1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements the Emit routines for the SelectionDAG class, which creates
10 // MachineInstrs based on the decisions of the SelectionDAG instruction
13 //===----------------------------------------------------------------------===//
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/StackMaps.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DebugInfo.h"
29 #include "llvm/IR/PseudoProbe.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
36 #define DEBUG_TYPE "instr-emitter"
38 /// MinRCSize - Smallest register class we allow when constraining virtual
39 /// registers. If satisfying all register class constraints would require
40 /// using a smaller register class, emit a COPY to a new virtual register
42 const unsigned MinRCSize
= 4;
44 /// CountResults - The results of target nodes have register or immediate
45 /// operands first, then an optional chain, and optional glue operands (which do
46 /// not go into the resulting MachineInstr).
47 unsigned InstrEmitter::CountResults(SDNode
*Node
) {
48 unsigned N
= Node
->getNumValues();
49 while (N
&& Node
->getValueType(N
- 1) == MVT::Glue
)
51 if (N
&& Node
->getValueType(N
- 1) == MVT::Other
)
52 --N
; // Skip over chain result.
56 /// countOperands - The inputs to target nodes have any actual inputs first,
57 /// followed by an optional chain operand, then an optional glue operand.
58 /// Compute the number of actual operands that will go into the resulting
61 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
62 /// the chain and glue. These operands may be implicit on the machine instr.
63 static unsigned countOperands(SDNode
*Node
, unsigned NumExpUses
,
64 unsigned &NumImpUses
) {
65 unsigned N
= Node
->getNumOperands();
66 while (N
&& Node
->getOperand(N
- 1).getValueType() == MVT::Glue
)
68 if (N
&& Node
->getOperand(N
- 1).getValueType() == MVT::Other
)
69 --N
; // Ignore chain if it exists.
71 // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
72 NumImpUses
= N
- NumExpUses
;
73 for (unsigned I
= N
; I
> NumExpUses
; --I
) {
74 if (isa
<RegisterMaskSDNode
>(Node
->getOperand(I
- 1)))
76 if (RegisterSDNode
*RN
= dyn_cast
<RegisterSDNode
>(Node
->getOperand(I
- 1)))
77 if (Register::isPhysicalRegister(RN
->getReg()))
86 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
87 /// implicit physical register output.
89 EmitCopyFromReg(SDNode
*Node
, unsigned ResNo
, bool IsClone
, bool IsCloned
,
90 Register SrcReg
, DenseMap
<SDValue
, Register
> &VRBaseMap
) {
92 if (SrcReg
.isVirtual()) {
93 // Just use the input register directly!
94 SDValue
Op(Node
, ResNo
);
97 bool isNew
= VRBaseMap
.insert(std::make_pair(Op
, SrcReg
)).second
;
98 (void)isNew
; // Silence compiler warning.
99 assert(isNew
&& "Node emitted out of order - early");
103 // If the node is only used by a CopyToReg and the dest reg is a vreg, use
104 // the CopyToReg'd destination register instead of creating a new vreg.
105 bool MatchReg
= true;
106 const TargetRegisterClass
*UseRC
= nullptr;
107 MVT VT
= Node
->getSimpleValueType(ResNo
);
109 // Stick to the preferred register classes for legal types.
110 if (TLI
->isTypeLegal(VT
))
111 UseRC
= TLI
->getRegClassFor(VT
, Node
->isDivergent());
113 if (!IsClone
&& !IsCloned
)
114 for (SDNode
*User
: Node
->uses()) {
116 if (User
->getOpcode() == ISD::CopyToReg
&&
117 User
->getOperand(2).getNode() == Node
&&
118 User
->getOperand(2).getResNo() == ResNo
) {
119 Register DestReg
= cast
<RegisterSDNode
>(User
->getOperand(1))->getReg();
120 if (DestReg
.isVirtual()) {
123 } else if (DestReg
!= SrcReg
)
126 for (unsigned i
= 0, e
= User
->getNumOperands(); i
!= e
; ++i
) {
127 SDValue Op
= User
->getOperand(i
);
128 if (Op
.getNode() != Node
|| Op
.getResNo() != ResNo
)
130 MVT VT
= Node
->getSimpleValueType(Op
.getResNo());
131 if (VT
== MVT::Other
|| VT
== MVT::Glue
)
134 if (User
->isMachineOpcode()) {
135 const MCInstrDesc
&II
= TII
->get(User
->getMachineOpcode());
136 const TargetRegisterClass
*RC
= nullptr;
137 if (i
+II
.getNumDefs() < II
.getNumOperands()) {
138 RC
= TRI
->getAllocatableClass(
139 TII
->getRegClass(II
, i
+II
.getNumDefs(), TRI
, *MF
));
144 const TargetRegisterClass
*ComRC
=
145 TRI
->getCommonSubClass(UseRC
, RC
);
146 // If multiple uses expect disjoint register classes, we emit
147 // copies in AddRegisterOperand.
159 const TargetRegisterClass
*SrcRC
= nullptr, *DstRC
= nullptr;
160 SrcRC
= TRI
->getMinimalPhysRegClass(SrcReg
, VT
);
162 // Figure out the register class to create for the destreg.
164 DstRC
= MRI
->getRegClass(VRBase
);
166 assert(TRI
->isTypeLegalForClass(*UseRC
, VT
) &&
167 "Incompatible phys register def and uses!");
172 // If all uses are reading from the src physical register and copying the
173 // register is either impossible or very expensive, then don't create a copy.
174 if (MatchReg
&& SrcRC
->getCopyCost() < 0) {
177 // Create the reg, emit the copy.
178 VRBase
= MRI
->createVirtualRegister(DstRC
);
179 BuildMI(*MBB
, InsertPos
, Node
->getDebugLoc(), TII
->get(TargetOpcode::COPY
),
180 VRBase
).addReg(SrcReg
);
183 SDValue
Op(Node
, ResNo
);
186 bool isNew
= VRBaseMap
.insert(std::make_pair(Op
, VRBase
)).second
;
187 (void)isNew
; // Silence compiler warning.
188 assert(isNew
&& "Node emitted out of order - early");
191 void InstrEmitter::CreateVirtualRegisters(SDNode
*Node
,
192 MachineInstrBuilder
&MIB
,
193 const MCInstrDesc
&II
,
194 bool IsClone
, bool IsCloned
,
195 DenseMap
<SDValue
, Register
> &VRBaseMap
) {
196 assert(Node
->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF
&&
197 "IMPLICIT_DEF should have been handled as a special case elsewhere!");
199 unsigned NumResults
= CountResults(Node
);
200 bool HasVRegVariadicDefs
= !MF
->getTarget().usesPhysRegsForValues() &&
201 II
.isVariadic() && II
.variadicOpsAreDefs();
202 unsigned NumVRegs
= HasVRegVariadicDefs
? NumResults
: II
.getNumDefs();
203 if (Node
->getMachineOpcode() == TargetOpcode::STATEPOINT
)
204 NumVRegs
= NumResults
;
205 for (unsigned i
= 0; i
< NumVRegs
; ++i
) {
206 // If the specific node value is only used by a CopyToReg and the dest reg
207 // is a vreg in the same register class, use the CopyToReg'd destination
208 // register instead of creating a new vreg.
210 const TargetRegisterClass
*RC
=
211 TRI
->getAllocatableClass(TII
->getRegClass(II
, i
, TRI
, *MF
));
212 // Always let the value type influence the used register class. The
213 // constraints on the instruction may be too lax to represent the value
214 // type correctly. For example, a 64-bit float (X86::FR64) can't live in
215 // the 32-bit float super-class (X86::FR32).
216 if (i
< NumResults
&& TLI
->isTypeLegal(Node
->getSimpleValueType(i
))) {
217 const TargetRegisterClass
*VTRC
= TLI
->getRegClassFor(
218 Node
->getSimpleValueType(i
),
219 (Node
->isDivergent() || (RC
&& TRI
->isDivergentRegClass(RC
))));
221 VTRC
= TRI
->getCommonSubClass(RC
, VTRC
);
226 if (II
.OpInfo
!= nullptr && II
.OpInfo
[i
].isOptionalDef()) {
227 // Optional def must be a physical register.
228 VRBase
= cast
<RegisterSDNode
>(Node
->getOperand(i
-NumResults
))->getReg();
229 assert(VRBase
.isPhysical());
230 MIB
.addReg(VRBase
, RegState::Define
);
233 if (!VRBase
&& !IsClone
&& !IsCloned
)
234 for (SDNode
*User
: Node
->uses()) {
235 if (User
->getOpcode() == ISD::CopyToReg
&&
236 User
->getOperand(2).getNode() == Node
&&
237 User
->getOperand(2).getResNo() == i
) {
238 unsigned Reg
= cast
<RegisterSDNode
>(User
->getOperand(1))->getReg();
239 if (Register::isVirtualRegister(Reg
)) {
240 const TargetRegisterClass
*RegRC
= MRI
->getRegClass(Reg
);
243 MIB
.addReg(VRBase
, RegState::Define
);
250 // Create the result registers for this node and add the result regs to
251 // the machine instruction.
253 assert(RC
&& "Isn't a register operand!");
254 VRBase
= MRI
->createVirtualRegister(RC
);
255 MIB
.addReg(VRBase
, RegState::Define
);
258 // If this def corresponds to a result of the SDNode insert the VRBase into
260 if (i
< NumResults
) {
264 bool isNew
= VRBaseMap
.insert(std::make_pair(Op
, VRBase
)).second
;
265 (void)isNew
; // Silence compiler warning.
266 assert(isNew
&& "Node emitted out of order - early");
271 /// getVR - Return the virtual register corresponding to the specified result
272 /// of the specified node.
273 Register
InstrEmitter::getVR(SDValue Op
,
274 DenseMap
<SDValue
, Register
> &VRBaseMap
) {
275 if (Op
.isMachineOpcode() &&
276 Op
.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF
) {
277 // Add an IMPLICIT_DEF instruction before every use.
278 // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
279 // does not include operand register class info.
280 const TargetRegisterClass
*RC
= TLI
->getRegClassFor(
281 Op
.getSimpleValueType(), Op
.getNode()->isDivergent());
282 Register VReg
= MRI
->createVirtualRegister(RC
);
283 BuildMI(*MBB
, InsertPos
, Op
.getDebugLoc(),
284 TII
->get(TargetOpcode::IMPLICIT_DEF
), VReg
);
288 DenseMap
<SDValue
, Register
>::iterator I
= VRBaseMap
.find(Op
);
289 assert(I
!= VRBaseMap
.end() && "Node emitted out of order - late");
294 /// AddRegisterOperand - Add the specified register as an operand to the
295 /// specified machine instr. Insert register copies if the register is
296 /// not in the required register class.
298 InstrEmitter::AddRegisterOperand(MachineInstrBuilder
&MIB
,
301 const MCInstrDesc
*II
,
302 DenseMap
<SDValue
, Register
> &VRBaseMap
,
303 bool IsDebug
, bool IsClone
, bool IsCloned
) {
304 assert(Op
.getValueType() != MVT::Other
&&
305 Op
.getValueType() != MVT::Glue
&&
306 "Chain and glue operands should occur at end of operand list!");
307 // Get/emit the operand.
308 Register VReg
= getVR(Op
, VRBaseMap
);
310 const MCInstrDesc
&MCID
= MIB
->getDesc();
311 bool isOptDef
= IIOpNum
< MCID
.getNumOperands() &&
312 MCID
.OpInfo
[IIOpNum
].isOptionalDef();
314 // If the instruction requires a register in a different class, create
315 // a new virtual register and copy the value into it, but first attempt to
316 // shrink VReg's register class within reason. For example, if VReg == GR32
317 // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
319 const TargetRegisterClass
*OpRC
= nullptr;
320 if (IIOpNum
< II
->getNumOperands())
321 OpRC
= TII
->getRegClass(*II
, IIOpNum
, TRI
, *MF
);
324 const TargetRegisterClass
*ConstrainedRC
325 = MRI
->constrainRegClass(VReg
, OpRC
, MinRCSize
);
326 if (!ConstrainedRC
) {
327 OpRC
= TRI
->getAllocatableClass(OpRC
);
328 assert(OpRC
&& "Constraints cannot be fulfilled for allocation");
329 Register NewVReg
= MRI
->createVirtualRegister(OpRC
);
330 BuildMI(*MBB
, InsertPos
, Op
.getNode()->getDebugLoc(),
331 TII
->get(TargetOpcode::COPY
), NewVReg
).addReg(VReg
);
334 assert(ConstrainedRC
->isAllocatable() &&
335 "Constraining an allocatable VReg produced an unallocatable class?");
340 // If this value has only one use, that use is a kill. This is a
341 // conservative approximation. InstrEmitter does trivial coalescing
342 // with CopyFromReg nodes, so don't emit kill flags for them.
343 // Avoid kill flags on Schedule cloned nodes, since there will be
345 // Tied operands are never killed, so we need to check that. And that
346 // means we need to determine the index of the operand.
347 bool isKill
= Op
.hasOneUse() &&
348 Op
.getNode()->getOpcode() != ISD::CopyFromReg
&&
350 !(IsClone
|| IsCloned
);
352 unsigned Idx
= MIB
->getNumOperands();
354 MIB
->getOperand(Idx
-1).isReg() &&
355 MIB
->getOperand(Idx
-1).isImplicit())
357 bool isTied
= MCID
.getOperandConstraint(Idx
, MCOI::TIED_TO
) != -1;
362 MIB
.addReg(VReg
, getDefRegState(isOptDef
) | getKillRegState(isKill
) |
363 getDebugRegState(IsDebug
));
366 /// AddOperand - Add the specified operand to the specified machine instr. II
367 /// specifies the instruction information for the node, and IIOpNum is the
368 /// operand number (in the II) that we are adding.
369 void InstrEmitter::AddOperand(MachineInstrBuilder
&MIB
,
372 const MCInstrDesc
*II
,
373 DenseMap
<SDValue
, Register
> &VRBaseMap
,
374 bool IsDebug
, bool IsClone
, bool IsCloned
) {
375 if (Op
.isMachineOpcode()) {
376 AddRegisterOperand(MIB
, Op
, IIOpNum
, II
, VRBaseMap
,
377 IsDebug
, IsClone
, IsCloned
);
378 } else if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
379 MIB
.addImm(C
->getSExtValue());
380 } else if (ConstantFPSDNode
*F
= dyn_cast
<ConstantFPSDNode
>(Op
)) {
381 MIB
.addFPImm(F
->getConstantFPValue());
382 } else if (RegisterSDNode
*R
= dyn_cast
<RegisterSDNode
>(Op
)) {
383 Register VReg
= R
->getReg();
384 MVT OpVT
= Op
.getSimpleValueType();
385 const TargetRegisterClass
*IIRC
=
386 II
? TRI
->getAllocatableClass(TII
->getRegClass(*II
, IIOpNum
, TRI
, *MF
))
388 const TargetRegisterClass
*OpRC
=
389 TLI
->isTypeLegal(OpVT
)
390 ? TLI
->getRegClassFor(OpVT
,
391 Op
.getNode()->isDivergent() ||
392 (IIRC
&& TRI
->isDivergentRegClass(IIRC
)))
395 if (OpRC
&& IIRC
&& OpRC
!= IIRC
&& Register::isVirtualRegister(VReg
)) {
396 Register NewVReg
= MRI
->createVirtualRegister(IIRC
);
397 BuildMI(*MBB
, InsertPos
, Op
.getNode()->getDebugLoc(),
398 TII
->get(TargetOpcode::COPY
), NewVReg
).addReg(VReg
);
401 // Turn additional physreg operands into implicit uses on non-variadic
402 // instructions. This is used by call and return instructions passing
403 // arguments in registers.
404 bool Imp
= II
&& (IIOpNum
>= II
->getNumOperands() && !II
->isVariadic());
405 MIB
.addReg(VReg
, getImplRegState(Imp
));
406 } else if (RegisterMaskSDNode
*RM
= dyn_cast
<RegisterMaskSDNode
>(Op
)) {
407 MIB
.addRegMask(RM
->getRegMask());
408 } else if (GlobalAddressSDNode
*TGA
= dyn_cast
<GlobalAddressSDNode
>(Op
)) {
409 MIB
.addGlobalAddress(TGA
->getGlobal(), TGA
->getOffset(),
410 TGA
->getTargetFlags());
411 } else if (BasicBlockSDNode
*BBNode
= dyn_cast
<BasicBlockSDNode
>(Op
)) {
412 MIB
.addMBB(BBNode
->getBasicBlock());
413 } else if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Op
)) {
414 MIB
.addFrameIndex(FI
->getIndex());
415 } else if (JumpTableSDNode
*JT
= dyn_cast
<JumpTableSDNode
>(Op
)) {
416 MIB
.addJumpTableIndex(JT
->getIndex(), JT
->getTargetFlags());
417 } else if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(Op
)) {
418 int Offset
= CP
->getOffset();
419 Align Alignment
= CP
->getAlign();
422 MachineConstantPool
*MCP
= MF
->getConstantPool();
423 if (CP
->isMachineConstantPoolEntry())
424 Idx
= MCP
->getConstantPoolIndex(CP
->getMachineCPVal(), Alignment
);
426 Idx
= MCP
->getConstantPoolIndex(CP
->getConstVal(), Alignment
);
427 MIB
.addConstantPoolIndex(Idx
, Offset
, CP
->getTargetFlags());
428 } else if (ExternalSymbolSDNode
*ES
= dyn_cast
<ExternalSymbolSDNode
>(Op
)) {
429 MIB
.addExternalSymbol(ES
->getSymbol(), ES
->getTargetFlags());
430 } else if (auto *SymNode
= dyn_cast
<MCSymbolSDNode
>(Op
)) {
431 MIB
.addSym(SymNode
->getMCSymbol());
432 } else if (BlockAddressSDNode
*BA
= dyn_cast
<BlockAddressSDNode
>(Op
)) {
433 MIB
.addBlockAddress(BA
->getBlockAddress(),
435 BA
->getTargetFlags());
436 } else if (TargetIndexSDNode
*TI
= dyn_cast
<TargetIndexSDNode
>(Op
)) {
437 MIB
.addTargetIndex(TI
->getIndex(), TI
->getOffset(), TI
->getTargetFlags());
439 assert(Op
.getValueType() != MVT::Other
&&
440 Op
.getValueType() != MVT::Glue
&&
441 "Chain and glue operands should occur at end of operand list!");
442 AddRegisterOperand(MIB
, Op
, IIOpNum
, II
, VRBaseMap
,
443 IsDebug
, IsClone
, IsCloned
);
447 Register
InstrEmitter::ConstrainForSubReg(Register VReg
, unsigned SubIdx
,
448 MVT VT
, bool isDivergent
, const DebugLoc
&DL
) {
449 const TargetRegisterClass
*VRC
= MRI
->getRegClass(VReg
);
450 const TargetRegisterClass
*RC
= TRI
->getSubClassWithSubReg(VRC
, SubIdx
);
452 // RC is a sub-class of VRC that supports SubIdx. Try to constrain VReg
455 RC
= MRI
->constrainRegClass(VReg
, RC
, MinRCSize
);
457 // VReg has been adjusted. It can be used with SubIdx operands now.
461 // VReg couldn't be reasonably constrained. Emit a COPY to a new virtual
463 RC
= TRI
->getSubClassWithSubReg(TLI
->getRegClassFor(VT
, isDivergent
), SubIdx
);
464 assert(RC
&& "No legal register class for VT supports that SubIdx");
465 Register NewReg
= MRI
->createVirtualRegister(RC
);
466 BuildMI(*MBB
, InsertPos
, DL
, TII
->get(TargetOpcode::COPY
), NewReg
)
471 /// EmitSubregNode - Generate machine code for subreg nodes.
473 void InstrEmitter::EmitSubregNode(SDNode
*Node
,
474 DenseMap
<SDValue
, Register
> &VRBaseMap
,
475 bool IsClone
, bool IsCloned
) {
477 unsigned Opc
= Node
->getMachineOpcode();
479 // If the node is only used by a CopyToReg and the dest reg is a vreg, use
480 // the CopyToReg'd destination register instead of creating a new vreg.
481 for (SDNode
*User
: Node
->uses()) {
482 if (User
->getOpcode() == ISD::CopyToReg
&&
483 User
->getOperand(2).getNode() == Node
) {
484 Register DestReg
= cast
<RegisterSDNode
>(User
->getOperand(1))->getReg();
485 if (DestReg
.isVirtual()) {
492 if (Opc
== TargetOpcode::EXTRACT_SUBREG
) {
493 // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub. There are no
494 // constraints on the %dst register, COPY can target all legal register
496 unsigned SubIdx
= cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue();
497 const TargetRegisterClass
*TRC
=
498 TLI
->getRegClassFor(Node
->getSimpleValueType(0), Node
->isDivergent());
502 RegisterSDNode
*R
= dyn_cast
<RegisterSDNode
>(Node
->getOperand(0));
503 if (R
&& Register::isPhysicalRegister(R
->getReg())) {
507 Reg
= R
? R
->getReg() : getVR(Node
->getOperand(0), VRBaseMap
);
508 DefMI
= MRI
->getVRegDef(Reg
);
511 Register SrcReg
, DstReg
;
514 TII
->isCoalescableExtInstr(*DefMI
, SrcReg
, DstReg
, DefSubIdx
) &&
515 SubIdx
== DefSubIdx
&&
516 TRC
== MRI
->getRegClass(SrcReg
)) {
518 // r1025 = s/zext r1024, 4
519 // r1026 = extract_subreg r1025, 4
521 // r1026 = copy r1024
522 VRBase
= MRI
->createVirtualRegister(TRC
);
523 BuildMI(*MBB
, InsertPos
, Node
->getDebugLoc(),
524 TII
->get(TargetOpcode::COPY
), VRBase
).addReg(SrcReg
);
525 MRI
->clearKillFlags(SrcReg
);
527 // Reg may not support a SubIdx sub-register, and we may need to
528 // constrain its register class or issue a COPY to a compatible register
531 Reg
= ConstrainForSubReg(Reg
, SubIdx
,
532 Node
->getOperand(0).getSimpleValueType(),
533 Node
->isDivergent(), Node
->getDebugLoc());
534 // Create the destreg if it is missing.
536 VRBase
= MRI
->createVirtualRegister(TRC
);
538 // Create the extract_subreg machine instruction.
539 MachineInstrBuilder CopyMI
=
540 BuildMI(*MBB
, InsertPos
, Node
->getDebugLoc(),
541 TII
->get(TargetOpcode::COPY
), VRBase
);
543 CopyMI
.addReg(Reg
, 0, SubIdx
);
545 CopyMI
.addReg(TRI
->getSubReg(Reg
, SubIdx
));
547 } else if (Opc
== TargetOpcode::INSERT_SUBREG
||
548 Opc
== TargetOpcode::SUBREG_TO_REG
) {
549 SDValue N0
= Node
->getOperand(0);
550 SDValue N1
= Node
->getOperand(1);
551 SDValue N2
= Node
->getOperand(2);
552 unsigned SubIdx
= cast
<ConstantSDNode
>(N2
)->getZExtValue();
554 // Figure out the register class to create for the destreg. It should be
555 // the largest legal register class supporting SubIdx sub-registers.
556 // RegisterCoalescer will constrain it further if it decides to eliminate
557 // the INSERT_SUBREG instruction.
559 // %dst = INSERT_SUBREG %src, %sub, SubIdx
561 // is lowered by TwoAddressInstructionPass to:
564 // %dst:SubIdx = COPY %sub
566 // There is no constraint on the %src register class.
568 const TargetRegisterClass
*SRC
=
569 TLI
->getRegClassFor(Node
->getSimpleValueType(0), Node
->isDivergent());
570 SRC
= TRI
->getSubClassWithSubReg(SRC
, SubIdx
);
571 assert(SRC
&& "No register class supports VT and SubIdx for INSERT_SUBREG");
573 if (VRBase
== 0 || !SRC
->hasSubClassEq(MRI
->getRegClass(VRBase
)))
574 VRBase
= MRI
->createVirtualRegister(SRC
);
576 // Create the insert_subreg or subreg_to_reg machine instruction.
577 MachineInstrBuilder MIB
=
578 BuildMI(*MF
, Node
->getDebugLoc(), TII
->get(Opc
), VRBase
);
580 // If creating a subreg_to_reg, then the first input operand
581 // is an implicit value immediate, otherwise it's a register
582 if (Opc
== TargetOpcode::SUBREG_TO_REG
) {
583 const ConstantSDNode
*SD
= cast
<ConstantSDNode
>(N0
);
584 MIB
.addImm(SD
->getZExtValue());
586 AddOperand(MIB
, N0
, 0, nullptr, VRBaseMap
, /*IsDebug=*/false,
588 // Add the subregister being inserted
589 AddOperand(MIB
, N1
, 0, nullptr, VRBaseMap
, /*IsDebug=*/false,
592 MBB
->insert(InsertPos
, MIB
);
594 llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
597 bool isNew
= VRBaseMap
.insert(std::make_pair(Op
, VRBase
)).second
;
598 (void)isNew
; // Silence compiler warning.
599 assert(isNew
&& "Node emitted out of order - early");
602 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
603 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
604 /// register is constrained to be in a particular register class.
607 InstrEmitter::EmitCopyToRegClassNode(SDNode
*Node
,
608 DenseMap
<SDValue
, Register
> &VRBaseMap
) {
609 unsigned VReg
= getVR(Node
->getOperand(0), VRBaseMap
);
611 // Create the new VReg in the destination class and emit a copy.
612 unsigned DstRCIdx
= cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue();
613 const TargetRegisterClass
*DstRC
=
614 TRI
->getAllocatableClass(TRI
->getRegClass(DstRCIdx
));
615 Register NewVReg
= MRI
->createVirtualRegister(DstRC
);
616 BuildMI(*MBB
, InsertPos
, Node
->getDebugLoc(), TII
->get(TargetOpcode::COPY
),
617 NewVReg
).addReg(VReg
);
620 bool isNew
= VRBaseMap
.insert(std::make_pair(Op
, NewVReg
)).second
;
621 (void)isNew
; // Silence compiler warning.
622 assert(isNew
&& "Node emitted out of order - early");
625 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
627 void InstrEmitter::EmitRegSequence(SDNode
*Node
,
628 DenseMap
<SDValue
, Register
> &VRBaseMap
,
629 bool IsClone
, bool IsCloned
) {
630 unsigned DstRCIdx
= cast
<ConstantSDNode
>(Node
->getOperand(0))->getZExtValue();
631 const TargetRegisterClass
*RC
= TRI
->getRegClass(DstRCIdx
);
632 Register NewVReg
= MRI
->createVirtualRegister(TRI
->getAllocatableClass(RC
));
633 const MCInstrDesc
&II
= TII
->get(TargetOpcode::REG_SEQUENCE
);
634 MachineInstrBuilder MIB
= BuildMI(*MF
, Node
->getDebugLoc(), II
, NewVReg
);
635 unsigned NumOps
= Node
->getNumOperands();
636 // If the input pattern has a chain, then the root of the corresponding
637 // output pattern will get a chain as well. This can happen to be a
638 // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
639 if (NumOps
&& Node
->getOperand(NumOps
-1).getValueType() == MVT::Other
)
640 --NumOps
; // Ignore chain if it exists.
642 assert((NumOps
& 1) == 1 &&
643 "REG_SEQUENCE must have an odd number of operands!");
644 for (unsigned i
= 1; i
!= NumOps
; ++i
) {
645 SDValue Op
= Node
->getOperand(i
);
647 RegisterSDNode
*R
= dyn_cast
<RegisterSDNode
>(Node
->getOperand(i
-1));
648 // Skip physical registers as they don't have a vreg to get and we'll
649 // insert copies for them in TwoAddressInstructionPass anyway.
650 if (!R
|| !Register::isPhysicalRegister(R
->getReg())) {
651 unsigned SubIdx
= cast
<ConstantSDNode
>(Op
)->getZExtValue();
652 unsigned SubReg
= getVR(Node
->getOperand(i
-1), VRBaseMap
);
653 const TargetRegisterClass
*TRC
= MRI
->getRegClass(SubReg
);
654 const TargetRegisterClass
*SRC
=
655 TRI
->getMatchingSuperRegClass(RC
, TRC
, SubIdx
);
656 if (SRC
&& SRC
!= RC
) {
657 MRI
->setRegClass(NewVReg
, SRC
);
662 AddOperand(MIB
, Op
, i
+1, &II
, VRBaseMap
, /*IsDebug=*/false,
666 MBB
->insert(InsertPos
, MIB
);
668 bool isNew
= VRBaseMap
.insert(std::make_pair(Op
, NewVReg
)).second
;
669 (void)isNew
; // Silence compiler warning.
670 assert(isNew
&& "Node emitted out of order - early");
673 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
676 InstrEmitter::EmitDbgValue(SDDbgValue
*SD
,
677 DenseMap
<SDValue
, Register
> &VRBaseMap
) {
678 MDNode
*Var
= SD
->getVariable();
679 MDNode
*Expr
= SD
->getExpression();
680 DebugLoc DL
= SD
->getDebugLoc();
681 assert(cast
<DILocalVariable
>(Var
)->isValidLocationForIntrinsic(DL
) &&
682 "Expected inlined-at fields to agree");
686 ArrayRef
<SDDbgOperand
> LocationOps
= SD
->getLocationOps();
687 assert(!LocationOps
.empty() && "dbg_value with no location operands?");
689 if (SD
->isInvalidated())
690 return EmitDbgNoLocation(SD
);
692 // Emit variadic dbg_value nodes as DBG_VALUE_LIST.
693 if (SD
->isVariadic()) {
694 // DBG_VALUE_LIST := "DBG_VALUE_LIST" var, expression, loc (, loc)*
695 const MCInstrDesc
&DbgValDesc
= TII
->get(TargetOpcode::DBG_VALUE_LIST
);
696 // Build the DBG_VALUE_LIST instruction base.
697 auto MIB
= BuildMI(*MF
, DL
, DbgValDesc
);
698 MIB
.addMetadata(Var
);
699 MIB
.addMetadata(Expr
);
700 AddDbgValueLocationOps(MIB
, DbgValDesc
, LocationOps
, VRBaseMap
);
704 // Attempt to produce a DBG_INSTR_REF if we've been asked to.
705 // We currently exclude the possibility of instruction references for
706 // variadic nodes; if at some point we enable them, this should be moved
707 // above the variadic block.
708 if (EmitDebugInstrRefs
)
709 if (auto *InstrRef
= EmitDbgInstrRef(SD
, VRBaseMap
))
712 return EmitDbgValueFromSingleOp(SD
, VRBaseMap
);
715 void InstrEmitter::AddDbgValueLocationOps(
716 MachineInstrBuilder
&MIB
, const MCInstrDesc
&DbgValDesc
,
717 ArrayRef
<SDDbgOperand
> LocationOps
,
718 DenseMap
<SDValue
, Register
> &VRBaseMap
) {
719 for (const SDDbgOperand
&Op
: LocationOps
) {
720 switch (Op
.getKind()) {
721 case SDDbgOperand::FRAMEIX
:
722 MIB
.addFrameIndex(Op
.getFrameIx());
724 case SDDbgOperand::VREG
:
725 MIB
.addReg(Op
.getVReg());
727 case SDDbgOperand::SDNODE
: {
728 SDValue V
= SDValue(Op
.getSDNode(), Op
.getResNo());
729 // It's possible we replaced this SDNode with other(s) and therefore
730 // didn't generate code for it. It's better to catch these cases where
731 // they happen and transfer the debug info, but trying to guarantee that
732 // in all cases would be very fragile; this is a safeguard for any
734 if (VRBaseMap
.count(V
) == 0)
735 MIB
.addReg(0U); // undef
737 AddOperand(MIB
, V
, (*MIB
).getNumOperands(), &DbgValDesc
, VRBaseMap
,
738 /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
740 case SDDbgOperand::CONST
: {
741 const Value
*V
= Op
.getConst();
742 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
743 if (CI
->getBitWidth() > 64)
746 MIB
.addImm(CI
->getSExtValue());
747 } else if (const ConstantFP
*CF
= dyn_cast
<ConstantFP
>(V
)) {
749 } else if (isa
<ConstantPointerNull
>(V
)) {
750 // Note: This assumes that all nullptr constants are zero-valued.
753 // Could be an Undef. In any case insert an Undef so we can see what we
763 InstrEmitter::EmitDbgInstrRef(SDDbgValue
*SD
,
764 DenseMap
<SDValue
, Register
> &VRBaseMap
) {
765 assert(!SD
->isVariadic());
766 SDDbgOperand DbgOperand
= SD
->getLocationOps()[0];
767 MDNode
*Var
= SD
->getVariable();
768 DIExpression
*Expr
= (DIExpression
*)SD
->getExpression();
769 DebugLoc DL
= SD
->getDebugLoc();
770 const MCInstrDesc
&RefII
= TII
->get(TargetOpcode::DBG_INSTR_REF
);
772 // Handle variable locations that don't actually depend on the instructions
773 // in the program: constants and stack locations.
774 if (DbgOperand
.getKind() == SDDbgOperand::FRAMEIX
||
775 DbgOperand
.getKind() == SDDbgOperand::CONST
)
776 return EmitDbgValueFromSingleOp(SD
, VRBaseMap
);
778 // Immediately fold any indirectness from the LLVM-IR intrinsic into the
780 if (SD
->isIndirect()) {
781 std::vector
<uint64_t> Elts
= {dwarf::DW_OP_deref
};
782 Expr
= DIExpression::append(Expr
, Elts
);
785 // It may not be immediately possible to identify the MachineInstr that
786 // defines a VReg, it can depend for example on the order blocks are
787 // emitted in. When this happens, or when further analysis is needed later,
788 // produce an instruction like this:
790 // DBG_INSTR_REF %0:gr64, 0, !123, !456
792 // i.e., point the instruction at the vreg, and patch it up later in
793 // MachineFunction::finalizeDebugInstrRefs.
794 auto EmitHalfDoneInstrRef
= [&](unsigned VReg
) -> MachineInstr
* {
795 auto MIB
= BuildMI(*MF
, DL
, RefII
);
798 MIB
.addMetadata(Var
);
799 MIB
.addMetadata(Expr
);
803 // Try to find both the defined register and the instruction defining it.
804 MachineInstr
*DefMI
= nullptr;
807 if (DbgOperand
.getKind() == SDDbgOperand::VREG
) {
808 VReg
= DbgOperand
.getVReg();
810 // No definition means that block hasn't been emitted yet. Leave a vreg
811 // reference to be fixed later.
812 if (!MRI
->hasOneDef(VReg
))
813 return EmitHalfDoneInstrRef(VReg
);
815 DefMI
= &*MRI
->def_instr_begin(VReg
);
817 assert(DbgOperand
.getKind() == SDDbgOperand::SDNODE
);
818 // Look up the corresponding VReg for the given SDNode, if any.
819 SDNode
*Node
= DbgOperand
.getSDNode();
820 SDValue Op
= SDValue(Node
, DbgOperand
.getResNo());
821 DenseMap
<SDValue
, Register
>::iterator I
= VRBaseMap
.find(Op
);
822 // No VReg -> produce a DBG_VALUE $noreg instead.
823 if (I
==VRBaseMap
.end())
824 return EmitDbgNoLocation(SD
);
826 // Try to pick out a defining instruction at this point.
827 VReg
= getVR(Op
, VRBaseMap
);
829 // Again, if there's no instruction defining the VReg right now, fix it up
831 if (!MRI
->hasOneDef(VReg
))
832 return EmitHalfDoneInstrRef(VReg
);
834 DefMI
= &*MRI
->def_instr_begin(VReg
);
837 // Avoid copy like instructions: they don't define values, only move them.
838 // Leave a virtual-register reference until it can be fixed up later, to find
839 // the underlying value definition.
840 if (DefMI
->isCopyLike() || TII
->isCopyInstr(*DefMI
))
841 return EmitHalfDoneInstrRef(VReg
);
843 auto MIB
= BuildMI(*MF
, DL
, RefII
);
845 // Find the operand number which defines the specified VReg.
846 unsigned OperandIdx
= 0;
847 for (const auto &MO
: DefMI
->operands()) {
848 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == VReg
)
852 assert(OperandIdx
< DefMI
->getNumOperands());
854 // Make the DBG_INSTR_REF refer to that instruction, and that operand.
855 unsigned InstrNum
= DefMI
->getDebugInstrNum();
856 MIB
.addImm(InstrNum
);
857 MIB
.addImm(OperandIdx
);
858 MIB
.addMetadata(Var
);
859 MIB
.addMetadata(Expr
);
863 MachineInstr
*InstrEmitter::EmitDbgNoLocation(SDDbgValue
*SD
) {
864 // An invalidated SDNode must generate an undef DBG_VALUE: although the
865 // original value is no longer computed, earlier DBG_VALUEs live ranges
866 // must not leak into later code.
867 MDNode
*Var
= SD
->getVariable();
868 MDNode
*Expr
= SD
->getExpression();
869 DebugLoc DL
= SD
->getDebugLoc();
870 auto MIB
= BuildMI(*MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
));
873 MIB
.addMetadata(Var
);
874 MIB
.addMetadata(Expr
);
879 InstrEmitter::EmitDbgValueFromSingleOp(SDDbgValue
*SD
,
880 DenseMap
<SDValue
, Register
> &VRBaseMap
) {
881 MDNode
*Var
= SD
->getVariable();
882 DIExpression
*Expr
= SD
->getExpression();
883 DebugLoc DL
= SD
->getDebugLoc();
884 const MCInstrDesc
&II
= TII
->get(TargetOpcode::DBG_VALUE
);
886 assert(SD
->getLocationOps().size() == 1 &&
887 "Non variadic dbg_value should have only one location op");
889 // See about constant-folding the expression.
890 // Copy the location operand in case we replace it.
891 SmallVector
<SDDbgOperand
, 1> LocationOps(1, SD
->getLocationOps()[0]);
892 if (Expr
&& LocationOps
[0].getKind() == SDDbgOperand::CONST
) {
893 const Value
*V
= LocationOps
[0].getConst();
894 if (auto *C
= dyn_cast
<ConstantInt
>(V
)) {
895 std::tie(Expr
, C
) = Expr
->constantFold(C
);
896 LocationOps
[0] = SDDbgOperand::fromConst(C
);
900 // Emit non-variadic dbg_value nodes as DBG_VALUE.
901 // DBG_VALUE := "DBG_VALUE" loc, isIndirect, var, expr
902 auto MIB
= BuildMI(*MF
, DL
, II
);
903 AddDbgValueLocationOps(MIB
, II
, LocationOps
, VRBaseMap
);
905 if (SD
->isIndirect())
910 return MIB
.addMetadata(Var
).addMetadata(Expr
);
914 InstrEmitter::EmitDbgLabel(SDDbgLabel
*SD
) {
915 MDNode
*Label
= SD
->getLabel();
916 DebugLoc DL
= SD
->getDebugLoc();
917 assert(cast
<DILabel
>(Label
)->isValidLocationForIntrinsic(DL
) &&
918 "Expected inlined-at fields to agree");
920 const MCInstrDesc
&II
= TII
->get(TargetOpcode::DBG_LABEL
);
921 MachineInstrBuilder MIB
= BuildMI(*MF
, DL
, II
);
922 MIB
.addMetadata(Label
);
927 /// EmitMachineNode - Generate machine code for a target-specific node and
928 /// needed dependencies.
931 EmitMachineNode(SDNode
*Node
, bool IsClone
, bool IsCloned
,
932 DenseMap
<SDValue
, Register
> &VRBaseMap
) {
933 unsigned Opc
= Node
->getMachineOpcode();
935 // Handle subreg insert/extract specially
936 if (Opc
== TargetOpcode::EXTRACT_SUBREG
||
937 Opc
== TargetOpcode::INSERT_SUBREG
||
938 Opc
== TargetOpcode::SUBREG_TO_REG
) {
939 EmitSubregNode(Node
, VRBaseMap
, IsClone
, IsCloned
);
943 // Handle COPY_TO_REGCLASS specially.
944 if (Opc
== TargetOpcode::COPY_TO_REGCLASS
) {
945 EmitCopyToRegClassNode(Node
, VRBaseMap
);
949 // Handle REG_SEQUENCE specially.
950 if (Opc
== TargetOpcode::REG_SEQUENCE
) {
951 EmitRegSequence(Node
, VRBaseMap
, IsClone
, IsCloned
);
955 if (Opc
== TargetOpcode::IMPLICIT_DEF
)
956 // We want a unique VR for each IMPLICIT_DEF use.
959 const MCInstrDesc
&II
= TII
->get(Opc
);
960 unsigned NumResults
= CountResults(Node
);
961 unsigned NumDefs
= II
.getNumDefs();
962 const MCPhysReg
*ScratchRegs
= nullptr;
964 // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
965 if (Opc
== TargetOpcode::STACKMAP
|| Opc
== TargetOpcode::PATCHPOINT
) {
966 // Stackmaps do not have arguments and do not preserve their calling
967 // convention. However, to simplify runtime support, they clobber the same
968 // scratch registers as AnyRegCC.
969 unsigned CC
= CallingConv::AnyReg
;
970 if (Opc
== TargetOpcode::PATCHPOINT
) {
971 CC
= Node
->getConstantOperandVal(PatchPointOpers::CCPos
);
972 NumDefs
= NumResults
;
974 ScratchRegs
= TLI
->getScratchRegisters((CallingConv::ID
) CC
);
975 } else if (Opc
== TargetOpcode::STATEPOINT
) {
976 NumDefs
= NumResults
;
979 unsigned NumImpUses
= 0;
980 unsigned NodeOperands
=
981 countOperands(Node
, II
.getNumOperands() - NumDefs
, NumImpUses
);
982 bool HasVRegVariadicDefs
= !MF
->getTarget().usesPhysRegsForValues() &&
983 II
.isVariadic() && II
.variadicOpsAreDefs();
984 bool HasPhysRegOuts
= NumResults
> NumDefs
&&
985 II
.getImplicitDefs() != nullptr && !HasVRegVariadicDefs
;
987 unsigned NumMIOperands
= NodeOperands
+ NumResults
;
989 assert(NumMIOperands
>= II
.getNumOperands() &&
990 "Too few operands for a variadic node!");
992 assert(NumMIOperands
>= II
.getNumOperands() &&
993 NumMIOperands
<= II
.getNumOperands() + II
.getNumImplicitDefs() +
995 "#operands for dag node doesn't match .td file!");
998 // Create the new machine instruction.
999 MachineInstrBuilder MIB
= BuildMI(*MF
, Node
->getDebugLoc(), II
);
1001 // Add result register values for things that are defined by this
1004 CreateVirtualRegisters(Node
, MIB
, II
, IsClone
, IsCloned
, VRBaseMap
);
1006 // Transfer any IR flags from the SDNode to the MachineInstr
1007 MachineInstr
*MI
= MIB
.getInstr();
1008 const SDNodeFlags Flags
= Node
->getFlags();
1009 if (Flags
.hasNoSignedZeros())
1010 MI
->setFlag(MachineInstr::MIFlag::FmNsz
);
1012 if (Flags
.hasAllowReciprocal())
1013 MI
->setFlag(MachineInstr::MIFlag::FmArcp
);
1015 if (Flags
.hasNoNaNs())
1016 MI
->setFlag(MachineInstr::MIFlag::FmNoNans
);
1018 if (Flags
.hasNoInfs())
1019 MI
->setFlag(MachineInstr::MIFlag::FmNoInfs
);
1021 if (Flags
.hasAllowContract())
1022 MI
->setFlag(MachineInstr::MIFlag::FmContract
);
1024 if (Flags
.hasApproximateFuncs())
1025 MI
->setFlag(MachineInstr::MIFlag::FmAfn
);
1027 if (Flags
.hasAllowReassociation())
1028 MI
->setFlag(MachineInstr::MIFlag::FmReassoc
);
1030 if (Flags
.hasNoUnsignedWrap())
1031 MI
->setFlag(MachineInstr::MIFlag::NoUWrap
);
1033 if (Flags
.hasNoSignedWrap())
1034 MI
->setFlag(MachineInstr::MIFlag::NoSWrap
);
1036 if (Flags
.hasExact())
1037 MI
->setFlag(MachineInstr::MIFlag::IsExact
);
1039 if (Flags
.hasNoFPExcept())
1040 MI
->setFlag(MachineInstr::MIFlag::NoFPExcept
);
1043 // Emit all of the actual operands of this instruction, adding them to the
1044 // instruction as appropriate.
1045 bool HasOptPRefs
= NumDefs
> NumResults
;
1046 assert((!HasOptPRefs
|| !HasPhysRegOuts
) &&
1047 "Unable to cope with optional defs and phys regs defs!");
1048 unsigned NumSkip
= HasOptPRefs
? NumDefs
- NumResults
: 0;
1049 for (unsigned i
= NumSkip
; i
!= NodeOperands
; ++i
)
1050 AddOperand(MIB
, Node
->getOperand(i
), i
-NumSkip
+NumDefs
, &II
,
1051 VRBaseMap
, /*IsDebug=*/false, IsClone
, IsCloned
);
1053 // Add scratch registers as implicit def and early clobber
1055 for (unsigned i
= 0; ScratchRegs
[i
]; ++i
)
1056 MIB
.addReg(ScratchRegs
[i
], RegState::ImplicitDefine
|
1057 RegState::EarlyClobber
);
1059 // Set the memory reference descriptions of this instruction now that it is
1060 // part of the function.
1061 MIB
.setMemRefs(cast
<MachineSDNode
>(Node
)->memoperands());
1063 // Insert the instruction into position in the block. This needs to
1064 // happen before any custom inserter hook is called so that the
1065 // hook knows where in the block to insert the replacement code.
1066 MBB
->insert(InsertPos
, MIB
);
1068 // The MachineInstr may also define physregs instead of virtregs. These
1069 // physreg values can reach other instructions in different ways:
1071 // 1. When there is a use of a Node value beyond the explicitly defined
1072 // virtual registers, we emit a CopyFromReg for one of the implicitly
1073 // defined physregs. This only happens when HasPhysRegOuts is true.
1075 // 2. A CopyFromReg reading a physreg may be glued to this instruction.
1077 // 3. A glued instruction may implicitly use a physreg.
1079 // 4. A glued instruction may use a RegisterSDNode operand.
1081 // Collect all the used physreg defs, and make sure that any unused physreg
1082 // defs are marked as dead.
1083 SmallVector
<Register
, 8> UsedRegs
;
1085 // Additional results must be physical register defs.
1086 if (HasPhysRegOuts
) {
1087 for (unsigned i
= NumDefs
; i
< NumResults
; ++i
) {
1088 Register Reg
= II
.getImplicitDefs()[i
- NumDefs
];
1089 if (!Node
->hasAnyUseOfValue(i
))
1091 // This implicitly defined physreg has a use.
1092 UsedRegs
.push_back(Reg
);
1093 EmitCopyFromReg(Node
, i
, IsClone
, IsCloned
, Reg
, VRBaseMap
);
1097 // Scan the glue chain for any used physregs.
1098 if (Node
->getValueType(Node
->getNumValues()-1) == MVT::Glue
) {
1099 for (SDNode
*F
= Node
->getGluedUser(); F
; F
= F
->getGluedUser()) {
1100 if (F
->getOpcode() == ISD::CopyFromReg
) {
1101 UsedRegs
.push_back(cast
<RegisterSDNode
>(F
->getOperand(1))->getReg());
1103 } else if (F
->getOpcode() == ISD::CopyToReg
) {
1104 // Skip CopyToReg nodes that are internal to the glue chain.
1107 // Collect declared implicit uses.
1108 const MCInstrDesc
&MCID
= TII
->get(F
->getMachineOpcode());
1109 UsedRegs
.append(MCID
.getImplicitUses(),
1110 MCID
.getImplicitUses() + MCID
.getNumImplicitUses());
1111 // In addition to declared implicit uses, we must also check for
1112 // direct RegisterSDNode operands.
1113 for (unsigned i
= 0, e
= F
->getNumOperands(); i
!= e
; ++i
)
1114 if (RegisterSDNode
*R
= dyn_cast
<RegisterSDNode
>(F
->getOperand(i
))) {
1115 Register Reg
= R
->getReg();
1116 if (Reg
.isPhysical())
1117 UsedRegs
.push_back(Reg
);
1122 // Finally mark unused registers as dead.
1123 if (!UsedRegs
.empty() || II
.getImplicitDefs() || II
.hasOptionalDef())
1124 MIB
->setPhysRegsDeadExcept(UsedRegs
, *TRI
);
1126 // STATEPOINT is too 'dynamic' to have meaningful machine description.
1127 // We have to manually tie operands.
1128 if (Opc
== TargetOpcode::STATEPOINT
&& NumDefs
> 0) {
1129 assert(!HasPhysRegOuts
&& "STATEPOINT mishandled");
1130 MachineInstr
*MI
= MIB
;
1132 int First
= StatepointOpers(MI
).getFirstGCPtrIdx();
1133 assert(First
> 0 && "Statepoint has Defs but no GC ptr list");
1134 unsigned Use
= (unsigned)First
;
1135 while (Def
< NumDefs
) {
1136 if (MI
->getOperand(Use
).isReg())
1137 MI
->tieOperands(Def
++, Use
);
1138 Use
= StackMaps::getNextMetaArgIdx(MI
, Use
);
1142 // Run post-isel target hook to adjust this instruction if needed.
1143 if (II
.hasPostISelHook())
1144 TLI
->AdjustInstrPostInstrSelection(*MIB
, Node
);
1147 /// EmitSpecialNode - Generate machine code for a target-independent node and
1148 /// needed dependencies.
1150 EmitSpecialNode(SDNode
*Node
, bool IsClone
, bool IsCloned
,
1151 DenseMap
<SDValue
, Register
> &VRBaseMap
) {
1152 switch (Node
->getOpcode()) {
1157 llvm_unreachable("This target-independent node should have been selected!");
1158 case ISD::EntryToken
:
1159 llvm_unreachable("EntryToken should have been excluded from the schedule!");
1160 case ISD::MERGE_VALUES
:
1161 case ISD::TokenFactor
: // fall thru
1163 case ISD::CopyToReg
: {
1164 Register DestReg
= cast
<RegisterSDNode
>(Node
->getOperand(1))->getReg();
1165 SDValue SrcVal
= Node
->getOperand(2);
1166 if (Register::isVirtualRegister(DestReg
) && SrcVal
.isMachineOpcode() &&
1167 SrcVal
.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF
) {
1168 // Instead building a COPY to that vreg destination, build an
1169 // IMPLICIT_DEF instruction instead.
1170 BuildMI(*MBB
, InsertPos
, Node
->getDebugLoc(),
1171 TII
->get(TargetOpcode::IMPLICIT_DEF
), DestReg
);
1175 if (RegisterSDNode
*R
= dyn_cast
<RegisterSDNode
>(SrcVal
))
1176 SrcReg
= R
->getReg();
1178 SrcReg
= getVR(SrcVal
, VRBaseMap
);
1180 if (SrcReg
== DestReg
) // Coalesced away the copy? Ignore.
1183 BuildMI(*MBB
, InsertPos
, Node
->getDebugLoc(), TII
->get(TargetOpcode::COPY
),
1184 DestReg
).addReg(SrcReg
);
1187 case ISD::CopyFromReg
: {
1188 unsigned SrcReg
= cast
<RegisterSDNode
>(Node
->getOperand(1))->getReg();
1189 EmitCopyFromReg(Node
, 0, IsClone
, IsCloned
, SrcReg
, VRBaseMap
);
1193 case ISD::ANNOTATION_LABEL
: {
1194 unsigned Opc
= (Node
->getOpcode() == ISD::EH_LABEL
)
1195 ? TargetOpcode::EH_LABEL
1196 : TargetOpcode::ANNOTATION_LABEL
;
1197 MCSymbol
*S
= cast
<LabelSDNode
>(Node
)->getLabel();
1198 BuildMI(*MBB
, InsertPos
, Node
->getDebugLoc(),
1199 TII
->get(Opc
)).addSym(S
);
1203 case ISD::LIFETIME_START
:
1204 case ISD::LIFETIME_END
: {
1205 unsigned TarOp
= (Node
->getOpcode() == ISD::LIFETIME_START
)
1206 ? TargetOpcode::LIFETIME_START
1207 : TargetOpcode::LIFETIME_END
;
1208 auto *FI
= cast
<FrameIndexSDNode
>(Node
->getOperand(1));
1209 BuildMI(*MBB
, InsertPos
, Node
->getDebugLoc(), TII
->get(TarOp
))
1210 .addFrameIndex(FI
->getIndex());
1214 case ISD::PSEUDO_PROBE
: {
1215 unsigned TarOp
= TargetOpcode::PSEUDO_PROBE
;
1216 auto Guid
= cast
<PseudoProbeSDNode
>(Node
)->getGuid();
1217 auto Index
= cast
<PseudoProbeSDNode
>(Node
)->getIndex();
1218 auto Attr
= cast
<PseudoProbeSDNode
>(Node
)->getAttributes();
1220 BuildMI(*MBB
, InsertPos
, Node
->getDebugLoc(), TII
->get(TarOp
))
1223 .addImm((uint8_t)PseudoProbeType::Block
)
1228 case ISD::INLINEASM
:
1229 case ISD::INLINEASM_BR
: {
1230 unsigned NumOps
= Node
->getNumOperands();
1231 if (Node
->getOperand(NumOps
-1).getValueType() == MVT::Glue
)
1232 --NumOps
; // Ignore the glue operand.
1234 // Create the inline asm machine instruction.
1235 unsigned TgtOpc
= Node
->getOpcode() == ISD::INLINEASM_BR
1236 ? TargetOpcode::INLINEASM_BR
1237 : TargetOpcode::INLINEASM
;
1238 MachineInstrBuilder MIB
=
1239 BuildMI(*MF
, Node
->getDebugLoc(), TII
->get(TgtOpc
));
1241 // Add the asm string as an external symbol operand.
1242 SDValue AsmStrV
= Node
->getOperand(InlineAsm::Op_AsmString
);
1243 const char *AsmStr
= cast
<ExternalSymbolSDNode
>(AsmStrV
)->getSymbol();
1244 MIB
.addExternalSymbol(AsmStr
);
1246 // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1249 cast
<ConstantSDNode
>(Node
->getOperand(InlineAsm::Op_ExtraInfo
))->
1251 MIB
.addImm(ExtraInfo
);
1253 // Remember to operand index of the group flags.
1254 SmallVector
<unsigned, 8> GroupIdx
;
1256 // Remember registers that are part of early-clobber defs.
1257 SmallVector
<unsigned, 8> ECRegs
;
1259 // Add all of the operand registers to the instruction.
1260 for (unsigned i
= InlineAsm::Op_FirstOperand
; i
!= NumOps
;) {
1262 cast
<ConstantSDNode
>(Node
->getOperand(i
))->getZExtValue();
1263 const unsigned NumVals
= InlineAsm::getNumOperandRegisters(Flags
);
1265 GroupIdx
.push_back(MIB
->getNumOperands());
1267 ++i
; // Skip the ID value.
1269 switch (InlineAsm::getKind(Flags
)) {
1270 default: llvm_unreachable("Bad flags!");
1271 case InlineAsm::Kind_RegDef
:
1272 for (unsigned j
= 0; j
!= NumVals
; ++j
, ++i
) {
1273 unsigned Reg
= cast
<RegisterSDNode
>(Node
->getOperand(i
))->getReg();
1274 // FIXME: Add dead flags for physical and virtual registers defined.
1275 // For now, mark physical register defs as implicit to help fast
1276 // regalloc. This makes inline asm look a lot like calls.
1279 getImplRegState(Register::isPhysicalRegister(Reg
)));
1282 case InlineAsm::Kind_RegDefEarlyClobber
:
1283 case InlineAsm::Kind_Clobber
:
1284 for (unsigned j
= 0; j
!= NumVals
; ++j
, ++i
) {
1285 unsigned Reg
= cast
<RegisterSDNode
>(Node
->getOperand(i
))->getReg();
1287 RegState::Define
| RegState::EarlyClobber
|
1288 getImplRegState(Register::isPhysicalRegister(Reg
)));
1289 ECRegs
.push_back(Reg
);
1292 case InlineAsm::Kind_RegUse
: // Use of register.
1293 case InlineAsm::Kind_Imm
: // Immediate.
1294 case InlineAsm::Kind_Mem
: // Addressing mode.
1295 // The addressing mode has been selected, just add all of the
1296 // operands to the machine instruction.
1297 for (unsigned j
= 0; j
!= NumVals
; ++j
, ++i
)
1298 AddOperand(MIB
, Node
->getOperand(i
), 0, nullptr, VRBaseMap
,
1299 /*IsDebug=*/false, IsClone
, IsCloned
);
1301 // Manually set isTied bits.
1302 if (InlineAsm::getKind(Flags
) == InlineAsm::Kind_RegUse
) {
1303 unsigned DefGroup
= 0;
1304 if (InlineAsm::isUseOperandTiedToDef(Flags
, DefGroup
)) {
1305 unsigned DefIdx
= GroupIdx
[DefGroup
] + 1;
1306 unsigned UseIdx
= GroupIdx
.back() + 1;
1307 for (unsigned j
= 0; j
!= NumVals
; ++j
)
1308 MIB
->tieOperands(DefIdx
+ j
, UseIdx
+ j
);
1315 // GCC inline assembly allows input operands to also be early-clobber
1316 // output operands (so long as the operand is written only after it's
1317 // used), but this does not match the semantics of our early-clobber flag.
1318 // If an early-clobber operand register is also an input operand register,
1319 // then remove the early-clobber flag.
1320 for (unsigned Reg
: ECRegs
) {
1321 if (MIB
->readsRegister(Reg
, TRI
)) {
1322 MachineOperand
*MO
=
1323 MIB
->findRegisterDefOperand(Reg
, false, false, TRI
);
1324 assert(MO
&& "No def operand for clobbered register?");
1325 MO
->setIsEarlyClobber(false);
1329 // Get the mdnode from the asm if it exists and add it to the instruction.
1330 SDValue MDV
= Node
->getOperand(InlineAsm::Op_MDNode
);
1331 const MDNode
*MD
= cast
<MDNodeSDNode
>(MDV
)->getMD();
1333 MIB
.addMetadata(MD
);
1335 MBB
->insert(InsertPos
, MIB
);
1341 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1342 /// at the given position in the given block.
1343 InstrEmitter::InstrEmitter(const TargetMachine
&TM
, MachineBasicBlock
*mbb
,
1344 MachineBasicBlock::iterator insertpos
)
1345 : MF(mbb
->getParent()), MRI(&MF
->getRegInfo()),
1346 TII(MF
->getSubtarget().getInstrInfo()),
1347 TRI(MF
->getSubtarget().getRegisterInfo()),
1348 TLI(MF
->getSubtarget().getTargetLowering()), MBB(mbb
),
1349 InsertPos(insertpos
) {
1350 EmitDebugInstrRefs
= MF
->useDebugInstrRef();