1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the SelectionDAG::LegalizeTypes method. It transforms
10 // an arbitrary well-formed SelectionDAG to only consist of legal types. This
11 // is common code shared among the LegalizeTypes*.cpp files.
13 //===----------------------------------------------------------------------===//
15 #include "LegalizeTypes.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/IR/CallingConv.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/raw_ostream.h"
26 #define DEBUG_TYPE "legalize-types"
29 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden
);
31 /// Do extensive, expensive, basic correctness checking.
32 void DAGTypeLegalizer::PerformExpensiveChecks() {
33 // If a node is not processed, then none of its values should be mapped by any
34 // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
36 // If a node is processed, then each value with an illegal type must be mapped
37 // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
38 // Values with a legal type may be mapped by ReplacedValues, but not by any of
41 // Note that these invariants may not hold momentarily when processing a node:
42 // the node being processed may be put in a map before being marked Processed.
44 // Note that it is possible to have nodes marked NewNode in the DAG. This can
45 // occur in two ways. Firstly, a node may be created during legalization but
46 // never passed to the legalization core. This is usually due to the implicit
47 // folding that occurs when using the DAG.getNode operators. Secondly, a new
48 // node may be passed to the legalization core, but when analyzed may morph
49 // into a different node, leaving the original node as a NewNode in the DAG.
50 // A node may morph if one of its operands changes during analysis. Whether
51 // it actually morphs or not depends on whether, after updating its operands,
52 // it is equivalent to an existing node: if so, it morphs into that existing
53 // node (CSE). An operand can change during analysis if the operand is a new
54 // node that morphs, or it is a processed value that was mapped to some other
55 // value (as recorded in ReplacedValues) in which case the operand is turned
56 // into that other value. If a node morphs then the node it morphed into will
57 // be used instead of it for legalization, however the original node continues
58 // to live on in the DAG.
59 // The conclusion is that though there may be nodes marked NewNode in the DAG,
60 // all uses of such nodes are also marked NewNode: the result is a fungus of
61 // NewNodes growing on top of the useful nodes, and perhaps using them, but
64 // If a value is mapped by ReplacedValues, then it must have no uses, except
65 // by nodes marked NewNode (see above).
67 // The final node obtained by mapping by ReplacedValues is not marked NewNode.
68 // Note that ReplacedValues should be applied iteratively.
70 // Note that the ReplacedValues map may also map deleted nodes (by iterating
71 // over the DAG we never dereference deleted nodes). This means that it may
72 // also map nodes marked NewNode if the deallocated memory was reallocated as
73 // another node, and that new node was not seen by the LegalizeTypes machinery
74 // (for example because it was created but not used). In general, we cannot
75 // distinguish between new nodes and deleted nodes.
76 SmallVector
<SDNode
*, 16> NewNodes
;
77 for (SDNode
&Node
: DAG
.allnodes()) {
78 // Remember nodes marked NewNode - they are subject to extra checking below.
79 if (Node
.getNodeId() == NewNode
)
80 NewNodes
.push_back(&Node
);
82 for (unsigned i
= 0, e
= Node
.getNumValues(); i
!= e
; ++i
) {
83 SDValue
Res(&Node
, i
);
85 // Don't create a value in map.
86 auto ResId
= ValueToIdMap
.lookup(Res
);
89 if (ResId
&& (ReplacedValues
.find(ResId
) != ReplacedValues
.end())) {
91 // Check that remapped values are only used by nodes marked NewNode.
92 for (SDNode::use_iterator UI
= Node
.use_begin(), UE
= Node
.use_end();
94 if (UI
.getUse().getResNo() == i
)
95 assert(UI
->getNodeId() == NewNode
&&
96 "Remapped value has non-trivial use!");
98 // Check that the final result of applying ReplacedValues is not
100 auto NewValId
= ReplacedValues
[ResId
];
101 auto I
= ReplacedValues
.find(NewValId
);
102 while (I
!= ReplacedValues
.end()) {
103 NewValId
= I
->second
;
104 I
= ReplacedValues
.find(NewValId
);
106 SDValue NewVal
= getSDValue(NewValId
);
108 assert(NewVal
.getNode()->getNodeId() != NewNode
&&
109 "ReplacedValues maps to a new node!");
111 if (ResId
&& PromotedIntegers
.find(ResId
) != PromotedIntegers
.end())
113 if (ResId
&& SoftenedFloats
.find(ResId
) != SoftenedFloats
.end())
115 if (ResId
&& ScalarizedVectors
.find(ResId
) != ScalarizedVectors
.end())
117 if (ResId
&& ExpandedIntegers
.find(ResId
) != ExpandedIntegers
.end())
119 if (ResId
&& ExpandedFloats
.find(ResId
) != ExpandedFloats
.end())
121 if (ResId
&& SplitVectors
.find(ResId
) != SplitVectors
.end())
123 if (ResId
&& WidenedVectors
.find(ResId
) != WidenedVectors
.end())
125 if (ResId
&& PromotedFloats
.find(ResId
) != PromotedFloats
.end())
127 if (ResId
&& SoftPromotedHalfs
.find(ResId
) != SoftPromotedHalfs
.end())
130 if (Node
.getNodeId() != Processed
) {
131 // Since we allow ReplacedValues to map deleted nodes, it may map nodes
132 // marked NewNode too, since a deleted node may have been reallocated as
133 // another node that has not been seen by the LegalizeTypes machinery.
134 if ((Node
.getNodeId() == NewNode
&& Mapped
> 1) ||
135 (Node
.getNodeId() != NewNode
&& Mapped
!= 0)) {
136 dbgs() << "Unprocessed value in a map!";
139 } else if (isTypeLegal(Res
.getValueType()) || IgnoreNodeResults(&Node
)) {
141 dbgs() << "Value with legal type was transformed!";
146 dbgs() << "Processed value not in any map!";
148 } else if (Mapped
& (Mapped
- 1)) {
149 dbgs() << "Value in multiple maps!";
156 dbgs() << " ReplacedValues";
158 dbgs() << " PromotedIntegers";
160 dbgs() << " SoftenedFloats";
162 dbgs() << " ScalarizedVectors";
164 dbgs() << " ExpandedIntegers";
166 dbgs() << " ExpandedFloats";
168 dbgs() << " SplitVectors";
170 dbgs() << " WidenedVectors";
172 dbgs() << " PromotedFloats";
174 dbgs() << " SoftPromoteHalfs";
176 llvm_unreachable(nullptr);
182 // Checked that NewNodes are only used by other NewNodes.
183 for (unsigned i
= 0, e
= NewNodes
.size(); i
!= e
; ++i
) {
184 SDNode
*N
= NewNodes
[i
];
185 for (SDNode
*U
: N
->uses())
186 assert(U
->getNodeId() == NewNode
&& "NewNode used by non-NewNode!");
191 /// This is the main entry point for the type legalizer. This does a top-down
192 /// traversal of the dag, legalizing types as it goes. Returns "true" if it made
194 bool DAGTypeLegalizer::run() {
195 bool Changed
= false;
197 // Create a dummy node (which is not added to allnodes), that adds a reference
198 // to the root node, preventing it from being deleted, and tracking any
199 // changes of the root.
200 HandleSDNode
Dummy(DAG
.getRoot());
201 Dummy
.setNodeId(Unanalyzed
);
203 // The root of the dag may dangle to deleted nodes until the type legalizer is
204 // done. Set it to null to avoid confusion.
205 DAG
.setRoot(SDValue());
207 // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
208 // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
210 for (SDNode
&Node
: DAG
.allnodes()) {
211 if (Node
.getNumOperands() == 0) {
212 Node
.setNodeId(ReadyToProcess
);
213 Worklist
.push_back(&Node
);
215 Node
.setNodeId(Unanalyzed
);
219 // Now that we have a set of nodes to process, handle them all.
220 while (!Worklist
.empty()) {
221 #ifndef EXPENSIVE_CHECKS
222 if (EnableExpensiveChecks
)
224 PerformExpensiveChecks();
226 SDNode
*N
= Worklist
.pop_back_val();
227 assert(N
->getNodeId() == ReadyToProcess
&&
228 "Node should be ready if on worklist!");
230 LLVM_DEBUG(dbgs() << "Legalizing node: "; N
->dump(&DAG
));
231 if (IgnoreNodeResults(N
)) {
232 LLVM_DEBUG(dbgs() << "Ignoring node results\n");
236 // Scan the values produced by the node, checking to see if any result
237 // types are illegal.
238 for (unsigned i
= 0, NumResults
= N
->getNumValues(); i
< NumResults
; ++i
) {
239 EVT ResultVT
= N
->getValueType(i
);
240 LLVM_DEBUG(dbgs() << "Analyzing result type: " << ResultVT
.getEVTString()
242 switch (getTypeAction(ResultVT
)) {
243 case TargetLowering::TypeLegal
:
244 LLVM_DEBUG(dbgs() << "Legal result type\n");
246 case TargetLowering::TypeScalarizeScalableVector
:
248 "Scalarization of scalable vectors is not supported.");
249 // The following calls must take care of *all* of the node's results,
250 // not just the illegal result they were passed (this includes results
251 // with a legal type). Results can be remapped using ReplaceValueWith,
252 // or their promoted/expanded/etc values registered in PromotedIntegers,
253 // ExpandedIntegers etc.
254 case TargetLowering::TypePromoteInteger
:
255 PromoteIntegerResult(N
, i
);
258 case TargetLowering::TypeExpandInteger
:
259 ExpandIntegerResult(N
, i
);
262 case TargetLowering::TypeSoftenFloat
:
263 SoftenFloatResult(N
, i
);
266 case TargetLowering::TypeExpandFloat
:
267 ExpandFloatResult(N
, i
);
270 case TargetLowering::TypeScalarizeVector
:
271 ScalarizeVectorResult(N
, i
);
274 case TargetLowering::TypeSplitVector
:
275 SplitVectorResult(N
, i
);
278 case TargetLowering::TypeWidenVector
:
279 WidenVectorResult(N
, i
);
282 case TargetLowering::TypePromoteFloat
:
283 PromoteFloatResult(N
, i
);
286 case TargetLowering::TypeSoftPromoteHalf
:
287 SoftPromoteHalfResult(N
, i
);
294 // Scan the operand list for the node, handling any nodes with operands that
297 unsigned NumOperands
= N
->getNumOperands();
298 bool NeedsReanalyzing
= false;
300 for (i
= 0; i
!= NumOperands
; ++i
) {
301 if (IgnoreNodeResults(N
->getOperand(i
).getNode()))
304 const auto &Op
= N
->getOperand(i
);
305 LLVM_DEBUG(dbgs() << "Analyzing operand: "; Op
.dump(&DAG
));
306 EVT OpVT
= Op
.getValueType();
307 switch (getTypeAction(OpVT
)) {
308 case TargetLowering::TypeLegal
:
309 LLVM_DEBUG(dbgs() << "Legal operand\n");
311 case TargetLowering::TypeScalarizeScalableVector
:
313 "Scalarization of scalable vectors is not supported.");
314 // The following calls must either replace all of the node's results
315 // using ReplaceValueWith, and return "false"; or update the node's
316 // operands in place, and return "true".
317 case TargetLowering::TypePromoteInteger
:
318 NeedsReanalyzing
= PromoteIntegerOperand(N
, i
);
321 case TargetLowering::TypeExpandInteger
:
322 NeedsReanalyzing
= ExpandIntegerOperand(N
, i
);
325 case TargetLowering::TypeSoftenFloat
:
326 NeedsReanalyzing
= SoftenFloatOperand(N
, i
);
329 case TargetLowering::TypeExpandFloat
:
330 NeedsReanalyzing
= ExpandFloatOperand(N
, i
);
333 case TargetLowering::TypeScalarizeVector
:
334 NeedsReanalyzing
= ScalarizeVectorOperand(N
, i
);
337 case TargetLowering::TypeSplitVector
:
338 NeedsReanalyzing
= SplitVectorOperand(N
, i
);
341 case TargetLowering::TypeWidenVector
:
342 NeedsReanalyzing
= WidenVectorOperand(N
, i
);
345 case TargetLowering::TypePromoteFloat
:
346 NeedsReanalyzing
= PromoteFloatOperand(N
, i
);
349 case TargetLowering::TypeSoftPromoteHalf
:
350 NeedsReanalyzing
= SoftPromoteHalfOperand(N
, i
);
357 // The sub-method updated N in place. Check to see if any operands are new,
358 // and if so, mark them. If the node needs revisiting, don't add all users
359 // to the worklist etc.
360 if (NeedsReanalyzing
) {
361 assert(N
->getNodeId() == ReadyToProcess
&& "Node ID recalculated?");
363 N
->setNodeId(NewNode
);
364 // Recompute the NodeId and correct processed operands, adding the node to
365 // the worklist if ready.
366 SDNode
*M
= AnalyzeNewNode(N
);
368 // The node didn't morph - nothing special to do, it will be revisited.
371 // The node morphed - this is equivalent to legalizing by replacing every
372 // value of N with the corresponding value of M. So do that now.
373 assert(N
->getNumValues() == M
->getNumValues() &&
374 "Node morphing changed the number of results!");
375 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
)
376 // Replacing the value takes care of remapping the new value.
377 ReplaceValueWith(SDValue(N
, i
), SDValue(M
, i
));
378 assert(N
->getNodeId() == NewNode
&& "Unexpected node state!");
379 // The node continues to live on as part of the NewNode fungus that
380 // grows on top of the useful nodes. Nothing more needs to be done
381 // with it - move on to the next node.
385 if (i
== NumOperands
) {
386 LLVM_DEBUG(dbgs() << "Legally typed node: "; N
->dump(&DAG
);
392 // If we reach here, the node was processed, potentially creating new nodes.
393 // Mark it as processed and add its users to the worklist as appropriate.
394 assert(N
->getNodeId() == ReadyToProcess
&& "Node ID recalculated?");
395 N
->setNodeId(Processed
);
397 for (SDNode
*User
: N
->uses()) {
398 int NodeId
= User
->getNodeId();
400 // This node has two options: it can either be a new node or its Node ID
401 // may be a count of the number of operands it has that are not ready.
403 User
->setNodeId(NodeId
-1);
405 // If this was the last use it was waiting on, add it to the ready list.
406 if (NodeId
-1 == ReadyToProcess
)
407 Worklist
.push_back(User
);
411 // If this is an unreachable new node, then ignore it. If it ever becomes
412 // reachable by being used by a newly created node then it will be handled
413 // by AnalyzeNewNode.
414 if (NodeId
== NewNode
)
417 // Otherwise, this node is new: this is the first operand of it that
418 // became ready. Its new NodeId is the number of operands it has minus 1
419 // (as this node is now processed).
420 assert(NodeId
== Unanalyzed
&& "Unknown node ID!");
421 User
->setNodeId(User
->getNumOperands() - 1);
423 // If the node only has a single operand, it is now ready.
424 if (User
->getNumOperands() == 1)
425 Worklist
.push_back(User
);
429 #ifndef EXPENSIVE_CHECKS
430 if (EnableExpensiveChecks
)
432 PerformExpensiveChecks();
434 // If the root changed (e.g. it was a dead load) update the root.
435 DAG
.setRoot(Dummy
.getValue());
437 // Remove dead nodes. This is important to do for cleanliness but also before
438 // the checking loop below. Implicit folding by the DAG.getNode operators and
439 // node morphing can cause unreachable nodes to be around with their flags set
441 DAG
.RemoveDeadNodes();
443 // In a debug build, scan all the nodes to make sure we found them all. This
444 // ensures that there are no cycles and that everything got processed.
446 for (SDNode
&Node
: DAG
.allnodes()) {
449 // Check that all result types are legal.
450 if (!IgnoreNodeResults(&Node
))
451 for (unsigned i
= 0, NumVals
= Node
.getNumValues(); i
< NumVals
; ++i
)
452 if (!isTypeLegal(Node
.getValueType(i
))) {
453 dbgs() << "Result type " << i
<< " illegal: ";
458 // Check that all operand types are legal.
459 for (unsigned i
= 0, NumOps
= Node
.getNumOperands(); i
< NumOps
; ++i
)
460 if (!IgnoreNodeResults(Node
.getOperand(i
).getNode()) &&
461 !isTypeLegal(Node
.getOperand(i
).getValueType())) {
462 dbgs() << "Operand type " << i
<< " illegal: ";
463 Node
.getOperand(i
).dump(&DAG
);
467 if (Node
.getNodeId() != Processed
) {
468 if (Node
.getNodeId() == NewNode
)
469 dbgs() << "New node not analyzed?\n";
470 else if (Node
.getNodeId() == Unanalyzed
)
471 dbgs() << "Unanalyzed node not noticed?\n";
472 else if (Node
.getNodeId() > 0)
473 dbgs() << "Operand not processed?\n";
474 else if (Node
.getNodeId() == ReadyToProcess
)
475 dbgs() << "Not added to worklist?\n";
480 Node
.dump(&DAG
); dbgs() << "\n";
481 llvm_unreachable(nullptr);
489 /// The specified node is the root of a subtree of potentially new nodes.
490 /// Correct any processed operands (this may change the node) and calculate the
491 /// NodeId. If the node itself changes to a processed node, it is not remapped -
492 /// the caller needs to take care of this. Returns the potentially changed node.
493 SDNode
*DAGTypeLegalizer::AnalyzeNewNode(SDNode
*N
) {
494 // If this was an existing node that is already done, we're done.
495 if (N
->getNodeId() != NewNode
&& N
->getNodeId() != Unanalyzed
)
498 // Okay, we know that this node is new. Recursively walk all of its operands
499 // to see if they are new also. The depth of this walk is bounded by the size
500 // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
501 // about revisiting of nodes.
503 // As we walk the operands, keep track of the number of nodes that are
504 // processed. If non-zero, this will become the new nodeid of this node.
505 // Operands may morph when they are analyzed. If so, the node will be
506 // updated after all operands have been analyzed. Since this is rare,
507 // the code tries to minimize overhead in the non-morphing case.
509 std::vector
<SDValue
> NewOps
;
510 unsigned NumProcessed
= 0;
511 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
512 SDValue OrigOp
= N
->getOperand(i
);
515 AnalyzeNewValue(Op
); // Op may morph.
517 if (Op
.getNode()->getNodeId() == Processed
)
520 if (!NewOps
.empty()) {
521 // Some previous operand changed. Add this one to the list.
522 NewOps
.push_back(Op
);
523 } else if (Op
!= OrigOp
) {
524 // This is the first operand to change - add all operands so far.
525 NewOps
.insert(NewOps
.end(), N
->op_begin(), N
->op_begin() + i
);
526 NewOps
.push_back(Op
);
530 // Some operands changed - update the node.
531 if (!NewOps
.empty()) {
532 SDNode
*M
= DAG
.UpdateNodeOperands(N
, NewOps
);
534 // The node morphed into a different node. Normally for this to happen
535 // the original node would have to be marked NewNode. However this can
536 // in theory momentarily not be the case while ReplaceValueWith is doing
537 // its stuff. Mark the original node NewNode to help basic correctness
539 N
->setNodeId(NewNode
);
540 if (M
->getNodeId() != NewNode
&& M
->getNodeId() != Unanalyzed
)
541 // It morphed into a previously analyzed node - nothing more to do.
544 // It morphed into a different new node. Do the equivalent of passing
545 // it to AnalyzeNewNode: expunge it and calculate the NodeId. No need
546 // to remap the operands, since they are the same as the operands we
552 // Calculate the NodeId.
553 N
->setNodeId(N
->getNumOperands() - NumProcessed
);
554 if (N
->getNodeId() == ReadyToProcess
)
555 Worklist
.push_back(N
);
560 /// Call AnalyzeNewNode, updating the node in Val if needed.
561 /// If the node changes to a processed node, then remap it.
562 void DAGTypeLegalizer::AnalyzeNewValue(SDValue
&Val
) {
563 Val
.setNode(AnalyzeNewNode(Val
.getNode()));
564 if (Val
.getNode()->getNodeId() == Processed
)
565 // We were passed a processed node, or it morphed into one - remap it.
569 /// If the specified value was already legalized to another value,
570 /// replace it by that value.
571 void DAGTypeLegalizer::RemapValue(SDValue
&V
) {
572 auto Id
= getTableId(V
);
576 void DAGTypeLegalizer::RemapId(TableId
&Id
) {
577 auto I
= ReplacedValues
.find(Id
);
578 if (I
!= ReplacedValues
.end()) {
579 assert(Id
!= I
->second
&& "Id is mapped to itself.");
580 // Use path compression to speed up future lookups if values get multiply
581 // replaced with other values.
585 // Note that N = IdToValueMap[Id] it is possible to have
586 // N.getNode()->getNodeId() == NewNode at this point because it is possible
587 // for a node to be put in the map before being processed.
592 /// This class is a DAGUpdateListener that listens for updates to nodes and
593 /// recomputes their ready state.
594 class NodeUpdateListener
: public SelectionDAG::DAGUpdateListener
{
595 DAGTypeLegalizer
&DTL
;
596 SmallSetVector
<SDNode
*, 16> &NodesToAnalyze
;
598 explicit NodeUpdateListener(DAGTypeLegalizer
&dtl
,
599 SmallSetVector
<SDNode
*, 16> &nta
)
600 : SelectionDAG::DAGUpdateListener(dtl
.getDAG()),
601 DTL(dtl
), NodesToAnalyze(nta
) {}
603 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
604 assert(N
->getNodeId() != DAGTypeLegalizer::ReadyToProcess
&&
605 N
->getNodeId() != DAGTypeLegalizer::Processed
&&
606 "Invalid node ID for RAUW deletion!");
607 // It is possible, though rare, for the deleted node N to occur as a
608 // target in a map, so note the replacement N -> E in ReplacedValues.
609 assert(E
&& "Node not replaced?");
610 DTL
.NoteDeletion(N
, E
);
612 // In theory the deleted node could also have been scheduled for analysis.
613 // So remove it from the set of nodes which will be analyzed.
614 NodesToAnalyze
.remove(N
);
616 // In general nothing needs to be done for E, since it didn't change but
617 // only gained new uses. However N -> E was just added to ReplacedValues,
618 // and the result of a ReplacedValues mapping is not allowed to be marked
619 // NewNode. So if E is marked NewNode, then it needs to be analyzed.
620 if (E
->getNodeId() == DAGTypeLegalizer::NewNode
)
621 NodesToAnalyze
.insert(E
);
624 void NodeUpdated(SDNode
*N
) override
{
625 // Node updates can mean pretty much anything. It is possible that an
626 // operand was set to something already processed (f.e.) in which case
627 // this node could become ready. Recompute its flags.
628 assert(N
->getNodeId() != DAGTypeLegalizer::ReadyToProcess
&&
629 N
->getNodeId() != DAGTypeLegalizer::Processed
&&
630 "Invalid node ID for RAUW deletion!");
631 N
->setNodeId(DAGTypeLegalizer::NewNode
);
632 NodesToAnalyze
.insert(N
);
638 /// The specified value was legalized to the specified other value.
639 /// Update the DAG and NodeIds replacing any uses of From to use To instead.
640 void DAGTypeLegalizer::ReplaceValueWith(SDValue From
, SDValue To
) {
641 assert(From
.getNode() != To
.getNode() && "Potential legalization loop!");
643 // If expansion produced new nodes, make sure they are properly marked.
646 // Anything that used the old node should now use the new one. Note that this
647 // can potentially cause recursive merging.
648 SmallSetVector
<SDNode
*, 16> NodesToAnalyze
;
649 NodeUpdateListener
NUL(*this, NodesToAnalyze
);
652 // The old node may be present in a map like ExpandedIntegers or
653 // PromotedIntegers. Inform maps about the replacement.
654 auto FromId
= getTableId(From
);
655 auto ToId
= getTableId(To
);
658 ReplacedValues
[FromId
] = ToId
;
659 DAG
.ReplaceAllUsesOfValueWith(From
, To
);
661 // Process the list of nodes that need to be reanalyzed.
662 while (!NodesToAnalyze
.empty()) {
663 SDNode
*N
= NodesToAnalyze
.pop_back_val();
664 if (N
->getNodeId() != DAGTypeLegalizer::NewNode
)
665 // The node was analyzed while reanalyzing an earlier node - it is safe
666 // to skip. Note that this is not a morphing node - otherwise it would
667 // still be marked NewNode.
670 // Analyze the node's operands and recalculate the node ID.
671 SDNode
*M
= AnalyzeNewNode(N
);
673 // The node morphed into a different node. Make everyone use the new
675 assert(M
->getNodeId() != NewNode
&& "Analysis resulted in NewNode!");
676 assert(N
->getNumValues() == M
->getNumValues() &&
677 "Node morphing changed the number of results!");
678 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
) {
679 SDValue
OldVal(N
, i
);
680 SDValue
NewVal(M
, i
);
681 if (M
->getNodeId() == Processed
)
683 // OldVal may be a target of the ReplacedValues map which was marked
684 // NewNode to force reanalysis because it was updated. Ensure that
685 // anything that ReplacedValues mapped to OldVal will now be mapped
686 // all the way to NewVal.
687 auto OldValId
= getTableId(OldVal
);
688 auto NewValId
= getTableId(NewVal
);
689 DAG
.ReplaceAllUsesOfValueWith(OldVal
, NewVal
);
690 if (OldValId
!= NewValId
)
691 ReplacedValues
[OldValId
] = NewValId
;
693 // The original node continues to exist in the DAG, marked NewNode.
696 // When recursively update nodes with new nodes, it is possible to have
697 // new uses of From due to CSE. If this happens, replace the new uses of
699 } while (!From
.use_empty());
702 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op
, SDValue Result
) {
703 assert(Result
.getValueType() ==
704 TLI
.getTypeToTransformTo(*DAG
.getContext(), Op
.getValueType()) &&
705 "Invalid type for promoted integer");
706 AnalyzeNewValue(Result
);
708 auto &OpIdEntry
= PromotedIntegers
[getTableId(Op
)];
709 assert((OpIdEntry
== 0) && "Node is already promoted!");
710 OpIdEntry
= getTableId(Result
);
711 Result
->setFlags(Op
->getFlags());
713 DAG
.transferDbgValues(Op
, Result
);
716 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op
, SDValue Result
) {
717 assert(Result
.getValueType() ==
718 TLI
.getTypeToTransformTo(*DAG
.getContext(), Op
.getValueType()) &&
719 "Invalid type for softened float");
720 AnalyzeNewValue(Result
);
722 auto &OpIdEntry
= SoftenedFloats
[getTableId(Op
)];
723 assert((OpIdEntry
== 0) && "Node is already converted to integer!");
724 OpIdEntry
= getTableId(Result
);
727 void DAGTypeLegalizer::SetPromotedFloat(SDValue Op
, SDValue Result
) {
728 assert(Result
.getValueType() ==
729 TLI
.getTypeToTransformTo(*DAG
.getContext(), Op
.getValueType()) &&
730 "Invalid type for promoted float");
731 AnalyzeNewValue(Result
);
733 auto &OpIdEntry
= PromotedFloats
[getTableId(Op
)];
734 assert((OpIdEntry
== 0) && "Node is already promoted!");
735 OpIdEntry
= getTableId(Result
);
738 void DAGTypeLegalizer::SetSoftPromotedHalf(SDValue Op
, SDValue Result
) {
739 assert(Result
.getValueType() == MVT::i16
&&
740 "Invalid type for soft-promoted half");
741 AnalyzeNewValue(Result
);
743 auto &OpIdEntry
= SoftPromotedHalfs
[getTableId(Op
)];
744 assert((OpIdEntry
== 0) && "Node is already promoted!");
745 OpIdEntry
= getTableId(Result
);
748 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op
, SDValue Result
) {
749 // Note that in some cases vector operation operands may be greater than
750 // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
751 // a constant i8 operand.
753 // We don't currently support the scalarization of scalable vector types.
754 assert(Result
.getValueSizeInBits().getFixedSize() >=
755 Op
.getScalarValueSizeInBits() &&
756 "Invalid type for scalarized vector");
757 AnalyzeNewValue(Result
);
759 auto &OpIdEntry
= ScalarizedVectors
[getTableId(Op
)];
760 assert((OpIdEntry
== 0) && "Node is already scalarized!");
761 OpIdEntry
= getTableId(Result
);
764 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op
, SDValue
&Lo
,
766 std::pair
<TableId
, TableId
> &Entry
= ExpandedIntegers
[getTableId(Op
)];
767 assert((Entry
.first
!= 0) && "Operand isn't expanded");
768 Lo
= getSDValue(Entry
.first
);
769 Hi
= getSDValue(Entry
.second
);
772 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op
, SDValue Lo
,
774 assert(Lo
.getValueType() ==
775 TLI
.getTypeToTransformTo(*DAG
.getContext(), Op
.getValueType()) &&
776 Hi
.getValueType() == Lo
.getValueType() &&
777 "Invalid type for expanded integer");
778 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
782 // Transfer debug values. Don't invalidate the source debug value until it's
783 // been transferred to the high and low bits.
784 if (DAG
.getDataLayout().isBigEndian()) {
785 DAG
.transferDbgValues(Op
, Hi
, 0, Hi
.getValueSizeInBits(), false);
786 DAG
.transferDbgValues(Op
, Lo
, Hi
.getValueSizeInBits(),
787 Lo
.getValueSizeInBits());
789 DAG
.transferDbgValues(Op
, Lo
, 0, Lo
.getValueSizeInBits(), false);
790 DAG
.transferDbgValues(Op
, Hi
, Lo
.getValueSizeInBits(),
791 Hi
.getValueSizeInBits());
794 // Remember that this is the result of the node.
795 std::pair
<TableId
, TableId
> &Entry
= ExpandedIntegers
[getTableId(Op
)];
796 assert((Entry
.first
== 0) && "Node already expanded");
797 Entry
.first
= getTableId(Lo
);
798 Entry
.second
= getTableId(Hi
);
801 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op
, SDValue
&Lo
,
803 std::pair
<TableId
, TableId
> &Entry
= ExpandedFloats
[getTableId(Op
)];
804 assert((Entry
.first
!= 0) && "Operand isn't expanded");
805 Lo
= getSDValue(Entry
.first
);
806 Hi
= getSDValue(Entry
.second
);
809 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op
, SDValue Lo
,
811 assert(Lo
.getValueType() ==
812 TLI
.getTypeToTransformTo(*DAG
.getContext(), Op
.getValueType()) &&
813 Hi
.getValueType() == Lo
.getValueType() &&
814 "Invalid type for expanded float");
815 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
819 std::pair
<TableId
, TableId
> &Entry
= ExpandedFloats
[getTableId(Op
)];
820 assert((Entry
.first
== 0) && "Node already expanded");
821 Entry
.first
= getTableId(Lo
);
822 Entry
.second
= getTableId(Hi
);
825 void DAGTypeLegalizer::GetSplitVector(SDValue Op
, SDValue
&Lo
,
827 std::pair
<TableId
, TableId
> &Entry
= SplitVectors
[getTableId(Op
)];
828 Lo
= getSDValue(Entry
.first
);
829 Hi
= getSDValue(Entry
.second
);
830 assert(Lo
.getNode() && "Operand isn't split");
834 void DAGTypeLegalizer::SetSplitVector(SDValue Op
, SDValue Lo
,
836 assert(Lo
.getValueType().getVectorElementType() ==
837 Op
.getValueType().getVectorElementType() &&
838 Lo
.getValueType().getVectorElementCount() * 2 ==
839 Op
.getValueType().getVectorElementCount() &&
840 Hi
.getValueType() == Lo
.getValueType() &&
841 "Invalid type for split vector");
842 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
846 // Remember that this is the result of the node.
847 std::pair
<TableId
, TableId
> &Entry
= SplitVectors
[getTableId(Op
)];
848 assert((Entry
.first
== 0) && "Node already split");
849 Entry
.first
= getTableId(Lo
);
850 Entry
.second
= getTableId(Hi
);
853 void DAGTypeLegalizer::SetWidenedVector(SDValue Op
, SDValue Result
) {
854 assert(Result
.getValueType() ==
855 TLI
.getTypeToTransformTo(*DAG
.getContext(), Op
.getValueType()) &&
856 "Invalid type for widened vector");
857 AnalyzeNewValue(Result
);
859 auto &OpIdEntry
= WidenedVectors
[getTableId(Op
)];
860 assert((OpIdEntry
== 0) && "Node already widened!");
861 OpIdEntry
= getTableId(Result
);
865 //===----------------------------------------------------------------------===//
867 //===----------------------------------------------------------------------===//
869 /// Convert to an integer of the same size.
870 SDValue
DAGTypeLegalizer::BitConvertToInteger(SDValue Op
) {
871 unsigned BitWidth
= Op
.getValueSizeInBits();
872 return DAG
.getNode(ISD::BITCAST
, SDLoc(Op
),
873 EVT::getIntegerVT(*DAG
.getContext(), BitWidth
), Op
);
876 /// Convert to a vector of integers of the same size.
877 SDValue
DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op
) {
878 assert(Op
.getValueType().isVector() && "Only applies to vectors!");
879 unsigned EltWidth
= Op
.getScalarValueSizeInBits();
880 EVT EltNVT
= EVT::getIntegerVT(*DAG
.getContext(), EltWidth
);
881 auto EltCnt
= Op
.getValueType().getVectorElementCount();
882 return DAG
.getNode(ISD::BITCAST
, SDLoc(Op
),
883 EVT::getVectorVT(*DAG
.getContext(), EltNVT
, EltCnt
), Op
);
886 SDValue
DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op
,
889 // Create the stack frame object. Make sure it is aligned for both
890 // the source and destination types.
892 // In cases where the vector is illegal it will be broken down into parts
893 // and stored in parts - we should use the alignment for the smallest part.
894 Align DestAlign
= DAG
.getReducedAlign(DestVT
, /*UseABI=*/false);
895 Align OpAlign
= DAG
.getReducedAlign(Op
.getValueType(), /*UseABI=*/false);
896 Align Align
= std::max(DestAlign
, OpAlign
);
898 DAG
.CreateStackTemporary(Op
.getValueType().getStoreSize(), Align
);
899 // Emit a store to the stack slot.
900 SDValue Store
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op
, StackPtr
,
901 MachinePointerInfo(), Align
);
902 // Result is a load from the stack slot.
903 return DAG
.getLoad(DestVT
, dl
, Store
, StackPtr
, MachinePointerInfo(), Align
);
906 /// Replace the node's results with custom code provided by the target and
907 /// return "true", or do nothing and return "false".
908 /// The last parameter is FALSE if we are dealing with a node with legal
909 /// result types and illegal operand. The second parameter denotes the type of
910 /// illegal OperandNo in that case.
911 /// The last parameter being TRUE means we are dealing with a
912 /// node with illegal result types. The second parameter denotes the type of
913 /// illegal ResNo in that case.
914 bool DAGTypeLegalizer::CustomLowerNode(SDNode
*N
, EVT VT
, bool LegalizeResult
) {
915 // See if the target wants to custom lower this node.
916 if (TLI
.getOperationAction(N
->getOpcode(), VT
) != TargetLowering::Custom
)
919 SmallVector
<SDValue
, 8> Results
;
921 TLI
.ReplaceNodeResults(N
, Results
, DAG
);
923 TLI
.LowerOperationWrapper(N
, Results
, DAG
);
926 // The target didn't want to custom lower it after all.
929 // Make everything that once used N's values now use those in Results instead.
930 assert(Results
.size() == N
->getNumValues() &&
931 "Custom lowering returned the wrong number of results!");
932 for (unsigned i
= 0, e
= Results
.size(); i
!= e
; ++i
) {
933 ReplaceValueWith(SDValue(N
, i
), Results
[i
]);
939 /// Widen the node's results with custom code provided by the target and return
940 /// "true", or do nothing and return "false".
941 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode
*N
, EVT VT
) {
942 // See if the target wants to custom lower this node.
943 if (TLI
.getOperationAction(N
->getOpcode(), VT
) != TargetLowering::Custom
)
946 SmallVector
<SDValue
, 8> Results
;
947 TLI
.ReplaceNodeResults(N
, Results
, DAG
);
950 // The target didn't want to custom widen lower its result after all.
953 // Update the widening map.
954 assert(Results
.size() == N
->getNumValues() &&
955 "Custom lowering returned the wrong number of results!");
956 for (unsigned i
= 0, e
= Results
.size(); i
!= e
; ++i
) {
957 // If this is a chain output or already widened just replace it.
958 bool WasWidened
= SDValue(N
, i
).getValueType() != Results
[i
].getValueType();
960 SetWidenedVector(SDValue(N
, i
), Results
[i
]);
962 ReplaceValueWith(SDValue(N
, i
), Results
[i
]);
967 SDValue
DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode
*N
, unsigned ResNo
) {
968 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
)
970 ReplaceValueWith(SDValue(N
, i
), SDValue(N
->getOperand(i
)));
971 return SDValue(N
->getOperand(ResNo
));
974 /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
976 void DAGTypeLegalizer::GetPairElements(SDValue Pair
,
977 SDValue
&Lo
, SDValue
&Hi
) {
979 EVT NVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), Pair
.getValueType());
980 Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, NVT
, Pair
,
981 DAG
.getIntPtrConstant(0, dl
));
982 Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, NVT
, Pair
,
983 DAG
.getIntPtrConstant(1, dl
));
986 /// Build an integer with low bits Lo and high bits Hi.
987 SDValue
DAGTypeLegalizer::JoinIntegers(SDValue Lo
, SDValue Hi
) {
988 // Arbitrarily use dlHi for result SDLoc
991 EVT LVT
= Lo
.getValueType();
992 EVT HVT
= Hi
.getValueType();
993 EVT NVT
= EVT::getIntegerVT(*DAG
.getContext(),
994 LVT
.getSizeInBits() + HVT
.getSizeInBits());
996 EVT ShiftAmtVT
= TLI
.getShiftAmountTy(NVT
, DAG
.getDataLayout(), false);
997 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, dlLo
, NVT
, Lo
);
998 Hi
= DAG
.getNode(ISD::ANY_EXTEND
, dlHi
, NVT
, Hi
);
999 Hi
= DAG
.getNode(ISD::SHL
, dlHi
, NVT
, Hi
,
1000 DAG
.getConstant(LVT
.getSizeInBits(), dlHi
, ShiftAmtVT
));
1001 return DAG
.getNode(ISD::OR
, dlHi
, NVT
, Lo
, Hi
);
1004 /// Promote the given target boolean to a target boolean of the given type.
1005 /// A target boolean is an integer value, not necessarily of type i1, the bits
1006 /// of which conform to getBooleanContents.
1008 /// ValVT is the type of values that produced the boolean.
1009 SDValue
DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool
, EVT ValVT
) {
1010 return TLI
.promoteTargetBoolean(DAG
, Bool
, ValVT
);
1013 /// Return the lower LoVT bits of Op in Lo and the upper HiVT bits in Hi.
1014 void DAGTypeLegalizer::SplitInteger(SDValue Op
,
1016 SDValue
&Lo
, SDValue
&Hi
) {
1018 assert(LoVT
.getSizeInBits() + HiVT
.getSizeInBits() ==
1019 Op
.getValueSizeInBits() && "Invalid integer splitting!");
1020 Lo
= DAG
.getNode(ISD::TRUNCATE
, dl
, LoVT
, Op
);
1021 unsigned ReqShiftAmountInBits
=
1022 Log2_32_Ceil(Op
.getValueType().getSizeInBits());
1024 TLI
.getScalarShiftAmountTy(DAG
.getDataLayout(), Op
.getValueType());
1025 if (ReqShiftAmountInBits
> ShiftAmountTy
.getSizeInBits())
1026 ShiftAmountTy
= MVT::getIntegerVT(NextPowerOf2(ReqShiftAmountInBits
));
1027 Hi
= DAG
.getNode(ISD::SRL
, dl
, Op
.getValueType(), Op
,
1028 DAG
.getConstant(LoVT
.getSizeInBits(), dl
, ShiftAmountTy
));
1029 Hi
= DAG
.getNode(ISD::TRUNCATE
, dl
, HiVT
, Hi
);
1032 /// Return the lower and upper halves of Op's bits in a value type half the
1034 void DAGTypeLegalizer::SplitInteger(SDValue Op
,
1035 SDValue
&Lo
, SDValue
&Hi
) {
1037 EVT::getIntegerVT(*DAG
.getContext(), Op
.getValueSizeInBits() / 2);
1038 SplitInteger(Op
, HalfVT
, HalfVT
, Lo
, Hi
);
1042 //===----------------------------------------------------------------------===//
1044 //===----------------------------------------------------------------------===//
1046 /// This transforms the SelectionDAG into a SelectionDAG that only uses types
1047 /// natively supported by the target. Returns "true" if it made any changes.
1049 /// Note that this is an involved process that may invalidate pointers into
1051 bool SelectionDAG::LegalizeTypes() {
1052 return DAGTypeLegalizer(*this).run();