[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / CodeGen / SplitKit.cpp
blob7f9518e4c0757a052ff2e5a2d3491853dfe233a8
1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
12 //===----------------------------------------------------------------------===//
14 #include "SplitKit.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/CodeGen/LiveRangeEdit.h"
20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/BlockFrequency.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <iterator>
42 #include <limits>
43 #include <tuple>
45 using namespace llvm;
47 #define DEBUG_TYPE "regalloc"
49 STATISTIC(NumFinished, "Number of splits finished");
50 STATISTIC(NumSimple, "Number of splits that were simple");
51 STATISTIC(NumCopies, "Number of copies inserted for splitting");
52 STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
54 //===----------------------------------------------------------------------===//
55 // Last Insert Point Analysis
56 //===----------------------------------------------------------------------===//
58 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
59 unsigned BBNum)
60 : LIS(lis), LastInsertPoint(BBNum) {}
62 SlotIndex
63 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
64 const MachineBasicBlock &MBB) {
65 unsigned Num = MBB.getNumber();
66 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
67 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
69 SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
70 bool EHPadSuccessor = false;
71 for (const MachineBasicBlock *SMBB : MBB.successors()) {
72 if (SMBB->isEHPad()) {
73 ExceptionalSuccessors.push_back(SMBB);
74 EHPadSuccessor = true;
75 } else if (SMBB->isInlineAsmBrIndirectTarget())
76 ExceptionalSuccessors.push_back(SMBB);
79 // Compute insert points on the first call. The pair is independent of the
80 // current live interval.
81 if (!LIP.first.isValid()) {
82 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
83 if (FirstTerm == MBB.end())
84 LIP.first = MBBEnd;
85 else
86 LIP.first = LIS.getInstructionIndex(*FirstTerm);
88 // If there is a landing pad or inlineasm_br successor, also find the
89 // instruction. If there is no such instruction, we don't need to do
90 // anything special. We assume there cannot be multiple instructions that
91 // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
92 // assume that if there are any, they will be after any other call
93 // instructions in the block.
94 if (ExceptionalSuccessors.empty())
95 return LIP.first;
96 for (const MachineInstr &MI : llvm::reverse(MBB)) {
97 if ((EHPadSuccessor && MI.isCall()) ||
98 MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
99 LIP.second = LIS.getInstructionIndex(MI);
100 break;
105 // If CurLI is live into a landing pad successor, move the last insert point
106 // back to the call that may throw.
107 if (!LIP.second)
108 return LIP.first;
110 if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
111 return LIS.isLiveInToMBB(CurLI, EHPad);
113 return LIP.first;
115 // Find the value leaving MBB.
116 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
117 if (!VNI)
118 return LIP.first;
120 // The def of statepoint instruction is a gc relocation and it should be alive
121 // in landing pad. So we cannot split interval after statepoint instruction.
122 if (SlotIndex::isSameInstr(VNI->def, LIP.second))
123 if (auto *I = LIS.getInstructionFromIndex(LIP.second))
124 if (I->getOpcode() == TargetOpcode::STATEPOINT)
125 return LIP.second;
127 // If the value leaving MBB was defined after the call in MBB, it can't
128 // really be live-in to the landing pad. This can happen if the landing pad
129 // has a PHI, and this register is undef on the exceptional edge.
130 // <rdar://problem/10664933>
131 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
132 return LIP.first;
134 // Value is properly live-in to the landing pad.
135 // Only allow inserts before the call.
136 return LIP.second;
139 MachineBasicBlock::iterator
140 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
141 MachineBasicBlock &MBB) {
142 SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
143 if (LIP == LIS.getMBBEndIdx(&MBB))
144 return MBB.end();
145 return LIS.getInstructionFromIndex(LIP);
148 //===----------------------------------------------------------------------===//
149 // Split Analysis
150 //===----------------------------------------------------------------------===//
152 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
153 const MachineLoopInfo &mli)
154 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
155 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
157 void SplitAnalysis::clear() {
158 UseSlots.clear();
159 UseBlocks.clear();
160 ThroughBlocks.clear();
161 CurLI = nullptr;
164 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
165 void SplitAnalysis::analyzeUses() {
166 assert(UseSlots.empty() && "Call clear first");
168 // First get all the defs from the interval values. This provides the correct
169 // slots for early clobbers.
170 for (const VNInfo *VNI : CurLI->valnos)
171 if (!VNI->isPHIDef() && !VNI->isUnused())
172 UseSlots.push_back(VNI->def);
174 // Get use slots form the use-def chain.
175 const MachineRegisterInfo &MRI = MF.getRegInfo();
176 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg()))
177 if (!MO.isUndef())
178 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
180 array_pod_sort(UseSlots.begin(), UseSlots.end());
182 // Remove duplicates, keeping the smaller slot for each instruction.
183 // That is what we want for early clobbers.
184 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
185 SlotIndex::isSameInstr),
186 UseSlots.end());
188 // Compute per-live block info.
189 calcLiveBlockInfo();
191 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
192 << UseBlocks.size() << " blocks, through "
193 << NumThroughBlocks << " blocks.\n");
196 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
197 /// where CurLI is live.
198 void SplitAnalysis::calcLiveBlockInfo() {
199 ThroughBlocks.resize(MF.getNumBlockIDs());
200 NumThroughBlocks = NumGapBlocks = 0;
201 if (CurLI->empty())
202 return;
204 LiveInterval::const_iterator LVI = CurLI->begin();
205 LiveInterval::const_iterator LVE = CurLI->end();
207 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
208 UseI = UseSlots.begin();
209 UseE = UseSlots.end();
211 // Loop over basic blocks where CurLI is live.
212 MachineFunction::iterator MFI =
213 LIS.getMBBFromIndex(LVI->start)->getIterator();
214 while (true) {
215 BlockInfo BI;
216 BI.MBB = &*MFI;
217 SlotIndex Start, Stop;
218 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
220 // If the block contains no uses, the range must be live through. At one
221 // point, RegisterCoalescer could create dangling ranges that ended
222 // mid-block.
223 if (UseI == UseE || *UseI >= Stop) {
224 ++NumThroughBlocks;
225 ThroughBlocks.set(BI.MBB->getNumber());
226 // The range shouldn't end mid-block if there are no uses. This shouldn't
227 // happen.
228 assert(LVI->end >= Stop && "range ends mid block with no uses");
229 } else {
230 // This block has uses. Find the first and last uses in the block.
231 BI.FirstInstr = *UseI;
232 assert(BI.FirstInstr >= Start);
233 do ++UseI;
234 while (UseI != UseE && *UseI < Stop);
235 BI.LastInstr = UseI[-1];
236 assert(BI.LastInstr < Stop);
238 // LVI is the first live segment overlapping MBB.
239 BI.LiveIn = LVI->start <= Start;
241 // When not live in, the first use should be a def.
242 if (!BI.LiveIn) {
243 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
244 assert(LVI->start == BI.FirstInstr && "First instr should be a def");
245 BI.FirstDef = BI.FirstInstr;
248 // Look for gaps in the live range.
249 BI.LiveOut = true;
250 while (LVI->end < Stop) {
251 SlotIndex LastStop = LVI->end;
252 if (++LVI == LVE || LVI->start >= Stop) {
253 BI.LiveOut = false;
254 BI.LastInstr = LastStop;
255 break;
258 if (LastStop < LVI->start) {
259 // There is a gap in the live range. Create duplicate entries for the
260 // live-in snippet and the live-out snippet.
261 ++NumGapBlocks;
263 // Push the Live-in part.
264 BI.LiveOut = false;
265 UseBlocks.push_back(BI);
266 UseBlocks.back().LastInstr = LastStop;
268 // Set up BI for the live-out part.
269 BI.LiveIn = false;
270 BI.LiveOut = true;
271 BI.FirstInstr = BI.FirstDef = LVI->start;
274 // A Segment that starts in the middle of the block must be a def.
275 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
276 if (!BI.FirstDef)
277 BI.FirstDef = LVI->start;
280 UseBlocks.push_back(BI);
282 // LVI is now at LVE or LVI->end >= Stop.
283 if (LVI == LVE)
284 break;
287 // Live segment ends exactly at Stop. Move to the next segment.
288 if (LVI->end == Stop && ++LVI == LVE)
289 break;
291 // Pick the next basic block.
292 if (LVI->start < Stop)
293 ++MFI;
294 else
295 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
298 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
301 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
302 if (cli->empty())
303 return 0;
304 LiveInterval *li = const_cast<LiveInterval*>(cli);
305 LiveInterval::iterator LVI = li->begin();
306 LiveInterval::iterator LVE = li->end();
307 unsigned Count = 0;
309 // Loop over basic blocks where li is live.
310 MachineFunction::const_iterator MFI =
311 LIS.getMBBFromIndex(LVI->start)->getIterator();
312 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
313 while (true) {
314 ++Count;
315 LVI = li->advanceTo(LVI, Stop);
316 if (LVI == LVE)
317 return Count;
318 do {
319 ++MFI;
320 Stop = LIS.getMBBEndIdx(&*MFI);
321 } while (Stop <= LVI->start);
325 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
326 unsigned OrigReg = VRM.getOriginal(CurLI->reg());
327 const LiveInterval &Orig = LIS.getInterval(OrigReg);
328 assert(!Orig.empty() && "Splitting empty interval?");
329 LiveInterval::const_iterator I = Orig.find(Idx);
331 // Range containing Idx should begin at Idx.
332 if (I != Orig.end() && I->start <= Idx)
333 return I->start == Idx;
335 // Range does not contain Idx, previous must end at Idx.
336 return I != Orig.begin() && (--I)->end == Idx;
339 void SplitAnalysis::analyze(const LiveInterval *li) {
340 clear();
341 CurLI = li;
342 analyzeUses();
345 //===----------------------------------------------------------------------===//
346 // Split Editor
347 //===----------------------------------------------------------------------===//
349 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
350 SplitEditor::SplitEditor(SplitAnalysis &SA, AliasAnalysis &AA,
351 LiveIntervals &LIS, VirtRegMap &VRM,
352 MachineDominatorTree &MDT,
353 MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI)
354 : SA(SA), AA(AA), LIS(LIS), VRM(VRM),
355 MRI(VRM.getMachineFunction().getRegInfo()), MDT(MDT),
356 TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()),
357 TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()),
358 MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {}
360 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
361 Edit = &LRE;
362 SpillMode = SM;
363 OpenIdx = 0;
364 RegAssign.clear();
365 Values.clear();
367 // Reset the LiveIntervalCalc instances needed for this spill mode.
368 LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
369 &LIS.getVNInfoAllocator());
370 if (SpillMode)
371 LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
372 &LIS.getVNInfoAllocator());
374 // We don't need an AliasAnalysis since we will only be performing
375 // cheap-as-a-copy remats anyway.
376 Edit->anyRematerializable(nullptr);
379 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
380 LLVM_DUMP_METHOD void SplitEditor::dump() const {
381 if (RegAssign.empty()) {
382 dbgs() << " empty\n";
383 return;
386 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
387 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
388 dbgs() << '\n';
390 #endif
392 LiveInterval::SubRange &SplitEditor::getSubRangeForMaskExact(LaneBitmask LM,
393 LiveInterval &LI) {
394 for (LiveInterval::SubRange &S : LI.subranges())
395 if (S.LaneMask == LM)
396 return S;
397 llvm_unreachable("SubRange for this mask not found");
400 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
401 LiveInterval &LI) {
402 for (LiveInterval::SubRange &S : LI.subranges())
403 if ((S.LaneMask & LM) == LM)
404 return S;
405 llvm_unreachable("SubRange for this mask not found");
408 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
409 if (!LI.hasSubRanges()) {
410 LI.createDeadDef(VNI);
411 return;
414 SlotIndex Def = VNI->def;
415 if (Original) {
416 // If we are transferring a def from the original interval, make sure
417 // to only update the subranges for which the original subranges had
418 // a def at this location.
419 for (LiveInterval::SubRange &S : LI.subranges()) {
420 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
421 VNInfo *PV = PS.getVNInfoAt(Def);
422 if (PV != nullptr && PV->def == Def)
423 S.createDeadDef(Def, LIS.getVNInfoAllocator());
425 } else {
426 // This is a new def: either from rematerialization, or from an inserted
427 // copy. Since rematerialization can regenerate a definition of a sub-
428 // register, we need to check which subranges need to be updated.
429 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
430 assert(DefMI != nullptr);
431 LaneBitmask LM;
432 for (const MachineOperand &DefOp : DefMI->defs()) {
433 Register R = DefOp.getReg();
434 if (R != LI.reg())
435 continue;
436 if (unsigned SR = DefOp.getSubReg())
437 LM |= TRI.getSubRegIndexLaneMask(SR);
438 else {
439 LM = MRI.getMaxLaneMaskForVReg(R);
440 break;
443 for (LiveInterval::SubRange &S : LI.subranges())
444 if ((S.LaneMask & LM).any())
445 S.createDeadDef(Def, LIS.getVNInfoAllocator());
449 VNInfo *SplitEditor::defValue(unsigned RegIdx,
450 const VNInfo *ParentVNI,
451 SlotIndex Idx,
452 bool Original) {
453 assert(ParentVNI && "Mapping NULL value");
454 assert(Idx.isValid() && "Invalid SlotIndex");
455 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
456 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
458 // Create a new value.
459 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
461 bool Force = LI->hasSubRanges();
462 ValueForcePair FP(Force ? nullptr : VNI, Force);
463 // Use insert for lookup, so we can add missing values with a second lookup.
464 std::pair<ValueMap::iterator, bool> InsP =
465 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
467 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
468 // forced. Keep it as a simple def without any liveness.
469 if (!Force && InsP.second)
470 return VNI;
472 // If the previous value was a simple mapping, add liveness for it now.
473 if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
474 addDeadDef(*LI, OldVNI, Original);
476 // No longer a simple mapping. Switch to a complex mapping. If the
477 // interval has subranges, make it a forced mapping.
478 InsP.first->second = ValueForcePair(nullptr, Force);
481 // This is a complex mapping, add liveness for VNI
482 addDeadDef(*LI, VNI, Original);
483 return VNI;
486 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
487 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
488 VNInfo *VNI = VFP.getPointer();
490 // ParentVNI was either unmapped or already complex mapped. Either way, just
491 // set the force bit.
492 if (!VNI) {
493 VFP.setInt(true);
494 return;
497 // This was previously a single mapping. Make sure the old def is represented
498 // by a trivial live range.
499 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
501 // Mark as complex mapped, forced.
502 VFP = ValueForcePair(nullptr, true);
505 SlotIndex SplitEditor::buildSingleSubRegCopy(Register FromReg, Register ToReg,
506 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
507 unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
508 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
509 bool FirstCopy = !Def.isValid();
510 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
511 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
512 | getInternalReadRegState(!FirstCopy), SubIdx)
513 .addReg(FromReg, 0, SubIdx);
515 SlotIndexes &Indexes = *LIS.getSlotIndexes();
516 if (FirstCopy) {
517 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
518 } else {
519 CopyMI->bundleWithPred();
521 return Def;
524 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg,
525 LaneBitmask LaneMask, MachineBasicBlock &MBB,
526 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
527 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
528 SlotIndexes &Indexes = *LIS.getSlotIndexes();
529 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
530 // The full vreg is copied.
531 MachineInstr *CopyMI =
532 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
533 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
536 // Only a subset of lanes needs to be copied. The following is a simple
537 // heuristic to construct a sequence of COPYs. We could add a target
538 // specific callback if this turns out to be suboptimal.
539 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
541 // First pass: Try to find a perfectly matching subregister index. If none
542 // exists find the one covering the most lanemask bits.
543 const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
544 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
546 SmallVector<unsigned, 8> SubIndexes;
548 // Abort if we cannot possibly implement the COPY with the given indexes.
549 if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, SubIndexes))
550 report_fatal_error("Impossible to implement partial COPY");
552 SlotIndex Def;
553 for (unsigned BestIdx : SubIndexes) {
554 Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
555 DestLI, Late, Def);
558 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
559 DestLI.refineSubRanges(
560 Allocator, LaneMask,
561 [Def, &Allocator](LiveInterval::SubRange &SR) {
562 SR.createDeadDef(Def, Allocator);
564 Indexes, TRI);
566 return Def;
569 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
570 VNInfo *ParentVNI,
571 SlotIndex UseIdx,
572 MachineBasicBlock &MBB,
573 MachineBasicBlock::iterator I) {
574 SlotIndex Def;
575 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
577 // We may be trying to avoid interference that ends at a deleted instruction,
578 // so always begin RegIdx 0 early and all others late.
579 bool Late = RegIdx != 0;
581 // Attempt cheap-as-a-copy rematerialization.
582 unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
583 LiveInterval &OrigLI = LIS.getInterval(Original);
584 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
586 Register Reg = LI->reg();
587 bool DidRemat = false;
588 if (OrigVNI) {
589 LiveRangeEdit::Remat RM(ParentVNI);
590 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
591 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
592 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
593 ++NumRemats;
594 DidRemat = true;
597 if (!DidRemat) {
598 LaneBitmask LaneMask;
599 if (OrigLI.hasSubRanges()) {
600 LaneMask = LaneBitmask::getNone();
601 for (LiveInterval::SubRange &S : OrigLI.subranges()) {
602 if (S.liveAt(UseIdx))
603 LaneMask |= S.LaneMask;
605 } else {
606 LaneMask = LaneBitmask::getAll();
609 if (LaneMask.none()) {
610 const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF);
611 MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg);
612 SlotIndexes &Indexes = *LIS.getSlotIndexes();
613 Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot();
614 } else {
615 ++NumCopies;
616 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
620 // Define the value in Reg.
621 return defValue(RegIdx, ParentVNI, Def, false);
624 /// Create a new virtual register and live interval.
625 unsigned SplitEditor::openIntv() {
626 // Create the complement as index 0.
627 if (Edit->empty())
628 Edit->createEmptyInterval();
630 // Create the open interval.
631 OpenIdx = Edit->size();
632 Edit->createEmptyInterval();
633 return OpenIdx;
636 void SplitEditor::selectIntv(unsigned Idx) {
637 assert(Idx != 0 && "Cannot select the complement interval");
638 assert(Idx < Edit->size() && "Can only select previously opened interval");
639 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
640 OpenIdx = Idx;
643 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
644 assert(OpenIdx && "openIntv not called before enterIntvBefore");
645 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx);
646 Idx = Idx.getBaseIndex();
647 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
648 if (!ParentVNI) {
649 LLVM_DEBUG(dbgs() << ": not live\n");
650 return Idx;
652 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
653 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
654 assert(MI && "enterIntvBefore called with invalid index");
656 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
657 return VNI->def;
660 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
661 assert(OpenIdx && "openIntv not called before enterIntvAfter");
662 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx);
663 Idx = Idx.getBoundaryIndex();
664 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
665 if (!ParentVNI) {
666 LLVM_DEBUG(dbgs() << ": not live\n");
667 return Idx;
669 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
670 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
671 assert(MI && "enterIntvAfter called with invalid index");
673 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
674 std::next(MachineBasicBlock::iterator(MI)));
675 return VNI->def;
678 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
679 assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
680 SlotIndex End = LIS.getMBBEndIdx(&MBB);
681 SlotIndex Last = End.getPrevSlot();
682 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", "
683 << Last);
684 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
685 if (!ParentVNI) {
686 LLVM_DEBUG(dbgs() << ": not live\n");
687 return End;
689 SlotIndex LSP = SA.getLastSplitPoint(&MBB);
690 if (LSP < Last) {
691 // It could be that the use after LSP is a def, and thus the ParentVNI
692 // just selected starts at that def. For this case to exist, the def
693 // must be part of a tied def/use pair (as otherwise we'd have split
694 // distinct live ranges into individual live intervals), and thus we
695 // can insert the def into the VNI of the use and the tied def/use
696 // pair can live in the resulting interval.
697 Last = LSP;
698 ParentVNI = Edit->getParent().getVNInfoAt(Last);
699 if (!ParentVNI) {
700 // undef use --> undef tied def
701 LLVM_DEBUG(dbgs() << ": tied use not live\n");
702 return End;
706 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
707 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
708 SA.getLastSplitPointIter(&MBB));
709 RegAssign.insert(VNI->def, End, OpenIdx);
710 LLVM_DEBUG(dump());
711 return VNI->def;
714 /// useIntv - indicate that all instructions in MBB should use OpenLI.
715 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
716 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
719 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
720 assert(OpenIdx && "openIntv not called before useIntv");
721 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
722 RegAssign.insert(Start, End, OpenIdx);
723 LLVM_DEBUG(dump());
726 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
727 assert(OpenIdx && "openIntv not called before leaveIntvAfter");
728 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx);
730 // The interval must be live beyond the instruction at Idx.
731 SlotIndex Boundary = Idx.getBoundaryIndex();
732 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
733 if (!ParentVNI) {
734 LLVM_DEBUG(dbgs() << ": not live\n");
735 return Boundary.getNextSlot();
737 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
738 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
739 assert(MI && "No instruction at index");
741 // In spill mode, make live ranges as short as possible by inserting the copy
742 // before MI. This is only possible if that instruction doesn't redefine the
743 // value. The inserted COPY is not a kill, and we don't need to recompute
744 // the source live range. The spiller also won't try to hoist this copy.
745 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
746 MI->readsVirtualRegister(Edit->getReg())) {
747 forceRecompute(0, *ParentVNI);
748 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
749 return Idx;
752 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
753 std::next(MachineBasicBlock::iterator(MI)));
754 return VNI->def;
757 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
758 assert(OpenIdx && "openIntv not called before leaveIntvBefore");
759 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx);
761 // The interval must be live into the instruction at Idx.
762 Idx = Idx.getBaseIndex();
763 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
764 if (!ParentVNI) {
765 LLVM_DEBUG(dbgs() << ": not live\n");
766 return Idx.getNextSlot();
768 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
770 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
771 assert(MI && "No instruction at index");
772 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
773 return VNI->def;
776 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
777 assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
778 SlotIndex Start = LIS.getMBBStartIdx(&MBB);
779 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", "
780 << Start);
782 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
783 if (!ParentVNI) {
784 LLVM_DEBUG(dbgs() << ": not live\n");
785 return Start;
788 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
789 MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
790 RegAssign.insert(Start, VNI->def, OpenIdx);
791 LLVM_DEBUG(dump());
792 return VNI->def;
795 static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) {
796 return any_of(MI.defs(), [Reg](const MachineOperand &MO) {
797 return MO.isReg() && MO.isTied() && MO.getReg() == Reg;
801 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
802 assert(OpenIdx && "openIntv not called before overlapIntv");
803 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
804 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
805 "Parent changes value in extended range");
806 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
807 "Range cannot span basic blocks");
809 // The complement interval will be extended as needed by LICalc.extend().
810 if (ParentVNI)
811 forceRecompute(0, *ParentVNI);
813 // If the last use is tied to a def, we can't mark it as live for the
814 // interval which includes only the use. That would cause the tied pair
815 // to end up in two different intervals.
816 if (auto *MI = LIS.getInstructionFromIndex(End))
817 if (hasTiedUseOf(*MI, Edit->getReg())) {
818 LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n");
819 return;
822 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
823 RegAssign.insert(Start, End, OpenIdx);
824 LLVM_DEBUG(dump());
827 //===----------------------------------------------------------------------===//
828 // Spill modes
829 //===----------------------------------------------------------------------===//
831 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
832 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
833 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
834 RegAssignMap::iterator AssignI;
835 AssignI.setMap(RegAssign);
837 for (const VNInfo *C : Copies) {
838 SlotIndex Def = C->def;
839 MachineInstr *MI = LIS.getInstructionFromIndex(Def);
840 assert(MI && "No instruction for back-copy");
842 MachineBasicBlock *MBB = MI->getParent();
843 MachineBasicBlock::iterator MBBI(MI);
844 bool AtBegin;
845 do AtBegin = MBBI == MBB->begin();
846 while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr());
848 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
849 LIS.removeVRegDefAt(*LI, Def);
850 LIS.RemoveMachineInstrFromMaps(*MI);
851 MI->eraseFromParent();
853 // Adjust RegAssign if a register assignment is killed at Def. We want to
854 // avoid calculating the live range of the source register if possible.
855 AssignI.find(Def.getPrevSlot());
856 if (!AssignI.valid() || AssignI.start() >= Def)
857 continue;
858 // If MI doesn't kill the assigned register, just leave it.
859 if (AssignI.stop() != Def)
860 continue;
861 unsigned RegIdx = AssignI.value();
862 // We could hoist back-copy right after another back-copy. As a result
863 // MMBI points to copy instruction which is actually dead now.
864 // We cannot set its stop to MBBI which will be the same as start and
865 // interval does not support that.
866 SlotIndex Kill =
867 AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot();
868 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) ||
869 Kill <= AssignI.start()) {
870 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx
871 << '\n');
872 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
873 } else {
874 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI);
875 AssignI.setStop(Kill);
880 MachineBasicBlock*
881 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
882 MachineBasicBlock *DefMBB) {
883 if (MBB == DefMBB)
884 return MBB;
885 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
887 const MachineLoopInfo &Loops = SA.Loops;
888 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
889 MachineDomTreeNode *DefDomNode = MDT[DefMBB];
891 // Best candidate so far.
892 MachineBasicBlock *BestMBB = MBB;
893 unsigned BestDepth = std::numeric_limits<unsigned>::max();
895 while (true) {
896 const MachineLoop *Loop = Loops.getLoopFor(MBB);
898 // MBB isn't in a loop, it doesn't get any better. All dominators have a
899 // higher frequency by definition.
900 if (!Loop) {
901 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
902 << " dominates " << printMBBReference(*MBB)
903 << " at depth 0\n");
904 return MBB;
907 // We'll never be able to exit the DefLoop.
908 if (Loop == DefLoop) {
909 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
910 << " dominates " << printMBBReference(*MBB)
911 << " in the same loop\n");
912 return MBB;
915 // Least busy dominator seen so far.
916 unsigned Depth = Loop->getLoopDepth();
917 if (Depth < BestDepth) {
918 BestMBB = MBB;
919 BestDepth = Depth;
920 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
921 << " dominates " << printMBBReference(*MBB)
922 << " at depth " << Depth << '\n');
925 // Leave loop by going to the immediate dominator of the loop header.
926 // This is a bigger stride than simply walking up the dominator tree.
927 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
929 // Too far up the dominator tree?
930 if (!IDom || !MDT.dominates(DefDomNode, IDom))
931 return BestMBB;
933 MBB = IDom->getBlock();
937 void SplitEditor::computeRedundantBackCopies(
938 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
939 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
940 LiveInterval *Parent = &Edit->getParent();
941 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
942 SmallPtrSet<VNInfo *, 8> DominatedVNIs;
944 // Aggregate VNIs having the same value as ParentVNI.
945 for (VNInfo *VNI : LI->valnos) {
946 if (VNI->isUnused())
947 continue;
948 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
949 EqualVNs[ParentVNI->id].insert(VNI);
952 // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
953 // redundant VNIs to BackCopies.
954 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
955 VNInfo *ParentVNI = Parent->getValNumInfo(i);
956 if (!NotToHoistSet.count(ParentVNI->id))
957 continue;
958 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
959 SmallPtrSetIterator<VNInfo *> It2 = It1;
960 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
961 It2 = It1;
962 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
963 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
964 continue;
966 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
967 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
968 if (MBB1 == MBB2) {
969 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
970 } else if (MDT.dominates(MBB1, MBB2)) {
971 DominatedVNIs.insert(*It2);
972 } else if (MDT.dominates(MBB2, MBB1)) {
973 DominatedVNIs.insert(*It1);
977 if (!DominatedVNIs.empty()) {
978 forceRecompute(0, *ParentVNI);
979 append_range(BackCopies, DominatedVNIs);
980 DominatedVNIs.clear();
985 /// For SM_Size mode, find a common dominator for all the back-copies for
986 /// the same ParentVNI and hoist the backcopies to the dominator BB.
987 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
988 /// to do the hoisting, simply remove the dominated backcopies for the same
989 /// ParentVNI.
990 void SplitEditor::hoistCopies() {
991 // Get the complement interval, always RegIdx 0.
992 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
993 LiveInterval *Parent = &Edit->getParent();
995 // Track the nearest common dominator for all back-copies for each ParentVNI,
996 // indexed by ParentVNI->id.
997 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
998 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
999 // The total cost of all the back-copies for each ParentVNI.
1000 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1001 // The ParentVNI->id set for which hoisting back-copies are not beneficial
1002 // for Speed.
1003 DenseSet<unsigned> NotToHoistSet;
1005 // Find the nearest common dominator for parent values with multiple
1006 // back-copies. If a single back-copy dominates, put it in DomPair.second.
1007 for (VNInfo *VNI : LI->valnos) {
1008 if (VNI->isUnused())
1009 continue;
1010 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1011 assert(ParentVNI && "Parent not live at complement def");
1013 // Don't hoist remats. The complement is probably going to disappear
1014 // completely anyway.
1015 if (Edit->didRematerialize(ParentVNI))
1016 continue;
1018 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1020 DomPair &Dom = NearestDom[ParentVNI->id];
1022 // Keep directly defined parent values. This is either a PHI or an
1023 // instruction in the complement range. All other copies of ParentVNI
1024 // should be eliminated.
1025 if (VNI->def == ParentVNI->def) {
1026 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1027 Dom = DomPair(ValMBB, VNI->def);
1028 continue;
1030 // Skip the singly mapped values. There is nothing to gain from hoisting a
1031 // single back-copy.
1032 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1033 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1034 continue;
1037 if (!Dom.first) {
1038 // First time we see ParentVNI. VNI dominates itself.
1039 Dom = DomPair(ValMBB, VNI->def);
1040 } else if (Dom.first == ValMBB) {
1041 // Two defs in the same block. Pick the earlier def.
1042 if (!Dom.second.isValid() || VNI->def < Dom.second)
1043 Dom.second = VNI->def;
1044 } else {
1045 // Different basic blocks. Check if one dominates.
1046 MachineBasicBlock *Near =
1047 MDT.findNearestCommonDominator(Dom.first, ValMBB);
1048 if (Near == ValMBB)
1049 // Def ValMBB dominates.
1050 Dom = DomPair(ValMBB, VNI->def);
1051 else if (Near != Dom.first)
1052 // None dominate. Hoist to common dominator, need new def.
1053 Dom = DomPair(Near, SlotIndex());
1054 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1057 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1058 << VNI->def << " for parent " << ParentVNI->id << '@'
1059 << ParentVNI->def << " hoist to "
1060 << printMBBReference(*Dom.first) << ' ' << Dom.second
1061 << '\n');
1064 // Insert the hoisted copies.
1065 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1066 DomPair &Dom = NearestDom[i];
1067 if (!Dom.first || Dom.second.isValid())
1068 continue;
1069 // This value needs a hoisted copy inserted at the end of Dom.first.
1070 VNInfo *ParentVNI = Parent->getValNumInfo(i);
1071 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1072 // Get a less loopy dominator than Dom.first.
1073 Dom.first = findShallowDominator(Dom.first, DefMBB);
1074 if (SpillMode == SM_Speed &&
1075 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1076 NotToHoistSet.insert(ParentVNI->id);
1077 continue;
1079 SlotIndex LSP = SA.getLastSplitPoint(Dom.first);
1080 if (LSP <= ParentVNI->def) {
1081 NotToHoistSet.insert(ParentVNI->id);
1082 continue;
1084 Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first,
1085 SA.getLastSplitPointIter(Dom.first))->def;
1088 // Remove redundant back-copies that are now known to be dominated by another
1089 // def with the same value.
1090 SmallVector<VNInfo*, 8> BackCopies;
1091 for (VNInfo *VNI : LI->valnos) {
1092 if (VNI->isUnused())
1093 continue;
1094 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1095 const DomPair &Dom = NearestDom[ParentVNI->id];
1096 if (!Dom.first || Dom.second == VNI->def ||
1097 NotToHoistSet.count(ParentVNI->id))
1098 continue;
1099 BackCopies.push_back(VNI);
1100 forceRecompute(0, *ParentVNI);
1103 // If it is not beneficial to hoist all the BackCopies, simply remove
1104 // redundant BackCopies in speed mode.
1105 if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1106 computeRedundantBackCopies(NotToHoistSet, BackCopies);
1108 removeBackCopies(BackCopies);
1111 /// transferValues - Transfer all possible values to the new live ranges.
1112 /// Values that were rematerialized are left alone, they need LICalc.extend().
1113 bool SplitEditor::transferValues() {
1114 bool Skipped = false;
1115 RegAssignMap::const_iterator AssignI = RegAssign.begin();
1116 for (const LiveRange::Segment &S : Edit->getParent()) {
1117 LLVM_DEBUG(dbgs() << " blit " << S << ':');
1118 VNInfo *ParentVNI = S.valno;
1119 // RegAssign has holes where RegIdx 0 should be used.
1120 SlotIndex Start = S.start;
1121 AssignI.advanceTo(Start);
1122 do {
1123 unsigned RegIdx;
1124 SlotIndex End = S.end;
1125 if (!AssignI.valid()) {
1126 RegIdx = 0;
1127 } else if (AssignI.start() <= Start) {
1128 RegIdx = AssignI.value();
1129 if (AssignI.stop() < End) {
1130 End = AssignI.stop();
1131 ++AssignI;
1133 } else {
1134 RegIdx = 0;
1135 End = std::min(End, AssignI.start());
1138 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1139 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1140 << printReg(Edit->get(RegIdx)) << ')');
1141 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1143 // Check for a simply defined value that can be blitted directly.
1144 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1145 if (VNInfo *VNI = VFP.getPointer()) {
1146 LLVM_DEBUG(dbgs() << ':' << VNI->id);
1147 LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1148 Start = End;
1149 continue;
1152 // Skip values with forced recomputation.
1153 if (VFP.getInt()) {
1154 LLVM_DEBUG(dbgs() << "(recalc)");
1155 Skipped = true;
1156 Start = End;
1157 continue;
1160 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1162 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1163 // so the live range is accurate. Add live-in blocks in [Start;End) to the
1164 // LiveInBlocks.
1165 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1166 SlotIndex BlockStart, BlockEnd;
1167 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1169 // The first block may be live-in, or it may have its own def.
1170 if (Start != BlockStart) {
1171 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1172 assert(VNI && "Missing def for complex mapped value");
1173 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1174 // MBB has its own def. Is it also live-out?
1175 if (BlockEnd <= End)
1176 LIC.setLiveOutValue(&*MBB, VNI);
1178 // Skip to the next block for live-in.
1179 ++MBB;
1180 BlockStart = BlockEnd;
1183 // Handle the live-in blocks covered by [Start;End).
1184 assert(Start <= BlockStart && "Expected live-in block");
1185 while (BlockStart < End) {
1186 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1187 BlockEnd = LIS.getMBBEndIdx(&*MBB);
1188 if (BlockStart == ParentVNI->def) {
1189 // This block has the def of a parent PHI, so it isn't live-in.
1190 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1191 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1192 assert(VNI && "Missing def for complex mapped parent PHI");
1193 if (End >= BlockEnd)
1194 LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1195 } else {
1196 // This block needs a live-in value. The last block covered may not
1197 // be live-out.
1198 if (End < BlockEnd)
1199 LIC.addLiveInBlock(LI, MDT[&*MBB], End);
1200 else {
1201 // Live-through, and we don't know the value.
1202 LIC.addLiveInBlock(LI, MDT[&*MBB]);
1203 LIC.setLiveOutValue(&*MBB, nullptr);
1206 BlockStart = BlockEnd;
1207 ++MBB;
1209 Start = End;
1210 } while (Start != S.end);
1211 LLVM_DEBUG(dbgs() << '\n');
1214 LICalc[0].calculateValues();
1215 if (SpillMode)
1216 LICalc[1].calculateValues();
1218 return Skipped;
1221 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1222 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1223 if (Seg == nullptr)
1224 return true;
1225 if (Seg->end != Def.getDeadSlot())
1226 return false;
1227 // This is a dead PHI. Remove it.
1228 LR.removeSegment(*Seg, true);
1229 return true;
1232 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1233 LiveRange &LR, LaneBitmask LM,
1234 ArrayRef<SlotIndex> Undefs) {
1235 for (MachineBasicBlock *P : B.predecessors()) {
1236 SlotIndex End = LIS.getMBBEndIdx(P);
1237 SlotIndex LastUse = End.getPrevSlot();
1238 // The predecessor may not have a live-out value. That is OK, like an
1239 // undef PHI operand.
1240 LiveInterval &PLI = Edit->getParent();
1241 // Need the cast because the inputs to ?: would otherwise be deemed
1242 // "incompatible": SubRange vs LiveInterval.
1243 LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI)
1244 : static_cast<LiveRange &>(PLI);
1245 if (PSR.liveAt(LastUse))
1246 LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
1250 void SplitEditor::extendPHIKillRanges() {
1251 // Extend live ranges to be live-out for successor PHI values.
1253 // Visit each PHI def slot in the parent live interval. If the def is dead,
1254 // remove it. Otherwise, extend the live interval to reach the end indexes
1255 // of all predecessor blocks.
1257 LiveInterval &ParentLI = Edit->getParent();
1258 for (const VNInfo *V : ParentLI.valnos) {
1259 if (V->isUnused() || !V->isPHIDef())
1260 continue;
1262 unsigned RegIdx = RegAssign.lookup(V->def);
1263 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1264 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1265 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1266 if (!removeDeadSegment(V->def, LI))
1267 extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1270 SmallVector<SlotIndex, 4> Undefs;
1271 LiveIntervalCalc SubLIC;
1273 for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
1274 for (const VNInfo *V : PS.valnos) {
1275 if (V->isUnused() || !V->isPHIDef())
1276 continue;
1277 unsigned RegIdx = RegAssign.lookup(V->def);
1278 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1279 LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI);
1280 if (removeDeadSegment(V->def, S))
1281 continue;
1283 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1284 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1285 &LIS.getVNInfoAllocator());
1286 Undefs.clear();
1287 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1288 extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
1293 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1294 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1295 struct ExtPoint {
1296 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1297 : MO(O), RegIdx(R), Next(N) {}
1299 MachineOperand MO;
1300 unsigned RegIdx;
1301 SlotIndex Next;
1304 SmallVector<ExtPoint,4> ExtPoints;
1306 for (MachineOperand &MO :
1307 llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) {
1308 MachineInstr *MI = MO.getParent();
1309 // LiveDebugVariables should have handled all DBG_VALUE instructions.
1310 if (MI->isDebugValue()) {
1311 LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1312 MO.setReg(0);
1313 continue;
1316 // <undef> operands don't really read the register, so it doesn't matter
1317 // which register we choose. When the use operand is tied to a def, we must
1318 // use the same register as the def, so just do that always.
1319 SlotIndex Idx = LIS.getInstructionIndex(*MI);
1320 if (MO.isDef() || MO.isUndef())
1321 Idx = Idx.getRegSlot(MO.isEarlyClobber());
1323 // Rewrite to the mapped register at Idx.
1324 unsigned RegIdx = RegAssign.lookup(Idx);
1325 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1326 MO.setReg(LI.reg());
1327 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent())
1328 << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1330 // Extend liveness to Idx if the instruction reads reg.
1331 if (!ExtendRanges || MO.isUndef())
1332 continue;
1334 // Skip instructions that don't read Reg.
1335 if (MO.isDef()) {
1336 if (!MO.getSubReg() && !MO.isEarlyClobber())
1337 continue;
1338 // We may want to extend a live range for a partial redef, or for a use
1339 // tied to an early clobber.
1340 Idx = Idx.getPrevSlot();
1341 if (!Edit->getParent().liveAt(Idx))
1342 continue;
1343 } else
1344 Idx = Idx.getRegSlot(true);
1346 SlotIndex Next = Idx.getNextSlot();
1347 if (LI.hasSubRanges()) {
1348 // We have to delay extending subranges until we have seen all operands
1349 // defining the register. This is because a <def,read-undef> operand
1350 // will create an "undef" point, and we cannot extend any subranges
1351 // until all of them have been accounted for.
1352 if (MO.isUse())
1353 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1354 } else {
1355 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1356 LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1360 for (ExtPoint &EP : ExtPoints) {
1361 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1362 assert(LI.hasSubRanges());
1364 LiveIntervalCalc SubLIC;
1365 Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1366 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1367 : MRI.getMaxLaneMaskForVReg(Reg);
1368 for (LiveInterval::SubRange &S : LI.subranges()) {
1369 if ((S.LaneMask & LM).none())
1370 continue;
1371 // The problem here can be that the new register may have been created
1372 // for a partially defined original register. For example:
1373 // %0:subreg_hireg<def,read-undef> = ...
1374 // ...
1375 // %1 = COPY %0
1376 if (S.empty())
1377 continue;
1378 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1379 &LIS.getVNInfoAllocator());
1380 SmallVector<SlotIndex, 4> Undefs;
1381 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1382 SubLIC.extend(S, EP.Next, 0, Undefs);
1386 for (Register R : *Edit) {
1387 LiveInterval &LI = LIS.getInterval(R);
1388 if (!LI.hasSubRanges())
1389 continue;
1390 LI.clear();
1391 LI.removeEmptySubRanges();
1392 LIS.constructMainRangeFromSubranges(LI);
1396 void SplitEditor::deleteRematVictims() {
1397 SmallVector<MachineInstr*, 8> Dead;
1398 for (const Register &R : *Edit) {
1399 LiveInterval *LI = &LIS.getInterval(R);
1400 for (const LiveRange::Segment &S : LI->segments) {
1401 // Dead defs end at the dead slot.
1402 if (S.end != S.valno->def.getDeadSlot())
1403 continue;
1404 if (S.valno->isPHIDef())
1405 continue;
1406 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1407 assert(MI && "Missing instruction for dead def");
1408 MI->addRegisterDead(LI->reg(), &TRI);
1410 if (!MI->allDefsAreDead())
1411 continue;
1413 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1414 Dead.push_back(MI);
1418 if (Dead.empty())
1419 return;
1421 Edit->eliminateDeadDefs(Dead, None, &AA);
1424 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1425 // Fast-path for common case.
1426 if (!ParentVNI.isPHIDef()) {
1427 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1428 forceRecompute(I, ParentVNI);
1429 return;
1432 // Trace value through phis.
1433 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1434 SmallVector<const VNInfo *, 4> WorkList;
1435 Visited.insert(&ParentVNI);
1436 WorkList.push_back(&ParentVNI);
1438 const LiveInterval &ParentLI = Edit->getParent();
1439 const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1440 do {
1441 const VNInfo &VNI = *WorkList.back();
1442 WorkList.pop_back();
1443 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1444 forceRecompute(I, VNI);
1445 if (!VNI.isPHIDef())
1446 continue;
1448 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1449 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1450 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1451 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1452 assert(PredVNI && "Value available in PhiVNI predecessor");
1453 if (Visited.insert(PredVNI).second)
1454 WorkList.push_back(PredVNI);
1456 } while(!WorkList.empty());
1459 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1460 ++NumFinished;
1462 // At this point, the live intervals in Edit contain VNInfos corresponding to
1463 // the inserted copies.
1465 // Add the original defs from the parent interval.
1466 for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1467 if (ParentVNI->isUnused())
1468 continue;
1469 unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1470 defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1472 // Force rematted values to be recomputed everywhere.
1473 // The new live ranges may be truncated.
1474 if (Edit->didRematerialize(ParentVNI))
1475 forceRecomputeVNI(*ParentVNI);
1478 // Hoist back-copies to the complement interval when in spill mode.
1479 switch (SpillMode) {
1480 case SM_Partition:
1481 // Leave all back-copies as is.
1482 break;
1483 case SM_Size:
1484 case SM_Speed:
1485 // hoistCopies will behave differently between size and speed.
1486 hoistCopies();
1489 // Transfer the simply mapped values, check if any are skipped.
1490 bool Skipped = transferValues();
1492 // Rewrite virtual registers, possibly extending ranges.
1493 rewriteAssigned(Skipped);
1495 if (Skipped)
1496 extendPHIKillRanges();
1497 else
1498 ++NumSimple;
1500 // Delete defs that were rematted everywhere.
1501 if (Skipped)
1502 deleteRematVictims();
1504 // Get rid of unused values and set phi-kill flags.
1505 for (Register Reg : *Edit) {
1506 LiveInterval &LI = LIS.getInterval(Reg);
1507 LI.removeEmptySubRanges();
1508 LI.RenumberValues();
1511 // Provide a reverse mapping from original indices to Edit ranges.
1512 if (LRMap) {
1513 LRMap->clear();
1514 for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1515 LRMap->push_back(i);
1518 // Now check if any registers were separated into multiple components.
1519 ConnectedVNInfoEqClasses ConEQ(LIS);
1520 for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1521 // Don't use iterators, they are invalidated by create() below.
1522 Register VReg = Edit->get(i);
1523 LiveInterval &LI = LIS.getInterval(VReg);
1524 SmallVector<LiveInterval*, 8> SplitLIs;
1525 LIS.splitSeparateComponents(LI, SplitLIs);
1526 Register Original = VRM.getOriginal(VReg);
1527 for (LiveInterval *SplitLI : SplitLIs)
1528 VRM.setIsSplitFromReg(SplitLI->reg(), Original);
1530 // The new intervals all map back to i.
1531 if (LRMap)
1532 LRMap->resize(Edit->size(), i);
1535 // Calculate spill weight and allocation hints for new intervals.
1536 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI);
1538 assert(!LRMap || LRMap->size() == Edit->size());
1541 //===----------------------------------------------------------------------===//
1542 // Single Block Splitting
1543 //===----------------------------------------------------------------------===//
1545 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1546 bool SingleInstrs) const {
1547 // Always split for multiple instructions.
1548 if (!BI.isOneInstr())
1549 return true;
1550 // Don't split for single instructions unless explicitly requested.
1551 if (!SingleInstrs)
1552 return false;
1553 // Splitting a live-through range always makes progress.
1554 if (BI.LiveIn && BI.LiveOut)
1555 return true;
1556 // No point in isolating a copy. It has no register class constraints.
1557 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1558 return false;
1559 // Finally, don't isolate an end point that was created by earlier splits.
1560 return isOriginalEndpoint(BI.FirstInstr);
1563 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1564 openIntv();
1565 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB);
1566 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1567 LastSplitPoint));
1568 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1569 useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1570 } else {
1571 // The last use is after the last valid split point.
1572 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1573 useIntv(SegStart, SegStop);
1574 overlapIntv(SegStop, BI.LastInstr);
1578 //===----------------------------------------------------------------------===//
1579 // Global Live Range Splitting Support
1580 //===----------------------------------------------------------------------===//
1582 // These methods support a method of global live range splitting that uses a
1583 // global algorithm to decide intervals for CFG edges. They will insert split
1584 // points and color intervals in basic blocks while avoiding interference.
1586 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1587 // are on the stack.
1589 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1590 unsigned IntvIn, SlotIndex LeaveBefore,
1591 unsigned IntvOut, SlotIndex EnterAfter){
1592 SlotIndex Start, Stop;
1593 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1595 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1596 << ") intf " << LeaveBefore << '-' << EnterAfter
1597 << ", live-through " << IntvIn << " -> " << IntvOut);
1599 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1601 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1602 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1603 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1605 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1607 if (!IntvOut) {
1608 LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1610 // <<<<<<<<< Possible LeaveBefore interference.
1611 // |-----------| Live through.
1612 // -____________ Spill on entry.
1614 selectIntv(IntvIn);
1615 SlotIndex Idx = leaveIntvAtTop(*MBB);
1616 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1617 (void)Idx;
1618 return;
1621 if (!IntvIn) {
1622 LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1624 // >>>>>>> Possible EnterAfter interference.
1625 // |-----------| Live through.
1626 // ___________-- Reload on exit.
1628 selectIntv(IntvOut);
1629 SlotIndex Idx = enterIntvAtEnd(*MBB);
1630 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1631 (void)Idx;
1632 return;
1635 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1636 LLVM_DEBUG(dbgs() << ", straight through.\n");
1638 // |-----------| Live through.
1639 // ------------- Straight through, same intv, no interference.
1641 selectIntv(IntvOut);
1642 useIntv(Start, Stop);
1643 return;
1646 // We cannot legally insert splits after LSP.
1647 SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1648 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1650 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1651 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1652 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1654 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
1655 // |-----------| Live through.
1656 // ------======= Switch intervals between interference.
1658 selectIntv(IntvOut);
1659 SlotIndex Idx;
1660 if (LeaveBefore && LeaveBefore < LSP) {
1661 Idx = enterIntvBefore(LeaveBefore);
1662 useIntv(Idx, Stop);
1663 } else {
1664 Idx = enterIntvAtEnd(*MBB);
1666 selectIntv(IntvIn);
1667 useIntv(Start, Idx);
1668 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1669 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1670 return;
1673 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1675 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
1676 // |-----------| Live through.
1677 // ==---------== Switch intervals before/after interference.
1679 assert(LeaveBefore <= EnterAfter && "Missed case");
1681 selectIntv(IntvOut);
1682 SlotIndex Idx = enterIntvAfter(EnterAfter);
1683 useIntv(Idx, Stop);
1684 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1686 selectIntv(IntvIn);
1687 Idx = leaveIntvBefore(LeaveBefore);
1688 useIntv(Start, Idx);
1689 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1692 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1693 unsigned IntvIn, SlotIndex LeaveBefore) {
1694 SlotIndex Start, Stop;
1695 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1697 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1698 << Stop << "), uses " << BI.FirstInstr << '-'
1699 << BI.LastInstr << ", reg-in " << IntvIn
1700 << ", leave before " << LeaveBefore
1701 << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1703 assert(IntvIn && "Must have register in");
1704 assert(BI.LiveIn && "Must be live-in");
1705 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1707 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1708 LLVM_DEBUG(dbgs() << " before interference.\n");
1710 // <<< Interference after kill.
1711 // |---o---x | Killed in block.
1712 // ========= Use IntvIn everywhere.
1714 selectIntv(IntvIn);
1715 useIntv(Start, BI.LastInstr);
1716 return;
1719 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1721 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1723 // <<< Possible interference after last use.
1724 // |---o---o---| Live-out on stack.
1725 // =========____ Leave IntvIn after last use.
1727 // < Interference after last use.
1728 // |---o---o--o| Live-out on stack, late last use.
1729 // ============ Copy to stack after LSP, overlap IntvIn.
1730 // \_____ Stack interval is live-out.
1732 if (BI.LastInstr < LSP) {
1733 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1734 selectIntv(IntvIn);
1735 SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1736 useIntv(Start, Idx);
1737 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1738 } else {
1739 LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1740 selectIntv(IntvIn);
1741 SlotIndex Idx = leaveIntvBefore(LSP);
1742 overlapIntv(Idx, BI.LastInstr);
1743 useIntv(Start, Idx);
1744 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1746 return;
1749 // The interference is overlapping somewhere we wanted to use IntvIn. That
1750 // means we need to create a local interval that can be allocated a
1751 // different register.
1752 unsigned LocalIntv = openIntv();
1753 (void)LocalIntv;
1754 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1756 if (!BI.LiveOut || BI.LastInstr < LSP) {
1758 // <<<<<<< Interference overlapping uses.
1759 // |---o---o---| Live-out on stack.
1760 // =====----____ Leave IntvIn before interference, then spill.
1762 SlotIndex To = leaveIntvAfter(BI.LastInstr);
1763 SlotIndex From = enterIntvBefore(LeaveBefore);
1764 useIntv(From, To);
1765 selectIntv(IntvIn);
1766 useIntv(Start, From);
1767 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1768 return;
1771 // <<<<<<< Interference overlapping uses.
1772 // |---o---o--o| Live-out on stack, late last use.
1773 // =====------- Copy to stack before LSP, overlap LocalIntv.
1774 // \_____ Stack interval is live-out.
1776 SlotIndex To = leaveIntvBefore(LSP);
1777 overlapIntv(To, BI.LastInstr);
1778 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1779 useIntv(From, To);
1780 selectIntv(IntvIn);
1781 useIntv(Start, From);
1782 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1785 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1786 unsigned IntvOut, SlotIndex EnterAfter) {
1787 SlotIndex Start, Stop;
1788 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1790 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1791 << Stop << "), uses " << BI.FirstInstr << '-'
1792 << BI.LastInstr << ", reg-out " << IntvOut
1793 << ", enter after " << EnterAfter
1794 << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1796 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1798 assert(IntvOut && "Must have register out");
1799 assert(BI.LiveOut && "Must be live-out");
1800 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1802 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1803 LLVM_DEBUG(dbgs() << " after interference.\n");
1805 // >>>> Interference before def.
1806 // | o---o---| Defined in block.
1807 // ========= Use IntvOut everywhere.
1809 selectIntv(IntvOut);
1810 useIntv(BI.FirstInstr, Stop);
1811 return;
1814 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1815 LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1817 // >>>> Interference before def.
1818 // |---o---o---| Live-through, stack-in.
1819 // ____========= Enter IntvOut before first use.
1821 selectIntv(IntvOut);
1822 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1823 useIntv(Idx, Stop);
1824 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1825 return;
1828 // The interference is overlapping somewhere we wanted to use IntvOut. That
1829 // means we need to create a local interval that can be allocated a
1830 // different register.
1831 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1833 // >>>>>>> Interference overlapping uses.
1834 // |---o---o---| Live-through, stack-in.
1835 // ____---====== Create local interval for interference range.
1837 selectIntv(IntvOut);
1838 SlotIndex Idx = enterIntvAfter(EnterAfter);
1839 useIntv(Idx, Stop);
1840 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1842 openIntv();
1843 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1844 useIntv(From, Idx);
1847 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const {
1848 OS << "{" << printMBBReference(*MBB) << ", "
1849 << "uses " << FirstInstr << " to " << LastInstr << ", "
1850 << "1st def " << FirstDef << ", "
1851 << (LiveIn ? "live in" : "dead in") << ", "
1852 << (LiveOut ? "live out" : "dead out") << "}";
1855 void SplitAnalysis::BlockInfo::dump() const {
1856 print(dbgs());
1857 dbgs() << "\n";