conversion won't overflow the output range,
15041 // because (for example) (uint8_t)18293.f is undefined behavior.
15043 // Since we can assume the conversion won't overflow, our decision as to
15044 // whether the input will fit in the float should depend on the minimum
15045 // of the input range and output range.
15047 // This means this is also safe for a signed input and unsigned output, since
15048 // a negative input would lead to undefined behavior.
15049 unsigned InputSize
= (int)SrcVT
.getScalarSizeInBits() - IsInputSigned
;
15050 unsigned OutputSize
= (int)VT
.getScalarSizeInBits() - IsOutputSigned
;
15051 unsigned ActualSize
= std::min(InputSize
, OutputSize
);
15052 const fltSemantics
&sem
= DAG
.EVTToAPFloatSemantics(N0
.getValueType());
15054 // We can only fold away the float conversion if the input range can be
15055 // represented exactly in the float range.
15056 if (APFloat::semanticsPrecision(sem
) >= ActualSize
) {
15057 if (VT
.getScalarSizeInBits() > SrcVT
.getScalarSizeInBits()) {
15058 unsigned ExtOp
= IsInputSigned
&& IsOutputSigned
? ISD::SIGN_EXTEND
15059 : ISD::ZERO_EXTEND
;
15060 return DAG
.getNode(ExtOp
, SDLoc(N
), VT
, Src
);
15062 if (VT
.getScalarSizeInBits() < SrcVT
.getScalarSizeInBits())
15063 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, Src
);
15064 return DAG
.getBitcast(VT
, Src
);
15069 SDValue
DAGCombiner::visitFP_TO_SINT(SDNode
*N
) {
15070 SDValue N0
= N
->getOperand(0);
15071 EVT VT
= N
->getValueType(0);
15073 // fold (fp_to_sint undef) -> undef
15075 return DAG
.getUNDEF(VT
);
15077 // fold (fp_to_sint c1fp) -> c1
15078 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
15079 return DAG
.getNode(ISD::FP_TO_SINT
, SDLoc(N
), VT
, N0
);
15081 return FoldIntToFPToInt(N
, DAG
);
15084 SDValue
DAGCombiner::visitFP_TO_UINT(SDNode
*N
) {
15085 SDValue N0
= N
->getOperand(0);
15086 EVT VT
= N
->getValueType(0);
15088 // fold (fp_to_uint undef) -> undef
15090 return DAG
.getUNDEF(VT
);
15092 // fold (fp_to_uint c1fp) -> c1
15093 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
15094 return DAG
.getNode(ISD::FP_TO_UINT
, SDLoc(N
), VT
, N0
);
15096 return FoldIntToFPToInt(N
, DAG
);
15099 SDValue
DAGCombiner::visitFP_ROUND(SDNode
*N
) {
15100 SDValue N0
= N
->getOperand(0);
15101 SDValue N1
= N
->getOperand(1);
15102 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
15103 EVT VT
= N
->getValueType(0);
15105 // fold (fp_round c1fp) -> c1fp
15107 return DAG
.getNode(ISD::FP_ROUND
, SDLoc(N
), VT
, N0
, N1
);
15109 // fold (fp_round (fp_extend x)) -> x
15110 if (N0
.getOpcode() == ISD::FP_EXTEND
&& VT
== N0
.getOperand(0).getValueType())
15111 return N0
.getOperand(0);
15113 // fold (fp_round (fp_round x)) -> (fp_round x)
15114 if (N0
.getOpcode() == ISD::FP_ROUND
) {
15115 const bool NIsTrunc
= N
->getConstantOperandVal(1) == 1;
15116 const bool N0IsTrunc
= N0
.getConstantOperandVal(1) == 1;
15118 // Skip this folding if it results in an fp_round from f80 to f16.
15120 // f80 to f16 always generates an expensive (and as yet, unimplemented)
15121 // libcall to __truncxfhf2 instead of selecting native f16 conversion
15122 // instructions from f32 or f64. Moreover, the first (value-preserving)
15123 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
15125 if (N0
.getOperand(0).getValueType() == MVT::f80
&& VT
== MVT::f16
)
15128 // If the first fp_round isn't a value preserving truncation, it might
15129 // introduce a tie in the second fp_round, that wouldn't occur in the
15130 // single-step fp_round we want to fold to.
15131 // In other words, double rounding isn't the same as rounding.
15132 // Also, this is a value preserving truncation iff both fp_round's are.
15133 if (DAG
.getTarget().Options
.UnsafeFPMath
|| N0IsTrunc
) {
15135 return DAG
.getNode(ISD::FP_ROUND
, DL
, VT
, N0
.getOperand(0),
15136 DAG
.getIntPtrConstant(NIsTrunc
&& N0IsTrunc
, DL
));
15140 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
15141 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse()) {
15142 SDValue Tmp
= DAG
.getNode(ISD::FP_ROUND
, SDLoc(N0
), VT
,
15143 N0
.getOperand(0), N1
);
15144 AddToWorklist(Tmp
.getNode());
15145 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
,
15146 Tmp
, N0
.getOperand(1));
15149 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
15155 SDValue
DAGCombiner::visitFP_EXTEND(SDNode
*N
) {
15156 SDValue N0
= N
->getOperand(0);
15157 EVT VT
= N
->getValueType(0);
15159 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
15160 if (N
->hasOneUse() &&
15161 N
->use_begin()->getOpcode() == ISD::FP_ROUND
)
15164 // fold (fp_extend c1fp) -> c1fp
15165 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
15166 return DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N
), VT
, N0
);
15168 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
15169 if (N0
.getOpcode() == ISD::FP16_TO_FP
&&
15170 TLI
.getOperationAction(ISD::FP16_TO_FP
, VT
) == TargetLowering::Legal
)
15171 return DAG
.getNode(ISD::FP16_TO_FP
, SDLoc(N
), VT
, N0
.getOperand(0));
15173 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
15175 if (N0
.getOpcode() == ISD::FP_ROUND
15176 && N0
.getConstantOperandVal(1) == 1) {
15177 SDValue In
= N0
.getOperand(0);
15178 if (In
.getValueType() == VT
) return In
;
15179 if (VT
.bitsLT(In
.getValueType()))
15180 return DAG
.getNode(ISD::FP_ROUND
, SDLoc(N
), VT
,
15181 In
, N0
.getOperand(1));
15182 return DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N
), VT
, In
);
15185 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
15186 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
15187 TLI
.isLoadExtLegalOrCustom(ISD::EXTLOAD
, VT
, N0
.getValueType())) {
15188 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
15189 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, SDLoc(N
), VT
,
15191 LN0
->getBasePtr(), N0
.getValueType(),
15192 LN0
->getMemOperand());
15193 CombineTo(N
, ExtLoad
);
15194 CombineTo(N0
.getNode(),
15195 DAG
.getNode(ISD::FP_ROUND
, SDLoc(N0
),
15196 N0
.getValueType(), ExtLoad
,
15197 DAG
.getIntPtrConstant(1, SDLoc(N0
))),
15198 ExtLoad
.getValue(1));
15199 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
15202 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
15208 SDValue
DAGCombiner::visitFCEIL(SDNode
*N
) {
15209 SDValue N0
= N
->getOperand(0);
15210 EVT VT
= N
->getValueType(0);
15212 // fold (fceil c1) -> fceil(c1)
15213 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
15214 return DAG
.getNode(ISD::FCEIL
, SDLoc(N
), VT
, N0
);
15219 SDValue
DAGCombiner::visitFTRUNC(SDNode
*N
) {
15220 SDValue N0
= N
->getOperand(0);
15221 EVT VT
= N
->getValueType(0);
15223 // fold (ftrunc c1) -> ftrunc(c1)
15224 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
15225 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
);
15227 // fold ftrunc (known rounded int x) -> x
15228 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
15229 // likely to be generated to extract integer from a rounded floating value.
15230 switch (N0
.getOpcode()) {
15234 case ISD::FNEARBYINT
:
15243 SDValue
DAGCombiner::visitFFLOOR(SDNode
*N
) {
15244 SDValue N0
= N
->getOperand(0);
15245 EVT VT
= N
->getValueType(0);
15247 // fold (ffloor c1) -> ffloor(c1)
15248 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
15249 return DAG
.getNode(ISD::FFLOOR
, SDLoc(N
), VT
, N0
);
15254 SDValue
DAGCombiner::visitFNEG(SDNode
*N
) {
15255 SDValue N0
= N
->getOperand(0);
15256 EVT VT
= N
->getValueType(0);
15257 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
15259 // Constant fold FNEG.
15260 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
15261 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
, N0
);
15263 if (SDValue NegN0
=
15264 TLI
.getNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
))
15267 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
15268 // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't
15269 // know it was called from a context with a nsz flag if the input fsub does
15271 if (N0
.getOpcode() == ISD::FSUB
&&
15272 (DAG
.getTarget().Options
.NoSignedZerosFPMath
||
15273 N
->getFlags().hasNoSignedZeros()) && N0
.hasOneUse()) {
15274 return DAG
.getNode(ISD::FSUB
, SDLoc(N
), VT
, N0
.getOperand(1),
15278 if (SDValue Cast
= foldSignChangeInBitcast(N
))
15284 SDValue
DAGCombiner::visitFMinMax(SDNode
*N
) {
15285 SDValue N0
= N
->getOperand(0);
15286 SDValue N1
= N
->getOperand(1);
15287 EVT VT
= N
->getValueType(0);
15288 const SDNodeFlags Flags
= N
->getFlags();
15289 unsigned Opc
= N
->getOpcode();
15290 bool PropagatesNaN
= Opc
== ISD::FMINIMUM
|| Opc
== ISD::FMAXIMUM
;
15291 bool IsMin
= Opc
== ISD::FMINNUM
|| Opc
== ISD::FMINIMUM
;
15292 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
15295 if (SDValue C
= DAG
.FoldConstantArithmetic(Opc
, SDLoc(N
), VT
, {N0
, N1
}))
15298 // Canonicalize to constant on RHS.
15299 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
) &&
15300 !DAG
.isConstantFPBuildVectorOrConstantFP(N1
))
15301 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N1
, N0
);
15303 if (const ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
)) {
15304 const APFloat
&AF
= N1CFP
->getValueAPF();
15306 // minnum(X, nan) -> X
15307 // maxnum(X, nan) -> X
15308 // minimum(X, nan) -> nan
15309 // maximum(X, nan) -> nan
15311 return PropagatesNaN
? N
->getOperand(1) : N
->getOperand(0);
15313 // In the following folds, inf can be replaced with the largest finite
15314 // float, if the ninf flag is set.
15315 if (AF
.isInfinity() || (Flags
.hasNoInfs() && AF
.isLargest())) {
15316 // minnum(X, -inf) -> -inf
15317 // maxnum(X, +inf) -> +inf
15318 // minimum(X, -inf) -> -inf if nnan
15319 // maximum(X, +inf) -> +inf if nnan
15320 if (IsMin
== AF
.isNegative() && (!PropagatesNaN
|| Flags
.hasNoNaNs()))
15321 return N
->getOperand(1);
15323 // minnum(X, +inf) -> X if nnan
15324 // maxnum(X, -inf) -> X if nnan
15325 // minimum(X, +inf) -> X
15326 // maximum(X, -inf) -> X
15327 if (IsMin
!= AF
.isNegative() && (PropagatesNaN
|| Flags
.hasNoNaNs()))
15328 return N
->getOperand(0);
15335 SDValue
DAGCombiner::visitFABS(SDNode
*N
) {
15336 SDValue N0
= N
->getOperand(0);
15337 EVT VT
= N
->getValueType(0);
15339 // fold (fabs c1) -> fabs(c1)
15340 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
15341 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
15343 // fold (fabs (fabs x)) -> (fabs x)
15344 if (N0
.getOpcode() == ISD::FABS
)
15345 return N
->getOperand(0);
15347 // fold (fabs (fneg x)) -> (fabs x)
15348 // fold (fabs (fcopysign x, y)) -> (fabs x)
15349 if (N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FCOPYSIGN
)
15350 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
.getOperand(0));
15352 if (SDValue Cast
= foldSignChangeInBitcast(N
))
15358 SDValue
DAGCombiner::visitBRCOND(SDNode
*N
) {
15359 SDValue Chain
= N
->getOperand(0);
15360 SDValue N1
= N
->getOperand(1);
15361 SDValue N2
= N
->getOperand(2);
15363 // BRCOND(FREEZE(cond)) is equivalent to BRCOND(cond) (both are
15364 // nondeterministic jumps).
15365 if (N1
->getOpcode() == ISD::FREEZE
&& N1
.hasOneUse()) {
15366 return DAG
.getNode(ISD::BRCOND
, SDLoc(N
), MVT::Other
, Chain
,
15367 N1
->getOperand(0), N2
);
15370 // If N is a constant we could fold this into a fallthrough or unconditional
15371 // branch. However that doesn't happen very often in normal code, because
15372 // Instcombine/SimplifyCFG should have handled the available opportunities.
15373 // If we did this folding here, it would be necessary to update the
15374 // MachineBasicBlock CFG, which is awkward.
15376 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
15378 if (N1
.getOpcode() == ISD::SETCC
&&
15379 TLI
.isOperationLegalOrCustom(ISD::BR_CC
,
15380 N1
.getOperand(0).getValueType())) {
15381 return DAG
.getNode(ISD::BR_CC
, SDLoc(N
), MVT::Other
,
15382 Chain
, N1
.getOperand(2),
15383 N1
.getOperand(0), N1
.getOperand(1), N2
);
15386 if (N1
.hasOneUse()) {
15387 // rebuildSetCC calls visitXor which may change the Chain when there is a
15388 // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes.
15389 HandleSDNode
ChainHandle(Chain
);
15390 if (SDValue NewN1
= rebuildSetCC(N1
))
15391 return DAG
.getNode(ISD::BRCOND
, SDLoc(N
), MVT::Other
,
15392 ChainHandle
.getValue(), NewN1
, N2
);
15398 SDValue
DAGCombiner::rebuildSetCC(SDValue N
) {
15399 if (N
.getOpcode() == ISD::SRL
||
15400 (N
.getOpcode() == ISD::TRUNCATE
&&
15401 (N
.getOperand(0).hasOneUse() &&
15402 N
.getOperand(0).getOpcode() == ISD::SRL
))) {
15403 // Look pass the truncate.
15404 if (N
.getOpcode() == ISD::TRUNCATE
)
15405 N
= N
.getOperand(0);
15407 // Match this pattern so that we can generate simpler code:
15410 // %b = and i32 %a, 2
15411 // %c = srl i32 %b, 1
15412 // brcond i32 %c ...
15417 // %b = and i32 %a, 2
15418 // %c = setcc eq %b, 0
15421 // This applies only when the AND constant value has one bit set and the
15422 // SRL constant is equal to the log2 of the AND constant. The back-end is
15423 // smart enough to convert the result into a TEST/JMP sequence.
15424 SDValue Op0
= N
.getOperand(0);
15425 SDValue Op1
= N
.getOperand(1);
15427 if (Op0
.getOpcode() == ISD::AND
&& Op1
.getOpcode() == ISD::Constant
) {
15428 SDValue AndOp1
= Op0
.getOperand(1);
15430 if (AndOp1
.getOpcode() == ISD::Constant
) {
15431 const APInt
&AndConst
= cast
<ConstantSDNode
>(AndOp1
)->getAPIntValue();
15433 if (AndConst
.isPowerOf2() &&
15434 cast
<ConstantSDNode
>(Op1
)->getAPIntValue() == AndConst
.logBase2()) {
15436 return DAG
.getSetCC(DL
, getSetCCResultType(Op0
.getValueType()),
15437 Op0
, DAG
.getConstant(0, DL
, Op0
.getValueType()),
15444 // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne))
15445 // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq))
15446 if (N
.getOpcode() == ISD::XOR
) {
15447 // Because we may call this on a speculatively constructed
15448 // SimplifiedSetCC Node, we need to simplify this node first.
15449 // Ideally this should be folded into SimplifySetCC and not
15450 // here. For now, grab a handle to N so we don't lose it from
15451 // replacements interal to the visit.
15452 HandleSDNode
XORHandle(N
);
15453 while (N
.getOpcode() == ISD::XOR
) {
15454 SDValue Tmp
= visitXOR(N
.getNode());
15455 // No simplification done.
15456 if (!Tmp
.getNode())
15458 // Returning N is form in-visit replacement that may invalidated
15459 // N. Grab value from Handle.
15460 if (Tmp
.getNode() == N
.getNode())
15461 N
= XORHandle
.getValue();
15462 else // Node simplified. Try simplifying again.
15466 if (N
.getOpcode() != ISD::XOR
)
15469 SDValue Op0
= N
->getOperand(0);
15470 SDValue Op1
= N
->getOperand(1);
15472 if (Op0
.getOpcode() != ISD::SETCC
&& Op1
.getOpcode() != ISD::SETCC
) {
15473 bool Equal
= false;
15474 // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq))
15475 if (isBitwiseNot(N
) && Op0
.hasOneUse() && Op0
.getOpcode() == ISD::XOR
&&
15476 Op0
.getValueType() == MVT::i1
) {
15478 Op0
= N
->getOperand(0);
15479 Op1
= N
->getOperand(1);
15483 EVT SetCCVT
= N
.getValueType();
15485 SetCCVT
= getSetCCResultType(SetCCVT
);
15486 // Replace the uses of XOR with SETCC
15487 return DAG
.getSetCC(SDLoc(N
), SetCCVT
, Op0
, Op1
,
15488 Equal
? ISD::SETEQ
: ISD::SETNE
);
15495 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
15497 SDValue
DAGCombiner::visitBR_CC(SDNode
*N
) {
15498 CondCodeSDNode
*CC
= cast
<CondCodeSDNode
>(N
->getOperand(1));
15499 SDValue CondLHS
= N
->getOperand(2), CondRHS
= N
->getOperand(3);
15501 // If N is a constant we could fold this into a fallthrough or unconditional
15502 // branch. However that doesn't happen very often in normal code, because
15503 // Instcombine/SimplifyCFG should have handled the available opportunities.
15504 // If we did this folding here, it would be necessary to update the
15505 // MachineBasicBlock CFG, which is awkward.
15507 // Use SimplifySetCC to simplify SETCC's.
15508 SDValue Simp
= SimplifySetCC(getSetCCResultType(CondLHS
.getValueType()),
15509 CondLHS
, CondRHS
, CC
->get(), SDLoc(N
),
15511 if (Simp
.getNode()) AddToWorklist(Simp
.getNode());
15513 // fold to a simpler setcc
15514 if (Simp
.getNode() && Simp
.getOpcode() == ISD::SETCC
)
15515 return DAG
.getNode(ISD::BR_CC
, SDLoc(N
), MVT::Other
,
15516 N
->getOperand(0), Simp
.getOperand(2),
15517 Simp
.getOperand(0), Simp
.getOperand(1),
15523 static bool getCombineLoadStoreParts(SDNode
*N
, unsigned Inc
, unsigned Dec
,
15524 bool &IsLoad
, bool &IsMasked
, SDValue
&Ptr
,
15525 const TargetLowering
&TLI
) {
15526 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
15527 if (LD
->isIndexed())
15529 EVT VT
= LD
->getMemoryVT();
15530 if (!TLI
.isIndexedLoadLegal(Inc
, VT
) && !TLI
.isIndexedLoadLegal(Dec
, VT
))
15532 Ptr
= LD
->getBasePtr();
15533 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
15534 if (ST
->isIndexed())
15536 EVT VT
= ST
->getMemoryVT();
15537 if (!TLI
.isIndexedStoreLegal(Inc
, VT
) && !TLI
.isIndexedStoreLegal(Dec
, VT
))
15539 Ptr
= ST
->getBasePtr();
15541 } else if (MaskedLoadSDNode
*LD
= dyn_cast
<MaskedLoadSDNode
>(N
)) {
15542 if (LD
->isIndexed())
15544 EVT VT
= LD
->getMemoryVT();
15545 if (!TLI
.isIndexedMaskedLoadLegal(Inc
, VT
) &&
15546 !TLI
.isIndexedMaskedLoadLegal(Dec
, VT
))
15548 Ptr
= LD
->getBasePtr();
15550 } else if (MaskedStoreSDNode
*ST
= dyn_cast
<MaskedStoreSDNode
>(N
)) {
15551 if (ST
->isIndexed())
15553 EVT VT
= ST
->getMemoryVT();
15554 if (!TLI
.isIndexedMaskedStoreLegal(Inc
, VT
) &&
15555 !TLI
.isIndexedMaskedStoreLegal(Dec
, VT
))
15557 Ptr
= ST
->getBasePtr();
15566 /// Try turning a load/store into a pre-indexed load/store when the base
15567 /// pointer is an add or subtract and it has other uses besides the load/store.
15568 /// After the transformation, the new indexed load/store has effectively folded
15569 /// the add/subtract in and all of its other uses are redirected to the
15570 /// new load/store.
15571 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode
*N
) {
15572 if (Level
< AfterLegalizeDAG
)
15575 bool IsLoad
= true;
15576 bool IsMasked
= false;
15578 if (!getCombineLoadStoreParts(N
, ISD::PRE_INC
, ISD::PRE_DEC
, IsLoad
, IsMasked
,
15582 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
15583 // out. There is no reason to make this a preinc/predec.
15584 if ((Ptr
.getOpcode() != ISD::ADD
&& Ptr
.getOpcode() != ISD::SUB
) ||
15585 Ptr
.getNode()->hasOneUse())
15588 // Ask the target to do addressing mode selection.
15591 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
15592 if (!TLI
.getPreIndexedAddressParts(N
, BasePtr
, Offset
, AM
, DAG
))
15595 // Backends without true r+i pre-indexed forms may need to pass a
15596 // constant base with a variable offset so that constant coercion
15597 // will work with the patterns in canonical form.
15598 bool Swapped
= false;
15599 if (isa
<ConstantSDNode
>(BasePtr
)) {
15600 std::swap(BasePtr
, Offset
);
15604 // Don't create a indexed load / store with zero offset.
15605 if (isNullConstant(Offset
))
15608 // Try turning it into a pre-indexed load / store except when:
15609 // 1) The new base ptr is a frame index.
15610 // 2) If N is a store and the new base ptr is either the same as or is a
15611 // predecessor of the value being stored.
15612 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
15613 // that would create a cycle.
15614 // 4) All uses are load / store ops that use it as old base ptr.
15616 // Check #1. Preinc'ing a frame index would require copying the stack pointer
15617 // (plus the implicit offset) to a register to preinc anyway.
15618 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
15623 SDValue Val
= IsMasked
? cast
<MaskedStoreSDNode
>(N
)->getValue()
15624 : cast
<StoreSDNode
>(N
)->getValue();
15626 // Would require a copy.
15627 if (Val
== BasePtr
)
15630 // Would create a cycle.
15631 if (Val
== Ptr
|| Ptr
->isPredecessorOf(Val
.getNode()))
15635 // Caches for hasPredecessorHelper.
15636 SmallPtrSet
<const SDNode
*, 32> Visited
;
15637 SmallVector
<const SDNode
*, 16> Worklist
;
15638 Worklist
.push_back(N
);
15640 // If the offset is a constant, there may be other adds of constants that
15641 // can be folded with this one. We should do this to avoid having to keep
15642 // a copy of the original base pointer.
15643 SmallVector
<SDNode
*, 16> OtherUses
;
15644 if (isa
<ConstantSDNode
>(Offset
))
15645 for (SDNode::use_iterator UI
= BasePtr
.getNode()->use_begin(),
15646 UE
= BasePtr
.getNode()->use_end();
15648 SDUse
&Use
= UI
.getUse();
15649 // Skip the use that is Ptr and uses of other results from BasePtr's
15650 // node (important for nodes that return multiple results).
15651 if (Use
.getUser() == Ptr
.getNode() || Use
!= BasePtr
)
15654 if (SDNode::hasPredecessorHelper(Use
.getUser(), Visited
, Worklist
))
15657 if (Use
.getUser()->getOpcode() != ISD::ADD
&&
15658 Use
.getUser()->getOpcode() != ISD::SUB
) {
15663 SDValue Op1
= Use
.getUser()->getOperand((UI
.getOperandNo() + 1) & 1);
15664 if (!isa
<ConstantSDNode
>(Op1
)) {
15669 // FIXME: In some cases, we can be smarter about this.
15670 if (Op1
.getValueType() != Offset
.getValueType()) {
15675 OtherUses
.push_back(Use
.getUser());
15679 std::swap(BasePtr
, Offset
);
15681 // Now check for #3 and #4.
15682 bool RealUse
= false;
15684 for (SDNode
*Use
: Ptr
.getNode()->uses()) {
15687 if (SDNode::hasPredecessorHelper(Use
, Visited
, Worklist
))
15690 // If Ptr may be folded in addressing mode of other use, then it's
15691 // not profitable to do this transformation.
15692 if (!canFoldInAddressingMode(Ptr
.getNode(), Use
, DAG
, TLI
))
15702 Result
= DAG
.getIndexedLoad(SDValue(N
, 0), SDLoc(N
), BasePtr
, Offset
, AM
);
15705 DAG
.getIndexedStore(SDValue(N
, 0), SDLoc(N
), BasePtr
, Offset
, AM
);
15708 Result
= DAG
.getIndexedMaskedLoad(SDValue(N
, 0), SDLoc(N
), BasePtr
,
15711 Result
= DAG
.getIndexedMaskedStore(SDValue(N
, 0), SDLoc(N
), BasePtr
,
15716 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N
->dump(&DAG
); dbgs() << "\nWith: ";
15717 Result
.getNode()->dump(&DAG
); dbgs() << '\n');
15718 WorklistRemover
DeadNodes(*this);
15720 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0));
15721 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2));
15723 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1));
15726 // Finally, since the node is now dead, remove it from the graph.
15727 deleteAndRecombine(N
);
15730 std::swap(BasePtr
, Offset
);
15732 // Replace other uses of BasePtr that can be updated to use Ptr
15733 for (unsigned i
= 0, e
= OtherUses
.size(); i
!= e
; ++i
) {
15734 unsigned OffsetIdx
= 1;
15735 if (OtherUses
[i
]->getOperand(OffsetIdx
).getNode() == BasePtr
.getNode())
15737 assert(OtherUses
[i
]->getOperand(!OffsetIdx
).getNode() ==
15738 BasePtr
.getNode() && "Expected BasePtr operand");
15740 // We need to replace ptr0 in the following expression:
15741 // x0 * offset0 + y0 * ptr0 = t0
15743 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
15745 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
15746 // indexed load/store and the expression that needs to be re-written.
15748 // Therefore, we have:
15749 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
15751 auto *CN
= cast
<ConstantSDNode
>(OtherUses
[i
]->getOperand(OffsetIdx
));
15752 const APInt
&Offset0
= CN
->getAPIntValue();
15753 const APInt
&Offset1
= cast
<ConstantSDNode
>(Offset
)->getAPIntValue();
15754 int X0
= (OtherUses
[i
]->getOpcode() == ISD::SUB
&& OffsetIdx
== 1) ? -1 : 1;
15755 int Y0
= (OtherUses
[i
]->getOpcode() == ISD::SUB
&& OffsetIdx
== 0) ? -1 : 1;
15756 int X1
= (AM
== ISD::PRE_DEC
&& !Swapped
) ? -1 : 1;
15757 int Y1
= (AM
== ISD::PRE_DEC
&& Swapped
) ? -1 : 1;
15759 unsigned Opcode
= (Y0
* Y1
< 0) ? ISD::SUB
: ISD::ADD
;
15761 APInt CNV
= Offset0
;
15762 if (X0
< 0) CNV
= -CNV
;
15763 if (X1
* Y0
* Y1
< 0) CNV
= CNV
+ Offset1
;
15764 else CNV
= CNV
- Offset1
;
15766 SDLoc
DL(OtherUses
[i
]);
15768 // We can now generate the new expression.
15769 SDValue NewOp1
= DAG
.getConstant(CNV
, DL
, CN
->getValueType(0));
15770 SDValue NewOp2
= Result
.getValue(IsLoad
? 1 : 0);
15772 SDValue NewUse
= DAG
.getNode(Opcode
,
15774 OtherUses
[i
]->getValueType(0), NewOp1
, NewOp2
);
15775 DAG
.ReplaceAllUsesOfValueWith(SDValue(OtherUses
[i
], 0), NewUse
);
15776 deleteAndRecombine(OtherUses
[i
]);
15779 // Replace the uses of Ptr with uses of the updated base value.
15780 DAG
.ReplaceAllUsesOfValueWith(Ptr
, Result
.getValue(IsLoad
? 1 : 0));
15781 deleteAndRecombine(Ptr
.getNode());
15782 AddToWorklist(Result
.getNode());
15787 static bool shouldCombineToPostInc(SDNode
*N
, SDValue Ptr
, SDNode
*PtrUse
,
15788 SDValue
&BasePtr
, SDValue
&Offset
,
15789 ISD::MemIndexedMode
&AM
,
15791 const TargetLowering
&TLI
) {
15793 (PtrUse
->getOpcode() != ISD::ADD
&& PtrUse
->getOpcode() != ISD::SUB
))
15796 if (!TLI
.getPostIndexedAddressParts(N
, PtrUse
, BasePtr
, Offset
, AM
, DAG
))
15799 // Don't create a indexed load / store with zero offset.
15800 if (isNullConstant(Offset
))
15803 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
15806 SmallPtrSet
<const SDNode
*, 32> Visited
;
15807 for (SDNode
*Use
: BasePtr
.getNode()->uses()) {
15808 if (Use
== Ptr
.getNode())
15811 // No if there's a later user which could perform the index instead.
15812 if (isa
<MemSDNode
>(Use
)) {
15813 bool IsLoad
= true;
15814 bool IsMasked
= false;
15816 if (getCombineLoadStoreParts(Use
, ISD::POST_INC
, ISD::POST_DEC
, IsLoad
,
15817 IsMasked
, OtherPtr
, TLI
)) {
15818 SmallVector
<const SDNode
*, 2> Worklist
;
15819 Worklist
.push_back(Use
);
15820 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
))
15825 // If all the uses are load / store addresses, then don't do the
15827 if (Use
->getOpcode() == ISD::ADD
|| Use
->getOpcode() == ISD::SUB
) {
15828 for (SDNode
*UseUse
: Use
->uses())
15829 if (canFoldInAddressingMode(Use
, UseUse
, DAG
, TLI
))
15836 static SDNode
*getPostIndexedLoadStoreOp(SDNode
*N
, bool &IsLoad
,
15837 bool &IsMasked
, SDValue
&Ptr
,
15838 SDValue
&BasePtr
, SDValue
&Offset
,
15839 ISD::MemIndexedMode
&AM
,
15841 const TargetLowering
&TLI
) {
15842 if (!getCombineLoadStoreParts(N
, ISD::POST_INC
, ISD::POST_DEC
, IsLoad
,
15843 IsMasked
, Ptr
, TLI
) ||
15844 Ptr
.getNode()->hasOneUse())
15847 // Try turning it into a post-indexed load / store except when
15848 // 1) All uses are load / store ops that use it as base ptr (and
15849 // it may be folded as addressing mmode).
15850 // 2) Op must be independent of N, i.e. Op is neither a predecessor
15851 // nor a successor of N. Otherwise, if Op is folded that would
15853 for (SDNode
*Op
: Ptr
->uses()) {
15855 if (!shouldCombineToPostInc(N
, Ptr
, Op
, BasePtr
, Offset
, AM
, DAG
, TLI
))
15859 SmallPtrSet
<const SDNode
*, 32> Visited
;
15860 SmallVector
<const SDNode
*, 8> Worklist
;
15861 // Ptr is predecessor to both N and Op.
15862 Visited
.insert(Ptr
.getNode());
15863 Worklist
.push_back(N
);
15864 Worklist
.push_back(Op
);
15865 if (!SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) &&
15866 !SDNode::hasPredecessorHelper(Op
, Visited
, Worklist
))
15872 /// Try to combine a load/store with a add/sub of the base pointer node into a
15873 /// post-indexed load/store. The transformation folded the add/subtract into the
15874 /// new indexed load/store effectively and all of its uses are redirected to the
15875 /// new load/store.
15876 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode
*N
) {
15877 if (Level
< AfterLegalizeDAG
)
15880 bool IsLoad
= true;
15881 bool IsMasked
= false;
15885 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
15886 SDNode
*Op
= getPostIndexedLoadStoreOp(N
, IsLoad
, IsMasked
, Ptr
, BasePtr
,
15887 Offset
, AM
, DAG
, TLI
);
15893 Result
= IsLoad
? DAG
.getIndexedLoad(SDValue(N
, 0), SDLoc(N
), BasePtr
,
15895 : DAG
.getIndexedStore(SDValue(N
, 0), SDLoc(N
),
15896 BasePtr
, Offset
, AM
);
15898 Result
= IsLoad
? DAG
.getIndexedMaskedLoad(SDValue(N
, 0), SDLoc(N
),
15899 BasePtr
, Offset
, AM
)
15900 : DAG
.getIndexedMaskedStore(SDValue(N
, 0), SDLoc(N
),
15901 BasePtr
, Offset
, AM
);
15902 ++PostIndexedNodes
;
15904 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N
->dump(&DAG
);
15905 dbgs() << "\nWith: "; Result
.getNode()->dump(&DAG
);
15907 WorklistRemover
DeadNodes(*this);
15909 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0));
15910 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2));
15912 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1));
15915 // Finally, since the node is now dead, remove it from the graph.
15916 deleteAndRecombine(N
);
15918 // Replace the uses of Use with uses of the updated base value.
15919 DAG
.ReplaceAllUsesOfValueWith(SDValue(Op
, 0),
15920 Result
.getValue(IsLoad
? 1 : 0));
15921 deleteAndRecombine(Op
);
15925 /// Return the base-pointer arithmetic from an indexed \p LD.
15926 SDValue
DAGCombiner::SplitIndexingFromLoad(LoadSDNode
*LD
) {
15927 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
15928 assert(AM
!= ISD::UNINDEXED
);
15929 SDValue BP
= LD
->getOperand(1);
15930 SDValue Inc
= LD
->getOperand(2);
15932 // Some backends use TargetConstants for load offsets, but don't expect
15933 // TargetConstants in general ADD nodes. We can convert these constants into
15934 // regular Constants (if the constant is not opaque).
15935 assert((Inc
.getOpcode() != ISD::TargetConstant
||
15936 !cast
<ConstantSDNode
>(Inc
)->isOpaque()) &&
15937 "Cannot split out indexing using opaque target constants");
15938 if (Inc
.getOpcode() == ISD::TargetConstant
) {
15939 ConstantSDNode
*ConstInc
= cast
<ConstantSDNode
>(Inc
);
15940 Inc
= DAG
.getConstant(*ConstInc
->getConstantIntValue(), SDLoc(Inc
),
15941 ConstInc
->getValueType(0));
15945 (AM
== ISD::PRE_INC
|| AM
== ISD::POST_INC
? ISD::ADD
: ISD::SUB
);
15946 return DAG
.getNode(Opc
, SDLoc(LD
), BP
.getSimpleValueType(), BP
, Inc
);
15949 static inline ElementCount
numVectorEltsOrZero(EVT T
) {
15950 return T
.isVector() ? T
.getVectorElementCount() : ElementCount::getFixed(0);
15953 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode
*ST
, SDValue
&Val
) {
15954 Val
= ST
->getValue();
15955 EVT STType
= Val
.getValueType();
15956 EVT STMemType
= ST
->getMemoryVT();
15957 if (STType
== STMemType
)
15959 if (isTypeLegal(STMemType
))
15960 return false; // fail.
15961 if (STType
.isFloatingPoint() && STMemType
.isFloatingPoint() &&
15962 TLI
.isOperationLegal(ISD::FTRUNC
, STMemType
)) {
15963 Val
= DAG
.getNode(ISD::FTRUNC
, SDLoc(ST
), STMemType
, Val
);
15966 if (numVectorEltsOrZero(STType
) == numVectorEltsOrZero(STMemType
) &&
15967 STType
.isInteger() && STMemType
.isInteger()) {
15968 Val
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(ST
), STMemType
, Val
);
15971 if (STType
.getSizeInBits() == STMemType
.getSizeInBits()) {
15972 Val
= DAG
.getBitcast(STMemType
, Val
);
15975 return false; // fail.
15978 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode
*LD
, SDValue
&Val
) {
15979 EVT LDMemType
= LD
->getMemoryVT();
15980 EVT LDType
= LD
->getValueType(0);
15981 assert(Val
.getValueType() == LDMemType
&&
15982 "Attempting to extend value of non-matching type");
15983 if (LDType
== LDMemType
)
15985 if (LDMemType
.isInteger() && LDType
.isInteger()) {
15986 switch (LD
->getExtensionType()) {
15987 case ISD::NON_EXTLOAD
:
15988 Val
= DAG
.getBitcast(LDType
, Val
);
15991 Val
= DAG
.getNode(ISD::ANY_EXTEND
, SDLoc(LD
), LDType
, Val
);
15993 case ISD::SEXTLOAD
:
15994 Val
= DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(LD
), LDType
, Val
);
15996 case ISD::ZEXTLOAD
:
15997 Val
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(LD
), LDType
, Val
);
16004 SDValue
DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode
*LD
) {
16005 if (OptLevel
== CodeGenOpt::None
|| !LD
->isSimple())
16007 SDValue Chain
= LD
->getOperand(0);
16008 StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(Chain
.getNode());
16009 // TODO: Relax this restriction for unordered atomics (see D66309)
16010 if (!ST
|| !ST
->isSimple())
16013 EVT LDType
= LD
->getValueType(0);
16014 EVT LDMemType
= LD
->getMemoryVT();
16015 EVT STMemType
= ST
->getMemoryVT();
16016 EVT STType
= ST
->getValue().getValueType();
16018 // There are two cases to consider here:
16019 // 1. The store is fixed width and the load is scalable. In this case we
16020 // don't know at compile time if the store completely envelops the load
16021 // so we abandon the optimisation.
16022 // 2. The store is scalable and the load is fixed width. We could
16023 // potentially support a limited number of cases here, but there has been
16024 // no cost-benefit analysis to prove it's worth it.
16025 bool LdStScalable
= LDMemType
.isScalableVector();
16026 if (LdStScalable
!= STMemType
.isScalableVector())
16029 // If we are dealing with scalable vectors on a big endian platform the
16030 // calculation of offsets below becomes trickier, since we do not know at
16031 // compile time the absolute size of the vector. Until we've done more
16032 // analysis on big-endian platforms it seems better to bail out for now.
16033 if (LdStScalable
&& DAG
.getDataLayout().isBigEndian())
16036 BaseIndexOffset BasePtrLD
= BaseIndexOffset::match(LD
, DAG
);
16037 BaseIndexOffset BasePtrST
= BaseIndexOffset::match(ST
, DAG
);
16039 if (!BasePtrST
.equalBaseIndex(BasePtrLD
, DAG
, Offset
))
16042 // Normalize for Endianness. After this Offset=0 will denote that the least
16043 // significant bit in the loaded value maps to the least significant bit in
16044 // the stored value). With Offset=n (for n > 0) the loaded value starts at the
16045 // n:th least significant byte of the stored value.
16046 if (DAG
.getDataLayout().isBigEndian())
16047 Offset
= ((int64_t)STMemType
.getStoreSizeInBits().getFixedSize() -
16048 (int64_t)LDMemType
.getStoreSizeInBits().getFixedSize()) /
16052 // Check that the stored value cover all bits that are loaded.
16055 TypeSize LdMemSize
= LDMemType
.getSizeInBits();
16056 TypeSize StMemSize
= STMemType
.getSizeInBits();
16058 STCoversLD
= (Offset
== 0) && LdMemSize
== StMemSize
;
16060 STCoversLD
= (Offset
>= 0) && (Offset
* 8 + LdMemSize
.getFixedSize() <=
16061 StMemSize
.getFixedSize());
16063 auto ReplaceLd
= [&](LoadSDNode
*LD
, SDValue Val
, SDValue Chain
) -> SDValue
{
16064 if (LD
->isIndexed()) {
16065 // Cannot handle opaque target constants and we must respect the user's
16066 // request not to split indexes from loads.
16067 if (!canSplitIdx(LD
))
16069 SDValue Idx
= SplitIndexingFromLoad(LD
);
16070 SDValue Ops
[] = {Val
, Idx
, Chain
};
16071 return CombineTo(LD
, Ops
, 3);
16073 return CombineTo(LD
, Val
, Chain
);
16079 // Memory as copy space (potentially masked).
16080 if (Offset
== 0 && LDType
== STType
&& STMemType
== LDMemType
) {
16081 // Simple case: Direct non-truncating forwarding
16082 if (LDType
.getSizeInBits() == LdMemSize
)
16083 return ReplaceLd(LD
, ST
->getValue(), Chain
);
16084 // Can we model the truncate and extension with an and mask?
16085 if (STType
.isInteger() && LDMemType
.isInteger() && !STType
.isVector() &&
16086 !LDMemType
.isVector() && LD
->getExtensionType() != ISD::SEXTLOAD
) {
16087 // Mask to size of LDMemType
16089 DAG
.getConstant(APInt::getLowBitsSet(STType
.getFixedSizeInBits(),
16090 StMemSize
.getFixedSize()),
16091 SDLoc(ST
), STType
);
16092 auto Val
= DAG
.getNode(ISD::AND
, SDLoc(LD
), LDType
, ST
->getValue(), Mask
);
16093 return ReplaceLd(LD
, Val
, Chain
);
16097 // TODO: Deal with nonzero offset.
16098 if (LD
->getBasePtr().isUndef() || Offset
!= 0)
16100 // Model necessary truncations / extenstions.
16102 // Truncate Value To Stored Memory Size.
16104 if (!getTruncatedStoreValue(ST
, Val
))
16106 if (!isTypeLegal(LDMemType
))
16108 if (STMemType
!= LDMemType
) {
16109 // TODO: Support vectors? This requires extract_subvector/bitcast.
16110 if (!STMemType
.isVector() && !LDMemType
.isVector() &&
16111 STMemType
.isInteger() && LDMemType
.isInteger())
16112 Val
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LD
), LDMemType
, Val
);
16116 if (!extendLoadedValueToExtension(LD
, Val
))
16118 return ReplaceLd(LD
, Val
, Chain
);
16121 // On failure, cleanup dead nodes we may have created.
16122 if (Val
->use_empty())
16123 deleteAndRecombine(Val
.getNode());
16127 SDValue
DAGCombiner::visitLOAD(SDNode
*N
) {
16128 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
16129 SDValue Chain
= LD
->getChain();
16130 SDValue Ptr
= LD
->getBasePtr();
16132 // If load is not volatile and there are no uses of the loaded value (and
16133 // the updated indexed value in case of indexed loads), change uses of the
16134 // chain value into uses of the chain input (i.e. delete the dead load).
16135 // TODO: Allow this for unordered atomics (see D66309)
16136 if (LD
->isSimple()) {
16137 if (N
->getValueType(1) == MVT::Other
) {
16138 // Unindexed loads.
16139 if (!N
->hasAnyUseOfValue(0)) {
16140 // It's not safe to use the two value CombineTo variant here. e.g.
16141 // v1, chain2 = load chain1, loc
16142 // v2, chain3 = load chain2, loc
16144 // Now we replace use of chain2 with chain1. This makes the second load
16145 // isomorphic to the one we are deleting, and thus makes this load live.
16146 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N
->dump(&DAG
);
16147 dbgs() << "\nWith chain: "; Chain
.getNode()->dump(&DAG
);
16149 WorklistRemover
DeadNodes(*this);
16150 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
);
16151 AddUsersToWorklist(Chain
.getNode());
16152 if (N
->use_empty())
16153 deleteAndRecombine(N
);
16155 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
16159 assert(N
->getValueType(2) == MVT::Other
&& "Malformed indexed loads?");
16161 // If this load has an opaque TargetConstant offset, then we cannot split
16162 // the indexing into an add/sub directly (that TargetConstant may not be
16163 // valid for a different type of node, and we cannot convert an opaque
16164 // target constant into a regular constant).
16165 bool CanSplitIdx
= canSplitIdx(LD
);
16167 if (!N
->hasAnyUseOfValue(0) && (CanSplitIdx
|| !N
->hasAnyUseOfValue(1))) {
16168 SDValue Undef
= DAG
.getUNDEF(N
->getValueType(0));
16170 if (N
->hasAnyUseOfValue(1) && CanSplitIdx
) {
16171 Index
= SplitIndexingFromLoad(LD
);
16172 // Try to fold the base pointer arithmetic into subsequent loads and
16174 AddUsersToWorklist(N
);
16176 Index
= DAG
.getUNDEF(N
->getValueType(1));
16177 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N
->dump(&DAG
);
16178 dbgs() << "\nWith: "; Undef
.getNode()->dump(&DAG
);
16179 dbgs() << " and 2 other values\n");
16180 WorklistRemover
DeadNodes(*this);
16181 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Undef
);
16182 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Index
);
16183 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 2), Chain
);
16184 deleteAndRecombine(N
);
16185 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
16190 // If this load is directly stored, replace the load value with the stored
16192 if (auto V
= ForwardStoreValueToDirectLoad(LD
))
16195 // Try to infer better alignment information than the load already has.
16196 if (OptLevel
!= CodeGenOpt::None
&& LD
->isUnindexed() && !LD
->isAtomic()) {
16197 if (MaybeAlign Alignment
= DAG
.InferPtrAlign(Ptr
)) {
16198 if (*Alignment
> LD
->getAlign() &&
16199 isAligned(*Alignment
, LD
->getSrcValueOffset())) {
16200 SDValue NewLoad
= DAG
.getExtLoad(
16201 LD
->getExtensionType(), SDLoc(N
), LD
->getValueType(0), Chain
, Ptr
,
16202 LD
->getPointerInfo(), LD
->getMemoryVT(), *Alignment
,
16203 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
16204 // NewLoad will always be N as we are only refining the alignment
16205 assert(NewLoad
.getNode() == N
);
16211 if (LD
->isUnindexed()) {
16212 // Walk up chain skipping non-aliasing memory nodes.
16213 SDValue BetterChain
= FindBetterChain(LD
, Chain
);
16215 // If there is a better chain.
16216 if (Chain
!= BetterChain
) {
16219 // Replace the chain to void dependency.
16220 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
) {
16221 ReplLoad
= DAG
.getLoad(N
->getValueType(0), SDLoc(LD
),
16222 BetterChain
, Ptr
, LD
->getMemOperand());
16224 ReplLoad
= DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
),
16225 LD
->getValueType(0),
16226 BetterChain
, Ptr
, LD
->getMemoryVT(),
16227 LD
->getMemOperand());
16230 // Create token factor to keep old chain connected.
16231 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, SDLoc(N
),
16232 MVT::Other
, Chain
, ReplLoad
.getValue(1));
16234 // Replace uses with load result and token factor
16235 return CombineTo(N
, ReplLoad
.getValue(0), Token
);
16239 // Try transforming N to an indexed load.
16240 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
16241 return SDValue(N
, 0);
16243 // Try to slice up N to more direct loads if the slices are mapped to
16244 // different register banks or pairing can take place.
16245 if (SliceUpLoad(N
))
16246 return SDValue(N
, 0);
16253 /// Helper structure used to slice a load in smaller loads.
16254 /// Basically a slice is obtained from the following sequence:
16255 /// Origin = load Ty1, Base
16256 /// Shift = srl Ty1 Origin, CstTy Amount
16257 /// Inst = trunc Shift to Ty2
16259 /// Then, it will be rewritten into:
16260 /// Slice = load SliceTy, Base + SliceOffset
16261 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
16263 /// SliceTy is deduced from the number of bits that are actually used to
16265 struct LoadedSlice
{
16266 /// Helper structure used to compute the cost of a slice.
16268 /// Are we optimizing for code size.
16269 bool ForCodeSize
= false;
16272 unsigned Loads
= 0;
16273 unsigned Truncates
= 0;
16274 unsigned CrossRegisterBanksCopies
= 0;
16275 unsigned ZExts
= 0;
16276 unsigned Shift
= 0;
16278 explicit Cost(bool ForCodeSize
) : ForCodeSize(ForCodeSize
) {}
16280 /// Get the cost of one isolated slice.
16281 Cost(const LoadedSlice
&LS
, bool ForCodeSize
)
16282 : ForCodeSize(ForCodeSize
), Loads(1) {
16283 EVT TruncType
= LS
.Inst
->getValueType(0);
16284 EVT LoadedType
= LS
.getLoadedType();
16285 if (TruncType
!= LoadedType
&&
16286 !LS
.DAG
->getTargetLoweringInfo().isZExtFree(LoadedType
, TruncType
))
16290 /// Account for slicing gain in the current cost.
16291 /// Slicing provide a few gains like removing a shift or a
16292 /// truncate. This method allows to grow the cost of the original
16293 /// load with the gain from this slice.
16294 void addSliceGain(const LoadedSlice
&LS
) {
16295 // Each slice saves a truncate.
16296 const TargetLowering
&TLI
= LS
.DAG
->getTargetLoweringInfo();
16297 if (!TLI
.isTruncateFree(LS
.Inst
->getOperand(0).getValueType(),
16298 LS
.Inst
->getValueType(0)))
16300 // If there is a shift amount, this slice gets rid of it.
16303 // If this slice can merge a cross register bank copy, account for it.
16304 if (LS
.canMergeExpensiveCrossRegisterBankCopy())
16305 ++CrossRegisterBanksCopies
;
16308 Cost
&operator+=(const Cost
&RHS
) {
16309 Loads
+= RHS
.Loads
;
16310 Truncates
+= RHS
.Truncates
;
16311 CrossRegisterBanksCopies
+= RHS
.CrossRegisterBanksCopies
;
16312 ZExts
+= RHS
.ZExts
;
16313 Shift
+= RHS
.Shift
;
16317 bool operator==(const Cost
&RHS
) const {
16318 return Loads
== RHS
.Loads
&& Truncates
== RHS
.Truncates
&&
16319 CrossRegisterBanksCopies
== RHS
.CrossRegisterBanksCopies
&&
16320 ZExts
== RHS
.ZExts
&& Shift
== RHS
.Shift
;
16323 bool operator!=(const Cost
&RHS
) const { return !(*this == RHS
); }
16325 bool operator<(const Cost
&RHS
) const {
16326 // Assume cross register banks copies are as expensive as loads.
16327 // FIXME: Do we want some more target hooks?
16328 unsigned ExpensiveOpsLHS
= Loads
+ CrossRegisterBanksCopies
;
16329 unsigned ExpensiveOpsRHS
= RHS
.Loads
+ RHS
.CrossRegisterBanksCopies
;
16330 // Unless we are optimizing for code size, consider the
16331 // expensive operation first.
16332 if (!ForCodeSize
&& ExpensiveOpsLHS
!= ExpensiveOpsRHS
)
16333 return ExpensiveOpsLHS
< ExpensiveOpsRHS
;
16334 return (Truncates
+ ZExts
+ Shift
+ ExpensiveOpsLHS
) <
16335 (RHS
.Truncates
+ RHS
.ZExts
+ RHS
.Shift
+ ExpensiveOpsRHS
);
16338 bool operator>(const Cost
&RHS
) const { return RHS
< *this; }
16340 bool operator<=(const Cost
&RHS
) const { return !(RHS
< *this); }
16342 bool operator>=(const Cost
&RHS
) const { return !(*this < RHS
); }
16345 // The last instruction that represent the slice. This should be a
16346 // truncate instruction.
16349 // The original load instruction.
16350 LoadSDNode
*Origin
;
16352 // The right shift amount in bits from the original load.
16355 // The DAG from which Origin came from.
16356 // This is used to get some contextual information about legal types, etc.
16359 LoadedSlice(SDNode
*Inst
= nullptr, LoadSDNode
*Origin
= nullptr,
16360 unsigned Shift
= 0, SelectionDAG
*DAG
= nullptr)
16361 : Inst(Inst
), Origin(Origin
), Shift(Shift
), DAG(DAG
) {}
16363 /// Get the bits used in a chunk of bits \p BitWidth large.
16364 /// \return Result is \p BitWidth and has used bits set to 1 and
16365 /// not used bits set to 0.
16366 APInt
getUsedBits() const {
16367 // Reproduce the trunc(lshr) sequence:
16368 // - Start from the truncated value.
16369 // - Zero extend to the desired bit width.
16371 assert(Origin
&& "No original load to compare against.");
16372 unsigned BitWidth
= Origin
->getValueSizeInBits(0);
16373 assert(Inst
&& "This slice is not bound to an instruction");
16374 assert(Inst
->getValueSizeInBits(0) <= BitWidth
&&
16375 "Extracted slice is bigger than the whole type!");
16376 APInt
UsedBits(Inst
->getValueSizeInBits(0), 0);
16377 UsedBits
.setAllBits();
16378 UsedBits
= UsedBits
.zext(BitWidth
);
16379 UsedBits
<<= Shift
;
16383 /// Get the size of the slice to be loaded in bytes.
16384 unsigned getLoadedSize() const {
16385 unsigned SliceSize
= getUsedBits().countPopulation();
16386 assert(!(SliceSize
& 0x7) && "Size is not a multiple of a byte.");
16387 return SliceSize
/ 8;
16390 /// Get the type that will be loaded for this slice.
16391 /// Note: This may not be the final type for the slice.
16392 EVT
getLoadedType() const {
16393 assert(DAG
&& "Missing context");
16394 LLVMContext
&Ctxt
= *DAG
->getContext();
16395 return EVT::getIntegerVT(Ctxt
, getLoadedSize() * 8);
16398 /// Get the alignment of the load used for this slice.
16399 Align
getAlign() const {
16400 Align Alignment
= Origin
->getAlign();
16401 uint64_t Offset
= getOffsetFromBase();
16403 Alignment
= commonAlignment(Alignment
, Alignment
.value() + Offset
);
16407 /// Check if this slice can be rewritten with legal operations.
16408 bool isLegal() const {
16409 // An invalid slice is not legal.
16410 if (!Origin
|| !Inst
|| !DAG
)
16413 // Offsets are for indexed load only, we do not handle that.
16414 if (!Origin
->getOffset().isUndef())
16417 const TargetLowering
&TLI
= DAG
->getTargetLoweringInfo();
16419 // Check that the type is legal.
16420 EVT SliceType
= getLoadedType();
16421 if (!TLI
.isTypeLegal(SliceType
))
16424 // Check that the load is legal for this type.
16425 if (!TLI
.isOperationLegal(ISD::LOAD
, SliceType
))
16428 // Check that the offset can be computed.
16429 // 1. Check its type.
16430 EVT PtrType
= Origin
->getBasePtr().getValueType();
16431 if (PtrType
== MVT::Untyped
|| PtrType
.isExtended())
16434 // 2. Check that it fits in the immediate.
16435 if (!TLI
.isLegalAddImmediate(getOffsetFromBase()))
16438 // 3. Check that the computation is legal.
16439 if (!TLI
.isOperationLegal(ISD::ADD
, PtrType
))
16442 // Check that the zext is legal if it needs one.
16443 EVT TruncateType
= Inst
->getValueType(0);
16444 if (TruncateType
!= SliceType
&&
16445 !TLI
.isOperationLegal(ISD::ZERO_EXTEND
, TruncateType
))
16451 /// Get the offset in bytes of this slice in the original chunk of
16453 /// \pre DAG != nullptr.
16454 uint64_t getOffsetFromBase() const {
16455 assert(DAG
&& "Missing context.");
16456 bool IsBigEndian
= DAG
->getDataLayout().isBigEndian();
16457 assert(!(Shift
& 0x7) && "Shifts not aligned on Bytes are not supported.");
16458 uint64_t Offset
= Shift
/ 8;
16459 unsigned TySizeInBytes
= Origin
->getValueSizeInBits(0) / 8;
16460 assert(!(Origin
->getValueSizeInBits(0) & 0x7) &&
16461 "The size of the original loaded type is not a multiple of a"
16463 // If Offset is bigger than TySizeInBytes, it means we are loading all
16464 // zeros. This should have been optimized before in the process.
16465 assert(TySizeInBytes
> Offset
&&
16466 "Invalid shift amount for given loaded size");
16468 Offset
= TySizeInBytes
- Offset
- getLoadedSize();
16472 /// Generate the sequence of instructions to load the slice
16473 /// represented by this object and redirect the uses of this slice to
16474 /// this new sequence of instructions.
16475 /// \pre this->Inst && this->Origin are valid Instructions and this
16476 /// object passed the legal check: LoadedSlice::isLegal returned true.
16477 /// \return The last instruction of the sequence used to load the slice.
16478 SDValue
loadSlice() const {
16479 assert(Inst
&& Origin
&& "Unable to replace a non-existing slice.");
16480 const SDValue
&OldBaseAddr
= Origin
->getBasePtr();
16481 SDValue BaseAddr
= OldBaseAddr
;
16482 // Get the offset in that chunk of bytes w.r.t. the endianness.
16483 int64_t Offset
= static_cast<int64_t>(getOffsetFromBase());
16484 assert(Offset
>= 0 && "Offset too big to fit in int64_t!");
16486 // BaseAddr = BaseAddr + Offset.
16487 EVT ArithType
= BaseAddr
.getValueType();
16489 BaseAddr
= DAG
->getNode(ISD::ADD
, DL
, ArithType
, BaseAddr
,
16490 DAG
->getConstant(Offset
, DL
, ArithType
));
16493 // Create the type of the loaded slice according to its size.
16494 EVT SliceType
= getLoadedType();
16496 // Create the load for the slice.
16498 DAG
->getLoad(SliceType
, SDLoc(Origin
), Origin
->getChain(), BaseAddr
,
16499 Origin
->getPointerInfo().getWithOffset(Offset
), getAlign(),
16500 Origin
->getMemOperand()->getFlags());
16501 // If the final type is not the same as the loaded type, this means that
16502 // we have to pad with zero. Create a zero extend for that.
16503 EVT FinalType
= Inst
->getValueType(0);
16504 if (SliceType
!= FinalType
)
16506 DAG
->getNode(ISD::ZERO_EXTEND
, SDLoc(LastInst
), FinalType
, LastInst
);
16510 /// Check if this slice can be merged with an expensive cross register
16511 /// bank copy. E.g.,
16513 /// f = bitcast i32 i to float
16514 bool canMergeExpensiveCrossRegisterBankCopy() const {
16515 if (!Inst
|| !Inst
->hasOneUse())
16517 SDNode
*Use
= *Inst
->use_begin();
16518 if (Use
->getOpcode() != ISD::BITCAST
)
16520 assert(DAG
&& "Missing context");
16521 const TargetLowering
&TLI
= DAG
->getTargetLoweringInfo();
16522 EVT ResVT
= Use
->getValueType(0);
16523 const TargetRegisterClass
*ResRC
=
16524 TLI
.getRegClassFor(ResVT
.getSimpleVT(), Use
->isDivergent());
16525 const TargetRegisterClass
*ArgRC
=
16526 TLI
.getRegClassFor(Use
->getOperand(0).getValueType().getSimpleVT(),
16527 Use
->getOperand(0)->isDivergent());
16528 if (ArgRC
== ResRC
|| !TLI
.isOperationLegal(ISD::LOAD
, ResVT
))
16531 // At this point, we know that we perform a cross-register-bank copy.
16532 // Check if it is expensive.
16533 const TargetRegisterInfo
*TRI
= DAG
->getSubtarget().getRegisterInfo();
16534 // Assume bitcasts are cheap, unless both register classes do not
16535 // explicitly share a common sub class.
16536 if (!TRI
|| TRI
->getCommonSubClass(ArgRC
, ResRC
))
16539 // Check if it will be merged with the load.
16540 // 1. Check the alignment / fast memory access constraint.
16541 bool IsFast
= false;
16542 if (!TLI
.allowsMemoryAccess(*DAG
->getContext(), DAG
->getDataLayout(), ResVT
,
16543 Origin
->getAddressSpace(), getAlign(),
16544 Origin
->getMemOperand()->getFlags(), &IsFast
) ||
16548 // 2. Check that the load is a legal operation for that type.
16549 if (!TLI
.isOperationLegal(ISD::LOAD
, ResVT
))
16552 // 3. Check that we do not have a zext in the way.
16553 if (Inst
->getValueType(0) != getLoadedType())
16560 } // end anonymous namespace
16562 /// Check that all bits set in \p UsedBits form a dense region, i.e.,
16563 /// \p UsedBits looks like 0..0 1..1 0..0.
16564 static bool areUsedBitsDense(const APInt
&UsedBits
) {
16565 // If all the bits are one, this is dense!
16566 if (UsedBits
.isAllOnes())
16569 // Get rid of the unused bits on the right.
16570 APInt NarrowedUsedBits
= UsedBits
.lshr(UsedBits
.countTrailingZeros());
16571 // Get rid of the unused bits on the left.
16572 if (NarrowedUsedBits
.countLeadingZeros())
16573 NarrowedUsedBits
= NarrowedUsedBits
.trunc(NarrowedUsedBits
.getActiveBits());
16574 // Check that the chunk of bits is completely used.
16575 return NarrowedUsedBits
.isAllOnes();
16578 /// Check whether or not \p First and \p Second are next to each other
16579 /// in memory. This means that there is no hole between the bits loaded
16580 /// by \p First and the bits loaded by \p Second.
16581 static bool areSlicesNextToEachOther(const LoadedSlice
&First
,
16582 const LoadedSlice
&Second
) {
16583 assert(First
.Origin
== Second
.Origin
&& First
.Origin
&&
16584 "Unable to match different memory origins.");
16585 APInt UsedBits
= First
.getUsedBits();
16586 assert((UsedBits
& Second
.getUsedBits()) == 0 &&
16587 "Slices are not supposed to overlap.");
16588 UsedBits
|= Second
.getUsedBits();
16589 return areUsedBitsDense(UsedBits
);
16592 /// Adjust the \p GlobalLSCost according to the target
16593 /// paring capabilities and the layout of the slices.
16594 /// \pre \p GlobalLSCost should account for at least as many loads as
16595 /// there is in the slices in \p LoadedSlices.
16596 static void adjustCostForPairing(SmallVectorImpl
<LoadedSlice
> &LoadedSlices
,
16597 LoadedSlice::Cost
&GlobalLSCost
) {
16598 unsigned NumberOfSlices
= LoadedSlices
.size();
16599 // If there is less than 2 elements, no pairing is possible.
16600 if (NumberOfSlices
< 2)
16603 // Sort the slices so that elements that are likely to be next to each
16604 // other in memory are next to each other in the list.
16605 llvm::sort(LoadedSlices
, [](const LoadedSlice
&LHS
, const LoadedSlice
&RHS
) {
16606 assert(LHS
.Origin
== RHS
.Origin
&& "Different bases not implemented.");
16607 return LHS
.getOffsetFromBase() < RHS
.getOffsetFromBase();
16609 const TargetLowering
&TLI
= LoadedSlices
[0].DAG
->getTargetLoweringInfo();
16610 // First (resp. Second) is the first (resp. Second) potentially candidate
16611 // to be placed in a paired load.
16612 const LoadedSlice
*First
= nullptr;
16613 const LoadedSlice
*Second
= nullptr;
16614 for (unsigned CurrSlice
= 0; CurrSlice
< NumberOfSlices
; ++CurrSlice
,
16615 // Set the beginning of the pair.
16617 Second
= &LoadedSlices
[CurrSlice
];
16619 // If First is NULL, it means we start a new pair.
16620 // Get to the next slice.
16624 EVT LoadedType
= First
->getLoadedType();
16626 // If the types of the slices are different, we cannot pair them.
16627 if (LoadedType
!= Second
->getLoadedType())
16630 // Check if the target supplies paired loads for this type.
16631 Align RequiredAlignment
;
16632 if (!TLI
.hasPairedLoad(LoadedType
, RequiredAlignment
)) {
16633 // move to the next pair, this type is hopeless.
16637 // Check if we meet the alignment requirement.
16638 if (First
->getAlign() < RequiredAlignment
)
16641 // Check that both loads are next to each other in memory.
16642 if (!areSlicesNextToEachOther(*First
, *Second
))
16645 assert(GlobalLSCost
.Loads
> 0 && "We save more loads than we created!");
16646 --GlobalLSCost
.Loads
;
16647 // Move to the next pair.
16652 /// Check the profitability of all involved LoadedSlice.
16653 /// Currently, it is considered profitable if there is exactly two
16654 /// involved slices (1) which are (2) next to each other in memory, and
16655 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
16657 /// Note: The order of the elements in \p LoadedSlices may be modified, but not
16658 /// the elements themselves.
16660 /// FIXME: When the cost model will be mature enough, we can relax
16661 /// constraints (1) and (2).
16662 static bool isSlicingProfitable(SmallVectorImpl
<LoadedSlice
> &LoadedSlices
,
16663 const APInt
&UsedBits
, bool ForCodeSize
) {
16664 unsigned NumberOfSlices
= LoadedSlices
.size();
16665 if (StressLoadSlicing
)
16666 return NumberOfSlices
> 1;
16669 if (NumberOfSlices
!= 2)
16673 if (!areUsedBitsDense(UsedBits
))
16677 LoadedSlice::Cost
OrigCost(ForCodeSize
), GlobalSlicingCost(ForCodeSize
);
16678 // The original code has one big load.
16679 OrigCost
.Loads
= 1;
16680 for (unsigned CurrSlice
= 0; CurrSlice
< NumberOfSlices
; ++CurrSlice
) {
16681 const LoadedSlice
&LS
= LoadedSlices
[CurrSlice
];
16682 // Accumulate the cost of all the slices.
16683 LoadedSlice::Cost
SliceCost(LS
, ForCodeSize
);
16684 GlobalSlicingCost
+= SliceCost
;
16686 // Account as cost in the original configuration the gain obtained
16687 // with the current slices.
16688 OrigCost
.addSliceGain(LS
);
16691 // If the target supports paired load, adjust the cost accordingly.
16692 adjustCostForPairing(LoadedSlices
, GlobalSlicingCost
);
16693 return OrigCost
> GlobalSlicingCost
;
16696 /// If the given load, \p LI, is used only by trunc or trunc(lshr)
16697 /// operations, split it in the various pieces being extracted.
16699 /// This sort of thing is introduced by SROA.
16700 /// This slicing takes care not to insert overlapping loads.
16701 /// \pre LI is a simple load (i.e., not an atomic or volatile load).
16702 bool DAGCombiner::SliceUpLoad(SDNode
*N
) {
16703 if (Level
< AfterLegalizeDAG
)
16706 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
16707 if (!LD
->isSimple() || !ISD::isNormalLoad(LD
) ||
16708 !LD
->getValueType(0).isInteger())
16711 // The algorithm to split up a load of a scalable vector into individual
16712 // elements currently requires knowing the length of the loaded type,
16713 // so will need adjusting to work on scalable vectors.
16714 if (LD
->getValueType(0).isScalableVector())
16717 // Keep track of already used bits to detect overlapping values.
16718 // In that case, we will just abort the transformation.
16719 APInt
UsedBits(LD
->getValueSizeInBits(0), 0);
16721 SmallVector
<LoadedSlice
, 4> LoadedSlices
;
16723 // Check if this load is used as several smaller chunks of bits.
16724 // Basically, look for uses in trunc or trunc(lshr) and record a new chain
16725 // of computation for each trunc.
16726 for (SDNode::use_iterator UI
= LD
->use_begin(), UIEnd
= LD
->use_end();
16727 UI
!= UIEnd
; ++UI
) {
16728 // Skip the uses of the chain.
16729 if (UI
.getUse().getResNo() != 0)
16732 SDNode
*User
= *UI
;
16733 unsigned Shift
= 0;
16735 // Check if this is a trunc(lshr).
16736 if (User
->getOpcode() == ISD::SRL
&& User
->hasOneUse() &&
16737 isa
<ConstantSDNode
>(User
->getOperand(1))) {
16738 Shift
= User
->getConstantOperandVal(1);
16739 User
= *User
->use_begin();
16742 // At this point, User is a Truncate, iff we encountered, trunc or
16744 if (User
->getOpcode() != ISD::TRUNCATE
)
16747 // The width of the type must be a power of 2 and greater than 8-bits.
16748 // Otherwise the load cannot be represented in LLVM IR.
16749 // Moreover, if we shifted with a non-8-bits multiple, the slice
16750 // will be across several bytes. We do not support that.
16751 unsigned Width
= User
->getValueSizeInBits(0);
16752 if (Width
< 8 || !isPowerOf2_32(Width
) || (Shift
& 0x7))
16755 // Build the slice for this chain of computations.
16756 LoadedSlice
LS(User
, LD
, Shift
, &DAG
);
16757 APInt CurrentUsedBits
= LS
.getUsedBits();
16759 // Check if this slice overlaps with another.
16760 if ((CurrentUsedBits
& UsedBits
) != 0)
16762 // Update the bits used globally.
16763 UsedBits
|= CurrentUsedBits
;
16765 // Check if the new slice would be legal.
16769 // Record the slice.
16770 LoadedSlices
.push_back(LS
);
16773 // Abort slicing if it does not seem to be profitable.
16774 if (!isSlicingProfitable(LoadedSlices
, UsedBits
, ForCodeSize
))
16779 // Rewrite each chain to use an independent load.
16780 // By construction, each chain can be represented by a unique load.
16782 // Prepare the argument for the new token factor for all the slices.
16783 SmallVector
<SDValue
, 8> ArgChains
;
16784 for (const LoadedSlice
&LS
: LoadedSlices
) {
16785 SDValue SliceInst
= LS
.loadSlice();
16786 CombineTo(LS
.Inst
, SliceInst
, true);
16787 if (SliceInst
.getOpcode() != ISD::LOAD
)
16788 SliceInst
= SliceInst
.getOperand(0);
16789 assert(SliceInst
->getOpcode() == ISD::LOAD
&&
16790 "It takes more than a zext to get to the loaded slice!!");
16791 ArgChains
.push_back(SliceInst
.getValue(1));
16794 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, SDLoc(LD
), MVT::Other
,
16796 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
);
16797 AddToWorklist(Chain
.getNode());
16801 /// Check to see if V is (and load (ptr), imm), where the load is having
16802 /// specific bytes cleared out. If so, return the byte size being masked out
16803 /// and the shift amount.
16804 static std::pair
<unsigned, unsigned>
16805 CheckForMaskedLoad(SDValue V
, SDValue Ptr
, SDValue Chain
) {
16806 std::pair
<unsigned, unsigned> Result(0, 0);
16808 // Check for the structure we're looking for.
16809 if (V
->getOpcode() != ISD::AND
||
16810 !isa
<ConstantSDNode
>(V
->getOperand(1)) ||
16811 !ISD::isNormalLoad(V
->getOperand(0).getNode()))
16814 // Check the chain and pointer.
16815 LoadSDNode
*LD
= cast
<LoadSDNode
>(V
->getOperand(0));
16816 if (LD
->getBasePtr() != Ptr
) return Result
; // Not from same pointer.
16818 // This only handles simple types.
16819 if (V
.getValueType() != MVT::i16
&&
16820 V
.getValueType() != MVT::i32
&&
16821 V
.getValueType() != MVT::i64
)
16824 // Check the constant mask. Invert it so that the bits being masked out are
16825 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
16826 // follow the sign bit for uniformity.
16827 uint64_t NotMask
= ~cast
<ConstantSDNode
>(V
->getOperand(1))->getSExtValue();
16828 unsigned NotMaskLZ
= countLeadingZeros(NotMask
);
16829 if (NotMaskLZ
& 7) return Result
; // Must be multiple of a byte.
16830 unsigned NotMaskTZ
= countTrailingZeros(NotMask
);
16831 if (NotMaskTZ
& 7) return Result
; // Must be multiple of a byte.
16832 if (NotMaskLZ
== 64) return Result
; // All zero mask.
16834 // See if we have a continuous run of bits. If so, we have 0*1+0*
16835 if (countTrailingOnes(NotMask
>> NotMaskTZ
) + NotMaskTZ
+ NotMaskLZ
!= 64)
16838 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
16839 if (V
.getValueType() != MVT::i64
&& NotMaskLZ
)
16840 NotMaskLZ
-= 64-V
.getValueSizeInBits();
16842 unsigned MaskedBytes
= (V
.getValueSizeInBits()-NotMaskLZ
-NotMaskTZ
)/8;
16843 switch (MaskedBytes
) {
16847 default: return Result
; // All one mask, or 5-byte mask.
16850 // Verify that the first bit starts at a multiple of mask so that the access
16851 // is aligned the same as the access width.
16852 if (NotMaskTZ
&& NotMaskTZ
/8 % MaskedBytes
) return Result
;
16854 // For narrowing to be valid, it must be the case that the load the
16855 // immediately preceding memory operation before the store.
16856 if (LD
== Chain
.getNode())
16858 else if (Chain
->getOpcode() == ISD::TokenFactor
&&
16859 SDValue(LD
, 1).hasOneUse()) {
16860 // LD has only 1 chain use so they are no indirect dependencies.
16861 if (!LD
->isOperandOf(Chain
.getNode()))
16864 return Result
; // Fail.
16866 Result
.first
= MaskedBytes
;
16867 Result
.second
= NotMaskTZ
/8;
16871 /// Check to see if IVal is something that provides a value as specified by
16872 /// MaskInfo. If so, replace the specified store with a narrower store of
16873 /// truncated IVal.
16875 ShrinkLoadReplaceStoreWithStore(const std::pair
<unsigned, unsigned> &MaskInfo
,
16876 SDValue IVal
, StoreSDNode
*St
,
16878 unsigned NumBytes
= MaskInfo
.first
;
16879 unsigned ByteShift
= MaskInfo
.second
;
16880 SelectionDAG
&DAG
= DC
->getDAG();
16882 // Check to see if IVal is all zeros in the part being masked in by the 'or'
16883 // that uses this. If not, this is not a replacement.
16884 APInt Mask
= ~APInt::getBitsSet(IVal
.getValueSizeInBits(),
16885 ByteShift
*8, (ByteShift
+NumBytes
)*8);
16886 if (!DAG
.MaskedValueIsZero(IVal
, Mask
)) return SDValue();
16888 // Check that it is legal on the target to do this. It is legal if the new
16889 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
16890 // legalization (and the target doesn't explicitly think this is a bad idea).
16891 MVT VT
= MVT::getIntegerVT(NumBytes
* 8);
16892 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
16893 if (!DC
->isTypeLegal(VT
))
16895 if (St
->getMemOperand() &&
16896 !TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), VT
,
16897 *St
->getMemOperand()))
16900 // Okay, we can do this! Replace the 'St' store with a store of IVal that is
16901 // shifted by ByteShift and truncated down to NumBytes.
16904 IVal
= DAG
.getNode(ISD::SRL
, DL
, IVal
.getValueType(), IVal
,
16905 DAG
.getConstant(ByteShift
*8, DL
,
16906 DC
->getShiftAmountTy(IVal
.getValueType())));
16909 // Figure out the offset for the store and the alignment of the access.
16911 if (DAG
.getDataLayout().isLittleEndian())
16912 StOffset
= ByteShift
;
16914 StOffset
= IVal
.getValueType().getStoreSize() - ByteShift
- NumBytes
;
16916 SDValue Ptr
= St
->getBasePtr();
16919 Ptr
= DAG
.getMemBasePlusOffset(Ptr
, TypeSize::Fixed(StOffset
), DL
);
16922 // Truncate down to the new size.
16923 IVal
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(IVal
), VT
, IVal
);
16927 .getStore(St
->getChain(), SDLoc(St
), IVal
, Ptr
,
16928 St
->getPointerInfo().getWithOffset(StOffset
),
16929 St
->getOriginalAlign());
16932 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and
16933 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
16934 /// narrowing the load and store if it would end up being a win for performance
16936 SDValue
DAGCombiner::ReduceLoadOpStoreWidth(SDNode
*N
) {
16937 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
16938 if (!ST
->isSimple())
16941 SDValue Chain
= ST
->getChain();
16942 SDValue Value
= ST
->getValue();
16943 SDValue Ptr
= ST
->getBasePtr();
16944 EVT VT
= Value
.getValueType();
16946 if (ST
->isTruncatingStore() || VT
.isVector() || !Value
.hasOneUse())
16949 unsigned Opc
= Value
.getOpcode();
16951 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
16952 // is a byte mask indicating a consecutive number of bytes, check to see if
16953 // Y is known to provide just those bytes. If so, we try to replace the
16954 // load + replace + store sequence with a single (narrower) store, which makes
16956 if (Opc
== ISD::OR
&& EnableShrinkLoadReplaceStoreWithStore
) {
16957 std::pair
<unsigned, unsigned> MaskedLoad
;
16958 MaskedLoad
= CheckForMaskedLoad(Value
.getOperand(0), Ptr
, Chain
);
16959 if (MaskedLoad
.first
)
16960 if (SDValue NewST
= ShrinkLoadReplaceStoreWithStore(MaskedLoad
,
16961 Value
.getOperand(1), ST
,this))
16964 // Or is commutative, so try swapping X and Y.
16965 MaskedLoad
= CheckForMaskedLoad(Value
.getOperand(1), Ptr
, Chain
);
16966 if (MaskedLoad
.first
)
16967 if (SDValue NewST
= ShrinkLoadReplaceStoreWithStore(MaskedLoad
,
16968 Value
.getOperand(0), ST
,this))
16972 if (!EnableReduceLoadOpStoreWidth
)
16975 if ((Opc
!= ISD::OR
&& Opc
!= ISD::XOR
&& Opc
!= ISD::AND
) ||
16976 Value
.getOperand(1).getOpcode() != ISD::Constant
)
16979 SDValue N0
= Value
.getOperand(0);
16980 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
16981 Chain
== SDValue(N0
.getNode(), 1)) {
16982 LoadSDNode
*LD
= cast
<LoadSDNode
>(N0
);
16983 if (LD
->getBasePtr() != Ptr
||
16984 LD
->getPointerInfo().getAddrSpace() !=
16985 ST
->getPointerInfo().getAddrSpace())
16988 // Find the type to narrow it the load / op / store to.
16989 SDValue N1
= Value
.getOperand(1);
16990 unsigned BitWidth
= N1
.getValueSizeInBits();
16991 APInt Imm
= cast
<ConstantSDNode
>(N1
)->getAPIntValue();
16992 if (Opc
== ISD::AND
)
16993 Imm
^= APInt::getAllOnes(BitWidth
);
16994 if (Imm
== 0 || Imm
.isAllOnes())
16996 unsigned ShAmt
= Imm
.countTrailingZeros();
16997 unsigned MSB
= BitWidth
- Imm
.countLeadingZeros() - 1;
16998 unsigned NewBW
= NextPowerOf2(MSB
- ShAmt
);
16999 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
17000 // The narrowing should be profitable, the load/store operation should be
17001 // legal (or custom) and the store size should be equal to the NewVT width.
17002 while (NewBW
< BitWidth
&&
17003 (NewVT
.getStoreSizeInBits() != NewBW
||
17004 !TLI
.isOperationLegalOrCustom(Opc
, NewVT
) ||
17005 !TLI
.isNarrowingProfitable(VT
, NewVT
))) {
17006 NewBW
= NextPowerOf2(NewBW
);
17007 NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
17009 if (NewBW
>= BitWidth
)
17012 // If the lsb changed does not start at the type bitwidth boundary,
17013 // start at the previous one.
17015 ShAmt
= (((ShAmt
+ NewBW
- 1) / NewBW
) * NewBW
) - NewBW
;
17016 APInt Mask
= APInt::getBitsSet(BitWidth
, ShAmt
,
17017 std::min(BitWidth
, ShAmt
+ NewBW
));
17018 if ((Imm
& Mask
) == Imm
) {
17019 APInt NewImm
= (Imm
& Mask
).lshr(ShAmt
).trunc(NewBW
);
17020 if (Opc
== ISD::AND
)
17021 NewImm
^= APInt::getAllOnes(NewBW
);
17022 uint64_t PtrOff
= ShAmt
/ 8;
17023 // For big endian targets, we need to adjust the offset to the pointer to
17024 // load the correct bytes.
17025 if (DAG
.getDataLayout().isBigEndian())
17026 PtrOff
= (BitWidth
+ 7 - NewBW
) / 8 - PtrOff
;
17028 bool IsFast
= false;
17029 Align NewAlign
= commonAlignment(LD
->getAlign(), PtrOff
);
17030 if (!TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), NewVT
,
17031 LD
->getAddressSpace(), NewAlign
,
17032 LD
->getMemOperand()->getFlags(), &IsFast
) ||
17037 DAG
.getMemBasePlusOffset(Ptr
, TypeSize::Fixed(PtrOff
), SDLoc(LD
));
17039 DAG
.getLoad(NewVT
, SDLoc(N0
), LD
->getChain(), NewPtr
,
17040 LD
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
,
17041 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
17042 SDValue NewVal
= DAG
.getNode(Opc
, SDLoc(Value
), NewVT
, NewLD
,
17043 DAG
.getConstant(NewImm
, SDLoc(Value
),
17046 DAG
.getStore(Chain
, SDLoc(N
), NewVal
, NewPtr
,
17047 ST
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
);
17049 AddToWorklist(NewPtr
.getNode());
17050 AddToWorklist(NewLD
.getNode());
17051 AddToWorklist(NewVal
.getNode());
17052 WorklistRemover
DeadNodes(*this);
17053 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), NewLD
.getValue(1));
17062 /// For a given floating point load / store pair, if the load value isn't used
17063 /// by any other operations, then consider transforming the pair to integer
17064 /// load / store operations if the target deems the transformation profitable.
17065 SDValue
DAGCombiner::TransformFPLoadStorePair(SDNode
*N
) {
17066 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
17067 SDValue Value
= ST
->getValue();
17068 if (ISD::isNormalStore(ST
) && ISD::isNormalLoad(Value
.getNode()) &&
17069 Value
.hasOneUse()) {
17070 LoadSDNode
*LD
= cast
<LoadSDNode
>(Value
);
17071 EVT VT
= LD
->getMemoryVT();
17072 if (!VT
.isFloatingPoint() ||
17073 VT
!= ST
->getMemoryVT() ||
17074 LD
->isNonTemporal() ||
17075 ST
->isNonTemporal() ||
17076 LD
->getPointerInfo().getAddrSpace() != 0 ||
17077 ST
->getPointerInfo().getAddrSpace() != 0)
17080 TypeSize VTSize
= VT
.getSizeInBits();
17082 // We don't know the size of scalable types at compile time so we cannot
17083 // create an integer of the equivalent size.
17084 if (VTSize
.isScalable())
17087 bool FastLD
= false, FastST
= false;
17088 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), VTSize
.getFixedSize());
17089 if (!TLI
.isOperationLegal(ISD::LOAD
, IntVT
) ||
17090 !TLI
.isOperationLegal(ISD::STORE
, IntVT
) ||
17091 !TLI
.isDesirableToTransformToIntegerOp(ISD::LOAD
, VT
) ||
17092 !TLI
.isDesirableToTransformToIntegerOp(ISD::STORE
, VT
) ||
17093 !TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), IntVT
,
17094 *LD
->getMemOperand(), &FastLD
) ||
17095 !TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), IntVT
,
17096 *ST
->getMemOperand(), &FastST
) ||
17097 !FastLD
|| !FastST
)
17101 DAG
.getLoad(IntVT
, SDLoc(Value
), LD
->getChain(), LD
->getBasePtr(),
17102 LD
->getPointerInfo(), LD
->getAlign());
17105 DAG
.getStore(ST
->getChain(), SDLoc(N
), NewLD
, ST
->getBasePtr(),
17106 ST
->getPointerInfo(), ST
->getAlign());
17108 AddToWorklist(NewLD
.getNode());
17109 AddToWorklist(NewST
.getNode());
17110 WorklistRemover
DeadNodes(*this);
17111 DAG
.ReplaceAllUsesOfValueWith(Value
.getValue(1), NewLD
.getValue(1));
17119 // This is a helper function for visitMUL to check the profitability
17120 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
17121 // MulNode is the original multiply, AddNode is (add x, c1),
17122 // and ConstNode is c2.
17124 // If the (add x, c1) has multiple uses, we could increase
17125 // the number of adds if we make this transformation.
17126 // It would only be worth doing this if we can remove a
17127 // multiply in the process. Check for that here.
17131 // We're checking for cases where we have common "c3 * A" expressions.
17132 bool DAGCombiner::isMulAddWithConstProfitable(SDNode
*MulNode
,
17134 SDValue
&ConstNode
) {
17137 // If the add only has one use, and the target thinks the folding is
17138 // profitable or does not lead to worse code, this would be OK to do.
17139 if (AddNode
.getNode()->hasOneUse() &&
17140 TLI
.isMulAddWithConstProfitable(AddNode
, ConstNode
))
17143 // Walk all the users of the constant with which we're multiplying.
17144 for (SDNode
*Use
: ConstNode
->uses()) {
17145 if (Use
== MulNode
) // This use is the one we're on right now. Skip it.
17148 if (Use
->getOpcode() == ISD::MUL
) { // We have another multiply use.
17150 SDNode
*MulVar
= AddNode
.getOperand(0).getNode();
17152 // OtherOp is what we're multiplying against the constant.
17153 if (Use
->getOperand(0) == ConstNode
)
17154 OtherOp
= Use
->getOperand(1).getNode();
17156 OtherOp
= Use
->getOperand(0).getNode();
17158 // Check to see if multiply is with the same operand of our "add".
17160 // ConstNode = CONST
17161 // Use = ConstNode * A <-- visiting Use. OtherOp is A.
17163 // AddNode = (A + c1) <-- MulVar is A.
17164 // = AddNode * ConstNode <-- current visiting instruction.
17166 // If we make this transformation, we will have a common
17167 // multiply (ConstNode * A) that we can save.
17168 if (OtherOp
== MulVar
)
17171 // Now check to see if a future expansion will give us a common
17174 // ConstNode = CONST
17175 // AddNode = (A + c1)
17176 // ... = AddNode * ConstNode <-- current visiting instruction.
17178 // OtherOp = (A + c2)
17179 // Use = OtherOp * ConstNode <-- visiting Use.
17181 // If we make this transformation, we will have a common
17182 // multiply (CONST * A) after we also do the same transformation
17183 // to the "t2" instruction.
17184 if (OtherOp
->getOpcode() == ISD::ADD
&&
17185 DAG
.isConstantIntBuildVectorOrConstantInt(OtherOp
->getOperand(1)) &&
17186 OtherOp
->getOperand(0).getNode() == MulVar
)
17191 // Didn't find a case where this would be profitable.
17195 SDValue
DAGCombiner::getMergeStoreChains(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
17196 unsigned NumStores
) {
17197 SmallVector
<SDValue
, 8> Chains
;
17198 SmallPtrSet
<const SDNode
*, 8> Visited
;
17199 SDLoc
StoreDL(StoreNodes
[0].MemNode
);
17201 for (unsigned i
= 0; i
< NumStores
; ++i
) {
17202 Visited
.insert(StoreNodes
[i
].MemNode
);
17205 // don't include nodes that are children or repeated nodes.
17206 for (unsigned i
= 0; i
< NumStores
; ++i
) {
17207 if (Visited
.insert(StoreNodes
[i
].MemNode
->getChain().getNode()).second
)
17208 Chains
.push_back(StoreNodes
[i
].MemNode
->getChain());
17211 assert(Chains
.size() > 0 && "Chain should have generated a chain");
17212 return DAG
.getTokenFactor(StoreDL
, Chains
);
17215 bool DAGCombiner::mergeStoresOfConstantsOrVecElts(
17216 SmallVectorImpl
<MemOpLink
> &StoreNodes
, EVT MemVT
, unsigned NumStores
,
17217 bool IsConstantSrc
, bool UseVector
, bool UseTrunc
) {
17218 // Make sure we have something to merge.
17222 assert((!UseTrunc
|| !UseVector
) &&
17223 "This optimization cannot emit a vector truncating store");
17225 // The latest Node in the DAG.
17226 SDLoc
DL(StoreNodes
[0].MemNode
);
17228 TypeSize ElementSizeBits
= MemVT
.getStoreSizeInBits();
17229 unsigned SizeInBits
= NumStores
* ElementSizeBits
;
17230 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
17232 Optional
<MachineMemOperand::Flags
> Flags
;
17234 for (unsigned I
= 0; I
!= NumStores
; ++I
) {
17235 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[I
].MemNode
);
17237 Flags
= St
->getMemOperand()->getFlags();
17238 AAInfo
= St
->getAAInfo();
17241 // Skip merging if there's an inconsistent flag.
17242 if (Flags
!= St
->getMemOperand()->getFlags())
17244 // Concatenate AA metadata.
17245 AAInfo
= AAInfo
.concat(St
->getAAInfo());
17250 unsigned Elts
= NumStores
* NumMemElts
;
17251 // Get the type for the merged vector store.
17252 StoreTy
= EVT::getVectorVT(*DAG
.getContext(), MemVT
.getScalarType(), Elts
);
17254 StoreTy
= EVT::getIntegerVT(*DAG
.getContext(), SizeInBits
);
17258 if (IsConstantSrc
) {
17259 SmallVector
<SDValue
, 8> BuildVector
;
17260 for (unsigned I
= 0; I
!= NumStores
; ++I
) {
17261 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[I
].MemNode
);
17262 SDValue Val
= St
->getValue();
17263 // If constant is of the wrong type, convert it now.
17264 if (MemVT
!= Val
.getValueType()) {
17265 Val
= peekThroughBitcasts(Val
);
17266 // Deal with constants of wrong size.
17267 if (ElementSizeBits
!= Val
.getValueSizeInBits()) {
17269 EVT::getIntegerVT(*DAG
.getContext(), MemVT
.getSizeInBits());
17270 if (isa
<ConstantFPSDNode
>(Val
)) {
17271 // Not clear how to truncate FP values.
17273 } else if (auto *C
= dyn_cast
<ConstantSDNode
>(Val
))
17274 Val
= DAG
.getConstant(C
->getAPIntValue()
17275 .zextOrTrunc(Val
.getValueSizeInBits())
17276 .zextOrTrunc(ElementSizeBits
),
17277 SDLoc(C
), IntMemVT
);
17279 // Make sure correctly size type is the correct type.
17280 Val
= DAG
.getBitcast(MemVT
, Val
);
17282 BuildVector
.push_back(Val
);
17284 StoredVal
= DAG
.getNode(MemVT
.isVector() ? ISD::CONCAT_VECTORS
17285 : ISD::BUILD_VECTOR
,
17286 DL
, StoreTy
, BuildVector
);
17288 SmallVector
<SDValue
, 8> Ops
;
17289 for (unsigned i
= 0; i
< NumStores
; ++i
) {
17290 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
17291 SDValue Val
= peekThroughBitcasts(St
->getValue());
17292 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
17293 // type MemVT. If the underlying value is not the correct
17294 // type, but it is an extraction of an appropriate vector we
17295 // can recast Val to be of the correct type. This may require
17296 // converting between EXTRACT_VECTOR_ELT and
17297 // EXTRACT_SUBVECTOR.
17298 if ((MemVT
!= Val
.getValueType()) &&
17299 (Val
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
||
17300 Val
.getOpcode() == ISD::EXTRACT_SUBVECTOR
)) {
17301 EVT MemVTScalarTy
= MemVT
.getScalarType();
17302 // We may need to add a bitcast here to get types to line up.
17303 if (MemVTScalarTy
!= Val
.getValueType().getScalarType()) {
17304 Val
= DAG
.getBitcast(MemVT
, Val
);
17306 unsigned OpC
= MemVT
.isVector() ? ISD::EXTRACT_SUBVECTOR
17307 : ISD::EXTRACT_VECTOR_ELT
;
17308 SDValue Vec
= Val
.getOperand(0);
17309 SDValue Idx
= Val
.getOperand(1);
17310 Val
= DAG
.getNode(OpC
, SDLoc(Val
), MemVT
, Vec
, Idx
);
17313 Ops
.push_back(Val
);
17316 // Build the extracted vector elements back into a vector.
17317 StoredVal
= DAG
.getNode(MemVT
.isVector() ? ISD::CONCAT_VECTORS
17318 : ISD::BUILD_VECTOR
,
17322 // We should always use a vector store when merging extracted vector
17323 // elements, so this path implies a store of constants.
17324 assert(IsConstantSrc
&& "Merged vector elements should use vector store");
17326 APInt
StoreInt(SizeInBits
, 0);
17328 // Construct a single integer constant which is made of the smaller
17329 // constant inputs.
17330 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
17331 for (unsigned i
= 0; i
< NumStores
; ++i
) {
17332 unsigned Idx
= IsLE
? (NumStores
- 1 - i
) : i
;
17333 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[Idx
].MemNode
);
17335 SDValue Val
= St
->getValue();
17336 Val
= peekThroughBitcasts(Val
);
17337 StoreInt
<<= ElementSizeBits
;
17338 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Val
)) {
17339 StoreInt
|= C
->getAPIntValue()
17340 .zextOrTrunc(ElementSizeBits
)
17341 .zextOrTrunc(SizeInBits
);
17342 } else if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Val
)) {
17343 StoreInt
|= C
->getValueAPF()
17345 .zextOrTrunc(ElementSizeBits
)
17346 .zextOrTrunc(SizeInBits
);
17347 // If fp truncation is necessary give up for now.
17348 if (MemVT
.getSizeInBits() != ElementSizeBits
)
17351 llvm_unreachable("Invalid constant element type");
17355 // Create the new Load and Store operations.
17356 StoredVal
= DAG
.getConstant(StoreInt
, DL
, StoreTy
);
17359 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
17360 SDValue NewChain
= getMergeStoreChains(StoreNodes
, NumStores
);
17362 // make sure we use trunc store if it's necessary to be legal.
17365 NewStore
= DAG
.getStore(NewChain
, DL
, StoredVal
, FirstInChain
->getBasePtr(),
17366 FirstInChain
->getPointerInfo(),
17367 FirstInChain
->getAlign(), Flags
.getValue(), AAInfo
);
17368 } else { // Must be realized as a trunc store
17369 EVT LegalizedStoredValTy
=
17370 TLI
.getTypeToTransformTo(*DAG
.getContext(), StoredVal
.getValueType());
17371 unsigned LegalizedStoreSize
= LegalizedStoredValTy
.getSizeInBits();
17372 ConstantSDNode
*C
= cast
<ConstantSDNode
>(StoredVal
);
17373 SDValue ExtendedStoreVal
=
17374 DAG
.getConstant(C
->getAPIntValue().zextOrTrunc(LegalizedStoreSize
), DL
,
17375 LegalizedStoredValTy
);
17376 NewStore
= DAG
.getTruncStore(
17377 NewChain
, DL
, ExtendedStoreVal
, FirstInChain
->getBasePtr(),
17378 FirstInChain
->getPointerInfo(), StoredVal
.getValueType() /*TVT*/,
17379 FirstInChain
->getAlign(), Flags
.getValue(), AAInfo
);
17382 // Replace all merged stores with the new store.
17383 for (unsigned i
= 0; i
< NumStores
; ++i
)
17384 CombineTo(StoreNodes
[i
].MemNode
, NewStore
);
17386 AddToWorklist(NewChain
.getNode());
17390 void DAGCombiner::getStoreMergeCandidates(
17391 StoreSDNode
*St
, SmallVectorImpl
<MemOpLink
> &StoreNodes
,
17392 SDNode
*&RootNode
) {
17393 // This holds the base pointer, index, and the offset in bytes from the base
17394 // pointer. We must have a base and an offset. Do not handle stores to undef
17396 BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
17397 if (!BasePtr
.getBase().getNode() || BasePtr
.getBase().isUndef())
17400 SDValue Val
= peekThroughBitcasts(St
->getValue());
17401 StoreSource StoreSrc
= getStoreSource(Val
);
17402 assert(StoreSrc
!= StoreSource::Unknown
&& "Expected known source for store");
17404 // Match on loadbaseptr if relevant.
17405 EVT MemVT
= St
->getMemoryVT();
17406 BaseIndexOffset LBasePtr
;
17408 if (StoreSrc
== StoreSource::Load
) {
17409 auto *Ld
= cast
<LoadSDNode
>(Val
);
17410 LBasePtr
= BaseIndexOffset::match(Ld
, DAG
);
17411 LoadVT
= Ld
->getMemoryVT();
17412 // Load and store should be the same type.
17413 if (MemVT
!= LoadVT
)
17415 // Loads must only have one use.
17416 if (!Ld
->hasNUsesOfValue(1, 0))
17418 // The memory operands must not be volatile/indexed/atomic.
17419 // TODO: May be able to relax for unordered atomics (see D66309)
17420 if (!Ld
->isSimple() || Ld
->isIndexed())
17423 auto CandidateMatch
= [&](StoreSDNode
*Other
, BaseIndexOffset
&Ptr
,
17424 int64_t &Offset
) -> bool {
17425 // The memory operands must not be volatile/indexed/atomic.
17426 // TODO: May be able to relax for unordered atomics (see D66309)
17427 if (!Other
->isSimple() || Other
->isIndexed())
17429 // Don't mix temporal stores with non-temporal stores.
17430 if (St
->isNonTemporal() != Other
->isNonTemporal())
17432 SDValue OtherBC
= peekThroughBitcasts(Other
->getValue());
17433 // Allow merging constants of different types as integers.
17434 bool NoTypeMatch
= (MemVT
.isInteger()) ? !MemVT
.bitsEq(Other
->getMemoryVT())
17435 : Other
->getMemoryVT() != MemVT
;
17436 switch (StoreSrc
) {
17437 case StoreSource::Load
: {
17440 // The Load's Base Ptr must also match.
17441 auto *OtherLd
= dyn_cast
<LoadSDNode
>(OtherBC
);
17444 BaseIndexOffset LPtr
= BaseIndexOffset::match(OtherLd
, DAG
);
17445 if (LoadVT
!= OtherLd
->getMemoryVT())
17447 // Loads must only have one use.
17448 if (!OtherLd
->hasNUsesOfValue(1, 0))
17450 // The memory operands must not be volatile/indexed/atomic.
17451 // TODO: May be able to relax for unordered atomics (see D66309)
17452 if (!OtherLd
->isSimple() || OtherLd
->isIndexed())
17454 // Don't mix temporal loads with non-temporal loads.
17455 if (cast
<LoadSDNode
>(Val
)->isNonTemporal() != OtherLd
->isNonTemporal())
17457 if (!(LBasePtr
.equalBaseIndex(LPtr
, DAG
)))
17461 case StoreSource::Constant
:
17464 if (!isIntOrFPConstant(OtherBC
))
17467 case StoreSource::Extract
:
17468 // Do not merge truncated stores here.
17469 if (Other
->isTruncatingStore())
17471 if (!MemVT
.bitsEq(OtherBC
.getValueType()))
17473 if (OtherBC
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
&&
17474 OtherBC
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
17478 llvm_unreachable("Unhandled store source for merging");
17480 Ptr
= BaseIndexOffset::match(Other
, DAG
);
17481 return (BasePtr
.equalBaseIndex(Ptr
, DAG
, Offset
));
17484 // Check if the pair of StoreNode and the RootNode already bail out many
17485 // times which is over the limit in dependence check.
17486 auto OverLimitInDependenceCheck
= [&](SDNode
*StoreNode
,
17487 SDNode
*RootNode
) -> bool {
17488 auto RootCount
= StoreRootCountMap
.find(StoreNode
);
17489 return RootCount
!= StoreRootCountMap
.end() &&
17490 RootCount
->second
.first
== RootNode
&&
17491 RootCount
->second
.second
> StoreMergeDependenceLimit
;
17494 auto TryToAddCandidate
= [&](SDNode::use_iterator UseIter
) {
17495 // This must be a chain use.
17496 if (UseIter
.getOperandNo() != 0)
17498 if (auto *OtherStore
= dyn_cast
<StoreSDNode
>(*UseIter
)) {
17499 BaseIndexOffset Ptr
;
17501 if (CandidateMatch(OtherStore
, Ptr
, PtrDiff
) &&
17502 !OverLimitInDependenceCheck(OtherStore
, RootNode
))
17503 StoreNodes
.push_back(MemOpLink(OtherStore
, PtrDiff
));
17507 // We looking for a root node which is an ancestor to all mergable
17508 // stores. We search up through a load, to our root and then down
17509 // through all children. For instance we will find Store{1,2,3} if
17510 // St is Store1, Store2. or Store3 where the root is not a load
17511 // which always true for nonvolatile ops. TODO: Expand
17512 // the search to find all valid candidates through multiple layers of loads.
17515 // |-------|-------|
17516 // Load Load Store3
17520 // FIXME: We should be able to climb and
17521 // descend TokenFactors to find candidates as well.
17523 RootNode
= St
->getChain().getNode();
17525 unsigned NumNodesExplored
= 0;
17526 const unsigned MaxSearchNodes
= 1024;
17527 if (auto *Ldn
= dyn_cast
<LoadSDNode
>(RootNode
)) {
17528 RootNode
= Ldn
->getChain().getNode();
17529 for (auto I
= RootNode
->use_begin(), E
= RootNode
->use_end();
17530 I
!= E
&& NumNodesExplored
< MaxSearchNodes
; ++I
, ++NumNodesExplored
) {
17531 if (I
.getOperandNo() == 0 && isa
<LoadSDNode
>(*I
)) { // walk down chain
17532 for (auto I2
= (*I
)->use_begin(), E2
= (*I
)->use_end(); I2
!= E2
; ++I2
)
17533 TryToAddCandidate(I2
);
17535 // Check stores that depend on the root (e.g. Store 3 in the chart above).
17536 if (I
.getOperandNo() == 0 && isa
<StoreSDNode
>(*I
)) {
17537 TryToAddCandidate(I
);
17541 for (auto I
= RootNode
->use_begin(), E
= RootNode
->use_end();
17542 I
!= E
&& NumNodesExplored
< MaxSearchNodes
; ++I
, ++NumNodesExplored
)
17543 TryToAddCandidate(I
);
17547 // We need to check that merging these stores does not cause a loop in
17548 // the DAG. Any store candidate may depend on another candidate
17549 // indirectly through its operand (we already consider dependencies
17550 // through the chain). Check in parallel by searching up from
17551 // non-chain operands of candidates.
17552 bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
17553 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumStores
,
17554 SDNode
*RootNode
) {
17555 // FIXME: We should be able to truncate a full search of
17556 // predecessors by doing a BFS and keeping tabs the originating
17557 // stores from which worklist nodes come from in a similar way to
17558 // TokenFactor simplfication.
17560 SmallPtrSet
<const SDNode
*, 32> Visited
;
17561 SmallVector
<const SDNode
*, 8> Worklist
;
17563 // RootNode is a predecessor to all candidates so we need not search
17564 // past it. Add RootNode (peeking through TokenFactors). Do not count
17565 // these towards size check.
17567 Worklist
.push_back(RootNode
);
17568 while (!Worklist
.empty()) {
17569 auto N
= Worklist
.pop_back_val();
17570 if (!Visited
.insert(N
).second
)
17571 continue; // Already present in Visited.
17572 if (N
->getOpcode() == ISD::TokenFactor
) {
17573 for (SDValue Op
: N
->ops())
17574 Worklist
.push_back(Op
.getNode());
17578 // Don't count pruning nodes towards max.
17579 unsigned int Max
= 1024 + Visited
.size();
17580 // Search Ops of store candidates.
17581 for (unsigned i
= 0; i
< NumStores
; ++i
) {
17582 SDNode
*N
= StoreNodes
[i
].MemNode
;
17583 // Of the 4 Store Operands:
17584 // * Chain (Op 0) -> We have already considered these
17585 // in candidate selection and can be
17587 // * Value (Op 1) -> Cycles may happen (e.g. through load chains)
17588 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant,
17589 // but aren't necessarily fromt the same base node, so
17590 // cycles possible (e.g. via indexed store).
17591 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for
17592 // non-indexed stores). Not constant on all targets (e.g. ARM)
17593 // and so can participate in a cycle.
17594 for (unsigned j
= 1; j
< N
->getNumOperands(); ++j
)
17595 Worklist
.push_back(N
->getOperand(j
).getNode());
17597 // Search through DAG. We can stop early if we find a store node.
17598 for (unsigned i
= 0; i
< NumStores
; ++i
)
17599 if (SDNode::hasPredecessorHelper(StoreNodes
[i
].MemNode
, Visited
, Worklist
,
17601 // If the searching bail out, record the StoreNode and RootNode in the
17602 // StoreRootCountMap. If we have seen the pair many times over a limit,
17603 // we won't add the StoreNode into StoreNodes set again.
17604 if (Visited
.size() >= Max
) {
17605 auto &RootCount
= StoreRootCountMap
[StoreNodes
[i
].MemNode
];
17606 if (RootCount
.first
== RootNode
)
17607 RootCount
.second
++;
17609 RootCount
= {RootNode
, 1};
17617 DAGCombiner::getConsecutiveStores(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
17618 int64_t ElementSizeBytes
) const {
17620 // Find a store past the width of the first store.
17621 size_t StartIdx
= 0;
17622 while ((StartIdx
+ 1 < StoreNodes
.size()) &&
17623 StoreNodes
[StartIdx
].OffsetFromBase
+ ElementSizeBytes
!=
17624 StoreNodes
[StartIdx
+ 1].OffsetFromBase
)
17627 // Bail if we don't have enough candidates to merge.
17628 if (StartIdx
+ 1 >= StoreNodes
.size())
17631 // Trim stores that overlapped with the first store.
17633 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + StartIdx
);
17635 // Scan the memory operations on the chain and find the first
17636 // non-consecutive store memory address.
17637 unsigned NumConsecutiveStores
= 1;
17638 int64_t StartAddress
= StoreNodes
[0].OffsetFromBase
;
17639 // Check that the addresses are consecutive starting from the second
17640 // element in the list of stores.
17641 for (unsigned i
= 1, e
= StoreNodes
.size(); i
< e
; ++i
) {
17642 int64_t CurrAddress
= StoreNodes
[i
].OffsetFromBase
;
17643 if (CurrAddress
- StartAddress
!= (ElementSizeBytes
* i
))
17645 NumConsecutiveStores
= i
+ 1;
17647 if (NumConsecutiveStores
> 1)
17648 return NumConsecutiveStores
;
17650 // There are no consecutive stores at the start of the list.
17651 // Remove the first store and try again.
17652 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + 1);
17656 bool DAGCombiner::tryStoreMergeOfConstants(
17657 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumConsecutiveStores
,
17658 EVT MemVT
, SDNode
*RootNode
, bool AllowVectors
) {
17659 LLVMContext
&Context
= *DAG
.getContext();
17660 const DataLayout
&DL
= DAG
.getDataLayout();
17661 int64_t ElementSizeBytes
= MemVT
.getStoreSize();
17662 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
17663 bool MadeChange
= false;
17665 // Store the constants into memory as one consecutive store.
17666 while (NumConsecutiveStores
>= 2) {
17667 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
17668 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
17669 unsigned FirstStoreAlign
= FirstInChain
->getAlignment();
17670 unsigned LastLegalType
= 1;
17671 unsigned LastLegalVectorType
= 1;
17672 bool LastIntegerTrunc
= false;
17673 bool NonZero
= false;
17674 unsigned FirstZeroAfterNonZero
= NumConsecutiveStores
;
17675 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
17676 StoreSDNode
*ST
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
17677 SDValue StoredVal
= ST
->getValue();
17678 bool IsElementZero
= false;
17679 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(StoredVal
))
17680 IsElementZero
= C
->isZero();
17681 else if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(StoredVal
))
17682 IsElementZero
= C
->getConstantFPValue()->isNullValue();
17683 if (IsElementZero
) {
17684 if (NonZero
&& FirstZeroAfterNonZero
== NumConsecutiveStores
)
17685 FirstZeroAfterNonZero
= i
;
17687 NonZero
|= !IsElementZero
;
17689 // Find a legal type for the constant store.
17690 unsigned SizeInBits
= (i
+ 1) * ElementSizeBytes
* 8;
17691 EVT StoreTy
= EVT::getIntegerVT(Context
, SizeInBits
);
17692 bool IsFast
= false;
17694 // Break early when size is too large to be legal.
17695 if (StoreTy
.getSizeInBits() > MaximumLegalStoreInBits
)
17698 if (TLI
.isTypeLegal(StoreTy
) &&
17699 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
,
17700 DAG
.getMachineFunction()) &&
17701 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17702 *FirstInChain
->getMemOperand(), &IsFast
) &&
17704 LastIntegerTrunc
= false;
17705 LastLegalType
= i
+ 1;
17706 // Or check whether a truncstore is legal.
17707 } else if (TLI
.getTypeAction(Context
, StoreTy
) ==
17708 TargetLowering::TypePromoteInteger
) {
17709 EVT LegalizedStoredValTy
=
17710 TLI
.getTypeToTransformTo(Context
, StoredVal
.getValueType());
17711 if (TLI
.isTruncStoreLegal(LegalizedStoredValTy
, StoreTy
) &&
17712 TLI
.canMergeStoresTo(FirstStoreAS
, LegalizedStoredValTy
,
17713 DAG
.getMachineFunction()) &&
17714 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17715 *FirstInChain
->getMemOperand(), &IsFast
) &&
17717 LastIntegerTrunc
= true;
17718 LastLegalType
= i
+ 1;
17722 // We only use vectors if the constant is known to be zero or the
17723 // target allows it and the function is not marked with the
17724 // noimplicitfloat attribute.
17726 TLI
.storeOfVectorConstantIsCheap(MemVT
, i
+ 1, FirstStoreAS
)) &&
17728 // Find a legal type for the vector store.
17729 unsigned Elts
= (i
+ 1) * NumMemElts
;
17730 EVT Ty
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
17731 if (TLI
.isTypeLegal(Ty
) && TLI
.isTypeLegal(MemVT
) &&
17732 TLI
.canMergeStoresTo(FirstStoreAS
, Ty
, DAG
.getMachineFunction()) &&
17733 TLI
.allowsMemoryAccess(Context
, DL
, Ty
,
17734 *FirstInChain
->getMemOperand(), &IsFast
) &&
17736 LastLegalVectorType
= i
+ 1;
17740 bool UseVector
= (LastLegalVectorType
> LastLegalType
) && AllowVectors
;
17741 unsigned NumElem
= (UseVector
) ? LastLegalVectorType
: LastLegalType
;
17742 bool UseTrunc
= LastIntegerTrunc
&& !UseVector
;
17744 // Check if we found a legal integer type that creates a meaningful
17747 // We know that candidate stores are in order and of correct
17748 // shape. While there is no mergeable sequence from the
17749 // beginning one may start later in the sequence. The only
17750 // reason a merge of size N could have failed where another of
17751 // the same size would not have, is if the alignment has
17752 // improved or we've dropped a non-zero value. Drop as many
17753 // candidates as we can here.
17754 unsigned NumSkip
= 1;
17755 while ((NumSkip
< NumConsecutiveStores
) &&
17756 (NumSkip
< FirstZeroAfterNonZero
) &&
17757 (StoreNodes
[NumSkip
].MemNode
->getAlignment() <= FirstStoreAlign
))
17760 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
17761 NumConsecutiveStores
-= NumSkip
;
17765 // Check that we can merge these candidates without causing a cycle.
17766 if (!checkMergeStoreCandidatesForDependencies(StoreNodes
, NumElem
,
17768 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
17769 NumConsecutiveStores
-= NumElem
;
17773 MadeChange
|= mergeStoresOfConstantsOrVecElts(StoreNodes
, MemVT
, NumElem
,
17774 /*IsConstantSrc*/ true,
17775 UseVector
, UseTrunc
);
17777 // Remove merged stores for next iteration.
17778 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
17779 NumConsecutiveStores
-= NumElem
;
17784 bool DAGCombiner::tryStoreMergeOfExtracts(
17785 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumConsecutiveStores
,
17786 EVT MemVT
, SDNode
*RootNode
) {
17787 LLVMContext
&Context
= *DAG
.getContext();
17788 const DataLayout
&DL
= DAG
.getDataLayout();
17789 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
17790 bool MadeChange
= false;
17792 // Loop on Consecutive Stores on success.
17793 while (NumConsecutiveStores
>= 2) {
17794 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
17795 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
17796 unsigned FirstStoreAlign
= FirstInChain
->getAlignment();
17797 unsigned NumStoresToMerge
= 1;
17798 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
17799 // Find a legal type for the vector store.
17800 unsigned Elts
= (i
+ 1) * NumMemElts
;
17801 EVT Ty
= EVT::getVectorVT(*DAG
.getContext(), MemVT
.getScalarType(), Elts
);
17802 bool IsFast
= false;
17804 // Break early when size is too large to be legal.
17805 if (Ty
.getSizeInBits() > MaximumLegalStoreInBits
)
17808 if (TLI
.isTypeLegal(Ty
) &&
17809 TLI
.canMergeStoresTo(FirstStoreAS
, Ty
, DAG
.getMachineFunction()) &&
17810 TLI
.allowsMemoryAccess(Context
, DL
, Ty
,
17811 *FirstInChain
->getMemOperand(), &IsFast
) &&
17813 NumStoresToMerge
= i
+ 1;
17816 // Check if we found a legal integer type creating a meaningful
17818 if (NumStoresToMerge
< 2) {
17819 // We know that candidate stores are in order and of correct
17820 // shape. While there is no mergeable sequence from the
17821 // beginning one may start later in the sequence. The only
17822 // reason a merge of size N could have failed where another of
17823 // the same size would not have, is if the alignment has
17824 // improved. Drop as many candidates as we can here.
17825 unsigned NumSkip
= 1;
17826 while ((NumSkip
< NumConsecutiveStores
) &&
17827 (StoreNodes
[NumSkip
].MemNode
->getAlignment() <= FirstStoreAlign
))
17830 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
17831 NumConsecutiveStores
-= NumSkip
;
17835 // Check that we can merge these candidates without causing a cycle.
17836 if (!checkMergeStoreCandidatesForDependencies(StoreNodes
, NumStoresToMerge
,
17838 StoreNodes
.erase(StoreNodes
.begin(),
17839 StoreNodes
.begin() + NumStoresToMerge
);
17840 NumConsecutiveStores
-= NumStoresToMerge
;
17844 MadeChange
|= mergeStoresOfConstantsOrVecElts(
17845 StoreNodes
, MemVT
, NumStoresToMerge
, /*IsConstantSrc*/ false,
17846 /*UseVector*/ true, /*UseTrunc*/ false);
17848 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumStoresToMerge
);
17849 NumConsecutiveStores
-= NumStoresToMerge
;
17854 bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
17855 unsigned NumConsecutiveStores
, EVT MemVT
,
17856 SDNode
*RootNode
, bool AllowVectors
,
17857 bool IsNonTemporalStore
,
17858 bool IsNonTemporalLoad
) {
17859 LLVMContext
&Context
= *DAG
.getContext();
17860 const DataLayout
&DL
= DAG
.getDataLayout();
17861 int64_t ElementSizeBytes
= MemVT
.getStoreSize();
17862 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
17863 bool MadeChange
= false;
17865 // Look for load nodes which are used by the stored values.
17866 SmallVector
<MemOpLink
, 8> LoadNodes
;
17868 // Find acceptable loads. Loads need to have the same chain (token factor),
17869 // must not be zext, volatile, indexed, and they must be consecutive.
17870 BaseIndexOffset LdBasePtr
;
17872 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
17873 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
17874 SDValue Val
= peekThroughBitcasts(St
->getValue());
17875 LoadSDNode
*Ld
= cast
<LoadSDNode
>(Val
);
17877 BaseIndexOffset LdPtr
= BaseIndexOffset::match(Ld
, DAG
);
17878 // If this is not the first ptr that we check.
17879 int64_t LdOffset
= 0;
17880 if (LdBasePtr
.getBase().getNode()) {
17881 // The base ptr must be the same.
17882 if (!LdBasePtr
.equalBaseIndex(LdPtr
, DAG
, LdOffset
))
17885 // Check that all other base pointers are the same as this one.
17889 // We found a potential memory operand to merge.
17890 LoadNodes
.push_back(MemOpLink(Ld
, LdOffset
));
17893 while (NumConsecutiveStores
>= 2 && LoadNodes
.size() >= 2) {
17894 Align RequiredAlignment
;
17895 bool NeedRotate
= false;
17896 if (LoadNodes
.size() == 2) {
17897 // If we have load/store pair instructions and we only have two values,
17898 // don't bother merging.
17899 if (TLI
.hasPairedLoad(MemVT
, RequiredAlignment
) &&
17900 StoreNodes
[0].MemNode
->getAlign() >= RequiredAlignment
) {
17901 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + 2);
17902 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + 2);
17905 // If the loads are reversed, see if we can rotate the halves into place.
17906 int64_t Offset0
= LoadNodes
[0].OffsetFromBase
;
17907 int64_t Offset1
= LoadNodes
[1].OffsetFromBase
;
17908 EVT PairVT
= EVT::getIntegerVT(Context
, ElementSizeBytes
* 8 * 2);
17909 if (Offset0
- Offset1
== ElementSizeBytes
&&
17910 (hasOperation(ISD::ROTL
, PairVT
) ||
17911 hasOperation(ISD::ROTR
, PairVT
))) {
17912 std::swap(LoadNodes
[0], LoadNodes
[1]);
17916 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
17917 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
17918 Align FirstStoreAlign
= FirstInChain
->getAlign();
17919 LoadSDNode
*FirstLoad
= cast
<LoadSDNode
>(LoadNodes
[0].MemNode
);
17921 // Scan the memory operations on the chain and find the first
17922 // non-consecutive load memory address. These variables hold the index in
17923 // the store node array.
17925 unsigned LastConsecutiveLoad
= 1;
17927 // This variable refers to the size and not index in the array.
17928 unsigned LastLegalVectorType
= 1;
17929 unsigned LastLegalIntegerType
= 1;
17930 bool isDereferenceable
= true;
17931 bool DoIntegerTruncate
= false;
17932 int64_t StartAddress
= LoadNodes
[0].OffsetFromBase
;
17933 SDValue LoadChain
= FirstLoad
->getChain();
17934 for (unsigned i
= 1; i
< LoadNodes
.size(); ++i
) {
17935 // All loads must share the same chain.
17936 if (LoadNodes
[i
].MemNode
->getChain() != LoadChain
)
17939 int64_t CurrAddress
= LoadNodes
[i
].OffsetFromBase
;
17940 if (CurrAddress
- StartAddress
!= (ElementSizeBytes
* i
))
17942 LastConsecutiveLoad
= i
;
17944 if (isDereferenceable
&& !LoadNodes
[i
].MemNode
->isDereferenceable())
17945 isDereferenceable
= false;
17947 // Find a legal type for the vector store.
17948 unsigned Elts
= (i
+ 1) * NumMemElts
;
17949 EVT StoreTy
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
17951 // Break early when size is too large to be legal.
17952 if (StoreTy
.getSizeInBits() > MaximumLegalStoreInBits
)
17955 bool IsFastSt
= false;
17956 bool IsFastLd
= false;
17957 // Don't try vector types if we need a rotate. We may still fail the
17958 // legality checks for the integer type, but we can't handle the rotate
17959 // case with vectors.
17960 // FIXME: We could use a shuffle in place of the rotate.
17961 if (!NeedRotate
&& TLI
.isTypeLegal(StoreTy
) &&
17962 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
,
17963 DAG
.getMachineFunction()) &&
17964 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17965 *FirstInChain
->getMemOperand(), &IsFastSt
) &&
17967 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17968 *FirstLoad
->getMemOperand(), &IsFastLd
) &&
17970 LastLegalVectorType
= i
+ 1;
17973 // Find a legal type for the integer store.
17974 unsigned SizeInBits
= (i
+ 1) * ElementSizeBytes
* 8;
17975 StoreTy
= EVT::getIntegerVT(Context
, SizeInBits
);
17976 if (TLI
.isTypeLegal(StoreTy
) &&
17977 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
,
17978 DAG
.getMachineFunction()) &&
17979 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17980 *FirstInChain
->getMemOperand(), &IsFastSt
) &&
17982 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17983 *FirstLoad
->getMemOperand(), &IsFastLd
) &&
17985 LastLegalIntegerType
= i
+ 1;
17986 DoIntegerTruncate
= false;
17987 // Or check whether a truncstore and extload is legal.
17988 } else if (TLI
.getTypeAction(Context
, StoreTy
) ==
17989 TargetLowering::TypePromoteInteger
) {
17990 EVT LegalizedStoredValTy
= TLI
.getTypeToTransformTo(Context
, StoreTy
);
17991 if (TLI
.isTruncStoreLegal(LegalizedStoredValTy
, StoreTy
) &&
17992 TLI
.canMergeStoresTo(FirstStoreAS
, LegalizedStoredValTy
,
17993 DAG
.getMachineFunction()) &&
17994 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LegalizedStoredValTy
, StoreTy
) &&
17995 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, LegalizedStoredValTy
, StoreTy
) &&
17996 TLI
.isLoadExtLegal(ISD::EXTLOAD
, LegalizedStoredValTy
, StoreTy
) &&
17997 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17998 *FirstInChain
->getMemOperand(), &IsFastSt
) &&
18000 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
18001 *FirstLoad
->getMemOperand(), &IsFastLd
) &&
18003 LastLegalIntegerType
= i
+ 1;
18004 DoIntegerTruncate
= true;
18009 // Only use vector types if the vector type is larger than the integer
18010 // type. If they are the same, use integers.
18012 LastLegalVectorType
> LastLegalIntegerType
&& AllowVectors
;
18013 unsigned LastLegalType
=
18014 std::max(LastLegalVectorType
, LastLegalIntegerType
);
18016 // We add +1 here because the LastXXX variables refer to location while
18017 // the NumElem refers to array/index size.
18018 unsigned NumElem
= std::min(NumConsecutiveStores
, LastConsecutiveLoad
+ 1);
18019 NumElem
= std::min(LastLegalType
, NumElem
);
18020 Align FirstLoadAlign
= FirstLoad
->getAlign();
18023 // We know that candidate stores are in order and of correct
18024 // shape. While there is no mergeable sequence from the
18025 // beginning one may start later in the sequence. The only
18026 // reason a merge of size N could have failed where another of
18027 // the same size would not have is if the alignment or either
18028 // the load or store has improved. Drop as many candidates as we
18030 unsigned NumSkip
= 1;
18031 while ((NumSkip
< LoadNodes
.size()) &&
18032 (LoadNodes
[NumSkip
].MemNode
->getAlign() <= FirstLoadAlign
) &&
18033 (StoreNodes
[NumSkip
].MemNode
->getAlign() <= FirstStoreAlign
))
18035 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
18036 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumSkip
);
18037 NumConsecutiveStores
-= NumSkip
;
18041 // Check that we can merge these candidates without causing a cycle.
18042 if (!checkMergeStoreCandidatesForDependencies(StoreNodes
, NumElem
,
18044 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
18045 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumElem
);
18046 NumConsecutiveStores
-= NumElem
;
18050 // Find if it is better to use vectors or integers to load and store
18054 // Find a legal type for the vector store.
18055 unsigned Elts
= NumElem
* NumMemElts
;
18056 JointMemOpVT
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
18058 unsigned SizeInBits
= NumElem
* ElementSizeBytes
* 8;
18059 JointMemOpVT
= EVT::getIntegerVT(Context
, SizeInBits
);
18062 SDLoc
LoadDL(LoadNodes
[0].MemNode
);
18063 SDLoc
StoreDL(StoreNodes
[0].MemNode
);
18065 // The merged loads are required to have the same incoming chain, so
18066 // using the first's chain is acceptable.
18068 SDValue NewStoreChain
= getMergeStoreChains(StoreNodes
, NumElem
);
18069 AddToWorklist(NewStoreChain
.getNode());
18071 MachineMemOperand::Flags LdMMOFlags
=
18072 isDereferenceable
? MachineMemOperand::MODereferenceable
18073 : MachineMemOperand::MONone
;
18074 if (IsNonTemporalLoad
)
18075 LdMMOFlags
|= MachineMemOperand::MONonTemporal
;
18077 MachineMemOperand::Flags StMMOFlags
= IsNonTemporalStore
18078 ? MachineMemOperand::MONonTemporal
18079 : MachineMemOperand::MONone
;
18081 SDValue NewLoad
, NewStore
;
18082 if (UseVectorTy
|| !DoIntegerTruncate
) {
18083 NewLoad
= DAG
.getLoad(
18084 JointMemOpVT
, LoadDL
, FirstLoad
->getChain(), FirstLoad
->getBasePtr(),
18085 FirstLoad
->getPointerInfo(), FirstLoadAlign
, LdMMOFlags
);
18086 SDValue StoreOp
= NewLoad
;
18088 unsigned LoadWidth
= ElementSizeBytes
* 8 * 2;
18089 assert(JointMemOpVT
== EVT::getIntegerVT(Context
, LoadWidth
) &&
18090 "Unexpected type for rotate-able load pair");
18092 DAG
.getShiftAmountConstant(LoadWidth
/ 2, JointMemOpVT
, LoadDL
);
18093 // Target can convert to the identical ROTR if it does not have ROTL.
18094 StoreOp
= DAG
.getNode(ISD::ROTL
, LoadDL
, JointMemOpVT
, NewLoad
, RotAmt
);
18096 NewStore
= DAG
.getStore(
18097 NewStoreChain
, StoreDL
, StoreOp
, FirstInChain
->getBasePtr(),
18098 FirstInChain
->getPointerInfo(), FirstStoreAlign
, StMMOFlags
);
18099 } else { // This must be the truncstore/extload case
18101 TLI
.getTypeToTransformTo(*DAG
.getContext(), JointMemOpVT
);
18102 NewLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, LoadDL
, ExtendedTy
,
18103 FirstLoad
->getChain(), FirstLoad
->getBasePtr(),
18104 FirstLoad
->getPointerInfo(), JointMemOpVT
,
18105 FirstLoadAlign
, LdMMOFlags
);
18106 NewStore
= DAG
.getTruncStore(
18107 NewStoreChain
, StoreDL
, NewLoad
, FirstInChain
->getBasePtr(),
18108 FirstInChain
->getPointerInfo(), JointMemOpVT
,
18109 FirstInChain
->getAlign(), FirstInChain
->getMemOperand()->getFlags());
18112 // Transfer chain users from old loads to the new load.
18113 for (unsigned i
= 0; i
< NumElem
; ++i
) {
18114 LoadSDNode
*Ld
= cast
<LoadSDNode
>(LoadNodes
[i
].MemNode
);
18115 DAG
.ReplaceAllUsesOfValueWith(SDValue(Ld
, 1),
18116 SDValue(NewLoad
.getNode(), 1));
18119 // Replace all stores with the new store. Recursively remove corresponding
18120 // values if they are no longer used.
18121 for (unsigned i
= 0; i
< NumElem
; ++i
) {
18122 SDValue Val
= StoreNodes
[i
].MemNode
->getOperand(1);
18123 CombineTo(StoreNodes
[i
].MemNode
, NewStore
);
18124 if (Val
.getNode()->use_empty())
18125 recursivelyDeleteUnusedNodes(Val
.getNode());
18129 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
18130 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumElem
);
18131 NumConsecutiveStores
-= NumElem
;
18136 bool DAGCombiner::mergeConsecutiveStores(StoreSDNode
*St
) {
18137 if (OptLevel
== CodeGenOpt::None
|| !EnableStoreMerging
)
18140 // TODO: Extend this function to merge stores of scalable vectors.
18141 // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8>
18142 // store since we know <vscale x 16 x i8> is exactly twice as large as
18143 // <vscale x 8 x i8>). Until then, bail out for scalable vectors.
18144 EVT MemVT
= St
->getMemoryVT();
18145 if (MemVT
.isScalableVector())
18147 if (!MemVT
.isSimple() || MemVT
.getSizeInBits() * 2 > MaximumLegalStoreInBits
)
18150 // This function cannot currently deal with non-byte-sized memory sizes.
18151 int64_t ElementSizeBytes
= MemVT
.getStoreSize();
18152 if (ElementSizeBytes
* 8 != (int64_t)MemVT
.getSizeInBits())
18155 // Do not bother looking at stored values that are not constants, loads, or
18156 // extracted vector elements.
18157 SDValue StoredVal
= peekThroughBitcasts(St
->getValue());
18158 const StoreSource StoreSrc
= getStoreSource(StoredVal
);
18159 if (StoreSrc
== StoreSource::Unknown
)
18162 SmallVector
<MemOpLink
, 8> StoreNodes
;
18164 // Find potential store merge candidates by searching through chain sub-DAG
18165 getStoreMergeCandidates(St
, StoreNodes
, RootNode
);
18167 // Check if there is anything to merge.
18168 if (StoreNodes
.size() < 2)
18171 // Sort the memory operands according to their distance from the
18173 llvm::sort(StoreNodes
, [](MemOpLink LHS
, MemOpLink RHS
) {
18174 return LHS
.OffsetFromBase
< RHS
.OffsetFromBase
;
18177 bool AllowVectors
= !DAG
.getMachineFunction().getFunction().hasFnAttribute(
18178 Attribute::NoImplicitFloat
);
18179 bool IsNonTemporalStore
= St
->isNonTemporal();
18180 bool IsNonTemporalLoad
= StoreSrc
== StoreSource::Load
&&
18181 cast
<LoadSDNode
>(StoredVal
)->isNonTemporal();
18183 // Store Merge attempts to merge the lowest stores. This generally
18184 // works out as if successful, as the remaining stores are checked
18185 // after the first collection of stores is merged. However, in the
18186 // case that a non-mergeable store is found first, e.g., {p[-2],
18187 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
18188 // mergeable cases. To prevent this, we prune such stores from the
18189 // front of StoreNodes here.
18190 bool MadeChange
= false;
18191 while (StoreNodes
.size() > 1) {
18192 unsigned NumConsecutiveStores
=
18193 getConsecutiveStores(StoreNodes
, ElementSizeBytes
);
18194 // There are no more stores in the list to examine.
18195 if (NumConsecutiveStores
== 0)
18198 // We have at least 2 consecutive stores. Try to merge them.
18199 assert(NumConsecutiveStores
>= 2 && "Expected at least 2 stores");
18200 switch (StoreSrc
) {
18201 case StoreSource::Constant
:
18202 MadeChange
|= tryStoreMergeOfConstants(StoreNodes
, NumConsecutiveStores
,
18203 MemVT
, RootNode
, AllowVectors
);
18206 case StoreSource::Extract
:
18207 MadeChange
|= tryStoreMergeOfExtracts(StoreNodes
, NumConsecutiveStores
,
18211 case StoreSource::Load
:
18212 MadeChange
|= tryStoreMergeOfLoads(StoreNodes
, NumConsecutiveStores
,
18213 MemVT
, RootNode
, AllowVectors
,
18214 IsNonTemporalStore
, IsNonTemporalLoad
);
18218 llvm_unreachable("Unhandled store source type");
18224 SDValue
DAGCombiner::replaceStoreChain(StoreSDNode
*ST
, SDValue BetterChain
) {
18228 // Replace the chain to avoid dependency.
18229 if (ST
->isTruncatingStore()) {
18230 ReplStore
= DAG
.getTruncStore(BetterChain
, SL
, ST
->getValue(),
18231 ST
->getBasePtr(), ST
->getMemoryVT(),
18232 ST
->getMemOperand());
18234 ReplStore
= DAG
.getStore(BetterChain
, SL
, ST
->getValue(), ST
->getBasePtr(),
18235 ST
->getMemOperand());
18238 // Create token to keep both nodes around.
18239 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, SL
,
18240 MVT::Other
, ST
->getChain(), ReplStore
);
18242 // Make sure the new and old chains are cleaned up.
18243 AddToWorklist(Token
.getNode());
18245 // Don't add users to work list.
18246 return CombineTo(ST
, Token
, false);
18249 SDValue
DAGCombiner::replaceStoreOfFPConstant(StoreSDNode
*ST
) {
18250 SDValue Value
= ST
->getValue();
18251 if (Value
.getOpcode() == ISD::TargetConstantFP
)
18254 if (!ISD::isNormalStore(ST
))
18259 SDValue Chain
= ST
->getChain();
18260 SDValue Ptr
= ST
->getBasePtr();
18262 const ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Value
);
18264 // NOTE: If the original store is volatile, this transform must not increase
18265 // the number of stores. For example, on x86-32 an f64 can be stored in one
18266 // processor operation but an i64 (which is not legal) requires two. So the
18267 // transform should not be done in this case.
18270 switch (CFP
->getSimpleValueType(0).SimpleTy
) {
18272 llvm_unreachable("Unknown FP type");
18273 case MVT::f16
: // We don't do this for these yet.
18279 if ((isTypeLegal(MVT::i32
) && !LegalOperations
&& ST
->isSimple()) ||
18280 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
18282 Tmp
= DAG
.getConstant((uint32_t)CFP
->getValueAPF().
18283 bitcastToAPInt().getZExtValue(), SDLoc(CFP
),
18285 return DAG
.getStore(Chain
, DL
, Tmp
, Ptr
, ST
->getMemOperand());
18290 if ((TLI
.isTypeLegal(MVT::i64
) && !LegalOperations
&&
18292 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i64
)) {
18294 Tmp
= DAG
.getConstant(CFP
->getValueAPF().bitcastToAPInt().
18295 getZExtValue(), SDLoc(CFP
), MVT::i64
);
18296 return DAG
.getStore(Chain
, DL
, Tmp
,
18297 Ptr
, ST
->getMemOperand());
18300 if (ST
->isSimple() &&
18301 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
18302 // Many FP stores are not made apparent until after legalize, e.g. for
18303 // argument passing. Since this is so common, custom legalize the
18304 // 64-bit integer store into two 32-bit stores.
18305 uint64_t Val
= CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
18306 SDValue Lo
= DAG
.getConstant(Val
& 0xFFFFFFFF, SDLoc(CFP
), MVT::i32
);
18307 SDValue Hi
= DAG
.getConstant(Val
>> 32, SDLoc(CFP
), MVT::i32
);
18308 if (DAG
.getDataLayout().isBigEndian())
18311 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
18312 AAMDNodes AAInfo
= ST
->getAAInfo();
18314 SDValue St0
= DAG
.getStore(Chain
, DL
, Lo
, Ptr
, ST
->getPointerInfo(),
18315 ST
->getOriginalAlign(), MMOFlags
, AAInfo
);
18316 Ptr
= DAG
.getMemBasePlusOffset(Ptr
, TypeSize::Fixed(4), DL
);
18317 SDValue St1
= DAG
.getStore(Chain
, DL
, Hi
, Ptr
,
18318 ST
->getPointerInfo().getWithOffset(4),
18319 ST
->getOriginalAlign(), MMOFlags
, AAInfo
);
18320 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
,
18328 SDValue
DAGCombiner::visitSTORE(SDNode
*N
) {
18329 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
18330 SDValue Chain
= ST
->getChain();
18331 SDValue Value
= ST
->getValue();
18332 SDValue Ptr
= ST
->getBasePtr();
18334 // If this is a store of a bit convert, store the input value if the
18335 // resultant store does not need a higher alignment than the original.
18336 if (Value
.getOpcode() == ISD::BITCAST
&& !ST
->isTruncatingStore() &&
18337 ST
->isUnindexed()) {
18338 EVT SVT
= Value
.getOperand(0).getValueType();
18339 // If the store is volatile, we only want to change the store type if the
18340 // resulting store is legal. Otherwise we might increase the number of
18341 // memory accesses. We don't care if the original type was legal or not
18342 // as we assume software couldn't rely on the number of accesses of an
18344 // TODO: May be able to relax for unordered atomics (see D66309)
18345 if (((!LegalOperations
&& ST
->isSimple()) ||
18346 TLI
.isOperationLegal(ISD::STORE
, SVT
)) &&
18347 TLI
.isStoreBitCastBeneficial(Value
.getValueType(), SVT
,
18348 DAG
, *ST
->getMemOperand())) {
18349 return DAG
.getStore(Chain
, SDLoc(N
), Value
.getOperand(0), Ptr
,
18350 ST
->getMemOperand());
18354 // Turn 'store undef, Ptr' -> nothing.
18355 if (Value
.isUndef() && ST
->isUnindexed())
18358 // Try to infer better alignment information than the store already has.
18359 if (OptLevel
!= CodeGenOpt::None
&& ST
->isUnindexed() && !ST
->isAtomic()) {
18360 if (MaybeAlign Alignment
= DAG
.InferPtrAlign(Ptr
)) {
18361 if (*Alignment
> ST
->getAlign() &&
18362 isAligned(*Alignment
, ST
->getSrcValueOffset())) {
18364 DAG
.getTruncStore(Chain
, SDLoc(N
), Value
, Ptr
, ST
->getPointerInfo(),
18365 ST
->getMemoryVT(), *Alignment
,
18366 ST
->getMemOperand()->getFlags(), ST
->getAAInfo());
18367 // NewStore will always be N as we are only refining the alignment
18368 assert(NewStore
.getNode() == N
);
18374 // Try transforming a pair floating point load / store ops to integer
18375 // load / store ops.
18376 if (SDValue NewST
= TransformFPLoadStorePair(N
))
18379 // Try transforming several stores into STORE (BSWAP).
18380 if (SDValue Store
= mergeTruncStores(ST
))
18383 if (ST
->isUnindexed()) {
18384 // Walk up chain skipping non-aliasing memory nodes, on this store and any
18385 // adjacent stores.
18386 if (findBetterNeighborChains(ST
)) {
18387 // replaceStoreChain uses CombineTo, which handled all of the worklist
18388 // manipulation. Return the original node to not do anything else.
18389 return SDValue(ST
, 0);
18391 Chain
= ST
->getChain();
18394 // FIXME: is there such a thing as a truncating indexed store?
18395 if (ST
->isTruncatingStore() && ST
->isUnindexed() &&
18396 Value
.getValueType().isInteger() &&
18397 (!isa
<ConstantSDNode
>(Value
) ||
18398 !cast
<ConstantSDNode
>(Value
)->isOpaque())) {
18399 APInt TruncDemandedBits
=
18400 APInt::getLowBitsSet(Value
.getScalarValueSizeInBits(),
18401 ST
->getMemoryVT().getScalarSizeInBits());
18403 // See if we can simplify the input to this truncstore with knowledge that
18404 // only the low bits are being used. For example:
18405 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
18406 AddToWorklist(Value
.getNode());
18407 if (SDValue Shorter
= DAG
.GetDemandedBits(Value
, TruncDemandedBits
))
18408 return DAG
.getTruncStore(Chain
, SDLoc(N
), Shorter
, Ptr
, ST
->getMemoryVT(),
18409 ST
->getMemOperand());
18411 // Otherwise, see if we can simplify the operation with
18412 // SimplifyDemandedBits, which only works if the value has a single use.
18413 if (SimplifyDemandedBits(Value
, TruncDemandedBits
)) {
18414 // Re-visit the store if anything changed and the store hasn't been merged
18415 // with another node (N is deleted) SimplifyDemandedBits will add Value's
18416 // node back to the worklist if necessary, but we also need to re-visit
18417 // the Store node itself.
18418 if (N
->getOpcode() != ISD::DELETED_NODE
)
18420 return SDValue(N
, 0);
18424 // If this is a load followed by a store to the same location, then the store
18426 // TODO: Can relax for unordered atomics (see D66309)
18427 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Value
)) {
18428 if (Ld
->getBasePtr() == Ptr
&& ST
->getMemoryVT() == Ld
->getMemoryVT() &&
18429 ST
->isUnindexed() && ST
->isSimple() &&
18430 Ld
->getAddressSpace() == ST
->getAddressSpace() &&
18431 // There can't be any side effects between the load and store, such as
18432 // a call or store.
18433 Chain
.reachesChainWithoutSideEffects(SDValue(Ld
, 1))) {
18434 // The store is dead, remove it.
18439 // TODO: Can relax for unordered atomics (see D66309)
18440 if (StoreSDNode
*ST1
= dyn_cast
<StoreSDNode
>(Chain
)) {
18441 if (ST
->isUnindexed() && ST
->isSimple() &&
18442 ST1
->isUnindexed() && ST1
->isSimple()) {
18443 if (OptLevel
!= CodeGenOpt::None
&& ST1
->getBasePtr() == Ptr
&&
18444 ST1
->getValue() == Value
&& ST
->getMemoryVT() == ST1
->getMemoryVT() &&
18445 ST
->getAddressSpace() == ST1
->getAddressSpace()) {
18446 // If this is a store followed by a store with the same value to the
18447 // same location, then the store is dead/noop.
18451 if (OptLevel
!= CodeGenOpt::None
&& ST1
->hasOneUse() &&
18452 !ST1
->getBasePtr().isUndef() &&
18453 // BaseIndexOffset and the code below requires knowing the size
18454 // of a vector, so bail out if MemoryVT is scalable.
18455 !ST
->getMemoryVT().isScalableVector() &&
18456 !ST1
->getMemoryVT().isScalableVector() &&
18457 ST
->getAddressSpace() == ST1
->getAddressSpace()) {
18458 const BaseIndexOffset STBase
= BaseIndexOffset::match(ST
, DAG
);
18459 const BaseIndexOffset ChainBase
= BaseIndexOffset::match(ST1
, DAG
);
18460 unsigned STBitSize
= ST
->getMemoryVT().getFixedSizeInBits();
18461 unsigned ChainBitSize
= ST1
->getMemoryVT().getFixedSizeInBits();
18462 // If this is a store who's preceding store to a subset of the current
18463 // location and no one other node is chained to that store we can
18464 // effectively drop the store. Do not remove stores to undef as they may
18465 // be used as data sinks.
18466 if (STBase
.contains(DAG
, STBitSize
, ChainBase
, ChainBitSize
)) {
18467 CombineTo(ST1
, ST1
->getChain());
18474 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
18475 // truncating store. We can do this even if this is already a truncstore.
18476 if ((Value
.getOpcode() == ISD::FP_ROUND
||
18477 Value
.getOpcode() == ISD::TRUNCATE
) &&
18478 Value
.getNode()->hasOneUse() && ST
->isUnindexed() &&
18479 TLI
.canCombineTruncStore(Value
.getOperand(0).getValueType(),
18480 ST
->getMemoryVT(), LegalOperations
)) {
18481 return DAG
.getTruncStore(Chain
, SDLoc(N
), Value
.getOperand(0),
18482 Ptr
, ST
->getMemoryVT(), ST
->getMemOperand());
18485 // Always perform this optimization before types are legal. If the target
18486 // prefers, also try this after legalization to catch stores that were created
18487 // by intrinsics or other nodes.
18488 if (!LegalTypes
|| (TLI
.mergeStoresAfterLegalization(ST
->getMemoryVT()))) {
18490 // There can be multiple store sequences on the same chain.
18491 // Keep trying to merge store sequences until we are unable to do so
18492 // or until we merge the last store on the chain.
18493 bool Changed
= mergeConsecutiveStores(ST
);
18494 if (!Changed
) break;
18495 // Return N as merge only uses CombineTo and no worklist clean
18496 // up is necessary.
18497 if (N
->getOpcode() == ISD::DELETED_NODE
|| !isa
<StoreSDNode
>(N
))
18498 return SDValue(N
, 0);
18502 // Try transforming N to an indexed store.
18503 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
18504 return SDValue(N
, 0);
18506 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
18508 // Make sure to do this only after attempting to merge stores in order to
18509 // avoid changing the types of some subset of stores due to visit order,
18510 // preventing their merging.
18511 if (isa
<ConstantFPSDNode
>(ST
->getValue())) {
18512 if (SDValue NewSt
= replaceStoreOfFPConstant(ST
))
18516 if (SDValue NewSt
= splitMergedValStore(ST
))
18519 return ReduceLoadOpStoreWidth(N
);
18522 SDValue
DAGCombiner::visitLIFETIME_END(SDNode
*N
) {
18523 const auto *LifetimeEnd
= cast
<LifetimeSDNode
>(N
);
18524 if (!LifetimeEnd
->hasOffset())
18527 const BaseIndexOffset
LifetimeEndBase(N
->getOperand(1), SDValue(),
18528 LifetimeEnd
->getOffset(), false);
18530 // We walk up the chains to find stores.
18531 SmallVector
<SDValue
, 8> Chains
= {N
->getOperand(0)};
18532 while (!Chains
.empty()) {
18533 SDValue Chain
= Chains
.pop_back_val();
18534 if (!Chain
.hasOneUse())
18536 switch (Chain
.getOpcode()) {
18537 case ISD::TokenFactor
:
18538 for (unsigned Nops
= Chain
.getNumOperands(); Nops
;)
18539 Chains
.push_back(Chain
.getOperand(--Nops
));
18541 case ISD::LIFETIME_START
:
18542 case ISD::LIFETIME_END
:
18543 // We can forward past any lifetime start/end that can be proven not to
18545 if (!mayAlias(Chain
.getNode(), N
))
18546 Chains
.push_back(Chain
.getOperand(0));
18549 StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(Chain
);
18550 // TODO: Can relax for unordered atomics (see D66309)
18551 if (!ST
->isSimple() || ST
->isIndexed())
18553 const TypeSize StoreSize
= ST
->getMemoryVT().getStoreSize();
18554 // The bounds of a scalable store are not known until runtime, so this
18555 // store cannot be elided.
18556 if (StoreSize
.isScalable())
18558 const BaseIndexOffset StoreBase
= BaseIndexOffset::match(ST
, DAG
);
18559 // If we store purely within object bounds just before its lifetime ends,
18560 // we can remove the store.
18561 if (LifetimeEndBase
.contains(DAG
, LifetimeEnd
->getSize() * 8, StoreBase
,
18562 StoreSize
.getFixedSize() * 8)) {
18563 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase
.dump();
18564 dbgs() << "\nwithin LIFETIME_END of : ";
18565 LifetimeEndBase
.dump(); dbgs() << "\n");
18566 CombineTo(ST
, ST
->getChain());
18567 return SDValue(N
, 0);
18575 /// For the instruction sequence of store below, F and I values
18576 /// are bundled together as an i64 value before being stored into memory.
18577 /// Sometimes it is more efficent to generate separate stores for F and I,
18578 /// which can remove the bitwise instructions or sink them to colder places.
18580 /// (store (or (zext (bitcast F to i32) to i64),
18581 /// (shl (zext I to i64), 32)), addr) -->
18582 /// (store F, addr) and (store I, addr+4)
18584 /// Similarly, splitting for other merged store can also be beneficial, like:
18585 /// For pair of {i32, i32}, i64 store --> two i32 stores.
18586 /// For pair of {i32, i16}, i64 store --> two i32 stores.
18587 /// For pair of {i16, i16}, i32 store --> two i16 stores.
18588 /// For pair of {i16, i8}, i32 store --> two i16 stores.
18589 /// For pair of {i8, i8}, i16 store --> two i8 stores.
18591 /// We allow each target to determine specifically which kind of splitting is
18594 /// The store patterns are commonly seen from the simple code snippet below
18595 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
18596 /// void goo(const std::pair<int, float> &);
18599 /// goo(std::make_pair(tmp, ftmp));
18603 SDValue
DAGCombiner::splitMergedValStore(StoreSDNode
*ST
) {
18604 if (OptLevel
== CodeGenOpt::None
)
18607 // Can't change the number of memory accesses for a volatile store or break
18608 // atomicity for an atomic one.
18609 if (!ST
->isSimple())
18612 SDValue Val
= ST
->getValue();
18615 // Match OR operand.
18616 if (!Val
.getValueType().isScalarInteger() || Val
.getOpcode() != ISD::OR
)
18619 // Match SHL operand and get Lower and Higher parts of Val.
18620 SDValue Op1
= Val
.getOperand(0);
18621 SDValue Op2
= Val
.getOperand(1);
18623 if (Op1
.getOpcode() != ISD::SHL
) {
18624 std::swap(Op1
, Op2
);
18625 if (Op1
.getOpcode() != ISD::SHL
)
18629 Hi
= Op1
.getOperand(0);
18630 if (!Op1
.hasOneUse())
18633 // Match shift amount to HalfValBitSize.
18634 unsigned HalfValBitSize
= Val
.getValueSizeInBits() / 2;
18635 ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(Op1
.getOperand(1));
18636 if (!ShAmt
|| ShAmt
->getAPIntValue() != HalfValBitSize
)
18639 // Lo and Hi are zero-extended from int with size less equal than 32
18641 if (Lo
.getOpcode() != ISD::ZERO_EXTEND
|| !Lo
.hasOneUse() ||
18642 !Lo
.getOperand(0).getValueType().isScalarInteger() ||
18643 Lo
.getOperand(0).getValueSizeInBits() > HalfValBitSize
||
18644 Hi
.getOpcode() != ISD::ZERO_EXTEND
|| !Hi
.hasOneUse() ||
18645 !Hi
.getOperand(0).getValueType().isScalarInteger() ||
18646 Hi
.getOperand(0).getValueSizeInBits() > HalfValBitSize
)
18649 // Use the EVT of low and high parts before bitcast as the input
18650 // of target query.
18651 EVT LowTy
= (Lo
.getOperand(0).getOpcode() == ISD::BITCAST
)
18652 ? Lo
.getOperand(0).getValueType()
18653 : Lo
.getValueType();
18654 EVT HighTy
= (Hi
.getOperand(0).getOpcode() == ISD::BITCAST
)
18655 ? Hi
.getOperand(0).getValueType()
18656 : Hi
.getValueType();
18657 if (!TLI
.isMultiStoresCheaperThanBitsMerge(LowTy
, HighTy
))
18660 // Start to split store.
18661 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
18662 AAMDNodes AAInfo
= ST
->getAAInfo();
18664 // Change the sizes of Lo and Hi's value types to HalfValBitSize.
18665 EVT VT
= EVT::getIntegerVT(*DAG
.getContext(), HalfValBitSize
);
18666 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Lo
.getOperand(0));
18667 Hi
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Hi
.getOperand(0));
18669 SDValue Chain
= ST
->getChain();
18670 SDValue Ptr
= ST
->getBasePtr();
18671 // Lower value store.
18672 SDValue St0
= DAG
.getStore(Chain
, DL
, Lo
, Ptr
, ST
->getPointerInfo(),
18673 ST
->getOriginalAlign(), MMOFlags
, AAInfo
);
18674 Ptr
= DAG
.getMemBasePlusOffset(Ptr
, TypeSize::Fixed(HalfValBitSize
/ 8), DL
);
18675 // Higher value store.
18676 SDValue St1
= DAG
.getStore(
18677 St0
, DL
, Hi
, Ptr
, ST
->getPointerInfo().getWithOffset(HalfValBitSize
/ 8),
18678 ST
->getOriginalAlign(), MMOFlags
, AAInfo
);
18682 /// Convert a disguised subvector insertion into a shuffle:
18683 SDValue
DAGCombiner::combineInsertEltToShuffle(SDNode
*N
, unsigned InsIndex
) {
18684 assert(N
->getOpcode() == ISD::INSERT_VECTOR_ELT
&&
18685 "Expected extract_vector_elt");
18686 SDValue InsertVal
= N
->getOperand(1);
18687 SDValue Vec
= N
->getOperand(0);
18689 // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N),
18691 // --> (vector_shuffle X, Y) and variations where shuffle operands may be
18693 if (Vec
.getOpcode() == ISD::VECTOR_SHUFFLE
&& Vec
.hasOneUse() &&
18694 InsertVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
18695 isa
<ConstantSDNode
>(InsertVal
.getOperand(1))) {
18696 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Vec
.getNode());
18697 ArrayRef
<int> Mask
= SVN
->getMask();
18699 SDValue X
= Vec
.getOperand(0);
18700 SDValue Y
= Vec
.getOperand(1);
18702 // Vec's operand 0 is using indices from 0 to N-1 and
18703 // operand 1 from N to 2N - 1, where N is the number of
18704 // elements in the vectors.
18705 SDValue InsertVal0
= InsertVal
.getOperand(0);
18706 int ElementOffset
= -1;
18708 // We explore the inputs of the shuffle in order to see if we find the
18709 // source of the extract_vector_elt. If so, we can use it to modify the
18710 // shuffle rather than perform an insert_vector_elt.
18711 SmallVector
<std::pair
<int, SDValue
>, 8> ArgWorkList
;
18712 ArgWorkList
.emplace_back(Mask
.size(), Y
);
18713 ArgWorkList
.emplace_back(0, X
);
18715 while (!ArgWorkList
.empty()) {
18718 std::tie(ArgOffset
, ArgVal
) = ArgWorkList
.pop_back_val();
18720 if (ArgVal
== InsertVal0
) {
18721 ElementOffset
= ArgOffset
;
18725 // Peek through concat_vector.
18726 if (ArgVal
.getOpcode() == ISD::CONCAT_VECTORS
) {
18727 int CurrentArgOffset
=
18728 ArgOffset
+ ArgVal
.getValueType().getVectorNumElements();
18729 int Step
= ArgVal
.getOperand(0).getValueType().getVectorNumElements();
18730 for (SDValue Op
: reverse(ArgVal
->ops())) {
18731 CurrentArgOffset
-= Step
;
18732 ArgWorkList
.emplace_back(CurrentArgOffset
, Op
);
18735 // Make sure we went through all the elements and did not screw up index
18737 assert(CurrentArgOffset
== ArgOffset
);
18741 if (ElementOffset
!= -1) {
18742 SmallVector
<int, 16> NewMask(Mask
.begin(), Mask
.end());
18744 auto *ExtrIndex
= cast
<ConstantSDNode
>(InsertVal
.getOperand(1));
18745 NewMask
[InsIndex
] = ElementOffset
+ ExtrIndex
->getZExtValue();
18746 assert(NewMask
[InsIndex
] <
18747 (int)(2 * Vec
.getValueType().getVectorNumElements()) &&
18748 NewMask
[InsIndex
] >= 0 && "NewMask[InsIndex] is out of bound");
18750 SDValue LegalShuffle
=
18751 TLI
.buildLegalVectorShuffle(Vec
.getValueType(), SDLoc(N
), X
,
18754 return LegalShuffle
;
18758 // insert_vector_elt V, (bitcast X from vector type), IdxC -->
18759 // bitcast(shuffle (bitcast V), (extended X), Mask)
18760 // Note: We do not use an insert_subvector node because that requires a
18761 // legal subvector type.
18762 if (InsertVal
.getOpcode() != ISD::BITCAST
|| !InsertVal
.hasOneUse() ||
18763 !InsertVal
.getOperand(0).getValueType().isVector())
18766 SDValue SubVec
= InsertVal
.getOperand(0);
18767 SDValue DestVec
= N
->getOperand(0);
18768 EVT SubVecVT
= SubVec
.getValueType();
18769 EVT VT
= DestVec
.getValueType();
18770 unsigned NumSrcElts
= SubVecVT
.getVectorNumElements();
18771 // If the source only has a single vector element, the cost of creating adding
18772 // it to a vector is likely to exceed the cost of a insert_vector_elt.
18773 if (NumSrcElts
== 1)
18775 unsigned ExtendRatio
= VT
.getSizeInBits() / SubVecVT
.getSizeInBits();
18776 unsigned NumMaskVals
= ExtendRatio
* NumSrcElts
;
18778 // Step 1: Create a shuffle mask that implements this insert operation. The
18779 // vector that we are inserting into will be operand 0 of the shuffle, so
18780 // those elements are just 'i'. The inserted subvector is in the first
18781 // positions of operand 1 of the shuffle. Example:
18782 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
18783 SmallVector
<int, 16> Mask(NumMaskVals
);
18784 for (unsigned i
= 0; i
!= NumMaskVals
; ++i
) {
18785 if (i
/ NumSrcElts
== InsIndex
)
18786 Mask
[i
] = (i
% NumSrcElts
) + NumMaskVals
;
18791 // Bail out if the target can not handle the shuffle we want to create.
18792 EVT SubVecEltVT
= SubVecVT
.getVectorElementType();
18793 EVT ShufVT
= EVT::getVectorVT(*DAG
.getContext(), SubVecEltVT
, NumMaskVals
);
18794 if (!TLI
.isShuffleMaskLegal(Mask
, ShufVT
))
18797 // Step 2: Create a wide vector from the inserted source vector by appending
18798 // undefined elements. This is the same size as our destination vector.
18800 SmallVector
<SDValue
, 8> ConcatOps(ExtendRatio
, DAG
.getUNDEF(SubVecVT
));
18801 ConcatOps
[0] = SubVec
;
18802 SDValue PaddedSubV
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, ShufVT
, ConcatOps
);
18804 // Step 3: Shuffle in the padded subvector.
18805 SDValue DestVecBC
= DAG
.getBitcast(ShufVT
, DestVec
);
18806 SDValue Shuf
= DAG
.getVectorShuffle(ShufVT
, DL
, DestVecBC
, PaddedSubV
, Mask
);
18807 AddToWorklist(PaddedSubV
.getNode());
18808 AddToWorklist(DestVecBC
.getNode());
18809 AddToWorklist(Shuf
.getNode());
18810 return DAG
.getBitcast(VT
, Shuf
);
18813 SDValue
DAGCombiner::visitINSERT_VECTOR_ELT(SDNode
*N
) {
18814 SDValue InVec
= N
->getOperand(0);
18815 SDValue InVal
= N
->getOperand(1);
18816 SDValue EltNo
= N
->getOperand(2);
18819 EVT VT
= InVec
.getValueType();
18820 auto *IndexC
= dyn_cast
<ConstantSDNode
>(EltNo
);
18822 // Insert into out-of-bounds element is undefined.
18823 if (IndexC
&& VT
.isFixedLengthVector() &&
18824 IndexC
->getZExtValue() >= VT
.getVectorNumElements())
18825 return DAG
.getUNDEF(VT
);
18827 // Remove redundant insertions:
18828 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
18829 if (InVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
18830 InVec
== InVal
.getOperand(0) && EltNo
== InVal
.getOperand(1))
18834 // If this is variable insert to undef vector, it might be better to splat:
18835 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
18836 if (InVec
.isUndef() && TLI
.shouldSplatInsEltVarIndex(VT
)) {
18837 if (VT
.isScalableVector())
18838 return DAG
.getSplatVector(VT
, DL
, InVal
);
18840 SmallVector
<SDValue
, 8> Ops(VT
.getVectorNumElements(), InVal
);
18841 return DAG
.getBuildVector(VT
, DL
, Ops
);
18847 if (VT
.isScalableVector())
18850 unsigned NumElts
= VT
.getVectorNumElements();
18852 // We must know which element is being inserted for folds below here.
18853 unsigned Elt
= IndexC
->getZExtValue();
18854 if (SDValue Shuf
= combineInsertEltToShuffle(N
, Elt
))
18857 // Canonicalize insert_vector_elt dag nodes.
18859 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
18860 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
18862 // Do this only if the child insert_vector node has one use; also
18863 // do this only if indices are both constants and Idx1 < Idx0.
18864 if (InVec
.getOpcode() == ISD::INSERT_VECTOR_ELT
&& InVec
.hasOneUse()
18865 && isa
<ConstantSDNode
>(InVec
.getOperand(2))) {
18866 unsigned OtherElt
= InVec
.getConstantOperandVal(2);
18867 if (Elt
< OtherElt
) {
18869 SDValue NewOp
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, DL
, VT
,
18870 InVec
.getOperand(0), InVal
, EltNo
);
18871 AddToWorklist(NewOp
.getNode());
18872 return DAG
.getNode(ISD::INSERT_VECTOR_ELT
, SDLoc(InVec
.getNode()),
18873 VT
, NewOp
, InVec
.getOperand(1), InVec
.getOperand(2));
18877 // If we can't generate a legal BUILD_VECTOR, exit
18878 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
))
18881 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
18882 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
18883 // vector elements.
18884 SmallVector
<SDValue
, 8> Ops
;
18885 // Do not combine these two vectors if the output vector will not replace
18886 // the input vector.
18887 if (InVec
.getOpcode() == ISD::BUILD_VECTOR
&& InVec
.hasOneUse()) {
18888 Ops
.append(InVec
.getNode()->op_begin(),
18889 InVec
.getNode()->op_end());
18890 } else if (InVec
.isUndef()) {
18891 Ops
.append(NumElts
, DAG
.getUNDEF(InVal
.getValueType()));
18895 assert(Ops
.size() == NumElts
&& "Unexpected vector size");
18897 // Insert the element
18898 if (Elt
< Ops
.size()) {
18899 // All the operands of BUILD_VECTOR must have the same type;
18900 // we enforce that here.
18901 EVT OpVT
= Ops
[0].getValueType();
18902 Ops
[Elt
] = OpVT
.isInteger() ? DAG
.getAnyExtOrTrunc(InVal
, DL
, OpVT
) : InVal
;
18905 // Return the new vector
18906 return DAG
.getBuildVector(VT
, DL
, Ops
);
18909 SDValue
DAGCombiner::scalarizeExtractedVectorLoad(SDNode
*EVE
, EVT InVecVT
,
18911 LoadSDNode
*OriginalLoad
) {
18912 assert(OriginalLoad
->isSimple());
18914 EVT ResultVT
= EVE
->getValueType(0);
18915 EVT VecEltVT
= InVecVT
.getVectorElementType();
18917 // If the vector element type is not a multiple of a byte then we are unable
18918 // to correctly compute an address to load only the extracted element as a
18920 if (!VecEltVT
.isByteSized())
18923 ISD::LoadExtType ExtTy
=
18924 ResultVT
.bitsGT(VecEltVT
) ? ISD::NON_EXTLOAD
: ISD::EXTLOAD
;
18925 if (!TLI
.isOperationLegalOrCustom(ISD::LOAD
, VecEltVT
) ||
18926 !TLI
.shouldReduceLoadWidth(OriginalLoad
, ExtTy
, VecEltVT
))
18929 Align Alignment
= OriginalLoad
->getAlign();
18930 MachinePointerInfo MPI
;
18932 if (auto *ConstEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
)) {
18933 int Elt
= ConstEltNo
->getZExtValue();
18934 unsigned PtrOff
= VecEltVT
.getSizeInBits() * Elt
/ 8;
18935 MPI
= OriginalLoad
->getPointerInfo().getWithOffset(PtrOff
);
18936 Alignment
= commonAlignment(Alignment
, PtrOff
);
18938 // Discard the pointer info except the address space because the memory
18939 // operand can't represent this new access since the offset is variable.
18940 MPI
= MachinePointerInfo(OriginalLoad
->getPointerInfo().getAddrSpace());
18941 Alignment
= commonAlignment(Alignment
, VecEltVT
.getSizeInBits() / 8);
18944 bool IsFast
= false;
18945 if (!TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), VecEltVT
,
18946 OriginalLoad
->getAddressSpace(), Alignment
,
18947 OriginalLoad
->getMemOperand()->getFlags(),
18952 SDValue NewPtr
= TLI
.getVectorElementPointer(DAG
, OriginalLoad
->getBasePtr(),
18955 // The replacement we need to do here is a little tricky: we need to
18956 // replace an extractelement of a load with a load.
18957 // Use ReplaceAllUsesOfValuesWith to do the replacement.
18958 // Note that this replacement assumes that the extractvalue is the only
18959 // use of the load; that's okay because we don't want to perform this
18960 // transformation in other cases anyway.
18963 if (ResultVT
.bitsGT(VecEltVT
)) {
18964 // If the result type of vextract is wider than the load, then issue an
18965 // extending load instead.
18966 ISD::LoadExtType ExtType
= TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, ResultVT
,
18970 Load
= DAG
.getExtLoad(ExtType
, SDLoc(EVE
), ResultVT
,
18971 OriginalLoad
->getChain(), NewPtr
, MPI
, VecEltVT
,
18972 Alignment
, OriginalLoad
->getMemOperand()->getFlags(),
18973 OriginalLoad
->getAAInfo());
18974 Chain
= Load
.getValue(1);
18976 Load
= DAG
.getLoad(
18977 VecEltVT
, SDLoc(EVE
), OriginalLoad
->getChain(), NewPtr
, MPI
, Alignment
,
18978 OriginalLoad
->getMemOperand()->getFlags(), OriginalLoad
->getAAInfo());
18979 Chain
= Load
.getValue(1);
18980 if (ResultVT
.bitsLT(VecEltVT
))
18981 Load
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(EVE
), ResultVT
, Load
);
18983 Load
= DAG
.getBitcast(ResultVT
, Load
);
18985 WorklistRemover
DeadNodes(*this);
18986 SDValue From
[] = { SDValue(EVE
, 0), SDValue(OriginalLoad
, 1) };
18987 SDValue To
[] = { Load
, Chain
};
18988 DAG
.ReplaceAllUsesOfValuesWith(From
, To
, 2);
18989 // Make sure to revisit this node to clean it up; it will usually be dead.
18990 AddToWorklist(EVE
);
18991 // Since we're explicitly calling ReplaceAllUses, add the new node to the
18992 // worklist explicitly as well.
18993 AddToWorklistWithUsers(Load
.getNode());
18995 return SDValue(EVE
, 0);
18998 /// Transform a vector binary operation into a scalar binary operation by moving
18999 /// the math/logic after an extract element of a vector.
19000 static SDValue
scalarizeExtractedBinop(SDNode
*ExtElt
, SelectionDAG
&DAG
,
19001 bool LegalOperations
) {
19002 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
19003 SDValue Vec
= ExtElt
->getOperand(0);
19004 SDValue Index
= ExtElt
->getOperand(1);
19005 auto *IndexC
= dyn_cast
<ConstantSDNode
>(Index
);
19006 if (!IndexC
|| !TLI
.isBinOp(Vec
.getOpcode()) || !Vec
.hasOneUse() ||
19007 Vec
.getNode()->getNumValues() != 1)
19010 // Targets may want to avoid this to prevent an expensive register transfer.
19011 if (!TLI
.shouldScalarizeBinop(Vec
))
19014 // Extracting an element of a vector constant is constant-folded, so this
19015 // transform is just replacing a vector op with a scalar op while moving the
19017 SDValue Op0
= Vec
.getOperand(0);
19018 SDValue Op1
= Vec
.getOperand(1);
19019 if (isAnyConstantBuildVector(Op0
, true) ||
19020 isAnyConstantBuildVector(Op1
, true)) {
19021 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C'
19022 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC)
19024 EVT VT
= ExtElt
->getValueType(0);
19025 SDValue Ext0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, Op0
, Index
);
19026 SDValue Ext1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, Op1
, Index
);
19027 return DAG
.getNode(Vec
.getOpcode(), DL
, VT
, Ext0
, Ext1
);
19033 SDValue
DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode
*N
) {
19034 SDValue VecOp
= N
->getOperand(0);
19035 SDValue Index
= N
->getOperand(1);
19036 EVT ScalarVT
= N
->getValueType(0);
19037 EVT VecVT
= VecOp
.getValueType();
19038 if (VecOp
.isUndef())
19039 return DAG
.getUNDEF(ScalarVT
);
19041 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
19043 // This only really matters if the index is non-constant since other combines
19044 // on the constant elements already work.
19046 if (VecOp
.getOpcode() == ISD::INSERT_VECTOR_ELT
&&
19047 Index
== VecOp
.getOperand(2)) {
19048 SDValue Elt
= VecOp
.getOperand(1);
19049 return VecVT
.isInteger() ? DAG
.getAnyExtOrTrunc(Elt
, DL
, ScalarVT
) : Elt
;
19052 // (vextract (scalar_to_vector val, 0) -> val
19053 if (VecOp
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
19054 // Only 0'th element of SCALAR_TO_VECTOR is defined.
19055 if (DAG
.isKnownNeverZero(Index
))
19056 return DAG
.getUNDEF(ScalarVT
);
19058 // Check if the result type doesn't match the inserted element type. A
19059 // SCALAR_TO_VECTOR may truncate the inserted element and the
19060 // EXTRACT_VECTOR_ELT may widen the extracted vector.
19061 SDValue InOp
= VecOp
.getOperand(0);
19062 if (InOp
.getValueType() != ScalarVT
) {
19063 assert(InOp
.getValueType().isInteger() && ScalarVT
.isInteger());
19064 return DAG
.getSExtOrTrunc(InOp
, DL
, ScalarVT
);
19069 // extract_vector_elt of out-of-bounds element -> UNDEF
19070 auto *IndexC
= dyn_cast
<ConstantSDNode
>(Index
);
19071 if (IndexC
&& VecVT
.isFixedLengthVector() &&
19072 IndexC
->getAPIntValue().uge(VecVT
.getVectorNumElements()))
19073 return DAG
.getUNDEF(ScalarVT
);
19075 // extract_vector_elt (build_vector x, y), 1 -> y
19076 if (((IndexC
&& VecOp
.getOpcode() == ISD::BUILD_VECTOR
) ||
19077 VecOp
.getOpcode() == ISD::SPLAT_VECTOR
) &&
19078 TLI
.isTypeLegal(VecVT
) &&
19079 (VecOp
.hasOneUse() || TLI
.aggressivelyPreferBuildVectorSources(VecVT
))) {
19080 assert((VecOp
.getOpcode() != ISD::BUILD_VECTOR
||
19081 VecVT
.isFixedLengthVector()) &&
19082 "BUILD_VECTOR used for scalable vectors");
19083 unsigned IndexVal
=
19084 VecOp
.getOpcode() == ISD::BUILD_VECTOR
? IndexC
->getZExtValue() : 0;
19085 SDValue Elt
= VecOp
.getOperand(IndexVal
);
19086 EVT InEltVT
= Elt
.getValueType();
19088 // Sometimes build_vector's scalar input types do not match result type.
19089 if (ScalarVT
== InEltVT
)
19092 // TODO: It may be useful to truncate if free if the build_vector implicitly
19096 if (VecVT
.isScalableVector())
19099 // All the code from this point onwards assumes fixed width vectors, but it's
19100 // possible that some of the combinations could be made to work for scalable
19102 unsigned NumElts
= VecVT
.getVectorNumElements();
19103 unsigned VecEltBitWidth
= VecVT
.getScalarSizeInBits();
19105 // TODO: These transforms should not require the 'hasOneUse' restriction, but
19106 // there are regressions on multiple targets without it. We can end up with a
19107 // mess of scalar and vector code if we reduce only part of the DAG to scalar.
19108 if (IndexC
&& VecOp
.getOpcode() == ISD::BITCAST
&& VecVT
.isInteger() &&
19109 VecOp
.hasOneUse()) {
19110 // The vector index of the LSBs of the source depend on the endian-ness.
19111 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
19112 unsigned ExtractIndex
= IndexC
->getZExtValue();
19113 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
19114 unsigned BCTruncElt
= IsLE
? 0 : NumElts
- 1;
19115 SDValue BCSrc
= VecOp
.getOperand(0);
19116 if (ExtractIndex
== BCTruncElt
&& BCSrc
.getValueType().isScalarInteger())
19117 return DAG
.getNode(ISD::TRUNCATE
, DL
, ScalarVT
, BCSrc
);
19119 if (LegalTypes
&& BCSrc
.getValueType().isInteger() &&
19120 BCSrc
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
19121 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt -->
19122 // trunc i64 X to i32
19123 SDValue X
= BCSrc
.getOperand(0);
19124 assert(X
.getValueType().isScalarInteger() && ScalarVT
.isScalarInteger() &&
19125 "Extract element and scalar to vector can't change element type "
19126 "from FP to integer.");
19127 unsigned XBitWidth
= X
.getValueSizeInBits();
19128 BCTruncElt
= IsLE
? 0 : XBitWidth
/ VecEltBitWidth
- 1;
19130 // An extract element return value type can be wider than its vector
19131 // operand element type. In that case, the high bits are undefined, so
19132 // it's possible that we may need to extend rather than truncate.
19133 if (ExtractIndex
== BCTruncElt
&& XBitWidth
> VecEltBitWidth
) {
19134 assert(XBitWidth
% VecEltBitWidth
== 0 &&
19135 "Scalar bitwidth must be a multiple of vector element bitwidth");
19136 return DAG
.getAnyExtOrTrunc(X
, DL
, ScalarVT
);
19141 if (SDValue BO
= scalarizeExtractedBinop(N
, DAG
, LegalOperations
))
19144 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
19145 // We only perform this optimization before the op legalization phase because
19146 // we may introduce new vector instructions which are not backed by TD
19147 // patterns. For example on AVX, extracting elements from a wide vector
19148 // without using extract_subvector. However, if we can find an underlying
19149 // scalar value, then we can always use that.
19150 if (IndexC
&& VecOp
.getOpcode() == ISD::VECTOR_SHUFFLE
) {
19151 auto *Shuf
= cast
<ShuffleVectorSDNode
>(VecOp
);
19152 // Find the new index to extract from.
19153 int OrigElt
= Shuf
->getMaskElt(IndexC
->getZExtValue());
19155 // Extracting an undef index is undef.
19157 return DAG
.getUNDEF(ScalarVT
);
19159 // Select the right vector half to extract from.
19161 if (OrigElt
< (int)NumElts
) {
19162 SVInVec
= VecOp
.getOperand(0);
19164 SVInVec
= VecOp
.getOperand(1);
19165 OrigElt
-= NumElts
;
19168 if (SVInVec
.getOpcode() == ISD::BUILD_VECTOR
) {
19169 SDValue InOp
= SVInVec
.getOperand(OrigElt
);
19170 if (InOp
.getValueType() != ScalarVT
) {
19171 assert(InOp
.getValueType().isInteger() && ScalarVT
.isInteger());
19172 InOp
= DAG
.getSExtOrTrunc(InOp
, DL
, ScalarVT
);
19178 // FIXME: We should handle recursing on other vector shuffles and
19179 // scalar_to_vector here as well.
19181 if (!LegalOperations
||
19182 // FIXME: Should really be just isOperationLegalOrCustom.
19183 TLI
.isOperationLegal(ISD::EXTRACT_VECTOR_ELT
, VecVT
) ||
19184 TLI
.isOperationExpand(ISD::VECTOR_SHUFFLE
, VecVT
)) {
19185 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, ScalarVT
, SVInVec
,
19186 DAG
.getVectorIdxConstant(OrigElt
, DL
));
19190 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can
19191 // simplify it based on the (valid) extraction indices.
19192 if (llvm::all_of(VecOp
->uses(), [&](SDNode
*Use
) {
19193 return Use
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
19194 Use
->getOperand(0) == VecOp
&&
19195 isa
<ConstantSDNode
>(Use
->getOperand(1));
19197 APInt DemandedElts
= APInt::getZero(NumElts
);
19198 for (SDNode
*Use
: VecOp
->uses()) {
19199 auto *CstElt
= cast
<ConstantSDNode
>(Use
->getOperand(1));
19200 if (CstElt
->getAPIntValue().ult(NumElts
))
19201 DemandedElts
.setBit(CstElt
->getZExtValue());
19203 if (SimplifyDemandedVectorElts(VecOp
, DemandedElts
, true)) {
19204 // We simplified the vector operand of this extract element. If this
19205 // extract is not dead, visit it again so it is folded properly.
19206 if (N
->getOpcode() != ISD::DELETED_NODE
)
19208 return SDValue(N
, 0);
19210 APInt DemandedBits
= APInt::getAllOnes(VecEltBitWidth
);
19211 if (SimplifyDemandedBits(VecOp
, DemandedBits
, DemandedElts
, true)) {
19212 // We simplified the vector operand of this extract element. If this
19213 // extract is not dead, visit it again so it is folded properly.
19214 if (N
->getOpcode() != ISD::DELETED_NODE
)
19216 return SDValue(N
, 0);
19220 // Everything under here is trying to match an extract of a loaded value.
19221 // If the result of load has to be truncated, then it's not necessarily
19223 bool BCNumEltsChanged
= false;
19224 EVT ExtVT
= VecVT
.getVectorElementType();
19226 if (ScalarVT
.bitsLT(LVT
) && !TLI
.isTruncateFree(LVT
, ScalarVT
))
19229 if (VecOp
.getOpcode() == ISD::BITCAST
) {
19230 // Don't duplicate a load with other uses.
19231 if (!VecOp
.hasOneUse())
19234 EVT BCVT
= VecOp
.getOperand(0).getValueType();
19235 if (!BCVT
.isVector() || ExtVT
.bitsGT(BCVT
.getVectorElementType()))
19237 if (NumElts
!= BCVT
.getVectorNumElements())
19238 BCNumEltsChanged
= true;
19239 VecOp
= VecOp
.getOperand(0);
19240 ExtVT
= BCVT
.getVectorElementType();
19243 // extract (vector load $addr), i --> load $addr + i * size
19244 if (!LegalOperations
&& !IndexC
&& VecOp
.hasOneUse() &&
19245 ISD::isNormalLoad(VecOp
.getNode()) &&
19246 !Index
->hasPredecessor(VecOp
.getNode())) {
19247 auto *VecLoad
= dyn_cast
<LoadSDNode
>(VecOp
);
19248 if (VecLoad
&& VecLoad
->isSimple())
19249 return scalarizeExtractedVectorLoad(N
, VecVT
, Index
, VecLoad
);
19252 // Perform only after legalization to ensure build_vector / vector_shuffle
19253 // optimizations have already been done.
19254 if (!LegalOperations
|| !IndexC
)
19257 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
19258 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
19259 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
19260 int Elt
= IndexC
->getZExtValue();
19261 LoadSDNode
*LN0
= nullptr;
19262 if (ISD::isNormalLoad(VecOp
.getNode())) {
19263 LN0
= cast
<LoadSDNode
>(VecOp
);
19264 } else if (VecOp
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
19265 VecOp
.getOperand(0).getValueType() == ExtVT
&&
19266 ISD::isNormalLoad(VecOp
.getOperand(0).getNode())) {
19267 // Don't duplicate a load with other uses.
19268 if (!VecOp
.hasOneUse())
19271 LN0
= cast
<LoadSDNode
>(VecOp
.getOperand(0));
19273 if (auto *Shuf
= dyn_cast
<ShuffleVectorSDNode
>(VecOp
)) {
19274 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
19276 // (load $addr+1*size)
19278 // Don't duplicate a load with other uses.
19279 if (!VecOp
.hasOneUse())
19282 // If the bit convert changed the number of elements, it is unsafe
19283 // to examine the mask.
19284 if (BCNumEltsChanged
)
19287 // Select the input vector, guarding against out of range extract vector.
19288 int Idx
= (Elt
> (int)NumElts
) ? -1 : Shuf
->getMaskElt(Elt
);
19289 VecOp
= (Idx
< (int)NumElts
) ? VecOp
.getOperand(0) : VecOp
.getOperand(1);
19291 if (VecOp
.getOpcode() == ISD::BITCAST
) {
19292 // Don't duplicate a load with other uses.
19293 if (!VecOp
.hasOneUse())
19296 VecOp
= VecOp
.getOperand(0);
19298 if (ISD::isNormalLoad(VecOp
.getNode())) {
19299 LN0
= cast
<LoadSDNode
>(VecOp
);
19300 Elt
= (Idx
< (int)NumElts
) ? Idx
: Idx
- (int)NumElts
;
19301 Index
= DAG
.getConstant(Elt
, DL
, Index
.getValueType());
19303 } else if (VecOp
.getOpcode() == ISD::CONCAT_VECTORS
&& !BCNumEltsChanged
&&
19304 VecVT
.getVectorElementType() == ScalarVT
&&
19307 VecOp
.getOperand(0).getValueType().getVectorElementType()))) {
19308 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0
19309 // -> extract_vector_elt a, 0
19310 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1
19311 // -> extract_vector_elt a, 1
19312 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2
19313 // -> extract_vector_elt b, 0
19314 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3
19315 // -> extract_vector_elt b, 1
19317 EVT ConcatVT
= VecOp
.getOperand(0).getValueType();
19318 unsigned ConcatNumElts
= ConcatVT
.getVectorNumElements();
19319 SDValue NewIdx
= DAG
.getConstant(Elt
% ConcatNumElts
, SL
,
19320 Index
.getValueType());
19322 SDValue ConcatOp
= VecOp
.getOperand(Elt
/ ConcatNumElts
);
19323 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
,
19324 ConcatVT
.getVectorElementType(),
19326 return DAG
.getNode(ISD::BITCAST
, SL
, ScalarVT
, Elt
);
19329 // Make sure we found a non-volatile load and the extractelement is
19331 if (!LN0
|| !LN0
->hasNUsesOfValue(1,0) || !LN0
->isSimple())
19334 // If Idx was -1 above, Elt is going to be -1, so just return undef.
19336 return DAG
.getUNDEF(LVT
);
19338 return scalarizeExtractedVectorLoad(N
, VecVT
, Index
, LN0
);
19341 // Simplify (build_vec (ext )) to (bitcast (build_vec ))
19342 SDValue
DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode
*N
) {
19343 // We perform this optimization post type-legalization because
19344 // the type-legalizer often scalarizes integer-promoted vectors.
19345 // Performing this optimization before may create bit-casts which
19346 // will be type-legalized to complex code sequences.
19347 // We perform this optimization only before the operation legalizer because we
19348 // may introduce illegal operations.
19349 if (Level
!= AfterLegalizeVectorOps
&& Level
!= AfterLegalizeTypes
)
19352 unsigned NumInScalars
= N
->getNumOperands();
19354 EVT VT
= N
->getValueType(0);
19356 // Check to see if this is a BUILD_VECTOR of a bunch of values
19357 // which come from any_extend or zero_extend nodes. If so, we can create
19358 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
19359 // optimizations. We do not handle sign-extend because we can't fill the sign
19361 EVT SourceType
= MVT::Other
;
19362 bool AllAnyExt
= true;
19364 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
19365 SDValue In
= N
->getOperand(i
);
19366 // Ignore undef inputs.
19367 if (In
.isUndef()) continue;
19369 bool AnyExt
= In
.getOpcode() == ISD::ANY_EXTEND
;
19370 bool ZeroExt
= In
.getOpcode() == ISD::ZERO_EXTEND
;
19372 // Abort if the element is not an extension.
19373 if (!ZeroExt
&& !AnyExt
) {
19374 SourceType
= MVT::Other
;
19378 // The input is a ZeroExt or AnyExt. Check the original type.
19379 EVT InTy
= In
.getOperand(0).getValueType();
19381 // Check that all of the widened source types are the same.
19382 if (SourceType
== MVT::Other
)
19385 else if (InTy
!= SourceType
) {
19386 // Multiple income types. Abort.
19387 SourceType
= MVT::Other
;
19391 // Check if all of the extends are ANY_EXTENDs.
19392 AllAnyExt
&= AnyExt
;
19395 // In order to have valid types, all of the inputs must be extended from the
19396 // same source type and all of the inputs must be any or zero extend.
19397 // Scalar sizes must be a power of two.
19398 EVT OutScalarTy
= VT
.getScalarType();
19399 bool ValidTypes
= SourceType
!= MVT::Other
&&
19400 isPowerOf2_32(OutScalarTy
.getSizeInBits()) &&
19401 isPowerOf2_32(SourceType
.getSizeInBits());
19403 // Create a new simpler BUILD_VECTOR sequence which other optimizations can
19404 // turn into a single shuffle instruction.
19408 // If we already have a splat buildvector, then don't fold it if it means
19409 // introducing zeros.
19410 if (!AllAnyExt
&& DAG
.isSplatValue(SDValue(N
, 0), /*AllowUndefs*/ true))
19413 bool isLE
= DAG
.getDataLayout().isLittleEndian();
19414 unsigned ElemRatio
= OutScalarTy
.getSizeInBits()/SourceType
.getSizeInBits();
19415 assert(ElemRatio
> 1 && "Invalid element size ratio");
19416 SDValue Filler
= AllAnyExt
? DAG
.getUNDEF(SourceType
):
19417 DAG
.getConstant(0, DL
, SourceType
);
19419 unsigned NewBVElems
= ElemRatio
* VT
.getVectorNumElements();
19420 SmallVector
<SDValue
, 8> Ops(NewBVElems
, Filler
);
19422 // Populate the new build_vector
19423 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
19424 SDValue Cast
= N
->getOperand(i
);
19425 assert((Cast
.getOpcode() == ISD::ANY_EXTEND
||
19426 Cast
.getOpcode() == ISD::ZERO_EXTEND
||
19427 Cast
.isUndef()) && "Invalid cast opcode");
19429 if (Cast
.isUndef())
19430 In
= DAG
.getUNDEF(SourceType
);
19432 In
= Cast
->getOperand(0);
19433 unsigned Index
= isLE
? (i
* ElemRatio
) :
19434 (i
* ElemRatio
+ (ElemRatio
- 1));
19436 assert(Index
< Ops
.size() && "Invalid index");
19440 // The type of the new BUILD_VECTOR node.
19441 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), SourceType
, NewBVElems
);
19442 assert(VecVT
.getSizeInBits() == VT
.getSizeInBits() &&
19443 "Invalid vector size");
19444 // Check if the new vector type is legal.
19445 if (!isTypeLegal(VecVT
) ||
19446 (!TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VecVT
) &&
19447 TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
)))
19450 // Make the new BUILD_VECTOR.
19451 SDValue BV
= DAG
.getBuildVector(VecVT
, DL
, Ops
);
19453 // The new BUILD_VECTOR node has the potential to be further optimized.
19454 AddToWorklist(BV
.getNode());
19455 // Bitcast to the desired type.
19456 return DAG
.getBitcast(VT
, BV
);
19459 // Simplify (build_vec (trunc $1)
19460 // (trunc (srl $1 half-width))
19461 // (trunc (srl $1 (2 * half-width))) …)
19463 SDValue
DAGCombiner::reduceBuildVecTruncToBitCast(SDNode
*N
) {
19464 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "Expected build vector");
19466 // Only for little endian
19467 if (!DAG
.getDataLayout().isLittleEndian())
19471 EVT VT
= N
->getValueType(0);
19472 EVT OutScalarTy
= VT
.getScalarType();
19473 uint64_t ScalarTypeBitsize
= OutScalarTy
.getSizeInBits();
19475 // Only for power of two types to be sure that bitcast works well
19476 if (!isPowerOf2_64(ScalarTypeBitsize
))
19479 unsigned NumInScalars
= N
->getNumOperands();
19481 // Look through bitcasts
19482 auto PeekThroughBitcast
= [](SDValue Op
) {
19483 if (Op
.getOpcode() == ISD::BITCAST
)
19484 return Op
.getOperand(0);
19488 // The source value where all the parts are extracted.
19490 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
19491 SDValue In
= PeekThroughBitcast(N
->getOperand(i
));
19492 // Ignore undef inputs.
19493 if (In
.isUndef()) continue;
19495 if (In
.getOpcode() != ISD::TRUNCATE
)
19498 In
= PeekThroughBitcast(In
.getOperand(0));
19500 if (In
.getOpcode() != ISD::SRL
) {
19501 // For now only build_vec without shuffling, handle shifts here in the
19509 SDValue part
= PeekThroughBitcast(In
.getOperand(0));
19513 } else if (Src
!= part
) {
19514 // Vector parts do not stem from the same variable
19518 SDValue ShiftAmtVal
= In
.getOperand(1);
19519 if (!isa
<ConstantSDNode
>(ShiftAmtVal
))
19522 uint64_t ShiftAmt
= In
.getNode()->getConstantOperandVal(1);
19524 // The extracted value is not extracted at the right position
19525 if (ShiftAmt
!= i
* ScalarTypeBitsize
)
19530 // Only cast if the size is the same
19531 if (Src
.getValueType().getSizeInBits() != VT
.getSizeInBits())
19534 return DAG
.getBitcast(VT
, Src
);
19537 SDValue
DAGCombiner::createBuildVecShuffle(const SDLoc
&DL
, SDNode
*N
,
19538 ArrayRef
<int> VectorMask
,
19539 SDValue VecIn1
, SDValue VecIn2
,
19540 unsigned LeftIdx
, bool DidSplitVec
) {
19541 SDValue ZeroIdx
= DAG
.getVectorIdxConstant(0, DL
);
19543 EVT VT
= N
->getValueType(0);
19544 EVT InVT1
= VecIn1
.getValueType();
19545 EVT InVT2
= VecIn2
.getNode() ? VecIn2
.getValueType() : InVT1
;
19547 unsigned NumElems
= VT
.getVectorNumElements();
19548 unsigned ShuffleNumElems
= NumElems
;
19550 // If we artificially split a vector in two already, then the offsets in the
19551 // operands will all be based off of VecIn1, even those in VecIn2.
19552 unsigned Vec2Offset
= DidSplitVec
? 0 : InVT1
.getVectorNumElements();
19554 uint64_t VTSize
= VT
.getFixedSizeInBits();
19555 uint64_t InVT1Size
= InVT1
.getFixedSizeInBits();
19556 uint64_t InVT2Size
= InVT2
.getFixedSizeInBits();
19558 assert(InVT2Size
<= InVT1Size
&&
19559 "Inputs must be sorted to be in non-increasing vector size order.");
19561 // We can't generate a shuffle node with mismatched input and output types.
19562 // Try to make the types match the type of the output.
19563 if (InVT1
!= VT
|| InVT2
!= VT
) {
19564 if ((VTSize
% InVT1Size
== 0) && InVT1
== InVT2
) {
19565 // If the output vector length is a multiple of both input lengths,
19566 // we can concatenate them and pad the rest with undefs.
19567 unsigned NumConcats
= VTSize
/ InVT1Size
;
19568 assert(NumConcats
>= 2 && "Concat needs at least two inputs!");
19569 SmallVector
<SDValue
, 2> ConcatOps(NumConcats
, DAG
.getUNDEF(InVT1
));
19570 ConcatOps
[0] = VecIn1
;
19571 ConcatOps
[1] = VecIn2
? VecIn2
: DAG
.getUNDEF(InVT1
);
19572 VecIn1
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
);
19573 VecIn2
= SDValue();
19574 } else if (InVT1Size
== VTSize
* 2) {
19575 if (!TLI
.isExtractSubvectorCheap(VT
, InVT1
, NumElems
))
19578 if (!VecIn2
.getNode()) {
19579 // If we only have one input vector, and it's twice the size of the
19580 // output, split it in two.
19581 VecIn2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, VecIn1
,
19582 DAG
.getVectorIdxConstant(NumElems
, DL
));
19583 VecIn1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, VecIn1
, ZeroIdx
);
19584 // Since we now have shorter input vectors, adjust the offset of the
19585 // second vector's start.
19586 Vec2Offset
= NumElems
;
19588 assert(InVT2Size
<= InVT1Size
&&
19589 "Second input is not going to be larger than the first one.");
19591 // VecIn1 is wider than the output, and we have another, possibly
19592 // smaller input. Pad the smaller input with undefs, shuffle at the
19593 // input vector width, and extract the output.
19594 // The shuffle type is different than VT, so check legality again.
19595 if (LegalOperations
&&
19596 !TLI
.isOperationLegal(ISD::VECTOR_SHUFFLE
, InVT1
))
19599 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to
19600 // lower it back into a BUILD_VECTOR. So if the inserted type is
19601 // illegal, don't even try.
19602 if (InVT1
!= InVT2
) {
19603 if (!TLI
.isTypeLegal(InVT2
))
19605 VecIn2
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, InVT1
,
19606 DAG
.getUNDEF(InVT1
), VecIn2
, ZeroIdx
);
19608 ShuffleNumElems
= NumElems
* 2;
19610 } else if (InVT2Size
* 2 == VTSize
&& InVT1Size
== VTSize
) {
19611 SmallVector
<SDValue
, 2> ConcatOps(2, DAG
.getUNDEF(InVT2
));
19612 ConcatOps
[0] = VecIn2
;
19613 VecIn2
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
);
19615 // TODO: Support cases where the length mismatch isn't exactly by a
19617 // TODO: Move this check upwards, so that if we have bad type
19618 // mismatches, we don't create any DAG nodes.
19623 // Initialize mask to undef.
19624 SmallVector
<int, 8> Mask(ShuffleNumElems
, -1);
19626 // Only need to run up to the number of elements actually used, not the
19627 // total number of elements in the shuffle - if we are shuffling a wider
19628 // vector, the high lanes should be set to undef.
19629 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
19630 if (VectorMask
[i
] <= 0)
19633 unsigned ExtIndex
= N
->getOperand(i
).getConstantOperandVal(1);
19634 if (VectorMask
[i
] == (int)LeftIdx
) {
19635 Mask
[i
] = ExtIndex
;
19636 } else if (VectorMask
[i
] == (int)LeftIdx
+ 1) {
19637 Mask
[i
] = Vec2Offset
+ ExtIndex
;
19641 // The type the input vectors may have changed above.
19642 InVT1
= VecIn1
.getValueType();
19644 // If we already have a VecIn2, it should have the same type as VecIn1.
19645 // If we don't, get an undef/zero vector of the appropriate type.
19646 VecIn2
= VecIn2
.getNode() ? VecIn2
: DAG
.getUNDEF(InVT1
);
19647 assert(InVT1
== VecIn2
.getValueType() && "Unexpected second input type.");
19649 SDValue Shuffle
= DAG
.getVectorShuffle(InVT1
, DL
, VecIn1
, VecIn2
, Mask
);
19650 if (ShuffleNumElems
> NumElems
)
19651 Shuffle
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Shuffle
, ZeroIdx
);
19656 static SDValue
reduceBuildVecToShuffleWithZero(SDNode
*BV
, SelectionDAG
&DAG
) {
19657 assert(BV
->getOpcode() == ISD::BUILD_VECTOR
&& "Expected build vector");
19659 // First, determine where the build vector is not undef.
19660 // TODO: We could extend this to handle zero elements as well as undefs.
19661 int NumBVOps
= BV
->getNumOperands();
19663 for (int i
= 0; i
!= NumBVOps
; ++i
) {
19664 SDValue Op
= BV
->getOperand(i
);
19672 // Bail out if there's no non-undef element.
19676 // The build vector contains some number of undef elements and exactly
19677 // one other element. That other element must be a zero-extended scalar
19678 // extracted from a vector at a constant index to turn this into a shuffle.
19679 // Also, require that the build vector does not implicitly truncate/extend
19681 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND.
19682 EVT VT
= BV
->getValueType(0);
19683 SDValue Zext
= BV
->getOperand(ZextElt
);
19684 if (Zext
.getOpcode() != ISD::ZERO_EXTEND
|| !Zext
.hasOneUse() ||
19685 Zext
.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
19686 !isa
<ConstantSDNode
>(Zext
.getOperand(0).getOperand(1)) ||
19687 Zext
.getValueSizeInBits() != VT
.getScalarSizeInBits())
19690 // The zero-extend must be a multiple of the source size, and we must be
19691 // building a vector of the same size as the source of the extract element.
19692 SDValue Extract
= Zext
.getOperand(0);
19693 unsigned DestSize
= Zext
.getValueSizeInBits();
19694 unsigned SrcSize
= Extract
.getValueSizeInBits();
19695 if (DestSize
% SrcSize
!= 0 ||
19696 Extract
.getOperand(0).getValueSizeInBits() != VT
.getSizeInBits())
19699 // Create a shuffle mask that will combine the extracted element with zeros
19701 int ZextRatio
= DestSize
/ SrcSize
;
19702 int NumMaskElts
= NumBVOps
* ZextRatio
;
19703 SmallVector
<int, 32> ShufMask(NumMaskElts
, -1);
19704 for (int i
= 0; i
!= NumMaskElts
; ++i
) {
19705 if (i
/ ZextRatio
== ZextElt
) {
19706 // The low bits of the (potentially translated) extracted element map to
19707 // the source vector. The high bits map to zero. We will use a zero vector
19708 // as the 2nd source operand of the shuffle, so use the 1st element of
19709 // that vector (mask value is number-of-elements) for the high bits.
19710 if (i
% ZextRatio
== 0)
19711 ShufMask
[i
] = Extract
.getConstantOperandVal(1);
19713 ShufMask
[i
] = NumMaskElts
;
19716 // Undef elements of the build vector remain undef because we initialize
19717 // the shuffle mask with -1.
19720 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... -->
19721 // bitcast (shuffle V, ZeroVec, VectorMask)
19723 EVT VecVT
= Extract
.getOperand(0).getValueType();
19724 SDValue ZeroVec
= DAG
.getConstant(0, DL
, VecVT
);
19725 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
19726 SDValue Shuf
= TLI
.buildLegalVectorShuffle(VecVT
, DL
, Extract
.getOperand(0),
19727 ZeroVec
, ShufMask
, DAG
);
19730 return DAG
.getBitcast(VT
, Shuf
);
19733 // FIXME: promote to STLExtras.
19734 template <typename R
, typename T
>
19735 static auto getFirstIndexOf(R
&&Range
, const T
&Val
) {
19736 auto I
= find(Range
, Val
);
19737 if (I
== Range
.end())
19738 return static_cast<decltype(std::distance(Range
.begin(), I
))>(-1);
19739 return std::distance(Range
.begin(), I
);
19742 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
19743 // operations. If the types of the vectors we're extracting from allow it,
19744 // turn this into a vector_shuffle node.
19745 SDValue
DAGCombiner::reduceBuildVecToShuffle(SDNode
*N
) {
19747 EVT VT
= N
->getValueType(0);
19749 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
19750 if (!isTypeLegal(VT
))
19753 if (SDValue V
= reduceBuildVecToShuffleWithZero(N
, DAG
))
19756 // May only combine to shuffle after legalize if shuffle is legal.
19757 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::VECTOR_SHUFFLE
, VT
))
19760 bool UsesZeroVector
= false;
19761 unsigned NumElems
= N
->getNumOperands();
19763 // Record, for each element of the newly built vector, which input vector
19764 // that element comes from. -1 stands for undef, 0 for the zero vector,
19765 // and positive values for the input vectors.
19766 // VectorMask maps each element to its vector number, and VecIn maps vector
19767 // numbers to their initial SDValues.
19769 SmallVector
<int, 8> VectorMask(NumElems
, -1);
19770 SmallVector
<SDValue
, 8> VecIn
;
19771 VecIn
.push_back(SDValue());
19773 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
19774 SDValue Op
= N
->getOperand(i
);
19779 // See if we can use a blend with a zero vector.
19780 // TODO: Should we generalize this to a blend with an arbitrary constant
19782 if (isNullConstant(Op
) || isNullFPConstant(Op
)) {
19783 UsesZeroVector
= true;
19788 // Not an undef or zero. If the input is something other than an
19789 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
19790 if (Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
19791 !isa
<ConstantSDNode
>(Op
.getOperand(1)))
19793 SDValue ExtractedFromVec
= Op
.getOperand(0);
19795 if (ExtractedFromVec
.getValueType().isScalableVector())
19798 const APInt
&ExtractIdx
= Op
.getConstantOperandAPInt(1);
19799 if (ExtractIdx
.uge(ExtractedFromVec
.getValueType().getVectorNumElements()))
19802 // All inputs must have the same element type as the output.
19803 if (VT
.getVectorElementType() !=
19804 ExtractedFromVec
.getValueType().getVectorElementType())
19807 // Have we seen this input vector before?
19808 // The vectors are expected to be tiny (usually 1 or 2 elements), so using
19809 // a map back from SDValues to numbers isn't worth it.
19810 int Idx
= getFirstIndexOf(VecIn
, ExtractedFromVec
);
19811 if (Idx
== -1) { // A new source vector?
19812 Idx
= VecIn
.size();
19813 VecIn
.push_back(ExtractedFromVec
);
19816 VectorMask
[i
] = Idx
;
19819 // If we didn't find at least one input vector, bail out.
19820 if (VecIn
.size() < 2)
19823 // If all the Operands of BUILD_VECTOR extract from same
19824 // vector, then split the vector efficiently based on the maximum
19825 // vector access index and adjust the VectorMask and
19826 // VecIn accordingly.
19827 bool DidSplitVec
= false;
19828 if (VecIn
.size() == 2) {
19829 unsigned MaxIndex
= 0;
19830 unsigned NearestPow2
= 0;
19831 SDValue Vec
= VecIn
.back();
19832 EVT InVT
= Vec
.getValueType();
19833 SmallVector
<unsigned, 8> IndexVec(NumElems
, 0);
19835 for (unsigned i
= 0; i
< NumElems
; i
++) {
19836 if (VectorMask
[i
] <= 0)
19838 unsigned Index
= N
->getOperand(i
).getConstantOperandVal(1);
19839 IndexVec
[i
] = Index
;
19840 MaxIndex
= std::max(MaxIndex
, Index
);
19843 NearestPow2
= PowerOf2Ceil(MaxIndex
);
19844 if (InVT
.isSimple() && NearestPow2
> 2 && MaxIndex
< NearestPow2
&&
19845 NumElems
* 2 < NearestPow2
) {
19846 unsigned SplitSize
= NearestPow2
/ 2;
19847 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(),
19848 InVT
.getVectorElementType(), SplitSize
);
19849 if (TLI
.isTypeLegal(SplitVT
) &&
19850 SplitSize
+ SplitVT
.getVectorNumElements() <=
19851 InVT
.getVectorNumElements()) {
19852 SDValue VecIn2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SplitVT
, Vec
,
19853 DAG
.getVectorIdxConstant(SplitSize
, DL
));
19854 SDValue VecIn1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SplitVT
, Vec
,
19855 DAG
.getVectorIdxConstant(0, DL
));
19857 VecIn
.push_back(VecIn1
);
19858 VecIn
.push_back(VecIn2
);
19859 DidSplitVec
= true;
19861 for (unsigned i
= 0; i
< NumElems
; i
++) {
19862 if (VectorMask
[i
] <= 0)
19864 VectorMask
[i
] = (IndexVec
[i
] < SplitSize
) ? 1 : 2;
19870 // Sort input vectors by decreasing vector element count,
19871 // while preserving the relative order of equally-sized vectors.
19872 // Note that we keep the first "implicit zero vector as-is.
19873 SmallVector
<SDValue
, 8> SortedVecIn(VecIn
);
19874 llvm::stable_sort(MutableArrayRef
<SDValue
>(SortedVecIn
).drop_front(),
19875 [](const SDValue
&a
, const SDValue
&b
) {
19876 return a
.getValueType().getVectorNumElements() >
19877 b
.getValueType().getVectorNumElements();
19880 // We now also need to rebuild the VectorMask, because it referenced element
19881 // order in VecIn, and we just sorted them.
19882 for (int &SourceVectorIndex
: VectorMask
) {
19883 if (SourceVectorIndex
<= 0)
19885 unsigned Idx
= getFirstIndexOf(SortedVecIn
, VecIn
[SourceVectorIndex
]);
19886 assert(Idx
> 0 && Idx
< SortedVecIn
.size() &&
19887 VecIn
[SourceVectorIndex
] == SortedVecIn
[Idx
] && "Remapping failure");
19888 SourceVectorIndex
= Idx
;
19891 VecIn
= std::move(SortedVecIn
);
19893 // TODO: Should this fire if some of the input vectors has illegal type (like
19894 // it does now), or should we let legalization run its course first?
19897 // Take pairs of vectors, and shuffle them so that the result has elements
19898 // from these vectors in the correct places.
19899 // For example, given:
19900 // t10: i32 = extract_vector_elt t1, Constant:i64<0>
19901 // t11: i32 = extract_vector_elt t2, Constant:i64<0>
19902 // t12: i32 = extract_vector_elt t3, Constant:i64<0>
19903 // t13: i32 = extract_vector_elt t1, Constant:i64<1>
19904 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
19905 // We will generate:
19906 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
19907 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
19908 SmallVector
<SDValue
, 4> Shuffles
;
19909 for (unsigned In
= 0, Len
= (VecIn
.size() / 2); In
< Len
; ++In
) {
19910 unsigned LeftIdx
= 2 * In
+ 1;
19911 SDValue VecLeft
= VecIn
[LeftIdx
];
19913 (LeftIdx
+ 1) < VecIn
.size() ? VecIn
[LeftIdx
+ 1] : SDValue();
19915 if (SDValue Shuffle
= createBuildVecShuffle(DL
, N
, VectorMask
, VecLeft
,
19916 VecRight
, LeftIdx
, DidSplitVec
))
19917 Shuffles
.push_back(Shuffle
);
19922 // If we need the zero vector as an "ingredient" in the blend tree, add it
19923 // to the list of shuffles.
19924 if (UsesZeroVector
)
19925 Shuffles
.push_back(VT
.isInteger() ? DAG
.getConstant(0, DL
, VT
)
19926 : DAG
.getConstantFP(0.0, DL
, VT
));
19928 // If we only have one shuffle, we're done.
19929 if (Shuffles
.size() == 1)
19930 return Shuffles
[0];
19932 // Update the vector mask to point to the post-shuffle vectors.
19933 for (int &Vec
: VectorMask
)
19935 Vec
= Shuffles
.size() - 1;
19937 Vec
= (Vec
- 1) / 2;
19939 // More than one shuffle. Generate a binary tree of blends, e.g. if from
19940 // the previous step we got the set of shuffles t10, t11, t12, t13, we will
19942 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
19943 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
19944 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
19945 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
19946 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
19947 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
19948 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
19950 // Make sure the initial size of the shuffle list is even.
19951 if (Shuffles
.size() % 2)
19952 Shuffles
.push_back(DAG
.getUNDEF(VT
));
19954 for (unsigned CurSize
= Shuffles
.size(); CurSize
> 1; CurSize
/= 2) {
19956 Shuffles
[CurSize
] = DAG
.getUNDEF(VT
);
19959 for (unsigned In
= 0, Len
= CurSize
/ 2; In
< Len
; ++In
) {
19961 int Right
= 2 * In
+ 1;
19962 SmallVector
<int, 8> Mask(NumElems
, -1);
19963 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
19964 if (VectorMask
[i
] == Left
) {
19966 VectorMask
[i
] = In
;
19967 } else if (VectorMask
[i
] == Right
) {
19968 Mask
[i
] = i
+ NumElems
;
19969 VectorMask
[i
] = In
;
19974 DAG
.getVectorShuffle(VT
, DL
, Shuffles
[Left
], Shuffles
[Right
], Mask
);
19977 return Shuffles
[0];
19980 // Try to turn a build vector of zero extends of extract vector elts into a
19981 // a vector zero extend and possibly an extract subvector.
19982 // TODO: Support sign extend?
19983 // TODO: Allow undef elements?
19984 SDValue
DAGCombiner::convertBuildVecZextToZext(SDNode
*N
) {
19985 if (LegalOperations
)
19988 EVT VT
= N
->getValueType(0);
19990 bool FoundZeroExtend
= false;
19991 SDValue Op0
= N
->getOperand(0);
19992 auto checkElem
= [&](SDValue Op
) -> int64_t {
19993 unsigned Opc
= Op
.getOpcode();
19994 FoundZeroExtend
|= (Opc
== ISD::ZERO_EXTEND
);
19995 if ((Opc
== ISD::ZERO_EXTEND
|| Opc
== ISD::ANY_EXTEND
) &&
19996 Op
.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
19997 Op0
.getOperand(0).getOperand(0) == Op
.getOperand(0).getOperand(0))
19998 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0).getOperand(1)))
19999 return C
->getZExtValue();
20003 // Make sure the first element matches
20004 // (zext (extract_vector_elt X, C))
20005 // Offset must be a constant multiple of the
20006 // known-minimum vector length of the result type.
20007 int64_t Offset
= checkElem(Op0
);
20008 if (Offset
< 0 || (Offset
% VT
.getVectorNumElements()) != 0)
20011 unsigned NumElems
= N
->getNumOperands();
20012 SDValue In
= Op0
.getOperand(0).getOperand(0);
20013 EVT InSVT
= In
.getValueType().getScalarType();
20014 EVT InVT
= EVT::getVectorVT(*DAG
.getContext(), InSVT
, NumElems
);
20016 // Don't create an illegal input type after type legalization.
20017 if (LegalTypes
&& !TLI
.isTypeLegal(InVT
))
20020 // Ensure all the elements come from the same vector and are adjacent.
20021 for (unsigned i
= 1; i
!= NumElems
; ++i
) {
20022 if ((Offset
+ i
) != checkElem(N
->getOperand(i
)))
20027 In
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, InVT
, In
,
20028 Op0
.getOperand(0).getOperand(1));
20029 return DAG
.getNode(FoundZeroExtend
? ISD::ZERO_EXTEND
: ISD::ANY_EXTEND
, DL
,
20033 SDValue
DAGCombiner::visitBUILD_VECTOR(SDNode
*N
) {
20034 EVT VT
= N
->getValueType(0);
20036 // A vector built entirely of undefs is undef.
20037 if (ISD::allOperandsUndef(N
))
20038 return DAG
.getUNDEF(VT
);
20040 // If this is a splat of a bitcast from another vector, change to a
20043 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
20044 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
20046 // If X is a build_vector itself, the concat can become a larger build_vector.
20047 // TODO: Maybe this is useful for non-splat too?
20048 if (!LegalOperations
) {
20049 if (SDValue Splat
= cast
<BuildVectorSDNode
>(N
)->getSplatValue()) {
20050 Splat
= peekThroughBitcasts(Splat
);
20051 EVT SrcVT
= Splat
.getValueType();
20052 if (SrcVT
.isVector()) {
20053 unsigned NumElts
= N
->getNumOperands() * SrcVT
.getVectorNumElements();
20054 EVT NewVT
= EVT::getVectorVT(*DAG
.getContext(),
20055 SrcVT
.getVectorElementType(), NumElts
);
20056 if (!LegalTypes
|| TLI
.isTypeLegal(NewVT
)) {
20057 SmallVector
<SDValue
, 8> Ops(N
->getNumOperands(), Splat
);
20058 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
),
20060 return DAG
.getBitcast(VT
, Concat
);
20066 // Check if we can express BUILD VECTOR via subvector extract.
20067 if (!LegalTypes
&& (N
->getNumOperands() > 1)) {
20068 SDValue Op0
= N
->getOperand(0);
20069 auto checkElem
= [&](SDValue Op
) -> uint64_t {
20070 if ((Op
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) &&
20071 (Op0
.getOperand(0) == Op
.getOperand(0)))
20072 if (auto CNode
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
20073 return CNode
->getZExtValue();
20077 int Offset
= checkElem(Op0
);
20078 for (unsigned i
= 0; i
< N
->getNumOperands(); ++i
) {
20079 if (Offset
+ i
!= checkElem(N
->getOperand(i
))) {
20085 if ((Offset
== 0) &&
20086 (Op0
.getOperand(0).getValueType() == N
->getValueType(0)))
20087 return Op0
.getOperand(0);
20088 if ((Offset
!= -1) &&
20089 ((Offset
% N
->getValueType(0).getVectorNumElements()) ==
20090 0)) // IDX must be multiple of output size.
20091 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), N
->getValueType(0),
20092 Op0
.getOperand(0), Op0
.getOperand(1));
20095 if (SDValue V
= convertBuildVecZextToZext(N
))
20098 if (SDValue V
= reduceBuildVecExtToExtBuildVec(N
))
20101 if (SDValue V
= reduceBuildVecTruncToBitCast(N
))
20104 if (SDValue V
= reduceBuildVecToShuffle(N
))
20107 // A splat of a single element is a SPLAT_VECTOR if supported on the target.
20108 // Do this late as some of the above may replace the splat.
20109 if (TLI
.getOperationAction(ISD::SPLAT_VECTOR
, VT
) != TargetLowering::Expand
)
20110 if (SDValue V
= cast
<BuildVectorSDNode
>(N
)->getSplatValue()) {
20111 assert(!V
.isUndef() && "Splat of undef should have been handled earlier");
20112 return DAG
.getNode(ISD::SPLAT_VECTOR
, SDLoc(N
), VT
, V
);
20118 static SDValue
combineConcatVectorOfScalars(SDNode
*N
, SelectionDAG
&DAG
) {
20119 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
20120 EVT OpVT
= N
->getOperand(0).getValueType();
20122 // If the operands are legal vectors, leave them alone.
20123 if (TLI
.isTypeLegal(OpVT
))
20127 EVT VT
= N
->getValueType(0);
20128 SmallVector
<SDValue
, 8> Ops
;
20130 EVT SVT
= EVT::getIntegerVT(*DAG
.getContext(), OpVT
.getSizeInBits());
20131 SDValue ScalarUndef
= DAG
.getNode(ISD::UNDEF
, DL
, SVT
);
20133 // Keep track of what we encounter.
20134 bool AnyInteger
= false;
20135 bool AnyFP
= false;
20136 for (const SDValue
&Op
: N
->ops()) {
20137 if (ISD::BITCAST
== Op
.getOpcode() &&
20138 !Op
.getOperand(0).getValueType().isVector())
20139 Ops
.push_back(Op
.getOperand(0));
20140 else if (ISD::UNDEF
== Op
.getOpcode())
20141 Ops
.push_back(ScalarUndef
);
20145 // Note whether we encounter an integer or floating point scalar.
20146 // If it's neither, bail out, it could be something weird like x86mmx.
20147 EVT LastOpVT
= Ops
.back().getValueType();
20148 if (LastOpVT
.isFloatingPoint())
20150 else if (LastOpVT
.isInteger())
20156 // If any of the operands is a floating point scalar bitcast to a vector,
20157 // use floating point types throughout, and bitcast everything.
20158 // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
20160 SVT
= EVT::getFloatingPointVT(OpVT
.getSizeInBits());
20161 ScalarUndef
= DAG
.getNode(ISD::UNDEF
, DL
, SVT
);
20163 for (SDValue
&Op
: Ops
) {
20164 if (Op
.getValueType() == SVT
)
20169 Op
= DAG
.getBitcast(SVT
, Op
);
20174 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), SVT
,
20175 VT
.getSizeInBits() / SVT
.getSizeInBits());
20176 return DAG
.getBitcast(VT
, DAG
.getBuildVector(VecVT
, DL
, Ops
));
20179 // Attempt to merge nested concat_vectors/undefs.
20180 // Fold concat_vectors(concat_vectors(x,y,z,w),u,u,concat_vectors(a,b,c,d))
20181 // --> concat_vectors(x,y,z,w,u,u,u,u,u,u,u,u,a,b,c,d)
20182 static SDValue
combineConcatVectorOfConcatVectors(SDNode
*N
,
20183 SelectionDAG
&DAG
) {
20184 EVT VT
= N
->getValueType(0);
20186 // Ensure we're concatenating UNDEF and CONCAT_VECTORS nodes of similar types.
20188 SDValue FirstConcat
;
20189 for (const SDValue
&Op
: N
->ops()) {
20192 if (Op
.getOpcode() != ISD::CONCAT_VECTORS
)
20194 if (!FirstConcat
) {
20195 SubVT
= Op
.getOperand(0).getValueType();
20196 if (!DAG
.getTargetLoweringInfo().isTypeLegal(SubVT
))
20201 if (SubVT
!= Op
.getOperand(0).getValueType())
20204 assert(FirstConcat
&& "Concat of all-undefs found");
20206 SmallVector
<SDValue
> ConcatOps
;
20207 for (const SDValue
&Op
: N
->ops()) {
20208 if (Op
.isUndef()) {
20209 ConcatOps
.append(FirstConcat
->getNumOperands(), DAG
.getUNDEF(SubVT
));
20212 ConcatOps
.append(Op
->op_begin(), Op
->op_end());
20214 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, ConcatOps
);
20217 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
20218 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
20219 // most two distinct vectors the same size as the result, attempt to turn this
20220 // into a legal shuffle.
20221 static SDValue
combineConcatVectorOfExtracts(SDNode
*N
, SelectionDAG
&DAG
) {
20222 EVT VT
= N
->getValueType(0);
20223 EVT OpVT
= N
->getOperand(0).getValueType();
20225 // We currently can't generate an appropriate shuffle for a scalable vector.
20226 if (VT
.isScalableVector())
20229 int NumElts
= VT
.getVectorNumElements();
20230 int NumOpElts
= OpVT
.getVectorNumElements();
20232 SDValue SV0
= DAG
.getUNDEF(VT
), SV1
= DAG
.getUNDEF(VT
);
20233 SmallVector
<int, 8> Mask
;
20235 for (SDValue Op
: N
->ops()) {
20236 Op
= peekThroughBitcasts(Op
);
20238 // UNDEF nodes convert to UNDEF shuffle mask values.
20239 if (Op
.isUndef()) {
20240 Mask
.append((unsigned)NumOpElts
, -1);
20244 if (Op
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
20247 // What vector are we extracting the subvector from and at what index?
20248 SDValue ExtVec
= Op
.getOperand(0);
20249 int ExtIdx
= Op
.getConstantOperandVal(1);
20251 // We want the EVT of the original extraction to correctly scale the
20252 // extraction index.
20253 EVT ExtVT
= ExtVec
.getValueType();
20254 ExtVec
= peekThroughBitcasts(ExtVec
);
20256 // UNDEF nodes convert to UNDEF shuffle mask values.
20257 if (ExtVec
.isUndef()) {
20258 Mask
.append((unsigned)NumOpElts
, -1);
20262 // Ensure that we are extracting a subvector from a vector the same
20263 // size as the result.
20264 if (ExtVT
.getSizeInBits() != VT
.getSizeInBits())
20267 // Scale the subvector index to account for any bitcast.
20268 int NumExtElts
= ExtVT
.getVectorNumElements();
20269 if (0 == (NumExtElts
% NumElts
))
20270 ExtIdx
/= (NumExtElts
/ NumElts
);
20271 else if (0 == (NumElts
% NumExtElts
))
20272 ExtIdx
*= (NumElts
/ NumExtElts
);
20276 // At most we can reference 2 inputs in the final shuffle.
20277 if (SV0
.isUndef() || SV0
== ExtVec
) {
20279 for (int i
= 0; i
!= NumOpElts
; ++i
)
20280 Mask
.push_back(i
+ ExtIdx
);
20281 } else if (SV1
.isUndef() || SV1
== ExtVec
) {
20283 for (int i
= 0; i
!= NumOpElts
; ++i
)
20284 Mask
.push_back(i
+ ExtIdx
+ NumElts
);
20290 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
20291 return TLI
.buildLegalVectorShuffle(VT
, SDLoc(N
), DAG
.getBitcast(VT
, SV0
),
20292 DAG
.getBitcast(VT
, SV1
), Mask
, DAG
);
20295 static SDValue
combineConcatVectorOfCasts(SDNode
*N
, SelectionDAG
&DAG
) {
20296 unsigned CastOpcode
= N
->getOperand(0).getOpcode();
20297 switch (CastOpcode
) {
20298 case ISD::SINT_TO_FP
:
20299 case ISD::UINT_TO_FP
:
20300 case ISD::FP_TO_SINT
:
20301 case ISD::FP_TO_UINT
:
20302 // TODO: Allow more opcodes?
20303 // case ISD::BITCAST:
20304 // case ISD::TRUNCATE:
20305 // case ISD::ZERO_EXTEND:
20306 // case ISD::SIGN_EXTEND:
20307 // case ISD::FP_EXTEND:
20313 EVT SrcVT
= N
->getOperand(0).getOperand(0).getValueType();
20314 if (!SrcVT
.isVector())
20317 // All operands of the concat must be the same kind of cast from the same
20319 SmallVector
<SDValue
, 4> SrcOps
;
20320 for (SDValue Op
: N
->ops()) {
20321 if (Op
.getOpcode() != CastOpcode
|| !Op
.hasOneUse() ||
20322 Op
.getOperand(0).getValueType() != SrcVT
)
20324 SrcOps
.push_back(Op
.getOperand(0));
20327 // The wider cast must be supported by the target. This is unusual because
20328 // the operation support type parameter depends on the opcode. In addition,
20329 // check the other type in the cast to make sure this is really legal.
20330 EVT VT
= N
->getValueType(0);
20331 EVT SrcEltVT
= SrcVT
.getVectorElementType();
20332 ElementCount NumElts
= SrcVT
.getVectorElementCount() * N
->getNumOperands();
20333 EVT ConcatSrcVT
= EVT::getVectorVT(*DAG
.getContext(), SrcEltVT
, NumElts
);
20334 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
20335 switch (CastOpcode
) {
20336 case ISD::SINT_TO_FP
:
20337 case ISD::UINT_TO_FP
:
20338 if (!TLI
.isOperationLegalOrCustom(CastOpcode
, ConcatSrcVT
) ||
20339 !TLI
.isTypeLegal(VT
))
20342 case ISD::FP_TO_SINT
:
20343 case ISD::FP_TO_UINT
:
20344 if (!TLI
.isOperationLegalOrCustom(CastOpcode
, VT
) ||
20345 !TLI
.isTypeLegal(ConcatSrcVT
))
20349 llvm_unreachable("Unexpected cast opcode");
20352 // concat (cast X), (cast Y)... -> cast (concat X, Y...)
20354 SDValue NewConcat
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, ConcatSrcVT
, SrcOps
);
20355 return DAG
.getNode(CastOpcode
, DL
, VT
, NewConcat
);
20358 SDValue
DAGCombiner::visitCONCAT_VECTORS(SDNode
*N
) {
20359 // If we only have one input vector, we don't need to do any concatenation.
20360 if (N
->getNumOperands() == 1)
20361 return N
->getOperand(0);
20363 // Check if all of the operands are undefs.
20364 EVT VT
= N
->getValueType(0);
20365 if (ISD::allOperandsUndef(N
))
20366 return DAG
.getUNDEF(VT
);
20368 // Optimize concat_vectors where all but the first of the vectors are undef.
20369 if (all_of(drop_begin(N
->ops()),
20370 [](const SDValue
&Op
) { return Op
.isUndef(); })) {
20371 SDValue In
= N
->getOperand(0);
20372 assert(In
.getValueType().isVector() && "Must concat vectors");
20374 // If the input is a concat_vectors, just make a larger concat by padding
20375 // with smaller undefs.
20376 if (In
.getOpcode() == ISD::CONCAT_VECTORS
&& In
.hasOneUse()) {
20377 unsigned NumOps
= N
->getNumOperands() * In
.getNumOperands();
20378 SmallVector
<SDValue
, 4> Ops(In
->op_begin(), In
->op_end());
20379 Ops
.resize(NumOps
, DAG
.getUNDEF(Ops
[0].getValueType()));
20380 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
20383 SDValue Scalar
= peekThroughOneUseBitcasts(In
);
20385 // concat_vectors(scalar_to_vector(scalar), undef) ->
20386 // scalar_to_vector(scalar)
20387 if (!LegalOperations
&& Scalar
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
20388 Scalar
.hasOneUse()) {
20389 EVT SVT
= Scalar
.getValueType().getVectorElementType();
20390 if (SVT
== Scalar
.getOperand(0).getValueType())
20391 Scalar
= Scalar
.getOperand(0);
20394 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
20395 if (!Scalar
.getValueType().isVector()) {
20396 // If the bitcast type isn't legal, it might be a trunc of a legal type;
20397 // look through the trunc so we can still do the transform:
20398 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
20399 if (Scalar
->getOpcode() == ISD::TRUNCATE
&&
20400 !TLI
.isTypeLegal(Scalar
.getValueType()) &&
20401 TLI
.isTypeLegal(Scalar
->getOperand(0).getValueType()))
20402 Scalar
= Scalar
->getOperand(0);
20404 EVT SclTy
= Scalar
.getValueType();
20406 if (!SclTy
.isFloatingPoint() && !SclTy
.isInteger())
20409 // Bail out if the vector size is not a multiple of the scalar size.
20410 if (VT
.getSizeInBits() % SclTy
.getSizeInBits())
20413 unsigned VNTNumElms
= VT
.getSizeInBits() / SclTy
.getSizeInBits();
20414 if (VNTNumElms
< 2)
20417 EVT NVT
= EVT::getVectorVT(*DAG
.getContext(), SclTy
, VNTNumElms
);
20418 if (!TLI
.isTypeLegal(NVT
) || !TLI
.isTypeLegal(Scalar
.getValueType()))
20421 SDValue Res
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, SDLoc(N
), NVT
, Scalar
);
20422 return DAG
.getBitcast(VT
, Res
);
20426 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
20427 // We have already tested above for an UNDEF only concatenation.
20428 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
20429 // -> (BUILD_VECTOR A, B, ..., C, D, ...)
20430 auto IsBuildVectorOrUndef
= [](const SDValue
&Op
) {
20431 return ISD::UNDEF
== Op
.getOpcode() || ISD::BUILD_VECTOR
== Op
.getOpcode();
20433 if (llvm::all_of(N
->ops(), IsBuildVectorOrUndef
)) {
20434 SmallVector
<SDValue
, 8> Opnds
;
20435 EVT SVT
= VT
.getScalarType();
20438 if (!SVT
.isFloatingPoint()) {
20439 // If BUILD_VECTOR are from built from integer, they may have different
20440 // operand types. Get the smallest type and truncate all operands to it.
20441 bool FoundMinVT
= false;
20442 for (const SDValue
&Op
: N
->ops())
20443 if (ISD::BUILD_VECTOR
== Op
.getOpcode()) {
20444 EVT OpSVT
= Op
.getOperand(0).getValueType();
20445 MinVT
= (!FoundMinVT
|| OpSVT
.bitsLE(MinVT
)) ? OpSVT
: MinVT
;
20448 assert(FoundMinVT
&& "Concat vector type mismatch");
20451 for (const SDValue
&Op
: N
->ops()) {
20452 EVT OpVT
= Op
.getValueType();
20453 unsigned NumElts
= OpVT
.getVectorNumElements();
20455 if (ISD::UNDEF
== Op
.getOpcode())
20456 Opnds
.append(NumElts
, DAG
.getUNDEF(MinVT
));
20458 if (ISD::BUILD_VECTOR
== Op
.getOpcode()) {
20459 if (SVT
.isFloatingPoint()) {
20460 assert(SVT
== OpVT
.getScalarType() && "Concat vector type mismatch");
20461 Opnds
.append(Op
->op_begin(), Op
->op_begin() + NumElts
);
20463 for (unsigned i
= 0; i
!= NumElts
; ++i
)
20465 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), MinVT
, Op
.getOperand(i
)));
20470 assert(VT
.getVectorNumElements() == Opnds
.size() &&
20471 "Concat vector type mismatch");
20472 return DAG
.getBuildVector(VT
, SDLoc(N
), Opnds
);
20475 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
20476 // FIXME: Add support for concat_vectors(bitcast(vec0),bitcast(vec1),...).
20477 if (SDValue V
= combineConcatVectorOfScalars(N
, DAG
))
20480 if (Level
< AfterLegalizeVectorOps
&& TLI
.isTypeLegal(VT
)) {
20481 // Fold CONCAT_VECTORS of CONCAT_VECTORS (or undef) to VECTOR_SHUFFLE.
20482 if (SDValue V
= combineConcatVectorOfConcatVectors(N
, DAG
))
20485 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
20486 if (SDValue V
= combineConcatVectorOfExtracts(N
, DAG
))
20490 if (SDValue V
= combineConcatVectorOfCasts(N
, DAG
))
20493 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
20494 // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR
20495 // operands and look for a CONCAT operations that place the incoming vectors
20496 // at the exact same location.
20498 // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled.
20499 SDValue SingleSource
= SDValue();
20500 unsigned PartNumElem
=
20501 N
->getOperand(0).getValueType().getVectorMinNumElements();
20503 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
20504 SDValue Op
= N
->getOperand(i
);
20509 // Check if this is the identity extract:
20510 if (Op
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
20513 // Find the single incoming vector for the extract_subvector.
20514 if (SingleSource
.getNode()) {
20515 if (Op
.getOperand(0) != SingleSource
)
20518 SingleSource
= Op
.getOperand(0);
20520 // Check the source type is the same as the type of the result.
20521 // If not, this concat may extend the vector, so we can not
20522 // optimize it away.
20523 if (SingleSource
.getValueType() != N
->getValueType(0))
20527 // Check that we are reading from the identity index.
20528 unsigned IdentityIndex
= i
* PartNumElem
;
20529 if (Op
.getConstantOperandAPInt(1) != IdentityIndex
)
20533 if (SingleSource
.getNode())
20534 return SingleSource
;
20539 // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find
20540 // if the subvector can be sourced for free.
20541 static SDValue
getSubVectorSrc(SDValue V
, SDValue Index
, EVT SubVT
) {
20542 if (V
.getOpcode() == ISD::INSERT_SUBVECTOR
&&
20543 V
.getOperand(1).getValueType() == SubVT
&& V
.getOperand(2) == Index
) {
20544 return V
.getOperand(1);
20546 auto *IndexC
= dyn_cast
<ConstantSDNode
>(Index
);
20547 if (IndexC
&& V
.getOpcode() == ISD::CONCAT_VECTORS
&&
20548 V
.getOperand(0).getValueType() == SubVT
&&
20549 (IndexC
->getZExtValue() % SubVT
.getVectorMinNumElements()) == 0) {
20550 uint64_t SubIdx
= IndexC
->getZExtValue() / SubVT
.getVectorMinNumElements();
20551 return V
.getOperand(SubIdx
);
20556 static SDValue
narrowInsertExtractVectorBinOp(SDNode
*Extract
,
20558 bool LegalOperations
) {
20559 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
20560 SDValue BinOp
= Extract
->getOperand(0);
20561 unsigned BinOpcode
= BinOp
.getOpcode();
20562 if (!TLI
.isBinOp(BinOpcode
) || BinOp
.getNode()->getNumValues() != 1)
20565 EVT VecVT
= BinOp
.getValueType();
20566 SDValue Bop0
= BinOp
.getOperand(0), Bop1
= BinOp
.getOperand(1);
20567 if (VecVT
!= Bop0
.getValueType() || VecVT
!= Bop1
.getValueType())
20570 SDValue Index
= Extract
->getOperand(1);
20571 EVT SubVT
= Extract
->getValueType(0);
20572 if (!TLI
.isOperationLegalOrCustom(BinOpcode
, SubVT
, LegalOperations
))
20575 SDValue Sub0
= getSubVectorSrc(Bop0
, Index
, SubVT
);
20576 SDValue Sub1
= getSubVectorSrc(Bop1
, Index
, SubVT
);
20578 // TODO: We could handle the case where only 1 operand is being inserted by
20579 // creating an extract of the other operand, but that requires checking
20580 // number of uses and/or costs.
20581 if (!Sub0
|| !Sub1
)
20584 // We are inserting both operands of the wide binop only to extract back
20585 // to the narrow vector size. Eliminate all of the insert/extract:
20586 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y
20587 return DAG
.getNode(BinOpcode
, SDLoc(Extract
), SubVT
, Sub0
, Sub1
,
20588 BinOp
->getFlags());
20591 /// If we are extracting a subvector produced by a wide binary operator try
20592 /// to use a narrow binary operator and/or avoid concatenation and extraction.
20593 static SDValue
narrowExtractedVectorBinOp(SDNode
*Extract
, SelectionDAG
&DAG
,
20594 bool LegalOperations
) {
20595 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
20596 // some of these bailouts with other transforms.
20598 if (SDValue V
= narrowInsertExtractVectorBinOp(Extract
, DAG
, LegalOperations
))
20601 // The extract index must be a constant, so we can map it to a concat operand.
20602 auto *ExtractIndexC
= dyn_cast
<ConstantSDNode
>(Extract
->getOperand(1));
20603 if (!ExtractIndexC
)
20606 // We are looking for an optionally bitcasted wide vector binary operator
20607 // feeding an extract subvector.
20608 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
20609 SDValue BinOp
= peekThroughBitcasts(Extract
->getOperand(0));
20610 unsigned BOpcode
= BinOp
.getOpcode();
20611 if (!TLI
.isBinOp(BOpcode
) || BinOp
.getNode()->getNumValues() != 1)
20614 // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be
20615 // reduced to the unary fneg when it is visited, and we probably want to deal
20616 // with fneg in a target-specific way.
20617 if (BOpcode
== ISD::FSUB
) {
20618 auto *C
= isConstOrConstSplatFP(BinOp
.getOperand(0), /*AllowUndefs*/ true);
20619 if (C
&& C
->getValueAPF().isNegZero())
20623 // The binop must be a vector type, so we can extract some fraction of it.
20624 EVT WideBVT
= BinOp
.getValueType();
20625 // The optimisations below currently assume we are dealing with fixed length
20626 // vectors. It is possible to add support for scalable vectors, but at the
20627 // moment we've done no analysis to prove whether they are profitable or not.
20628 if (!WideBVT
.isFixedLengthVector())
20631 EVT VT
= Extract
->getValueType(0);
20632 unsigned ExtractIndex
= ExtractIndexC
->getZExtValue();
20633 assert(ExtractIndex
% VT
.getVectorNumElements() == 0 &&
20634 "Extract index is not a multiple of the vector length.");
20636 // Bail out if this is not a proper multiple width extraction.
20637 unsigned WideWidth
= WideBVT
.getSizeInBits();
20638 unsigned NarrowWidth
= VT
.getSizeInBits();
20639 if (WideWidth
% NarrowWidth
!= 0)
20642 // Bail out if we are extracting a fraction of a single operation. This can
20643 // occur because we potentially looked through a bitcast of the binop.
20644 unsigned NarrowingRatio
= WideWidth
/ NarrowWidth
;
20645 unsigned WideNumElts
= WideBVT
.getVectorNumElements();
20646 if (WideNumElts
% NarrowingRatio
!= 0)
20649 // Bail out if the target does not support a narrower version of the binop.
20650 EVT NarrowBVT
= EVT::getVectorVT(*DAG
.getContext(), WideBVT
.getScalarType(),
20651 WideNumElts
/ NarrowingRatio
);
20652 if (!TLI
.isOperationLegalOrCustomOrPromote(BOpcode
, NarrowBVT
))
20655 // If extraction is cheap, we don't need to look at the binop operands
20656 // for concat ops. The narrow binop alone makes this transform profitable.
20657 // We can't just reuse the original extract index operand because we may have
20659 unsigned ConcatOpNum
= ExtractIndex
/ VT
.getVectorNumElements();
20660 unsigned ExtBOIdx
= ConcatOpNum
* NarrowBVT
.getVectorNumElements();
20661 if (TLI
.isExtractSubvectorCheap(NarrowBVT
, WideBVT
, ExtBOIdx
) &&
20662 BinOp
.hasOneUse() && Extract
->getOperand(0)->hasOneUse()) {
20663 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N)
20665 SDValue NewExtIndex
= DAG
.getVectorIdxConstant(ExtBOIdx
, DL
);
20666 SDValue X
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
20667 BinOp
.getOperand(0), NewExtIndex
);
20668 SDValue Y
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
20669 BinOp
.getOperand(1), NewExtIndex
);
20670 SDValue NarrowBinOp
= DAG
.getNode(BOpcode
, DL
, NarrowBVT
, X
, Y
,
20671 BinOp
.getNode()->getFlags());
20672 return DAG
.getBitcast(VT
, NarrowBinOp
);
20675 // Only handle the case where we are doubling and then halving. A larger ratio
20676 // may require more than two narrow binops to replace the wide binop.
20677 if (NarrowingRatio
!= 2)
20680 // TODO: The motivating case for this transform is an x86 AVX1 target. That
20681 // target has temptingly almost legal versions of bitwise logic ops in 256-bit
20682 // flavors, but no other 256-bit integer support. This could be extended to
20683 // handle any binop, but that may require fixing/adding other folds to avoid
20684 // codegen regressions.
20685 if (BOpcode
!= ISD::AND
&& BOpcode
!= ISD::OR
&& BOpcode
!= ISD::XOR
)
20688 // We need at least one concatenation operation of a binop operand to make
20689 // this transform worthwhile. The concat must double the input vector sizes.
20690 auto GetSubVector
= [ConcatOpNum
](SDValue V
) -> SDValue
{
20691 if (V
.getOpcode() == ISD::CONCAT_VECTORS
&& V
.getNumOperands() == 2)
20692 return V
.getOperand(ConcatOpNum
);
20695 SDValue SubVecL
= GetSubVector(peekThroughBitcasts(BinOp
.getOperand(0)));
20696 SDValue SubVecR
= GetSubVector(peekThroughBitcasts(BinOp
.getOperand(1)));
20698 if (SubVecL
|| SubVecR
) {
20699 // If a binop operand was not the result of a concat, we must extract a
20700 // half-sized operand for our new narrow binop:
20701 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
20702 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC)
20703 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN
20705 SDValue IndexC
= DAG
.getVectorIdxConstant(ExtBOIdx
, DL
);
20706 SDValue X
= SubVecL
? DAG
.getBitcast(NarrowBVT
, SubVecL
)
20707 : DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
20708 BinOp
.getOperand(0), IndexC
);
20710 SDValue Y
= SubVecR
? DAG
.getBitcast(NarrowBVT
, SubVecR
)
20711 : DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
20712 BinOp
.getOperand(1), IndexC
);
20714 SDValue NarrowBinOp
= DAG
.getNode(BOpcode
, DL
, NarrowBVT
, X
, Y
);
20715 return DAG
.getBitcast(VT
, NarrowBinOp
);
20721 /// If we are extracting a subvector from a wide vector load, convert to a
20722 /// narrow load to eliminate the extraction:
20723 /// (extract_subvector (load wide vector)) --> (load narrow vector)
20724 static SDValue
narrowExtractedVectorLoad(SDNode
*Extract
, SelectionDAG
&DAG
) {
20725 // TODO: Add support for big-endian. The offset calculation must be adjusted.
20726 if (DAG
.getDataLayout().isBigEndian())
20729 auto *Ld
= dyn_cast
<LoadSDNode
>(Extract
->getOperand(0));
20730 if (!Ld
|| Ld
->getExtensionType() || !Ld
->isSimple())
20733 // Allow targets to opt-out.
20734 EVT VT
= Extract
->getValueType(0);
20736 // We can only create byte sized loads.
20737 if (!VT
.isByteSized())
20740 unsigned Index
= Extract
->getConstantOperandVal(1);
20741 unsigned NumElts
= VT
.getVectorMinNumElements();
20743 // The definition of EXTRACT_SUBVECTOR states that the index must be a
20744 // multiple of the minimum number of elements in the result type.
20745 assert(Index
% NumElts
== 0 && "The extract subvector index is not a "
20746 "multiple of the result's element count");
20748 // It's fine to use TypeSize here as we know the offset will not be negative.
20749 TypeSize Offset
= VT
.getStoreSize() * (Index
/ NumElts
);
20751 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
20752 if (!TLI
.shouldReduceLoadWidth(Ld
, Ld
->getExtensionType(), VT
))
20755 // The narrow load will be offset from the base address of the old load if
20756 // we are extracting from something besides index 0 (little-endian).
20759 // TODO: Use "BaseIndexOffset" to make this more effective.
20760 SDValue NewAddr
= DAG
.getMemBasePlusOffset(Ld
->getBasePtr(), Offset
, DL
);
20762 uint64_t StoreSize
= MemoryLocation::getSizeOrUnknown(VT
.getStoreSize());
20763 MachineFunction
&MF
= DAG
.getMachineFunction();
20764 MachineMemOperand
*MMO
;
20765 if (Offset
.isScalable()) {
20766 MachinePointerInfo MPI
=
20767 MachinePointerInfo(Ld
->getPointerInfo().getAddrSpace());
20768 MMO
= MF
.getMachineMemOperand(Ld
->getMemOperand(), MPI
, StoreSize
);
20770 MMO
= MF
.getMachineMemOperand(Ld
->getMemOperand(), Offset
.getFixedSize(),
20773 SDValue NewLd
= DAG
.getLoad(VT
, DL
, Ld
->getChain(), NewAddr
, MMO
);
20774 DAG
.makeEquivalentMemoryOrdering(Ld
, NewLd
);
20778 /// Given EXTRACT_SUBVECTOR(VECTOR_SHUFFLE(Op0, Op1, Mask)),
20779 /// try to produce VECTOR_SHUFFLE(EXTRACT_SUBVECTOR(Op?, ?),
20780 /// EXTRACT_SUBVECTOR(Op?, ?),
20782 /// iff it is legal and profitable to do so. Notably, the trimmed mask
20783 /// (containing only the elements that are extracted)
20784 /// must reference at most two subvectors.
20785 static SDValue
foldExtractSubvectorFromShuffleVector(SDNode
*N
,
20787 const TargetLowering
&TLI
,
20788 bool LegalOperations
) {
20789 assert(N
->getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
20790 "Must only be called on EXTRACT_SUBVECTOR's");
20792 SDValue N0
= N
->getOperand(0);
20794 // Only deal with non-scalable vectors.
20795 EVT NarrowVT
= N
->getValueType(0);
20796 EVT WideVT
= N0
.getValueType();
20797 if (!NarrowVT
.isFixedLengthVector() || !WideVT
.isFixedLengthVector())
20800 // The operand must be a shufflevector.
20801 auto *WideShuffleVector
= dyn_cast
<ShuffleVectorSDNode
>(N0
);
20802 if (!WideShuffleVector
)
20805 // The old shuffleneeds to go away.
20806 if (!WideShuffleVector
->hasOneUse())
20809 // And the narrow shufflevector that we'll form must be legal.
20810 if (LegalOperations
&&
20811 !TLI
.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE
, NarrowVT
))
20814 uint64_t FirstExtractedEltIdx
= N
->getConstantOperandVal(1);
20815 int NumEltsExtracted
= NarrowVT
.getVectorNumElements();
20816 assert((FirstExtractedEltIdx
% NumEltsExtracted
) == 0 &&
20817 "Extract index is not a multiple of the output vector length.");
20819 int WideNumElts
= WideVT
.getVectorNumElements();
20821 SmallVector
<int, 16> NewMask
;
20822 NewMask
.reserve(NumEltsExtracted
);
20823 SmallSetVector
<std::pair
<SDValue
/*Op*/, int /*SubvectorIndex*/>, 2>
20824 DemandedSubvectors
;
20826 // Try to decode the wide mask into narrow mask from at most two subvectors.
20827 for (int M
: WideShuffleVector
->getMask().slice(FirstExtractedEltIdx
,
20828 NumEltsExtracted
)) {
20829 assert((M
>= -1) && (M
< (2 * WideNumElts
)) &&
20830 "Out-of-bounds shuffle mask?");
20833 // Does not depend on operands, does not require adjustment.
20834 NewMask
.emplace_back(M
);
20838 // From which operand of the shuffle does this shuffle mask element pick?
20839 int WideShufOpIdx
= M
/ WideNumElts
;
20840 // Which element of that operand is picked?
20841 int OpEltIdx
= M
% WideNumElts
;
20843 assert((OpEltIdx
+ WideShufOpIdx
* WideNumElts
) == M
&&
20844 "Shuffle mask vector decomposition failure.");
20846 // And which NumEltsExtracted-sized subvector of that operand is that?
20847 int OpSubvecIdx
= OpEltIdx
/ NumEltsExtracted
;
20848 // And which element within that subvector of that operand is that?
20849 int OpEltIdxInSubvec
= OpEltIdx
% NumEltsExtracted
;
20851 assert((OpEltIdxInSubvec
+ OpSubvecIdx
* NumEltsExtracted
) == OpEltIdx
&&
20852 "Shuffle mask subvector decomposition failure.");
20854 assert((OpEltIdxInSubvec
+ OpSubvecIdx
* NumEltsExtracted
+
20855 WideShufOpIdx
* WideNumElts
) == M
&&
20856 "Shuffle mask full decomposition failure.");
20858 SDValue Op
= WideShuffleVector
->getOperand(WideShufOpIdx
);
20860 if (Op
.isUndef()) {
20861 // Picking from an undef operand. Let's adjust mask instead.
20862 NewMask
.emplace_back(-1);
20866 // Profitability check: only deal with extractions from the first subvector.
20867 if (OpSubvecIdx
!= 0)
20870 const std::pair
<SDValue
, int> DemandedSubvector
=
20871 std::make_pair(Op
, OpSubvecIdx
);
20873 if (DemandedSubvectors
.insert(DemandedSubvector
)) {
20874 if (DemandedSubvectors
.size() > 2)
20875 return SDValue(); // We can't handle more than two subvectors.
20876 // How many elements into the WideVT does this subvector start?
20877 int Index
= NumEltsExtracted
* OpSubvecIdx
;
20878 // Bail out if the extraction isn't going to be cheap.
20879 if (!TLI
.isExtractSubvectorCheap(NarrowVT
, WideVT
, Index
))
20883 // Ok, but from which operand of the new shuffle will this element pick?
20885 getFirstIndexOf(DemandedSubvectors
.getArrayRef(), DemandedSubvector
);
20886 assert((NewOpIdx
== 0 || NewOpIdx
== 1) && "Unexpected operand index.");
20888 int AdjM
= OpEltIdxInSubvec
+ NewOpIdx
* NumEltsExtracted
;
20889 NewMask
.emplace_back(AdjM
);
20891 assert(NewMask
.size() == (unsigned)NumEltsExtracted
&& "Produced bad mask.");
20892 assert(DemandedSubvectors
.size() <= 2 &&
20893 "Should have ended up demanding at most two subvectors.");
20895 // Did we discover that the shuffle does not actually depend on operands?
20896 if (DemandedSubvectors
.empty())
20897 return DAG
.getUNDEF(NarrowVT
);
20899 // We still perform the exact same EXTRACT_SUBVECTOR, just on different
20900 // operand[s]/index[es], so there is no point in checking for it's legality.
20902 // Do not turn a legal shuffle into an illegal one.
20903 if (TLI
.isShuffleMaskLegal(WideShuffleVector
->getMask(), WideVT
) &&
20904 !TLI
.isShuffleMaskLegal(NewMask
, NarrowVT
))
20909 SmallVector
<SDValue
, 2> NewOps
;
20910 for (const std::pair
<SDValue
/*Op*/, int /*SubvectorIndex*/>
20911 &DemandedSubvector
: DemandedSubvectors
) {
20912 // How many elements into the WideVT does this subvector start?
20913 int Index
= NumEltsExtracted
* DemandedSubvector
.second
;
20914 SDValue IndexC
= DAG
.getVectorIdxConstant(Index
, DL
);
20915 NewOps
.emplace_back(DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowVT
,
20916 DemandedSubvector
.first
, IndexC
));
20918 assert((NewOps
.size() == 1 || NewOps
.size() == 2) &&
20919 "Should end up with either one or two ops");
20921 // If we ended up with only one operand, pad with an undef.
20922 if (NewOps
.size() == 1)
20923 NewOps
.emplace_back(DAG
.getUNDEF(NarrowVT
));
20925 return DAG
.getVectorShuffle(NarrowVT
, DL
, NewOps
[0], NewOps
[1], NewMask
);
20928 SDValue
DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode
*N
) {
20929 EVT NVT
= N
->getValueType(0);
20930 SDValue V
= N
->getOperand(0);
20931 uint64_t ExtIdx
= N
->getConstantOperandVal(1);
20933 // Extract from UNDEF is UNDEF.
20935 return DAG
.getUNDEF(NVT
);
20937 if (TLI
.isOperationLegalOrCustomOrPromote(ISD::LOAD
, NVT
))
20938 if (SDValue NarrowLoad
= narrowExtractedVectorLoad(N
, DAG
))
20941 // Combine an extract of an extract into a single extract_subvector.
20942 // ext (ext X, C), 0 --> ext X, C
20943 if (ExtIdx
== 0 && V
.getOpcode() == ISD::EXTRACT_SUBVECTOR
&& V
.hasOneUse()) {
20944 if (TLI
.isExtractSubvectorCheap(NVT
, V
.getOperand(0).getValueType(),
20945 V
.getConstantOperandVal(1)) &&
20946 TLI
.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, NVT
)) {
20947 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), NVT
, V
.getOperand(0),
20952 // Try to move vector bitcast after extract_subv by scaling extraction index:
20953 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index')
20954 if (V
.getOpcode() == ISD::BITCAST
&&
20955 V
.getOperand(0).getValueType().isVector() &&
20956 (!LegalOperations
|| TLI
.isOperationLegal(ISD::BITCAST
, NVT
))) {
20957 SDValue SrcOp
= V
.getOperand(0);
20958 EVT SrcVT
= SrcOp
.getValueType();
20959 unsigned SrcNumElts
= SrcVT
.getVectorMinNumElements();
20960 unsigned DestNumElts
= V
.getValueType().getVectorMinNumElements();
20961 if ((SrcNumElts
% DestNumElts
) == 0) {
20962 unsigned SrcDestRatio
= SrcNumElts
/ DestNumElts
;
20963 ElementCount NewExtEC
= NVT
.getVectorElementCount() * SrcDestRatio
;
20964 EVT NewExtVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
.getScalarType(),
20966 if (TLI
.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, NewExtVT
)) {
20968 SDValue NewIndex
= DAG
.getVectorIdxConstant(ExtIdx
* SrcDestRatio
, DL
);
20969 SDValue NewExtract
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NewExtVT
,
20970 V
.getOperand(0), NewIndex
);
20971 return DAG
.getBitcast(NVT
, NewExtract
);
20974 if ((DestNumElts
% SrcNumElts
) == 0) {
20975 unsigned DestSrcRatio
= DestNumElts
/ SrcNumElts
;
20976 if (NVT
.getVectorElementCount().isKnownMultipleOf(DestSrcRatio
)) {
20977 ElementCount NewExtEC
=
20978 NVT
.getVectorElementCount().divideCoefficientBy(DestSrcRatio
);
20979 EVT ScalarVT
= SrcVT
.getScalarType();
20980 if ((ExtIdx
% DestSrcRatio
) == 0) {
20982 unsigned IndexValScaled
= ExtIdx
/ DestSrcRatio
;
20984 EVT::getVectorVT(*DAG
.getContext(), ScalarVT
, NewExtEC
);
20985 if (TLI
.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, NewExtVT
)) {
20986 SDValue NewIndex
= DAG
.getVectorIdxConstant(IndexValScaled
, DL
);
20987 SDValue NewExtract
=
20988 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NewExtVT
,
20989 V
.getOperand(0), NewIndex
);
20990 return DAG
.getBitcast(NVT
, NewExtract
);
20992 if (NewExtEC
.isScalar() &&
20993 TLI
.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT
, ScalarVT
)) {
20994 SDValue NewIndex
= DAG
.getVectorIdxConstant(IndexValScaled
, DL
);
20995 SDValue NewExtract
=
20996 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, ScalarVT
,
20997 V
.getOperand(0), NewIndex
);
20998 return DAG
.getBitcast(NVT
, NewExtract
);
21005 if (V
.getOpcode() == ISD::CONCAT_VECTORS
) {
21006 unsigned ExtNumElts
= NVT
.getVectorMinNumElements();
21007 EVT ConcatSrcVT
= V
.getOperand(0).getValueType();
21008 assert(ConcatSrcVT
.getVectorElementType() == NVT
.getVectorElementType() &&
21009 "Concat and extract subvector do not change element type");
21010 assert((ExtIdx
% ExtNumElts
) == 0 &&
21011 "Extract index is not a multiple of the input vector length.");
21013 unsigned ConcatSrcNumElts
= ConcatSrcVT
.getVectorMinNumElements();
21014 unsigned ConcatOpIdx
= ExtIdx
/ ConcatSrcNumElts
;
21016 // If the concatenated source types match this extract, it's a direct
21018 // extract_subvec (concat V1, V2, ...), i --> Vi
21019 if (NVT
.getVectorElementCount() == ConcatSrcVT
.getVectorElementCount())
21020 return V
.getOperand(ConcatOpIdx
);
21022 // If the concatenated source vectors are a multiple length of this extract,
21023 // then extract a fraction of one of those source vectors directly from a
21024 // concat operand. Example:
21025 // v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 -->
21026 // v2i8 extract_subvec v8i8 Y, 6
21027 if (NVT
.isFixedLengthVector() && ConcatSrcVT
.isFixedLengthVector() &&
21028 ConcatSrcNumElts
% ExtNumElts
== 0) {
21030 unsigned NewExtIdx
= ExtIdx
- ConcatOpIdx
* ConcatSrcNumElts
;
21031 assert(NewExtIdx
+ ExtNumElts
<= ConcatSrcNumElts
&&
21032 "Trying to extract from >1 concat operand?");
21033 assert(NewExtIdx
% ExtNumElts
== 0 &&
21034 "Extract index is not a multiple of the input vector length.");
21035 SDValue NewIndexC
= DAG
.getVectorIdxConstant(NewExtIdx
, DL
);
21036 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NVT
,
21037 V
.getOperand(ConcatOpIdx
), NewIndexC
);
21042 foldExtractSubvectorFromShuffleVector(N
, DAG
, TLI
, LegalOperations
))
21045 V
= peekThroughBitcasts(V
);
21047 // If the input is a build vector. Try to make a smaller build vector.
21048 if (V
.getOpcode() == ISD::BUILD_VECTOR
) {
21049 EVT InVT
= V
.getValueType();
21050 unsigned ExtractSize
= NVT
.getSizeInBits();
21051 unsigned EltSize
= InVT
.getScalarSizeInBits();
21052 // Only do this if we won't split any elements.
21053 if (ExtractSize
% EltSize
== 0) {
21054 unsigned NumElems
= ExtractSize
/ EltSize
;
21055 EVT EltVT
= InVT
.getVectorElementType();
21057 NumElems
== 1 ? EltVT
21058 : EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElems
);
21059 if ((Level
< AfterLegalizeDAG
||
21061 TLI
.isOperationLegal(ISD::BUILD_VECTOR
, ExtractVT
))) &&
21062 (!LegalTypes
|| TLI
.isTypeLegal(ExtractVT
))) {
21063 unsigned IdxVal
= (ExtIdx
* NVT
.getScalarSizeInBits()) / EltSize
;
21065 if (NumElems
== 1) {
21066 SDValue Src
= V
->getOperand(IdxVal
);
21067 if (EltVT
!= Src
.getValueType())
21068 Src
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), InVT
, Src
);
21069 return DAG
.getBitcast(NVT
, Src
);
21072 // Extract the pieces from the original build_vector.
21073 SDValue BuildVec
= DAG
.getBuildVector(ExtractVT
, SDLoc(N
),
21074 V
->ops().slice(IdxVal
, NumElems
));
21075 return DAG
.getBitcast(NVT
, BuildVec
);
21080 if (V
.getOpcode() == ISD::INSERT_SUBVECTOR
) {
21081 // Handle only simple case where vector being inserted and vector
21082 // being extracted are of same size.
21083 EVT SmallVT
= V
.getOperand(1).getValueType();
21084 if (!NVT
.bitsEq(SmallVT
))
21088 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
21090 // indices are equal or bit offsets are equal => V1
21091 // otherwise => (extract_subvec V1, ExtIdx)
21092 uint64_t InsIdx
= V
.getConstantOperandVal(2);
21093 if (InsIdx
* SmallVT
.getScalarSizeInBits() ==
21094 ExtIdx
* NVT
.getScalarSizeInBits()) {
21095 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::BITCAST
, NVT
))
21098 return DAG
.getBitcast(NVT
, V
.getOperand(1));
21100 return DAG
.getNode(
21101 ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), NVT
,
21102 DAG
.getBitcast(N
->getOperand(0).getValueType(), V
.getOperand(0)),
21106 if (SDValue NarrowBOp
= narrowExtractedVectorBinOp(N
, DAG
, LegalOperations
))
21109 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
21110 return SDValue(N
, 0);
21115 /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles
21116 /// followed by concatenation. Narrow vector ops may have better performance
21117 /// than wide ops, and this can unlock further narrowing of other vector ops.
21118 /// Targets can invert this transform later if it is not profitable.
21119 static SDValue
foldShuffleOfConcatUndefs(ShuffleVectorSDNode
*Shuf
,
21120 SelectionDAG
&DAG
) {
21121 SDValue N0
= Shuf
->getOperand(0), N1
= Shuf
->getOperand(1);
21122 if (N0
.getOpcode() != ISD::CONCAT_VECTORS
|| N0
.getNumOperands() != 2 ||
21123 N1
.getOpcode() != ISD::CONCAT_VECTORS
|| N1
.getNumOperands() != 2 ||
21124 !N0
.getOperand(1).isUndef() || !N1
.getOperand(1).isUndef())
21127 // Split the wide shuffle mask into halves. Any mask element that is accessing
21128 // operand 1 is offset down to account for narrowing of the vectors.
21129 ArrayRef
<int> Mask
= Shuf
->getMask();
21130 EVT VT
= Shuf
->getValueType(0);
21131 unsigned NumElts
= VT
.getVectorNumElements();
21132 unsigned HalfNumElts
= NumElts
/ 2;
21133 SmallVector
<int, 16> Mask0(HalfNumElts
, -1);
21134 SmallVector
<int, 16> Mask1(HalfNumElts
, -1);
21135 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21138 // If we reference the upper (undef) subvector then the element is undef.
21139 if ((Mask
[i
] % NumElts
) >= HalfNumElts
)
21141 int M
= Mask
[i
] < (int)NumElts
? Mask
[i
] : Mask
[i
] - (int)HalfNumElts
;
21142 if (i
< HalfNumElts
)
21145 Mask1
[i
- HalfNumElts
] = M
;
21148 // Ask the target if this is a valid transform.
21149 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
21150 EVT HalfVT
= EVT::getVectorVT(*DAG
.getContext(), VT
.getScalarType(),
21152 if (!TLI
.isShuffleMaskLegal(Mask0
, HalfVT
) ||
21153 !TLI
.isShuffleMaskLegal(Mask1
, HalfVT
))
21156 // shuffle (concat X, undef), (concat Y, undef), Mask -->
21157 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
21158 SDValue X
= N0
.getOperand(0), Y
= N1
.getOperand(0);
21160 SDValue Shuf0
= DAG
.getVectorShuffle(HalfVT
, DL
, X
, Y
, Mask0
);
21161 SDValue Shuf1
= DAG
.getVectorShuffle(HalfVT
, DL
, X
, Y
, Mask1
);
21162 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, Shuf0
, Shuf1
);
21165 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
21166 // or turn a shuffle of a single concat into simpler shuffle then concat.
21167 static SDValue
partitionShuffleOfConcats(SDNode
*N
, SelectionDAG
&DAG
) {
21168 EVT VT
= N
->getValueType(0);
21169 unsigned NumElts
= VT
.getVectorNumElements();
21171 SDValue N0
= N
->getOperand(0);
21172 SDValue N1
= N
->getOperand(1);
21173 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
21174 ArrayRef
<int> Mask
= SVN
->getMask();
21176 SmallVector
<SDValue
, 4> Ops
;
21177 EVT ConcatVT
= N0
.getOperand(0).getValueType();
21178 unsigned NumElemsPerConcat
= ConcatVT
.getVectorNumElements();
21179 unsigned NumConcats
= NumElts
/ NumElemsPerConcat
;
21181 auto IsUndefMaskElt
= [](int i
) { return i
== -1; };
21183 // Special case: shuffle(concat(A,B)) can be more efficiently represented
21184 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
21185 // half vector elements.
21186 if (NumElemsPerConcat
* 2 == NumElts
&& N1
.isUndef() &&
21187 llvm::all_of(Mask
.slice(NumElemsPerConcat
, NumElemsPerConcat
),
21189 N0
= DAG
.getVectorShuffle(ConcatVT
, SDLoc(N
), N0
.getOperand(0),
21191 Mask
.slice(0, NumElemsPerConcat
));
21192 N1
= DAG
.getUNDEF(ConcatVT
);
21193 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, N0
, N1
);
21196 // Look at every vector that's inserted. We're looking for exact
21197 // subvector-sized copies from a concatenated vector
21198 for (unsigned I
= 0; I
!= NumConcats
; ++I
) {
21199 unsigned Begin
= I
* NumElemsPerConcat
;
21200 ArrayRef
<int> SubMask
= Mask
.slice(Begin
, NumElemsPerConcat
);
21202 // Make sure we're dealing with a copy.
21203 if (llvm::all_of(SubMask
, IsUndefMaskElt
)) {
21204 Ops
.push_back(DAG
.getUNDEF(ConcatVT
));
21209 for (int i
= 0; i
!= (int)NumElemsPerConcat
; ++i
) {
21210 if (IsUndefMaskElt(SubMask
[i
]))
21212 if ((SubMask
[i
] % (int)NumElemsPerConcat
) != i
)
21214 int EltOpIdx
= SubMask
[i
] / NumElemsPerConcat
;
21215 if (0 <= OpIdx
&& EltOpIdx
!= OpIdx
)
21219 assert(0 <= OpIdx
&& "Unknown concat_vectors op");
21221 if (OpIdx
< (int)N0
.getNumOperands())
21222 Ops
.push_back(N0
.getOperand(OpIdx
));
21224 Ops
.push_back(N1
.getOperand(OpIdx
- N0
.getNumOperands()));
21227 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
21230 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
21231 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
21233 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
21234 // a simplification in some sense, but it isn't appropriate in general: some
21235 // BUILD_VECTORs are substantially cheaper than others. The general case
21236 // of a BUILD_VECTOR requires inserting each element individually (or
21237 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
21238 // all constants is a single constant pool load. A BUILD_VECTOR where each
21239 // element is identical is a splat. A BUILD_VECTOR where most of the operands
21240 // are undef lowers to a small number of element insertions.
21242 // To deal with this, we currently use a bunch of mostly arbitrary heuristics.
21243 // We don't fold shuffles where one side is a non-zero constant, and we don't
21244 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
21245 // non-constant operands. This seems to work out reasonably well in practice.
21246 static SDValue
combineShuffleOfScalars(ShuffleVectorSDNode
*SVN
,
21248 const TargetLowering
&TLI
) {
21249 EVT VT
= SVN
->getValueType(0);
21250 unsigned NumElts
= VT
.getVectorNumElements();
21251 SDValue N0
= SVN
->getOperand(0);
21252 SDValue N1
= SVN
->getOperand(1);
21254 if (!N0
->hasOneUse())
21257 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
21258 // discussed above.
21259 if (!N1
.isUndef()) {
21260 if (!N1
->hasOneUse())
21263 bool N0AnyConst
= isAnyConstantBuildVector(N0
);
21264 bool N1AnyConst
= isAnyConstantBuildVector(N1
);
21265 if (N0AnyConst
&& !N1AnyConst
&& !ISD::isBuildVectorAllZeros(N0
.getNode()))
21267 if (!N0AnyConst
&& N1AnyConst
&& !ISD::isBuildVectorAllZeros(N1
.getNode()))
21271 // If both inputs are splats of the same value then we can safely merge this
21272 // to a single BUILD_VECTOR with undef elements based on the shuffle mask.
21273 bool IsSplat
= false;
21274 auto *BV0
= dyn_cast
<BuildVectorSDNode
>(N0
);
21275 auto *BV1
= dyn_cast
<BuildVectorSDNode
>(N1
);
21277 if (SDValue Splat0
= BV0
->getSplatValue())
21278 IsSplat
= (Splat0
== BV1
->getSplatValue());
21280 SmallVector
<SDValue
, 8> Ops
;
21281 SmallSet
<SDValue
, 16> DuplicateOps
;
21282 for (int M
: SVN
->getMask()) {
21283 SDValue Op
= DAG
.getUNDEF(VT
.getScalarType());
21285 int Idx
= M
< (int)NumElts
? M
: M
- NumElts
;
21286 SDValue
&S
= (M
< (int)NumElts
? N0
: N1
);
21287 if (S
.getOpcode() == ISD::BUILD_VECTOR
) {
21288 Op
= S
.getOperand(Idx
);
21289 } else if (S
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
21290 SDValue Op0
= S
.getOperand(0);
21291 Op
= Idx
== 0 ? Op0
: DAG
.getUNDEF(Op0
.getValueType());
21293 // Operand can't be combined - bail out.
21298 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're
21299 // generating a splat; semantically, this is fine, but it's likely to
21300 // generate low-quality code if the target can't reconstruct an appropriate
21302 if (!Op
.isUndef() && !isIntOrFPConstant(Op
))
21303 if (!IsSplat
&& !DuplicateOps
.insert(Op
).second
)
21309 // BUILD_VECTOR requires all inputs to be of the same type, find the
21310 // maximum type and extend them all.
21311 EVT SVT
= VT
.getScalarType();
21312 if (SVT
.isInteger())
21313 for (SDValue
&Op
: Ops
)
21314 SVT
= (SVT
.bitsLT(Op
.getValueType()) ? Op
.getValueType() : SVT
);
21315 if (SVT
!= VT
.getScalarType())
21316 for (SDValue
&Op
: Ops
)
21317 Op
= TLI
.isZExtFree(Op
.getValueType(), SVT
)
21318 ? DAG
.getZExtOrTrunc(Op
, SDLoc(SVN
), SVT
)
21319 : DAG
.getSExtOrTrunc(Op
, SDLoc(SVN
), SVT
);
21320 return DAG
.getBuildVector(VT
, SDLoc(SVN
), Ops
);
21323 // Match shuffles that can be converted to any_vector_extend_in_reg.
21324 // This is often generated during legalization.
21325 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
21326 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case.
21327 static SDValue
combineShuffleToVectorExtend(ShuffleVectorSDNode
*SVN
,
21329 const TargetLowering
&TLI
,
21330 bool LegalOperations
) {
21331 EVT VT
= SVN
->getValueType(0);
21332 bool IsBigEndian
= DAG
.getDataLayout().isBigEndian();
21334 // TODO Add support for big-endian when we have a test case.
21335 if (!VT
.isInteger() || IsBigEndian
)
21338 unsigned NumElts
= VT
.getVectorNumElements();
21339 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
21340 ArrayRef
<int> Mask
= SVN
->getMask();
21341 SDValue N0
= SVN
->getOperand(0);
21343 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
21344 auto isAnyExtend
= [&Mask
, &NumElts
](unsigned Scale
) {
21345 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21348 if ((i
% Scale
) == 0 && Mask
[i
] == (int)(i
/ Scale
))
21355 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
21356 // power-of-2 extensions as they are the most likely.
21357 for (unsigned Scale
= 2; Scale
< NumElts
; Scale
*= 2) {
21358 // Check for non power of 2 vector sizes
21359 if (NumElts
% Scale
!= 0)
21361 if (!isAnyExtend(Scale
))
21364 EVT OutSVT
= EVT::getIntegerVT(*DAG
.getContext(), EltSizeInBits
* Scale
);
21365 EVT OutVT
= EVT::getVectorVT(*DAG
.getContext(), OutSVT
, NumElts
/ Scale
);
21366 // Never create an illegal type. Only create unsupported operations if we
21367 // are pre-legalization.
21368 if (TLI
.isTypeLegal(OutVT
))
21369 if (!LegalOperations
||
21370 TLI
.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG
, OutVT
))
21371 return DAG
.getBitcast(VT
,
21372 DAG
.getNode(ISD::ANY_EXTEND_VECTOR_INREG
,
21373 SDLoc(SVN
), OutVT
, N0
));
21379 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
21380 // each source element of a large type into the lowest elements of a smaller
21381 // destination type. This is often generated during legalization.
21382 // If the source node itself was a '*_extend_vector_inreg' node then we should
21383 // then be able to remove it.
21384 static SDValue
combineTruncationShuffle(ShuffleVectorSDNode
*SVN
,
21385 SelectionDAG
&DAG
) {
21386 EVT VT
= SVN
->getValueType(0);
21387 bool IsBigEndian
= DAG
.getDataLayout().isBigEndian();
21389 // TODO Add support for big-endian when we have a test case.
21390 if (!VT
.isInteger() || IsBigEndian
)
21393 SDValue N0
= peekThroughBitcasts(SVN
->getOperand(0));
21395 unsigned Opcode
= N0
.getOpcode();
21396 if (Opcode
!= ISD::ANY_EXTEND_VECTOR_INREG
&&
21397 Opcode
!= ISD::SIGN_EXTEND_VECTOR_INREG
&&
21398 Opcode
!= ISD::ZERO_EXTEND_VECTOR_INREG
)
21401 SDValue N00
= N0
.getOperand(0);
21402 ArrayRef
<int> Mask
= SVN
->getMask();
21403 unsigned NumElts
= VT
.getVectorNumElements();
21404 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
21405 unsigned ExtSrcSizeInBits
= N00
.getScalarValueSizeInBits();
21406 unsigned ExtDstSizeInBits
= N0
.getScalarValueSizeInBits();
21408 if (ExtDstSizeInBits
% ExtSrcSizeInBits
!= 0)
21410 unsigned ExtScale
= ExtDstSizeInBits
/ ExtSrcSizeInBits
;
21412 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
21413 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
21414 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
21415 auto isTruncate
= [&Mask
, &NumElts
](unsigned Scale
) {
21416 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21419 if ((i
* Scale
) < NumElts
&& Mask
[i
] == (int)(i
* Scale
))
21426 // At the moment we just handle the case where we've truncated back to the
21427 // same size as before the extension.
21428 // TODO: handle more extension/truncation cases as cases arise.
21429 if (EltSizeInBits
!= ExtSrcSizeInBits
)
21432 // We can remove *extend_vector_inreg only if the truncation happens at
21433 // the same scale as the extension.
21434 if (isTruncate(ExtScale
))
21435 return DAG
.getBitcast(VT
, N00
);
21440 // Combine shuffles of splat-shuffles of the form:
21441 // shuffle (shuffle V, undef, splat-mask), undef, M
21442 // If splat-mask contains undef elements, we need to be careful about
21443 // introducing undef's in the folded mask which are not the result of composing
21444 // the masks of the shuffles.
21445 static SDValue
combineShuffleOfSplatVal(ShuffleVectorSDNode
*Shuf
,
21446 SelectionDAG
&DAG
) {
21447 if (!Shuf
->getOperand(1).isUndef())
21449 auto *Splat
= dyn_cast
<ShuffleVectorSDNode
>(Shuf
->getOperand(0));
21450 if (!Splat
|| !Splat
->isSplat())
21453 ArrayRef
<int> ShufMask
= Shuf
->getMask();
21454 ArrayRef
<int> SplatMask
= Splat
->getMask();
21455 assert(ShufMask
.size() == SplatMask
.size() && "Mask length mismatch");
21457 // Prefer simplifying to the splat-shuffle, if possible. This is legal if
21458 // every undef mask element in the splat-shuffle has a corresponding undef
21459 // element in the user-shuffle's mask or if the composition of mask elements
21460 // would result in undef.
21461 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
21462 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
21463 // In this case it is not legal to simplify to the splat-shuffle because we
21464 // may be exposing the users of the shuffle an undef element at index 1
21465 // which was not there before the combine.
21466 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
21467 // In this case the composition of masks yields SplatMask, so it's ok to
21468 // simplify to the splat-shuffle.
21469 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
21470 // In this case the composed mask includes all undef elements of SplatMask
21471 // and in addition sets element zero to undef. It is safe to simplify to
21472 // the splat-shuffle.
21473 auto CanSimplifyToExistingSplat
= [](ArrayRef
<int> UserMask
,
21474 ArrayRef
<int> SplatMask
) {
21475 for (unsigned i
= 0, e
= UserMask
.size(); i
!= e
; ++i
)
21476 if (UserMask
[i
] != -1 && SplatMask
[i
] == -1 &&
21477 SplatMask
[UserMask
[i
]] != -1)
21481 if (CanSimplifyToExistingSplat(ShufMask
, SplatMask
))
21482 return Shuf
->getOperand(0);
21484 // Create a new shuffle with a mask that is composed of the two shuffles'
21486 SmallVector
<int, 32> NewMask
;
21487 for (int Idx
: ShufMask
)
21488 NewMask
.push_back(Idx
== -1 ? -1 : SplatMask
[Idx
]);
21490 return DAG
.getVectorShuffle(Splat
->getValueType(0), SDLoc(Splat
),
21491 Splat
->getOperand(0), Splat
->getOperand(1),
21495 /// Combine shuffle of shuffle of the form:
21496 /// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X
21497 static SDValue
formSplatFromShuffles(ShuffleVectorSDNode
*OuterShuf
,
21498 SelectionDAG
&DAG
) {
21499 if (!OuterShuf
->getOperand(1).isUndef())
21501 auto *InnerShuf
= dyn_cast
<ShuffleVectorSDNode
>(OuterShuf
->getOperand(0));
21502 if (!InnerShuf
|| !InnerShuf
->getOperand(1).isUndef())
21505 ArrayRef
<int> OuterMask
= OuterShuf
->getMask();
21506 ArrayRef
<int> InnerMask
= InnerShuf
->getMask();
21507 unsigned NumElts
= OuterMask
.size();
21508 assert(NumElts
== InnerMask
.size() && "Mask length mismatch");
21509 SmallVector
<int, 32> CombinedMask(NumElts
, -1);
21510 int SplatIndex
= -1;
21511 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21512 // Undef lanes remain undef.
21513 int OuterMaskElt
= OuterMask
[i
];
21514 if (OuterMaskElt
== -1)
21517 // Peek through the shuffle masks to get the underlying source element.
21518 int InnerMaskElt
= InnerMask
[OuterMaskElt
];
21519 if (InnerMaskElt
== -1)
21522 // Initialize the splatted element.
21523 if (SplatIndex
== -1)
21524 SplatIndex
= InnerMaskElt
;
21526 // Non-matching index - this is not a splat.
21527 if (SplatIndex
!= InnerMaskElt
)
21530 CombinedMask
[i
] = InnerMaskElt
;
21532 assert((all_of(CombinedMask
, [](int M
) { return M
== -1; }) ||
21533 getSplatIndex(CombinedMask
) != -1) &&
21534 "Expected a splat mask");
21536 // TODO: The transform may be a win even if the mask is not legal.
21537 EVT VT
= OuterShuf
->getValueType(0);
21538 assert(VT
== InnerShuf
->getValueType(0) && "Expected matching shuffle types");
21539 if (!DAG
.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask
, VT
))
21542 return DAG
.getVectorShuffle(VT
, SDLoc(OuterShuf
), InnerShuf
->getOperand(0),
21543 InnerShuf
->getOperand(1), CombinedMask
);
21546 /// If the shuffle mask is taking exactly one element from the first vector
21547 /// operand and passing through all other elements from the second vector
21548 /// operand, return the index of the mask element that is choosing an element
21549 /// from the first operand. Otherwise, return -1.
21550 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef
<int> Mask
) {
21551 int MaskSize
= Mask
.size();
21552 int EltFromOp0
= -1;
21553 // TODO: This does not match if there are undef elements in the shuffle mask.
21554 // Should we ignore undefs in the shuffle mask instead? The trade-off is
21555 // removing an instruction (a shuffle), but losing the knowledge that some
21556 // vector lanes are not needed.
21557 for (int i
= 0; i
!= MaskSize
; ++i
) {
21558 if (Mask
[i
] >= 0 && Mask
[i
] < MaskSize
) {
21559 // We're looking for a shuffle of exactly one element from operand 0.
21560 if (EltFromOp0
!= -1)
21563 } else if (Mask
[i
] != i
+ MaskSize
) {
21564 // Nothing from operand 1 can change lanes.
21571 /// If a shuffle inserts exactly one element from a source vector operand into
21572 /// another vector operand and we can access the specified element as a scalar,
21573 /// then we can eliminate the shuffle.
21574 static SDValue
replaceShuffleOfInsert(ShuffleVectorSDNode
*Shuf
,
21575 SelectionDAG
&DAG
) {
21576 // First, check if we are taking one element of a vector and shuffling that
21577 // element into another vector.
21578 ArrayRef
<int> Mask
= Shuf
->getMask();
21579 SmallVector
<int, 16> CommutedMask(Mask
.begin(), Mask
.end());
21580 SDValue Op0
= Shuf
->getOperand(0);
21581 SDValue Op1
= Shuf
->getOperand(1);
21582 int ShufOp0Index
= getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask
);
21583 if (ShufOp0Index
== -1) {
21584 // Commute mask and check again.
21585 ShuffleVectorSDNode::commuteMask(CommutedMask
);
21586 ShufOp0Index
= getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask
);
21587 if (ShufOp0Index
== -1)
21589 // Commute operands to match the commuted shuffle mask.
21590 std::swap(Op0
, Op1
);
21591 Mask
= CommutedMask
;
21594 // The shuffle inserts exactly one element from operand 0 into operand 1.
21595 // Now see if we can access that element as a scalar via a real insert element
21597 // TODO: We can try harder to locate the element as a scalar. Examples: it
21598 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant.
21599 assert(Mask
[ShufOp0Index
] >= 0 && Mask
[ShufOp0Index
] < (int)Mask
.size() &&
21600 "Shuffle mask value must be from operand 0");
21601 if (Op0
.getOpcode() != ISD::INSERT_VECTOR_ELT
)
21604 auto *InsIndexC
= dyn_cast
<ConstantSDNode
>(Op0
.getOperand(2));
21605 if (!InsIndexC
|| InsIndexC
->getSExtValue() != Mask
[ShufOp0Index
])
21608 // There's an existing insertelement with constant insertion index, so we
21609 // don't need to check the legality/profitability of a replacement operation
21610 // that differs at most in the constant value. The target should be able to
21611 // lower any of those in a similar way. If not, legalization will expand this
21612 // to a scalar-to-vector plus shuffle.
21614 // Note that the shuffle may move the scalar from the position that the insert
21615 // element used. Therefore, our new insert element occurs at the shuffle's
21616 // mask index value, not the insert's index value.
21617 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
21618 SDValue NewInsIndex
= DAG
.getVectorIdxConstant(ShufOp0Index
, SDLoc(Shuf
));
21619 return DAG
.getNode(ISD::INSERT_VECTOR_ELT
, SDLoc(Shuf
), Op0
.getValueType(),
21620 Op1
, Op0
.getOperand(1), NewInsIndex
);
21623 /// If we have a unary shuffle of a shuffle, see if it can be folded away
21624 /// completely. This has the potential to lose undef knowledge because the first
21625 /// shuffle may not have an undef mask element where the second one does. So
21626 /// only call this after doing simplifications based on demanded elements.
21627 static SDValue
simplifyShuffleOfShuffle(ShuffleVectorSDNode
*Shuf
) {
21628 // shuf (shuf0 X, Y, Mask0), undef, Mask
21629 auto *Shuf0
= dyn_cast
<ShuffleVectorSDNode
>(Shuf
->getOperand(0));
21630 if (!Shuf0
|| !Shuf
->getOperand(1).isUndef())
21633 ArrayRef
<int> Mask
= Shuf
->getMask();
21634 ArrayRef
<int> Mask0
= Shuf0
->getMask();
21635 for (int i
= 0, e
= (int)Mask
.size(); i
!= e
; ++i
) {
21636 // Ignore undef elements.
21639 assert(Mask
[i
] >= 0 && Mask
[i
] < e
&& "Unexpected shuffle mask value");
21641 // Is the element of the shuffle operand chosen by this shuffle the same as
21642 // the element chosen by the shuffle operand itself?
21643 if (Mask0
[Mask
[i
]] != Mask0
[i
])
21646 // Every element of this shuffle is identical to the result of the previous
21647 // shuffle, so we can replace this value.
21648 return Shuf
->getOperand(0);
21651 SDValue
DAGCombiner::visitVECTOR_SHUFFLE(SDNode
*N
) {
21652 EVT VT
= N
->getValueType(0);
21653 unsigned NumElts
= VT
.getVectorNumElements();
21655 SDValue N0
= N
->getOperand(0);
21656 SDValue N1
= N
->getOperand(1);
21658 assert(N0
.getValueType() == VT
&& "Vector shuffle must be normalized in DAG");
21660 // Canonicalize shuffle undef, undef -> undef
21661 if (N0
.isUndef() && N1
.isUndef())
21662 return DAG
.getUNDEF(VT
);
21664 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
21666 // Canonicalize shuffle v, v -> v, undef
21668 return DAG
.getVectorShuffle(VT
, SDLoc(N
), N0
, DAG
.getUNDEF(VT
),
21669 createUnaryMask(SVN
->getMask(), NumElts
));
21671 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
21673 return DAG
.getCommutedVectorShuffle(*SVN
);
21675 // Remove references to rhs if it is undef
21676 if (N1
.isUndef()) {
21677 bool Changed
= false;
21678 SmallVector
<int, 8> NewMask
;
21679 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21680 int Idx
= SVN
->getMaskElt(i
);
21681 if (Idx
>= (int)NumElts
) {
21685 NewMask
.push_back(Idx
);
21688 return DAG
.getVectorShuffle(VT
, SDLoc(N
), N0
, N1
, NewMask
);
21691 if (SDValue InsElt
= replaceShuffleOfInsert(SVN
, DAG
))
21694 // A shuffle of a single vector that is a splatted value can always be folded.
21695 if (SDValue V
= combineShuffleOfSplatVal(SVN
, DAG
))
21698 if (SDValue V
= formSplatFromShuffles(SVN
, DAG
))
21701 // If it is a splat, check if the argument vector is another splat or a
21703 if (SVN
->isSplat() && SVN
->getSplatIndex() < (int)NumElts
) {
21704 int SplatIndex
= SVN
->getSplatIndex();
21705 if (N0
.hasOneUse() && TLI
.isExtractVecEltCheap(VT
, SplatIndex
) &&
21706 TLI
.isBinOp(N0
.getOpcode()) && N0
.getNode()->getNumValues() == 1) {
21707 // splat (vector_bo L, R), Index -->
21708 // splat (scalar_bo (extelt L, Index), (extelt R, Index))
21709 SDValue L
= N0
.getOperand(0), R
= N0
.getOperand(1);
21711 EVT EltVT
= VT
.getScalarType();
21712 SDValue Index
= DAG
.getVectorIdxConstant(SplatIndex
, DL
);
21713 SDValue ExtL
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, L
, Index
);
21714 SDValue ExtR
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, R
, Index
);
21715 SDValue NewBO
= DAG
.getNode(N0
.getOpcode(), DL
, EltVT
, ExtL
, ExtR
,
21716 N0
.getNode()->getFlags());
21717 SDValue Insert
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, DL
, VT
, NewBO
);
21718 SmallVector
<int, 16> ZeroMask(VT
.getVectorNumElements(), 0);
21719 return DAG
.getVectorShuffle(VT
, DL
, Insert
, DAG
.getUNDEF(VT
), ZeroMask
);
21722 // If this is a bit convert that changes the element type of the vector but
21723 // not the number of vector elements, look through it. Be careful not to
21724 // look though conversions that change things like v4f32 to v2f64.
21725 SDNode
*V
= N0
.getNode();
21726 if (V
->getOpcode() == ISD::BITCAST
) {
21727 SDValue ConvInput
= V
->getOperand(0);
21728 if (ConvInput
.getValueType().isVector() &&
21729 ConvInput
.getValueType().getVectorNumElements() == NumElts
)
21730 V
= ConvInput
.getNode();
21733 if (V
->getOpcode() == ISD::BUILD_VECTOR
) {
21734 assert(V
->getNumOperands() == NumElts
&&
21735 "BUILD_VECTOR has wrong number of operands");
21737 bool AllSame
= true;
21738 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21739 if (!V
->getOperand(i
).isUndef()) {
21740 Base
= V
->getOperand(i
);
21744 // Splat of <u, u, u, u>, return <u, u, u, u>
21745 if (!Base
.getNode())
21747 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21748 if (V
->getOperand(i
) != Base
) {
21753 // Splat of <x, x, x, x>, return <x, x, x, x>
21757 // Canonicalize any other splat as a build_vector.
21758 SDValue Splatted
= V
->getOperand(SplatIndex
);
21759 SmallVector
<SDValue
, 8> Ops(NumElts
, Splatted
);
21760 SDValue NewBV
= DAG
.getBuildVector(V
->getValueType(0), SDLoc(N
), Ops
);
21762 // We may have jumped through bitcasts, so the type of the
21763 // BUILD_VECTOR may not match the type of the shuffle.
21764 if (V
->getValueType(0) != VT
)
21765 NewBV
= DAG
.getBitcast(VT
, NewBV
);
21770 // Simplify source operands based on shuffle mask.
21771 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
21772 return SDValue(N
, 0);
21774 // This is intentionally placed after demanded elements simplification because
21775 // it could eliminate knowledge of undef elements created by this shuffle.
21776 if (SDValue ShufOp
= simplifyShuffleOfShuffle(SVN
))
21779 // Match shuffles that can be converted to any_vector_extend_in_reg.
21780 if (SDValue V
= combineShuffleToVectorExtend(SVN
, DAG
, TLI
, LegalOperations
))
21783 // Combine "truncate_vector_in_reg" style shuffles.
21784 if (SDValue V
= combineTruncationShuffle(SVN
, DAG
))
21787 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&&
21788 Level
< AfterLegalizeVectorOps
&&
21790 (N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
21791 N0
.getOperand(0).getValueType() == N1
.getOperand(0).getValueType()))) {
21792 if (SDValue V
= partitionShuffleOfConcats(N
, DAG
))
21796 // A shuffle of a concat of the same narrow vector can be reduced to use
21797 // only low-half elements of a concat with undef:
21798 // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask'
21799 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&& N1
.isUndef() &&
21800 N0
.getNumOperands() == 2 &&
21801 N0
.getOperand(0) == N0
.getOperand(1)) {
21802 int HalfNumElts
= (int)NumElts
/ 2;
21803 SmallVector
<int, 8> NewMask
;
21804 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21805 int Idx
= SVN
->getMaskElt(i
);
21806 if (Idx
>= HalfNumElts
) {
21807 assert(Idx
< (int)NumElts
&& "Shuffle mask chooses undef op");
21808 Idx
-= HalfNumElts
;
21810 NewMask
.push_back(Idx
);
21812 if (TLI
.isShuffleMaskLegal(NewMask
, VT
)) {
21813 SDValue UndefVec
= DAG
.getUNDEF(N0
.getOperand(0).getValueType());
21814 SDValue NewCat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
,
21815 N0
.getOperand(0), UndefVec
);
21816 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewCat
, N1
, NewMask
);
21820 // See if we can replace a shuffle with an insert_subvector.
21821 // e.g. v2i32 into v8i32:
21822 // shuffle(lhs,concat(rhs0,rhs1,rhs2,rhs3),0,1,2,3,10,11,6,7).
21823 // --> insert_subvector(lhs,rhs1,4).
21824 if (Level
< AfterLegalizeVectorOps
&& TLI
.isTypeLegal(VT
) &&
21825 TLI
.isOperationLegalOrCustom(ISD::INSERT_SUBVECTOR
, VT
)) {
21826 auto ShuffleToInsert
= [&](SDValue LHS
, SDValue RHS
, ArrayRef
<int> Mask
) {
21827 // Ensure RHS subvectors are legal.
21828 assert(RHS
.getOpcode() == ISD::CONCAT_VECTORS
&& "Can't find subvectors");
21829 EVT SubVT
= RHS
.getOperand(0).getValueType();
21830 int NumSubVecs
= RHS
.getNumOperands();
21831 int NumSubElts
= SubVT
.getVectorNumElements();
21832 assert((NumElts
% NumSubElts
) == 0 && "Subvector mismatch");
21833 if (!TLI
.isTypeLegal(SubVT
))
21836 // Don't bother if we have an unary shuffle (matches undef + LHS elts).
21837 if (all_of(Mask
, [NumElts
](int M
) { return M
< (int)NumElts
; }))
21840 // Search [NumSubElts] spans for RHS sequence.
21841 // TODO: Can we avoid nested loops to increase performance?
21842 SmallVector
<int> InsertionMask(NumElts
);
21843 for (int SubVec
= 0; SubVec
!= NumSubVecs
; ++SubVec
) {
21844 for (int SubIdx
= 0; SubIdx
!= (int)NumElts
; SubIdx
+= NumSubElts
) {
21845 // Reset mask to identity.
21846 std::iota(InsertionMask
.begin(), InsertionMask
.end(), 0);
21848 // Add subvector insertion.
21849 std::iota(InsertionMask
.begin() + SubIdx
,
21850 InsertionMask
.begin() + SubIdx
+ NumSubElts
,
21851 NumElts
+ (SubVec
* NumSubElts
));
21853 // See if the shuffle mask matches the reference insertion mask.
21854 bool MatchingShuffle
= true;
21855 for (int i
= 0; i
!= (int)NumElts
; ++i
) {
21856 int ExpectIdx
= InsertionMask
[i
];
21857 int ActualIdx
= Mask
[i
];
21858 if (0 <= ActualIdx
&& ExpectIdx
!= ActualIdx
) {
21859 MatchingShuffle
= false;
21864 if (MatchingShuffle
)
21865 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
, LHS
,
21866 RHS
.getOperand(SubVec
),
21867 DAG
.getVectorIdxConstant(SubIdx
, SDLoc(N
)));
21872 ArrayRef
<int> Mask
= SVN
->getMask();
21873 if (N1
.getOpcode() == ISD::CONCAT_VECTORS
)
21874 if (SDValue InsertN1
= ShuffleToInsert(N0
, N1
, Mask
))
21876 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
) {
21877 SmallVector
<int> CommuteMask(Mask
.begin(), Mask
.end());
21878 ShuffleVectorSDNode::commuteMask(CommuteMask
);
21879 if (SDValue InsertN0
= ShuffleToInsert(N1
, N0
, CommuteMask
))
21884 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
21885 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
21886 if (Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
))
21887 if (SDValue Res
= combineShuffleOfScalars(SVN
, DAG
, TLI
))
21890 // If this shuffle only has a single input that is a bitcasted shuffle,
21891 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
21892 // back to their original types.
21893 if (N0
.getOpcode() == ISD::BITCAST
&& N0
.hasOneUse() &&
21894 N1
.isUndef() && Level
< AfterLegalizeVectorOps
&&
21895 TLI
.isTypeLegal(VT
)) {
21897 SDValue BC0
= peekThroughOneUseBitcasts(N0
);
21898 if (BC0
.getOpcode() == ISD::VECTOR_SHUFFLE
&& BC0
.hasOneUse()) {
21899 EVT SVT
= VT
.getScalarType();
21900 EVT InnerVT
= BC0
->getValueType(0);
21901 EVT InnerSVT
= InnerVT
.getScalarType();
21903 // Determine which shuffle works with the smaller scalar type.
21904 EVT ScaleVT
= SVT
.bitsLT(InnerSVT
) ? VT
: InnerVT
;
21905 EVT ScaleSVT
= ScaleVT
.getScalarType();
21907 if (TLI
.isTypeLegal(ScaleVT
) &&
21908 0 == (InnerSVT
.getSizeInBits() % ScaleSVT
.getSizeInBits()) &&
21909 0 == (SVT
.getSizeInBits() % ScaleSVT
.getSizeInBits())) {
21910 int InnerScale
= InnerSVT
.getSizeInBits() / ScaleSVT
.getSizeInBits();
21911 int OuterScale
= SVT
.getSizeInBits() / ScaleSVT
.getSizeInBits();
21913 // Scale the shuffle masks to the smaller scalar type.
21914 ShuffleVectorSDNode
*InnerSVN
= cast
<ShuffleVectorSDNode
>(BC0
);
21915 SmallVector
<int, 8> InnerMask
;
21916 SmallVector
<int, 8> OuterMask
;
21917 narrowShuffleMaskElts(InnerScale
, InnerSVN
->getMask(), InnerMask
);
21918 narrowShuffleMaskElts(OuterScale
, SVN
->getMask(), OuterMask
);
21920 // Merge the shuffle masks.
21921 SmallVector
<int, 8> NewMask
;
21922 for (int M
: OuterMask
)
21923 NewMask
.push_back(M
< 0 ? -1 : InnerMask
[M
]);
21925 // Test for shuffle mask legality over both commutations.
21926 SDValue SV0
= BC0
->getOperand(0);
21927 SDValue SV1
= BC0
->getOperand(1);
21928 bool LegalMask
= TLI
.isShuffleMaskLegal(NewMask
, ScaleVT
);
21930 std::swap(SV0
, SV1
);
21931 ShuffleVectorSDNode::commuteMask(NewMask
);
21932 LegalMask
= TLI
.isShuffleMaskLegal(NewMask
, ScaleVT
);
21936 SV0
= DAG
.getBitcast(ScaleVT
, SV0
);
21937 SV1
= DAG
.getBitcast(ScaleVT
, SV1
);
21938 return DAG
.getBitcast(
21939 VT
, DAG
.getVectorShuffle(ScaleVT
, SDLoc(N
), SV0
, SV1
, NewMask
));
21945 // Compute the combined shuffle mask for a shuffle with SV0 as the first
21946 // operand, and SV1 as the second operand.
21947 // i.e. Merge SVN(OtherSVN, N1) -> shuffle(SV0, SV1, Mask) iff Commute = false
21948 // Merge SVN(N1, OtherSVN) -> shuffle(SV0, SV1, Mask') iff Commute = true
21949 auto MergeInnerShuffle
=
21950 [NumElts
, &VT
](bool Commute
, ShuffleVectorSDNode
*SVN
,
21951 ShuffleVectorSDNode
*OtherSVN
, SDValue N1
,
21952 const TargetLowering
&TLI
, SDValue
&SV0
, SDValue
&SV1
,
21953 SmallVectorImpl
<int> &Mask
) -> bool {
21954 // Don't try to fold splats; they're likely to simplify somehow, or they
21956 if (OtherSVN
->isSplat())
21959 SV0
= SV1
= SDValue();
21962 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21963 int Idx
= SVN
->getMaskElt(i
);
21965 // Propagate Undef.
21966 Mask
.push_back(Idx
);
21971 Idx
= (Idx
< (int)NumElts
) ? (Idx
+ NumElts
) : (Idx
- NumElts
);
21973 SDValue CurrentVec
;
21974 if (Idx
< (int)NumElts
) {
21975 // This shuffle index refers to the inner shuffle N0. Lookup the inner
21976 // shuffle mask to identify which vector is actually referenced.
21977 Idx
= OtherSVN
->getMaskElt(Idx
);
21979 // Propagate Undef.
21980 Mask
.push_back(Idx
);
21983 CurrentVec
= (Idx
< (int)NumElts
) ? OtherSVN
->getOperand(0)
21984 : OtherSVN
->getOperand(1);
21986 // This shuffle index references an element within N1.
21990 // Simple case where 'CurrentVec' is UNDEF.
21991 if (CurrentVec
.isUndef()) {
21992 Mask
.push_back(-1);
21996 // Canonicalize the shuffle index. We don't know yet if CurrentVec
21997 // will be the first or second operand of the combined shuffle.
21998 Idx
= Idx
% NumElts
;
21999 if (!SV0
.getNode() || SV0
== CurrentVec
) {
22000 // Ok. CurrentVec is the left hand side.
22001 // Update the mask accordingly.
22003 Mask
.push_back(Idx
);
22006 if (!SV1
.getNode() || SV1
== CurrentVec
) {
22007 // Ok. CurrentVec is the right hand side.
22008 // Update the mask accordingly.
22010 Mask
.push_back(Idx
+ NumElts
);
22014 // Last chance - see if the vector is another shuffle and if it
22015 // uses one of the existing candidate shuffle ops.
22016 if (auto *CurrentSVN
= dyn_cast
<ShuffleVectorSDNode
>(CurrentVec
)) {
22017 int InnerIdx
= CurrentSVN
->getMaskElt(Idx
);
22018 if (InnerIdx
< 0) {
22019 Mask
.push_back(-1);
22022 SDValue InnerVec
= (InnerIdx
< (int)NumElts
)
22023 ? CurrentSVN
->getOperand(0)
22024 : CurrentSVN
->getOperand(1);
22025 if (InnerVec
.isUndef()) {
22026 Mask
.push_back(-1);
22029 InnerIdx
%= NumElts
;
22030 if (InnerVec
== SV0
) {
22031 Mask
.push_back(InnerIdx
);
22034 if (InnerVec
== SV1
) {
22035 Mask
.push_back(InnerIdx
+ NumElts
);
22040 // Bail out if we cannot convert the shuffle pair into a single shuffle.
22044 if (llvm::all_of(Mask
, [](int M
) { return M
< 0; }))
22047 // Avoid introducing shuffles with illegal mask.
22048 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
22049 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
22050 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
22051 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
22052 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
22053 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
22054 if (TLI
.isShuffleMaskLegal(Mask
, VT
))
22057 std::swap(SV0
, SV1
);
22058 ShuffleVectorSDNode::commuteMask(Mask
);
22059 return TLI
.isShuffleMaskLegal(Mask
, VT
);
22062 if (Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
)) {
22063 // Canonicalize shuffles according to rules:
22064 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
22065 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
22066 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
22067 if (N1
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
22068 N0
.getOpcode() != ISD::VECTOR_SHUFFLE
) {
22069 // The incoming shuffle must be of the same type as the result of the
22070 // current shuffle.
22071 assert(N1
->getOperand(0).getValueType() == VT
&&
22072 "Shuffle types don't match");
22074 SDValue SV0
= N1
->getOperand(0);
22075 SDValue SV1
= N1
->getOperand(1);
22076 bool HasSameOp0
= N0
== SV0
;
22077 bool IsSV1Undef
= SV1
.isUndef();
22078 if (HasSameOp0
|| IsSV1Undef
|| N0
== SV1
)
22079 // Commute the operands of this shuffle so merging below will trigger.
22080 return DAG
.getCommutedVectorShuffle(*SVN
);
22083 // Canonicalize splat shuffles to the RHS to improve merging below.
22084 // shuffle(splat(A,u), shuffle(C,D)) -> shuffle'(shuffle(C,D), splat(A,u))
22085 if (N0
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
22086 N1
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
22087 cast
<ShuffleVectorSDNode
>(N0
)->isSplat() &&
22088 !cast
<ShuffleVectorSDNode
>(N1
)->isSplat()) {
22089 return DAG
.getCommutedVectorShuffle(*SVN
);
22092 // Try to fold according to rules:
22093 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
22094 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
22095 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
22096 // Don't try to fold shuffles with illegal type.
22097 // Only fold if this shuffle is the only user of the other shuffle.
22098 // Try matching shuffle(C,shuffle(A,B)) commutted patterns as well.
22099 for (int i
= 0; i
!= 2; ++i
) {
22100 if (N
->getOperand(i
).getOpcode() == ISD::VECTOR_SHUFFLE
&&
22101 N
->isOnlyUserOf(N
->getOperand(i
).getNode())) {
22102 // The incoming shuffle must be of the same type as the result of the
22103 // current shuffle.
22104 auto *OtherSV
= cast
<ShuffleVectorSDNode
>(N
->getOperand(i
));
22105 assert(OtherSV
->getOperand(0).getValueType() == VT
&&
22106 "Shuffle types don't match");
22109 SmallVector
<int, 4> Mask
;
22110 if (MergeInnerShuffle(i
!= 0, SVN
, OtherSV
, N
->getOperand(1 - i
), TLI
,
22112 // Check if all indices in Mask are Undef. In case, propagate Undef.
22113 if (llvm::all_of(Mask
, [](int M
) { return M
< 0; }))
22114 return DAG
.getUNDEF(VT
);
22116 return DAG
.getVectorShuffle(VT
, SDLoc(N
),
22117 SV0
? SV0
: DAG
.getUNDEF(VT
),
22118 SV1
? SV1
: DAG
.getUNDEF(VT
), Mask
);
22123 // Merge shuffles through binops if we are able to merge it with at least
22124 // one other shuffles.
22125 // shuffle(bop(shuffle(x,y),shuffle(z,w)),undef)
22126 // shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d)))
22127 unsigned SrcOpcode
= N0
.getOpcode();
22128 if (TLI
.isBinOp(SrcOpcode
) && N
->isOnlyUserOf(N0
.getNode()) &&
22130 (SrcOpcode
== N1
.getOpcode() && N
->isOnlyUserOf(N1
.getNode())))) {
22131 // Get binop source ops, or just pass on the undef.
22132 SDValue Op00
= N0
.getOperand(0);
22133 SDValue Op01
= N0
.getOperand(1);
22134 SDValue Op10
= N1
.isUndef() ? N1
: N1
.getOperand(0);
22135 SDValue Op11
= N1
.isUndef() ? N1
: N1
.getOperand(1);
22136 // TODO: We might be able to relax the VT check but we don't currently
22137 // have any isBinOp() that has different result/ops VTs so play safe until
22138 // we have test coverage.
22139 if (Op00
.getValueType() == VT
&& Op10
.getValueType() == VT
&&
22140 Op01
.getValueType() == VT
&& Op11
.getValueType() == VT
&&
22141 (Op00
.getOpcode() == ISD::VECTOR_SHUFFLE
||
22142 Op10
.getOpcode() == ISD::VECTOR_SHUFFLE
||
22143 Op01
.getOpcode() == ISD::VECTOR_SHUFFLE
||
22144 Op11
.getOpcode() == ISD::VECTOR_SHUFFLE
)) {
22145 auto CanMergeInnerShuffle
= [&](SDValue
&SV0
, SDValue
&SV1
,
22146 SmallVectorImpl
<int> &Mask
, bool LeftOp
,
22148 SDValue InnerN
= Commute
? N1
: N0
;
22149 SDValue Op0
= LeftOp
? Op00
: Op01
;
22150 SDValue Op1
= LeftOp
? Op10
: Op11
;
22152 std::swap(Op0
, Op1
);
22153 // Only accept the merged shuffle if we don't introduce undef elements,
22154 // or the inner shuffle already contained undef elements.
22155 auto *SVN0
= dyn_cast
<ShuffleVectorSDNode
>(Op0
);
22156 return SVN0
&& InnerN
->isOnlyUserOf(SVN0
) &&
22157 MergeInnerShuffle(Commute
, SVN
, SVN0
, Op1
, TLI
, SV0
, SV1
,
22159 (llvm::any_of(SVN0
->getMask(), [](int M
) { return M
< 0; }) ||
22160 llvm::none_of(Mask
, [](int M
) { return M
< 0; }));
22163 // Ensure we don't increase the number of shuffles - we must merge a
22164 // shuffle from at least one of the LHS and RHS ops.
22165 bool MergedLeft
= false;
22166 SDValue LeftSV0
, LeftSV1
;
22167 SmallVector
<int, 4> LeftMask
;
22168 if (CanMergeInnerShuffle(LeftSV0
, LeftSV1
, LeftMask
, true, false) ||
22169 CanMergeInnerShuffle(LeftSV0
, LeftSV1
, LeftMask
, true, true)) {
22172 LeftMask
.assign(SVN
->getMask().begin(), SVN
->getMask().end());
22173 LeftSV0
= Op00
, LeftSV1
= Op10
;
22176 bool MergedRight
= false;
22177 SDValue RightSV0
, RightSV1
;
22178 SmallVector
<int, 4> RightMask
;
22179 if (CanMergeInnerShuffle(RightSV0
, RightSV1
, RightMask
, false, false) ||
22180 CanMergeInnerShuffle(RightSV0
, RightSV1
, RightMask
, false, true)) {
22181 MergedRight
= true;
22183 RightMask
.assign(SVN
->getMask().begin(), SVN
->getMask().end());
22184 RightSV0
= Op01
, RightSV1
= Op11
;
22187 if (MergedLeft
|| MergedRight
) {
22189 SDValue LHS
= DAG
.getVectorShuffle(
22190 VT
, DL
, LeftSV0
? LeftSV0
: DAG
.getUNDEF(VT
),
22191 LeftSV1
? LeftSV1
: DAG
.getUNDEF(VT
), LeftMask
);
22192 SDValue RHS
= DAG
.getVectorShuffle(
22193 VT
, DL
, RightSV0
? RightSV0
: DAG
.getUNDEF(VT
),
22194 RightSV1
? RightSV1
: DAG
.getUNDEF(VT
), RightMask
);
22195 return DAG
.getNode(SrcOpcode
, DL
, VT
, LHS
, RHS
);
22201 if (SDValue V
= foldShuffleOfConcatUndefs(SVN
, DAG
))
22207 SDValue
DAGCombiner::visitSCALAR_TO_VECTOR(SDNode
*N
) {
22208 SDValue InVal
= N
->getOperand(0);
22209 EVT VT
= N
->getValueType(0);
22211 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
22212 // with a VECTOR_SHUFFLE and possible truncate.
22213 if (InVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
22214 VT
.isFixedLengthVector() &&
22215 InVal
->getOperand(0).getValueType().isFixedLengthVector()) {
22216 SDValue InVec
= InVal
->getOperand(0);
22217 SDValue EltNo
= InVal
->getOperand(1);
22218 auto InVecT
= InVec
.getValueType();
22219 if (ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(EltNo
)) {
22220 SmallVector
<int, 8> NewMask(InVecT
.getVectorNumElements(), -1);
22221 int Elt
= C0
->getZExtValue();
22223 // If we have an implict truncate do truncate here as long as it's legal.
22224 // if it's not legal, this should
22225 if (VT
.getScalarType() != InVal
.getValueType() &&
22226 InVal
.getValueType().isScalarInteger() &&
22227 isTypeLegal(VT
.getScalarType())) {
22229 DAG
.getNode(ISD::TRUNCATE
, SDLoc(InVal
), VT
.getScalarType(), InVal
);
22230 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, SDLoc(N
), VT
, Val
);
22232 if (VT
.getScalarType() == InVecT
.getScalarType() &&
22233 VT
.getVectorNumElements() <= InVecT
.getVectorNumElements()) {
22234 SDValue LegalShuffle
=
22235 TLI
.buildLegalVectorShuffle(InVecT
, SDLoc(N
), InVec
,
22236 DAG
.getUNDEF(InVecT
), NewMask
, DAG
);
22237 if (LegalShuffle
) {
22238 // If the initial vector is the correct size this shuffle is a
22241 return LegalShuffle
;
22242 // If not we must truncate the vector.
22243 if (VT
.getVectorNumElements() != InVecT
.getVectorNumElements()) {
22244 SDValue ZeroIdx
= DAG
.getVectorIdxConstant(0, SDLoc(N
));
22245 EVT SubVT
= EVT::getVectorVT(*DAG
.getContext(),
22246 InVecT
.getVectorElementType(),
22247 VT
.getVectorNumElements());
22248 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), SubVT
,
22249 LegalShuffle
, ZeroIdx
);
22259 SDValue
DAGCombiner::visitINSERT_SUBVECTOR(SDNode
*N
) {
22260 EVT VT
= N
->getValueType(0);
22261 SDValue N0
= N
->getOperand(0);
22262 SDValue N1
= N
->getOperand(1);
22263 SDValue N2
= N
->getOperand(2);
22264 uint64_t InsIdx
= N
->getConstantOperandVal(2);
22266 // If inserting an UNDEF, just return the original vector.
22270 // If this is an insert of an extracted vector into an undef vector, we can
22271 // just use the input to the extract.
22272 if (N0
.isUndef() && N1
.getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
22273 N1
.getOperand(1) == N2
&& N1
.getOperand(0).getValueType() == VT
)
22274 return N1
.getOperand(0);
22276 // If we are inserting a bitcast value into an undef, with the same
22277 // number of elements, just use the bitcast input of the extract.
22278 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
22279 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
22280 if (N0
.isUndef() && N1
.getOpcode() == ISD::BITCAST
&&
22281 N1
.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
22282 N1
.getOperand(0).getOperand(1) == N2
&&
22283 N1
.getOperand(0).getOperand(0).getValueType().getVectorElementCount() ==
22284 VT
.getVectorElementCount() &&
22285 N1
.getOperand(0).getOperand(0).getValueType().getSizeInBits() ==
22286 VT
.getSizeInBits()) {
22287 return DAG
.getBitcast(VT
, N1
.getOperand(0).getOperand(0));
22290 // If both N1 and N2 are bitcast values on which insert_subvector
22291 // would makes sense, pull the bitcast through.
22292 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
22293 // BITCAST (INSERT_SUBVECTOR N0 N1 N2)
22294 if (N0
.getOpcode() == ISD::BITCAST
&& N1
.getOpcode() == ISD::BITCAST
) {
22295 SDValue CN0
= N0
.getOperand(0);
22296 SDValue CN1
= N1
.getOperand(0);
22297 EVT CN0VT
= CN0
.getValueType();
22298 EVT CN1VT
= CN1
.getValueType();
22299 if (CN0VT
.isVector() && CN1VT
.isVector() &&
22300 CN0VT
.getVectorElementType() == CN1VT
.getVectorElementType() &&
22301 CN0VT
.getVectorElementCount() == VT
.getVectorElementCount()) {
22302 SDValue NewINSERT
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
),
22303 CN0
.getValueType(), CN0
, CN1
, N2
);
22304 return DAG
.getBitcast(VT
, NewINSERT
);
22308 // Combine INSERT_SUBVECTORs where we are inserting to the same index.
22309 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
22310 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
22311 if (N0
.getOpcode() == ISD::INSERT_SUBVECTOR
&&
22312 N0
.getOperand(1).getValueType() == N1
.getValueType() &&
22313 N0
.getOperand(2) == N2
)
22314 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
, N0
.getOperand(0),
22317 // Eliminate an intermediate insert into an undef vector:
22318 // insert_subvector undef, (insert_subvector undef, X, 0), N2 -->
22319 // insert_subvector undef, X, N2
22320 if (N0
.isUndef() && N1
.getOpcode() == ISD::INSERT_SUBVECTOR
&&
22321 N1
.getOperand(0).isUndef() && isNullConstant(N1
.getOperand(2)))
22322 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
, N0
,
22323 N1
.getOperand(1), N2
);
22325 // Push subvector bitcasts to the output, adjusting the index as we go.
22326 // insert_subvector(bitcast(v), bitcast(s), c1)
22327 // -> bitcast(insert_subvector(v, s, c2))
22328 if ((N0
.isUndef() || N0
.getOpcode() == ISD::BITCAST
) &&
22329 N1
.getOpcode() == ISD::BITCAST
) {
22330 SDValue N0Src
= peekThroughBitcasts(N0
);
22331 SDValue N1Src
= peekThroughBitcasts(N1
);
22332 EVT N0SrcSVT
= N0Src
.getValueType().getScalarType();
22333 EVT N1SrcSVT
= N1Src
.getValueType().getScalarType();
22334 if ((N0
.isUndef() || N0SrcSVT
== N1SrcSVT
) &&
22335 N0Src
.getValueType().isVector() && N1Src
.getValueType().isVector()) {
22339 LLVMContext
&Ctx
= *DAG
.getContext();
22340 ElementCount NumElts
= VT
.getVectorElementCount();
22341 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
22342 if ((EltSizeInBits
% N1SrcSVT
.getSizeInBits()) == 0) {
22343 unsigned Scale
= EltSizeInBits
/ N1SrcSVT
.getSizeInBits();
22344 NewVT
= EVT::getVectorVT(Ctx
, N1SrcSVT
, NumElts
* Scale
);
22345 NewIdx
= DAG
.getVectorIdxConstant(InsIdx
* Scale
, DL
);
22346 } else if ((N1SrcSVT
.getSizeInBits() % EltSizeInBits
) == 0) {
22347 unsigned Scale
= N1SrcSVT
.getSizeInBits() / EltSizeInBits
;
22348 if (NumElts
.isKnownMultipleOf(Scale
) && (InsIdx
% Scale
) == 0) {
22349 NewVT
= EVT::getVectorVT(Ctx
, N1SrcSVT
,
22350 NumElts
.divideCoefficientBy(Scale
));
22351 NewIdx
= DAG
.getVectorIdxConstant(InsIdx
/ Scale
, DL
);
22354 if (NewIdx
&& hasOperation(ISD::INSERT_SUBVECTOR
, NewVT
)) {
22355 SDValue Res
= DAG
.getBitcast(NewVT
, N0Src
);
22356 Res
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, NewVT
, Res
, N1Src
, NewIdx
);
22357 return DAG
.getBitcast(VT
, Res
);
22362 // Canonicalize insert_subvector dag nodes.
22364 // (insert_subvector (insert_subvector A, Idx0), Idx1)
22365 // -> (insert_subvector (insert_subvector A, Idx1), Idx0)
22366 if (N0
.getOpcode() == ISD::INSERT_SUBVECTOR
&& N0
.hasOneUse() &&
22367 N1
.getValueType() == N0
.getOperand(1).getValueType()) {
22368 unsigned OtherIdx
= N0
.getConstantOperandVal(2);
22369 if (InsIdx
< OtherIdx
) {
22371 SDValue NewOp
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
,
22372 N0
.getOperand(0), N1
, N2
);
22373 AddToWorklist(NewOp
.getNode());
22374 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N0
.getNode()),
22375 VT
, NewOp
, N0
.getOperand(1), N0
.getOperand(2));
22379 // If the input vector is a concatenation, and the insert replaces
22380 // one of the pieces, we can optimize into a single concat_vectors.
22381 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&& N0
.hasOneUse() &&
22382 N0
.getOperand(0).getValueType() == N1
.getValueType() &&
22383 N0
.getOperand(0).getValueType().isScalableVector() ==
22384 N1
.getValueType().isScalableVector()) {
22385 unsigned Factor
= N1
.getValueType().getVectorMinNumElements();
22386 SmallVector
<SDValue
, 8> Ops(N0
->op_begin(), N0
->op_end());
22387 Ops
[InsIdx
/ Factor
] = N1
;
22388 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
22391 // Simplify source operands based on insertion.
22392 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
22393 return SDValue(N
, 0);
22398 SDValue
DAGCombiner::visitFP_TO_FP16(SDNode
*N
) {
22399 SDValue N0
= N
->getOperand(0);
22401 // fold (fp_to_fp16 (fp16_to_fp op)) -> op
22402 if (N0
->getOpcode() == ISD::FP16_TO_FP
)
22403 return N0
->getOperand(0);
22408 SDValue
DAGCombiner::visitFP16_TO_FP(SDNode
*N
) {
22409 SDValue N0
= N
->getOperand(0);
22411 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
22412 if (!TLI
.shouldKeepZExtForFP16Conv() && N0
->getOpcode() == ISD::AND
) {
22413 ConstantSDNode
*AndConst
= getAsNonOpaqueConstant(N0
.getOperand(1));
22414 if (AndConst
&& AndConst
->getAPIntValue() == 0xffff) {
22415 return DAG
.getNode(ISD::FP16_TO_FP
, SDLoc(N
), N
->getValueType(0),
22423 SDValue
DAGCombiner::visitVECREDUCE(SDNode
*N
) {
22424 SDValue N0
= N
->getOperand(0);
22425 EVT VT
= N0
.getValueType();
22426 unsigned Opcode
= N
->getOpcode();
22428 // VECREDUCE over 1-element vector is just an extract.
22429 if (VT
.getVectorElementCount().isScalar()) {
22432 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, VT
.getVectorElementType(), N0
,
22433 DAG
.getVectorIdxConstant(0, dl
));
22434 if (Res
.getValueType() != N
->getValueType(0))
22435 Res
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, N
->getValueType(0), Res
);
22439 // On an boolean vector an and/or reduction is the same as a umin/umax
22440 // reduction. Convert them if the latter is legal while the former isn't.
22441 if (Opcode
== ISD::VECREDUCE_AND
|| Opcode
== ISD::VECREDUCE_OR
) {
22442 unsigned NewOpcode
= Opcode
== ISD::VECREDUCE_AND
22443 ? ISD::VECREDUCE_UMIN
: ISD::VECREDUCE_UMAX
;
22444 if (!TLI
.isOperationLegalOrCustom(Opcode
, VT
) &&
22445 TLI
.isOperationLegalOrCustom(NewOpcode
, VT
) &&
22446 DAG
.ComputeNumSignBits(N0
) == VT
.getScalarSizeInBits())
22447 return DAG
.getNode(NewOpcode
, SDLoc(N
), N
->getValueType(0), N0
);
22453 SDValue
DAGCombiner::visitVPOp(SDNode
*N
) {
22454 // VP operations in which all vector elements are disabled - either by
22455 // determining that the mask is all false or that the EVL is 0 - can be
22457 bool AreAllEltsDisabled
= false;
22458 if (auto EVLIdx
= ISD::getVPExplicitVectorLengthIdx(N
->getOpcode()))
22459 AreAllEltsDisabled
|= isNullConstant(N
->getOperand(*EVLIdx
));
22460 if (auto MaskIdx
= ISD::getVPMaskIdx(N
->getOpcode()))
22461 AreAllEltsDisabled
|=
22462 ISD::isConstantSplatVectorAllZeros(N
->getOperand(*MaskIdx
).getNode());
22464 // This is the only generic VP combine we support for now.
22465 if (!AreAllEltsDisabled
)
22468 // Binary operations can be replaced by UNDEF.
22469 if (ISD::isVPBinaryOp(N
->getOpcode()))
22470 return DAG
.getUNDEF(N
->getValueType(0));
22472 // VP Memory operations can be replaced by either the chain (stores) or the
22473 // chain + undef (loads).
22474 if (const auto *MemSD
= dyn_cast
<MemSDNode
>(N
)) {
22475 if (MemSD
->writeMem())
22476 return MemSD
->getChain();
22477 return CombineTo(N
, DAG
.getUNDEF(N
->getValueType(0)), MemSD
->getChain());
22480 // Reduction operations return the start operand when no elements are active.
22481 if (ISD::isVPReduction(N
->getOpcode()))
22482 return N
->getOperand(0);
22487 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
22488 /// with the destination vector and a zero vector.
22489 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
22490 /// vector_shuffle V, Zero, <0, 4, 2, 4>
22491 SDValue
DAGCombiner::XformToShuffleWithZero(SDNode
*N
) {
22492 assert(N
->getOpcode() == ISD::AND
&& "Unexpected opcode!");
22494 EVT VT
= N
->getValueType(0);
22495 SDValue LHS
= N
->getOperand(0);
22496 SDValue RHS
= peekThroughBitcasts(N
->getOperand(1));
22499 // Make sure we're not running after operation legalization where it
22500 // may have custom lowered the vector shuffles.
22501 if (LegalOperations
)
22504 if (RHS
.getOpcode() != ISD::BUILD_VECTOR
)
22507 EVT RVT
= RHS
.getValueType();
22508 unsigned NumElts
= RHS
.getNumOperands();
22510 // Attempt to create a valid clear mask, splitting the mask into
22511 // sub elements and checking to see if each is
22512 // all zeros or all ones - suitable for shuffle masking.
22513 auto BuildClearMask
= [&](int Split
) {
22514 int NumSubElts
= NumElts
* Split
;
22515 int NumSubBits
= RVT
.getScalarSizeInBits() / Split
;
22517 SmallVector
<int, 8> Indices
;
22518 for (int i
= 0; i
!= NumSubElts
; ++i
) {
22519 int EltIdx
= i
/ Split
;
22520 int SubIdx
= i
% Split
;
22521 SDValue Elt
= RHS
.getOperand(EltIdx
);
22522 // X & undef --> 0 (not undef). So this lane must be converted to choose
22523 // from the zero constant vector (same as if the element had all 0-bits).
22524 if (Elt
.isUndef()) {
22525 Indices
.push_back(i
+ NumSubElts
);
22530 if (isa
<ConstantSDNode
>(Elt
))
22531 Bits
= cast
<ConstantSDNode
>(Elt
)->getAPIntValue();
22532 else if (isa
<ConstantFPSDNode
>(Elt
))
22533 Bits
= cast
<ConstantFPSDNode
>(Elt
)->getValueAPF().bitcastToAPInt();
22537 // Extract the sub element from the constant bit mask.
22538 if (DAG
.getDataLayout().isBigEndian())
22539 Bits
= Bits
.extractBits(NumSubBits
, (Split
- SubIdx
- 1) * NumSubBits
);
22541 Bits
= Bits
.extractBits(NumSubBits
, SubIdx
* NumSubBits
);
22543 if (Bits
.isAllOnes())
22544 Indices
.push_back(i
);
22545 else if (Bits
== 0)
22546 Indices
.push_back(i
+ NumSubElts
);
22551 // Let's see if the target supports this vector_shuffle.
22552 EVT ClearSVT
= EVT::getIntegerVT(*DAG
.getContext(), NumSubBits
);
22553 EVT ClearVT
= EVT::getVectorVT(*DAG
.getContext(), ClearSVT
, NumSubElts
);
22554 if (!TLI
.isVectorClearMaskLegal(Indices
, ClearVT
))
22557 SDValue Zero
= DAG
.getConstant(0, DL
, ClearVT
);
22558 return DAG
.getBitcast(VT
, DAG
.getVectorShuffle(ClearVT
, DL
,
22559 DAG
.getBitcast(ClearVT
, LHS
),
22563 // Determine maximum split level (byte level masking).
22565 if (RVT
.getScalarSizeInBits() % 8 == 0)
22566 MaxSplit
= RVT
.getScalarSizeInBits() / 8;
22568 for (int Split
= 1; Split
<= MaxSplit
; ++Split
)
22569 if (RVT
.getScalarSizeInBits() % Split
== 0)
22570 if (SDValue S
= BuildClearMask(Split
))
22576 /// If a vector binop is performed on splat values, it may be profitable to
22577 /// extract, scalarize, and insert/splat.
22578 static SDValue
scalarizeBinOpOfSplats(SDNode
*N
, SelectionDAG
&DAG
,
22580 SDValue N0
= N
->getOperand(0);
22581 SDValue N1
= N
->getOperand(1);
22582 unsigned Opcode
= N
->getOpcode();
22583 EVT VT
= N
->getValueType(0);
22584 EVT EltVT
= VT
.getVectorElementType();
22585 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
22587 // TODO: Remove/replace the extract cost check? If the elements are available
22588 // as scalars, then there may be no extract cost. Should we ask if
22589 // inserting a scalar back into a vector is cheap instead?
22590 int Index0
, Index1
;
22591 SDValue Src0
= DAG
.getSplatSourceVector(N0
, Index0
);
22592 SDValue Src1
= DAG
.getSplatSourceVector(N1
, Index1
);
22593 if (!Src0
|| !Src1
|| Index0
!= Index1
||
22594 Src0
.getValueType().getVectorElementType() != EltVT
||
22595 Src1
.getValueType().getVectorElementType() != EltVT
||
22596 !TLI
.isExtractVecEltCheap(VT
, Index0
) ||
22597 !TLI
.isOperationLegalOrCustom(Opcode
, EltVT
))
22600 SDValue IndexC
= DAG
.getVectorIdxConstant(Index0
, DL
);
22601 SDValue X
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, Src0
, IndexC
);
22602 SDValue Y
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, Src1
, IndexC
);
22603 SDValue ScalarBO
= DAG
.getNode(Opcode
, DL
, EltVT
, X
, Y
, N
->getFlags());
22605 // If all lanes but 1 are undefined, no need to splat the scalar result.
22606 // TODO: Keep track of undefs and use that info in the general case.
22607 if (N0
.getOpcode() == ISD::BUILD_VECTOR
&& N0
.getOpcode() == N1
.getOpcode() &&
22608 count_if(N0
->ops(), [](SDValue V
) { return !V
.isUndef(); }) == 1 &&
22609 count_if(N1
->ops(), [](SDValue V
) { return !V
.isUndef(); }) == 1) {
22610 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) -->
22611 // build_vec ..undef, (bo X, Y), undef...
22612 SmallVector
<SDValue
, 8> Ops(VT
.getVectorNumElements(), DAG
.getUNDEF(EltVT
));
22613 Ops
[Index0
] = ScalarBO
;
22614 return DAG
.getBuildVector(VT
, DL
, Ops
);
22617 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index
22618 SmallVector
<SDValue
, 8> Ops(VT
.getVectorNumElements(), ScalarBO
);
22619 return DAG
.getBuildVector(VT
, DL
, Ops
);
22622 /// Visit a binary vector operation, like ADD.
22623 SDValue
DAGCombiner::SimplifyVBinOp(SDNode
*N
, const SDLoc
&DL
) {
22624 EVT VT
= N
->getValueType(0);
22625 assert(VT
.isVector() && "SimplifyVBinOp only works on vectors!");
22627 SDValue LHS
= N
->getOperand(0);
22628 SDValue RHS
= N
->getOperand(1);
22629 unsigned Opcode
= N
->getOpcode();
22630 SDNodeFlags Flags
= N
->getFlags();
22632 // Move unary shuffles with identical masks after a vector binop:
22633 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask))
22634 // --> shuffle (VBinOp A, B), Undef, Mask
22635 // This does not require type legality checks because we are creating the
22636 // same types of operations that are in the original sequence. We do have to
22637 // restrict ops like integer div that have immediate UB (eg, div-by-zero)
22638 // though. This code is adapted from the identical transform in instcombine.
22639 if (Opcode
!= ISD::UDIV
&& Opcode
!= ISD::SDIV
&&
22640 Opcode
!= ISD::UREM
&& Opcode
!= ISD::SREM
&&
22641 Opcode
!= ISD::UDIVREM
&& Opcode
!= ISD::SDIVREM
) {
22642 auto *Shuf0
= dyn_cast
<ShuffleVectorSDNode
>(LHS
);
22643 auto *Shuf1
= dyn_cast
<ShuffleVectorSDNode
>(RHS
);
22644 if (Shuf0
&& Shuf1
&& Shuf0
->getMask().equals(Shuf1
->getMask()) &&
22645 LHS
.getOperand(1).isUndef() && RHS
.getOperand(1).isUndef() &&
22646 (LHS
.hasOneUse() || RHS
.hasOneUse() || LHS
== RHS
)) {
22647 SDValue NewBinOp
= DAG
.getNode(Opcode
, DL
, VT
, LHS
.getOperand(0),
22648 RHS
.getOperand(0), Flags
);
22649 SDValue UndefV
= LHS
.getOperand(1);
22650 return DAG
.getVectorShuffle(VT
, DL
, NewBinOp
, UndefV
, Shuf0
->getMask());
22653 // Try to sink a splat shuffle after a binop with a uniform constant.
22654 // This is limited to cases where neither the shuffle nor the constant have
22655 // undefined elements because that could be poison-unsafe or inhibit
22656 // demanded elements analysis. It is further limited to not change a splat
22657 // of an inserted scalar because that may be optimized better by
22658 // load-folding or other target-specific behaviors.
22659 if (isConstOrConstSplat(RHS
) && Shuf0
&& is_splat(Shuf0
->getMask()) &&
22660 Shuf0
->hasOneUse() && Shuf0
->getOperand(1).isUndef() &&
22661 Shuf0
->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT
) {
22662 // binop (splat X), (splat C) --> splat (binop X, C)
22663 SDValue X
= Shuf0
->getOperand(0);
22664 SDValue NewBinOp
= DAG
.getNode(Opcode
, DL
, VT
, X
, RHS
, Flags
);
22665 return DAG
.getVectorShuffle(VT
, DL
, NewBinOp
, DAG
.getUNDEF(VT
),
22668 if (isConstOrConstSplat(LHS
) && Shuf1
&& is_splat(Shuf1
->getMask()) &&
22669 Shuf1
->hasOneUse() && Shuf1
->getOperand(1).isUndef() &&
22670 Shuf1
->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT
) {
22671 // binop (splat C), (splat X) --> splat (binop C, X)
22672 SDValue X
= Shuf1
->getOperand(0);
22673 SDValue NewBinOp
= DAG
.getNode(Opcode
, DL
, VT
, LHS
, X
, Flags
);
22674 return DAG
.getVectorShuffle(VT
, DL
, NewBinOp
, DAG
.getUNDEF(VT
),
22679 // The following pattern is likely to emerge with vector reduction ops. Moving
22680 // the binary operation ahead of insertion may allow using a narrower vector
22681 // instruction that has better performance than the wide version of the op:
22682 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z
22683 if (LHS
.getOpcode() == ISD::INSERT_SUBVECTOR
&& LHS
.getOperand(0).isUndef() &&
22684 RHS
.getOpcode() == ISD::INSERT_SUBVECTOR
&& RHS
.getOperand(0).isUndef() &&
22685 LHS
.getOperand(2) == RHS
.getOperand(2) &&
22686 (LHS
.hasOneUse() || RHS
.hasOneUse())) {
22687 SDValue X
= LHS
.getOperand(1);
22688 SDValue Y
= RHS
.getOperand(1);
22689 SDValue Z
= LHS
.getOperand(2);
22690 EVT NarrowVT
= X
.getValueType();
22691 if (NarrowVT
== Y
.getValueType() &&
22692 TLI
.isOperationLegalOrCustomOrPromote(Opcode
, NarrowVT
,
22693 LegalOperations
)) {
22694 // (binop undef, undef) may not return undef, so compute that result.
22696 DAG
.getNode(Opcode
, DL
, VT
, DAG
.getUNDEF(VT
), DAG
.getUNDEF(VT
));
22697 SDValue NarrowBO
= DAG
.getNode(Opcode
, DL
, NarrowVT
, X
, Y
);
22698 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, VT
, VecC
, NarrowBO
, Z
);
22702 // Make sure all but the first op are undef or constant.
22703 auto ConcatWithConstantOrUndef
= [](SDValue Concat
) {
22704 return Concat
.getOpcode() == ISD::CONCAT_VECTORS
&&
22705 all_of(drop_begin(Concat
->ops()), [](const SDValue
&Op
) {
22706 return Op
.isUndef() ||
22707 ISD::isBuildVectorOfConstantSDNodes(Op
.getNode());
22711 // The following pattern is likely to emerge with vector reduction ops. Moving
22712 // the binary operation ahead of the concat may allow using a narrower vector
22713 // instruction that has better performance than the wide version of the op:
22714 // VBinOp (concat X, undef/constant), (concat Y, undef/constant) -->
22715 // concat (VBinOp X, Y), VecC
22716 if (ConcatWithConstantOrUndef(LHS
) && ConcatWithConstantOrUndef(RHS
) &&
22717 (LHS
.hasOneUse() || RHS
.hasOneUse())) {
22718 EVT NarrowVT
= LHS
.getOperand(0).getValueType();
22719 if (NarrowVT
== RHS
.getOperand(0).getValueType() &&
22720 TLI
.isOperationLegalOrCustomOrPromote(Opcode
, NarrowVT
)) {
22721 unsigned NumOperands
= LHS
.getNumOperands();
22722 SmallVector
<SDValue
, 4> ConcatOps
;
22723 for (unsigned i
= 0; i
!= NumOperands
; ++i
) {
22724 // This constant fold for operands 1 and up.
22725 ConcatOps
.push_back(DAG
.getNode(Opcode
, DL
, NarrowVT
, LHS
.getOperand(i
),
22726 RHS
.getOperand(i
)));
22729 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
);
22733 if (SDValue V
= scalarizeBinOpOfSplats(N
, DAG
, DL
))
22739 SDValue
DAGCombiner::SimplifySelect(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
22741 assert(N0
.getOpcode() ==ISD::SETCC
&& "First argument must be a SetCC node!");
22743 SDValue SCC
= SimplifySelectCC(DL
, N0
.getOperand(0), N0
.getOperand(1), N1
, N2
,
22744 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
22746 // If we got a simplified select_cc node back from SimplifySelectCC, then
22747 // break it down into a new SETCC node, and a new SELECT node, and then return
22748 // the SELECT node, since we were called with a SELECT node.
22749 if (SCC
.getNode()) {
22750 // Check to see if we got a select_cc back (to turn into setcc/select).
22751 // Otherwise, just return whatever node we got back, like fabs.
22752 if (SCC
.getOpcode() == ISD::SELECT_CC
) {
22753 const SDNodeFlags Flags
= N0
.getNode()->getFlags();
22754 SDValue SETCC
= DAG
.getNode(ISD::SETCC
, SDLoc(N0
),
22756 SCC
.getOperand(0), SCC
.getOperand(1),
22757 SCC
.getOperand(4), Flags
);
22758 AddToWorklist(SETCC
.getNode());
22759 SDValue SelectNode
= DAG
.getSelect(SDLoc(SCC
), SCC
.getValueType(), SETCC
,
22760 SCC
.getOperand(2), SCC
.getOperand(3));
22761 SelectNode
->setFlags(Flags
);
22770 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
22771 /// being selected between, see if we can simplify the select. Callers of this
22772 /// should assume that TheSelect is deleted if this returns true. As such, they
22773 /// should return the appropriate thing (e.g. the node) back to the top-level of
22774 /// the DAG combiner loop to avoid it being looked at.
22775 bool DAGCombiner::SimplifySelectOps(SDNode
*TheSelect
, SDValue LHS
,
22777 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
22778 // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
22779 if (const ConstantFPSDNode
*NaN
= isConstOrConstSplatFP(LHS
)) {
22780 if (NaN
->isNaN() && RHS
.getOpcode() == ISD::FSQRT
) {
22781 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
22782 SDValue Sqrt
= RHS
;
22785 const ConstantFPSDNode
*Zero
= nullptr;
22787 if (TheSelect
->getOpcode() == ISD::SELECT_CC
) {
22788 CC
= cast
<CondCodeSDNode
>(TheSelect
->getOperand(4))->get();
22789 CmpLHS
= TheSelect
->getOperand(0);
22790 Zero
= isConstOrConstSplatFP(TheSelect
->getOperand(1));
22792 // SELECT or VSELECT
22793 SDValue Cmp
= TheSelect
->getOperand(0);
22794 if (Cmp
.getOpcode() == ISD::SETCC
) {
22795 CC
= cast
<CondCodeSDNode
>(Cmp
.getOperand(2))->get();
22796 CmpLHS
= Cmp
.getOperand(0);
22797 Zero
= isConstOrConstSplatFP(Cmp
.getOperand(1));
22800 if (Zero
&& Zero
->isZero() &&
22801 Sqrt
.getOperand(0) == CmpLHS
&& (CC
== ISD::SETOLT
||
22802 CC
== ISD::SETULT
|| CC
== ISD::SETLT
)) {
22803 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
22804 CombineTo(TheSelect
, Sqrt
);
22809 // Cannot simplify select with vector condition
22810 if (TheSelect
->getOperand(0).getValueType().isVector()) return false;
22812 // If this is a select from two identical things, try to pull the operation
22813 // through the select.
22814 if (LHS
.getOpcode() != RHS
.getOpcode() ||
22815 !LHS
.hasOneUse() || !RHS
.hasOneUse())
22818 // If this is a load and the token chain is identical, replace the select
22819 // of two loads with a load through a select of the address to load from.
22820 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
22821 // constants have been dropped into the constant pool.
22822 if (LHS
.getOpcode() == ISD::LOAD
) {
22823 LoadSDNode
*LLD
= cast
<LoadSDNode
>(LHS
);
22824 LoadSDNode
*RLD
= cast
<LoadSDNode
>(RHS
);
22826 // Token chains must be identical.
22827 if (LHS
.getOperand(0) != RHS
.getOperand(0) ||
22828 // Do not let this transformation reduce the number of volatile loads.
22829 // Be conservative for atomics for the moment
22830 // TODO: This does appear to be legal for unordered atomics (see D66309)
22831 !LLD
->isSimple() || !RLD
->isSimple() ||
22832 // FIXME: If either is a pre/post inc/dec load,
22833 // we'd need to split out the address adjustment.
22834 LLD
->isIndexed() || RLD
->isIndexed() ||
22835 // If this is an EXTLOAD, the VT's must match.
22836 LLD
->getMemoryVT() != RLD
->getMemoryVT() ||
22837 // If this is an EXTLOAD, the kind of extension must match.
22838 (LLD
->getExtensionType() != RLD
->getExtensionType() &&
22839 // The only exception is if one of the extensions is anyext.
22840 LLD
->getExtensionType() != ISD::EXTLOAD
&&
22841 RLD
->getExtensionType() != ISD::EXTLOAD
) ||
22842 // FIXME: this discards src value information. This is
22843 // over-conservative. It would be beneficial to be able to remember
22844 // both potential memory locations. Since we are discarding
22845 // src value info, don't do the transformation if the memory
22846 // locations are not in the default address space.
22847 LLD
->getPointerInfo().getAddrSpace() != 0 ||
22848 RLD
->getPointerInfo().getAddrSpace() != 0 ||
22849 // We can't produce a CMOV of a TargetFrameIndex since we won't
22850 // generate the address generation required.
22851 LLD
->getBasePtr().getOpcode() == ISD::TargetFrameIndex
||
22852 RLD
->getBasePtr().getOpcode() == ISD::TargetFrameIndex
||
22853 !TLI
.isOperationLegalOrCustom(TheSelect
->getOpcode(),
22854 LLD
->getBasePtr().getValueType()))
22857 // The loads must not depend on one another.
22858 if (LLD
->isPredecessorOf(RLD
) || RLD
->isPredecessorOf(LLD
))
22861 // Check that the select condition doesn't reach either load. If so,
22862 // folding this will induce a cycle into the DAG. If not, this is safe to
22863 // xform, so create a select of the addresses.
22865 SmallPtrSet
<const SDNode
*, 32> Visited
;
22866 SmallVector
<const SDNode
*, 16> Worklist
;
22868 // Always fail if LLD and RLD are not independent. TheSelect is a
22869 // predecessor to all Nodes in question so we need not search past it.
22871 Visited
.insert(TheSelect
);
22872 Worklist
.push_back(LLD
);
22873 Worklist
.push_back(RLD
);
22875 if (SDNode::hasPredecessorHelper(LLD
, Visited
, Worklist
) ||
22876 SDNode::hasPredecessorHelper(RLD
, Visited
, Worklist
))
22880 if (TheSelect
->getOpcode() == ISD::SELECT
) {
22881 // We cannot do this optimization if any pair of {RLD, LLD} is a
22882 // predecessor to {RLD, LLD, CondNode}. As we've already compared the
22883 // Loads, we only need to check if CondNode is a successor to one of the
22884 // loads. We can further avoid this if there's no use of their chain
22886 SDNode
*CondNode
= TheSelect
->getOperand(0).getNode();
22887 Worklist
.push_back(CondNode
);
22889 if ((LLD
->hasAnyUseOfValue(1) &&
22890 SDNode::hasPredecessorHelper(LLD
, Visited
, Worklist
)) ||
22891 (RLD
->hasAnyUseOfValue(1) &&
22892 SDNode::hasPredecessorHelper(RLD
, Visited
, Worklist
)))
22895 Addr
= DAG
.getSelect(SDLoc(TheSelect
),
22896 LLD
->getBasePtr().getValueType(),
22897 TheSelect
->getOperand(0), LLD
->getBasePtr(),
22898 RLD
->getBasePtr());
22899 } else { // Otherwise SELECT_CC
22900 // We cannot do this optimization if any pair of {RLD, LLD} is a
22901 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
22902 // the Loads, we only need to check if CondLHS/CondRHS is a successor to
22903 // one of the loads. We can further avoid this if there's no use of their
22906 SDNode
*CondLHS
= TheSelect
->getOperand(0).getNode();
22907 SDNode
*CondRHS
= TheSelect
->getOperand(1).getNode();
22908 Worklist
.push_back(CondLHS
);
22909 Worklist
.push_back(CondRHS
);
22911 if ((LLD
->hasAnyUseOfValue(1) &&
22912 SDNode::hasPredecessorHelper(LLD
, Visited
, Worklist
)) ||
22913 (RLD
->hasAnyUseOfValue(1) &&
22914 SDNode::hasPredecessorHelper(RLD
, Visited
, Worklist
)))
22917 Addr
= DAG
.getNode(ISD::SELECT_CC
, SDLoc(TheSelect
),
22918 LLD
->getBasePtr().getValueType(),
22919 TheSelect
->getOperand(0),
22920 TheSelect
->getOperand(1),
22921 LLD
->getBasePtr(), RLD
->getBasePtr(),
22922 TheSelect
->getOperand(4));
22926 // It is safe to replace the two loads if they have different alignments,
22927 // but the new load must be the minimum (most restrictive) alignment of the
22929 Align Alignment
= std::min(LLD
->getAlign(), RLD
->getAlign());
22930 MachineMemOperand::Flags MMOFlags
= LLD
->getMemOperand()->getFlags();
22931 if (!RLD
->isInvariant())
22932 MMOFlags
&= ~MachineMemOperand::MOInvariant
;
22933 if (!RLD
->isDereferenceable())
22934 MMOFlags
&= ~MachineMemOperand::MODereferenceable
;
22935 if (LLD
->getExtensionType() == ISD::NON_EXTLOAD
) {
22936 // FIXME: Discards pointer and AA info.
22937 Load
= DAG
.getLoad(TheSelect
->getValueType(0), SDLoc(TheSelect
),
22938 LLD
->getChain(), Addr
, MachinePointerInfo(), Alignment
,
22941 // FIXME: Discards pointer and AA info.
22942 Load
= DAG
.getExtLoad(
22943 LLD
->getExtensionType() == ISD::EXTLOAD
? RLD
->getExtensionType()
22944 : LLD
->getExtensionType(),
22945 SDLoc(TheSelect
), TheSelect
->getValueType(0), LLD
->getChain(), Addr
,
22946 MachinePointerInfo(), LLD
->getMemoryVT(), Alignment
, MMOFlags
);
22949 // Users of the select now use the result of the load.
22950 CombineTo(TheSelect
, Load
);
22952 // Users of the old loads now use the new load's chain. We know the
22953 // old-load value is dead now.
22954 CombineTo(LHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
22955 CombineTo(RHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
22962 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
22964 SDValue
DAGCombiner::foldSelectCCToShiftAnd(const SDLoc
&DL
, SDValue N0
,
22965 SDValue N1
, SDValue N2
, SDValue N3
,
22966 ISD::CondCode CC
) {
22967 // If this is a select where the false operand is zero and the compare is a
22968 // check of the sign bit, see if we can perform the "gzip trick":
22969 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
22970 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
22971 EVT XType
= N0
.getValueType();
22972 EVT AType
= N2
.getValueType();
22973 if (!isNullConstant(N3
) || !XType
.bitsGE(AType
))
22976 // If the comparison is testing for a positive value, we have to invert
22977 // the sign bit mask, so only do that transform if the target has a bitwise
22978 // 'and not' instruction (the invert is free).
22979 if (CC
== ISD::SETGT
&& TLI
.hasAndNot(N2
)) {
22980 // (X > -1) ? A : 0
22981 // (X > 0) ? X : 0 <-- This is canonical signed max.
22982 if (!(isAllOnesConstant(N1
) || (isNullConstant(N1
) && N0
== N2
)))
22984 } else if (CC
== ISD::SETLT
) {
22986 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
22987 if (!(isNullConstant(N1
) || (isOneConstant(N1
) && N0
== N2
)))
22993 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
22995 EVT ShiftAmtTy
= getShiftAmountTy(N0
.getValueType());
22996 auto *N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
22997 if (N2C
&& ((N2C
->getAPIntValue() & (N2C
->getAPIntValue() - 1)) == 0)) {
22998 unsigned ShCt
= XType
.getSizeInBits() - N2C
->getAPIntValue().logBase2() - 1;
22999 if (!TLI
.shouldAvoidTransformToShift(XType
, ShCt
)) {
23000 SDValue ShiftAmt
= DAG
.getConstant(ShCt
, DL
, ShiftAmtTy
);
23001 SDValue Shift
= DAG
.getNode(ISD::SRL
, DL
, XType
, N0
, ShiftAmt
);
23002 AddToWorklist(Shift
.getNode());
23004 if (XType
.bitsGT(AType
)) {
23005 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
23006 AddToWorklist(Shift
.getNode());
23009 if (CC
== ISD::SETGT
)
23010 Shift
= DAG
.getNOT(DL
, Shift
, AType
);
23012 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
23016 unsigned ShCt
= XType
.getSizeInBits() - 1;
23017 if (TLI
.shouldAvoidTransformToShift(XType
, ShCt
))
23020 SDValue ShiftAmt
= DAG
.getConstant(ShCt
, DL
, ShiftAmtTy
);
23021 SDValue Shift
= DAG
.getNode(ISD::SRA
, DL
, XType
, N0
, ShiftAmt
);
23022 AddToWorklist(Shift
.getNode());
23024 if (XType
.bitsGT(AType
)) {
23025 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
23026 AddToWorklist(Shift
.getNode());
23029 if (CC
== ISD::SETGT
)
23030 Shift
= DAG
.getNOT(DL
, Shift
, AType
);
23032 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
23035 // Fold select(cc, binop(), binop()) -> binop(select(), select()) etc.
23036 SDValue
DAGCombiner::foldSelectOfBinops(SDNode
*N
) {
23037 SDValue N0
= N
->getOperand(0);
23038 SDValue N1
= N
->getOperand(1);
23039 SDValue N2
= N
->getOperand(2);
23040 EVT VT
= N
->getValueType(0);
23043 unsigned BinOpc
= N1
.getOpcode();
23044 if (!TLI
.isBinOp(BinOpc
) || (N2
.getOpcode() != BinOpc
))
23047 // The use checks are intentionally on SDNode because we may be dealing
23048 // with opcodes that produce more than one SDValue.
23049 // TODO: Do we really need to check N0 (the condition operand of the select)?
23050 // But removing that clause could cause an infinite loop...
23051 if (!N0
->hasOneUse() || !N1
->hasOneUse() || !N2
->hasOneUse())
23054 // Binops may include opcodes that return multiple values, so all values
23055 // must be created/propagated from the newly created binops below.
23056 SDVTList OpVTs
= N1
->getVTList();
23058 // Fold select(cond, binop(x, y), binop(z, y))
23059 // --> binop(select(cond, x, z), y)
23060 if (N1
.getOperand(1) == N2
.getOperand(1)) {
23062 DAG
.getSelect(DL
, VT
, N0
, N1
.getOperand(0), N2
.getOperand(0));
23063 SDValue NewBinOp
= DAG
.getNode(BinOpc
, DL
, OpVTs
, NewSel
, N1
.getOperand(1));
23064 NewBinOp
->setFlags(N1
->getFlags());
23065 NewBinOp
->intersectFlagsWith(N2
->getFlags());
23069 // Fold select(cond, binop(x, y), binop(x, z))
23070 // --> binop(x, select(cond, y, z))
23071 // Second op VT might be different (e.g. shift amount type)
23072 if (N1
.getOperand(0) == N2
.getOperand(0) &&
23073 VT
== N1
.getOperand(1).getValueType() &&
23074 VT
== N2
.getOperand(1).getValueType()) {
23076 DAG
.getSelect(DL
, VT
, N0
, N1
.getOperand(1), N2
.getOperand(1));
23077 SDValue NewBinOp
= DAG
.getNode(BinOpc
, DL
, OpVTs
, N1
.getOperand(0), NewSel
);
23078 NewBinOp
->setFlags(N1
->getFlags());
23079 NewBinOp
->intersectFlagsWith(N2
->getFlags());
23083 // TODO: Handle isCommutativeBinOp patterns as well?
23087 // Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values.
23088 SDValue
DAGCombiner::foldSignChangeInBitcast(SDNode
*N
) {
23089 SDValue N0
= N
->getOperand(0);
23090 EVT VT
= N
->getValueType(0);
23091 bool IsFabs
= N
->getOpcode() == ISD::FABS
;
23092 bool IsFree
= IsFabs
? TLI
.isFAbsFree(VT
) : TLI
.isFNegFree(VT
);
23094 if (IsFree
|| N0
.getOpcode() != ISD::BITCAST
|| !N0
.hasOneUse())
23097 SDValue Int
= N0
.getOperand(0);
23098 EVT IntVT
= Int
.getValueType();
23100 // The operand to cast should be integer.
23101 if (!IntVT
.isInteger() || IntVT
.isVector())
23104 // (fneg (bitconvert x)) -> (bitconvert (xor x sign))
23105 // (fabs (bitconvert x)) -> (bitconvert (and x ~sign))
23107 if (N0
.getValueType().isVector()) {
23108 // For vector, create a sign mask (0x80...) or its inverse (for fabs,
23109 // 0x7f...) per element and splat it.
23110 SignMask
= APInt::getSignMask(N0
.getScalarValueSizeInBits());
23112 SignMask
= ~SignMask
;
23113 SignMask
= APInt::getSplat(IntVT
.getSizeInBits(), SignMask
);
23115 // For scalar, just use the sign mask (0x80... or the inverse, 0x7f...)
23116 SignMask
= APInt::getSignMask(IntVT
.getSizeInBits());
23118 SignMask
= ~SignMask
;
23121 Int
= DAG
.getNode(IsFabs
? ISD::AND
: ISD::XOR
, DL
, IntVT
, Int
,
23122 DAG
.getConstant(SignMask
, DL
, IntVT
));
23123 AddToWorklist(Int
.getNode());
23124 return DAG
.getBitcast(VT
, Int
);
23127 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
23128 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
23129 /// in it. This may be a win when the constant is not otherwise available
23130 /// because it replaces two constant pool loads with one.
23131 SDValue
DAGCombiner::convertSelectOfFPConstantsToLoadOffset(
23132 const SDLoc
&DL
, SDValue N0
, SDValue N1
, SDValue N2
, SDValue N3
,
23133 ISD::CondCode CC
) {
23134 if (!TLI
.reduceSelectOfFPConstantLoads(N0
.getValueType()))
23137 // If we are before legalize types, we want the other legalization to happen
23138 // first (for example, to avoid messing with soft float).
23139 auto *TV
= dyn_cast
<ConstantFPSDNode
>(N2
);
23140 auto *FV
= dyn_cast
<ConstantFPSDNode
>(N3
);
23141 EVT VT
= N2
.getValueType();
23142 if (!TV
|| !FV
|| !TLI
.isTypeLegal(VT
))
23145 // If a constant can be materialized without loads, this does not make sense.
23146 if (TLI
.getOperationAction(ISD::ConstantFP
, VT
) == TargetLowering::Legal
||
23147 TLI
.isFPImmLegal(TV
->getValueAPF(), TV
->getValueType(0), ForCodeSize
) ||
23148 TLI
.isFPImmLegal(FV
->getValueAPF(), FV
->getValueType(0), ForCodeSize
))
23151 // If both constants have multiple uses, then we won't need to do an extra
23152 // load. The values are likely around in registers for other users.
23153 if (!TV
->hasOneUse() && !FV
->hasOneUse())
23156 Constant
*Elts
[] = { const_cast<ConstantFP
*>(FV
->getConstantFPValue()),
23157 const_cast<ConstantFP
*>(TV
->getConstantFPValue()) };
23158 Type
*FPTy
= Elts
[0]->getType();
23159 const DataLayout
&TD
= DAG
.getDataLayout();
23161 // Create a ConstantArray of the two constants.
23162 Constant
*CA
= ConstantArray::get(ArrayType::get(FPTy
, 2), Elts
);
23163 SDValue CPIdx
= DAG
.getConstantPool(CA
, TLI
.getPointerTy(DAG
.getDataLayout()),
23164 TD
.getPrefTypeAlign(FPTy
));
23165 Align Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlign();
23167 // Get offsets to the 0 and 1 elements of the array, so we can select between
23169 SDValue Zero
= DAG
.getIntPtrConstant(0, DL
);
23170 unsigned EltSize
= (unsigned)TD
.getTypeAllocSize(Elts
[0]->getType());
23171 SDValue One
= DAG
.getIntPtrConstant(EltSize
, SDLoc(FV
));
23173 DAG
.getSetCC(DL
, getSetCCResultType(N0
.getValueType()), N0
, N1
, CC
);
23174 AddToWorklist(Cond
.getNode());
23175 SDValue CstOffset
= DAG
.getSelect(DL
, Zero
.getValueType(), Cond
, One
, Zero
);
23176 AddToWorklist(CstOffset
.getNode());
23177 CPIdx
= DAG
.getNode(ISD::ADD
, DL
, CPIdx
.getValueType(), CPIdx
, CstOffset
);
23178 AddToWorklist(CPIdx
.getNode());
23179 return DAG
.getLoad(TV
->getValueType(0), DL
, DAG
.getEntryNode(), CPIdx
,
23180 MachinePointerInfo::getConstantPool(
23181 DAG
.getMachineFunction()), Alignment
);
23184 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3
23185 /// where 'cond' is the comparison specified by CC.
23186 SDValue
DAGCombiner::SimplifySelectCC(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
23187 SDValue N2
, SDValue N3
, ISD::CondCode CC
,
23188 bool NotExtCompare
) {
23189 // (x ? y : y) -> y.
23190 if (N2
== N3
) return N2
;
23192 EVT CmpOpVT
= N0
.getValueType();
23193 EVT CmpResVT
= getSetCCResultType(CmpOpVT
);
23194 EVT VT
= N2
.getValueType();
23195 auto *N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
23196 auto *N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
23197 auto *N3C
= dyn_cast
<ConstantSDNode
>(N3
.getNode());
23199 // Determine if the condition we're dealing with is constant.
23200 if (SDValue SCC
= DAG
.FoldSetCC(CmpResVT
, N0
, N1
, CC
, DL
)) {
23201 AddToWorklist(SCC
.getNode());
23202 if (auto *SCCC
= dyn_cast
<ConstantSDNode
>(SCC
)) {
23203 // fold select_cc true, x, y -> x
23204 // fold select_cc false, x, y -> y
23205 return !(SCCC
->isZero()) ? N2
: N3
;
23210 convertSelectOfFPConstantsToLoadOffset(DL
, N0
, N1
, N2
, N3
, CC
))
23213 if (SDValue V
= foldSelectCCToShiftAnd(DL
, N0
, N1
, N2
, N3
, CC
))
23216 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
23217 // where y is has a single bit set.
23218 // A plaintext description would be, we can turn the SELECT_CC into an AND
23219 // when the condition can be materialized as an all-ones register. Any
23220 // single bit-test can be materialized as an all-ones register with
23221 // shift-left and shift-right-arith.
23222 if (CC
== ISD::SETEQ
&& N0
->getOpcode() == ISD::AND
&&
23223 N0
->getValueType(0) == VT
&& isNullConstant(N1
) && isNullConstant(N2
)) {
23224 SDValue AndLHS
= N0
->getOperand(0);
23225 auto *ConstAndRHS
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
23226 if (ConstAndRHS
&& ConstAndRHS
->getAPIntValue().countPopulation() == 1) {
23227 // Shift the tested bit over the sign bit.
23228 const APInt
&AndMask
= ConstAndRHS
->getAPIntValue();
23229 unsigned ShCt
= AndMask
.getBitWidth() - 1;
23230 if (!TLI
.shouldAvoidTransformToShift(VT
, ShCt
)) {
23232 DAG
.getConstant(AndMask
.countLeadingZeros(), SDLoc(AndLHS
),
23233 getShiftAmountTy(AndLHS
.getValueType()));
23234 SDValue Shl
= DAG
.getNode(ISD::SHL
, SDLoc(N0
), VT
, AndLHS
, ShlAmt
);
23236 // Now arithmetic right shift it all the way over, so the result is
23237 // either all-ones, or zero.
23239 DAG
.getConstant(ShCt
, SDLoc(Shl
),
23240 getShiftAmountTy(Shl
.getValueType()));
23241 SDValue Shr
= DAG
.getNode(ISD::SRA
, SDLoc(N0
), VT
, Shl
, ShrAmt
);
23243 return DAG
.getNode(ISD::AND
, DL
, VT
, Shr
, N3
);
23248 // fold select C, 16, 0 -> shl C, 4
23249 bool Fold
= N2C
&& isNullConstant(N3
) && N2C
->getAPIntValue().isPowerOf2();
23250 bool Swap
= N3C
&& isNullConstant(N2
) && N3C
->getAPIntValue().isPowerOf2();
23252 if ((Fold
|| Swap
) &&
23253 TLI
.getBooleanContents(CmpOpVT
) ==
23254 TargetLowering::ZeroOrOneBooleanContent
&&
23255 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SETCC
, CmpOpVT
))) {
23258 CC
= ISD::getSetCCInverse(CC
, CmpOpVT
);
23259 std::swap(N2C
, N3C
);
23262 // If the caller doesn't want us to simplify this into a zext of a compare,
23264 if (NotExtCompare
&& N2C
->isOne())
23268 // zext (setcc n0, n1)
23270 SCC
= DAG
.getSetCC(DL
, CmpResVT
, N0
, N1
, CC
);
23271 if (VT
.bitsLT(SCC
.getValueType()))
23272 Temp
= DAG
.getZeroExtendInReg(SCC
, SDLoc(N2
), VT
);
23274 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N2
), VT
, SCC
);
23276 SCC
= DAG
.getSetCC(SDLoc(N0
), MVT::i1
, N0
, N1
, CC
);
23277 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N2
), VT
, SCC
);
23280 AddToWorklist(SCC
.getNode());
23281 AddToWorklist(Temp
.getNode());
23286 unsigned ShCt
= N2C
->getAPIntValue().logBase2();
23287 if (TLI
.shouldAvoidTransformToShift(VT
, ShCt
))
23290 // shl setcc result by log2 n2c
23291 return DAG
.getNode(ISD::SHL
, DL
, N2
.getValueType(), Temp
,
23292 DAG
.getConstant(ShCt
, SDLoc(Temp
),
23293 getShiftAmountTy(Temp
.getValueType())));
23296 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
23297 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
23298 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
23299 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
23300 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
23301 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
23302 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
23303 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
23304 if (N1C
&& N1C
->isZero() && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
23305 SDValue ValueOnZero
= N2
;
23306 SDValue Count
= N3
;
23307 // If the condition is NE instead of E, swap the operands.
23308 if (CC
== ISD::SETNE
)
23309 std::swap(ValueOnZero
, Count
);
23310 // Check if the value on zero is a constant equal to the bits in the type.
23311 if (auto *ValueOnZeroC
= dyn_cast
<ConstantSDNode
>(ValueOnZero
)) {
23312 if (ValueOnZeroC
->getAPIntValue() == VT
.getSizeInBits()) {
23313 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is
23314 // legal, combine to just cttz.
23315 if ((Count
.getOpcode() == ISD::CTTZ
||
23316 Count
.getOpcode() == ISD::CTTZ_ZERO_UNDEF
) &&
23317 N0
== Count
.getOperand(0) &&
23318 (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTTZ
, VT
)))
23319 return DAG
.getNode(ISD::CTTZ
, DL
, VT
, N0
);
23320 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
23321 // legal, combine to just ctlz.
23322 if ((Count
.getOpcode() == ISD::CTLZ
||
23323 Count
.getOpcode() == ISD::CTLZ_ZERO_UNDEF
) &&
23324 N0
== Count
.getOperand(0) &&
23325 (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTLZ
, VT
)))
23326 return DAG
.getNode(ISD::CTLZ
, DL
, VT
, N0
);
23331 // Fold select_cc setgt X, -1, C, ~C -> xor (ashr X, BW-1), C
23332 // Fold select_cc setlt X, 0, C, ~C -> xor (ashr X, BW-1), ~C
23333 if (!NotExtCompare
&& N1C
&& N2C
&& N3C
&&
23334 N2C
->getAPIntValue() == ~N3C
->getAPIntValue() &&
23335 ((N1C
->isAllOnes() && CC
== ISD::SETGT
) ||
23336 (N1C
->isZero() && CC
== ISD::SETLT
)) &&
23337 !TLI
.shouldAvoidTransformToShift(VT
, CmpOpVT
.getScalarSizeInBits() - 1)) {
23338 SDValue ASR
= DAG
.getNode(
23339 ISD::SRA
, DL
, CmpOpVT
, N0
,
23340 DAG
.getConstant(CmpOpVT
.getScalarSizeInBits() - 1, DL
, CmpOpVT
));
23341 return DAG
.getNode(ISD::XOR
, DL
, VT
, DAG
.getSExtOrTrunc(ASR
, DL
, VT
),
23342 DAG
.getSExtOrTrunc(CC
== ISD::SETLT
? N3
: N2
, DL
, VT
));
23345 if (SDValue S
= PerformMinMaxFpToSatCombine(N0
, N1
, N2
, N3
, CC
, DAG
))
23351 /// This is a stub for TargetLowering::SimplifySetCC.
23352 SDValue
DAGCombiner::SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
,
23353 ISD::CondCode Cond
, const SDLoc
&DL
,
23354 bool foldBooleans
) {
23355 TargetLowering::DAGCombinerInfo
23356 DagCombineInfo(DAG
, Level
, false, this);
23357 return TLI
.SimplifySetCC(VT
, N0
, N1
, Cond
, foldBooleans
, DagCombineInfo
, DL
);
23360 /// Given an ISD::SDIV node expressing a divide by constant, return
23361 /// a DAG expression to select that will generate the same value by multiplying
23362 /// by a magic number.
23363 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
23364 SDValue
DAGCombiner::BuildSDIV(SDNode
*N
) {
23365 // when optimising for minimum size, we don't want to expand a div to a mul
23367 if (DAG
.getMachineFunction().getFunction().hasMinSize())
23370 SmallVector
<SDNode
*, 8> Built
;
23371 if (SDValue S
= TLI
.BuildSDIV(N
, DAG
, LegalOperations
, Built
)) {
23372 for (SDNode
*N
: Built
)
23380 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
23381 /// DAG expression that will generate the same value by right shifting.
23382 SDValue
DAGCombiner::BuildSDIVPow2(SDNode
*N
) {
23383 ConstantSDNode
*C
= isConstOrConstSplat(N
->getOperand(1));
23387 // Avoid division by zero.
23391 SmallVector
<SDNode
*, 8> Built
;
23392 if (SDValue S
= TLI
.BuildSDIVPow2(N
, C
->getAPIntValue(), DAG
, Built
)) {
23393 for (SDNode
*N
: Built
)
23401 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG
23402 /// expression that will generate the same value by multiplying by a magic
23404 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
23405 SDValue
DAGCombiner::BuildUDIV(SDNode
*N
) {
23406 // when optimising for minimum size, we don't want to expand a div to a mul
23408 if (DAG
.getMachineFunction().getFunction().hasMinSize())
23411 SmallVector
<SDNode
*, 8> Built
;
23412 if (SDValue S
= TLI
.BuildUDIV(N
, DAG
, LegalOperations
, Built
)) {
23413 for (SDNode
*N
: Built
)
23421 /// Determines the LogBase2 value for a non-null input value using the
23422 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
23423 SDValue
DAGCombiner::BuildLogBase2(SDValue V
, const SDLoc
&DL
) {
23424 EVT VT
= V
.getValueType();
23425 SDValue Ctlz
= DAG
.getNode(ISD::CTLZ
, DL
, VT
, V
);
23426 SDValue Base
= DAG
.getConstant(VT
.getScalarSizeInBits() - 1, DL
, VT
);
23427 SDValue LogBase2
= DAG
.getNode(ISD::SUB
, DL
, VT
, Base
, Ctlz
);
23431 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
23432 /// For the reciprocal, we need to find the zero of the function:
23433 /// F(X) = 1/X - A [which has a zero at X = 1/A]
23435 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
23436 /// does not require additional intermediate precision]
23437 /// For the last iteration, put numerator N into it to gain more precision:
23438 /// Result = N X_i + X_i (N - N A X_i)
23439 SDValue
DAGCombiner::BuildDivEstimate(SDValue N
, SDValue Op
,
23440 SDNodeFlags Flags
) {
23444 // TODO: Handle extended types?
23445 EVT VT
= Op
.getValueType();
23446 if (VT
.getScalarType() != MVT::f16
&& VT
.getScalarType() != MVT::f32
&&
23447 VT
.getScalarType() != MVT::f64
)
23450 // If estimates are explicitly disabled for this function, we're done.
23451 MachineFunction
&MF
= DAG
.getMachineFunction();
23452 int Enabled
= TLI
.getRecipEstimateDivEnabled(VT
, MF
);
23453 if (Enabled
== TLI
.ReciprocalEstimate::Disabled
)
23456 // Estimates may be explicitly enabled for this type with a custom number of
23457 // refinement steps.
23458 int Iterations
= TLI
.getDivRefinementSteps(VT
, MF
);
23459 if (SDValue Est
= TLI
.getRecipEstimate(Op
, DAG
, Enabled
, Iterations
)) {
23460 AddToWorklist(Est
.getNode());
23464 SDValue FPOne
= DAG
.getConstantFP(1.0, DL
, VT
);
23466 // Newton iterations: Est = Est + Est (N - Arg * Est)
23467 // If this is the last iteration, also multiply by the numerator.
23468 for (int i
= 0; i
< Iterations
; ++i
) {
23469 SDValue MulEst
= Est
;
23471 if (i
== Iterations
- 1) {
23472 MulEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, N
, Est
, Flags
);
23473 AddToWorklist(MulEst
.getNode());
23476 SDValue NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Op
, MulEst
, Flags
);
23477 AddToWorklist(NewEst
.getNode());
23479 NewEst
= DAG
.getNode(ISD::FSUB
, DL
, VT
,
23480 (i
== Iterations
- 1 ? N
: FPOne
), NewEst
, Flags
);
23481 AddToWorklist(NewEst
.getNode());
23483 NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, NewEst
, Flags
);
23484 AddToWorklist(NewEst
.getNode());
23486 Est
= DAG
.getNode(ISD::FADD
, DL
, VT
, MulEst
, NewEst
, Flags
);
23487 AddToWorklist(Est
.getNode());
23490 // If no iterations are available, multiply with N.
23491 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, N
, Flags
);
23492 AddToWorklist(Est
.getNode());
23501 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
23502 /// For the reciprocal sqrt, we need to find the zero of the function:
23503 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
23505 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
23506 /// As a result, we precompute A/2 prior to the iteration loop.
23507 SDValue
DAGCombiner::buildSqrtNROneConst(SDValue Arg
, SDValue Est
,
23508 unsigned Iterations
,
23509 SDNodeFlags Flags
, bool Reciprocal
) {
23510 EVT VT
= Arg
.getValueType();
23512 SDValue ThreeHalves
= DAG
.getConstantFP(1.5, DL
, VT
);
23514 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
23515 // this entire sequence requires only one FP constant.
23516 SDValue HalfArg
= DAG
.getNode(ISD::FMUL
, DL
, VT
, ThreeHalves
, Arg
, Flags
);
23517 HalfArg
= DAG
.getNode(ISD::FSUB
, DL
, VT
, HalfArg
, Arg
, Flags
);
23519 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
23520 for (unsigned i
= 0; i
< Iterations
; ++i
) {
23521 SDValue NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, Est
, Flags
);
23522 NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, HalfArg
, NewEst
, Flags
);
23523 NewEst
= DAG
.getNode(ISD::FSUB
, DL
, VT
, ThreeHalves
, NewEst
, Flags
);
23524 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, NewEst
, Flags
);
23527 // If non-reciprocal square root is requested, multiply the result by Arg.
23529 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, Arg
, Flags
);
23534 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
23535 /// For the reciprocal sqrt, we need to find the zero of the function:
23536 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
23538 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
23539 SDValue
DAGCombiner::buildSqrtNRTwoConst(SDValue Arg
, SDValue Est
,
23540 unsigned Iterations
,
23541 SDNodeFlags Flags
, bool Reciprocal
) {
23542 EVT VT
= Arg
.getValueType();
23544 SDValue MinusThree
= DAG
.getConstantFP(-3.0, DL
, VT
);
23545 SDValue MinusHalf
= DAG
.getConstantFP(-0.5, DL
, VT
);
23547 // This routine must enter the loop below to work correctly
23548 // when (Reciprocal == false).
23549 assert(Iterations
> 0);
23551 // Newton iterations for reciprocal square root:
23552 // E = (E * -0.5) * ((A * E) * E + -3.0)
23553 for (unsigned i
= 0; i
< Iterations
; ++i
) {
23554 SDValue AE
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Arg
, Est
, Flags
);
23555 SDValue AEE
= DAG
.getNode(ISD::FMUL
, DL
, VT
, AE
, Est
, Flags
);
23556 SDValue RHS
= DAG
.getNode(ISD::FADD
, DL
, VT
, AEE
, MinusThree
, Flags
);
23558 // When calculating a square root at the last iteration build:
23559 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
23560 // (notice a common subexpression)
23562 if (Reciprocal
|| (i
+ 1) < Iterations
) {
23563 // RSQRT: LHS = (E * -0.5)
23564 LHS
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, MinusHalf
, Flags
);
23566 // SQRT: LHS = (A * E) * -0.5
23567 LHS
= DAG
.getNode(ISD::FMUL
, DL
, VT
, AE
, MinusHalf
, Flags
);
23570 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, LHS
, RHS
, Flags
);
23576 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
23577 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
23578 /// Op can be zero.
23579 SDValue
DAGCombiner::buildSqrtEstimateImpl(SDValue Op
, SDNodeFlags Flags
,
23584 // TODO: Handle extended types?
23585 EVT VT
= Op
.getValueType();
23586 if (VT
.getScalarType() != MVT::f16
&& VT
.getScalarType() != MVT::f32
&&
23587 VT
.getScalarType() != MVT::f64
)
23590 // If estimates are explicitly disabled for this function, we're done.
23591 MachineFunction
&MF
= DAG
.getMachineFunction();
23592 int Enabled
= TLI
.getRecipEstimateSqrtEnabled(VT
, MF
);
23593 if (Enabled
== TLI
.ReciprocalEstimate::Disabled
)
23596 // Estimates may be explicitly enabled for this type with a custom number of
23597 // refinement steps.
23598 int Iterations
= TLI
.getSqrtRefinementSteps(VT
, MF
);
23600 bool UseOneConstNR
= false;
23602 TLI
.getSqrtEstimate(Op
, DAG
, Enabled
, Iterations
, UseOneConstNR
,
23604 AddToWorklist(Est
.getNode());
23607 Est
= UseOneConstNR
23608 ? buildSqrtNROneConst(Op
, Est
, Iterations
, Flags
, Reciprocal
)
23609 : buildSqrtNRTwoConst(Op
, Est
, Iterations
, Flags
, Reciprocal
);
23612 // Try the target specific test first.
23613 SDValue Test
= TLI
.getSqrtInputTest(Op
, DAG
, DAG
.getDenormalMode(VT
));
23615 // The estimate is now completely wrong if the input was exactly 0.0 or
23616 // possibly a denormal. Force the answer to 0.0 or value provided by
23617 // target for those cases.
23619 Test
.getValueType().isVector() ? ISD::VSELECT
: ISD::SELECT
, DL
, VT
,
23620 Test
, TLI
.getSqrtResultForDenormInput(Op
, DAG
), Est
);
23628 SDValue
DAGCombiner::buildRsqrtEstimate(SDValue Op
, SDNodeFlags Flags
) {
23629 return buildSqrtEstimateImpl(Op
, Flags
, true);
23632 SDValue
DAGCombiner::buildSqrtEstimate(SDValue Op
, SDNodeFlags Flags
) {
23633 return buildSqrtEstimateImpl(Op
, Flags
, false);
23636 /// Return true if there is any possibility that the two addresses overlap.
23637 bool DAGCombiner::mayAlias(SDNode
*Op0
, SDNode
*Op1
) const {
23639 struct MemUseCharacteristics
{
23644 Optional
<int64_t> NumBytes
;
23645 MachineMemOperand
*MMO
;
23648 auto getCharacteristics
= [](SDNode
*N
) -> MemUseCharacteristics
{
23649 if (const auto *LSN
= dyn_cast
<LSBaseSDNode
>(N
)) {
23650 int64_t Offset
= 0;
23651 if (auto *C
= dyn_cast
<ConstantSDNode
>(LSN
->getOffset()))
23652 Offset
= (LSN
->getAddressingMode() == ISD::PRE_INC
)
23653 ? C
->getSExtValue()
23654 : (LSN
->getAddressingMode() == ISD::PRE_DEC
)
23655 ? -1 * C
->getSExtValue()
23658 MemoryLocation::getSizeOrUnknown(LSN
->getMemoryVT().getStoreSize());
23659 return {LSN
->isVolatile(), LSN
->isAtomic(), LSN
->getBasePtr(),
23660 Offset
/*base offset*/,
23661 Optional
<int64_t>(Size
),
23662 LSN
->getMemOperand()};
23664 if (const auto *LN
= cast
<LifetimeSDNode
>(N
))
23665 return {false /*isVolatile*/, /*isAtomic*/ false, LN
->getOperand(1),
23666 (LN
->hasOffset()) ? LN
->getOffset() : 0,
23667 (LN
->hasOffset()) ? Optional
<int64_t>(LN
->getSize())
23668 : Optional
<int64_t>(),
23669 (MachineMemOperand
*)nullptr};
23671 return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(),
23672 (int64_t)0 /*offset*/,
23673 Optional
<int64_t>() /*size*/, (MachineMemOperand
*)nullptr};
23676 MemUseCharacteristics MUC0
= getCharacteristics(Op0
),
23677 MUC1
= getCharacteristics(Op1
);
23679 // If they are to the same address, then they must be aliases.
23680 if (MUC0
.BasePtr
.getNode() && MUC0
.BasePtr
== MUC1
.BasePtr
&&
23681 MUC0
.Offset
== MUC1
.Offset
)
23684 // If they are both volatile then they cannot be reordered.
23685 if (MUC0
.IsVolatile
&& MUC1
.IsVolatile
)
23688 // Be conservative about atomics for the moment
23689 // TODO: This is way overconservative for unordered atomics (see D66309)
23690 if (MUC0
.IsAtomic
&& MUC1
.IsAtomic
)
23693 if (MUC0
.MMO
&& MUC1
.MMO
) {
23694 if ((MUC0
.MMO
->isInvariant() && MUC1
.MMO
->isStore()) ||
23695 (MUC1
.MMO
->isInvariant() && MUC0
.MMO
->isStore()))
23699 // Try to prove that there is aliasing, or that there is no aliasing. Either
23700 // way, we can return now. If nothing can be proved, proceed with more tests.
23702 if (BaseIndexOffset::computeAliasing(Op0
, MUC0
.NumBytes
, Op1
, MUC1
.NumBytes
,
23706 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if
23707 // either are not known.
23708 if (!MUC0
.MMO
|| !MUC1
.MMO
)
23711 // If one operation reads from invariant memory, and the other may store, they
23712 // cannot alias. These should really be checking the equivalent of mayWrite,
23713 // but it only matters for memory nodes other than load /store.
23714 if ((MUC0
.MMO
->isInvariant() && MUC1
.MMO
->isStore()) ||
23715 (MUC1
.MMO
->isInvariant() && MUC0
.MMO
->isStore()))
23718 // If we know required SrcValue1 and SrcValue2 have relatively large
23719 // alignment compared to the size and offset of the access, we may be able
23720 // to prove they do not alias. This check is conservative for now to catch
23721 // cases created by splitting vector types, it only works when the offsets are
23722 // multiples of the size of the data.
23723 int64_t SrcValOffset0
= MUC0
.MMO
->getOffset();
23724 int64_t SrcValOffset1
= MUC1
.MMO
->getOffset();
23725 Align OrigAlignment0
= MUC0
.MMO
->getBaseAlign();
23726 Align OrigAlignment1
= MUC1
.MMO
->getBaseAlign();
23727 auto &Size0
= MUC0
.NumBytes
;
23728 auto &Size1
= MUC1
.NumBytes
;
23729 if (OrigAlignment0
== OrigAlignment1
&& SrcValOffset0
!= SrcValOffset1
&&
23730 Size0
.hasValue() && Size1
.hasValue() && *Size0
== *Size1
&&
23731 OrigAlignment0
> *Size0
&& SrcValOffset0
% *Size0
== 0 &&
23732 SrcValOffset1
% *Size1
== 0) {
23733 int64_t OffAlign0
= SrcValOffset0
% OrigAlignment0
.value();
23734 int64_t OffAlign1
= SrcValOffset1
% OrigAlignment1
.value();
23736 // There is no overlap between these relatively aligned accesses of
23737 // similar size. Return no alias.
23738 if ((OffAlign0
+ *Size0
) <= OffAlign1
|| (OffAlign1
+ *Size1
) <= OffAlign0
)
23742 bool UseAA
= CombinerGlobalAA
.getNumOccurrences() > 0
23744 : DAG
.getSubtarget().useAA();
23746 if (CombinerAAOnlyFunc
.getNumOccurrences() &&
23747 CombinerAAOnlyFunc
!= DAG
.getMachineFunction().getName())
23751 if (UseAA
&& AA
&& MUC0
.MMO
->getValue() && MUC1
.MMO
->getValue() &&
23752 Size0
.hasValue() && Size1
.hasValue()) {
23753 // Use alias analysis information.
23754 int64_t MinOffset
= std::min(SrcValOffset0
, SrcValOffset1
);
23755 int64_t Overlap0
= *Size0
+ SrcValOffset0
- MinOffset
;
23756 int64_t Overlap1
= *Size1
+ SrcValOffset1
- MinOffset
;
23758 MemoryLocation(MUC0
.MMO
->getValue(), Overlap0
,
23759 UseTBAA
? MUC0
.MMO
->getAAInfo() : AAMDNodes()),
23760 MemoryLocation(MUC1
.MMO
->getValue(), Overlap1
,
23761 UseTBAA
? MUC1
.MMO
->getAAInfo() : AAMDNodes())))
23765 // Otherwise we have to assume they alias.
23769 /// Walk up chain skipping non-aliasing memory nodes,
23770 /// looking for aliasing nodes and adding them to the Aliases vector.
23771 void DAGCombiner::GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
23772 SmallVectorImpl
<SDValue
> &Aliases
) {
23773 SmallVector
<SDValue
, 8> Chains
; // List of chains to visit.
23774 SmallPtrSet
<SDNode
*, 16> Visited
; // Visited node set.
23776 // Get alias information for node.
23777 // TODO: relax aliasing for unordered atomics (see D66309)
23778 const bool IsLoad
= isa
<LoadSDNode
>(N
) && cast
<LoadSDNode
>(N
)->isSimple();
23781 Chains
.push_back(OriginalChain
);
23782 unsigned Depth
= 0;
23784 // Attempt to improve chain by a single step
23785 std::function
<bool(SDValue
&)> ImproveChain
= [&](SDValue
&C
) -> bool {
23786 switch (C
.getOpcode()) {
23787 case ISD::EntryToken
:
23788 // No need to mark EntryToken.
23793 // Get alias information for C.
23794 // TODO: Relax aliasing for unordered atomics (see D66309)
23795 bool IsOpLoad
= isa
<LoadSDNode
>(C
.getNode()) &&
23796 cast
<LSBaseSDNode
>(C
.getNode())->isSimple();
23797 if ((IsLoad
&& IsOpLoad
) || !mayAlias(N
, C
.getNode())) {
23798 // Look further up the chain.
23799 C
= C
.getOperand(0);
23802 // Alias, so stop here.
23806 case ISD::CopyFromReg
:
23807 // Always forward past past CopyFromReg.
23808 C
= C
.getOperand(0);
23811 case ISD::LIFETIME_START
:
23812 case ISD::LIFETIME_END
: {
23813 // We can forward past any lifetime start/end that can be proven not to
23814 // alias the memory access.
23815 if (!mayAlias(N
, C
.getNode())) {
23816 // Look further up the chain.
23817 C
= C
.getOperand(0);
23827 // Look at each chain and determine if it is an alias. If so, add it to the
23828 // aliases list. If not, then continue up the chain looking for the next
23830 while (!Chains
.empty()) {
23831 SDValue Chain
= Chains
.pop_back_val();
23833 // Don't bother if we've seen Chain before.
23834 if (!Visited
.insert(Chain
.getNode()).second
)
23837 // For TokenFactor nodes, look at each operand and only continue up the
23838 // chain until we reach the depth limit.
23840 // FIXME: The depth check could be made to return the last non-aliasing
23841 // chain we found before we hit a tokenfactor rather than the original
23843 if (Depth
> TLI
.getGatherAllAliasesMaxDepth()) {
23845 Aliases
.push_back(OriginalChain
);
23849 if (Chain
.getOpcode() == ISD::TokenFactor
) {
23850 // We have to check each of the operands of the token factor for "small"
23851 // token factors, so we queue them up. Adding the operands to the queue
23852 // (stack) in reverse order maintains the original order and increases the
23853 // likelihood that getNode will find a matching token factor (CSE.)
23854 if (Chain
.getNumOperands() > 16) {
23855 Aliases
.push_back(Chain
);
23858 for (unsigned n
= Chain
.getNumOperands(); n
;)
23859 Chains
.push_back(Chain
.getOperand(--n
));
23864 if (ImproveChain(Chain
)) {
23865 // Updated Chain Found, Consider new chain if one exists.
23866 if (Chain
.getNode())
23867 Chains
.push_back(Chain
);
23871 // No Improved Chain Possible, treat as Alias.
23872 Aliases
.push_back(Chain
);
23876 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
23877 /// (aliasing node.)
23878 SDValue
DAGCombiner::FindBetterChain(SDNode
*N
, SDValue OldChain
) {
23879 if (OptLevel
== CodeGenOpt::None
)
23882 // Ops for replacing token factor.
23883 SmallVector
<SDValue
, 8> Aliases
;
23885 // Accumulate all the aliases to this node.
23886 GatherAllAliases(N
, OldChain
, Aliases
);
23888 // If no operands then chain to entry token.
23889 if (Aliases
.size() == 0)
23890 return DAG
.getEntryNode();
23892 // If a single operand then chain to it. We don't need to revisit it.
23893 if (Aliases
.size() == 1)
23896 // Construct a custom tailored token factor.
23897 return DAG
.getTokenFactor(SDLoc(N
), Aliases
);
23901 // TODO: Replace with with std::monostate when we move to C++17.
23902 struct UnitT
{ } Unit
;
23903 bool operator==(const UnitT
&, const UnitT
&) { return true; }
23904 bool operator!=(const UnitT
&, const UnitT
&) { return false; }
23907 // This function tries to collect a bunch of potentially interesting
23908 // nodes to improve the chains of, all at once. This might seem
23909 // redundant, as this function gets called when visiting every store
23910 // node, so why not let the work be done on each store as it's visited?
23912 // I believe this is mainly important because mergeConsecutiveStores
23913 // is unable to deal with merging stores of different sizes, so unless
23914 // we improve the chains of all the potential candidates up-front
23915 // before running mergeConsecutiveStores, it might only see some of
23916 // the nodes that will eventually be candidates, and then not be able
23917 // to go from a partially-merged state to the desired final
23918 // fully-merged state.
23920 bool DAGCombiner::parallelizeChainedStores(StoreSDNode
*St
) {
23921 SmallVector
<StoreSDNode
*, 8> ChainedStores
;
23922 StoreSDNode
*STChain
= St
;
23923 // Intervals records which offsets from BaseIndex have been covered. In
23924 // the common case, every store writes to the immediately previous address
23925 // space and thus merged with the previous interval at insertion time.
23928 llvm::IntervalMap
<int64_t, UnitT
, 8, IntervalMapHalfOpenInfo
<int64_t>>;
23932 // This holds the base pointer, index, and the offset in bytes from the base
23934 const BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
23936 // We must have a base and an offset.
23937 if (!BasePtr
.getBase().getNode())
23940 // Do not handle stores to undef base pointers.
23941 if (BasePtr
.getBase().isUndef())
23944 // Do not handle stores to opaque types
23945 if (St
->getMemoryVT().isZeroSized())
23948 // BaseIndexOffset assumes that offsets are fixed-size, which
23949 // is not valid for scalable vectors where the offsets are
23950 // scaled by `vscale`, so bail out early.
23951 if (St
->getMemoryVT().isScalableVector())
23954 // Add ST's interval.
23955 Intervals
.insert(0, (St
->getMemoryVT().getSizeInBits() + 7) / 8, Unit
);
23957 while (StoreSDNode
*Chain
= dyn_cast
<StoreSDNode
>(STChain
->getChain())) {
23958 if (Chain
->getMemoryVT().isScalableVector())
23961 // If the chain has more than one use, then we can't reorder the mem ops.
23962 if (!SDValue(Chain
, 0)->hasOneUse())
23964 // TODO: Relax for unordered atomics (see D66309)
23965 if (!Chain
->isSimple() || Chain
->isIndexed())
23968 // Find the base pointer and offset for this memory node.
23969 const BaseIndexOffset Ptr
= BaseIndexOffset::match(Chain
, DAG
);
23970 // Check that the base pointer is the same as the original one.
23972 if (!BasePtr
.equalBaseIndex(Ptr
, DAG
, Offset
))
23974 int64_t Length
= (Chain
->getMemoryVT().getSizeInBits() + 7) / 8;
23975 // Make sure we don't overlap with other intervals by checking the ones to
23976 // the left or right before inserting.
23977 auto I
= Intervals
.find(Offset
);
23978 // If there's a next interval, we should end before it.
23979 if (I
!= Intervals
.end() && I
.start() < (Offset
+ Length
))
23981 // If there's a previous interval, we should start after it.
23982 if (I
!= Intervals
.begin() && (--I
).stop() <= Offset
)
23984 Intervals
.insert(Offset
, Offset
+ Length
, Unit
);
23986 ChainedStores
.push_back(Chain
);
23990 // If we didn't find a chained store, exit.
23991 if (ChainedStores
.size() == 0)
23994 // Improve all chained stores (St and ChainedStores members) starting from
23995 // where the store chain ended and return single TokenFactor.
23996 SDValue NewChain
= STChain
->getChain();
23997 SmallVector
<SDValue
, 8> TFOps
;
23998 for (unsigned I
= ChainedStores
.size(); I
;) {
23999 StoreSDNode
*S
= ChainedStores
[--I
];
24000 SDValue BetterChain
= FindBetterChain(S
, NewChain
);
24001 S
= cast
<StoreSDNode
>(DAG
.UpdateNodeOperands(
24002 S
, BetterChain
, S
->getOperand(1), S
->getOperand(2), S
->getOperand(3)));
24003 TFOps
.push_back(SDValue(S
, 0));
24004 ChainedStores
[I
] = S
;
24007 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo.
24008 SDValue BetterChain
= FindBetterChain(St
, NewChain
);
24010 if (St
->isTruncatingStore())
24011 NewST
= DAG
.getTruncStore(BetterChain
, SDLoc(St
), St
->getValue(),
24012 St
->getBasePtr(), St
->getMemoryVT(),
24013 St
->getMemOperand());
24015 NewST
= DAG
.getStore(BetterChain
, SDLoc(St
), St
->getValue(),
24016 St
->getBasePtr(), St
->getMemOperand());
24018 TFOps
.push_back(NewST
);
24020 // If we improved every element of TFOps, then we've lost the dependence on
24021 // NewChain to successors of St and we need to add it back to TFOps. Do so at
24022 // the beginning to keep relative order consistent with FindBetterChains.
24023 auto hasImprovedChain
= [&](SDValue ST
) -> bool {
24024 return ST
->getOperand(0) != NewChain
;
24026 bool AddNewChain
= llvm::all_of(TFOps
, hasImprovedChain
);
24028 TFOps
.insert(TFOps
.begin(), NewChain
);
24030 SDValue TF
= DAG
.getTokenFactor(SDLoc(STChain
), TFOps
);
24033 // Add TF and its operands to the worklist.
24034 AddToWorklist(TF
.getNode());
24035 for (const SDValue
&Op
: TF
->ops())
24036 AddToWorklist(Op
.getNode());
24037 AddToWorklist(STChain
);
24041 bool DAGCombiner::findBetterNeighborChains(StoreSDNode
*St
) {
24042 if (OptLevel
== CodeGenOpt::None
)
24045 const BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
24047 // We must have a base and an offset.
24048 if (!BasePtr
.getBase().getNode())
24051 // Do not handle stores to undef base pointers.
24052 if (BasePtr
.getBase().isUndef())
24055 // Directly improve a chain of disjoint stores starting at St.
24056 if (parallelizeChainedStores(St
))
24059 // Improve St's Chain..
24060 SDValue BetterChain
= FindBetterChain(St
, St
->getChain());
24061 if (St
->getChain() != BetterChain
) {
24062 replaceStoreChain(St
, BetterChain
);
24068 /// This is the entry point for the file.
24069 void SelectionDAG::Combine(CombineLevel Level
, AliasAnalysis
*AA
,
24070 CodeGenOpt::Level OptLevel
) {
24071 /// This is the main entry point to this class.
24072 DAGCombiner(*this, AA
, OptLevel
).Run(Level
);