[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / CodeGen / StackProtector.cpp
blob6765fd2746864f4a92bf11904758de8f8ecb3e6a
1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass inserts stack protectors into functions which need them. A variable
10 // with a random value in it is stored onto the stack before the local variables
11 // are allocated. Upon exiting the block, the stored value is checked. If it's
12 // changed, then there was some sort of violation and the program aborts.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/CodeGen/StackProtector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Target/TargetMachine.h"
50 #include "llvm/Target/TargetOptions.h"
51 #include <utility>
53 using namespace llvm;
55 #define DEBUG_TYPE "stack-protector"
57 STATISTIC(NumFunProtected, "Number of functions protected");
58 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
59 " taken.");
61 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
62 cl::init(true), cl::Hidden);
64 char StackProtector::ID = 0;
66 StackProtector::StackProtector() : FunctionPass(ID), SSPBufferSize(8) {
67 initializeStackProtectorPass(*PassRegistry::getPassRegistry());
70 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
71 "Insert stack protectors", false, true)
72 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
73 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
74 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
75 "Insert stack protectors", false, true)
77 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
79 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
80 AU.addRequired<TargetPassConfig>();
81 AU.addPreserved<DominatorTreeWrapperPass>();
84 bool StackProtector::runOnFunction(Function &Fn) {
85 F = &Fn;
86 M = F->getParent();
87 DominatorTreeWrapperPass *DTWP =
88 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
89 DT = DTWP ? &DTWP->getDomTree() : nullptr;
90 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
91 Trip = TM->getTargetTriple();
92 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
93 HasPrologue = false;
94 HasIRCheck = false;
96 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
97 if (Attr.isStringAttribute() &&
98 Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
99 return false; // Invalid integer string
101 if (!RequiresStackProtector())
102 return false;
104 // TODO(etienneb): Functions with funclets are not correctly supported now.
105 // Do nothing if this is funclet-based personality.
106 if (Fn.hasPersonalityFn()) {
107 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
108 if (isFuncletEHPersonality(Personality))
109 return false;
112 ++NumFunProtected;
113 return InsertStackProtectors();
116 /// \param [out] IsLarge is set to true if a protectable array is found and
117 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with
118 /// multiple arrays, this gets set if any of them is large.
119 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
120 bool Strong,
121 bool InStruct) const {
122 if (!Ty)
123 return false;
124 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
125 if (!AT->getElementType()->isIntegerTy(8)) {
126 // If we're on a non-Darwin platform or we're inside of a structure, don't
127 // add stack protectors unless the array is a character array.
128 // However, in strong mode any array, regardless of type and size,
129 // triggers a protector.
130 if (!Strong && (InStruct || !Trip.isOSDarwin()))
131 return false;
134 // If an array has more than SSPBufferSize bytes of allocated space, then we
135 // emit stack protectors.
136 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
137 IsLarge = true;
138 return true;
141 if (Strong)
142 // Require a protector for all arrays in strong mode
143 return true;
146 const StructType *ST = dyn_cast<StructType>(Ty);
147 if (!ST)
148 return false;
150 bool NeedsProtector = false;
151 for (Type *ET : ST->elements())
152 if (ContainsProtectableArray(ET, IsLarge, Strong, true)) {
153 // If the element is a protectable array and is large (>= SSPBufferSize)
154 // then we are done. If the protectable array is not large, then
155 // keep looking in case a subsequent element is a large array.
156 if (IsLarge)
157 return true;
158 NeedsProtector = true;
161 return NeedsProtector;
164 bool StackProtector::HasAddressTaken(const Instruction *AI,
165 TypeSize AllocSize) {
166 const DataLayout &DL = M->getDataLayout();
167 for (const User *U : AI->users()) {
168 const auto *I = cast<Instruction>(U);
169 // If this instruction accesses memory make sure it doesn't access beyond
170 // the bounds of the allocated object.
171 Optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I);
172 if (MemLoc.hasValue() && MemLoc->Size.hasValue() &&
173 !TypeSize::isKnownGE(AllocSize,
174 TypeSize::getFixed(MemLoc->Size.getValue())))
175 return true;
176 switch (I->getOpcode()) {
177 case Instruction::Store:
178 if (AI == cast<StoreInst>(I)->getValueOperand())
179 return true;
180 break;
181 case Instruction::AtomicCmpXchg:
182 // cmpxchg conceptually includes both a load and store from the same
183 // location. So, like store, the value being stored is what matters.
184 if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand())
185 return true;
186 break;
187 case Instruction::PtrToInt:
188 if (AI == cast<PtrToIntInst>(I)->getOperand(0))
189 return true;
190 break;
191 case Instruction::Call: {
192 // Ignore intrinsics that do not become real instructions.
193 // TODO: Narrow this to intrinsics that have store-like effects.
194 const auto *CI = cast<CallInst>(I);
195 if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd())
196 return true;
197 break;
199 case Instruction::Invoke:
200 return true;
201 case Instruction::GetElementPtr: {
202 // If the GEP offset is out-of-bounds, or is non-constant and so has to be
203 // assumed to be potentially out-of-bounds, then any memory access that
204 // would use it could also be out-of-bounds meaning stack protection is
205 // required.
206 const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
207 unsigned IndexSize = DL.getIndexTypeSizeInBits(I->getType());
208 APInt Offset(IndexSize, 0);
209 if (!GEP->accumulateConstantOffset(DL, Offset))
210 return true;
211 TypeSize OffsetSize = TypeSize::Fixed(Offset.getLimitedValue());
212 if (!TypeSize::isKnownGT(AllocSize, OffsetSize))
213 return true;
214 // Adjust AllocSize to be the space remaining after this offset.
215 // We can't subtract a fixed size from a scalable one, so in that case
216 // assume the scalable value is of minimum size.
217 TypeSize NewAllocSize =
218 TypeSize::Fixed(AllocSize.getKnownMinValue()) - OffsetSize;
219 if (HasAddressTaken(I, NewAllocSize))
220 return true;
221 break;
223 case Instruction::BitCast:
224 case Instruction::Select:
225 case Instruction::AddrSpaceCast:
226 if (HasAddressTaken(I, AllocSize))
227 return true;
228 break;
229 case Instruction::PHI: {
230 // Keep track of what PHI nodes we have already visited to ensure
231 // they are only visited once.
232 const auto *PN = cast<PHINode>(I);
233 if (VisitedPHIs.insert(PN).second)
234 if (HasAddressTaken(PN, AllocSize))
235 return true;
236 break;
238 case Instruction::Load:
239 case Instruction::AtomicRMW:
240 case Instruction::Ret:
241 // These instructions take an address operand, but have load-like or
242 // other innocuous behavior that should not trigger a stack protector.
243 // atomicrmw conceptually has both load and store semantics, but the
244 // value being stored must be integer; so if a pointer is being stored,
245 // we'll catch it in the PtrToInt case above.
246 break;
247 default:
248 // Conservatively return true for any instruction that takes an address
249 // operand, but is not handled above.
250 return true;
253 return false;
256 /// Search for the first call to the llvm.stackprotector intrinsic and return it
257 /// if present.
258 static const CallInst *findStackProtectorIntrinsic(Function &F) {
259 for (const BasicBlock &BB : F)
260 for (const Instruction &I : BB)
261 if (const auto *II = dyn_cast<IntrinsicInst>(&I))
262 if (II->getIntrinsicID() == Intrinsic::stackprotector)
263 return II;
264 return nullptr;
267 /// Check whether or not this function needs a stack protector based
268 /// upon the stack protector level.
270 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
271 /// The standard heuristic which will add a guard variable to functions that
272 /// call alloca with a either a variable size or a size >= SSPBufferSize,
273 /// functions with character buffers larger than SSPBufferSize, and functions
274 /// with aggregates containing character buffers larger than SSPBufferSize. The
275 /// strong heuristic will add a guard variables to functions that call alloca
276 /// regardless of size, functions with any buffer regardless of type and size,
277 /// functions with aggregates that contain any buffer regardless of type and
278 /// size, and functions that contain stack-based variables that have had their
279 /// address taken.
280 bool StackProtector::RequiresStackProtector() {
281 bool Strong = false;
282 bool NeedsProtector = false;
284 if (F->hasFnAttribute(Attribute::SafeStack))
285 return false;
287 // We are constructing the OptimizationRemarkEmitter on the fly rather than
288 // using the analysis pass to avoid building DominatorTree and LoopInfo which
289 // are not available this late in the IR pipeline.
290 OptimizationRemarkEmitter ORE(F);
292 if (F->hasFnAttribute(Attribute::StackProtectReq)) {
293 ORE.emit([&]() {
294 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
295 << "Stack protection applied to function "
296 << ore::NV("Function", F)
297 << " due to a function attribute or command-line switch";
299 NeedsProtector = true;
300 Strong = true; // Use the same heuristic as strong to determine SSPLayout
301 } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
302 Strong = true;
303 else if (!F->hasFnAttribute(Attribute::StackProtect))
304 return false;
306 for (const BasicBlock &BB : *F) {
307 for (const Instruction &I : BB) {
308 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
309 if (AI->isArrayAllocation()) {
310 auto RemarkBuilder = [&]() {
311 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
313 << "Stack protection applied to function "
314 << ore::NV("Function", F)
315 << " due to a call to alloca or use of a variable length "
316 "array";
318 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
319 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
320 // A call to alloca with size >= SSPBufferSize requires
321 // stack protectors.
322 Layout.insert(std::make_pair(AI,
323 MachineFrameInfo::SSPLK_LargeArray));
324 ORE.emit(RemarkBuilder);
325 NeedsProtector = true;
326 } else if (Strong) {
327 // Require protectors for all alloca calls in strong mode.
328 Layout.insert(std::make_pair(AI,
329 MachineFrameInfo::SSPLK_SmallArray));
330 ORE.emit(RemarkBuilder);
331 NeedsProtector = true;
333 } else {
334 // A call to alloca with a variable size requires protectors.
335 Layout.insert(std::make_pair(AI,
336 MachineFrameInfo::SSPLK_LargeArray));
337 ORE.emit(RemarkBuilder);
338 NeedsProtector = true;
340 continue;
343 bool IsLarge = false;
344 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
345 Layout.insert(std::make_pair(AI, IsLarge
346 ? MachineFrameInfo::SSPLK_LargeArray
347 : MachineFrameInfo::SSPLK_SmallArray));
348 ORE.emit([&]() {
349 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
350 << "Stack protection applied to function "
351 << ore::NV("Function", F)
352 << " due to a stack allocated buffer or struct containing a "
353 "buffer";
355 NeedsProtector = true;
356 continue;
359 if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize(
360 AI->getAllocatedType()))) {
361 ++NumAddrTaken;
362 Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
363 ORE.emit([&]() {
364 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
366 << "Stack protection applied to function "
367 << ore::NV("Function", F)
368 << " due to the address of a local variable being taken";
370 NeedsProtector = true;
372 // Clear any PHIs that we visited, to make sure we examine all uses of
373 // any subsequent allocas that we look at.
374 VisitedPHIs.clear();
379 return NeedsProtector;
382 /// Create a stack guard loading and populate whether SelectionDAG SSP is
383 /// supported.
384 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
385 IRBuilder<> &B,
386 bool *SupportsSelectionDAGSP = nullptr) {
387 Value *Guard = TLI->getIRStackGuard(B);
388 StringRef GuardMode = M->getStackProtectorGuard();
389 if ((GuardMode == "tls" || GuardMode.empty()) && Guard)
390 return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard");
392 // Use SelectionDAG SSP handling, since there isn't an IR guard.
394 // This is more or less weird, since we optionally output whether we
395 // should perform a SelectionDAG SP here. The reason is that it's strictly
396 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
397 // mutating. There is no way to get this bit without mutating the IR, so
398 // getting this bit has to happen in this right time.
400 // We could have define a new function TLI::supportsSelectionDAGSP(), but that
401 // will put more burden on the backends' overriding work, especially when it
402 // actually conveys the same information getIRStackGuard() already gives.
403 if (SupportsSelectionDAGSP)
404 *SupportsSelectionDAGSP = true;
405 TLI->insertSSPDeclarations(*M);
406 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
409 /// Insert code into the entry block that stores the stack guard
410 /// variable onto the stack:
412 /// entry:
413 /// StackGuardSlot = alloca i8*
414 /// StackGuard = <stack guard>
415 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot)
417 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
418 /// node.
419 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
420 const TargetLoweringBase *TLI, AllocaInst *&AI) {
421 bool SupportsSelectionDAGSP = false;
422 IRBuilder<> B(&F->getEntryBlock().front());
423 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
424 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
426 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
427 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
428 {GuardSlot, AI});
429 return SupportsSelectionDAGSP;
432 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
433 /// function.
435 /// - The prologue code loads and stores the stack guard onto the stack.
436 /// - The epilogue checks the value stored in the prologue against the original
437 /// value. It calls __stack_chk_fail if they differ.
438 bool StackProtector::InsertStackProtectors() {
439 // If the target wants to XOR the frame pointer into the guard value, it's
440 // impossible to emit the check in IR, so the target *must* support stack
441 // protection in SDAG.
442 bool SupportsSelectionDAGSP =
443 TLI->useStackGuardXorFP() ||
444 (EnableSelectionDAGSP && !TM->Options.EnableFastISel);
445 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
447 for (BasicBlock &BB : llvm::make_early_inc_range(*F)) {
448 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
449 if (!RI)
450 continue;
452 // Generate prologue instrumentation if not already generated.
453 if (!HasPrologue) {
454 HasPrologue = true;
455 SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI);
458 // SelectionDAG based code generation. Nothing else needs to be done here.
459 // The epilogue instrumentation is postponed to SelectionDAG.
460 if (SupportsSelectionDAGSP)
461 break;
463 // Find the stack guard slot if the prologue was not created by this pass
464 // itself via a previous call to CreatePrologue().
465 if (!AI) {
466 const CallInst *SPCall = findStackProtectorIntrinsic(*F);
467 assert(SPCall && "Call to llvm.stackprotector is missing");
468 AI = cast<AllocaInst>(SPCall->getArgOperand(1));
471 // Set HasIRCheck to true, so that SelectionDAG will not generate its own
472 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
473 // instrumentation has already been generated.
474 HasIRCheck = true;
476 // If we're instrumenting a block with a musttail call, the check has to be
477 // inserted before the call rather than between it and the return. The
478 // verifier guarantees that a musttail call is either directly before the
479 // return or with a single correct bitcast of the return value in between so
480 // we don't need to worry about many situations here.
481 Instruction *CheckLoc = RI;
482 Instruction *Prev = RI->getPrevNonDebugInstruction();
483 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall())
484 CheckLoc = Prev;
485 else if (Prev) {
486 Prev = Prev->getPrevNonDebugInstruction();
487 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall())
488 CheckLoc = Prev;
491 // Generate epilogue instrumentation. The epilogue intrumentation can be
492 // function-based or inlined depending on which mechanism the target is
493 // providing.
494 if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
495 // Generate the function-based epilogue instrumentation.
496 // The target provides a guard check function, generate a call to it.
497 IRBuilder<> B(CheckLoc);
498 LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard");
499 CallInst *Call = B.CreateCall(GuardCheck, {Guard});
500 Call->setAttributes(GuardCheck->getAttributes());
501 Call->setCallingConv(GuardCheck->getCallingConv());
502 } else {
503 // Generate the epilogue with inline instrumentation.
504 // If we do not support SelectionDAG based calls, generate IR level
505 // calls.
507 // For each block with a return instruction, convert this:
509 // return:
510 // ...
511 // ret ...
513 // into this:
515 // return:
516 // ...
517 // %1 = <stack guard>
518 // %2 = load StackGuardSlot
519 // %3 = cmp i1 %1, %2
520 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk
522 // SP_return:
523 // ret ...
525 // CallStackCheckFailBlk:
526 // call void @__stack_chk_fail()
527 // unreachable
529 // Create the FailBB. We duplicate the BB every time since the MI tail
530 // merge pass will merge together all of the various BB into one including
531 // fail BB generated by the stack protector pseudo instruction.
532 BasicBlock *FailBB = CreateFailBB();
534 // Split the basic block before the return instruction.
535 BasicBlock *NewBB =
536 BB.splitBasicBlock(CheckLoc->getIterator(), "SP_return");
538 // Update the dominator tree if we need to.
539 if (DT && DT->isReachableFromEntry(&BB)) {
540 DT->addNewBlock(NewBB, &BB);
541 DT->addNewBlock(FailBB, &BB);
544 // Remove default branch instruction to the new BB.
545 BB.getTerminator()->eraseFromParent();
547 // Move the newly created basic block to the point right after the old
548 // basic block so that it's in the "fall through" position.
549 NewBB->moveAfter(&BB);
551 // Generate the stack protector instructions in the old basic block.
552 IRBuilder<> B(&BB);
553 Value *Guard = getStackGuard(TLI, M, B);
554 LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true);
555 Value *Cmp = B.CreateICmpEQ(Guard, LI2);
556 auto SuccessProb =
557 BranchProbabilityInfo::getBranchProbStackProtector(true);
558 auto FailureProb =
559 BranchProbabilityInfo::getBranchProbStackProtector(false);
560 MDNode *Weights = MDBuilder(F->getContext())
561 .createBranchWeights(SuccessProb.getNumerator(),
562 FailureProb.getNumerator());
563 B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
567 // Return if we didn't modify any basic blocks. i.e., there are no return
568 // statements in the function.
569 return HasPrologue;
572 /// CreateFailBB - Create a basic block to jump to when the stack protector
573 /// check fails.
574 BasicBlock *StackProtector::CreateFailBB() {
575 LLVMContext &Context = F->getContext();
576 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
577 IRBuilder<> B(FailBB);
578 if (F->getSubprogram())
579 B.SetCurrentDebugLocation(
580 DILocation::get(Context, 0, 0, F->getSubprogram()));
581 if (Trip.isOSOpenBSD()) {
582 FunctionCallee StackChkFail = M->getOrInsertFunction(
583 "__stack_smash_handler", Type::getVoidTy(Context),
584 Type::getInt8PtrTy(Context));
586 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
587 } else {
588 FunctionCallee StackChkFail =
589 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
591 B.CreateCall(StackChkFail, {});
593 B.CreateUnreachable();
594 return FailBB;
597 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
598 return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator());
601 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
602 if (Layout.empty())
603 return;
605 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
606 if (MFI.isDeadObjectIndex(I))
607 continue;
609 const AllocaInst *AI = MFI.getObjectAllocation(I);
610 if (!AI)
611 continue;
613 SSPLayoutMap::const_iterator LI = Layout.find(AI);
614 if (LI == Layout.end())
615 continue;
617 MFI.setObjectSSPLayout(I, LI->second);