[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / CodeGen / SelectionDAG / LegalizeTypes.cpp
blob03dcd0f6d2c9c2aeccd4643272b36d7aa9d500fb
1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeTypes method. It transforms
10 // an arbitrary well-formed SelectionDAG to only consist of legal types. This
11 // is common code shared among the LegalizeTypes*.cpp files.
13 //===----------------------------------------------------------------------===//
15 #include "LegalizeTypes.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/IR/CallingConv.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/raw_ostream.h"
24 using namespace llvm;
26 #define DEBUG_TYPE "legalize-types"
28 static cl::opt<bool>
29 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
31 /// Do extensive, expensive, basic correctness checking.
32 void DAGTypeLegalizer::PerformExpensiveChecks() {
33 // If a node is not processed, then none of its values should be mapped by any
34 // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
36 // If a node is processed, then each value with an illegal type must be mapped
37 // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
38 // Values with a legal type may be mapped by ReplacedValues, but not by any of
39 // the other maps.
41 // Note that these invariants may not hold momentarily when processing a node:
42 // the node being processed may be put in a map before being marked Processed.
44 // Note that it is possible to have nodes marked NewNode in the DAG. This can
45 // occur in two ways. Firstly, a node may be created during legalization but
46 // never passed to the legalization core. This is usually due to the implicit
47 // folding that occurs when using the DAG.getNode operators. Secondly, a new
48 // node may be passed to the legalization core, but when analyzed may morph
49 // into a different node, leaving the original node as a NewNode in the DAG.
50 // A node may morph if one of its operands changes during analysis. Whether
51 // it actually morphs or not depends on whether, after updating its operands,
52 // it is equivalent to an existing node: if so, it morphs into that existing
53 // node (CSE). An operand can change during analysis if the operand is a new
54 // node that morphs, or it is a processed value that was mapped to some other
55 // value (as recorded in ReplacedValues) in which case the operand is turned
56 // into that other value. If a node morphs then the node it morphed into will
57 // be used instead of it for legalization, however the original node continues
58 // to live on in the DAG.
59 // The conclusion is that though there may be nodes marked NewNode in the DAG,
60 // all uses of such nodes are also marked NewNode: the result is a fungus of
61 // NewNodes growing on top of the useful nodes, and perhaps using them, but
62 // not used by them.
64 // If a value is mapped by ReplacedValues, then it must have no uses, except
65 // by nodes marked NewNode (see above).
67 // The final node obtained by mapping by ReplacedValues is not marked NewNode.
68 // Note that ReplacedValues should be applied iteratively.
70 // Note that the ReplacedValues map may also map deleted nodes (by iterating
71 // over the DAG we never dereference deleted nodes). This means that it may
72 // also map nodes marked NewNode if the deallocated memory was reallocated as
73 // another node, and that new node was not seen by the LegalizeTypes machinery
74 // (for example because it was created but not used). In general, we cannot
75 // distinguish between new nodes and deleted nodes.
76 SmallVector<SDNode*, 16> NewNodes;
77 for (SDNode &Node : DAG.allnodes()) {
78 // Remember nodes marked NewNode - they are subject to extra checking below.
79 if (Node.getNodeId() == NewNode)
80 NewNodes.push_back(&Node);
82 for (unsigned i = 0, e = Node.getNumValues(); i != e; ++i) {
83 SDValue Res(&Node, i);
84 bool Failed = false;
85 // Don't create a value in map.
86 auto ResId = ValueToIdMap.lookup(Res);
88 unsigned Mapped = 0;
89 if (ResId && (ReplacedValues.find(ResId) != ReplacedValues.end())) {
90 Mapped |= 1;
91 // Check that remapped values are only used by nodes marked NewNode.
92 for (SDNode::use_iterator UI = Node.use_begin(), UE = Node.use_end();
93 UI != UE; ++UI)
94 if (UI.getUse().getResNo() == i)
95 assert(UI->getNodeId() == NewNode &&
96 "Remapped value has non-trivial use!");
98 // Check that the final result of applying ReplacedValues is not
99 // marked NewNode.
100 auto NewValId = ReplacedValues[ResId];
101 auto I = ReplacedValues.find(NewValId);
102 while (I != ReplacedValues.end()) {
103 NewValId = I->second;
104 I = ReplacedValues.find(NewValId);
106 SDValue NewVal = getSDValue(NewValId);
107 (void)NewVal;
108 assert(NewVal.getNode()->getNodeId() != NewNode &&
109 "ReplacedValues maps to a new node!");
111 if (ResId && PromotedIntegers.find(ResId) != PromotedIntegers.end())
112 Mapped |= 2;
113 if (ResId && SoftenedFloats.find(ResId) != SoftenedFloats.end())
114 Mapped |= 4;
115 if (ResId && ScalarizedVectors.find(ResId) != ScalarizedVectors.end())
116 Mapped |= 8;
117 if (ResId && ExpandedIntegers.find(ResId) != ExpandedIntegers.end())
118 Mapped |= 16;
119 if (ResId && ExpandedFloats.find(ResId) != ExpandedFloats.end())
120 Mapped |= 32;
121 if (ResId && SplitVectors.find(ResId) != SplitVectors.end())
122 Mapped |= 64;
123 if (ResId && WidenedVectors.find(ResId) != WidenedVectors.end())
124 Mapped |= 128;
125 if (ResId && PromotedFloats.find(ResId) != PromotedFloats.end())
126 Mapped |= 256;
127 if (ResId && SoftPromotedHalfs.find(ResId) != SoftPromotedHalfs.end())
128 Mapped |= 512;
130 if (Node.getNodeId() != Processed) {
131 // Since we allow ReplacedValues to map deleted nodes, it may map nodes
132 // marked NewNode too, since a deleted node may have been reallocated as
133 // another node that has not been seen by the LegalizeTypes machinery.
134 if ((Node.getNodeId() == NewNode && Mapped > 1) ||
135 (Node.getNodeId() != NewNode && Mapped != 0)) {
136 dbgs() << "Unprocessed value in a map!";
137 Failed = true;
139 } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(&Node)) {
140 if (Mapped > 1) {
141 dbgs() << "Value with legal type was transformed!";
142 Failed = true;
144 } else {
145 if (Mapped == 0) {
146 dbgs() << "Processed value not in any map!";
147 Failed = true;
148 } else if (Mapped & (Mapped - 1)) {
149 dbgs() << "Value in multiple maps!";
150 Failed = true;
154 if (Failed) {
155 if (Mapped & 1)
156 dbgs() << " ReplacedValues";
157 if (Mapped & 2)
158 dbgs() << " PromotedIntegers";
159 if (Mapped & 4)
160 dbgs() << " SoftenedFloats";
161 if (Mapped & 8)
162 dbgs() << " ScalarizedVectors";
163 if (Mapped & 16)
164 dbgs() << " ExpandedIntegers";
165 if (Mapped & 32)
166 dbgs() << " ExpandedFloats";
167 if (Mapped & 64)
168 dbgs() << " SplitVectors";
169 if (Mapped & 128)
170 dbgs() << " WidenedVectors";
171 if (Mapped & 256)
172 dbgs() << " PromotedFloats";
173 if (Mapped & 512)
174 dbgs() << " SoftPromoteHalfs";
175 dbgs() << "\n";
176 llvm_unreachable(nullptr);
181 #ifndef NDEBUG
182 // Checked that NewNodes are only used by other NewNodes.
183 for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
184 SDNode *N = NewNodes[i];
185 for (SDNode *U : N->uses())
186 assert(U->getNodeId() == NewNode && "NewNode used by non-NewNode!");
188 #endif
191 /// This is the main entry point for the type legalizer. This does a top-down
192 /// traversal of the dag, legalizing types as it goes. Returns "true" if it made
193 /// any changes.
194 bool DAGTypeLegalizer::run() {
195 bool Changed = false;
197 // Create a dummy node (which is not added to allnodes), that adds a reference
198 // to the root node, preventing it from being deleted, and tracking any
199 // changes of the root.
200 HandleSDNode Dummy(DAG.getRoot());
201 Dummy.setNodeId(Unanalyzed);
203 // The root of the dag may dangle to deleted nodes until the type legalizer is
204 // done. Set it to null to avoid confusion.
205 DAG.setRoot(SDValue());
207 // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
208 // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
209 // non-leaves.
210 for (SDNode &Node : DAG.allnodes()) {
211 if (Node.getNumOperands() == 0) {
212 Node.setNodeId(ReadyToProcess);
213 Worklist.push_back(&Node);
214 } else {
215 Node.setNodeId(Unanalyzed);
219 // Now that we have a set of nodes to process, handle them all.
220 while (!Worklist.empty()) {
221 #ifndef EXPENSIVE_CHECKS
222 if (EnableExpensiveChecks)
223 #endif
224 PerformExpensiveChecks();
226 SDNode *N = Worklist.pop_back_val();
227 assert(N->getNodeId() == ReadyToProcess &&
228 "Node should be ready if on worklist!");
230 LLVM_DEBUG(dbgs() << "Legalizing node: "; N->dump(&DAG));
231 if (IgnoreNodeResults(N)) {
232 LLVM_DEBUG(dbgs() << "Ignoring node results\n");
233 goto ScanOperands;
236 // Scan the values produced by the node, checking to see if any result
237 // types are illegal.
238 for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
239 EVT ResultVT = N->getValueType(i);
240 LLVM_DEBUG(dbgs() << "Analyzing result type: " << ResultVT.getEVTString()
241 << "\n");
242 switch (getTypeAction(ResultVT)) {
243 case TargetLowering::TypeLegal:
244 LLVM_DEBUG(dbgs() << "Legal result type\n");
245 break;
246 case TargetLowering::TypeScalarizeScalableVector:
247 report_fatal_error(
248 "Scalarization of scalable vectors is not supported.");
249 // The following calls must take care of *all* of the node's results,
250 // not just the illegal result they were passed (this includes results
251 // with a legal type). Results can be remapped using ReplaceValueWith,
252 // or their promoted/expanded/etc values registered in PromotedIntegers,
253 // ExpandedIntegers etc.
254 case TargetLowering::TypePromoteInteger:
255 PromoteIntegerResult(N, i);
256 Changed = true;
257 goto NodeDone;
258 case TargetLowering::TypeExpandInteger:
259 ExpandIntegerResult(N, i);
260 Changed = true;
261 goto NodeDone;
262 case TargetLowering::TypeSoftenFloat:
263 SoftenFloatResult(N, i);
264 Changed = true;
265 goto NodeDone;
266 case TargetLowering::TypeExpandFloat:
267 ExpandFloatResult(N, i);
268 Changed = true;
269 goto NodeDone;
270 case TargetLowering::TypeScalarizeVector:
271 ScalarizeVectorResult(N, i);
272 Changed = true;
273 goto NodeDone;
274 case TargetLowering::TypeSplitVector:
275 SplitVectorResult(N, i);
276 Changed = true;
277 goto NodeDone;
278 case TargetLowering::TypeWidenVector:
279 WidenVectorResult(N, i);
280 Changed = true;
281 goto NodeDone;
282 case TargetLowering::TypePromoteFloat:
283 PromoteFloatResult(N, i);
284 Changed = true;
285 goto NodeDone;
286 case TargetLowering::TypeSoftPromoteHalf:
287 SoftPromoteHalfResult(N, i);
288 Changed = true;
289 goto NodeDone;
293 ScanOperands:
294 // Scan the operand list for the node, handling any nodes with operands that
295 // are illegal.
297 unsigned NumOperands = N->getNumOperands();
298 bool NeedsReanalyzing = false;
299 unsigned i;
300 for (i = 0; i != NumOperands; ++i) {
301 if (IgnoreNodeResults(N->getOperand(i).getNode()))
302 continue;
304 const auto &Op = N->getOperand(i);
305 LLVM_DEBUG(dbgs() << "Analyzing operand: "; Op.dump(&DAG));
306 EVT OpVT = Op.getValueType();
307 switch (getTypeAction(OpVT)) {
308 case TargetLowering::TypeLegal:
309 LLVM_DEBUG(dbgs() << "Legal operand\n");
310 continue;
311 case TargetLowering::TypeScalarizeScalableVector:
312 report_fatal_error(
313 "Scalarization of scalable vectors is not supported.");
314 // The following calls must either replace all of the node's results
315 // using ReplaceValueWith, and return "false"; or update the node's
316 // operands in place, and return "true".
317 case TargetLowering::TypePromoteInteger:
318 NeedsReanalyzing = PromoteIntegerOperand(N, i);
319 Changed = true;
320 break;
321 case TargetLowering::TypeExpandInteger:
322 NeedsReanalyzing = ExpandIntegerOperand(N, i);
323 Changed = true;
324 break;
325 case TargetLowering::TypeSoftenFloat:
326 NeedsReanalyzing = SoftenFloatOperand(N, i);
327 Changed = true;
328 break;
329 case TargetLowering::TypeExpandFloat:
330 NeedsReanalyzing = ExpandFloatOperand(N, i);
331 Changed = true;
332 break;
333 case TargetLowering::TypeScalarizeVector:
334 NeedsReanalyzing = ScalarizeVectorOperand(N, i);
335 Changed = true;
336 break;
337 case TargetLowering::TypeSplitVector:
338 NeedsReanalyzing = SplitVectorOperand(N, i);
339 Changed = true;
340 break;
341 case TargetLowering::TypeWidenVector:
342 NeedsReanalyzing = WidenVectorOperand(N, i);
343 Changed = true;
344 break;
345 case TargetLowering::TypePromoteFloat:
346 NeedsReanalyzing = PromoteFloatOperand(N, i);
347 Changed = true;
348 break;
349 case TargetLowering::TypeSoftPromoteHalf:
350 NeedsReanalyzing = SoftPromoteHalfOperand(N, i);
351 Changed = true;
352 break;
354 break;
357 // The sub-method updated N in place. Check to see if any operands are new,
358 // and if so, mark them. If the node needs revisiting, don't add all users
359 // to the worklist etc.
360 if (NeedsReanalyzing) {
361 assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
363 N->setNodeId(NewNode);
364 // Recompute the NodeId and correct processed operands, adding the node to
365 // the worklist if ready.
366 SDNode *M = AnalyzeNewNode(N);
367 if (M == N)
368 // The node didn't morph - nothing special to do, it will be revisited.
369 continue;
371 // The node morphed - this is equivalent to legalizing by replacing every
372 // value of N with the corresponding value of M. So do that now.
373 assert(N->getNumValues() == M->getNumValues() &&
374 "Node morphing changed the number of results!");
375 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
376 // Replacing the value takes care of remapping the new value.
377 ReplaceValueWith(SDValue(N, i), SDValue(M, i));
378 assert(N->getNodeId() == NewNode && "Unexpected node state!");
379 // The node continues to live on as part of the NewNode fungus that
380 // grows on top of the useful nodes. Nothing more needs to be done
381 // with it - move on to the next node.
382 continue;
385 if (i == NumOperands) {
386 LLVM_DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG);
387 dbgs() << "\n");
390 NodeDone:
392 // If we reach here, the node was processed, potentially creating new nodes.
393 // Mark it as processed and add its users to the worklist as appropriate.
394 assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
395 N->setNodeId(Processed);
397 for (SDNode *User : N->uses()) {
398 int NodeId = User->getNodeId();
400 // This node has two options: it can either be a new node or its Node ID
401 // may be a count of the number of operands it has that are not ready.
402 if (NodeId > 0) {
403 User->setNodeId(NodeId-1);
405 // If this was the last use it was waiting on, add it to the ready list.
406 if (NodeId-1 == ReadyToProcess)
407 Worklist.push_back(User);
408 continue;
411 // If this is an unreachable new node, then ignore it. If it ever becomes
412 // reachable by being used by a newly created node then it will be handled
413 // by AnalyzeNewNode.
414 if (NodeId == NewNode)
415 continue;
417 // Otherwise, this node is new: this is the first operand of it that
418 // became ready. Its new NodeId is the number of operands it has minus 1
419 // (as this node is now processed).
420 assert(NodeId == Unanalyzed && "Unknown node ID!");
421 User->setNodeId(User->getNumOperands() - 1);
423 // If the node only has a single operand, it is now ready.
424 if (User->getNumOperands() == 1)
425 Worklist.push_back(User);
429 #ifndef EXPENSIVE_CHECKS
430 if (EnableExpensiveChecks)
431 #endif
432 PerformExpensiveChecks();
434 // If the root changed (e.g. it was a dead load) update the root.
435 DAG.setRoot(Dummy.getValue());
437 // Remove dead nodes. This is important to do for cleanliness but also before
438 // the checking loop below. Implicit folding by the DAG.getNode operators and
439 // node morphing can cause unreachable nodes to be around with their flags set
440 // to new.
441 DAG.RemoveDeadNodes();
443 // In a debug build, scan all the nodes to make sure we found them all. This
444 // ensures that there are no cycles and that everything got processed.
445 #ifndef NDEBUG
446 for (SDNode &Node : DAG.allnodes()) {
447 bool Failed = false;
449 // Check that all result types are legal.
450 if (!IgnoreNodeResults(&Node))
451 for (unsigned i = 0, NumVals = Node.getNumValues(); i < NumVals; ++i)
452 if (!isTypeLegal(Node.getValueType(i))) {
453 dbgs() << "Result type " << i << " illegal: ";
454 Node.dump(&DAG);
455 Failed = true;
458 // Check that all operand types are legal.
459 for (unsigned i = 0, NumOps = Node.getNumOperands(); i < NumOps; ++i)
460 if (!IgnoreNodeResults(Node.getOperand(i).getNode()) &&
461 !isTypeLegal(Node.getOperand(i).getValueType())) {
462 dbgs() << "Operand type " << i << " illegal: ";
463 Node.getOperand(i).dump(&DAG);
464 Failed = true;
467 if (Node.getNodeId() != Processed) {
468 if (Node.getNodeId() == NewNode)
469 dbgs() << "New node not analyzed?\n";
470 else if (Node.getNodeId() == Unanalyzed)
471 dbgs() << "Unanalyzed node not noticed?\n";
472 else if (Node.getNodeId() > 0)
473 dbgs() << "Operand not processed?\n";
474 else if (Node.getNodeId() == ReadyToProcess)
475 dbgs() << "Not added to worklist?\n";
476 Failed = true;
479 if (Failed) {
480 Node.dump(&DAG); dbgs() << "\n";
481 llvm_unreachable(nullptr);
484 #endif
486 return Changed;
489 /// The specified node is the root of a subtree of potentially new nodes.
490 /// Correct any processed operands (this may change the node) and calculate the
491 /// NodeId. If the node itself changes to a processed node, it is not remapped -
492 /// the caller needs to take care of this. Returns the potentially changed node.
493 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
494 // If this was an existing node that is already done, we're done.
495 if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
496 return N;
498 // Okay, we know that this node is new. Recursively walk all of its operands
499 // to see if they are new also. The depth of this walk is bounded by the size
500 // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
501 // about revisiting of nodes.
503 // As we walk the operands, keep track of the number of nodes that are
504 // processed. If non-zero, this will become the new nodeid of this node.
505 // Operands may morph when they are analyzed. If so, the node will be
506 // updated after all operands have been analyzed. Since this is rare,
507 // the code tries to minimize overhead in the non-morphing case.
509 std::vector<SDValue> NewOps;
510 unsigned NumProcessed = 0;
511 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
512 SDValue OrigOp = N->getOperand(i);
513 SDValue Op = OrigOp;
515 AnalyzeNewValue(Op); // Op may morph.
517 if (Op.getNode()->getNodeId() == Processed)
518 ++NumProcessed;
520 if (!NewOps.empty()) {
521 // Some previous operand changed. Add this one to the list.
522 NewOps.push_back(Op);
523 } else if (Op != OrigOp) {
524 // This is the first operand to change - add all operands so far.
525 NewOps.insert(NewOps.end(), N->op_begin(), N->op_begin() + i);
526 NewOps.push_back(Op);
530 // Some operands changed - update the node.
531 if (!NewOps.empty()) {
532 SDNode *M = DAG.UpdateNodeOperands(N, NewOps);
533 if (M != N) {
534 // The node morphed into a different node. Normally for this to happen
535 // the original node would have to be marked NewNode. However this can
536 // in theory momentarily not be the case while ReplaceValueWith is doing
537 // its stuff. Mark the original node NewNode to help basic correctness
538 // checking.
539 N->setNodeId(NewNode);
540 if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
541 // It morphed into a previously analyzed node - nothing more to do.
542 return M;
544 // It morphed into a different new node. Do the equivalent of passing
545 // it to AnalyzeNewNode: expunge it and calculate the NodeId. No need
546 // to remap the operands, since they are the same as the operands we
547 // remapped above.
548 N = M;
552 // Calculate the NodeId.
553 N->setNodeId(N->getNumOperands() - NumProcessed);
554 if (N->getNodeId() == ReadyToProcess)
555 Worklist.push_back(N);
557 return N;
560 /// Call AnalyzeNewNode, updating the node in Val if needed.
561 /// If the node changes to a processed node, then remap it.
562 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
563 Val.setNode(AnalyzeNewNode(Val.getNode()));
564 if (Val.getNode()->getNodeId() == Processed)
565 // We were passed a processed node, or it morphed into one - remap it.
566 RemapValue(Val);
569 /// If the specified value was already legalized to another value,
570 /// replace it by that value.
571 void DAGTypeLegalizer::RemapValue(SDValue &V) {
572 auto Id = getTableId(V);
573 V = getSDValue(Id);
576 void DAGTypeLegalizer::RemapId(TableId &Id) {
577 auto I = ReplacedValues.find(Id);
578 if (I != ReplacedValues.end()) {
579 assert(Id != I->second && "Id is mapped to itself.");
580 // Use path compression to speed up future lookups if values get multiply
581 // replaced with other values.
582 RemapId(I->second);
583 Id = I->second;
585 // Note that N = IdToValueMap[Id] it is possible to have
586 // N.getNode()->getNodeId() == NewNode at this point because it is possible
587 // for a node to be put in the map before being processed.
591 namespace {
592 /// This class is a DAGUpdateListener that listens for updates to nodes and
593 /// recomputes their ready state.
594 class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
595 DAGTypeLegalizer &DTL;
596 SmallSetVector<SDNode*, 16> &NodesToAnalyze;
597 public:
598 explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
599 SmallSetVector<SDNode*, 16> &nta)
600 : SelectionDAG::DAGUpdateListener(dtl.getDAG()),
601 DTL(dtl), NodesToAnalyze(nta) {}
603 void NodeDeleted(SDNode *N, SDNode *E) override {
604 assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
605 N->getNodeId() != DAGTypeLegalizer::Processed &&
606 "Invalid node ID for RAUW deletion!");
607 // It is possible, though rare, for the deleted node N to occur as a
608 // target in a map, so note the replacement N -> E in ReplacedValues.
609 assert(E && "Node not replaced?");
610 DTL.NoteDeletion(N, E);
612 // In theory the deleted node could also have been scheduled for analysis.
613 // So remove it from the set of nodes which will be analyzed.
614 NodesToAnalyze.remove(N);
616 // In general nothing needs to be done for E, since it didn't change but
617 // only gained new uses. However N -> E was just added to ReplacedValues,
618 // and the result of a ReplacedValues mapping is not allowed to be marked
619 // NewNode. So if E is marked NewNode, then it needs to be analyzed.
620 if (E->getNodeId() == DAGTypeLegalizer::NewNode)
621 NodesToAnalyze.insert(E);
624 void NodeUpdated(SDNode *N) override {
625 // Node updates can mean pretty much anything. It is possible that an
626 // operand was set to something already processed (f.e.) in which case
627 // this node could become ready. Recompute its flags.
628 assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
629 N->getNodeId() != DAGTypeLegalizer::Processed &&
630 "Invalid node ID for RAUW deletion!");
631 N->setNodeId(DAGTypeLegalizer::NewNode);
632 NodesToAnalyze.insert(N);
638 /// The specified value was legalized to the specified other value.
639 /// Update the DAG and NodeIds replacing any uses of From to use To instead.
640 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
641 assert(From.getNode() != To.getNode() && "Potential legalization loop!");
643 // If expansion produced new nodes, make sure they are properly marked.
644 AnalyzeNewValue(To);
646 // Anything that used the old node should now use the new one. Note that this
647 // can potentially cause recursive merging.
648 SmallSetVector<SDNode*, 16> NodesToAnalyze;
649 NodeUpdateListener NUL(*this, NodesToAnalyze);
650 do {
652 // The old node may be present in a map like ExpandedIntegers or
653 // PromotedIntegers. Inform maps about the replacement.
654 auto FromId = getTableId(From);
655 auto ToId = getTableId(To);
657 if (FromId != ToId)
658 ReplacedValues[FromId] = ToId;
659 DAG.ReplaceAllUsesOfValueWith(From, To);
661 // Process the list of nodes that need to be reanalyzed.
662 while (!NodesToAnalyze.empty()) {
663 SDNode *N = NodesToAnalyze.pop_back_val();
664 if (N->getNodeId() != DAGTypeLegalizer::NewNode)
665 // The node was analyzed while reanalyzing an earlier node - it is safe
666 // to skip. Note that this is not a morphing node - otherwise it would
667 // still be marked NewNode.
668 continue;
670 // Analyze the node's operands and recalculate the node ID.
671 SDNode *M = AnalyzeNewNode(N);
672 if (M != N) {
673 // The node morphed into a different node. Make everyone use the new
674 // node instead.
675 assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
676 assert(N->getNumValues() == M->getNumValues() &&
677 "Node morphing changed the number of results!");
678 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
679 SDValue OldVal(N, i);
680 SDValue NewVal(M, i);
681 if (M->getNodeId() == Processed)
682 RemapValue(NewVal);
683 // OldVal may be a target of the ReplacedValues map which was marked
684 // NewNode to force reanalysis because it was updated. Ensure that
685 // anything that ReplacedValues mapped to OldVal will now be mapped
686 // all the way to NewVal.
687 auto OldValId = getTableId(OldVal);
688 auto NewValId = getTableId(NewVal);
689 DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
690 if (OldValId != NewValId)
691 ReplacedValues[OldValId] = NewValId;
693 // The original node continues to exist in the DAG, marked NewNode.
696 // When recursively update nodes with new nodes, it is possible to have
697 // new uses of From due to CSE. If this happens, replace the new uses of
698 // From with To.
699 } while (!From.use_empty());
702 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
703 assert(Result.getValueType() ==
704 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
705 "Invalid type for promoted integer");
706 AnalyzeNewValue(Result);
708 auto &OpIdEntry = PromotedIntegers[getTableId(Op)];
709 assert((OpIdEntry == 0) && "Node is already promoted!");
710 OpIdEntry = getTableId(Result);
711 Result->setFlags(Op->getFlags());
713 DAG.transferDbgValues(Op, Result);
716 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
717 assert(Result.getValueType() ==
718 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
719 "Invalid type for softened float");
720 AnalyzeNewValue(Result);
722 auto &OpIdEntry = SoftenedFloats[getTableId(Op)];
723 assert((OpIdEntry == 0) && "Node is already converted to integer!");
724 OpIdEntry = getTableId(Result);
727 void DAGTypeLegalizer::SetPromotedFloat(SDValue Op, SDValue Result) {
728 assert(Result.getValueType() ==
729 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
730 "Invalid type for promoted float");
731 AnalyzeNewValue(Result);
733 auto &OpIdEntry = PromotedFloats[getTableId(Op)];
734 assert((OpIdEntry == 0) && "Node is already promoted!");
735 OpIdEntry = getTableId(Result);
738 void DAGTypeLegalizer::SetSoftPromotedHalf(SDValue Op, SDValue Result) {
739 assert(Result.getValueType() == MVT::i16 &&
740 "Invalid type for soft-promoted half");
741 AnalyzeNewValue(Result);
743 auto &OpIdEntry = SoftPromotedHalfs[getTableId(Op)];
744 assert((OpIdEntry == 0) && "Node is already promoted!");
745 OpIdEntry = getTableId(Result);
748 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
749 // Note that in some cases vector operation operands may be greater than
750 // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
751 // a constant i8 operand.
753 // We don't currently support the scalarization of scalable vector types.
754 assert(Result.getValueSizeInBits().getFixedSize() >=
755 Op.getScalarValueSizeInBits() &&
756 "Invalid type for scalarized vector");
757 AnalyzeNewValue(Result);
759 auto &OpIdEntry = ScalarizedVectors[getTableId(Op)];
760 assert((OpIdEntry == 0) && "Node is already scalarized!");
761 OpIdEntry = getTableId(Result);
764 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
765 SDValue &Hi) {
766 std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
767 assert((Entry.first != 0) && "Operand isn't expanded");
768 Lo = getSDValue(Entry.first);
769 Hi = getSDValue(Entry.second);
772 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
773 SDValue Hi) {
774 assert(Lo.getValueType() ==
775 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
776 Hi.getValueType() == Lo.getValueType() &&
777 "Invalid type for expanded integer");
778 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
779 AnalyzeNewValue(Lo);
780 AnalyzeNewValue(Hi);
782 // Transfer debug values. Don't invalidate the source debug value until it's
783 // been transferred to the high and low bits.
784 if (DAG.getDataLayout().isBigEndian()) {
785 DAG.transferDbgValues(Op, Hi, 0, Hi.getValueSizeInBits(), false);
786 DAG.transferDbgValues(Op, Lo, Hi.getValueSizeInBits(),
787 Lo.getValueSizeInBits());
788 } else {
789 DAG.transferDbgValues(Op, Lo, 0, Lo.getValueSizeInBits(), false);
790 DAG.transferDbgValues(Op, Hi, Lo.getValueSizeInBits(),
791 Hi.getValueSizeInBits());
794 // Remember that this is the result of the node.
795 std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
796 assert((Entry.first == 0) && "Node already expanded");
797 Entry.first = getTableId(Lo);
798 Entry.second = getTableId(Hi);
801 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
802 SDValue &Hi) {
803 std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
804 assert((Entry.first != 0) && "Operand isn't expanded");
805 Lo = getSDValue(Entry.first);
806 Hi = getSDValue(Entry.second);
809 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
810 SDValue Hi) {
811 assert(Lo.getValueType() ==
812 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
813 Hi.getValueType() == Lo.getValueType() &&
814 "Invalid type for expanded float");
815 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
816 AnalyzeNewValue(Lo);
817 AnalyzeNewValue(Hi);
819 std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
820 assert((Entry.first == 0) && "Node already expanded");
821 Entry.first = getTableId(Lo);
822 Entry.second = getTableId(Hi);
825 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
826 SDValue &Hi) {
827 std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
828 Lo = getSDValue(Entry.first);
829 Hi = getSDValue(Entry.second);
830 assert(Lo.getNode() && "Operand isn't split");
834 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
835 SDValue Hi) {
836 assert(Lo.getValueType().getVectorElementType() ==
837 Op.getValueType().getVectorElementType() &&
838 Lo.getValueType().getVectorElementCount() * 2 ==
839 Op.getValueType().getVectorElementCount() &&
840 Hi.getValueType() == Lo.getValueType() &&
841 "Invalid type for split vector");
842 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
843 AnalyzeNewValue(Lo);
844 AnalyzeNewValue(Hi);
846 // Remember that this is the result of the node.
847 std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
848 assert((Entry.first == 0) && "Node already split");
849 Entry.first = getTableId(Lo);
850 Entry.second = getTableId(Hi);
853 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
854 assert(Result.getValueType() ==
855 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
856 "Invalid type for widened vector");
857 AnalyzeNewValue(Result);
859 auto &OpIdEntry = WidenedVectors[getTableId(Op)];
860 assert((OpIdEntry == 0) && "Node already widened!");
861 OpIdEntry = getTableId(Result);
865 //===----------------------------------------------------------------------===//
866 // Utilities.
867 //===----------------------------------------------------------------------===//
869 /// Convert to an integer of the same size.
870 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
871 unsigned BitWidth = Op.getValueSizeInBits();
872 return DAG.getNode(ISD::BITCAST, SDLoc(Op),
873 EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
876 /// Convert to a vector of integers of the same size.
877 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
878 assert(Op.getValueType().isVector() && "Only applies to vectors!");
879 unsigned EltWidth = Op.getScalarValueSizeInBits();
880 EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
881 auto EltCnt = Op.getValueType().getVectorElementCount();
882 return DAG.getNode(ISD::BITCAST, SDLoc(Op),
883 EVT::getVectorVT(*DAG.getContext(), EltNVT, EltCnt), Op);
886 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
887 EVT DestVT) {
888 SDLoc dl(Op);
889 // Create the stack frame object. Make sure it is aligned for both
890 // the source and destination types.
892 // In cases where the vector is illegal it will be broken down into parts
893 // and stored in parts - we should use the alignment for the smallest part.
894 Align DestAlign = DAG.getReducedAlign(DestVT, /*UseABI=*/false);
895 Align OpAlign = DAG.getReducedAlign(Op.getValueType(), /*UseABI=*/false);
896 Align Align = std::max(DestAlign, OpAlign);
897 SDValue StackPtr =
898 DAG.CreateStackTemporary(Op.getValueType().getStoreSize(), Align);
899 // Emit a store to the stack slot.
900 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr,
901 MachinePointerInfo(), Align);
902 // Result is a load from the stack slot.
903 return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo(), Align);
906 /// Replace the node's results with custom code provided by the target and
907 /// return "true", or do nothing and return "false".
908 /// The last parameter is FALSE if we are dealing with a node with legal
909 /// result types and illegal operand. The second parameter denotes the type of
910 /// illegal OperandNo in that case.
911 /// The last parameter being TRUE means we are dealing with a
912 /// node with illegal result types. The second parameter denotes the type of
913 /// illegal ResNo in that case.
914 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
915 // See if the target wants to custom lower this node.
916 if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
917 return false;
919 SmallVector<SDValue, 8> Results;
920 if (LegalizeResult)
921 TLI.ReplaceNodeResults(N, Results, DAG);
922 else
923 TLI.LowerOperationWrapper(N, Results, DAG);
925 if (Results.empty())
926 // The target didn't want to custom lower it after all.
927 return false;
929 // Make everything that once used N's values now use those in Results instead.
930 assert(Results.size() == N->getNumValues() &&
931 "Custom lowering returned the wrong number of results!");
932 for (unsigned i = 0, e = Results.size(); i != e; ++i) {
933 ReplaceValueWith(SDValue(N, i), Results[i]);
935 return true;
939 /// Widen the node's results with custom code provided by the target and return
940 /// "true", or do nothing and return "false".
941 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
942 // See if the target wants to custom lower this node.
943 if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
944 return false;
946 SmallVector<SDValue, 8> Results;
947 TLI.ReplaceNodeResults(N, Results, DAG);
949 if (Results.empty())
950 // The target didn't want to custom widen lower its result after all.
951 return false;
953 // Update the widening map.
954 assert(Results.size() == N->getNumValues() &&
955 "Custom lowering returned the wrong number of results!");
956 for (unsigned i = 0, e = Results.size(); i != e; ++i) {
957 // If this is a chain output or already widened just replace it.
958 bool WasWidened = SDValue(N, i).getValueType() != Results[i].getValueType();
959 if (WasWidened)
960 SetWidenedVector(SDValue(N, i), Results[i]);
961 else
962 ReplaceValueWith(SDValue(N, i), Results[i]);
964 return true;
967 SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
968 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
969 if (i != ResNo)
970 ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
971 return SDValue(N->getOperand(ResNo));
974 /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
975 /// given value.
976 void DAGTypeLegalizer::GetPairElements(SDValue Pair,
977 SDValue &Lo, SDValue &Hi) {
978 SDLoc dl(Pair);
979 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
980 Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
981 DAG.getIntPtrConstant(0, dl));
982 Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
983 DAG.getIntPtrConstant(1, dl));
986 /// Build an integer with low bits Lo and high bits Hi.
987 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
988 // Arbitrarily use dlHi for result SDLoc
989 SDLoc dlHi(Hi);
990 SDLoc dlLo(Lo);
991 EVT LVT = Lo.getValueType();
992 EVT HVT = Hi.getValueType();
993 EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
994 LVT.getSizeInBits() + HVT.getSizeInBits());
996 EVT ShiftAmtVT = TLI.getShiftAmountTy(NVT, DAG.getDataLayout(), false);
997 Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
998 Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
999 Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
1000 DAG.getConstant(LVT.getSizeInBits(), dlHi, ShiftAmtVT));
1001 return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
1004 /// Promote the given target boolean to a target boolean of the given type.
1005 /// A target boolean is an integer value, not necessarily of type i1, the bits
1006 /// of which conform to getBooleanContents.
1008 /// ValVT is the type of values that produced the boolean.
1009 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT ValVT) {
1010 return TLI.promoteTargetBoolean(DAG, Bool, ValVT);
1013 /// Return the lower LoVT bits of Op in Lo and the upper HiVT bits in Hi.
1014 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1015 EVT LoVT, EVT HiVT,
1016 SDValue &Lo, SDValue &Hi) {
1017 SDLoc dl(Op);
1018 assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
1019 Op.getValueSizeInBits() && "Invalid integer splitting!");
1020 Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
1021 unsigned ReqShiftAmountInBits =
1022 Log2_32_Ceil(Op.getValueType().getSizeInBits());
1023 MVT ShiftAmountTy =
1024 TLI.getScalarShiftAmountTy(DAG.getDataLayout(), Op.getValueType());
1025 if (ReqShiftAmountInBits > ShiftAmountTy.getSizeInBits())
1026 ShiftAmountTy = MVT::getIntegerVT(NextPowerOf2(ReqShiftAmountInBits));
1027 Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
1028 DAG.getConstant(LoVT.getSizeInBits(), dl, ShiftAmountTy));
1029 Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1032 /// Return the lower and upper halves of Op's bits in a value type half the
1033 /// size of Op's.
1034 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1035 SDValue &Lo, SDValue &Hi) {
1036 EVT HalfVT =
1037 EVT::getIntegerVT(*DAG.getContext(), Op.getValueSizeInBits() / 2);
1038 SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1042 //===----------------------------------------------------------------------===//
1043 // Entry Point
1044 //===----------------------------------------------------------------------===//
1046 /// This transforms the SelectionDAG into a SelectionDAG that only uses types
1047 /// natively supported by the target. Returns "true" if it made any changes.
1049 /// Note that this is an involved process that may invalidate pointers into
1050 /// the graph.
1051 bool SelectionDAG::LegalizeTypes() {
1052 return DAGTypeLegalizer(*this).run();