[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / CodeGen / SelectionDAG / ScheduleDAGSDNodes.cpp
blobbec240d6c4d49b0668f7a8536d3ea880a9c38c52
1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the ScheduleDAG class, which is a base class used by
10 // scheduling implementation classes.
12 //===----------------------------------------------------------------------===//
14 #include "ScheduleDAGSDNodes.h"
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/TargetInstrInfo.h"
26 #include "llvm/CodeGen/TargetLowering.h"
27 #include "llvm/CodeGen/TargetRegisterInfo.h"
28 #include "llvm/CodeGen/TargetSubtargetInfo.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/MC/MCInstrItineraries.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 using namespace llvm;
37 #define DEBUG_TYPE "pre-RA-sched"
39 STATISTIC(LoadsClustered, "Number of loads clustered together");
41 // This allows the latency-based scheduler to notice high latency instructions
42 // without a target itinerary. The choice of number here has more to do with
43 // balancing scheduler heuristics than with the actual machine latency.
44 static cl::opt<int> HighLatencyCycles(
45 "sched-high-latency-cycles", cl::Hidden, cl::init(10),
46 cl::desc("Roughly estimate the number of cycles that 'long latency'"
47 "instructions take for targets with no itinerary"));
49 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
50 : ScheduleDAG(mf), BB(nullptr), DAG(nullptr),
51 InstrItins(mf.getSubtarget().getInstrItineraryData()) {}
53 /// Run - perform scheduling.
54 ///
55 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
56 BB = bb;
57 DAG = dag;
59 // Clear the scheduler's SUnit DAG.
60 ScheduleDAG::clearDAG();
61 Sequence.clear();
63 // Invoke the target's selection of scheduler.
64 Schedule();
67 /// NewSUnit - Creates a new SUnit and return a ptr to it.
68 ///
69 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
70 #ifndef NDEBUG
71 const SUnit *Addr = nullptr;
72 if (!SUnits.empty())
73 Addr = &SUnits[0];
74 #endif
75 SUnits.emplace_back(N, (unsigned)SUnits.size());
76 assert((Addr == nullptr || Addr == &SUnits[0]) &&
77 "SUnits std::vector reallocated on the fly!");
78 SUnits.back().OrigNode = &SUnits.back();
79 SUnit *SU = &SUnits.back();
80 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
81 if (!N ||
82 (N->isMachineOpcode() &&
83 N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
84 SU->SchedulingPref = Sched::None;
85 else
86 SU->SchedulingPref = TLI.getSchedulingPreference(N);
87 return SU;
90 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
91 SUnit *SU = newSUnit(Old->getNode());
92 SU->OrigNode = Old->OrigNode;
93 SU->Latency = Old->Latency;
94 SU->isVRegCycle = Old->isVRegCycle;
95 SU->isCall = Old->isCall;
96 SU->isCallOp = Old->isCallOp;
97 SU->isTwoAddress = Old->isTwoAddress;
98 SU->isCommutable = Old->isCommutable;
99 SU->hasPhysRegDefs = Old->hasPhysRegDefs;
100 SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
101 SU->isScheduleHigh = Old->isScheduleHigh;
102 SU->isScheduleLow = Old->isScheduleLow;
103 SU->SchedulingPref = Old->SchedulingPref;
104 Old->isCloned = true;
105 return SU;
108 /// CheckForPhysRegDependency - Check if the dependency between def and use of
109 /// a specified operand is a physical register dependency. If so, returns the
110 /// register and the cost of copying the register.
111 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
112 const TargetRegisterInfo *TRI,
113 const TargetInstrInfo *TII,
114 unsigned &PhysReg, int &Cost) {
115 if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
116 return;
118 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
119 if (Register::isVirtualRegister(Reg))
120 return;
122 unsigned ResNo = User->getOperand(2).getResNo();
123 if (Def->getOpcode() == ISD::CopyFromReg &&
124 cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) {
125 PhysReg = Reg;
126 } else if (Def->isMachineOpcode()) {
127 const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
128 if (ResNo >= II.getNumDefs() && II.hasImplicitDefOfPhysReg(Reg))
129 PhysReg = Reg;
132 if (PhysReg != 0) {
133 const TargetRegisterClass *RC =
134 TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo));
135 Cost = RC->getCopyCost();
139 // Helper for AddGlue to clone node operands.
140 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs,
141 SDValue ExtraOper = SDValue()) {
142 SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end());
143 if (ExtraOper.getNode())
144 Ops.push_back(ExtraOper);
146 SDVTList VTList = DAG->getVTList(VTs);
147 MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
149 // Store memory references.
150 SmallVector<MachineMemOperand *, 2> MMOs;
151 if (MN)
152 MMOs.assign(MN->memoperands_begin(), MN->memoperands_end());
154 DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops);
156 // Reset the memory references
157 if (MN)
158 DAG->setNodeMemRefs(MN, MMOs);
161 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
162 SDNode *GlueDestNode = Glue.getNode();
164 // Don't add glue from a node to itself.
165 if (GlueDestNode == N) return false;
167 // Don't add a glue operand to something that already uses glue.
168 if (GlueDestNode &&
169 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
170 return false;
172 // Don't add glue to something that already has a glue value.
173 if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false;
175 SmallVector<EVT, 4> VTs(N->values());
176 if (AddGlue)
177 VTs.push_back(MVT::Glue);
179 CloneNodeWithValues(N, DAG, VTs, Glue);
181 return true;
184 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the
185 // node even though simply shrinking the value list is sufficient.
186 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) {
187 assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue &&
188 !N->hasAnyUseOfValue(N->getNumValues() - 1)) &&
189 "expected an unused glue value");
191 CloneNodeWithValues(N, DAG,
192 makeArrayRef(N->value_begin(), N->getNumValues() - 1));
195 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
196 /// This function finds loads of the same base and different offsets. If the
197 /// offsets are not far apart (target specific), it add MVT::Glue inputs and
198 /// outputs to ensure they are scheduled together and in order. This
199 /// optimization may benefit some targets by improving cache locality.
200 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
201 SDValue Chain;
202 unsigned NumOps = Node->getNumOperands();
203 if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
204 Chain = Node->getOperand(NumOps-1);
205 if (!Chain)
206 return;
208 // Skip any load instruction that has a tied input. There may be an additional
209 // dependency requiring a different order than by increasing offsets, and the
210 // added glue may introduce a cycle.
211 auto hasTiedInput = [this](const SDNode *N) {
212 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
213 for (unsigned I = 0; I != MCID.getNumOperands(); ++I) {
214 if (MCID.getOperandConstraint(I, MCOI::TIED_TO) != -1)
215 return true;
218 return false;
221 // Look for other loads of the same chain. Find loads that are loading from
222 // the same base pointer and different offsets.
223 SmallPtrSet<SDNode*, 16> Visited;
224 SmallVector<int64_t, 4> Offsets;
225 DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode.
226 bool Cluster = false;
227 SDNode *Base = Node;
229 if (hasTiedInput(Base))
230 return;
232 // This algorithm requires a reasonably low use count before finding a match
233 // to avoid uselessly blowing up compile time in large blocks.
234 unsigned UseCount = 0;
235 for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
236 I != E && UseCount < 100; ++I, ++UseCount) {
237 if (I.getUse().getResNo() != Chain.getResNo())
238 continue;
240 SDNode *User = *I;
241 if (User == Node || !Visited.insert(User).second)
242 continue;
243 int64_t Offset1, Offset2;
244 if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
245 Offset1 == Offset2 ||
246 hasTiedInput(User)) {
247 // FIXME: Should be ok if they addresses are identical. But earlier
248 // optimizations really should have eliminated one of the loads.
249 continue;
251 if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
252 Offsets.push_back(Offset1);
253 O2SMap.insert(std::make_pair(Offset2, User));
254 Offsets.push_back(Offset2);
255 if (Offset2 < Offset1)
256 Base = User;
257 Cluster = true;
258 // Reset UseCount to allow more matches.
259 UseCount = 0;
262 if (!Cluster)
263 return;
265 // Sort them in increasing order.
266 llvm::sort(Offsets);
268 // Check if the loads are close enough.
269 SmallVector<SDNode*, 4> Loads;
270 unsigned NumLoads = 0;
271 int64_t BaseOff = Offsets[0];
272 SDNode *BaseLoad = O2SMap[BaseOff];
273 Loads.push_back(BaseLoad);
274 for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
275 int64_t Offset = Offsets[i];
276 SDNode *Load = O2SMap[Offset];
277 if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
278 break; // Stop right here. Ignore loads that are further away.
279 Loads.push_back(Load);
280 ++NumLoads;
283 if (NumLoads == 0)
284 return;
286 // Cluster loads by adding MVT::Glue outputs and inputs. This also
287 // ensure they are scheduled in order of increasing addresses.
288 SDNode *Lead = Loads[0];
289 SDValue InGlue;
290 if (AddGlue(Lead, InGlue, true, DAG))
291 InGlue = SDValue(Lead, Lead->getNumValues() - 1);
292 for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
293 bool OutGlue = I < E - 1;
294 SDNode *Load = Loads[I];
296 // If AddGlue fails, we could leave an unsused glue value. This should not
297 // cause any
298 if (AddGlue(Load, InGlue, OutGlue, DAG)) {
299 if (OutGlue)
300 InGlue = SDValue(Load, Load->getNumValues() - 1);
302 ++LoadsClustered;
304 else if (!OutGlue && InGlue.getNode())
305 RemoveUnusedGlue(InGlue.getNode(), DAG);
309 /// ClusterNodes - Cluster certain nodes which should be scheduled together.
311 void ScheduleDAGSDNodes::ClusterNodes() {
312 for (SDNode &NI : DAG->allnodes()) {
313 SDNode *Node = &NI;
314 if (!Node || !Node->isMachineOpcode())
315 continue;
317 unsigned Opc = Node->getMachineOpcode();
318 const MCInstrDesc &MCID = TII->get(Opc);
319 if (MCID.mayLoad())
320 // Cluster loads from "near" addresses into combined SUnits.
321 ClusterNeighboringLoads(Node);
325 void ScheduleDAGSDNodes::BuildSchedUnits() {
326 // During scheduling, the NodeId field of SDNode is used to map SDNodes
327 // to their associated SUnits by holding SUnits table indices. A value
328 // of -1 means the SDNode does not yet have an associated SUnit.
329 unsigned NumNodes = 0;
330 for (SDNode &NI : DAG->allnodes()) {
331 NI.setNodeId(-1);
332 ++NumNodes;
335 // Reserve entries in the vector for each of the SUnits we are creating. This
336 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
337 // invalidated.
338 // FIXME: Multiply by 2 because we may clone nodes during scheduling.
339 // This is a temporary workaround.
340 SUnits.reserve(NumNodes * 2);
342 // Add all nodes in depth first order.
343 SmallVector<SDNode*, 64> Worklist;
344 SmallPtrSet<SDNode*, 32> Visited;
345 Worklist.push_back(DAG->getRoot().getNode());
346 Visited.insert(DAG->getRoot().getNode());
348 SmallVector<SUnit*, 8> CallSUnits;
349 while (!Worklist.empty()) {
350 SDNode *NI = Worklist.pop_back_val();
352 // Add all operands to the worklist unless they've already been added.
353 for (const SDValue &Op : NI->op_values())
354 if (Visited.insert(Op.getNode()).second)
355 Worklist.push_back(Op.getNode());
357 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
358 continue;
360 // If this node has already been processed, stop now.
361 if (NI->getNodeId() != -1) continue;
363 SUnit *NodeSUnit = newSUnit(NI);
365 // See if anything is glued to this node, if so, add them to glued
366 // nodes. Nodes can have at most one glue input and one glue output. Glue
367 // is required to be the last operand and result of a node.
369 // Scan up to find glued preds.
370 SDNode *N = NI;
371 while (N->getNumOperands() &&
372 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
373 N = N->getOperand(N->getNumOperands()-1).getNode();
374 assert(N->getNodeId() == -1 && "Node already inserted!");
375 N->setNodeId(NodeSUnit->NodeNum);
376 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
377 NodeSUnit->isCall = true;
380 // Scan down to find any glued succs.
381 N = NI;
382 while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
383 SDValue GlueVal(N, N->getNumValues()-1);
385 // There are either zero or one users of the Glue result.
386 bool HasGlueUse = false;
387 for (SDNode *U : N->uses())
388 if (GlueVal.isOperandOf(U)) {
389 HasGlueUse = true;
390 assert(N->getNodeId() == -1 && "Node already inserted!");
391 N->setNodeId(NodeSUnit->NodeNum);
392 N = U;
393 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
394 NodeSUnit->isCall = true;
395 break;
397 if (!HasGlueUse) break;
400 if (NodeSUnit->isCall)
401 CallSUnits.push_back(NodeSUnit);
403 // Schedule zero-latency TokenFactor below any nodes that may increase the
404 // schedule height. Otherwise, ancestors of the TokenFactor may appear to
405 // have false stalls.
406 if (NI->getOpcode() == ISD::TokenFactor)
407 NodeSUnit->isScheduleLow = true;
409 // If there are glue operands involved, N is now the bottom-most node
410 // of the sequence of nodes that are glued together.
411 // Update the SUnit.
412 NodeSUnit->setNode(N);
413 assert(N->getNodeId() == -1 && "Node already inserted!");
414 N->setNodeId(NodeSUnit->NodeNum);
416 // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
417 InitNumRegDefsLeft(NodeSUnit);
419 // Assign the Latency field of NodeSUnit using target-provided information.
420 computeLatency(NodeSUnit);
423 // Find all call operands.
424 while (!CallSUnits.empty()) {
425 SUnit *SU = CallSUnits.pop_back_val();
426 for (const SDNode *SUNode = SU->getNode(); SUNode;
427 SUNode = SUNode->getGluedNode()) {
428 if (SUNode->getOpcode() != ISD::CopyToReg)
429 continue;
430 SDNode *SrcN = SUNode->getOperand(2).getNode();
431 if (isPassiveNode(SrcN)) continue; // Not scheduled.
432 SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
433 SrcSU->isCallOp = true;
438 void ScheduleDAGSDNodes::AddSchedEdges() {
439 const TargetSubtargetInfo &ST = MF.getSubtarget();
441 // Check to see if the scheduler cares about latencies.
442 bool UnitLatencies = forceUnitLatencies();
444 // Pass 2: add the preds, succs, etc.
445 for (SUnit &SU : SUnits) {
446 SDNode *MainNode = SU.getNode();
448 if (MainNode->isMachineOpcode()) {
449 unsigned Opc = MainNode->getMachineOpcode();
450 const MCInstrDesc &MCID = TII->get(Opc);
451 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
452 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
453 SU.isTwoAddress = true;
454 break;
457 if (MCID.isCommutable())
458 SU.isCommutable = true;
461 // Find all predecessors and successors of the group.
462 for (SDNode *N = SU.getNode(); N; N = N->getGluedNode()) {
463 if (N->isMachineOpcode() &&
464 TII->get(N->getMachineOpcode()).getImplicitDefs()) {
465 SU.hasPhysRegClobbers = true;
466 unsigned NumUsed = InstrEmitter::CountResults(N);
467 while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
468 --NumUsed; // Skip over unused values at the end.
469 if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
470 SU.hasPhysRegDefs = true;
473 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
474 SDNode *OpN = N->getOperand(i).getNode();
475 unsigned DefIdx = N->getOperand(i).getResNo();
476 if (isPassiveNode(OpN)) continue; // Not scheduled.
477 SUnit *OpSU = &SUnits[OpN->getNodeId()];
478 assert(OpSU && "Node has no SUnit!");
479 if (OpSU == &SU)
480 continue; // In the same group.
482 EVT OpVT = N->getOperand(i).getValueType();
483 assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
484 bool isChain = OpVT == MVT::Other;
486 unsigned PhysReg = 0;
487 int Cost = 1;
488 // Determine if this is a physical register dependency.
489 CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
490 assert((PhysReg == 0 || !isChain) &&
491 "Chain dependence via physreg data?");
492 // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
493 // emits a copy from the physical register to a virtual register unless
494 // it requires a cross class copy (cost < 0). That means we are only
495 // treating "expensive to copy" register dependency as physical register
496 // dependency. This may change in the future though.
497 if (Cost >= 0 && !StressSched)
498 PhysReg = 0;
500 // If this is a ctrl dep, latency is 1.
501 unsigned OpLatency = isChain ? 1 : OpSU->Latency;
502 // Special-case TokenFactor chains as zero-latency.
503 if(isChain && OpN->getOpcode() == ISD::TokenFactor)
504 OpLatency = 0;
506 SDep Dep = isChain ? SDep(OpSU, SDep::Barrier)
507 : SDep(OpSU, SDep::Data, PhysReg);
508 Dep.setLatency(OpLatency);
509 if (!isChain && !UnitLatencies) {
510 computeOperandLatency(OpN, N, i, Dep);
511 ST.adjustSchedDependency(OpSU, DefIdx, &SU, i, Dep);
514 if (!SU.addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
515 // Multiple register uses are combined in the same SUnit. For example,
516 // we could have a set of glued nodes with all their defs consumed by
517 // another set of glued nodes. Register pressure tracking sees this as
518 // a single use, so to keep pressure balanced we reduce the defs.
520 // We can't tell (without more book-keeping) if this results from
521 // glued nodes or duplicate operands. As long as we don't reduce
522 // NumRegDefsLeft to zero, we handle the common cases well.
523 --OpSU->NumRegDefsLeft;
530 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
531 /// are input. This SUnit graph is similar to the SelectionDAG, but
532 /// excludes nodes that aren't interesting to scheduling, and represents
533 /// glued together nodes with a single SUnit.
534 void ScheduleDAGSDNodes::BuildSchedGraph(AAResults *AA) {
535 // Cluster certain nodes which should be scheduled together.
536 ClusterNodes();
537 // Populate the SUnits array.
538 BuildSchedUnits();
539 // Compute all the scheduling dependencies between nodes.
540 AddSchedEdges();
543 // Initialize NumNodeDefs for the current Node's opcode.
544 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
545 // Check for phys reg copy.
546 if (!Node)
547 return;
549 if (!Node->isMachineOpcode()) {
550 if (Node->getOpcode() == ISD::CopyFromReg)
551 NodeNumDefs = 1;
552 else
553 NodeNumDefs = 0;
554 return;
556 unsigned POpc = Node->getMachineOpcode();
557 if (POpc == TargetOpcode::IMPLICIT_DEF) {
558 // No register need be allocated for this.
559 NodeNumDefs = 0;
560 return;
562 if (POpc == TargetOpcode::PATCHPOINT &&
563 Node->getValueType(0) == MVT::Other) {
564 // PATCHPOINT is defined to have one result, but it might really have none
565 // if we're not using CallingConv::AnyReg. Don't mistake the chain for a
566 // real definition.
567 NodeNumDefs = 0;
568 return;
570 unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
571 // Some instructions define regs that are not represented in the selection DAG
572 // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
573 NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
574 DefIdx = 0;
577 // Construct a RegDefIter for this SUnit and find the first valid value.
578 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
579 const ScheduleDAGSDNodes *SD)
580 : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
581 InitNodeNumDefs();
582 Advance();
585 // Advance to the next valid value defined by the SUnit.
586 void ScheduleDAGSDNodes::RegDefIter::Advance() {
587 for (;Node;) { // Visit all glued nodes.
588 for (;DefIdx < NodeNumDefs; ++DefIdx) {
589 if (!Node->hasAnyUseOfValue(DefIdx))
590 continue;
591 ValueType = Node->getSimpleValueType(DefIdx);
592 ++DefIdx;
593 return; // Found a normal regdef.
595 Node = Node->getGluedNode();
596 if (!Node) {
597 return; // No values left to visit.
599 InitNodeNumDefs();
603 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
604 assert(SU->NumRegDefsLeft == 0 && "expect a new node");
605 for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
606 assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
607 ++SU->NumRegDefsLeft;
611 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
612 SDNode *N = SU->getNode();
614 // TokenFactor operands are considered zero latency, and some schedulers
615 // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
616 // whenever node latency is nonzero.
617 if (N && N->getOpcode() == ISD::TokenFactor) {
618 SU->Latency = 0;
619 return;
622 // Check to see if the scheduler cares about latencies.
623 if (forceUnitLatencies()) {
624 SU->Latency = 1;
625 return;
628 if (!InstrItins || InstrItins->isEmpty()) {
629 if (N && N->isMachineOpcode() &&
630 TII->isHighLatencyDef(N->getMachineOpcode()))
631 SU->Latency = HighLatencyCycles;
632 else
633 SU->Latency = 1;
634 return;
637 // Compute the latency for the node. We use the sum of the latencies for
638 // all nodes glued together into this SUnit.
639 SU->Latency = 0;
640 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
641 if (N->isMachineOpcode())
642 SU->Latency += TII->getInstrLatency(InstrItins, N);
645 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
646 unsigned OpIdx, SDep& dep) const{
647 // Check to see if the scheduler cares about latencies.
648 if (forceUnitLatencies())
649 return;
651 if (dep.getKind() != SDep::Data)
652 return;
654 unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
655 if (Use->isMachineOpcode())
656 // Adjust the use operand index by num of defs.
657 OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
658 int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
659 if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
660 !BB->succ_empty()) {
661 unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
662 if (Register::isVirtualRegister(Reg))
663 // This copy is a liveout value. It is likely coalesced, so reduce the
664 // latency so not to penalize the def.
665 // FIXME: need target specific adjustment here?
666 Latency = (Latency > 1) ? Latency - 1 : 1;
668 if (Latency >= 0)
669 dep.setLatency(Latency);
672 void ScheduleDAGSDNodes::dumpNode(const SUnit &SU) const {
673 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
674 dumpNodeName(SU);
675 dbgs() << ": ";
677 if (!SU.getNode()) {
678 dbgs() << "PHYS REG COPY\n";
679 return;
682 SU.getNode()->dump(DAG);
683 dbgs() << "\n";
684 SmallVector<SDNode *, 4> GluedNodes;
685 for (SDNode *N = SU.getNode()->getGluedNode(); N; N = N->getGluedNode())
686 GluedNodes.push_back(N);
687 while (!GluedNodes.empty()) {
688 dbgs() << " ";
689 GluedNodes.back()->dump(DAG);
690 dbgs() << "\n";
691 GluedNodes.pop_back();
693 #endif
696 void ScheduleDAGSDNodes::dump() const {
697 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
698 if (EntrySU.getNode() != nullptr)
699 dumpNodeAll(EntrySU);
700 for (const SUnit &SU : SUnits)
701 dumpNodeAll(SU);
702 if (ExitSU.getNode() != nullptr)
703 dumpNodeAll(ExitSU);
704 #endif
707 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
708 void ScheduleDAGSDNodes::dumpSchedule() const {
709 for (const SUnit *SU : Sequence) {
710 if (SU)
711 dumpNode(*SU);
712 else
713 dbgs() << "**** NOOP ****\n";
716 #endif
718 #ifndef NDEBUG
719 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
720 /// their state is consistent with the nodes listed in Sequence.
722 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
723 unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
724 unsigned Noops = llvm::count(Sequence, nullptr);
725 assert(Sequence.size() - Noops == ScheduledNodes &&
726 "The number of nodes scheduled doesn't match the expected number!");
728 #endif // NDEBUG
730 /// ProcessSDDbgValues - Process SDDbgValues associated with this node.
731 static void
732 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
733 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
734 DenseMap<SDValue, Register> &VRBaseMap, unsigned Order) {
735 if (!N->getHasDebugValue())
736 return;
738 /// Returns true if \p DV has any VReg operand locations which don't exist in
739 /// VRBaseMap.
740 auto HasUnknownVReg = [&VRBaseMap](SDDbgValue *DV) {
741 for (const SDDbgOperand &L : DV->getLocationOps()) {
742 if (L.getKind() == SDDbgOperand::SDNODE &&
743 VRBaseMap.count({L.getSDNode(), L.getResNo()}) == 0)
744 return true;
746 return false;
749 // Opportunistically insert immediate dbg_value uses, i.e. those with the same
750 // source order number as N.
751 MachineBasicBlock *BB = Emitter.getBlock();
752 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
753 for (auto DV : DAG->GetDbgValues(N)) {
754 if (DV->isEmitted())
755 continue;
756 unsigned DVOrder = DV->getOrder();
757 if (Order != 0 && DVOrder != Order)
758 continue;
759 // If DV has any VReg location operands which haven't been mapped then
760 // either that node is no longer available or we just haven't visited the
761 // node yet. In the former case we should emit an undef dbg_value, but we
762 // can do it later. And for the latter we'll want to wait until all
763 // dependent nodes have been visited.
764 if (!DV->isInvalidated() && HasUnknownVReg(DV))
765 continue;
766 MachineInstr *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap);
767 if (!DbgMI)
768 continue;
769 Orders.push_back({DVOrder, DbgMI});
770 BB->insert(InsertPos, DbgMI);
774 // ProcessSourceNode - Process nodes with source order numbers. These are added
775 // to a vector which EmitSchedule uses to determine how to insert dbg_value
776 // instructions in the right order.
777 static void
778 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
779 DenseMap<SDValue, Register> &VRBaseMap,
780 SmallVectorImpl<std::pair<unsigned, MachineInstr *>> &Orders,
781 SmallSet<Register, 8> &Seen, MachineInstr *NewInsn) {
782 unsigned Order = N->getIROrder();
783 if (!Order || Seen.count(Order)) {
784 // Process any valid SDDbgValues even if node does not have any order
785 // assigned.
786 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
787 return;
790 // If a new instruction was generated for this Order number, record it.
791 // Otherwise, leave this order number unseen: we will either find later
792 // instructions for it, or leave it unseen if there were no instructions at
793 // all.
794 if (NewInsn) {
795 Seen.insert(Order);
796 Orders.push_back({Order, NewInsn});
799 // Even if no instruction was generated, a Value may have become defined via
800 // earlier nodes. Try to process them now.
801 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
804 void ScheduleDAGSDNodes::
805 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, Register> &VRBaseMap,
806 MachineBasicBlock::iterator InsertPos) {
807 for (const SDep &Pred : SU->Preds) {
808 if (Pred.isCtrl())
809 continue; // ignore chain preds
810 if (Pred.getSUnit()->CopyDstRC) {
811 // Copy to physical register.
812 DenseMap<SUnit *, Register>::iterator VRI =
813 VRBaseMap.find(Pred.getSUnit());
814 assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
815 // Find the destination physical register.
816 Register Reg;
817 for (const SDep &Succ : SU->Succs) {
818 if (Succ.isCtrl())
819 continue; // ignore chain preds
820 if (Succ.getReg()) {
821 Reg = Succ.getReg();
822 break;
825 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
826 .addReg(VRI->second);
827 } else {
828 // Copy from physical register.
829 assert(Pred.getReg() && "Unknown physical register!");
830 Register VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
831 bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
832 (void)isNew; // Silence compiler warning.
833 assert(isNew && "Node emitted out of order - early");
834 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
835 .addReg(Pred.getReg());
837 break;
841 /// EmitSchedule - Emit the machine code in scheduled order. Return the new
842 /// InsertPos and MachineBasicBlock that contains this insertion
843 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
844 /// not necessarily refer to returned BB. The emitter may split blocks.
845 MachineBasicBlock *ScheduleDAGSDNodes::
846 EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
847 InstrEmitter Emitter(DAG->getTarget(), BB, InsertPos);
848 DenseMap<SDValue, Register> VRBaseMap;
849 DenseMap<SUnit*, Register> CopyVRBaseMap;
850 SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
851 SmallSet<Register, 8> Seen;
852 bool HasDbg = DAG->hasDebugValues();
854 // Emit a node, and determine where its first instruction is for debuginfo.
855 // Zero, one, or multiple instructions can be created when emitting a node.
856 auto EmitNode =
857 [&](SDNode *Node, bool IsClone, bool IsCloned,
858 DenseMap<SDValue, Register> &VRBaseMap) -> MachineInstr * {
859 // Fetch instruction prior to this, or end() if nonexistant.
860 auto GetPrevInsn = [&](MachineBasicBlock::iterator I) {
861 if (I == BB->begin())
862 return BB->end();
863 else
864 return std::prev(Emitter.getInsertPos());
867 MachineBasicBlock::iterator Before = GetPrevInsn(Emitter.getInsertPos());
868 Emitter.EmitNode(Node, IsClone, IsCloned, VRBaseMap);
869 MachineBasicBlock::iterator After = GetPrevInsn(Emitter.getInsertPos());
871 // If the iterator did not change, no instructions were inserted.
872 if (Before == After)
873 return nullptr;
875 MachineInstr *MI;
876 if (Before == BB->end()) {
877 // There were no prior instructions; the new ones must start at the
878 // beginning of the block.
879 MI = &Emitter.getBlock()->instr_front();
880 } else {
881 // Return first instruction after the pre-existing instructions.
882 MI = &*std::next(Before);
885 if (MI->isCandidateForCallSiteEntry() &&
886 DAG->getTarget().Options.EmitCallSiteInfo)
887 MF.addCallArgsForwardingRegs(MI, DAG->getSDCallSiteInfo(Node));
889 if (DAG->getNoMergeSiteInfo(Node)) {
890 MI->setFlag(MachineInstr::MIFlag::NoMerge);
893 return MI;
896 // If this is the first BB, emit byval parameter dbg_value's.
897 if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
898 SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
899 SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
900 for (; PDI != PDE; ++PDI) {
901 MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
902 if (DbgMI) {
903 BB->insert(InsertPos, DbgMI);
904 // We re-emit the dbg_value closer to its use, too, after instructions
905 // are emitted to the BB.
906 (*PDI)->clearIsEmitted();
911 for (SUnit *SU : Sequence) {
912 if (!SU) {
913 // Null SUnit* is a noop.
914 TII->insertNoop(*Emitter.getBlock(), InsertPos);
915 continue;
918 // For pre-regalloc scheduling, create instructions corresponding to the
919 // SDNode and any glued SDNodes and append them to the block.
920 if (!SU->getNode()) {
921 // Emit a copy.
922 EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
923 continue;
926 SmallVector<SDNode *, 4> GluedNodes;
927 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
928 GluedNodes.push_back(N);
929 while (!GluedNodes.empty()) {
930 SDNode *N = GluedNodes.back();
931 auto NewInsn = EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap);
932 // Remember the source order of the inserted instruction.
933 if (HasDbg)
934 ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen, NewInsn);
936 if (MDNode *MD = DAG->getHeapAllocSite(N))
937 if (NewInsn && NewInsn->isCall())
938 NewInsn->setHeapAllocMarker(MF, MD);
940 GluedNodes.pop_back();
942 auto NewInsn =
943 EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, VRBaseMap);
944 // Remember the source order of the inserted instruction.
945 if (HasDbg)
946 ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, Seen,
947 NewInsn);
949 if (MDNode *MD = DAG->getHeapAllocSite(SU->getNode())) {
950 if (NewInsn && NewInsn->isCall())
951 NewInsn->setHeapAllocMarker(MF, MD);
955 // Insert all the dbg_values which have not already been inserted in source
956 // order sequence.
957 if (HasDbg) {
958 MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
960 // Sort the source order instructions and use the order to insert debug
961 // values. Use stable_sort so that DBG_VALUEs are inserted in the same order
962 // regardless of the host's implementation fo std::sort.
963 llvm::stable_sort(Orders, less_first());
964 std::stable_sort(DAG->DbgBegin(), DAG->DbgEnd(),
965 [](const SDDbgValue *LHS, const SDDbgValue *RHS) {
966 return LHS->getOrder() < RHS->getOrder();
969 SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
970 SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
971 // Now emit the rest according to source order.
972 unsigned LastOrder = 0;
973 for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
974 unsigned Order = Orders[i].first;
975 MachineInstr *MI = Orders[i].second;
976 // Insert all SDDbgValue's whose order(s) are before "Order".
977 assert(MI);
978 for (; DI != DE; ++DI) {
979 if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order)
980 break;
981 if ((*DI)->isEmitted())
982 continue;
984 MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
985 if (DbgMI) {
986 if (!LastOrder)
987 // Insert to start of the BB (after PHIs).
988 BB->insert(BBBegin, DbgMI);
989 else {
990 // Insert at the instruction, which may be in a different
991 // block, if the block was split by a custom inserter.
992 MachineBasicBlock::iterator Pos = MI;
993 MI->getParent()->insert(Pos, DbgMI);
997 LastOrder = Order;
999 // Add trailing DbgValue's before the terminator. FIXME: May want to add
1000 // some of them before one or more conditional branches?
1001 SmallVector<MachineInstr*, 8> DbgMIs;
1002 for (; DI != DE; ++DI) {
1003 if ((*DI)->isEmitted())
1004 continue;
1005 assert((*DI)->getOrder() >= LastOrder &&
1006 "emitting DBG_VALUE out of order");
1007 if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
1008 DbgMIs.push_back(DbgMI);
1011 MachineBasicBlock *InsertBB = Emitter.getBlock();
1012 MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
1013 InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());
1015 SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin();
1016 SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd();
1017 // Now emit the rest according to source order.
1018 LastOrder = 0;
1019 for (const auto &InstrOrder : Orders) {
1020 unsigned Order = InstrOrder.first;
1021 MachineInstr *MI = InstrOrder.second;
1022 if (!MI)
1023 continue;
1025 // Insert all SDDbgLabel's whose order(s) are before "Order".
1026 for (; DLI != DLE &&
1027 (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order;
1028 ++DLI) {
1029 MachineInstr *DbgMI = Emitter.EmitDbgLabel(*DLI);
1030 if (DbgMI) {
1031 if (!LastOrder)
1032 // Insert to start of the BB (after PHIs).
1033 BB->insert(BBBegin, DbgMI);
1034 else {
1035 // Insert at the instruction, which may be in a different
1036 // block, if the block was split by a custom inserter.
1037 MachineBasicBlock::iterator Pos = MI;
1038 MI->getParent()->insert(Pos, DbgMI);
1042 if (DLI == DLE)
1043 break;
1045 LastOrder = Order;
1049 InsertPos = Emitter.getInsertPos();
1050 // In some cases, DBG_VALUEs might be inserted after the first terminator,
1051 // which results in an invalid MBB. If that happens, move the DBG_VALUEs
1052 // before the first terminator.
1053 MachineBasicBlock *InsertBB = Emitter.getBlock();
1054 auto FirstTerm = InsertBB->getFirstTerminator();
1055 if (FirstTerm != InsertBB->end()) {
1056 assert(!FirstTerm->isDebugValue() &&
1057 "first terminator cannot be a debug value");
1058 for (MachineInstr &MI : make_early_inc_range(
1059 make_range(std::next(FirstTerm), InsertBB->end()))) {
1060 if (!MI.isDebugValue())
1061 continue;
1063 if (&MI == InsertPos)
1064 InsertPos = std::prev(InsertPos->getIterator());
1066 // The DBG_VALUE was referencing a value produced by a terminator. By
1067 // moving the DBG_VALUE, the referenced value also needs invalidating.
1068 MI.getOperand(0).ChangeToRegister(0, false);
1069 MI.moveBefore(&*FirstTerm);
1072 return InsertBB;
1075 /// Return the basic block label.
1076 std::string ScheduleDAGSDNodes::getDAGName() const {
1077 return "sunit-dag." + BB->getFullName();