[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / CodeGen / SelectionDAG / FunctionLoweringInfo.cpp
blob85c6eca5775e68cc1fd75e05e6db7f38c9785359
1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating functions from LLVM IR into
10 // Machine IR.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/FunctionLoweringInfo.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/CodeGen/WasmEHFuncInfo.h"
28 #include "llvm/CodeGen/WinEHFuncInfo.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Target/TargetOptions.h"
41 #include <algorithm>
42 using namespace llvm;
44 #define DEBUG_TYPE "function-lowering-info"
46 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
47 /// PHI nodes or outside of the basic block that defines it, or used by a
48 /// switch or atomic instruction, which may expand to multiple basic blocks.
49 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
50 if (I->use_empty()) return false;
51 if (isa<PHINode>(I)) return true;
52 const BasicBlock *BB = I->getParent();
53 for (const User *U : I->users())
54 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
55 return true;
57 return false;
60 static ISD::NodeType getPreferredExtendForValue(const Value *V) {
61 // For the users of the source value being used for compare instruction, if
62 // the number of signed predicate is greater than unsigned predicate, we
63 // prefer to use SIGN_EXTEND.
65 // With this optimization, we would be able to reduce some redundant sign or
66 // zero extension instruction, and eventually more machine CSE opportunities
67 // can be exposed.
68 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
69 unsigned NumOfSigned = 0, NumOfUnsigned = 0;
70 for (const User *U : V->users()) {
71 if (const auto *CI = dyn_cast<CmpInst>(U)) {
72 NumOfSigned += CI->isSigned();
73 NumOfUnsigned += CI->isUnsigned();
76 if (NumOfSigned > NumOfUnsigned)
77 ExtendKind = ISD::SIGN_EXTEND;
79 return ExtendKind;
82 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
83 SelectionDAG *DAG) {
84 Fn = &fn;
85 MF = &mf;
86 TLI = MF->getSubtarget().getTargetLowering();
87 RegInfo = &MF->getRegInfo();
88 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
89 DA = DAG->getDivergenceAnalysis();
91 // Check whether the function can return without sret-demotion.
92 SmallVector<ISD::OutputArg, 4> Outs;
93 CallingConv::ID CC = Fn->getCallingConv();
95 GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
96 mf.getDataLayout());
97 CanLowerReturn =
98 TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());
100 // If this personality uses funclets, we need to do a bit more work.
101 DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
102 EHPersonality Personality = classifyEHPersonality(
103 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
104 if (isFuncletEHPersonality(Personality)) {
105 // Calculate state numbers if we haven't already.
106 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
107 if (Personality == EHPersonality::MSVC_CXX)
108 calculateWinCXXEHStateNumbers(&fn, EHInfo);
109 else if (isAsynchronousEHPersonality(Personality))
110 calculateSEHStateNumbers(&fn, EHInfo);
111 else if (Personality == EHPersonality::CoreCLR)
112 calculateClrEHStateNumbers(&fn, EHInfo);
114 // Map all BB references in the WinEH data to MBBs.
115 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
116 for (WinEHHandlerType &H : TBME.HandlerArray) {
117 if (const AllocaInst *AI = H.CatchObj.Alloca)
118 CatchObjects.insert({AI, {}}).first->second.push_back(
119 &H.CatchObj.FrameIndex);
120 else
121 H.CatchObj.FrameIndex = INT_MAX;
125 if (Personality == EHPersonality::Wasm_CXX) {
126 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
127 calculateWasmEHInfo(&fn, EHInfo);
130 // Initialize the mapping of values to registers. This is only set up for
131 // instruction values that are used outside of the block that defines
132 // them.
133 const Align StackAlign = TFI->getStackAlign();
134 for (const BasicBlock &BB : *Fn) {
135 for (const Instruction &I : BB) {
136 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
137 Type *Ty = AI->getAllocatedType();
138 Align TyPrefAlign = MF->getDataLayout().getPrefTypeAlign(Ty);
139 // The "specified" alignment is the alignment written on the alloca,
140 // or the preferred alignment of the type if none is specified.
142 // (Unspecified alignment on allocas will be going away soon.)
143 Align SpecifiedAlign = AI->getAlign();
145 // If the preferred alignment of the type is higher than the specified
146 // alignment of the alloca, promote the alignment, as long as it doesn't
147 // require realigning the stack.
149 // FIXME: Do we really want to second-guess the IR in isel?
150 Align Alignment =
151 std::max(std::min(TyPrefAlign, StackAlign), SpecifiedAlign);
153 // Static allocas can be folded into the initial stack frame
154 // adjustment. For targets that don't realign the stack, don't
155 // do this if there is an extra alignment requirement.
156 if (AI->isStaticAlloca() &&
157 (TFI->isStackRealignable() || (Alignment <= StackAlign))) {
158 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
159 uint64_t TySize =
160 MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinSize();
162 TySize *= CUI->getZExtValue(); // Get total allocated size.
163 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
164 int FrameIndex = INT_MAX;
165 auto Iter = CatchObjects.find(AI);
166 if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
167 FrameIndex = MF->getFrameInfo().CreateFixedObject(
168 TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true);
169 MF->getFrameInfo().setObjectAlignment(FrameIndex, Alignment);
170 } else {
171 FrameIndex = MF->getFrameInfo().CreateStackObject(TySize, Alignment,
172 false, AI);
175 // Scalable vectors may need a special StackID to distinguish
176 // them from other (fixed size) stack objects.
177 if (isa<ScalableVectorType>(Ty))
178 MF->getFrameInfo().setStackID(FrameIndex,
179 TFI->getStackIDForScalableVectors());
181 StaticAllocaMap[AI] = FrameIndex;
182 // Update the catch handler information.
183 if (Iter != CatchObjects.end()) {
184 for (int *CatchObjPtr : Iter->second)
185 *CatchObjPtr = FrameIndex;
187 } else {
188 // FIXME: Overaligned static allocas should be grouped into
189 // a single dynamic allocation instead of using a separate
190 // stack allocation for each one.
191 // Inform the Frame Information that we have variable-sized objects.
192 MF->getFrameInfo().CreateVariableSizedObject(
193 Alignment <= StackAlign ? Align(1) : Alignment, AI);
195 } else if (auto *Call = dyn_cast<CallBase>(&I)) {
196 // Look for inline asm that clobbers the SP register.
197 if (Call->isInlineAsm()) {
198 Register SP = TLI->getStackPointerRegisterToSaveRestore();
199 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
200 std::vector<TargetLowering::AsmOperandInfo> Ops =
201 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI,
202 *Call);
203 for (TargetLowering::AsmOperandInfo &Op : Ops) {
204 if (Op.Type == InlineAsm::isClobber) {
205 // Clobbers don't have SDValue operands, hence SDValue().
206 TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
207 std::pair<unsigned, const TargetRegisterClass *> PhysReg =
208 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
209 Op.ConstraintVT);
210 if (PhysReg.first == SP)
211 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
215 // Look for calls to the @llvm.va_start intrinsic. We can omit some
216 // prologue boilerplate for variadic functions that don't examine their
217 // arguments.
218 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
219 if (II->getIntrinsicID() == Intrinsic::vastart)
220 MF->getFrameInfo().setHasVAStart(true);
223 // If we have a musttail call in a variadic function, we need to ensure
224 // we forward implicit register parameters.
225 if (const auto *CI = dyn_cast<CallInst>(&I)) {
226 if (CI->isMustTailCall() && Fn->isVarArg())
227 MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
231 // Mark values used outside their block as exported, by allocating
232 // a virtual register for them.
233 if (isUsedOutsideOfDefiningBlock(&I))
234 if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
235 InitializeRegForValue(&I);
237 // Decide the preferred extend type for a value.
238 PreferredExtendType[&I] = getPreferredExtendForValue(&I);
242 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
243 // also creates the initial PHI MachineInstrs, though none of the input
244 // operands are populated.
245 for (const BasicBlock &BB : *Fn) {
246 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
247 // are really data, and no instructions can live here.
248 if (BB.isEHPad()) {
249 const Instruction *PadInst = BB.getFirstNonPHI();
250 // If this is a non-landingpad EH pad, mark this function as using
251 // funclets.
252 // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
253 // setting this in such cases in order to improve frame layout.
254 if (!isa<LandingPadInst>(PadInst)) {
255 MF->setHasEHScopes(true);
256 MF->setHasEHFunclets(true);
257 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
259 if (isa<CatchSwitchInst>(PadInst)) {
260 assert(&*BB.begin() == PadInst &&
261 "WinEHPrepare failed to remove PHIs from imaginary BBs");
262 continue;
264 if (isa<FuncletPadInst>(PadInst))
265 assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
268 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
269 MBBMap[&BB] = MBB;
270 MF->push_back(MBB);
272 // Transfer the address-taken flag. This is necessary because there could
273 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
274 // the first one should be marked.
275 if (BB.hasAddressTaken())
276 MBB->setHasAddressTaken();
278 // Mark landing pad blocks.
279 if (BB.isEHPad())
280 MBB->setIsEHPad();
282 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
283 // appropriate.
284 for (const PHINode &PN : BB.phis()) {
285 if (PN.use_empty())
286 continue;
288 // Skip empty types
289 if (PN.getType()->isEmptyTy())
290 continue;
292 DebugLoc DL = PN.getDebugLoc();
293 unsigned PHIReg = ValueMap[&PN];
294 assert(PHIReg && "PHI node does not have an assigned virtual register!");
296 SmallVector<EVT, 4> ValueVTs;
297 ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
298 for (EVT VT : ValueVTs) {
299 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
300 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
301 for (unsigned i = 0; i != NumRegisters; ++i)
302 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
303 PHIReg += NumRegisters;
308 if (isFuncletEHPersonality(Personality)) {
309 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
311 // Map all BB references in the WinEH data to MBBs.
312 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
313 for (WinEHHandlerType &H : TBME.HandlerArray) {
314 if (H.Handler)
315 H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
318 for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
319 if (UME.Cleanup)
320 UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
321 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
322 const auto *BB = UME.Handler.get<const BasicBlock *>();
323 UME.Handler = MBBMap[BB];
325 for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
326 const auto *BB = CME.Handler.get<const BasicBlock *>();
327 CME.Handler = MBBMap[BB];
331 else if (Personality == EHPersonality::Wasm_CXX) {
332 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
333 // Map all BB references in the Wasm EH data to MBBs.
334 DenseMap<BBOrMBB, BBOrMBB> SrcToUnwindDest;
335 for (auto &KV : EHInfo.SrcToUnwindDest) {
336 const auto *Src = KV.first.get<const BasicBlock *>();
337 const auto *Dest = KV.second.get<const BasicBlock *>();
338 SrcToUnwindDest[MBBMap[Src]] = MBBMap[Dest];
340 EHInfo.SrcToUnwindDest = std::move(SrcToUnwindDest);
341 DenseMap<BBOrMBB, SmallPtrSet<BBOrMBB, 4>> UnwindDestToSrcs;
342 for (auto &KV : EHInfo.UnwindDestToSrcs) {
343 const auto *Dest = KV.first.get<const BasicBlock *>();
344 UnwindDestToSrcs[MBBMap[Dest]] = SmallPtrSet<BBOrMBB, 4>();
345 for (const auto P : KV.second)
346 UnwindDestToSrcs[MBBMap[Dest]].insert(
347 MBBMap[P.get<const BasicBlock *>()]);
349 EHInfo.UnwindDestToSrcs = std::move(UnwindDestToSrcs);
353 /// clear - Clear out all the function-specific state. This returns this
354 /// FunctionLoweringInfo to an empty state, ready to be used for a
355 /// different function.
356 void FunctionLoweringInfo::clear() {
357 MBBMap.clear();
358 ValueMap.clear();
359 VirtReg2Value.clear();
360 StaticAllocaMap.clear();
361 LiveOutRegInfo.clear();
362 VisitedBBs.clear();
363 ArgDbgValues.clear();
364 DescribedArgs.clear();
365 ByValArgFrameIndexMap.clear();
366 RegFixups.clear();
367 RegsWithFixups.clear();
368 StatepointStackSlots.clear();
369 StatepointRelocationMaps.clear();
370 PreferredExtendType.clear();
373 /// CreateReg - Allocate a single virtual register for the given type.
374 Register FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) {
375 return RegInfo->createVirtualRegister(
376 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT, isDivergent));
379 /// CreateRegs - Allocate the appropriate number of virtual registers of
380 /// the correctly promoted or expanded types. Assign these registers
381 /// consecutive vreg numbers and return the first assigned number.
383 /// In the case that the given value has struct or array type, this function
384 /// will assign registers for each member or element.
386 Register FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) {
387 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
389 SmallVector<EVT, 4> ValueVTs;
390 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
392 Register FirstReg;
393 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
394 EVT ValueVT = ValueVTs[Value];
395 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
397 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
398 for (unsigned i = 0; i != NumRegs; ++i) {
399 Register R = CreateReg(RegisterVT, isDivergent);
400 if (!FirstReg) FirstReg = R;
403 return FirstReg;
406 Register FunctionLoweringInfo::CreateRegs(const Value *V) {
407 return CreateRegs(V->getType(), DA && DA->isDivergent(V) &&
408 !TLI->requiresUniformRegister(*MF, V));
411 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
412 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
413 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
414 /// the larger bit width by zero extension. The bit width must be no smaller
415 /// than the LiveOutInfo's existing bit width.
416 const FunctionLoweringInfo::LiveOutInfo *
417 FunctionLoweringInfo::GetLiveOutRegInfo(Register Reg, unsigned BitWidth) {
418 if (!LiveOutRegInfo.inBounds(Reg))
419 return nullptr;
421 LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
422 if (!LOI->IsValid)
423 return nullptr;
425 if (BitWidth > LOI->Known.getBitWidth()) {
426 LOI->NumSignBits = 1;
427 LOI->Known = LOI->Known.anyext(BitWidth);
430 return LOI;
433 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
434 /// register based on the LiveOutInfo of its operands.
435 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
436 Type *Ty = PN->getType();
437 if (!Ty->isIntegerTy() || Ty->isVectorTy())
438 return;
440 SmallVector<EVT, 1> ValueVTs;
441 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
442 assert(ValueVTs.size() == 1 &&
443 "PHIs with non-vector integer types should have a single VT.");
444 EVT IntVT = ValueVTs[0];
446 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
447 return;
448 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
449 unsigned BitWidth = IntVT.getSizeInBits();
451 Register DestReg = ValueMap[PN];
452 if (!Register::isVirtualRegister(DestReg))
453 return;
454 LiveOutRegInfo.grow(DestReg);
455 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
457 Value *V = PN->getIncomingValue(0);
458 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
459 DestLOI.NumSignBits = 1;
460 DestLOI.Known = KnownBits(BitWidth);
461 return;
464 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
465 APInt Val = CI->getValue().zextOrTrunc(BitWidth);
466 DestLOI.NumSignBits = Val.getNumSignBits();
467 DestLOI.Known = KnownBits::makeConstant(Val);
468 } else {
469 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
470 "CopyToReg node was created.");
471 Register SrcReg = ValueMap[V];
472 if (!Register::isVirtualRegister(SrcReg)) {
473 DestLOI.IsValid = false;
474 return;
476 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
477 if (!SrcLOI) {
478 DestLOI.IsValid = false;
479 return;
481 DestLOI = *SrcLOI;
484 assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
485 DestLOI.Known.One.getBitWidth() == BitWidth &&
486 "Masks should have the same bit width as the type.");
488 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
489 Value *V = PN->getIncomingValue(i);
490 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
491 DestLOI.NumSignBits = 1;
492 DestLOI.Known = KnownBits(BitWidth);
493 return;
496 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
497 APInt Val = CI->getValue().zextOrTrunc(BitWidth);
498 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
499 DestLOI.Known.Zero &= ~Val;
500 DestLOI.Known.One &= Val;
501 continue;
504 assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
505 "its CopyToReg node was created.");
506 Register SrcReg = ValueMap[V];
507 if (!SrcReg.isVirtual()) {
508 DestLOI.IsValid = false;
509 return;
511 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
512 if (!SrcLOI) {
513 DestLOI.IsValid = false;
514 return;
516 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
517 DestLOI.Known = KnownBits::commonBits(DestLOI.Known, SrcLOI->Known);
521 /// setArgumentFrameIndex - Record frame index for the byval
522 /// argument. This overrides previous frame index entry for this argument,
523 /// if any.
524 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
525 int FI) {
526 ByValArgFrameIndexMap[A] = FI;
529 /// getArgumentFrameIndex - Get frame index for the byval argument.
530 /// If the argument does not have any assigned frame index then 0 is
531 /// returned.
532 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
533 auto I = ByValArgFrameIndexMap.find(A);
534 if (I != ByValArgFrameIndexMap.end())
535 return I->second;
536 LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
537 return INT_MAX;
540 Register FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
541 const Value *CPI, const TargetRegisterClass *RC) {
542 MachineRegisterInfo &MRI = MF->getRegInfo();
543 auto I = CatchPadExceptionPointers.insert({CPI, 0});
544 Register &VReg = I.first->second;
545 if (I.second)
546 VReg = MRI.createVirtualRegister(RC);
547 assert(VReg && "null vreg in exception pointer table!");
548 return VReg;
551 const Value *
552 FunctionLoweringInfo::getValueFromVirtualReg(Register Vreg) {
553 if (VirtReg2Value.empty()) {
554 SmallVector<EVT, 4> ValueVTs;
555 for (auto &P : ValueMap) {
556 ValueVTs.clear();
557 ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(),
558 P.first->getType(), ValueVTs);
559 unsigned Reg = P.second;
560 for (EVT VT : ValueVTs) {
561 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
562 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
563 VirtReg2Value[Reg++] = P.first;
567 return VirtReg2Value.lookup(Vreg);