1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
12 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/CodeGen/LiveRangeEdit.h"
20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/BlockFrequency.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
47 #define DEBUG_TYPE "regalloc"
49 STATISTIC(NumFinished
, "Number of splits finished");
50 STATISTIC(NumSimple
, "Number of splits that were simple");
51 STATISTIC(NumCopies
, "Number of copies inserted for splitting");
52 STATISTIC(NumRemats
, "Number of rematerialized defs for splitting");
54 //===----------------------------------------------------------------------===//
55 // Last Insert Point Analysis
56 //===----------------------------------------------------------------------===//
58 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals
&lis
,
60 : LIS(lis
), LastInsertPoint(BBNum
) {}
63 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval
&CurLI
,
64 const MachineBasicBlock
&MBB
) {
65 unsigned Num
= MBB
.getNumber();
66 std::pair
<SlotIndex
, SlotIndex
> &LIP
= LastInsertPoint
[Num
];
67 SlotIndex MBBEnd
= LIS
.getMBBEndIdx(&MBB
);
69 SmallVector
<const MachineBasicBlock
*, 1> ExceptionalSuccessors
;
70 bool EHPadSuccessor
= false;
71 for (const MachineBasicBlock
*SMBB
: MBB
.successors()) {
72 if (SMBB
->isEHPad()) {
73 ExceptionalSuccessors
.push_back(SMBB
);
74 EHPadSuccessor
= true;
75 } else if (SMBB
->isInlineAsmBrIndirectTarget())
76 ExceptionalSuccessors
.push_back(SMBB
);
79 // Compute insert points on the first call. The pair is independent of the
80 // current live interval.
81 if (!LIP
.first
.isValid()) {
82 MachineBasicBlock::const_iterator FirstTerm
= MBB
.getFirstTerminator();
83 if (FirstTerm
== MBB
.end())
86 LIP
.first
= LIS
.getInstructionIndex(*FirstTerm
);
88 // If there is a landing pad or inlineasm_br successor, also find the
89 // instruction. If there is no such instruction, we don't need to do
90 // anything special. We assume there cannot be multiple instructions that
91 // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
92 // assume that if there are any, they will be after any other call
93 // instructions in the block.
94 if (ExceptionalSuccessors
.empty())
96 for (const MachineInstr
&MI
: llvm::reverse(MBB
)) {
97 if ((EHPadSuccessor
&& MI
.isCall()) ||
98 MI
.getOpcode() == TargetOpcode::INLINEASM_BR
) {
99 LIP
.second
= LIS
.getInstructionIndex(MI
);
105 // If CurLI is live into a landing pad successor, move the last insert point
106 // back to the call that may throw.
110 if (none_of(ExceptionalSuccessors
, [&](const MachineBasicBlock
*EHPad
) {
111 return LIS
.isLiveInToMBB(CurLI
, EHPad
);
115 // Find the value leaving MBB.
116 const VNInfo
*VNI
= CurLI
.getVNInfoBefore(MBBEnd
);
120 // The def of statepoint instruction is a gc relocation and it should be alive
121 // in landing pad. So we cannot split interval after statepoint instruction.
122 if (SlotIndex::isSameInstr(VNI
->def
, LIP
.second
))
123 if (auto *I
= LIS
.getInstructionFromIndex(LIP
.second
))
124 if (I
->getOpcode() == TargetOpcode::STATEPOINT
)
127 // If the value leaving MBB was defined after the call in MBB, it can't
128 // really be live-in to the landing pad. This can happen if the landing pad
129 // has a PHI, and this register is undef on the exceptional edge.
130 // <rdar://problem/10664933>
131 if (!SlotIndex::isEarlierInstr(VNI
->def
, LIP
.second
) && VNI
->def
< MBBEnd
)
134 // Value is properly live-in to the landing pad.
135 // Only allow inserts before the call.
139 MachineBasicBlock::iterator
140 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval
&CurLI
,
141 MachineBasicBlock
&MBB
) {
142 SlotIndex LIP
= getLastInsertPoint(CurLI
, MBB
);
143 if (LIP
== LIS
.getMBBEndIdx(&MBB
))
145 return LIS
.getInstructionFromIndex(LIP
);
148 //===----------------------------------------------------------------------===//
150 //===----------------------------------------------------------------------===//
152 SplitAnalysis::SplitAnalysis(const VirtRegMap
&vrm
, const LiveIntervals
&lis
,
153 const MachineLoopInfo
&mli
)
154 : MF(vrm
.getMachineFunction()), VRM(vrm
), LIS(lis
), Loops(mli
),
155 TII(*MF
.getSubtarget().getInstrInfo()), IPA(lis
, MF
.getNumBlockIDs()) {}
157 void SplitAnalysis::clear() {
160 ThroughBlocks
.clear();
164 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
165 void SplitAnalysis::analyzeUses() {
166 assert(UseSlots
.empty() && "Call clear first");
168 // First get all the defs from the interval values. This provides the correct
169 // slots for early clobbers.
170 for (const VNInfo
*VNI
: CurLI
->valnos
)
171 if (!VNI
->isPHIDef() && !VNI
->isUnused())
172 UseSlots
.push_back(VNI
->def
);
174 // Get use slots form the use-def chain.
175 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
176 for (MachineOperand
&MO
: MRI
.use_nodbg_operands(CurLI
->reg()))
178 UseSlots
.push_back(LIS
.getInstructionIndex(*MO
.getParent()).getRegSlot());
180 array_pod_sort(UseSlots
.begin(), UseSlots
.end());
182 // Remove duplicates, keeping the smaller slot for each instruction.
183 // That is what we want for early clobbers.
184 UseSlots
.erase(std::unique(UseSlots
.begin(), UseSlots
.end(),
185 SlotIndex::isSameInstr
),
188 // Compute per-live block info.
191 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots
.size() << " instrs in "
192 << UseBlocks
.size() << " blocks, through "
193 << NumThroughBlocks
<< " blocks.\n");
196 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
197 /// where CurLI is live.
198 void SplitAnalysis::calcLiveBlockInfo() {
199 ThroughBlocks
.resize(MF
.getNumBlockIDs());
200 NumThroughBlocks
= NumGapBlocks
= 0;
204 LiveInterval::const_iterator LVI
= CurLI
->begin();
205 LiveInterval::const_iterator LVE
= CurLI
->end();
207 SmallVectorImpl
<SlotIndex
>::const_iterator UseI
, UseE
;
208 UseI
= UseSlots
.begin();
209 UseE
= UseSlots
.end();
211 // Loop over basic blocks where CurLI is live.
212 MachineFunction::iterator MFI
=
213 LIS
.getMBBFromIndex(LVI
->start
)->getIterator();
217 SlotIndex Start
, Stop
;
218 std::tie(Start
, Stop
) = LIS
.getSlotIndexes()->getMBBRange(BI
.MBB
);
220 // If the block contains no uses, the range must be live through. At one
221 // point, RegisterCoalescer could create dangling ranges that ended
223 if (UseI
== UseE
|| *UseI
>= Stop
) {
225 ThroughBlocks
.set(BI
.MBB
->getNumber());
226 // The range shouldn't end mid-block if there are no uses. This shouldn't
228 assert(LVI
->end
>= Stop
&& "range ends mid block with no uses");
230 // This block has uses. Find the first and last uses in the block.
231 BI
.FirstInstr
= *UseI
;
232 assert(BI
.FirstInstr
>= Start
);
234 while (UseI
!= UseE
&& *UseI
< Stop
);
235 BI
.LastInstr
= UseI
[-1];
236 assert(BI
.LastInstr
< Stop
);
238 // LVI is the first live segment overlapping MBB.
239 BI
.LiveIn
= LVI
->start
<= Start
;
241 // When not live in, the first use should be a def.
243 assert(LVI
->start
== LVI
->valno
->def
&& "Dangling Segment start");
244 assert(LVI
->start
== BI
.FirstInstr
&& "First instr should be a def");
245 BI
.FirstDef
= BI
.FirstInstr
;
248 // Look for gaps in the live range.
250 while (LVI
->end
< Stop
) {
251 SlotIndex LastStop
= LVI
->end
;
252 if (++LVI
== LVE
|| LVI
->start
>= Stop
) {
254 BI
.LastInstr
= LastStop
;
258 if (LastStop
< LVI
->start
) {
259 // There is a gap in the live range. Create duplicate entries for the
260 // live-in snippet and the live-out snippet.
263 // Push the Live-in part.
265 UseBlocks
.push_back(BI
);
266 UseBlocks
.back().LastInstr
= LastStop
;
268 // Set up BI for the live-out part.
271 BI
.FirstInstr
= BI
.FirstDef
= LVI
->start
;
274 // A Segment that starts in the middle of the block must be a def.
275 assert(LVI
->start
== LVI
->valno
->def
&& "Dangling Segment start");
277 BI
.FirstDef
= LVI
->start
;
280 UseBlocks
.push_back(BI
);
282 // LVI is now at LVE or LVI->end >= Stop.
287 // Live segment ends exactly at Stop. Move to the next segment.
288 if (LVI
->end
== Stop
&& ++LVI
== LVE
)
291 // Pick the next basic block.
292 if (LVI
->start
< Stop
)
295 MFI
= LIS
.getMBBFromIndex(LVI
->start
)->getIterator();
298 assert(getNumLiveBlocks() == countLiveBlocks(CurLI
) && "Bad block count");
301 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval
*cli
) const {
304 LiveInterval
*li
= const_cast<LiveInterval
*>(cli
);
305 LiveInterval::iterator LVI
= li
->begin();
306 LiveInterval::iterator LVE
= li
->end();
309 // Loop over basic blocks where li is live.
310 MachineFunction::const_iterator MFI
=
311 LIS
.getMBBFromIndex(LVI
->start
)->getIterator();
312 SlotIndex Stop
= LIS
.getMBBEndIdx(&*MFI
);
315 LVI
= li
->advanceTo(LVI
, Stop
);
320 Stop
= LIS
.getMBBEndIdx(&*MFI
);
321 } while (Stop
<= LVI
->start
);
325 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx
) const {
326 unsigned OrigReg
= VRM
.getOriginal(CurLI
->reg());
327 const LiveInterval
&Orig
= LIS
.getInterval(OrigReg
);
328 assert(!Orig
.empty() && "Splitting empty interval?");
329 LiveInterval::const_iterator I
= Orig
.find(Idx
);
331 // Range containing Idx should begin at Idx.
332 if (I
!= Orig
.end() && I
->start
<= Idx
)
333 return I
->start
== Idx
;
335 // Range does not contain Idx, previous must end at Idx.
336 return I
!= Orig
.begin() && (--I
)->end
== Idx
;
339 void SplitAnalysis::analyze(const LiveInterval
*li
) {
345 //===----------------------------------------------------------------------===//
347 //===----------------------------------------------------------------------===//
349 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
350 SplitEditor::SplitEditor(SplitAnalysis
&SA
, AliasAnalysis
&AA
,
351 LiveIntervals
&LIS
, VirtRegMap
&VRM
,
352 MachineDominatorTree
&MDT
,
353 MachineBlockFrequencyInfo
&MBFI
, VirtRegAuxInfo
&VRAI
)
354 : SA(SA
), AA(AA
), LIS(LIS
), VRM(VRM
),
355 MRI(VRM
.getMachineFunction().getRegInfo()), MDT(MDT
),
356 TII(*VRM
.getMachineFunction().getSubtarget().getInstrInfo()),
357 TRI(*VRM
.getMachineFunction().getSubtarget().getRegisterInfo()),
358 MBFI(MBFI
), VRAI(VRAI
), RegAssign(Allocator
) {}
360 void SplitEditor::reset(LiveRangeEdit
&LRE
, ComplementSpillMode SM
) {
367 // Reset the LiveIntervalCalc instances needed for this spill mode.
368 LICalc
[0].reset(&VRM
.getMachineFunction(), LIS
.getSlotIndexes(), &MDT
,
369 &LIS
.getVNInfoAllocator());
371 LICalc
[1].reset(&VRM
.getMachineFunction(), LIS
.getSlotIndexes(), &MDT
,
372 &LIS
.getVNInfoAllocator());
374 // We don't need an AliasAnalysis since we will only be performing
375 // cheap-as-a-copy remats anyway.
376 Edit
->anyRematerializable(nullptr);
379 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
380 LLVM_DUMP_METHOD
void SplitEditor::dump() const {
381 if (RegAssign
.empty()) {
382 dbgs() << " empty\n";
386 for (RegAssignMap::const_iterator I
= RegAssign
.begin(); I
.valid(); ++I
)
387 dbgs() << " [" << I
.start() << ';' << I
.stop() << "):" << I
.value();
392 LiveInterval::SubRange
&SplitEditor::getSubRangeForMaskExact(LaneBitmask LM
,
394 for (LiveInterval::SubRange
&S
: LI
.subranges())
395 if (S
.LaneMask
== LM
)
397 llvm_unreachable("SubRange for this mask not found");
400 LiveInterval::SubRange
&SplitEditor::getSubRangeForMask(LaneBitmask LM
,
402 for (LiveInterval::SubRange
&S
: LI
.subranges())
403 if ((S
.LaneMask
& LM
) == LM
)
405 llvm_unreachable("SubRange for this mask not found");
408 void SplitEditor::addDeadDef(LiveInterval
&LI
, VNInfo
*VNI
, bool Original
) {
409 if (!LI
.hasSubRanges()) {
410 LI
.createDeadDef(VNI
);
414 SlotIndex Def
= VNI
->def
;
416 // If we are transferring a def from the original interval, make sure
417 // to only update the subranges for which the original subranges had
418 // a def at this location.
419 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
420 auto &PS
= getSubRangeForMask(S
.LaneMask
, Edit
->getParent());
421 VNInfo
*PV
= PS
.getVNInfoAt(Def
);
422 if (PV
!= nullptr && PV
->def
== Def
)
423 S
.createDeadDef(Def
, LIS
.getVNInfoAllocator());
426 // This is a new def: either from rematerialization, or from an inserted
427 // copy. Since rematerialization can regenerate a definition of a sub-
428 // register, we need to check which subranges need to be updated.
429 const MachineInstr
*DefMI
= LIS
.getInstructionFromIndex(Def
);
430 assert(DefMI
!= nullptr);
432 for (const MachineOperand
&DefOp
: DefMI
->defs()) {
433 Register R
= DefOp
.getReg();
436 if (unsigned SR
= DefOp
.getSubReg())
437 LM
|= TRI
.getSubRegIndexLaneMask(SR
);
439 LM
= MRI
.getMaxLaneMaskForVReg(R
);
443 for (LiveInterval::SubRange
&S
: LI
.subranges())
444 if ((S
.LaneMask
& LM
).any())
445 S
.createDeadDef(Def
, LIS
.getVNInfoAllocator());
449 VNInfo
*SplitEditor::defValue(unsigned RegIdx
,
450 const VNInfo
*ParentVNI
,
453 assert(ParentVNI
&& "Mapping NULL value");
454 assert(Idx
.isValid() && "Invalid SlotIndex");
455 assert(Edit
->getParent().getVNInfoAt(Idx
) == ParentVNI
&& "Bad Parent VNI");
456 LiveInterval
*LI
= &LIS
.getInterval(Edit
->get(RegIdx
));
458 // Create a new value.
459 VNInfo
*VNI
= LI
->getNextValue(Idx
, LIS
.getVNInfoAllocator());
461 bool Force
= LI
->hasSubRanges();
462 ValueForcePair
FP(Force
? nullptr : VNI
, Force
);
463 // Use insert for lookup, so we can add missing values with a second lookup.
464 std::pair
<ValueMap::iterator
, bool> InsP
=
465 Values
.insert(std::make_pair(std::make_pair(RegIdx
, ParentVNI
->id
), FP
));
467 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
468 // forced. Keep it as a simple def without any liveness.
469 if (!Force
&& InsP
.second
)
472 // If the previous value was a simple mapping, add liveness for it now.
473 if (VNInfo
*OldVNI
= InsP
.first
->second
.getPointer()) {
474 addDeadDef(*LI
, OldVNI
, Original
);
476 // No longer a simple mapping. Switch to a complex mapping. If the
477 // interval has subranges, make it a forced mapping.
478 InsP
.first
->second
= ValueForcePair(nullptr, Force
);
481 // This is a complex mapping, add liveness for VNI
482 addDeadDef(*LI
, VNI
, Original
);
486 void SplitEditor::forceRecompute(unsigned RegIdx
, const VNInfo
&ParentVNI
) {
487 ValueForcePair
&VFP
= Values
[std::make_pair(RegIdx
, ParentVNI
.id
)];
488 VNInfo
*VNI
= VFP
.getPointer();
490 // ParentVNI was either unmapped or already complex mapped. Either way, just
491 // set the force bit.
497 // This was previously a single mapping. Make sure the old def is represented
498 // by a trivial live range.
499 addDeadDef(LIS
.getInterval(Edit
->get(RegIdx
)), VNI
, false);
501 // Mark as complex mapped, forced.
502 VFP
= ValueForcePair(nullptr, true);
505 SlotIndex
SplitEditor::buildSingleSubRegCopy(Register FromReg
, Register ToReg
,
506 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator InsertBefore
,
507 unsigned SubIdx
, LiveInterval
&DestLI
, bool Late
, SlotIndex Def
) {
508 const MCInstrDesc
&Desc
= TII
.get(TargetOpcode::COPY
);
509 bool FirstCopy
= !Def
.isValid();
510 MachineInstr
*CopyMI
= BuildMI(MBB
, InsertBefore
, DebugLoc(), Desc
)
511 .addReg(ToReg
, RegState::Define
| getUndefRegState(FirstCopy
)
512 | getInternalReadRegState(!FirstCopy
), SubIdx
)
513 .addReg(FromReg
, 0, SubIdx
);
515 SlotIndexes
&Indexes
= *LIS
.getSlotIndexes();
517 Def
= Indexes
.insertMachineInstrInMaps(*CopyMI
, Late
).getRegSlot();
519 CopyMI
->bundleWithPred();
524 SlotIndex
SplitEditor::buildCopy(Register FromReg
, Register ToReg
,
525 LaneBitmask LaneMask
, MachineBasicBlock
&MBB
,
526 MachineBasicBlock::iterator InsertBefore
, bool Late
, unsigned RegIdx
) {
527 const MCInstrDesc
&Desc
= TII
.get(TargetOpcode::COPY
);
528 SlotIndexes
&Indexes
= *LIS
.getSlotIndexes();
529 if (LaneMask
.all() || LaneMask
== MRI
.getMaxLaneMaskForVReg(FromReg
)) {
530 // The full vreg is copied.
531 MachineInstr
*CopyMI
=
532 BuildMI(MBB
, InsertBefore
, DebugLoc(), Desc
, ToReg
).addReg(FromReg
);
533 return Indexes
.insertMachineInstrInMaps(*CopyMI
, Late
).getRegSlot();
536 // Only a subset of lanes needs to be copied. The following is a simple
537 // heuristic to construct a sequence of COPYs. We could add a target
538 // specific callback if this turns out to be suboptimal.
539 LiveInterval
&DestLI
= LIS
.getInterval(Edit
->get(RegIdx
));
541 // First pass: Try to find a perfectly matching subregister index. If none
542 // exists find the one covering the most lanemask bits.
543 const TargetRegisterClass
*RC
= MRI
.getRegClass(FromReg
);
544 assert(RC
== MRI
.getRegClass(ToReg
) && "Should have same reg class");
546 SmallVector
<unsigned, 8> SubIndexes
;
548 // Abort if we cannot possibly implement the COPY with the given indexes.
549 if (!TRI
.getCoveringSubRegIndexes(MRI
, RC
, LaneMask
, SubIndexes
))
550 report_fatal_error("Impossible to implement partial COPY");
553 for (unsigned BestIdx
: SubIndexes
) {
554 Def
= buildSingleSubRegCopy(FromReg
, ToReg
, MBB
, InsertBefore
, BestIdx
,
558 BumpPtrAllocator
&Allocator
= LIS
.getVNInfoAllocator();
559 DestLI
.refineSubRanges(
561 [Def
, &Allocator
](LiveInterval::SubRange
&SR
) {
562 SR
.createDeadDef(Def
, Allocator
);
569 VNInfo
*SplitEditor::defFromParent(unsigned RegIdx
,
572 MachineBasicBlock
&MBB
,
573 MachineBasicBlock::iterator I
) {
575 LiveInterval
*LI
= &LIS
.getInterval(Edit
->get(RegIdx
));
577 // We may be trying to avoid interference that ends at a deleted instruction,
578 // so always begin RegIdx 0 early and all others late.
579 bool Late
= RegIdx
!= 0;
581 // Attempt cheap-as-a-copy rematerialization.
582 unsigned Original
= VRM
.getOriginal(Edit
->get(RegIdx
));
583 LiveInterval
&OrigLI
= LIS
.getInterval(Original
);
584 VNInfo
*OrigVNI
= OrigLI
.getVNInfoAt(UseIdx
);
586 Register Reg
= LI
->reg();
587 bool DidRemat
= false;
589 LiveRangeEdit::Remat
RM(ParentVNI
);
590 RM
.OrigMI
= LIS
.getInstructionFromIndex(OrigVNI
->def
);
591 if (Edit
->canRematerializeAt(RM
, OrigVNI
, UseIdx
, true)) {
592 Def
= Edit
->rematerializeAt(MBB
, I
, Reg
, RM
, TRI
, Late
);
598 LaneBitmask LaneMask
;
599 if (OrigLI
.hasSubRanges()) {
600 LaneMask
= LaneBitmask::getNone();
601 for (LiveInterval::SubRange
&S
: OrigLI
.subranges()) {
602 if (S
.liveAt(UseIdx
))
603 LaneMask
|= S
.LaneMask
;
606 LaneMask
= LaneBitmask::getAll();
609 if (LaneMask
.none()) {
610 const MCInstrDesc
&Desc
= TII
.get(TargetOpcode::IMPLICIT_DEF
);
611 MachineInstr
*ImplicitDef
= BuildMI(MBB
, I
, DebugLoc(), Desc
, Reg
);
612 SlotIndexes
&Indexes
= *LIS
.getSlotIndexes();
613 Def
= Indexes
.insertMachineInstrInMaps(*ImplicitDef
, Late
).getRegSlot();
616 Def
= buildCopy(Edit
->getReg(), Reg
, LaneMask
, MBB
, I
, Late
, RegIdx
);
620 // Define the value in Reg.
621 return defValue(RegIdx
, ParentVNI
, Def
, false);
624 /// Create a new virtual register and live interval.
625 unsigned SplitEditor::openIntv() {
626 // Create the complement as index 0.
628 Edit
->createEmptyInterval();
630 // Create the open interval.
631 OpenIdx
= Edit
->size();
632 Edit
->createEmptyInterval();
636 void SplitEditor::selectIntv(unsigned Idx
) {
637 assert(Idx
!= 0 && "Cannot select the complement interval");
638 assert(Idx
< Edit
->size() && "Can only select previously opened interval");
639 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx
<< " -> " << Idx
<< '\n');
643 SlotIndex
SplitEditor::enterIntvBefore(SlotIndex Idx
) {
644 assert(OpenIdx
&& "openIntv not called before enterIntvBefore");
645 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx
);
646 Idx
= Idx
.getBaseIndex();
647 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Idx
);
649 LLVM_DEBUG(dbgs() << ": not live\n");
652 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI
->id
<< '\n');
653 MachineInstr
*MI
= LIS
.getInstructionFromIndex(Idx
);
654 assert(MI
&& "enterIntvBefore called with invalid index");
656 VNInfo
*VNI
= defFromParent(OpenIdx
, ParentVNI
, Idx
, *MI
->getParent(), MI
);
660 SlotIndex
SplitEditor::enterIntvAfter(SlotIndex Idx
) {
661 assert(OpenIdx
&& "openIntv not called before enterIntvAfter");
662 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx
);
663 Idx
= Idx
.getBoundaryIndex();
664 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Idx
);
666 LLVM_DEBUG(dbgs() << ": not live\n");
669 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI
->id
<< '\n');
670 MachineInstr
*MI
= LIS
.getInstructionFromIndex(Idx
);
671 assert(MI
&& "enterIntvAfter called with invalid index");
673 VNInfo
*VNI
= defFromParent(OpenIdx
, ParentVNI
, Idx
, *MI
->getParent(),
674 std::next(MachineBasicBlock::iterator(MI
)));
678 SlotIndex
SplitEditor::enterIntvAtEnd(MachineBasicBlock
&MBB
) {
679 assert(OpenIdx
&& "openIntv not called before enterIntvAtEnd");
680 SlotIndex End
= LIS
.getMBBEndIdx(&MBB
);
681 SlotIndex Last
= End
.getPrevSlot();
682 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB
) << ", "
684 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Last
);
686 LLVM_DEBUG(dbgs() << ": not live\n");
689 SlotIndex LSP
= SA
.getLastSplitPoint(&MBB
);
691 // It could be that the use after LSP is a def, and thus the ParentVNI
692 // just selected starts at that def. For this case to exist, the def
693 // must be part of a tied def/use pair (as otherwise we'd have split
694 // distinct live ranges into individual live intervals), and thus we
695 // can insert the def into the VNI of the use and the tied def/use
696 // pair can live in the resulting interval.
698 ParentVNI
= Edit
->getParent().getVNInfoAt(Last
);
700 // undef use --> undef tied def
701 LLVM_DEBUG(dbgs() << ": tied use not live\n");
706 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI
->id
);
707 VNInfo
*VNI
= defFromParent(OpenIdx
, ParentVNI
, Last
, MBB
,
708 SA
.getLastSplitPointIter(&MBB
));
709 RegAssign
.insert(VNI
->def
, End
, OpenIdx
);
714 /// useIntv - indicate that all instructions in MBB should use OpenLI.
715 void SplitEditor::useIntv(const MachineBasicBlock
&MBB
) {
716 useIntv(LIS
.getMBBStartIdx(&MBB
), LIS
.getMBBEndIdx(&MBB
));
719 void SplitEditor::useIntv(SlotIndex Start
, SlotIndex End
) {
720 assert(OpenIdx
&& "openIntv not called before useIntv");
721 LLVM_DEBUG(dbgs() << " useIntv [" << Start
<< ';' << End
<< "):");
722 RegAssign
.insert(Start
, End
, OpenIdx
);
726 SlotIndex
SplitEditor::leaveIntvAfter(SlotIndex Idx
) {
727 assert(OpenIdx
&& "openIntv not called before leaveIntvAfter");
728 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx
);
730 // The interval must be live beyond the instruction at Idx.
731 SlotIndex Boundary
= Idx
.getBoundaryIndex();
732 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Boundary
);
734 LLVM_DEBUG(dbgs() << ": not live\n");
735 return Boundary
.getNextSlot();
737 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI
->id
<< '\n');
738 MachineInstr
*MI
= LIS
.getInstructionFromIndex(Boundary
);
739 assert(MI
&& "No instruction at index");
741 // In spill mode, make live ranges as short as possible by inserting the copy
742 // before MI. This is only possible if that instruction doesn't redefine the
743 // value. The inserted COPY is not a kill, and we don't need to recompute
744 // the source live range. The spiller also won't try to hoist this copy.
745 if (SpillMode
&& !SlotIndex::isSameInstr(ParentVNI
->def
, Idx
) &&
746 MI
->readsVirtualRegister(Edit
->getReg())) {
747 forceRecompute(0, *ParentVNI
);
748 defFromParent(0, ParentVNI
, Idx
, *MI
->getParent(), MI
);
752 VNInfo
*VNI
= defFromParent(0, ParentVNI
, Boundary
, *MI
->getParent(),
753 std::next(MachineBasicBlock::iterator(MI
)));
757 SlotIndex
SplitEditor::leaveIntvBefore(SlotIndex Idx
) {
758 assert(OpenIdx
&& "openIntv not called before leaveIntvBefore");
759 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx
);
761 // The interval must be live into the instruction at Idx.
762 Idx
= Idx
.getBaseIndex();
763 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Idx
);
765 LLVM_DEBUG(dbgs() << ": not live\n");
766 return Idx
.getNextSlot();
768 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI
->id
<< '\n');
770 MachineInstr
*MI
= LIS
.getInstructionFromIndex(Idx
);
771 assert(MI
&& "No instruction at index");
772 VNInfo
*VNI
= defFromParent(0, ParentVNI
, Idx
, *MI
->getParent(), MI
);
776 SlotIndex
SplitEditor::leaveIntvAtTop(MachineBasicBlock
&MBB
) {
777 assert(OpenIdx
&& "openIntv not called before leaveIntvAtTop");
778 SlotIndex Start
= LIS
.getMBBStartIdx(&MBB
);
779 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB
) << ", "
782 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Start
);
784 LLVM_DEBUG(dbgs() << ": not live\n");
788 VNInfo
*VNI
= defFromParent(0, ParentVNI
, Start
, MBB
,
789 MBB
.SkipPHIsLabelsAndDebug(MBB
.begin()));
790 RegAssign
.insert(Start
, VNI
->def
, OpenIdx
);
795 static bool hasTiedUseOf(MachineInstr
&MI
, unsigned Reg
) {
796 return any_of(MI
.defs(), [Reg
](const MachineOperand
&MO
) {
797 return MO
.isReg() && MO
.isTied() && MO
.getReg() == Reg
;
801 void SplitEditor::overlapIntv(SlotIndex Start
, SlotIndex End
) {
802 assert(OpenIdx
&& "openIntv not called before overlapIntv");
803 const VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Start
);
804 assert(ParentVNI
== Edit
->getParent().getVNInfoBefore(End
) &&
805 "Parent changes value in extended range");
806 assert(LIS
.getMBBFromIndex(Start
) == LIS
.getMBBFromIndex(End
) &&
807 "Range cannot span basic blocks");
809 // The complement interval will be extended as needed by LICalc.extend().
811 forceRecompute(0, *ParentVNI
);
813 // If the last use is tied to a def, we can't mark it as live for the
814 // interval which includes only the use. That would cause the tied pair
815 // to end up in two different intervals.
816 if (auto *MI
= LIS
.getInstructionFromIndex(End
))
817 if (hasTiedUseOf(*MI
, Edit
->getReg())) {
818 LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n");
822 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start
<< ';' << End
<< "):");
823 RegAssign
.insert(Start
, End
, OpenIdx
);
827 //===----------------------------------------------------------------------===//
829 //===----------------------------------------------------------------------===//
831 void SplitEditor::removeBackCopies(SmallVectorImpl
<VNInfo
*> &Copies
) {
832 LiveInterval
*LI
= &LIS
.getInterval(Edit
->get(0));
833 LLVM_DEBUG(dbgs() << "Removing " << Copies
.size() << " back-copies.\n");
834 RegAssignMap::iterator AssignI
;
835 AssignI
.setMap(RegAssign
);
837 for (const VNInfo
*C
: Copies
) {
838 SlotIndex Def
= C
->def
;
839 MachineInstr
*MI
= LIS
.getInstructionFromIndex(Def
);
840 assert(MI
&& "No instruction for back-copy");
842 MachineBasicBlock
*MBB
= MI
->getParent();
843 MachineBasicBlock::iterator
MBBI(MI
);
845 do AtBegin
= MBBI
== MBB
->begin();
846 while (!AtBegin
&& (--MBBI
)->isDebugOrPseudoInstr());
848 LLVM_DEBUG(dbgs() << "Removing " << Def
<< '\t' << *MI
);
849 LIS
.removeVRegDefAt(*LI
, Def
);
850 LIS
.RemoveMachineInstrFromMaps(*MI
);
851 MI
->eraseFromParent();
853 // Adjust RegAssign if a register assignment is killed at Def. We want to
854 // avoid calculating the live range of the source register if possible.
855 AssignI
.find(Def
.getPrevSlot());
856 if (!AssignI
.valid() || AssignI
.start() >= Def
)
858 // If MI doesn't kill the assigned register, just leave it.
859 if (AssignI
.stop() != Def
)
861 unsigned RegIdx
= AssignI
.value();
862 // We could hoist back-copy right after another back-copy. As a result
863 // MMBI points to copy instruction which is actually dead now.
864 // We cannot set its stop to MBBI which will be the same as start and
865 // interval does not support that.
867 AtBegin
? SlotIndex() : LIS
.getInstructionIndex(*MBBI
).getRegSlot();
868 if (AtBegin
|| !MBBI
->readsVirtualRegister(Edit
->getReg()) ||
869 Kill
<= AssignI
.start()) {
870 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx
872 forceRecompute(RegIdx
, *Edit
->getParent().getVNInfoAt(Def
));
874 LLVM_DEBUG(dbgs() << " move kill to " << Kill
<< '\t' << *MBBI
);
875 AssignI
.setStop(Kill
);
881 SplitEditor::findShallowDominator(MachineBasicBlock
*MBB
,
882 MachineBasicBlock
*DefMBB
) {
885 assert(MDT
.dominates(DefMBB
, MBB
) && "MBB must be dominated by the def.");
887 const MachineLoopInfo
&Loops
= SA
.Loops
;
888 const MachineLoop
*DefLoop
= Loops
.getLoopFor(DefMBB
);
889 MachineDomTreeNode
*DefDomNode
= MDT
[DefMBB
];
891 // Best candidate so far.
892 MachineBasicBlock
*BestMBB
= MBB
;
893 unsigned BestDepth
= std::numeric_limits
<unsigned>::max();
896 const MachineLoop
*Loop
= Loops
.getLoopFor(MBB
);
898 // MBB isn't in a loop, it doesn't get any better. All dominators have a
899 // higher frequency by definition.
901 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB
)
902 << " dominates " << printMBBReference(*MBB
)
907 // We'll never be able to exit the DefLoop.
908 if (Loop
== DefLoop
) {
909 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB
)
910 << " dominates " << printMBBReference(*MBB
)
911 << " in the same loop\n");
915 // Least busy dominator seen so far.
916 unsigned Depth
= Loop
->getLoopDepth();
917 if (Depth
< BestDepth
) {
920 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB
)
921 << " dominates " << printMBBReference(*MBB
)
922 << " at depth " << Depth
<< '\n');
925 // Leave loop by going to the immediate dominator of the loop header.
926 // This is a bigger stride than simply walking up the dominator tree.
927 MachineDomTreeNode
*IDom
= MDT
[Loop
->getHeader()]->getIDom();
929 // Too far up the dominator tree?
930 if (!IDom
|| !MDT
.dominates(DefDomNode
, IDom
))
933 MBB
= IDom
->getBlock();
937 void SplitEditor::computeRedundantBackCopies(
938 DenseSet
<unsigned> &NotToHoistSet
, SmallVectorImpl
<VNInfo
*> &BackCopies
) {
939 LiveInterval
*LI
= &LIS
.getInterval(Edit
->get(0));
940 LiveInterval
*Parent
= &Edit
->getParent();
941 SmallVector
<SmallPtrSet
<VNInfo
*, 8>, 8> EqualVNs(Parent
->getNumValNums());
942 SmallPtrSet
<VNInfo
*, 8> DominatedVNIs
;
944 // Aggregate VNIs having the same value as ParentVNI.
945 for (VNInfo
*VNI
: LI
->valnos
) {
948 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(VNI
->def
);
949 EqualVNs
[ParentVNI
->id
].insert(VNI
);
952 // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
953 // redundant VNIs to BackCopies.
954 for (unsigned i
= 0, e
= Parent
->getNumValNums(); i
!= e
; ++i
) {
955 VNInfo
*ParentVNI
= Parent
->getValNumInfo(i
);
956 if (!NotToHoistSet
.count(ParentVNI
->id
))
958 SmallPtrSetIterator
<VNInfo
*> It1
= EqualVNs
[ParentVNI
->id
].begin();
959 SmallPtrSetIterator
<VNInfo
*> It2
= It1
;
960 for (; It1
!= EqualVNs
[ParentVNI
->id
].end(); ++It1
) {
962 for (++It2
; It2
!= EqualVNs
[ParentVNI
->id
].end(); ++It2
) {
963 if (DominatedVNIs
.count(*It1
) || DominatedVNIs
.count(*It2
))
966 MachineBasicBlock
*MBB1
= LIS
.getMBBFromIndex((*It1
)->def
);
967 MachineBasicBlock
*MBB2
= LIS
.getMBBFromIndex((*It2
)->def
);
969 DominatedVNIs
.insert((*It1
)->def
< (*It2
)->def
? (*It2
) : (*It1
));
970 } else if (MDT
.dominates(MBB1
, MBB2
)) {
971 DominatedVNIs
.insert(*It2
);
972 } else if (MDT
.dominates(MBB2
, MBB1
)) {
973 DominatedVNIs
.insert(*It1
);
977 if (!DominatedVNIs
.empty()) {
978 forceRecompute(0, *ParentVNI
);
979 append_range(BackCopies
, DominatedVNIs
);
980 DominatedVNIs
.clear();
985 /// For SM_Size mode, find a common dominator for all the back-copies for
986 /// the same ParentVNI and hoist the backcopies to the dominator BB.
987 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
988 /// to do the hoisting, simply remove the dominated backcopies for the same
990 void SplitEditor::hoistCopies() {
991 // Get the complement interval, always RegIdx 0.
992 LiveInterval
*LI
= &LIS
.getInterval(Edit
->get(0));
993 LiveInterval
*Parent
= &Edit
->getParent();
995 // Track the nearest common dominator for all back-copies for each ParentVNI,
996 // indexed by ParentVNI->id.
997 using DomPair
= std::pair
<MachineBasicBlock
*, SlotIndex
>;
998 SmallVector
<DomPair
, 8> NearestDom(Parent
->getNumValNums());
999 // The total cost of all the back-copies for each ParentVNI.
1000 SmallVector
<BlockFrequency
, 8> Costs(Parent
->getNumValNums());
1001 // The ParentVNI->id set for which hoisting back-copies are not beneficial
1003 DenseSet
<unsigned> NotToHoistSet
;
1005 // Find the nearest common dominator for parent values with multiple
1006 // back-copies. If a single back-copy dominates, put it in DomPair.second.
1007 for (VNInfo
*VNI
: LI
->valnos
) {
1008 if (VNI
->isUnused())
1010 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(VNI
->def
);
1011 assert(ParentVNI
&& "Parent not live at complement def");
1013 // Don't hoist remats. The complement is probably going to disappear
1014 // completely anyway.
1015 if (Edit
->didRematerialize(ParentVNI
))
1018 MachineBasicBlock
*ValMBB
= LIS
.getMBBFromIndex(VNI
->def
);
1020 DomPair
&Dom
= NearestDom
[ParentVNI
->id
];
1022 // Keep directly defined parent values. This is either a PHI or an
1023 // instruction in the complement range. All other copies of ParentVNI
1024 // should be eliminated.
1025 if (VNI
->def
== ParentVNI
->def
) {
1026 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI
->def
<< '\n');
1027 Dom
= DomPair(ValMBB
, VNI
->def
);
1030 // Skip the singly mapped values. There is nothing to gain from hoisting a
1031 // single back-copy.
1032 if (Values
.lookup(std::make_pair(0, ParentVNI
->id
)).getPointer()) {
1033 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI
->def
<< '\n');
1038 // First time we see ParentVNI. VNI dominates itself.
1039 Dom
= DomPair(ValMBB
, VNI
->def
);
1040 } else if (Dom
.first
== ValMBB
) {
1041 // Two defs in the same block. Pick the earlier def.
1042 if (!Dom
.second
.isValid() || VNI
->def
< Dom
.second
)
1043 Dom
.second
= VNI
->def
;
1045 // Different basic blocks. Check if one dominates.
1046 MachineBasicBlock
*Near
=
1047 MDT
.findNearestCommonDominator(Dom
.first
, ValMBB
);
1049 // Def ValMBB dominates.
1050 Dom
= DomPair(ValMBB
, VNI
->def
);
1051 else if (Near
!= Dom
.first
)
1052 // None dominate. Hoist to common dominator, need new def.
1053 Dom
= DomPair(Near
, SlotIndex());
1054 Costs
[ParentVNI
->id
] += MBFI
.getBlockFreq(ValMBB
);
1057 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI
->id
<< '@'
1058 << VNI
->def
<< " for parent " << ParentVNI
->id
<< '@'
1059 << ParentVNI
->def
<< " hoist to "
1060 << printMBBReference(*Dom
.first
) << ' ' << Dom
.second
1064 // Insert the hoisted copies.
1065 for (unsigned i
= 0, e
= Parent
->getNumValNums(); i
!= e
; ++i
) {
1066 DomPair
&Dom
= NearestDom
[i
];
1067 if (!Dom
.first
|| Dom
.second
.isValid())
1069 // This value needs a hoisted copy inserted at the end of Dom.first.
1070 VNInfo
*ParentVNI
= Parent
->getValNumInfo(i
);
1071 MachineBasicBlock
*DefMBB
= LIS
.getMBBFromIndex(ParentVNI
->def
);
1072 // Get a less loopy dominator than Dom.first.
1073 Dom
.first
= findShallowDominator(Dom
.first
, DefMBB
);
1074 if (SpillMode
== SM_Speed
&&
1075 MBFI
.getBlockFreq(Dom
.first
) > Costs
[ParentVNI
->id
]) {
1076 NotToHoistSet
.insert(ParentVNI
->id
);
1079 SlotIndex LSP
= SA
.getLastSplitPoint(Dom
.first
);
1080 if (LSP
<= ParentVNI
->def
) {
1081 NotToHoistSet
.insert(ParentVNI
->id
);
1084 Dom
.second
= defFromParent(0, ParentVNI
, LSP
, *Dom
.first
,
1085 SA
.getLastSplitPointIter(Dom
.first
))->def
;
1088 // Remove redundant back-copies that are now known to be dominated by another
1089 // def with the same value.
1090 SmallVector
<VNInfo
*, 8> BackCopies
;
1091 for (VNInfo
*VNI
: LI
->valnos
) {
1092 if (VNI
->isUnused())
1094 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(VNI
->def
);
1095 const DomPair
&Dom
= NearestDom
[ParentVNI
->id
];
1096 if (!Dom
.first
|| Dom
.second
== VNI
->def
||
1097 NotToHoistSet
.count(ParentVNI
->id
))
1099 BackCopies
.push_back(VNI
);
1100 forceRecompute(0, *ParentVNI
);
1103 // If it is not beneficial to hoist all the BackCopies, simply remove
1104 // redundant BackCopies in speed mode.
1105 if (SpillMode
== SM_Speed
&& !NotToHoistSet
.empty())
1106 computeRedundantBackCopies(NotToHoistSet
, BackCopies
);
1108 removeBackCopies(BackCopies
);
1111 /// transferValues - Transfer all possible values to the new live ranges.
1112 /// Values that were rematerialized are left alone, they need LICalc.extend().
1113 bool SplitEditor::transferValues() {
1114 bool Skipped
= false;
1115 RegAssignMap::const_iterator AssignI
= RegAssign
.begin();
1116 for (const LiveRange::Segment
&S
: Edit
->getParent()) {
1117 LLVM_DEBUG(dbgs() << " blit " << S
<< ':');
1118 VNInfo
*ParentVNI
= S
.valno
;
1119 // RegAssign has holes where RegIdx 0 should be used.
1120 SlotIndex Start
= S
.start
;
1121 AssignI
.advanceTo(Start
);
1124 SlotIndex End
= S
.end
;
1125 if (!AssignI
.valid()) {
1127 } else if (AssignI
.start() <= Start
) {
1128 RegIdx
= AssignI
.value();
1129 if (AssignI
.stop() < End
) {
1130 End
= AssignI
.stop();
1135 End
= std::min(End
, AssignI
.start());
1138 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1139 LLVM_DEBUG(dbgs() << " [" << Start
<< ';' << End
<< ")=" << RegIdx
<< '('
1140 << printReg(Edit
->get(RegIdx
)) << ')');
1141 LiveInterval
&LI
= LIS
.getInterval(Edit
->get(RegIdx
));
1143 // Check for a simply defined value that can be blitted directly.
1144 ValueForcePair VFP
= Values
.lookup(std::make_pair(RegIdx
, ParentVNI
->id
));
1145 if (VNInfo
*VNI
= VFP
.getPointer()) {
1146 LLVM_DEBUG(dbgs() << ':' << VNI
->id
);
1147 LI
.addSegment(LiveInterval::Segment(Start
, End
, VNI
));
1152 // Skip values with forced recomputation.
1154 LLVM_DEBUG(dbgs() << "(recalc)");
1160 LiveIntervalCalc
&LIC
= getLICalc(RegIdx
);
1162 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1163 // so the live range is accurate. Add live-in blocks in [Start;End) to the
1165 MachineFunction::iterator MBB
= LIS
.getMBBFromIndex(Start
)->getIterator();
1166 SlotIndex BlockStart
, BlockEnd
;
1167 std::tie(BlockStart
, BlockEnd
) = LIS
.getSlotIndexes()->getMBBRange(&*MBB
);
1169 // The first block may be live-in, or it may have its own def.
1170 if (Start
!= BlockStart
) {
1171 VNInfo
*VNI
= LI
.extendInBlock(BlockStart
, std::min(BlockEnd
, End
));
1172 assert(VNI
&& "Missing def for complex mapped value");
1173 LLVM_DEBUG(dbgs() << ':' << VNI
->id
<< "*" << printMBBReference(*MBB
));
1174 // MBB has its own def. Is it also live-out?
1175 if (BlockEnd
<= End
)
1176 LIC
.setLiveOutValue(&*MBB
, VNI
);
1178 // Skip to the next block for live-in.
1180 BlockStart
= BlockEnd
;
1183 // Handle the live-in blocks covered by [Start;End).
1184 assert(Start
<= BlockStart
&& "Expected live-in block");
1185 while (BlockStart
< End
) {
1186 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB
));
1187 BlockEnd
= LIS
.getMBBEndIdx(&*MBB
);
1188 if (BlockStart
== ParentVNI
->def
) {
1189 // This block has the def of a parent PHI, so it isn't live-in.
1190 assert(ParentVNI
->isPHIDef() && "Non-phi defined at block start?");
1191 VNInfo
*VNI
= LI
.extendInBlock(BlockStart
, std::min(BlockEnd
, End
));
1192 assert(VNI
&& "Missing def for complex mapped parent PHI");
1193 if (End
>= BlockEnd
)
1194 LIC
.setLiveOutValue(&*MBB
, VNI
); // Live-out as well.
1196 // This block needs a live-in value. The last block covered may not
1199 LIC
.addLiveInBlock(LI
, MDT
[&*MBB
], End
);
1201 // Live-through, and we don't know the value.
1202 LIC
.addLiveInBlock(LI
, MDT
[&*MBB
]);
1203 LIC
.setLiveOutValue(&*MBB
, nullptr);
1206 BlockStart
= BlockEnd
;
1210 } while (Start
!= S
.end
);
1211 LLVM_DEBUG(dbgs() << '\n');
1214 LICalc
[0].calculateValues();
1216 LICalc
[1].calculateValues();
1221 static bool removeDeadSegment(SlotIndex Def
, LiveRange
&LR
) {
1222 const LiveRange::Segment
*Seg
= LR
.getSegmentContaining(Def
);
1225 if (Seg
->end
!= Def
.getDeadSlot())
1227 // This is a dead PHI. Remove it.
1228 LR
.removeSegment(*Seg
, true);
1232 void SplitEditor::extendPHIRange(MachineBasicBlock
&B
, LiveIntervalCalc
&LIC
,
1233 LiveRange
&LR
, LaneBitmask LM
,
1234 ArrayRef
<SlotIndex
> Undefs
) {
1235 for (MachineBasicBlock
*P
: B
.predecessors()) {
1236 SlotIndex End
= LIS
.getMBBEndIdx(P
);
1237 SlotIndex LastUse
= End
.getPrevSlot();
1238 // The predecessor may not have a live-out value. That is OK, like an
1239 // undef PHI operand.
1240 LiveInterval
&PLI
= Edit
->getParent();
1241 // Need the cast because the inputs to ?: would otherwise be deemed
1242 // "incompatible": SubRange vs LiveInterval.
1243 LiveRange
&PSR
= !LM
.all() ? getSubRangeForMaskExact(LM
, PLI
)
1244 : static_cast<LiveRange
&>(PLI
);
1245 if (PSR
.liveAt(LastUse
))
1246 LIC
.extend(LR
, End
, /*PhysReg=*/0, Undefs
);
1250 void SplitEditor::extendPHIKillRanges() {
1251 // Extend live ranges to be live-out for successor PHI values.
1253 // Visit each PHI def slot in the parent live interval. If the def is dead,
1254 // remove it. Otherwise, extend the live interval to reach the end indexes
1255 // of all predecessor blocks.
1257 LiveInterval
&ParentLI
= Edit
->getParent();
1258 for (const VNInfo
*V
: ParentLI
.valnos
) {
1259 if (V
->isUnused() || !V
->isPHIDef())
1262 unsigned RegIdx
= RegAssign
.lookup(V
->def
);
1263 LiveInterval
&LI
= LIS
.getInterval(Edit
->get(RegIdx
));
1264 LiveIntervalCalc
&LIC
= getLICalc(RegIdx
);
1265 MachineBasicBlock
&B
= *LIS
.getMBBFromIndex(V
->def
);
1266 if (!removeDeadSegment(V
->def
, LI
))
1267 extendPHIRange(B
, LIC
, LI
, LaneBitmask::getAll(), /*Undefs=*/{});
1270 SmallVector
<SlotIndex
, 4> Undefs
;
1271 LiveIntervalCalc SubLIC
;
1273 for (LiveInterval::SubRange
&PS
: ParentLI
.subranges()) {
1274 for (const VNInfo
*V
: PS
.valnos
) {
1275 if (V
->isUnused() || !V
->isPHIDef())
1277 unsigned RegIdx
= RegAssign
.lookup(V
->def
);
1278 LiveInterval
&LI
= LIS
.getInterval(Edit
->get(RegIdx
));
1279 LiveInterval::SubRange
&S
= getSubRangeForMaskExact(PS
.LaneMask
, LI
);
1280 if (removeDeadSegment(V
->def
, S
))
1283 MachineBasicBlock
&B
= *LIS
.getMBBFromIndex(V
->def
);
1284 SubLIC
.reset(&VRM
.getMachineFunction(), LIS
.getSlotIndexes(), &MDT
,
1285 &LIS
.getVNInfoAllocator());
1287 LI
.computeSubRangeUndefs(Undefs
, PS
.LaneMask
, MRI
, *LIS
.getSlotIndexes());
1288 extendPHIRange(B
, SubLIC
, S
, PS
.LaneMask
, Undefs
);
1293 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1294 void SplitEditor::rewriteAssigned(bool ExtendRanges
) {
1296 ExtPoint(const MachineOperand
&O
, unsigned R
, SlotIndex N
)
1297 : MO(O
), RegIdx(R
), Next(N
) {}
1304 SmallVector
<ExtPoint
,4> ExtPoints
;
1306 for (MachineOperand
&MO
:
1307 llvm::make_early_inc_range(MRI
.reg_operands(Edit
->getReg()))) {
1308 MachineInstr
*MI
= MO
.getParent();
1309 // LiveDebugVariables should have handled all DBG_VALUE instructions.
1310 if (MI
->isDebugValue()) {
1311 LLVM_DEBUG(dbgs() << "Zapping " << *MI
);
1316 // <undef> operands don't really read the register, so it doesn't matter
1317 // which register we choose. When the use operand is tied to a def, we must
1318 // use the same register as the def, so just do that always.
1319 SlotIndex Idx
= LIS
.getInstructionIndex(*MI
);
1320 if (MO
.isDef() || MO
.isUndef())
1321 Idx
= Idx
.getRegSlot(MO
.isEarlyClobber());
1323 // Rewrite to the mapped register at Idx.
1324 unsigned RegIdx
= RegAssign
.lookup(Idx
);
1325 LiveInterval
&LI
= LIS
.getInterval(Edit
->get(RegIdx
));
1326 MO
.setReg(LI
.reg());
1327 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI
->getParent())
1328 << '\t' << Idx
<< ':' << RegIdx
<< '\t' << *MI
);
1330 // Extend liveness to Idx if the instruction reads reg.
1331 if (!ExtendRanges
|| MO
.isUndef())
1334 // Skip instructions that don't read Reg.
1336 if (!MO
.getSubReg() && !MO
.isEarlyClobber())
1338 // We may want to extend a live range for a partial redef, or for a use
1339 // tied to an early clobber.
1340 Idx
= Idx
.getPrevSlot();
1341 if (!Edit
->getParent().liveAt(Idx
))
1344 Idx
= Idx
.getRegSlot(true);
1346 SlotIndex Next
= Idx
.getNextSlot();
1347 if (LI
.hasSubRanges()) {
1348 // We have to delay extending subranges until we have seen all operands
1349 // defining the register. This is because a <def,read-undef> operand
1350 // will create an "undef" point, and we cannot extend any subranges
1351 // until all of them have been accounted for.
1353 ExtPoints
.push_back(ExtPoint(MO
, RegIdx
, Next
));
1355 LiveIntervalCalc
&LIC
= getLICalc(RegIdx
);
1356 LIC
.extend(LI
, Next
, 0, ArrayRef
<SlotIndex
>());
1360 for (ExtPoint
&EP
: ExtPoints
) {
1361 LiveInterval
&LI
= LIS
.getInterval(Edit
->get(EP
.RegIdx
));
1362 assert(LI
.hasSubRanges());
1364 LiveIntervalCalc SubLIC
;
1365 Register Reg
= EP
.MO
.getReg(), Sub
= EP
.MO
.getSubReg();
1366 LaneBitmask LM
= Sub
!= 0 ? TRI
.getSubRegIndexLaneMask(Sub
)
1367 : MRI
.getMaxLaneMaskForVReg(Reg
);
1368 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
1369 if ((S
.LaneMask
& LM
).none())
1371 // The problem here can be that the new register may have been created
1372 // for a partially defined original register. For example:
1373 // %0:subreg_hireg<def,read-undef> = ...
1378 SubLIC
.reset(&VRM
.getMachineFunction(), LIS
.getSlotIndexes(), &MDT
,
1379 &LIS
.getVNInfoAllocator());
1380 SmallVector
<SlotIndex
, 4> Undefs
;
1381 LI
.computeSubRangeUndefs(Undefs
, S
.LaneMask
, MRI
, *LIS
.getSlotIndexes());
1382 SubLIC
.extend(S
, EP
.Next
, 0, Undefs
);
1386 for (Register R
: *Edit
) {
1387 LiveInterval
&LI
= LIS
.getInterval(R
);
1388 if (!LI
.hasSubRanges())
1391 LI
.removeEmptySubRanges();
1392 LIS
.constructMainRangeFromSubranges(LI
);
1396 void SplitEditor::deleteRematVictims() {
1397 SmallVector
<MachineInstr
*, 8> Dead
;
1398 for (const Register
&R
: *Edit
) {
1399 LiveInterval
*LI
= &LIS
.getInterval(R
);
1400 for (const LiveRange::Segment
&S
: LI
->segments
) {
1401 // Dead defs end at the dead slot.
1402 if (S
.end
!= S
.valno
->def
.getDeadSlot())
1404 if (S
.valno
->isPHIDef())
1406 MachineInstr
*MI
= LIS
.getInstructionFromIndex(S
.valno
->def
);
1407 assert(MI
&& "Missing instruction for dead def");
1408 MI
->addRegisterDead(LI
->reg(), &TRI
);
1410 if (!MI
->allDefsAreDead())
1413 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI
);
1421 Edit
->eliminateDeadDefs(Dead
, None
, &AA
);
1424 void SplitEditor::forceRecomputeVNI(const VNInfo
&ParentVNI
) {
1425 // Fast-path for common case.
1426 if (!ParentVNI
.isPHIDef()) {
1427 for (unsigned I
= 0, E
= Edit
->size(); I
!= E
; ++I
)
1428 forceRecompute(I
, ParentVNI
);
1432 // Trace value through phis.
1433 SmallPtrSet
<const VNInfo
*, 8> Visited
; ///< whether VNI was/is in worklist.
1434 SmallVector
<const VNInfo
*, 4> WorkList
;
1435 Visited
.insert(&ParentVNI
);
1436 WorkList
.push_back(&ParentVNI
);
1438 const LiveInterval
&ParentLI
= Edit
->getParent();
1439 const SlotIndexes
&Indexes
= *LIS
.getSlotIndexes();
1441 const VNInfo
&VNI
= *WorkList
.back();
1442 WorkList
.pop_back();
1443 for (unsigned I
= 0, E
= Edit
->size(); I
!= E
; ++I
)
1444 forceRecompute(I
, VNI
);
1445 if (!VNI
.isPHIDef())
1448 MachineBasicBlock
&MBB
= *Indexes
.getMBBFromIndex(VNI
.def
);
1449 for (const MachineBasicBlock
*Pred
: MBB
.predecessors()) {
1450 SlotIndex PredEnd
= Indexes
.getMBBEndIdx(Pred
);
1451 VNInfo
*PredVNI
= ParentLI
.getVNInfoBefore(PredEnd
);
1452 assert(PredVNI
&& "Value available in PhiVNI predecessor");
1453 if (Visited
.insert(PredVNI
).second
)
1454 WorkList
.push_back(PredVNI
);
1456 } while(!WorkList
.empty());
1459 void SplitEditor::finish(SmallVectorImpl
<unsigned> *LRMap
) {
1462 // At this point, the live intervals in Edit contain VNInfos corresponding to
1463 // the inserted copies.
1465 // Add the original defs from the parent interval.
1466 for (const VNInfo
*ParentVNI
: Edit
->getParent().valnos
) {
1467 if (ParentVNI
->isUnused())
1469 unsigned RegIdx
= RegAssign
.lookup(ParentVNI
->def
);
1470 defValue(RegIdx
, ParentVNI
, ParentVNI
->def
, true);
1472 // Force rematted values to be recomputed everywhere.
1473 // The new live ranges may be truncated.
1474 if (Edit
->didRematerialize(ParentVNI
))
1475 forceRecomputeVNI(*ParentVNI
);
1478 // Hoist back-copies to the complement interval when in spill mode.
1479 switch (SpillMode
) {
1481 // Leave all back-copies as is.
1485 // hoistCopies will behave differently between size and speed.
1489 // Transfer the simply mapped values, check if any are skipped.
1490 bool Skipped
= transferValues();
1492 // Rewrite virtual registers, possibly extending ranges.
1493 rewriteAssigned(Skipped
);
1496 extendPHIKillRanges();
1500 // Delete defs that were rematted everywhere.
1502 deleteRematVictims();
1504 // Get rid of unused values and set phi-kill flags.
1505 for (Register Reg
: *Edit
) {
1506 LiveInterval
&LI
= LIS
.getInterval(Reg
);
1507 LI
.removeEmptySubRanges();
1508 LI
.RenumberValues();
1511 // Provide a reverse mapping from original indices to Edit ranges.
1514 for (unsigned i
= 0, e
= Edit
->size(); i
!= e
; ++i
)
1515 LRMap
->push_back(i
);
1518 // Now check if any registers were separated into multiple components.
1519 ConnectedVNInfoEqClasses
ConEQ(LIS
);
1520 for (unsigned i
= 0, e
= Edit
->size(); i
!= e
; ++i
) {
1521 // Don't use iterators, they are invalidated by create() below.
1522 Register VReg
= Edit
->get(i
);
1523 LiveInterval
&LI
= LIS
.getInterval(VReg
);
1524 SmallVector
<LiveInterval
*, 8> SplitLIs
;
1525 LIS
.splitSeparateComponents(LI
, SplitLIs
);
1526 Register Original
= VRM
.getOriginal(VReg
);
1527 for (LiveInterval
*SplitLI
: SplitLIs
)
1528 VRM
.setIsSplitFromReg(SplitLI
->reg(), Original
);
1530 // The new intervals all map back to i.
1532 LRMap
->resize(Edit
->size(), i
);
1535 // Calculate spill weight and allocation hints for new intervals.
1536 Edit
->calculateRegClassAndHint(VRM
.getMachineFunction(), VRAI
);
1538 assert(!LRMap
|| LRMap
->size() == Edit
->size());
1541 //===----------------------------------------------------------------------===//
1542 // Single Block Splitting
1543 //===----------------------------------------------------------------------===//
1545 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo
&BI
,
1546 bool SingleInstrs
) const {
1547 // Always split for multiple instructions.
1548 if (!BI
.isOneInstr())
1550 // Don't split for single instructions unless explicitly requested.
1553 // Splitting a live-through range always makes progress.
1554 if (BI
.LiveIn
&& BI
.LiveOut
)
1556 // No point in isolating a copy. It has no register class constraints.
1557 if (LIS
.getInstructionFromIndex(BI
.FirstInstr
)->isCopyLike())
1559 // Finally, don't isolate an end point that was created by earlier splits.
1560 return isOriginalEndpoint(BI
.FirstInstr
);
1563 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo
&BI
) {
1565 SlotIndex LastSplitPoint
= SA
.getLastSplitPoint(BI
.MBB
);
1566 SlotIndex SegStart
= enterIntvBefore(std::min(BI
.FirstInstr
,
1568 if (!BI
.LiveOut
|| BI
.LastInstr
< LastSplitPoint
) {
1569 useIntv(SegStart
, leaveIntvAfter(BI
.LastInstr
));
1571 // The last use is after the last valid split point.
1572 SlotIndex SegStop
= leaveIntvBefore(LastSplitPoint
);
1573 useIntv(SegStart
, SegStop
);
1574 overlapIntv(SegStop
, BI
.LastInstr
);
1578 //===----------------------------------------------------------------------===//
1579 // Global Live Range Splitting Support
1580 //===----------------------------------------------------------------------===//
1582 // These methods support a method of global live range splitting that uses a
1583 // global algorithm to decide intervals for CFG edges. They will insert split
1584 // points and color intervals in basic blocks while avoiding interference.
1586 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1587 // are on the stack.
1589 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum
,
1590 unsigned IntvIn
, SlotIndex LeaveBefore
,
1591 unsigned IntvOut
, SlotIndex EnterAfter
){
1592 SlotIndex Start
, Stop
;
1593 std::tie(Start
, Stop
) = LIS
.getSlotIndexes()->getMBBRange(MBBNum
);
1595 LLVM_DEBUG(dbgs() << "%bb." << MBBNum
<< " [" << Start
<< ';' << Stop
1596 << ") intf " << LeaveBefore
<< '-' << EnterAfter
1597 << ", live-through " << IntvIn
<< " -> " << IntvOut
);
1599 assert((IntvIn
|| IntvOut
) && "Use splitSingleBlock for isolated blocks");
1601 assert((!LeaveBefore
|| LeaveBefore
< Stop
) && "Interference after block");
1602 assert((!IntvIn
|| !LeaveBefore
|| LeaveBefore
> Start
) && "Impossible intf");
1603 assert((!EnterAfter
|| EnterAfter
>= Start
) && "Interference before block");
1605 MachineBasicBlock
*MBB
= VRM
.getMachineFunction().getBlockNumbered(MBBNum
);
1608 LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1610 // <<<<<<<<< Possible LeaveBefore interference.
1611 // |-----------| Live through.
1612 // -____________ Spill on entry.
1615 SlotIndex Idx
= leaveIntvAtTop(*MBB
);
1616 assert((!LeaveBefore
|| Idx
<= LeaveBefore
) && "Interference");
1622 LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1624 // >>>>>>> Possible EnterAfter interference.
1625 // |-----------| Live through.
1626 // ___________-- Reload on exit.
1628 selectIntv(IntvOut
);
1629 SlotIndex Idx
= enterIntvAtEnd(*MBB
);
1630 assert((!EnterAfter
|| Idx
>= EnterAfter
) && "Interference");
1635 if (IntvIn
== IntvOut
&& !LeaveBefore
&& !EnterAfter
) {
1636 LLVM_DEBUG(dbgs() << ", straight through.\n");
1638 // |-----------| Live through.
1639 // ------------- Straight through, same intv, no interference.
1641 selectIntv(IntvOut
);
1642 useIntv(Start
, Stop
);
1646 // We cannot legally insert splits after LSP.
1647 SlotIndex LSP
= SA
.getLastSplitPoint(MBBNum
);
1648 assert((!IntvOut
|| !EnterAfter
|| EnterAfter
< LSP
) && "Impossible intf");
1650 if (IntvIn
!= IntvOut
&& (!LeaveBefore
|| !EnterAfter
||
1651 LeaveBefore
.getBaseIndex() > EnterAfter
.getBoundaryIndex())) {
1652 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1654 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
1655 // |-----------| Live through.
1656 // ------======= Switch intervals between interference.
1658 selectIntv(IntvOut
);
1660 if (LeaveBefore
&& LeaveBefore
< LSP
) {
1661 Idx
= enterIntvBefore(LeaveBefore
);
1664 Idx
= enterIntvAtEnd(*MBB
);
1667 useIntv(Start
, Idx
);
1668 assert((!LeaveBefore
|| Idx
<= LeaveBefore
) && "Interference");
1669 assert((!EnterAfter
|| Idx
>= EnterAfter
) && "Interference");
1673 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1675 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
1676 // |-----------| Live through.
1677 // ==---------== Switch intervals before/after interference.
1679 assert(LeaveBefore
<= EnterAfter
&& "Missed case");
1681 selectIntv(IntvOut
);
1682 SlotIndex Idx
= enterIntvAfter(EnterAfter
);
1684 assert((!EnterAfter
|| Idx
>= EnterAfter
) && "Interference");
1687 Idx
= leaveIntvBefore(LeaveBefore
);
1688 useIntv(Start
, Idx
);
1689 assert((!LeaveBefore
|| Idx
<= LeaveBefore
) && "Interference");
1692 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo
&BI
,
1693 unsigned IntvIn
, SlotIndex LeaveBefore
) {
1694 SlotIndex Start
, Stop
;
1695 std::tie(Start
, Stop
) = LIS
.getSlotIndexes()->getMBBRange(BI
.MBB
);
1697 LLVM_DEBUG(dbgs() << printMBBReference(*BI
.MBB
) << " [" << Start
<< ';'
1698 << Stop
<< "), uses " << BI
.FirstInstr
<< '-'
1699 << BI
.LastInstr
<< ", reg-in " << IntvIn
1700 << ", leave before " << LeaveBefore
1701 << (BI
.LiveOut
? ", stack-out" : ", killed in block"));
1703 assert(IntvIn
&& "Must have register in");
1704 assert(BI
.LiveIn
&& "Must be live-in");
1705 assert((!LeaveBefore
|| LeaveBefore
> Start
) && "Bad interference");
1707 if (!BI
.LiveOut
&& (!LeaveBefore
|| LeaveBefore
>= BI
.LastInstr
)) {
1708 LLVM_DEBUG(dbgs() << " before interference.\n");
1710 // <<< Interference after kill.
1711 // |---o---x | Killed in block.
1712 // ========= Use IntvIn everywhere.
1715 useIntv(Start
, BI
.LastInstr
);
1719 SlotIndex LSP
= SA
.getLastSplitPoint(BI
.MBB
);
1721 if (!LeaveBefore
|| LeaveBefore
> BI
.LastInstr
.getBoundaryIndex()) {
1723 // <<< Possible interference after last use.
1724 // |---o---o---| Live-out on stack.
1725 // =========____ Leave IntvIn after last use.
1727 // < Interference after last use.
1728 // |---o---o--o| Live-out on stack, late last use.
1729 // ============ Copy to stack after LSP, overlap IntvIn.
1730 // \_____ Stack interval is live-out.
1732 if (BI
.LastInstr
< LSP
) {
1733 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1735 SlotIndex Idx
= leaveIntvAfter(BI
.LastInstr
);
1736 useIntv(Start
, Idx
);
1737 assert((!LeaveBefore
|| Idx
<= LeaveBefore
) && "Interference");
1739 LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1741 SlotIndex Idx
= leaveIntvBefore(LSP
);
1742 overlapIntv(Idx
, BI
.LastInstr
);
1743 useIntv(Start
, Idx
);
1744 assert((!LeaveBefore
|| Idx
<= LeaveBefore
) && "Interference");
1749 // The interference is overlapping somewhere we wanted to use IntvIn. That
1750 // means we need to create a local interval that can be allocated a
1751 // different register.
1752 unsigned LocalIntv
= openIntv();
1754 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv
<< ".\n");
1756 if (!BI
.LiveOut
|| BI
.LastInstr
< LSP
) {
1758 // <<<<<<< Interference overlapping uses.
1759 // |---o---o---| Live-out on stack.
1760 // =====----____ Leave IntvIn before interference, then spill.
1762 SlotIndex To
= leaveIntvAfter(BI
.LastInstr
);
1763 SlotIndex From
= enterIntvBefore(LeaveBefore
);
1766 useIntv(Start
, From
);
1767 assert((!LeaveBefore
|| From
<= LeaveBefore
) && "Interference");
1771 // <<<<<<< Interference overlapping uses.
1772 // |---o---o--o| Live-out on stack, late last use.
1773 // =====------- Copy to stack before LSP, overlap LocalIntv.
1774 // \_____ Stack interval is live-out.
1776 SlotIndex To
= leaveIntvBefore(LSP
);
1777 overlapIntv(To
, BI
.LastInstr
);
1778 SlotIndex From
= enterIntvBefore(std::min(To
, LeaveBefore
));
1781 useIntv(Start
, From
);
1782 assert((!LeaveBefore
|| From
<= LeaveBefore
) && "Interference");
1785 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo
&BI
,
1786 unsigned IntvOut
, SlotIndex EnterAfter
) {
1787 SlotIndex Start
, Stop
;
1788 std::tie(Start
, Stop
) = LIS
.getSlotIndexes()->getMBBRange(BI
.MBB
);
1790 LLVM_DEBUG(dbgs() << printMBBReference(*BI
.MBB
) << " [" << Start
<< ';'
1791 << Stop
<< "), uses " << BI
.FirstInstr
<< '-'
1792 << BI
.LastInstr
<< ", reg-out " << IntvOut
1793 << ", enter after " << EnterAfter
1794 << (BI
.LiveIn
? ", stack-in" : ", defined in block"));
1796 SlotIndex LSP
= SA
.getLastSplitPoint(BI
.MBB
);
1798 assert(IntvOut
&& "Must have register out");
1799 assert(BI
.LiveOut
&& "Must be live-out");
1800 assert((!EnterAfter
|| EnterAfter
< LSP
) && "Bad interference");
1802 if (!BI
.LiveIn
&& (!EnterAfter
|| EnterAfter
<= BI
.FirstInstr
)) {
1803 LLVM_DEBUG(dbgs() << " after interference.\n");
1805 // >>>> Interference before def.
1806 // | o---o---| Defined in block.
1807 // ========= Use IntvOut everywhere.
1809 selectIntv(IntvOut
);
1810 useIntv(BI
.FirstInstr
, Stop
);
1814 if (!EnterAfter
|| EnterAfter
< BI
.FirstInstr
.getBaseIndex()) {
1815 LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1817 // >>>> Interference before def.
1818 // |---o---o---| Live-through, stack-in.
1819 // ____========= Enter IntvOut before first use.
1821 selectIntv(IntvOut
);
1822 SlotIndex Idx
= enterIntvBefore(std::min(LSP
, BI
.FirstInstr
));
1824 assert((!EnterAfter
|| Idx
>= EnterAfter
) && "Interference");
1828 // The interference is overlapping somewhere we wanted to use IntvOut. That
1829 // means we need to create a local interval that can be allocated a
1830 // different register.
1831 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1833 // >>>>>>> Interference overlapping uses.
1834 // |---o---o---| Live-through, stack-in.
1835 // ____---====== Create local interval for interference range.
1837 selectIntv(IntvOut
);
1838 SlotIndex Idx
= enterIntvAfter(EnterAfter
);
1840 assert((!EnterAfter
|| Idx
>= EnterAfter
) && "Interference");
1843 SlotIndex From
= enterIntvBefore(std::min(Idx
, BI
.FirstInstr
));
1847 void SplitAnalysis::BlockInfo::print(raw_ostream
&OS
) const {
1848 OS
<< "{" << printMBBReference(*MBB
) << ", "
1849 << "uses " << FirstInstr
<< " to " << LastInstr
<< ", "
1850 << "1st def " << FirstDef
<< ", "
1851 << (LiveIn
? "live in" : "dead in") << ", "
1852 << (LiveOut
? "live out" : "dead out") << "}";
1855 void SplitAnalysis::BlockInfo::dump() const {