[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / CodeGen / SelectionDAG / InstrEmitter.cpp
blob331e0325aea30f3826e22d136df106d9f91e0640
1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the Emit routines for the SelectionDAG class, which creates
10 // MachineInstrs based on the decisions of the SelectionDAG instruction
11 // selection.
13 //===----------------------------------------------------------------------===//
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/StackMaps.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DebugInfo.h"
29 #include "llvm/IR/PseudoProbe.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
34 using namespace llvm;
36 #define DEBUG_TYPE "instr-emitter"
38 /// MinRCSize - Smallest register class we allow when constraining virtual
39 /// registers. If satisfying all register class constraints would require
40 /// using a smaller register class, emit a COPY to a new virtual register
41 /// instead.
42 const unsigned MinRCSize = 4;
44 /// CountResults - The results of target nodes have register or immediate
45 /// operands first, then an optional chain, and optional glue operands (which do
46 /// not go into the resulting MachineInstr).
47 unsigned InstrEmitter::CountResults(SDNode *Node) {
48 unsigned N = Node->getNumValues();
49 while (N && Node->getValueType(N - 1) == MVT::Glue)
50 --N;
51 if (N && Node->getValueType(N - 1) == MVT::Other)
52 --N; // Skip over chain result.
53 return N;
56 /// countOperands - The inputs to target nodes have any actual inputs first,
57 /// followed by an optional chain operand, then an optional glue operand.
58 /// Compute the number of actual operands that will go into the resulting
59 /// MachineInstr.
60 ///
61 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
62 /// the chain and glue. These operands may be implicit on the machine instr.
63 static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
64 unsigned &NumImpUses) {
65 unsigned N = Node->getNumOperands();
66 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
67 --N;
68 if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
69 --N; // Ignore chain if it exists.
71 // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
72 NumImpUses = N - NumExpUses;
73 for (unsigned I = N; I > NumExpUses; --I) {
74 if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
75 continue;
76 if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
77 if (Register::isPhysicalRegister(RN->getReg()))
78 continue;
79 NumImpUses = N - I;
80 break;
83 return N;
86 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
87 /// implicit physical register output.
88 void InstrEmitter::
89 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
90 Register SrcReg, DenseMap<SDValue, Register> &VRBaseMap) {
91 Register VRBase;
92 if (SrcReg.isVirtual()) {
93 // Just use the input register directly!
94 SDValue Op(Node, ResNo);
95 if (IsClone)
96 VRBaseMap.erase(Op);
97 bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
98 (void)isNew; // Silence compiler warning.
99 assert(isNew && "Node emitted out of order - early");
100 return;
103 // If the node is only used by a CopyToReg and the dest reg is a vreg, use
104 // the CopyToReg'd destination register instead of creating a new vreg.
105 bool MatchReg = true;
106 const TargetRegisterClass *UseRC = nullptr;
107 MVT VT = Node->getSimpleValueType(ResNo);
109 // Stick to the preferred register classes for legal types.
110 if (TLI->isTypeLegal(VT))
111 UseRC = TLI->getRegClassFor(VT, Node->isDivergent());
113 if (!IsClone && !IsCloned)
114 for (SDNode *User : Node->uses()) {
115 bool Match = true;
116 if (User->getOpcode() == ISD::CopyToReg &&
117 User->getOperand(2).getNode() == Node &&
118 User->getOperand(2).getResNo() == ResNo) {
119 Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
120 if (DestReg.isVirtual()) {
121 VRBase = DestReg;
122 Match = false;
123 } else if (DestReg != SrcReg)
124 Match = false;
125 } else {
126 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
127 SDValue Op = User->getOperand(i);
128 if (Op.getNode() != Node || Op.getResNo() != ResNo)
129 continue;
130 MVT VT = Node->getSimpleValueType(Op.getResNo());
131 if (VT == MVT::Other || VT == MVT::Glue)
132 continue;
133 Match = false;
134 if (User->isMachineOpcode()) {
135 const MCInstrDesc &II = TII->get(User->getMachineOpcode());
136 const TargetRegisterClass *RC = nullptr;
137 if (i+II.getNumDefs() < II.getNumOperands()) {
138 RC = TRI->getAllocatableClass(
139 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
141 if (!UseRC)
142 UseRC = RC;
143 else if (RC) {
144 const TargetRegisterClass *ComRC =
145 TRI->getCommonSubClass(UseRC, RC);
146 // If multiple uses expect disjoint register classes, we emit
147 // copies in AddRegisterOperand.
148 if (ComRC)
149 UseRC = ComRC;
154 MatchReg &= Match;
155 if (VRBase)
156 break;
159 const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
160 SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
162 // Figure out the register class to create for the destreg.
163 if (VRBase) {
164 DstRC = MRI->getRegClass(VRBase);
165 } else if (UseRC) {
166 assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
167 "Incompatible phys register def and uses!");
168 DstRC = UseRC;
169 } else
170 DstRC = SrcRC;
172 // If all uses are reading from the src physical register and copying the
173 // register is either impossible or very expensive, then don't create a copy.
174 if (MatchReg && SrcRC->getCopyCost() < 0) {
175 VRBase = SrcReg;
176 } else {
177 // Create the reg, emit the copy.
178 VRBase = MRI->createVirtualRegister(DstRC);
179 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
180 VRBase).addReg(SrcReg);
183 SDValue Op(Node, ResNo);
184 if (IsClone)
185 VRBaseMap.erase(Op);
186 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
187 (void)isNew; // Silence compiler warning.
188 assert(isNew && "Node emitted out of order - early");
191 void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
192 MachineInstrBuilder &MIB,
193 const MCInstrDesc &II,
194 bool IsClone, bool IsCloned,
195 DenseMap<SDValue, Register> &VRBaseMap) {
196 assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
197 "IMPLICIT_DEF should have been handled as a special case elsewhere!");
199 unsigned NumResults = CountResults(Node);
200 bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
201 II.isVariadic() && II.variadicOpsAreDefs();
202 unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs();
203 if (Node->getMachineOpcode() == TargetOpcode::STATEPOINT)
204 NumVRegs = NumResults;
205 for (unsigned i = 0; i < NumVRegs; ++i) {
206 // If the specific node value is only used by a CopyToReg and the dest reg
207 // is a vreg in the same register class, use the CopyToReg'd destination
208 // register instead of creating a new vreg.
209 Register VRBase;
210 const TargetRegisterClass *RC =
211 TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
212 // Always let the value type influence the used register class. The
213 // constraints on the instruction may be too lax to represent the value
214 // type correctly. For example, a 64-bit float (X86::FR64) can't live in
215 // the 32-bit float super-class (X86::FR32).
216 if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
217 const TargetRegisterClass *VTRC = TLI->getRegClassFor(
218 Node->getSimpleValueType(i),
219 (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
220 if (RC)
221 VTRC = TRI->getCommonSubClass(RC, VTRC);
222 if (VTRC)
223 RC = VTRC;
226 if (II.OpInfo != nullptr && II.OpInfo[i].isOptionalDef()) {
227 // Optional def must be a physical register.
228 VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
229 assert(VRBase.isPhysical());
230 MIB.addReg(VRBase, RegState::Define);
233 if (!VRBase && !IsClone && !IsCloned)
234 for (SDNode *User : Node->uses()) {
235 if (User->getOpcode() == ISD::CopyToReg &&
236 User->getOperand(2).getNode() == Node &&
237 User->getOperand(2).getResNo() == i) {
238 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
239 if (Register::isVirtualRegister(Reg)) {
240 const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
241 if (RegRC == RC) {
242 VRBase = Reg;
243 MIB.addReg(VRBase, RegState::Define);
244 break;
250 // Create the result registers for this node and add the result regs to
251 // the machine instruction.
252 if (VRBase == 0) {
253 assert(RC && "Isn't a register operand!");
254 VRBase = MRI->createVirtualRegister(RC);
255 MIB.addReg(VRBase, RegState::Define);
258 // If this def corresponds to a result of the SDNode insert the VRBase into
259 // the lookup map.
260 if (i < NumResults) {
261 SDValue Op(Node, i);
262 if (IsClone)
263 VRBaseMap.erase(Op);
264 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
265 (void)isNew; // Silence compiler warning.
266 assert(isNew && "Node emitted out of order - early");
271 /// getVR - Return the virtual register corresponding to the specified result
272 /// of the specified node.
273 Register InstrEmitter::getVR(SDValue Op,
274 DenseMap<SDValue, Register> &VRBaseMap) {
275 if (Op.isMachineOpcode() &&
276 Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
277 // Add an IMPLICIT_DEF instruction before every use.
278 // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
279 // does not include operand register class info.
280 const TargetRegisterClass *RC = TLI->getRegClassFor(
281 Op.getSimpleValueType(), Op.getNode()->isDivergent());
282 Register VReg = MRI->createVirtualRegister(RC);
283 BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
284 TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
285 return VReg;
288 DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
289 assert(I != VRBaseMap.end() && "Node emitted out of order - late");
290 return I->second;
294 /// AddRegisterOperand - Add the specified register as an operand to the
295 /// specified machine instr. Insert register copies if the register is
296 /// not in the required register class.
297 void
298 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
299 SDValue Op,
300 unsigned IIOpNum,
301 const MCInstrDesc *II,
302 DenseMap<SDValue, Register> &VRBaseMap,
303 bool IsDebug, bool IsClone, bool IsCloned) {
304 assert(Op.getValueType() != MVT::Other &&
305 Op.getValueType() != MVT::Glue &&
306 "Chain and glue operands should occur at end of operand list!");
307 // Get/emit the operand.
308 Register VReg = getVR(Op, VRBaseMap);
310 const MCInstrDesc &MCID = MIB->getDesc();
311 bool isOptDef = IIOpNum < MCID.getNumOperands() &&
312 MCID.OpInfo[IIOpNum].isOptionalDef();
314 // If the instruction requires a register in a different class, create
315 // a new virtual register and copy the value into it, but first attempt to
316 // shrink VReg's register class within reason. For example, if VReg == GR32
317 // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
318 if (II) {
319 const TargetRegisterClass *OpRC = nullptr;
320 if (IIOpNum < II->getNumOperands())
321 OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
323 if (OpRC) {
324 const TargetRegisterClass *ConstrainedRC
325 = MRI->constrainRegClass(VReg, OpRC, MinRCSize);
326 if (!ConstrainedRC) {
327 OpRC = TRI->getAllocatableClass(OpRC);
328 assert(OpRC && "Constraints cannot be fulfilled for allocation");
329 Register NewVReg = MRI->createVirtualRegister(OpRC);
330 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
331 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
332 VReg = NewVReg;
333 } else {
334 assert(ConstrainedRC->isAllocatable() &&
335 "Constraining an allocatable VReg produced an unallocatable class?");
340 // If this value has only one use, that use is a kill. This is a
341 // conservative approximation. InstrEmitter does trivial coalescing
342 // with CopyFromReg nodes, so don't emit kill flags for them.
343 // Avoid kill flags on Schedule cloned nodes, since there will be
344 // multiple uses.
345 // Tied operands are never killed, so we need to check that. And that
346 // means we need to determine the index of the operand.
347 bool isKill = Op.hasOneUse() &&
348 Op.getNode()->getOpcode() != ISD::CopyFromReg &&
349 !IsDebug &&
350 !(IsClone || IsCloned);
351 if (isKill) {
352 unsigned Idx = MIB->getNumOperands();
353 while (Idx > 0 &&
354 MIB->getOperand(Idx-1).isReg() &&
355 MIB->getOperand(Idx-1).isImplicit())
356 --Idx;
357 bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
358 if (isTied)
359 isKill = false;
362 MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
363 getDebugRegState(IsDebug));
366 /// AddOperand - Add the specified operand to the specified machine instr. II
367 /// specifies the instruction information for the node, and IIOpNum is the
368 /// operand number (in the II) that we are adding.
369 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
370 SDValue Op,
371 unsigned IIOpNum,
372 const MCInstrDesc *II,
373 DenseMap<SDValue, Register> &VRBaseMap,
374 bool IsDebug, bool IsClone, bool IsCloned) {
375 if (Op.isMachineOpcode()) {
376 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
377 IsDebug, IsClone, IsCloned);
378 } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
379 MIB.addImm(C->getSExtValue());
380 } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
381 MIB.addFPImm(F->getConstantFPValue());
382 } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
383 Register VReg = R->getReg();
384 MVT OpVT = Op.getSimpleValueType();
385 const TargetRegisterClass *IIRC =
386 II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
387 : nullptr;
388 const TargetRegisterClass *OpRC =
389 TLI->isTypeLegal(OpVT)
390 ? TLI->getRegClassFor(OpVT,
391 Op.getNode()->isDivergent() ||
392 (IIRC && TRI->isDivergentRegClass(IIRC)))
393 : nullptr;
395 if (OpRC && IIRC && OpRC != IIRC && Register::isVirtualRegister(VReg)) {
396 Register NewVReg = MRI->createVirtualRegister(IIRC);
397 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
398 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
399 VReg = NewVReg;
401 // Turn additional physreg operands into implicit uses on non-variadic
402 // instructions. This is used by call and return instructions passing
403 // arguments in registers.
404 bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
405 MIB.addReg(VReg, getImplRegState(Imp));
406 } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
407 MIB.addRegMask(RM->getRegMask());
408 } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
409 MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
410 TGA->getTargetFlags());
411 } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
412 MIB.addMBB(BBNode->getBasicBlock());
413 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
414 MIB.addFrameIndex(FI->getIndex());
415 } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
416 MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
417 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
418 int Offset = CP->getOffset();
419 Align Alignment = CP->getAlign();
421 unsigned Idx;
422 MachineConstantPool *MCP = MF->getConstantPool();
423 if (CP->isMachineConstantPoolEntry())
424 Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment);
425 else
426 Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment);
427 MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
428 } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
429 MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
430 } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
431 MIB.addSym(SymNode->getMCSymbol());
432 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
433 MIB.addBlockAddress(BA->getBlockAddress(),
434 BA->getOffset(),
435 BA->getTargetFlags());
436 } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
437 MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
438 } else {
439 assert(Op.getValueType() != MVT::Other &&
440 Op.getValueType() != MVT::Glue &&
441 "Chain and glue operands should occur at end of operand list!");
442 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
443 IsDebug, IsClone, IsCloned);
447 Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx,
448 MVT VT, bool isDivergent, const DebugLoc &DL) {
449 const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
450 const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
452 // RC is a sub-class of VRC that supports SubIdx. Try to constrain VReg
453 // within reason.
454 if (RC && RC != VRC)
455 RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
457 // VReg has been adjusted. It can be used with SubIdx operands now.
458 if (RC)
459 return VReg;
461 // VReg couldn't be reasonably constrained. Emit a COPY to a new virtual
462 // register instead.
463 RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
464 assert(RC && "No legal register class for VT supports that SubIdx");
465 Register NewReg = MRI->createVirtualRegister(RC);
466 BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
467 .addReg(VReg);
468 return NewReg;
471 /// EmitSubregNode - Generate machine code for subreg nodes.
473 void InstrEmitter::EmitSubregNode(SDNode *Node,
474 DenseMap<SDValue, Register> &VRBaseMap,
475 bool IsClone, bool IsCloned) {
476 Register VRBase;
477 unsigned Opc = Node->getMachineOpcode();
479 // If the node is only used by a CopyToReg and the dest reg is a vreg, use
480 // the CopyToReg'd destination register instead of creating a new vreg.
481 for (SDNode *User : Node->uses()) {
482 if (User->getOpcode() == ISD::CopyToReg &&
483 User->getOperand(2).getNode() == Node) {
484 Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
485 if (DestReg.isVirtual()) {
486 VRBase = DestReg;
487 break;
492 if (Opc == TargetOpcode::EXTRACT_SUBREG) {
493 // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub. There are no
494 // constraints on the %dst register, COPY can target all legal register
495 // classes.
496 unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
497 const TargetRegisterClass *TRC =
498 TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
500 Register Reg;
501 MachineInstr *DefMI;
502 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
503 if (R && Register::isPhysicalRegister(R->getReg())) {
504 Reg = R->getReg();
505 DefMI = nullptr;
506 } else {
507 Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
508 DefMI = MRI->getVRegDef(Reg);
511 Register SrcReg, DstReg;
512 unsigned DefSubIdx;
513 if (DefMI &&
514 TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
515 SubIdx == DefSubIdx &&
516 TRC == MRI->getRegClass(SrcReg)) {
517 // Optimize these:
518 // r1025 = s/zext r1024, 4
519 // r1026 = extract_subreg r1025, 4
520 // to a copy
521 // r1026 = copy r1024
522 VRBase = MRI->createVirtualRegister(TRC);
523 BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
524 TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
525 MRI->clearKillFlags(SrcReg);
526 } else {
527 // Reg may not support a SubIdx sub-register, and we may need to
528 // constrain its register class or issue a COPY to a compatible register
529 // class.
530 if (Reg.isVirtual())
531 Reg = ConstrainForSubReg(Reg, SubIdx,
532 Node->getOperand(0).getSimpleValueType(),
533 Node->isDivergent(), Node->getDebugLoc());
534 // Create the destreg if it is missing.
535 if (!VRBase)
536 VRBase = MRI->createVirtualRegister(TRC);
538 // Create the extract_subreg machine instruction.
539 MachineInstrBuilder CopyMI =
540 BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
541 TII->get(TargetOpcode::COPY), VRBase);
542 if (Reg.isVirtual())
543 CopyMI.addReg(Reg, 0, SubIdx);
544 else
545 CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
547 } else if (Opc == TargetOpcode::INSERT_SUBREG ||
548 Opc == TargetOpcode::SUBREG_TO_REG) {
549 SDValue N0 = Node->getOperand(0);
550 SDValue N1 = Node->getOperand(1);
551 SDValue N2 = Node->getOperand(2);
552 unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
554 // Figure out the register class to create for the destreg. It should be
555 // the largest legal register class supporting SubIdx sub-registers.
556 // RegisterCoalescer will constrain it further if it decides to eliminate
557 // the INSERT_SUBREG instruction.
559 // %dst = INSERT_SUBREG %src, %sub, SubIdx
561 // is lowered by TwoAddressInstructionPass to:
563 // %dst = COPY %src
564 // %dst:SubIdx = COPY %sub
566 // There is no constraint on the %src register class.
568 const TargetRegisterClass *SRC =
569 TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
570 SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
571 assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
573 if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
574 VRBase = MRI->createVirtualRegister(SRC);
576 // Create the insert_subreg or subreg_to_reg machine instruction.
577 MachineInstrBuilder MIB =
578 BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
580 // If creating a subreg_to_reg, then the first input operand
581 // is an implicit value immediate, otherwise it's a register
582 if (Opc == TargetOpcode::SUBREG_TO_REG) {
583 const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
584 MIB.addImm(SD->getZExtValue());
585 } else
586 AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
587 IsClone, IsCloned);
588 // Add the subregister being inserted
589 AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
590 IsClone, IsCloned);
591 MIB.addImm(SubIdx);
592 MBB->insert(InsertPos, MIB);
593 } else
594 llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
596 SDValue Op(Node, 0);
597 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
598 (void)isNew; // Silence compiler warning.
599 assert(isNew && "Node emitted out of order - early");
602 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
603 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
604 /// register is constrained to be in a particular register class.
606 void
607 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
608 DenseMap<SDValue, Register> &VRBaseMap) {
609 unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
611 // Create the new VReg in the destination class and emit a copy.
612 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
613 const TargetRegisterClass *DstRC =
614 TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
615 Register NewVReg = MRI->createVirtualRegister(DstRC);
616 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
617 NewVReg).addReg(VReg);
619 SDValue Op(Node, 0);
620 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
621 (void)isNew; // Silence compiler warning.
622 assert(isNew && "Node emitted out of order - early");
625 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
627 void InstrEmitter::EmitRegSequence(SDNode *Node,
628 DenseMap<SDValue, Register> &VRBaseMap,
629 bool IsClone, bool IsCloned) {
630 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
631 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
632 Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
633 const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
634 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
635 unsigned NumOps = Node->getNumOperands();
636 // If the input pattern has a chain, then the root of the corresponding
637 // output pattern will get a chain as well. This can happen to be a
638 // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
639 if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
640 --NumOps; // Ignore chain if it exists.
642 assert((NumOps & 1) == 1 &&
643 "REG_SEQUENCE must have an odd number of operands!");
644 for (unsigned i = 1; i != NumOps; ++i) {
645 SDValue Op = Node->getOperand(i);
646 if ((i & 1) == 0) {
647 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
648 // Skip physical registers as they don't have a vreg to get and we'll
649 // insert copies for them in TwoAddressInstructionPass anyway.
650 if (!R || !Register::isPhysicalRegister(R->getReg())) {
651 unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
652 unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
653 const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
654 const TargetRegisterClass *SRC =
655 TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
656 if (SRC && SRC != RC) {
657 MRI->setRegClass(NewVReg, SRC);
658 RC = SRC;
662 AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
663 IsClone, IsCloned);
666 MBB->insert(InsertPos, MIB);
667 SDValue Op(Node, 0);
668 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
669 (void)isNew; // Silence compiler warning.
670 assert(isNew && "Node emitted out of order - early");
673 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
675 MachineInstr *
676 InstrEmitter::EmitDbgValue(SDDbgValue *SD,
677 DenseMap<SDValue, Register> &VRBaseMap) {
678 MDNode *Var = SD->getVariable();
679 MDNode *Expr = SD->getExpression();
680 DebugLoc DL = SD->getDebugLoc();
681 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
682 "Expected inlined-at fields to agree");
684 SD->setIsEmitted();
686 ArrayRef<SDDbgOperand> LocationOps = SD->getLocationOps();
687 assert(!LocationOps.empty() && "dbg_value with no location operands?");
689 if (SD->isInvalidated())
690 return EmitDbgNoLocation(SD);
692 // Emit variadic dbg_value nodes as DBG_VALUE_LIST.
693 if (SD->isVariadic()) {
694 // DBG_VALUE_LIST := "DBG_VALUE_LIST" var, expression, loc (, loc)*
695 const MCInstrDesc &DbgValDesc = TII->get(TargetOpcode::DBG_VALUE_LIST);
696 // Build the DBG_VALUE_LIST instruction base.
697 auto MIB = BuildMI(*MF, DL, DbgValDesc);
698 MIB.addMetadata(Var);
699 MIB.addMetadata(Expr);
700 AddDbgValueLocationOps(MIB, DbgValDesc, LocationOps, VRBaseMap);
701 return &*MIB;
704 // Attempt to produce a DBG_INSTR_REF if we've been asked to.
705 // We currently exclude the possibility of instruction references for
706 // variadic nodes; if at some point we enable them, this should be moved
707 // above the variadic block.
708 if (EmitDebugInstrRefs)
709 if (auto *InstrRef = EmitDbgInstrRef(SD, VRBaseMap))
710 return InstrRef;
712 return EmitDbgValueFromSingleOp(SD, VRBaseMap);
715 void InstrEmitter::AddDbgValueLocationOps(
716 MachineInstrBuilder &MIB, const MCInstrDesc &DbgValDesc,
717 ArrayRef<SDDbgOperand> LocationOps,
718 DenseMap<SDValue, Register> &VRBaseMap) {
719 for (const SDDbgOperand &Op : LocationOps) {
720 switch (Op.getKind()) {
721 case SDDbgOperand::FRAMEIX:
722 MIB.addFrameIndex(Op.getFrameIx());
723 break;
724 case SDDbgOperand::VREG:
725 MIB.addReg(Op.getVReg());
726 break;
727 case SDDbgOperand::SDNODE: {
728 SDValue V = SDValue(Op.getSDNode(), Op.getResNo());
729 // It's possible we replaced this SDNode with other(s) and therefore
730 // didn't generate code for it. It's better to catch these cases where
731 // they happen and transfer the debug info, but trying to guarantee that
732 // in all cases would be very fragile; this is a safeguard for any
733 // that were missed.
734 if (VRBaseMap.count(V) == 0)
735 MIB.addReg(0U); // undef
736 else
737 AddOperand(MIB, V, (*MIB).getNumOperands(), &DbgValDesc, VRBaseMap,
738 /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
739 } break;
740 case SDDbgOperand::CONST: {
741 const Value *V = Op.getConst();
742 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
743 if (CI->getBitWidth() > 64)
744 MIB.addCImm(CI);
745 else
746 MIB.addImm(CI->getSExtValue());
747 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
748 MIB.addFPImm(CF);
749 } else if (isa<ConstantPointerNull>(V)) {
750 // Note: This assumes that all nullptr constants are zero-valued.
751 MIB.addImm(0);
752 } else {
753 // Could be an Undef. In any case insert an Undef so we can see what we
754 // dropped.
755 MIB.addReg(0U);
757 } break;
762 MachineInstr *
763 InstrEmitter::EmitDbgInstrRef(SDDbgValue *SD,
764 DenseMap<SDValue, Register> &VRBaseMap) {
765 assert(!SD->isVariadic());
766 SDDbgOperand DbgOperand = SD->getLocationOps()[0];
767 MDNode *Var = SD->getVariable();
768 DIExpression *Expr = (DIExpression*)SD->getExpression();
769 DebugLoc DL = SD->getDebugLoc();
770 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF);
772 // Handle variable locations that don't actually depend on the instructions
773 // in the program: constants and stack locations.
774 if (DbgOperand.getKind() == SDDbgOperand::FRAMEIX ||
775 DbgOperand.getKind() == SDDbgOperand::CONST)
776 return EmitDbgValueFromSingleOp(SD, VRBaseMap);
778 // Immediately fold any indirectness from the LLVM-IR intrinsic into the
779 // expression:
780 if (SD->isIndirect()) {
781 std::vector<uint64_t> Elts = {dwarf::DW_OP_deref};
782 Expr = DIExpression::append(Expr, Elts);
785 // It may not be immediately possible to identify the MachineInstr that
786 // defines a VReg, it can depend for example on the order blocks are
787 // emitted in. When this happens, or when further analysis is needed later,
788 // produce an instruction like this:
790 // DBG_INSTR_REF %0:gr64, 0, !123, !456
792 // i.e., point the instruction at the vreg, and patch it up later in
793 // MachineFunction::finalizeDebugInstrRefs.
794 auto EmitHalfDoneInstrRef = [&](unsigned VReg) -> MachineInstr * {
795 auto MIB = BuildMI(*MF, DL, RefII);
796 MIB.addReg(VReg);
797 MIB.addImm(0);
798 MIB.addMetadata(Var);
799 MIB.addMetadata(Expr);
800 return MIB;
803 // Try to find both the defined register and the instruction defining it.
804 MachineInstr *DefMI = nullptr;
805 unsigned VReg;
807 if (DbgOperand.getKind() == SDDbgOperand::VREG) {
808 VReg = DbgOperand.getVReg();
810 // No definition means that block hasn't been emitted yet. Leave a vreg
811 // reference to be fixed later.
812 if (!MRI->hasOneDef(VReg))
813 return EmitHalfDoneInstrRef(VReg);
815 DefMI = &*MRI->def_instr_begin(VReg);
816 } else {
817 assert(DbgOperand.getKind() == SDDbgOperand::SDNODE);
818 // Look up the corresponding VReg for the given SDNode, if any.
819 SDNode *Node = DbgOperand.getSDNode();
820 SDValue Op = SDValue(Node, DbgOperand.getResNo());
821 DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
822 // No VReg -> produce a DBG_VALUE $noreg instead.
823 if (I==VRBaseMap.end())
824 return EmitDbgNoLocation(SD);
826 // Try to pick out a defining instruction at this point.
827 VReg = getVR(Op, VRBaseMap);
829 // Again, if there's no instruction defining the VReg right now, fix it up
830 // later.
831 if (!MRI->hasOneDef(VReg))
832 return EmitHalfDoneInstrRef(VReg);
834 DefMI = &*MRI->def_instr_begin(VReg);
837 // Avoid copy like instructions: they don't define values, only move them.
838 // Leave a virtual-register reference until it can be fixed up later, to find
839 // the underlying value definition.
840 if (DefMI->isCopyLike() || TII->isCopyInstr(*DefMI))
841 return EmitHalfDoneInstrRef(VReg);
843 auto MIB = BuildMI(*MF, DL, RefII);
845 // Find the operand number which defines the specified VReg.
846 unsigned OperandIdx = 0;
847 for (const auto &MO : DefMI->operands()) {
848 if (MO.isReg() && MO.isDef() && MO.getReg() == VReg)
849 break;
850 ++OperandIdx;
852 assert(OperandIdx < DefMI->getNumOperands());
854 // Make the DBG_INSTR_REF refer to that instruction, and that operand.
855 unsigned InstrNum = DefMI->getDebugInstrNum();
856 MIB.addImm(InstrNum);
857 MIB.addImm(OperandIdx);
858 MIB.addMetadata(Var);
859 MIB.addMetadata(Expr);
860 return &*MIB;
863 MachineInstr *InstrEmitter::EmitDbgNoLocation(SDDbgValue *SD) {
864 // An invalidated SDNode must generate an undef DBG_VALUE: although the
865 // original value is no longer computed, earlier DBG_VALUEs live ranges
866 // must not leak into later code.
867 MDNode *Var = SD->getVariable();
868 MDNode *Expr = SD->getExpression();
869 DebugLoc DL = SD->getDebugLoc();
870 auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE));
871 MIB.addReg(0U);
872 MIB.addReg(0U);
873 MIB.addMetadata(Var);
874 MIB.addMetadata(Expr);
875 return &*MIB;
878 MachineInstr *
879 InstrEmitter::EmitDbgValueFromSingleOp(SDDbgValue *SD,
880 DenseMap<SDValue, Register> &VRBaseMap) {
881 MDNode *Var = SD->getVariable();
882 DIExpression *Expr = SD->getExpression();
883 DebugLoc DL = SD->getDebugLoc();
884 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
886 assert(SD->getLocationOps().size() == 1 &&
887 "Non variadic dbg_value should have only one location op");
889 // See about constant-folding the expression.
890 // Copy the location operand in case we replace it.
891 SmallVector<SDDbgOperand, 1> LocationOps(1, SD->getLocationOps()[0]);
892 if (Expr && LocationOps[0].getKind() == SDDbgOperand::CONST) {
893 const Value *V = LocationOps[0].getConst();
894 if (auto *C = dyn_cast<ConstantInt>(V)) {
895 std::tie(Expr, C) = Expr->constantFold(C);
896 LocationOps[0] = SDDbgOperand::fromConst(C);
900 // Emit non-variadic dbg_value nodes as DBG_VALUE.
901 // DBG_VALUE := "DBG_VALUE" loc, isIndirect, var, expr
902 auto MIB = BuildMI(*MF, DL, II);
903 AddDbgValueLocationOps(MIB, II, LocationOps, VRBaseMap);
905 if (SD->isIndirect())
906 MIB.addImm(0U);
907 else
908 MIB.addReg(0U);
910 return MIB.addMetadata(Var).addMetadata(Expr);
913 MachineInstr *
914 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
915 MDNode *Label = SD->getLabel();
916 DebugLoc DL = SD->getDebugLoc();
917 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
918 "Expected inlined-at fields to agree");
920 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
921 MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
922 MIB.addMetadata(Label);
924 return &*MIB;
927 /// EmitMachineNode - Generate machine code for a target-specific node and
928 /// needed dependencies.
930 void InstrEmitter::
931 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
932 DenseMap<SDValue, Register> &VRBaseMap) {
933 unsigned Opc = Node->getMachineOpcode();
935 // Handle subreg insert/extract specially
936 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
937 Opc == TargetOpcode::INSERT_SUBREG ||
938 Opc == TargetOpcode::SUBREG_TO_REG) {
939 EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
940 return;
943 // Handle COPY_TO_REGCLASS specially.
944 if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
945 EmitCopyToRegClassNode(Node, VRBaseMap);
946 return;
949 // Handle REG_SEQUENCE specially.
950 if (Opc == TargetOpcode::REG_SEQUENCE) {
951 EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
952 return;
955 if (Opc == TargetOpcode::IMPLICIT_DEF)
956 // We want a unique VR for each IMPLICIT_DEF use.
957 return;
959 const MCInstrDesc &II = TII->get(Opc);
960 unsigned NumResults = CountResults(Node);
961 unsigned NumDefs = II.getNumDefs();
962 const MCPhysReg *ScratchRegs = nullptr;
964 // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
965 if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
966 // Stackmaps do not have arguments and do not preserve their calling
967 // convention. However, to simplify runtime support, they clobber the same
968 // scratch registers as AnyRegCC.
969 unsigned CC = CallingConv::AnyReg;
970 if (Opc == TargetOpcode::PATCHPOINT) {
971 CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
972 NumDefs = NumResults;
974 ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
975 } else if (Opc == TargetOpcode::STATEPOINT) {
976 NumDefs = NumResults;
979 unsigned NumImpUses = 0;
980 unsigned NodeOperands =
981 countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
982 bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
983 II.isVariadic() && II.variadicOpsAreDefs();
984 bool HasPhysRegOuts = NumResults > NumDefs &&
985 II.getImplicitDefs() != nullptr && !HasVRegVariadicDefs;
986 #ifndef NDEBUG
987 unsigned NumMIOperands = NodeOperands + NumResults;
988 if (II.isVariadic())
989 assert(NumMIOperands >= II.getNumOperands() &&
990 "Too few operands for a variadic node!");
991 else
992 assert(NumMIOperands >= II.getNumOperands() &&
993 NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
994 NumImpUses &&
995 "#operands for dag node doesn't match .td file!");
996 #endif
998 // Create the new machine instruction.
999 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
1001 // Add result register values for things that are defined by this
1002 // instruction.
1003 if (NumResults) {
1004 CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
1006 // Transfer any IR flags from the SDNode to the MachineInstr
1007 MachineInstr *MI = MIB.getInstr();
1008 const SDNodeFlags Flags = Node->getFlags();
1009 if (Flags.hasNoSignedZeros())
1010 MI->setFlag(MachineInstr::MIFlag::FmNsz);
1012 if (Flags.hasAllowReciprocal())
1013 MI->setFlag(MachineInstr::MIFlag::FmArcp);
1015 if (Flags.hasNoNaNs())
1016 MI->setFlag(MachineInstr::MIFlag::FmNoNans);
1018 if (Flags.hasNoInfs())
1019 MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
1021 if (Flags.hasAllowContract())
1022 MI->setFlag(MachineInstr::MIFlag::FmContract);
1024 if (Flags.hasApproximateFuncs())
1025 MI->setFlag(MachineInstr::MIFlag::FmAfn);
1027 if (Flags.hasAllowReassociation())
1028 MI->setFlag(MachineInstr::MIFlag::FmReassoc);
1030 if (Flags.hasNoUnsignedWrap())
1031 MI->setFlag(MachineInstr::MIFlag::NoUWrap);
1033 if (Flags.hasNoSignedWrap())
1034 MI->setFlag(MachineInstr::MIFlag::NoSWrap);
1036 if (Flags.hasExact())
1037 MI->setFlag(MachineInstr::MIFlag::IsExact);
1039 if (Flags.hasNoFPExcept())
1040 MI->setFlag(MachineInstr::MIFlag::NoFPExcept);
1043 // Emit all of the actual operands of this instruction, adding them to the
1044 // instruction as appropriate.
1045 bool HasOptPRefs = NumDefs > NumResults;
1046 assert((!HasOptPRefs || !HasPhysRegOuts) &&
1047 "Unable to cope with optional defs and phys regs defs!");
1048 unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
1049 for (unsigned i = NumSkip; i != NodeOperands; ++i)
1050 AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
1051 VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
1053 // Add scratch registers as implicit def and early clobber
1054 if (ScratchRegs)
1055 for (unsigned i = 0; ScratchRegs[i]; ++i)
1056 MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
1057 RegState::EarlyClobber);
1059 // Set the memory reference descriptions of this instruction now that it is
1060 // part of the function.
1061 MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
1063 // Insert the instruction into position in the block. This needs to
1064 // happen before any custom inserter hook is called so that the
1065 // hook knows where in the block to insert the replacement code.
1066 MBB->insert(InsertPos, MIB);
1068 // The MachineInstr may also define physregs instead of virtregs. These
1069 // physreg values can reach other instructions in different ways:
1071 // 1. When there is a use of a Node value beyond the explicitly defined
1072 // virtual registers, we emit a CopyFromReg for one of the implicitly
1073 // defined physregs. This only happens when HasPhysRegOuts is true.
1075 // 2. A CopyFromReg reading a physreg may be glued to this instruction.
1077 // 3. A glued instruction may implicitly use a physreg.
1079 // 4. A glued instruction may use a RegisterSDNode operand.
1081 // Collect all the used physreg defs, and make sure that any unused physreg
1082 // defs are marked as dead.
1083 SmallVector<Register, 8> UsedRegs;
1085 // Additional results must be physical register defs.
1086 if (HasPhysRegOuts) {
1087 for (unsigned i = NumDefs; i < NumResults; ++i) {
1088 Register Reg = II.getImplicitDefs()[i - NumDefs];
1089 if (!Node->hasAnyUseOfValue(i))
1090 continue;
1091 // This implicitly defined physreg has a use.
1092 UsedRegs.push_back(Reg);
1093 EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
1097 // Scan the glue chain for any used physregs.
1098 if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
1099 for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
1100 if (F->getOpcode() == ISD::CopyFromReg) {
1101 UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
1102 continue;
1103 } else if (F->getOpcode() == ISD::CopyToReg) {
1104 // Skip CopyToReg nodes that are internal to the glue chain.
1105 continue;
1107 // Collect declared implicit uses.
1108 const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
1109 UsedRegs.append(MCID.getImplicitUses(),
1110 MCID.getImplicitUses() + MCID.getNumImplicitUses());
1111 // In addition to declared implicit uses, we must also check for
1112 // direct RegisterSDNode operands.
1113 for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
1114 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
1115 Register Reg = R->getReg();
1116 if (Reg.isPhysical())
1117 UsedRegs.push_back(Reg);
1122 // Finally mark unused registers as dead.
1123 if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef())
1124 MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
1126 // STATEPOINT is too 'dynamic' to have meaningful machine description.
1127 // We have to manually tie operands.
1128 if (Opc == TargetOpcode::STATEPOINT && NumDefs > 0) {
1129 assert(!HasPhysRegOuts && "STATEPOINT mishandled");
1130 MachineInstr *MI = MIB;
1131 unsigned Def = 0;
1132 int First = StatepointOpers(MI).getFirstGCPtrIdx();
1133 assert(First > 0 && "Statepoint has Defs but no GC ptr list");
1134 unsigned Use = (unsigned)First;
1135 while (Def < NumDefs) {
1136 if (MI->getOperand(Use).isReg())
1137 MI->tieOperands(Def++, Use);
1138 Use = StackMaps::getNextMetaArgIdx(MI, Use);
1142 // Run post-isel target hook to adjust this instruction if needed.
1143 if (II.hasPostISelHook())
1144 TLI->AdjustInstrPostInstrSelection(*MIB, Node);
1147 /// EmitSpecialNode - Generate machine code for a target-independent node and
1148 /// needed dependencies.
1149 void InstrEmitter::
1150 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
1151 DenseMap<SDValue, Register> &VRBaseMap) {
1152 switch (Node->getOpcode()) {
1153 default:
1154 #ifndef NDEBUG
1155 Node->dump();
1156 #endif
1157 llvm_unreachable("This target-independent node should have been selected!");
1158 case ISD::EntryToken:
1159 llvm_unreachable("EntryToken should have been excluded from the schedule!");
1160 case ISD::MERGE_VALUES:
1161 case ISD::TokenFactor: // fall thru
1162 break;
1163 case ISD::CopyToReg: {
1164 Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1165 SDValue SrcVal = Node->getOperand(2);
1166 if (Register::isVirtualRegister(DestReg) && SrcVal.isMachineOpcode() &&
1167 SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
1168 // Instead building a COPY to that vreg destination, build an
1169 // IMPLICIT_DEF instruction instead.
1170 BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1171 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
1172 break;
1174 Register SrcReg;
1175 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
1176 SrcReg = R->getReg();
1177 else
1178 SrcReg = getVR(SrcVal, VRBaseMap);
1180 if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
1181 break;
1183 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
1184 DestReg).addReg(SrcReg);
1185 break;
1187 case ISD::CopyFromReg: {
1188 unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1189 EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
1190 break;
1192 case ISD::EH_LABEL:
1193 case ISD::ANNOTATION_LABEL: {
1194 unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
1195 ? TargetOpcode::EH_LABEL
1196 : TargetOpcode::ANNOTATION_LABEL;
1197 MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
1198 BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1199 TII->get(Opc)).addSym(S);
1200 break;
1203 case ISD::LIFETIME_START:
1204 case ISD::LIFETIME_END: {
1205 unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START)
1206 ? TargetOpcode::LIFETIME_START
1207 : TargetOpcode::LIFETIME_END;
1208 auto *FI = cast<FrameIndexSDNode>(Node->getOperand(1));
1209 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1210 .addFrameIndex(FI->getIndex());
1211 break;
1214 case ISD::PSEUDO_PROBE: {
1215 unsigned TarOp = TargetOpcode::PSEUDO_PROBE;
1216 auto Guid = cast<PseudoProbeSDNode>(Node)->getGuid();
1217 auto Index = cast<PseudoProbeSDNode>(Node)->getIndex();
1218 auto Attr = cast<PseudoProbeSDNode>(Node)->getAttributes();
1220 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1221 .addImm(Guid)
1222 .addImm(Index)
1223 .addImm((uint8_t)PseudoProbeType::Block)
1224 .addImm(Attr);
1225 break;
1228 case ISD::INLINEASM:
1229 case ISD::INLINEASM_BR: {
1230 unsigned NumOps = Node->getNumOperands();
1231 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1232 --NumOps; // Ignore the glue operand.
1234 // Create the inline asm machine instruction.
1235 unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
1236 ? TargetOpcode::INLINEASM_BR
1237 : TargetOpcode::INLINEASM;
1238 MachineInstrBuilder MIB =
1239 BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));
1241 // Add the asm string as an external symbol operand.
1242 SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
1243 const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
1244 MIB.addExternalSymbol(AsmStr);
1246 // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1247 // bits.
1248 int64_t ExtraInfo =
1249 cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
1250 getZExtValue();
1251 MIB.addImm(ExtraInfo);
1253 // Remember to operand index of the group flags.
1254 SmallVector<unsigned, 8> GroupIdx;
1256 // Remember registers that are part of early-clobber defs.
1257 SmallVector<unsigned, 8> ECRegs;
1259 // Add all of the operand registers to the instruction.
1260 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1261 unsigned Flags =
1262 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1263 const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1265 GroupIdx.push_back(MIB->getNumOperands());
1266 MIB.addImm(Flags);
1267 ++i; // Skip the ID value.
1269 switch (InlineAsm::getKind(Flags)) {
1270 default: llvm_unreachable("Bad flags!");
1271 case InlineAsm::Kind_RegDef:
1272 for (unsigned j = 0; j != NumVals; ++j, ++i) {
1273 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1274 // FIXME: Add dead flags for physical and virtual registers defined.
1275 // For now, mark physical register defs as implicit to help fast
1276 // regalloc. This makes inline asm look a lot like calls.
1277 MIB.addReg(Reg,
1278 RegState::Define |
1279 getImplRegState(Register::isPhysicalRegister(Reg)));
1281 break;
1282 case InlineAsm::Kind_RegDefEarlyClobber:
1283 case InlineAsm::Kind_Clobber:
1284 for (unsigned j = 0; j != NumVals; ++j, ++i) {
1285 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1286 MIB.addReg(Reg,
1287 RegState::Define | RegState::EarlyClobber |
1288 getImplRegState(Register::isPhysicalRegister(Reg)));
1289 ECRegs.push_back(Reg);
1291 break;
1292 case InlineAsm::Kind_RegUse: // Use of register.
1293 case InlineAsm::Kind_Imm: // Immediate.
1294 case InlineAsm::Kind_Mem: // Addressing mode.
1295 // The addressing mode has been selected, just add all of the
1296 // operands to the machine instruction.
1297 for (unsigned j = 0; j != NumVals; ++j, ++i)
1298 AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1299 /*IsDebug=*/false, IsClone, IsCloned);
1301 // Manually set isTied bits.
1302 if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
1303 unsigned DefGroup = 0;
1304 if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
1305 unsigned DefIdx = GroupIdx[DefGroup] + 1;
1306 unsigned UseIdx = GroupIdx.back() + 1;
1307 for (unsigned j = 0; j != NumVals; ++j)
1308 MIB->tieOperands(DefIdx + j, UseIdx + j);
1311 break;
1315 // GCC inline assembly allows input operands to also be early-clobber
1316 // output operands (so long as the operand is written only after it's
1317 // used), but this does not match the semantics of our early-clobber flag.
1318 // If an early-clobber operand register is also an input operand register,
1319 // then remove the early-clobber flag.
1320 for (unsigned Reg : ECRegs) {
1321 if (MIB->readsRegister(Reg, TRI)) {
1322 MachineOperand *MO =
1323 MIB->findRegisterDefOperand(Reg, false, false, TRI);
1324 assert(MO && "No def operand for clobbered register?");
1325 MO->setIsEarlyClobber(false);
1329 // Get the mdnode from the asm if it exists and add it to the instruction.
1330 SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1331 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1332 if (MD)
1333 MIB.addMetadata(MD);
1335 MBB->insert(InsertPos, MIB);
1336 break;
1341 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1342 /// at the given position in the given block.
1343 InstrEmitter::InstrEmitter(const TargetMachine &TM, MachineBasicBlock *mbb,
1344 MachineBasicBlock::iterator insertpos)
1345 : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1346 TII(MF->getSubtarget().getInstrInfo()),
1347 TRI(MF->getSubtarget().getRegisterInfo()),
1348 TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1349 InsertPos(insertpos) {
1350 EmitDebugInstrRefs = MF->useDebugInstrRef();