1 //===-------- LegalizeTypesGeneric.cpp - Generic type legalization --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements generic type expansion and splitting for LegalizeTypes.
10 // The routines here perform legalization when the details of the type (such as
11 // whether it is an integer or a float) do not matter.
12 // Expansion is the act of changing a computation in an illegal type to be a
13 // computation in two identical registers of a smaller type. The Lo/Hi part
14 // is required to be stored first in memory on little/big-endian machines.
15 // Splitting is the act of changing a computation in an illegal type to be a
16 // computation in two not necessarily identical registers of a smaller type.
17 // There are no requirements on how the type is represented in memory.
19 //===----------------------------------------------------------------------===//
21 #include "LegalizeTypes.h"
22 #include "llvm/IR/DataLayout.h"
25 #define DEBUG_TYPE "legalize-types"
27 //===----------------------------------------------------------------------===//
28 // Generic Result Expansion.
29 //===----------------------------------------------------------------------===//
31 // These routines assume that the Lo/Hi part is stored first in memory on
32 // little/big-endian machines, followed by the Hi/Lo part. This means that
33 // they cannot be used as is on vectors, for which Lo is always stored first.
34 void DAGTypeLegalizer::ExpandRes_MERGE_VALUES(SDNode
*N
, unsigned ResNo
,
35 SDValue
&Lo
, SDValue
&Hi
) {
36 SDValue Op
= DisintegrateMERGE_VALUES(N
, ResNo
);
37 GetExpandedOp(Op
, Lo
, Hi
);
40 void DAGTypeLegalizer::ExpandRes_BITCAST(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
) {
41 EVT OutVT
= N
->getValueType(0);
42 EVT NOutVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), OutVT
);
43 SDValue InOp
= N
->getOperand(0);
44 EVT InVT
= InOp
.getValueType();
47 // Handle some special cases efficiently.
48 switch (getTypeAction(InVT
)) {
49 case TargetLowering::TypeLegal
:
50 case TargetLowering::TypePromoteInteger
:
52 case TargetLowering::TypePromoteFloat
:
53 case TargetLowering::TypeSoftPromoteHalf
:
54 llvm_unreachable("Bitcast of a promotion-needing float should never need"
56 case TargetLowering::TypeSoftenFloat
:
57 SplitInteger(GetSoftenedFloat(InOp
), Lo
, Hi
);
58 Lo
= DAG
.getNode(ISD::BITCAST
, dl
, NOutVT
, Lo
);
59 Hi
= DAG
.getNode(ISD::BITCAST
, dl
, NOutVT
, Hi
);
61 case TargetLowering::TypeExpandInteger
:
62 case TargetLowering::TypeExpandFloat
: {
63 auto &DL
= DAG
.getDataLayout();
64 // Convert the expanded pieces of the input.
65 GetExpandedOp(InOp
, Lo
, Hi
);
66 if (TLI
.hasBigEndianPartOrdering(InVT
, DL
) !=
67 TLI
.hasBigEndianPartOrdering(OutVT
, DL
))
69 Lo
= DAG
.getNode(ISD::BITCAST
, dl
, NOutVT
, Lo
);
70 Hi
= DAG
.getNode(ISD::BITCAST
, dl
, NOutVT
, Hi
);
73 case TargetLowering::TypeSplitVector
:
74 GetSplitVector(InOp
, Lo
, Hi
);
75 if (TLI
.hasBigEndianPartOrdering(OutVT
, DAG
.getDataLayout()))
77 Lo
= DAG
.getNode(ISD::BITCAST
, dl
, NOutVT
, Lo
);
78 Hi
= DAG
.getNode(ISD::BITCAST
, dl
, NOutVT
, Hi
);
80 case TargetLowering::TypeScalarizeVector
:
81 // Convert the element instead.
82 SplitInteger(BitConvertToInteger(GetScalarizedVector(InOp
)), Lo
, Hi
);
83 Lo
= DAG
.getNode(ISD::BITCAST
, dl
, NOutVT
, Lo
);
84 Hi
= DAG
.getNode(ISD::BITCAST
, dl
, NOutVT
, Hi
);
86 case TargetLowering::TypeScalarizeScalableVector
:
87 report_fatal_error("Scalarization of scalable vectors is not supported.");
88 case TargetLowering::TypeWidenVector
: {
89 assert(!(InVT
.getVectorNumElements() & 1) && "Unsupported BITCAST");
90 InOp
= GetWidenedVector(InOp
);
92 std::tie(LoVT
, HiVT
) = DAG
.GetSplitDestVTs(InVT
);
93 std::tie(Lo
, Hi
) = DAG
.SplitVector(InOp
, dl
, LoVT
, HiVT
);
94 if (TLI
.hasBigEndianPartOrdering(OutVT
, DAG
.getDataLayout()))
96 Lo
= DAG
.getNode(ISD::BITCAST
, dl
, NOutVT
, Lo
);
97 Hi
= DAG
.getNode(ISD::BITCAST
, dl
, NOutVT
, Hi
);
102 if (InVT
.isVector() && OutVT
.isInteger()) {
103 // Handle cases like i64 = BITCAST v1i64 on x86, where the operand
104 // is legal but the result is not.
105 unsigned NumElems
= 2;
107 EVT NVT
= EVT::getVectorVT(*DAG
.getContext(), ElemVT
, NumElems
);
109 // If <ElemVT * N> is not a legal type, try <ElemVT/2 * (N*2)>.
110 while (!isTypeLegal(NVT
)) {
111 unsigned NewSizeInBits
= ElemVT
.getSizeInBits() / 2;
112 // If the element size is smaller than byte, bail.
113 if (NewSizeInBits
< 8)
116 ElemVT
= EVT::getIntegerVT(*DAG
.getContext(), NewSizeInBits
);
117 NVT
= EVT::getVectorVT(*DAG
.getContext(), ElemVT
, NumElems
);
120 if (isTypeLegal(NVT
)) {
121 SDValue CastInOp
= DAG
.getNode(ISD::BITCAST
, dl
, NVT
, InOp
);
123 SmallVector
<SDValue
, 8> Vals
;
124 for (unsigned i
= 0; i
< NumElems
; ++i
)
125 Vals
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, ElemVT
,
126 CastInOp
, DAG
.getVectorIdxConstant(i
, dl
)));
128 // Build Lo, Hi pair by pairing extracted elements if needed.
130 for (unsigned e
= Vals
.size(); e
- Slot
> 2; Slot
+= 2, e
+= 1) {
131 // Each iteration will BUILD_PAIR two nodes and append the result until
132 // there are only two nodes left, i.e. Lo and Hi.
133 SDValue LHS
= Vals
[Slot
];
134 SDValue RHS
= Vals
[Slot
+ 1];
136 if (DAG
.getDataLayout().isBigEndian())
139 Vals
.push_back(DAG
.getNode(
141 EVT::getIntegerVT(*DAG
.getContext(), LHS
.getValueSizeInBits() << 1),
147 if (DAG
.getDataLayout().isBigEndian())
154 // Lower the bit-convert to a store/load from the stack.
155 assert(NOutVT
.isByteSized() && "Expanded type not byte sized!");
157 // Create the stack frame object. Make sure it is aligned for both
158 // the source and expanded destination types.
160 // In cases where the vector is illegal it will be broken down into parts
161 // and stored in parts - we should use the alignment for the smallest part.
162 Align InAlign
= DAG
.getReducedAlign(InVT
, /*UseABI=*/false);
163 Align NOutAlign
= DAG
.getReducedAlign(NOutVT
, /*UseABI=*/false);
164 Align Align
= std::max(InAlign
, NOutAlign
);
165 SDValue StackPtr
= DAG
.CreateStackTemporary(InVT
.getStoreSize(), Align
);
166 int SPFI
= cast
<FrameIndexSDNode
>(StackPtr
.getNode())->getIndex();
167 MachinePointerInfo PtrInfo
=
168 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), SPFI
);
170 // Emit a store to the stack slot.
171 SDValue Store
= DAG
.getStore(DAG
.getEntryNode(), dl
, InOp
, StackPtr
, PtrInfo
);
173 // Load the first half from the stack slot.
174 Lo
= DAG
.getLoad(NOutVT
, dl
, Store
, StackPtr
, PtrInfo
, NOutAlign
);
176 // Increment the pointer to the other half.
177 unsigned IncrementSize
= NOutVT
.getSizeInBits() / 8;
179 DAG
.getMemBasePlusOffset(StackPtr
, TypeSize::Fixed(IncrementSize
), dl
);
181 // Load the second half from the stack slot.
182 Hi
= DAG
.getLoad(NOutVT
, dl
, Store
, StackPtr
,
183 PtrInfo
.getWithOffset(IncrementSize
), NOutAlign
);
185 // Handle endianness of the load.
186 if (TLI
.hasBigEndianPartOrdering(OutVT
, DAG
.getDataLayout()))
190 void DAGTypeLegalizer::ExpandRes_BUILD_PAIR(SDNode
*N
, SDValue
&Lo
,
192 // Return the operands.
193 Lo
= N
->getOperand(0);
194 Hi
= N
->getOperand(1);
197 void DAGTypeLegalizer::ExpandRes_EXTRACT_ELEMENT(SDNode
*N
, SDValue
&Lo
,
199 GetExpandedOp(N
->getOperand(0), Lo
, Hi
);
200 SDValue Part
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue() ?
203 assert(Part
.getValueType() == N
->getValueType(0) &&
204 "Type twice as big as expanded type not itself expanded!");
206 GetPairElements(Part
, Lo
, Hi
);
209 void DAGTypeLegalizer::ExpandRes_EXTRACT_VECTOR_ELT(SDNode
*N
, SDValue
&Lo
,
211 SDValue OldVec
= N
->getOperand(0);
212 unsigned OldElts
= OldVec
.getValueType().getVectorNumElements();
213 EVT OldEltVT
= OldVec
.getValueType().getVectorElementType();
216 // Convert to a vector of the expanded element type, for example
217 // <3 x i64> -> <6 x i32>.
218 EVT OldVT
= N
->getValueType(0);
219 EVT NewVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), OldVT
);
221 if (OldVT
!= OldEltVT
) {
222 // The result of EXTRACT_VECTOR_ELT may be larger than the element type of
223 // the input vector. If so, extend the elements of the input vector to the
224 // same bitwidth as the result before expanding.
225 assert(OldEltVT
.bitsLT(OldVT
) && "Result type smaller then element type!");
226 EVT NVecVT
= EVT::getVectorVT(*DAG
.getContext(), OldVT
, OldElts
);
227 OldVec
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, NVecVT
, N
->getOperand(0));
230 SDValue NewVec
= DAG
.getNode(ISD::BITCAST
, dl
,
231 EVT::getVectorVT(*DAG
.getContext(),
235 // Extract the elements at 2 * Idx and 2 * Idx + 1 from the new vector.
236 SDValue Idx
= N
->getOperand(1);
238 Idx
= DAG
.getNode(ISD::ADD
, dl
, Idx
.getValueType(), Idx
, Idx
);
239 Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, NewVT
, NewVec
, Idx
);
241 Idx
= DAG
.getNode(ISD::ADD
, dl
, Idx
.getValueType(), Idx
,
242 DAG
.getConstant(1, dl
, Idx
.getValueType()));
243 Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, NewVT
, NewVec
, Idx
);
245 if (DAG
.getDataLayout().isBigEndian())
249 void DAGTypeLegalizer::ExpandRes_NormalLoad(SDNode
*N
, SDValue
&Lo
,
251 assert(ISD::isNormalLoad(N
) && "This routine only for normal loads!");
254 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
255 assert(!LD
->isAtomic() && "Atomics can not be split");
256 EVT ValueVT
= LD
->getValueType(0);
257 EVT NVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), ValueVT
);
258 SDValue Chain
= LD
->getChain();
259 SDValue Ptr
= LD
->getBasePtr();
260 AAMDNodes AAInfo
= LD
->getAAInfo();
262 assert(NVT
.isByteSized() && "Expanded type not byte sized!");
264 Lo
= DAG
.getLoad(NVT
, dl
, Chain
, Ptr
, LD
->getPointerInfo(),
265 LD
->getOriginalAlign(), LD
->getMemOperand()->getFlags(),
268 // Increment the pointer to the other half.
269 unsigned IncrementSize
= NVT
.getSizeInBits() / 8;
270 Ptr
= DAG
.getMemBasePlusOffset(Ptr
, TypeSize::Fixed(IncrementSize
), dl
);
272 NVT
, dl
, Chain
, Ptr
, LD
->getPointerInfo().getWithOffset(IncrementSize
),
273 LD
->getOriginalAlign(), LD
->getMemOperand()->getFlags(), AAInfo
);
275 // Build a factor node to remember that this load is independent of the
277 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
280 // Handle endianness of the load.
281 if (TLI
.hasBigEndianPartOrdering(ValueVT
, DAG
.getDataLayout()))
284 // Modified the chain - switch anything that used the old chain to use
286 ReplaceValueWith(SDValue(N
, 1), Chain
);
289 void DAGTypeLegalizer::ExpandRes_VAARG(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
) {
290 EVT OVT
= N
->getValueType(0);
291 EVT NVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), OVT
);
292 SDValue Chain
= N
->getOperand(0);
293 SDValue Ptr
= N
->getOperand(1);
295 const unsigned Align
= N
->getConstantOperandVal(3);
297 Lo
= DAG
.getVAArg(NVT
, dl
, Chain
, Ptr
, N
->getOperand(2), Align
);
298 Hi
= DAG
.getVAArg(NVT
, dl
, Lo
.getValue(1), Ptr
, N
->getOperand(2), 0);
299 Chain
= Hi
.getValue(1);
301 // Handle endianness of the load.
302 if (TLI
.hasBigEndianPartOrdering(OVT
, DAG
.getDataLayout()))
305 // Modified the chain - switch anything that used the old chain to use
307 ReplaceValueWith(SDValue(N
, 1), Chain
);
311 //===--------------------------------------------------------------------===//
312 // Generic Operand Expansion.
313 //===--------------------------------------------------------------------===//
315 void DAGTypeLegalizer::IntegerToVector(SDValue Op
, unsigned NumElements
,
316 SmallVectorImpl
<SDValue
> &Ops
,
318 assert(Op
.getValueType().isInteger());
322 if (NumElements
> 1) {
324 SplitInteger(Op
, Parts
[0], Parts
[1]);
325 if (DAG
.getDataLayout().isBigEndian())
326 std::swap(Parts
[0], Parts
[1]);
327 IntegerToVector(Parts
[0], NumElements
, Ops
, EltVT
);
328 IntegerToVector(Parts
[1], NumElements
, Ops
, EltVT
);
330 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, EltVT
, Op
));
334 SDValue
DAGTypeLegalizer::ExpandOp_BITCAST(SDNode
*N
) {
336 if (N
->getValueType(0).isVector() &&
337 N
->getOperand(0).getValueType().isInteger()) {
338 // An illegal expanding type is being converted to a legal vector type.
339 // Make a two element vector out of the expanded parts and convert that
340 // instead, but only if the new vector type is legal (otherwise there
341 // is no point, and it might create expansion loops). For example, on
342 // x86 this turns v1i64 = BITCAST i64 into v1i64 = BITCAST v2i32.
344 // FIXME: I'm not sure why we are first trying to split the input into
345 // a 2 element vector, so I'm leaving it here to maintain the current
347 unsigned NumElts
= 2;
348 EVT OVT
= N
->getOperand(0).getValueType();
349 EVT NVT
= EVT::getVectorVT(*DAG
.getContext(),
350 TLI
.getTypeToTransformTo(*DAG
.getContext(), OVT
),
352 if (!isTypeLegal(NVT
)) {
353 // If we can't find a legal type by splitting the integer in half,
354 // then we can use the node's value type.
355 NumElts
= N
->getValueType(0).getVectorNumElements();
356 NVT
= N
->getValueType(0);
359 SmallVector
<SDValue
, 8> Ops
;
360 IntegerToVector(N
->getOperand(0), NumElts
, Ops
, NVT
.getVectorElementType());
363 DAG
.getBuildVector(NVT
, dl
, makeArrayRef(Ops
.data(), NumElts
));
364 return DAG
.getNode(ISD::BITCAST
, dl
, N
->getValueType(0), Vec
);
367 // Otherwise, store to a temporary and load out again as the new type.
368 return CreateStackStoreLoad(N
->getOperand(0), N
->getValueType(0));
371 SDValue
DAGTypeLegalizer::ExpandOp_BUILD_VECTOR(SDNode
*N
) {
372 // The vector type is legal but the element type needs expansion.
373 EVT VecVT
= N
->getValueType(0);
374 unsigned NumElts
= VecVT
.getVectorNumElements();
375 EVT OldVT
= N
->getOperand(0).getValueType();
376 EVT NewVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), OldVT
);
379 assert(OldVT
== VecVT
.getVectorElementType() &&
380 "BUILD_VECTOR operand type doesn't match vector element type!");
382 // Build a vector of twice the length out of the expanded elements.
383 // For example <3 x i64> -> <6 x i32>.
384 SmallVector
<SDValue
, 16> NewElts
;
385 NewElts
.reserve(NumElts
*2);
387 for (unsigned i
= 0; i
< NumElts
; ++i
) {
389 GetExpandedOp(N
->getOperand(i
), Lo
, Hi
);
390 if (DAG
.getDataLayout().isBigEndian())
392 NewElts
.push_back(Lo
);
393 NewElts
.push_back(Hi
);
396 EVT NewVecVT
= EVT::getVectorVT(*DAG
.getContext(), NewVT
, NewElts
.size());
397 SDValue NewVec
= DAG
.getBuildVector(NewVecVT
, dl
, NewElts
);
399 // Convert the new vector to the old vector type.
400 return DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, NewVec
);
403 SDValue
DAGTypeLegalizer::ExpandOp_EXTRACT_ELEMENT(SDNode
*N
) {
405 GetExpandedOp(N
->getOperand(0), Lo
, Hi
);
406 return cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue() ? Hi
: Lo
;
409 SDValue
DAGTypeLegalizer::ExpandOp_INSERT_VECTOR_ELT(SDNode
*N
) {
410 // The vector type is legal but the element type needs expansion.
411 EVT VecVT
= N
->getValueType(0);
412 unsigned NumElts
= VecVT
.getVectorNumElements();
415 SDValue Val
= N
->getOperand(1);
416 EVT OldEVT
= Val
.getValueType();
417 EVT NewEVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), OldEVT
);
419 assert(OldEVT
== VecVT
.getVectorElementType() &&
420 "Inserted element type doesn't match vector element type!");
422 // Bitconvert to a vector of twice the length with elements of the expanded
423 // type, insert the expanded vector elements, and then convert back.
424 EVT NewVecVT
= EVT::getVectorVT(*DAG
.getContext(), NewEVT
, NumElts
*2);
425 SDValue NewVec
= DAG
.getNode(ISD::BITCAST
, dl
,
426 NewVecVT
, N
->getOperand(0));
429 GetExpandedOp(Val
, Lo
, Hi
);
430 if (DAG
.getDataLayout().isBigEndian())
433 SDValue Idx
= N
->getOperand(2);
434 Idx
= DAG
.getNode(ISD::ADD
, dl
, Idx
.getValueType(), Idx
, Idx
);
435 NewVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, NewVecVT
, NewVec
, Lo
, Idx
);
436 Idx
= DAG
.getNode(ISD::ADD
, dl
,
437 Idx
.getValueType(), Idx
,
438 DAG
.getConstant(1, dl
, Idx
.getValueType()));
439 NewVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, NewVecVT
, NewVec
, Hi
, Idx
);
441 // Convert the new vector to the old vector type.
442 return DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, NewVec
);
445 SDValue
DAGTypeLegalizer::ExpandOp_SCALAR_TO_VECTOR(SDNode
*N
) {
447 EVT VT
= N
->getValueType(0);
448 assert(VT
.getVectorElementType() == N
->getOperand(0).getValueType() &&
449 "SCALAR_TO_VECTOR operand type doesn't match vector element type!");
450 unsigned NumElts
= VT
.getVectorNumElements();
451 SmallVector
<SDValue
, 16> Ops(NumElts
);
452 Ops
[0] = N
->getOperand(0);
453 SDValue UndefVal
= DAG
.getUNDEF(Ops
[0].getValueType());
454 for (unsigned i
= 1; i
< NumElts
; ++i
)
456 return DAG
.getBuildVector(VT
, dl
, Ops
);
459 SDValue
DAGTypeLegalizer::ExpandOp_NormalStore(SDNode
*N
, unsigned OpNo
) {
460 assert(ISD::isNormalStore(N
) && "This routine only for normal stores!");
461 assert(OpNo
== 1 && "Can only expand the stored value so far");
464 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
465 assert(!St
->isAtomic() && "Atomics can not be split");
466 EVT ValueVT
= St
->getValue().getValueType();
467 EVT NVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), ValueVT
);
468 SDValue Chain
= St
->getChain();
469 SDValue Ptr
= St
->getBasePtr();
470 AAMDNodes AAInfo
= St
->getAAInfo();
472 assert(NVT
.isByteSized() && "Expanded type not byte sized!");
473 unsigned IncrementSize
= NVT
.getSizeInBits() / 8;
476 GetExpandedOp(St
->getValue(), Lo
, Hi
);
478 if (TLI
.hasBigEndianPartOrdering(ValueVT
, DAG
.getDataLayout()))
481 Lo
= DAG
.getStore(Chain
, dl
, Lo
, Ptr
, St
->getPointerInfo(),
482 St
->getOriginalAlign(), St
->getMemOperand()->getFlags(),
485 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, TypeSize::Fixed(IncrementSize
));
487 Chain
, dl
, Hi
, Ptr
, St
->getPointerInfo().getWithOffset(IncrementSize
),
488 St
->getOriginalAlign(), St
->getMemOperand()->getFlags(), AAInfo
);
490 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
, Hi
);
494 //===--------------------------------------------------------------------===//
495 // Generic Result Splitting.
496 //===--------------------------------------------------------------------===//
498 // Be careful to make no assumptions about which of Lo/Hi is stored first in
499 // memory (for vectors it is always Lo first followed by Hi in the following
500 // bytes; for integers and floats it is Lo first if and only if the machine is
503 void DAGTypeLegalizer::SplitRes_MERGE_VALUES(SDNode
*N
, unsigned ResNo
,
504 SDValue
&Lo
, SDValue
&Hi
) {
505 SDValue Op
= DisintegrateMERGE_VALUES(N
, ResNo
);
506 GetSplitOp(Op
, Lo
, Hi
);
509 void DAGTypeLegalizer::SplitRes_Select(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
) {
510 SDValue LL
, LH
, RL
, RH
, CL
, CH
;
512 unsigned Opcode
= N
->getOpcode();
513 GetSplitOp(N
->getOperand(1), LL
, LH
);
514 GetSplitOp(N
->getOperand(2), RL
, RH
);
516 SDValue Cond
= N
->getOperand(0);
518 if (Cond
.getValueType().isVector()) {
519 if (SDValue Res
= WidenVSELECTMask(N
))
520 std::tie(CL
, CH
) = DAG
.SplitVector(Res
, dl
);
521 // Check if there are already splitted versions of the vector available and
522 // use those instead of splitting the mask operand again.
523 else if (getTypeAction(Cond
.getValueType()) ==
524 TargetLowering::TypeSplitVector
)
525 GetSplitVector(Cond
, CL
, CH
);
526 // It seems to improve code to generate two narrow SETCCs as opposed to
527 // splitting a wide result vector.
528 else if (Cond
.getOpcode() == ISD::SETCC
) {
529 // If the condition is a vXi1 vector, and the LHS of the setcc is a legal
530 // type and the setcc result type is the same vXi1, then leave the setcc
532 EVT CondLHSVT
= Cond
.getOperand(0).getValueType();
533 if (Cond
.getValueType().getVectorElementType() == MVT::i1
&&
534 isTypeLegal(CondLHSVT
) &&
535 getSetCCResultType(CondLHSVT
) == Cond
.getValueType())
536 std::tie(CL
, CH
) = DAG
.SplitVector(Cond
, dl
);
538 SplitVecRes_SETCC(Cond
.getNode(), CL
, CH
);
540 std::tie(CL
, CH
) = DAG
.SplitVector(Cond
, dl
);
543 if (Opcode
!= ISD::VP_SELECT
) {
544 Lo
= DAG
.getNode(Opcode
, dl
, LL
.getValueType(), CL
, LL
, RL
);
545 Hi
= DAG
.getNode(Opcode
, dl
, LH
.getValueType(), CH
, LH
, RH
);
549 SDValue EVLLo
, EVLHi
;
550 std::tie(EVLLo
, EVLHi
) =
551 DAG
.SplitEVL(N
->getOperand(3), N
->getValueType(0), dl
);
553 Lo
= DAG
.getNode(Opcode
, dl
, LL
.getValueType(), CL
, LL
, RL
, EVLLo
);
554 Hi
= DAG
.getNode(Opcode
, dl
, LH
.getValueType(), CH
, LH
, RH
, EVLHi
);
557 void DAGTypeLegalizer::SplitRes_SELECT_CC(SDNode
*N
, SDValue
&Lo
,
559 SDValue LL
, LH
, RL
, RH
;
561 GetSplitOp(N
->getOperand(2), LL
, LH
);
562 GetSplitOp(N
->getOperand(3), RL
, RH
);
564 Lo
= DAG
.getNode(ISD::SELECT_CC
, dl
, LL
.getValueType(), N
->getOperand(0),
565 N
->getOperand(1), LL
, RL
, N
->getOperand(4));
566 Hi
= DAG
.getNode(ISD::SELECT_CC
, dl
, LH
.getValueType(), N
->getOperand(0),
567 N
->getOperand(1), LH
, RH
, N
->getOperand(4));
570 void DAGTypeLegalizer::SplitRes_UNDEF(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
) {
572 std::tie(LoVT
, HiVT
) = DAG
.GetSplitDestVTs(N
->getValueType(0));
573 Lo
= DAG
.getUNDEF(LoVT
);
574 Hi
= DAG
.getUNDEF(HiVT
);
577 void DAGTypeLegalizer::SplitRes_FREEZE(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
) {
580 GetSplitOp(N
->getOperand(0), L
, H
);
582 Lo
= DAG
.getNode(ISD::FREEZE
, dl
, L
.getValueType(), L
);
583 Hi
= DAG
.getNode(ISD::FREEZE
, dl
, H
.getValueType(), H
);
586 void DAGTypeLegalizer::SplitRes_ARITH_FENCE(SDNode
*N
, SDValue
&Lo
,
590 GetSplitOp(N
->getOperand(0), L
, H
);
592 Lo
= DAG
.getNode(ISD::ARITH_FENCE
, DL
, L
.getValueType(), L
);
593 Hi
= DAG
.getNode(ISD::ARITH_FENCE
, DL
, H
.getValueType(), H
);