[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / CodeGen / TargetLoweringBase.cpp
blobab574232e36777cbf9447753f6d02f6aa4b7daca
1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/ISDOpcodes.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/RuntimeLibcalls.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MachineValueType.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include "llvm/Target/TargetOptions.h"
56 #include "llvm/Transforms/Utils/SizeOpts.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstddef>
60 #include <cstdint>
61 #include <cstring>
62 #include <iterator>
63 #include <string>
64 #include <tuple>
65 #include <utility>
67 using namespace llvm;
69 static cl::opt<bool> JumpIsExpensiveOverride(
70 "jump-is-expensive", cl::init(false),
71 cl::desc("Do not create extra branches to split comparison logic."),
72 cl::Hidden);
74 static cl::opt<unsigned> MinimumJumpTableEntries
75 ("min-jump-table-entries", cl::init(4), cl::Hidden,
76 cl::desc("Set minimum number of entries to use a jump table."));
78 static cl::opt<unsigned> MaximumJumpTableSize
79 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
80 cl::desc("Set maximum size of jump tables."));
82 /// Minimum jump table density for normal functions.
83 static cl::opt<unsigned>
84 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
85 cl::desc("Minimum density for building a jump table in "
86 "a normal function"));
88 /// Minimum jump table density for -Os or -Oz functions.
89 static cl::opt<unsigned> OptsizeJumpTableDensity(
90 "optsize-jump-table-density", cl::init(40), cl::Hidden,
91 cl::desc("Minimum density for building a jump table in "
92 "an optsize function"));
94 // FIXME: This option is only to test if the strict fp operation processed
95 // correctly by preventing mutating strict fp operation to normal fp operation
96 // during development. When the backend supports strict float operation, this
97 // option will be meaningless.
98 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
99 cl::desc("Don't mutate strict-float node to a legalize node"),
100 cl::init(false), cl::Hidden);
102 static bool darwinHasSinCos(const Triple &TT) {
103 assert(TT.isOSDarwin() && "should be called with darwin triple");
104 // Don't bother with 32 bit x86.
105 if (TT.getArch() == Triple::x86)
106 return false;
107 // Macos < 10.9 has no sincos_stret.
108 if (TT.isMacOSX())
109 return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
110 // iOS < 7.0 has no sincos_stret.
111 if (TT.isiOS())
112 return !TT.isOSVersionLT(7, 0);
113 // Any other darwin such as WatchOS/TvOS is new enough.
114 return true;
117 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
118 #define HANDLE_LIBCALL(code, name) \
119 setLibcallName(RTLIB::code, name);
120 #include "llvm/IR/RuntimeLibcalls.def"
121 #undef HANDLE_LIBCALL
122 // Initialize calling conventions to their default.
123 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
124 setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
126 // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
127 if (TT.isPPC()) {
128 setLibcallName(RTLIB::ADD_F128, "__addkf3");
129 setLibcallName(RTLIB::SUB_F128, "__subkf3");
130 setLibcallName(RTLIB::MUL_F128, "__mulkf3");
131 setLibcallName(RTLIB::DIV_F128, "__divkf3");
132 setLibcallName(RTLIB::POWI_F128, "__powikf2");
133 setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
134 setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
135 setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
136 setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
137 setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
138 setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
139 setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti");
140 setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
141 setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
142 setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti");
143 setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
144 setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
145 setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf");
146 setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
147 setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
148 setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf");
149 setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
150 setLibcallName(RTLIB::UNE_F128, "__nekf2");
151 setLibcallName(RTLIB::OGE_F128, "__gekf2");
152 setLibcallName(RTLIB::OLT_F128, "__ltkf2");
153 setLibcallName(RTLIB::OLE_F128, "__lekf2");
154 setLibcallName(RTLIB::OGT_F128, "__gtkf2");
155 setLibcallName(RTLIB::UO_F128, "__unordkf2");
158 // A few names are different on particular architectures or environments.
159 if (TT.isOSDarwin()) {
160 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
161 // of the gnueabi-style __gnu_*_ieee.
162 // FIXME: What about other targets?
163 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
164 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
166 // Some darwins have an optimized __bzero/bzero function.
167 switch (TT.getArch()) {
168 case Triple::x86:
169 case Triple::x86_64:
170 if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
171 setLibcallName(RTLIB::BZERO, "__bzero");
172 break;
173 case Triple::aarch64:
174 case Triple::aarch64_32:
175 setLibcallName(RTLIB::BZERO, "bzero");
176 break;
177 default:
178 break;
181 if (darwinHasSinCos(TT)) {
182 setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
183 setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
184 if (TT.isWatchABI()) {
185 setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
186 CallingConv::ARM_AAPCS_VFP);
187 setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
188 CallingConv::ARM_AAPCS_VFP);
191 } else {
192 setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
193 setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
196 if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
197 (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
198 setLibcallName(RTLIB::SINCOS_F32, "sincosf");
199 setLibcallName(RTLIB::SINCOS_F64, "sincos");
200 setLibcallName(RTLIB::SINCOS_F80, "sincosl");
201 setLibcallName(RTLIB::SINCOS_F128, "sincosl");
202 setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
205 if (TT.isPS4CPU()) {
206 setLibcallName(RTLIB::SINCOS_F32, "sincosf");
207 setLibcallName(RTLIB::SINCOS_F64, "sincos");
210 if (TT.isOSOpenBSD()) {
211 setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
215 /// GetFPLibCall - Helper to return the right libcall for the given floating
216 /// point type, or UNKNOWN_LIBCALL if there is none.
217 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
218 RTLIB::Libcall Call_F32,
219 RTLIB::Libcall Call_F64,
220 RTLIB::Libcall Call_F80,
221 RTLIB::Libcall Call_F128,
222 RTLIB::Libcall Call_PPCF128) {
223 return
224 VT == MVT::f32 ? Call_F32 :
225 VT == MVT::f64 ? Call_F64 :
226 VT == MVT::f80 ? Call_F80 :
227 VT == MVT::f128 ? Call_F128 :
228 VT == MVT::ppcf128 ? Call_PPCF128 :
229 RTLIB::UNKNOWN_LIBCALL;
232 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
233 /// UNKNOWN_LIBCALL if there is none.
234 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
235 if (OpVT == MVT::f16) {
236 if (RetVT == MVT::f32)
237 return FPEXT_F16_F32;
238 if (RetVT == MVT::f64)
239 return FPEXT_F16_F64;
240 if (RetVT == MVT::f80)
241 return FPEXT_F16_F80;
242 if (RetVT == MVT::f128)
243 return FPEXT_F16_F128;
244 } else if (OpVT == MVT::f32) {
245 if (RetVT == MVT::f64)
246 return FPEXT_F32_F64;
247 if (RetVT == MVT::f128)
248 return FPEXT_F32_F128;
249 if (RetVT == MVT::ppcf128)
250 return FPEXT_F32_PPCF128;
251 } else if (OpVT == MVT::f64) {
252 if (RetVT == MVT::f128)
253 return FPEXT_F64_F128;
254 else if (RetVT == MVT::ppcf128)
255 return FPEXT_F64_PPCF128;
256 } else if (OpVT == MVT::f80) {
257 if (RetVT == MVT::f128)
258 return FPEXT_F80_F128;
261 return UNKNOWN_LIBCALL;
264 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
265 /// UNKNOWN_LIBCALL if there is none.
266 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
267 if (RetVT == MVT::f16) {
268 if (OpVT == MVT::f32)
269 return FPROUND_F32_F16;
270 if (OpVT == MVT::f64)
271 return FPROUND_F64_F16;
272 if (OpVT == MVT::f80)
273 return FPROUND_F80_F16;
274 if (OpVT == MVT::f128)
275 return FPROUND_F128_F16;
276 if (OpVT == MVT::ppcf128)
277 return FPROUND_PPCF128_F16;
278 } else if (RetVT == MVT::f32) {
279 if (OpVT == MVT::f64)
280 return FPROUND_F64_F32;
281 if (OpVT == MVT::f80)
282 return FPROUND_F80_F32;
283 if (OpVT == MVT::f128)
284 return FPROUND_F128_F32;
285 if (OpVT == MVT::ppcf128)
286 return FPROUND_PPCF128_F32;
287 } else if (RetVT == MVT::f64) {
288 if (OpVT == MVT::f80)
289 return FPROUND_F80_F64;
290 if (OpVT == MVT::f128)
291 return FPROUND_F128_F64;
292 if (OpVT == MVT::ppcf128)
293 return FPROUND_PPCF128_F64;
294 } else if (RetVT == MVT::f80) {
295 if (OpVT == MVT::f128)
296 return FPROUND_F128_F80;
299 return UNKNOWN_LIBCALL;
302 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
303 /// UNKNOWN_LIBCALL if there is none.
304 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
305 if (OpVT == MVT::f16) {
306 if (RetVT == MVT::i32)
307 return FPTOSINT_F16_I32;
308 if (RetVT == MVT::i64)
309 return FPTOSINT_F16_I64;
310 if (RetVT == MVT::i128)
311 return FPTOSINT_F16_I128;
312 } else if (OpVT == MVT::f32) {
313 if (RetVT == MVT::i32)
314 return FPTOSINT_F32_I32;
315 if (RetVT == MVT::i64)
316 return FPTOSINT_F32_I64;
317 if (RetVT == MVT::i128)
318 return FPTOSINT_F32_I128;
319 } else if (OpVT == MVT::f64) {
320 if (RetVT == MVT::i32)
321 return FPTOSINT_F64_I32;
322 if (RetVT == MVT::i64)
323 return FPTOSINT_F64_I64;
324 if (RetVT == MVT::i128)
325 return FPTOSINT_F64_I128;
326 } else if (OpVT == MVT::f80) {
327 if (RetVT == MVT::i32)
328 return FPTOSINT_F80_I32;
329 if (RetVT == MVT::i64)
330 return FPTOSINT_F80_I64;
331 if (RetVT == MVT::i128)
332 return FPTOSINT_F80_I128;
333 } else if (OpVT == MVT::f128) {
334 if (RetVT == MVT::i32)
335 return FPTOSINT_F128_I32;
336 if (RetVT == MVT::i64)
337 return FPTOSINT_F128_I64;
338 if (RetVT == MVT::i128)
339 return FPTOSINT_F128_I128;
340 } else if (OpVT == MVT::ppcf128) {
341 if (RetVT == MVT::i32)
342 return FPTOSINT_PPCF128_I32;
343 if (RetVT == MVT::i64)
344 return FPTOSINT_PPCF128_I64;
345 if (RetVT == MVT::i128)
346 return FPTOSINT_PPCF128_I128;
348 return UNKNOWN_LIBCALL;
351 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
352 /// UNKNOWN_LIBCALL if there is none.
353 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
354 if (OpVT == MVT::f16) {
355 if (RetVT == MVT::i32)
356 return FPTOUINT_F16_I32;
357 if (RetVT == MVT::i64)
358 return FPTOUINT_F16_I64;
359 if (RetVT == MVT::i128)
360 return FPTOUINT_F16_I128;
361 } else if (OpVT == MVT::f32) {
362 if (RetVT == MVT::i32)
363 return FPTOUINT_F32_I32;
364 if (RetVT == MVT::i64)
365 return FPTOUINT_F32_I64;
366 if (RetVT == MVT::i128)
367 return FPTOUINT_F32_I128;
368 } else if (OpVT == MVT::f64) {
369 if (RetVT == MVT::i32)
370 return FPTOUINT_F64_I32;
371 if (RetVT == MVT::i64)
372 return FPTOUINT_F64_I64;
373 if (RetVT == MVT::i128)
374 return FPTOUINT_F64_I128;
375 } else if (OpVT == MVT::f80) {
376 if (RetVT == MVT::i32)
377 return FPTOUINT_F80_I32;
378 if (RetVT == MVT::i64)
379 return FPTOUINT_F80_I64;
380 if (RetVT == MVT::i128)
381 return FPTOUINT_F80_I128;
382 } else if (OpVT == MVT::f128) {
383 if (RetVT == MVT::i32)
384 return FPTOUINT_F128_I32;
385 if (RetVT == MVT::i64)
386 return FPTOUINT_F128_I64;
387 if (RetVT == MVT::i128)
388 return FPTOUINT_F128_I128;
389 } else if (OpVT == MVT::ppcf128) {
390 if (RetVT == MVT::i32)
391 return FPTOUINT_PPCF128_I32;
392 if (RetVT == MVT::i64)
393 return FPTOUINT_PPCF128_I64;
394 if (RetVT == MVT::i128)
395 return FPTOUINT_PPCF128_I128;
397 return UNKNOWN_LIBCALL;
400 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
401 /// UNKNOWN_LIBCALL if there is none.
402 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
403 if (OpVT == MVT::i32) {
404 if (RetVT == MVT::f16)
405 return SINTTOFP_I32_F16;
406 if (RetVT == MVT::f32)
407 return SINTTOFP_I32_F32;
408 if (RetVT == MVT::f64)
409 return SINTTOFP_I32_F64;
410 if (RetVT == MVT::f80)
411 return SINTTOFP_I32_F80;
412 if (RetVT == MVT::f128)
413 return SINTTOFP_I32_F128;
414 if (RetVT == MVT::ppcf128)
415 return SINTTOFP_I32_PPCF128;
416 } else if (OpVT == MVT::i64) {
417 if (RetVT == MVT::f16)
418 return SINTTOFP_I64_F16;
419 if (RetVT == MVT::f32)
420 return SINTTOFP_I64_F32;
421 if (RetVT == MVT::f64)
422 return SINTTOFP_I64_F64;
423 if (RetVT == MVT::f80)
424 return SINTTOFP_I64_F80;
425 if (RetVT == MVT::f128)
426 return SINTTOFP_I64_F128;
427 if (RetVT == MVT::ppcf128)
428 return SINTTOFP_I64_PPCF128;
429 } else if (OpVT == MVT::i128) {
430 if (RetVT == MVT::f16)
431 return SINTTOFP_I128_F16;
432 if (RetVT == MVT::f32)
433 return SINTTOFP_I128_F32;
434 if (RetVT == MVT::f64)
435 return SINTTOFP_I128_F64;
436 if (RetVT == MVT::f80)
437 return SINTTOFP_I128_F80;
438 if (RetVT == MVT::f128)
439 return SINTTOFP_I128_F128;
440 if (RetVT == MVT::ppcf128)
441 return SINTTOFP_I128_PPCF128;
443 return UNKNOWN_LIBCALL;
446 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
447 /// UNKNOWN_LIBCALL if there is none.
448 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
449 if (OpVT == MVT::i32) {
450 if (RetVT == MVT::f16)
451 return UINTTOFP_I32_F16;
452 if (RetVT == MVT::f32)
453 return UINTTOFP_I32_F32;
454 if (RetVT == MVT::f64)
455 return UINTTOFP_I32_F64;
456 if (RetVT == MVT::f80)
457 return UINTTOFP_I32_F80;
458 if (RetVT == MVT::f128)
459 return UINTTOFP_I32_F128;
460 if (RetVT == MVT::ppcf128)
461 return UINTTOFP_I32_PPCF128;
462 } else if (OpVT == MVT::i64) {
463 if (RetVT == MVT::f16)
464 return UINTTOFP_I64_F16;
465 if (RetVT == MVT::f32)
466 return UINTTOFP_I64_F32;
467 if (RetVT == MVT::f64)
468 return UINTTOFP_I64_F64;
469 if (RetVT == MVT::f80)
470 return UINTTOFP_I64_F80;
471 if (RetVT == MVT::f128)
472 return UINTTOFP_I64_F128;
473 if (RetVT == MVT::ppcf128)
474 return UINTTOFP_I64_PPCF128;
475 } else if (OpVT == MVT::i128) {
476 if (RetVT == MVT::f16)
477 return UINTTOFP_I128_F16;
478 if (RetVT == MVT::f32)
479 return UINTTOFP_I128_F32;
480 if (RetVT == MVT::f64)
481 return UINTTOFP_I128_F64;
482 if (RetVT == MVT::f80)
483 return UINTTOFP_I128_F80;
484 if (RetVT == MVT::f128)
485 return UINTTOFP_I128_F128;
486 if (RetVT == MVT::ppcf128)
487 return UINTTOFP_I128_PPCF128;
489 return UNKNOWN_LIBCALL;
492 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
493 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
494 POWI_PPCF128);
497 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
498 MVT VT) {
499 unsigned ModeN, ModelN;
500 switch (VT.SimpleTy) {
501 case MVT::i8:
502 ModeN = 0;
503 break;
504 case MVT::i16:
505 ModeN = 1;
506 break;
507 case MVT::i32:
508 ModeN = 2;
509 break;
510 case MVT::i64:
511 ModeN = 3;
512 break;
513 case MVT::i128:
514 ModeN = 4;
515 break;
516 default:
517 return UNKNOWN_LIBCALL;
520 switch (Order) {
521 case AtomicOrdering::Monotonic:
522 ModelN = 0;
523 break;
524 case AtomicOrdering::Acquire:
525 ModelN = 1;
526 break;
527 case AtomicOrdering::Release:
528 ModelN = 2;
529 break;
530 case AtomicOrdering::AcquireRelease:
531 case AtomicOrdering::SequentiallyConsistent:
532 ModelN = 3;
533 break;
534 default:
535 return UNKNOWN_LIBCALL;
538 #define LCALLS(A, B) \
539 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
540 #define LCALL5(A) \
541 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
542 switch (Opc) {
543 case ISD::ATOMIC_CMP_SWAP: {
544 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
545 return LC[ModeN][ModelN];
547 case ISD::ATOMIC_SWAP: {
548 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
549 return LC[ModeN][ModelN];
551 case ISD::ATOMIC_LOAD_ADD: {
552 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
553 return LC[ModeN][ModelN];
555 case ISD::ATOMIC_LOAD_OR: {
556 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
557 return LC[ModeN][ModelN];
559 case ISD::ATOMIC_LOAD_CLR: {
560 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
561 return LC[ModeN][ModelN];
563 case ISD::ATOMIC_LOAD_XOR: {
564 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
565 return LC[ModeN][ModelN];
567 default:
568 return UNKNOWN_LIBCALL;
570 #undef LCALLS
571 #undef LCALL5
574 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
575 #define OP_TO_LIBCALL(Name, Enum) \
576 case Name: \
577 switch (VT.SimpleTy) { \
578 default: \
579 return UNKNOWN_LIBCALL; \
580 case MVT::i8: \
581 return Enum##_1; \
582 case MVT::i16: \
583 return Enum##_2; \
584 case MVT::i32: \
585 return Enum##_4; \
586 case MVT::i64: \
587 return Enum##_8; \
588 case MVT::i128: \
589 return Enum##_16; \
592 switch (Opc) {
593 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
594 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
595 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
596 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
597 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
598 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
599 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
600 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
601 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
602 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
603 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
604 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
607 #undef OP_TO_LIBCALL
609 return UNKNOWN_LIBCALL;
612 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
613 switch (ElementSize) {
614 case 1:
615 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
616 case 2:
617 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
618 case 4:
619 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
620 case 8:
621 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
622 case 16:
623 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
624 default:
625 return UNKNOWN_LIBCALL;
629 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
630 switch (ElementSize) {
631 case 1:
632 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
633 case 2:
634 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
635 case 4:
636 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
637 case 8:
638 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
639 case 16:
640 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
641 default:
642 return UNKNOWN_LIBCALL;
646 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
647 switch (ElementSize) {
648 case 1:
649 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
650 case 2:
651 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
652 case 4:
653 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
654 case 8:
655 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
656 case 16:
657 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
658 default:
659 return UNKNOWN_LIBCALL;
663 /// InitCmpLibcallCCs - Set default comparison libcall CC.
664 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
665 std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID);
666 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
667 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
668 CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
669 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
670 CCs[RTLIB::UNE_F32] = ISD::SETNE;
671 CCs[RTLIB::UNE_F64] = ISD::SETNE;
672 CCs[RTLIB::UNE_F128] = ISD::SETNE;
673 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
674 CCs[RTLIB::OGE_F32] = ISD::SETGE;
675 CCs[RTLIB::OGE_F64] = ISD::SETGE;
676 CCs[RTLIB::OGE_F128] = ISD::SETGE;
677 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
678 CCs[RTLIB::OLT_F32] = ISD::SETLT;
679 CCs[RTLIB::OLT_F64] = ISD::SETLT;
680 CCs[RTLIB::OLT_F128] = ISD::SETLT;
681 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
682 CCs[RTLIB::OLE_F32] = ISD::SETLE;
683 CCs[RTLIB::OLE_F64] = ISD::SETLE;
684 CCs[RTLIB::OLE_F128] = ISD::SETLE;
685 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
686 CCs[RTLIB::OGT_F32] = ISD::SETGT;
687 CCs[RTLIB::OGT_F64] = ISD::SETGT;
688 CCs[RTLIB::OGT_F128] = ISD::SETGT;
689 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
690 CCs[RTLIB::UO_F32] = ISD::SETNE;
691 CCs[RTLIB::UO_F64] = ISD::SETNE;
692 CCs[RTLIB::UO_F128] = ISD::SETNE;
693 CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
696 /// NOTE: The TargetMachine owns TLOF.
697 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
698 initActions();
700 // Perform these initializations only once.
701 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
702 MaxLoadsPerMemcmp = 8;
703 MaxGluedStoresPerMemcpy = 0;
704 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
705 MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
706 HasMultipleConditionRegisters = false;
707 HasExtractBitsInsn = false;
708 JumpIsExpensive = JumpIsExpensiveOverride;
709 PredictableSelectIsExpensive = false;
710 EnableExtLdPromotion = false;
711 StackPointerRegisterToSaveRestore = 0;
712 BooleanContents = UndefinedBooleanContent;
713 BooleanFloatContents = UndefinedBooleanContent;
714 BooleanVectorContents = UndefinedBooleanContent;
715 SchedPreferenceInfo = Sched::ILP;
716 GatherAllAliasesMaxDepth = 18;
717 IsStrictFPEnabled = DisableStrictNodeMutation;
718 MaxBytesForAlignment = 0;
719 // TODO: the default will be switched to 0 in the next commit, along
720 // with the Target-specific changes necessary.
721 MaxAtomicSizeInBitsSupported = 1024;
723 MinCmpXchgSizeInBits = 0;
724 SupportsUnalignedAtomics = false;
726 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
728 InitLibcalls(TM.getTargetTriple());
729 InitCmpLibcallCCs(CmpLibcallCCs);
732 void TargetLoweringBase::initActions() {
733 // All operations default to being supported.
734 memset(OpActions, 0, sizeof(OpActions));
735 memset(LoadExtActions, 0, sizeof(LoadExtActions));
736 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
737 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
738 memset(CondCodeActions, 0, sizeof(CondCodeActions));
739 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
740 std::fill(std::begin(TargetDAGCombineArray),
741 std::end(TargetDAGCombineArray), 0);
743 for (MVT VT : MVT::fp_valuetypes()) {
744 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
745 if (IntVT.isValid()) {
746 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
747 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
751 // Set default actions for various operations.
752 for (MVT VT : MVT::all_valuetypes()) {
753 // Default all indexed load / store to expand.
754 for (unsigned IM = (unsigned)ISD::PRE_INC;
755 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
756 setIndexedLoadAction(IM, VT, Expand);
757 setIndexedStoreAction(IM, VT, Expand);
758 setIndexedMaskedLoadAction(IM, VT, Expand);
759 setIndexedMaskedStoreAction(IM, VT, Expand);
762 // Most backends expect to see the node which just returns the value loaded.
763 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
765 // These operations default to expand.
766 setOperationAction(ISD::FGETSIGN, VT, Expand);
767 setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
768 setOperationAction(ISD::FMINNUM, VT, Expand);
769 setOperationAction(ISD::FMAXNUM, VT, Expand);
770 setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
771 setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
772 setOperationAction(ISD::FMINIMUM, VT, Expand);
773 setOperationAction(ISD::FMAXIMUM, VT, Expand);
774 setOperationAction(ISD::FMAD, VT, Expand);
775 setOperationAction(ISD::SMIN, VT, Expand);
776 setOperationAction(ISD::SMAX, VT, Expand);
777 setOperationAction(ISD::UMIN, VT, Expand);
778 setOperationAction(ISD::UMAX, VT, Expand);
779 setOperationAction(ISD::ABS, VT, Expand);
780 setOperationAction(ISD::FSHL, VT, Expand);
781 setOperationAction(ISD::FSHR, VT, Expand);
782 setOperationAction(ISD::SADDSAT, VT, Expand);
783 setOperationAction(ISD::UADDSAT, VT, Expand);
784 setOperationAction(ISD::SSUBSAT, VT, Expand);
785 setOperationAction(ISD::USUBSAT, VT, Expand);
786 setOperationAction(ISD::SSHLSAT, VT, Expand);
787 setOperationAction(ISD::USHLSAT, VT, Expand);
788 setOperationAction(ISD::SMULFIX, VT, Expand);
789 setOperationAction(ISD::SMULFIXSAT, VT, Expand);
790 setOperationAction(ISD::UMULFIX, VT, Expand);
791 setOperationAction(ISD::UMULFIXSAT, VT, Expand);
792 setOperationAction(ISD::SDIVFIX, VT, Expand);
793 setOperationAction(ISD::SDIVFIXSAT, VT, Expand);
794 setOperationAction(ISD::UDIVFIX, VT, Expand);
795 setOperationAction(ISD::UDIVFIXSAT, VT, Expand);
796 setOperationAction(ISD::FP_TO_SINT_SAT, VT, Expand);
797 setOperationAction(ISD::FP_TO_UINT_SAT, VT, Expand);
799 // Overflow operations default to expand
800 setOperationAction(ISD::SADDO, VT, Expand);
801 setOperationAction(ISD::SSUBO, VT, Expand);
802 setOperationAction(ISD::UADDO, VT, Expand);
803 setOperationAction(ISD::USUBO, VT, Expand);
804 setOperationAction(ISD::SMULO, VT, Expand);
805 setOperationAction(ISD::UMULO, VT, Expand);
807 // ADDCARRY operations default to expand
808 setOperationAction(ISD::ADDCARRY, VT, Expand);
809 setOperationAction(ISD::SUBCARRY, VT, Expand);
810 setOperationAction(ISD::SETCCCARRY, VT, Expand);
811 setOperationAction(ISD::SADDO_CARRY, VT, Expand);
812 setOperationAction(ISD::SSUBO_CARRY, VT, Expand);
814 // ADDC/ADDE/SUBC/SUBE default to expand.
815 setOperationAction(ISD::ADDC, VT, Expand);
816 setOperationAction(ISD::ADDE, VT, Expand);
817 setOperationAction(ISD::SUBC, VT, Expand);
818 setOperationAction(ISD::SUBE, VT, Expand);
820 // Absolute difference
821 setOperationAction(ISD::ABDS, VT, Expand);
822 setOperationAction(ISD::ABDU, VT, Expand);
824 // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
825 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
826 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
828 setOperationAction(ISD::BITREVERSE, VT, Expand);
829 setOperationAction(ISD::PARITY, VT, Expand);
831 // These library functions default to expand.
832 setOperationAction(ISD::FROUND, VT, Expand);
833 setOperationAction(ISD::FROUNDEVEN, VT, Expand);
834 setOperationAction(ISD::FPOWI, VT, Expand);
836 // These operations default to expand for vector types.
837 if (VT.isVector()) {
838 setOperationAction(ISD::FCOPYSIGN, VT, Expand);
839 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
840 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
841 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
842 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
843 setOperationAction(ISD::SPLAT_VECTOR, VT, Expand);
846 // Constrained floating-point operations default to expand.
847 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
848 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
849 #include "llvm/IR/ConstrainedOps.def"
851 // For most targets @llvm.get.dynamic.area.offset just returns 0.
852 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
854 // Vector reduction default to expand.
855 setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
856 setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
857 setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
858 setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
859 setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
860 setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
861 setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
862 setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
863 setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
864 setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
865 setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
866 setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
867 setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
868 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Expand);
869 setOperationAction(ISD::VECREDUCE_SEQ_FMUL, VT, Expand);
871 // Named vector shuffles default to expand.
872 setOperationAction(ISD::VECTOR_SPLICE, VT, Expand);
875 // Most targets ignore the @llvm.prefetch intrinsic.
876 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
878 // Most targets also ignore the @llvm.readcyclecounter intrinsic.
879 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
881 // ConstantFP nodes default to expand. Targets can either change this to
882 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
883 // to optimize expansions for certain constants.
884 setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
885 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
886 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
887 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
888 setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
890 // These library functions default to expand.
891 for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
892 setOperationAction(ISD::FCBRT, VT, Expand);
893 setOperationAction(ISD::FLOG , VT, Expand);
894 setOperationAction(ISD::FLOG2, VT, Expand);
895 setOperationAction(ISD::FLOG10, VT, Expand);
896 setOperationAction(ISD::FEXP , VT, Expand);
897 setOperationAction(ISD::FEXP2, VT, Expand);
898 setOperationAction(ISD::FFLOOR, VT, Expand);
899 setOperationAction(ISD::FNEARBYINT, VT, Expand);
900 setOperationAction(ISD::FCEIL, VT, Expand);
901 setOperationAction(ISD::FRINT, VT, Expand);
902 setOperationAction(ISD::FTRUNC, VT, Expand);
903 setOperationAction(ISD::LROUND, VT, Expand);
904 setOperationAction(ISD::LLROUND, VT, Expand);
905 setOperationAction(ISD::LRINT, VT, Expand);
906 setOperationAction(ISD::LLRINT, VT, Expand);
909 // Default ISD::TRAP to expand (which turns it into abort).
910 setOperationAction(ISD::TRAP, MVT::Other, Expand);
912 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
913 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
914 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
916 setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
919 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
920 EVT) const {
921 return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
924 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
925 bool LegalTypes) const {
926 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
927 if (LHSTy.isVector())
928 return LHSTy;
929 MVT ShiftVT =
930 LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL);
931 // If any possible shift value won't fit in the prefered type, just use
932 // something safe. Assume it will be legalized when the shift is expanded.
933 if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
934 ShiftVT = MVT::i32;
935 assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
936 "ShiftVT is still too small!");
937 return ShiftVT;
940 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
941 assert(isTypeLegal(VT));
942 switch (Op) {
943 default:
944 return false;
945 case ISD::SDIV:
946 case ISD::UDIV:
947 case ISD::SREM:
948 case ISD::UREM:
949 return true;
953 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
954 unsigned DestAS) const {
955 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
958 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
959 // If the command-line option was specified, ignore this request.
960 if (!JumpIsExpensiveOverride.getNumOccurrences())
961 JumpIsExpensive = isExpensive;
964 TargetLoweringBase::LegalizeKind
965 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
966 // If this is a simple type, use the ComputeRegisterProp mechanism.
967 if (VT.isSimple()) {
968 MVT SVT = VT.getSimpleVT();
969 assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
970 MVT NVT = TransformToType[SVT.SimpleTy];
971 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
973 assert((LA == TypeLegal || LA == TypeSoftenFloat ||
974 LA == TypeSoftPromoteHalf ||
975 (NVT.isVector() ||
976 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
977 "Promote may not follow Expand or Promote");
979 if (LA == TypeSplitVector)
980 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
981 if (LA == TypeScalarizeVector)
982 return LegalizeKind(LA, SVT.getVectorElementType());
983 return LegalizeKind(LA, NVT);
986 // Handle Extended Scalar Types.
987 if (!VT.isVector()) {
988 assert(VT.isInteger() && "Float types must be simple");
989 unsigned BitSize = VT.getSizeInBits();
990 // First promote to a power-of-two size, then expand if necessary.
991 if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
992 EVT NVT = VT.getRoundIntegerType(Context);
993 assert(NVT != VT && "Unable to round integer VT");
994 LegalizeKind NextStep = getTypeConversion(Context, NVT);
995 // Avoid multi-step promotion.
996 if (NextStep.first == TypePromoteInteger)
997 return NextStep;
998 // Return rounded integer type.
999 return LegalizeKind(TypePromoteInteger, NVT);
1002 return LegalizeKind(TypeExpandInteger,
1003 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1006 // Handle vector types.
1007 ElementCount NumElts = VT.getVectorElementCount();
1008 EVT EltVT = VT.getVectorElementType();
1010 // Vectors with only one element are always scalarized.
1011 if (NumElts.isScalar())
1012 return LegalizeKind(TypeScalarizeVector, EltVT);
1014 // Try to widen vector elements until the element type is a power of two and
1015 // promote it to a legal type later on, for example:
1016 // <3 x i8> -> <4 x i8> -> <4 x i32>
1017 if (EltVT.isInteger()) {
1018 // Vectors with a number of elements that is not a power of two are always
1019 // widened, for example <3 x i8> -> <4 x i8>.
1020 if (!VT.isPow2VectorType()) {
1021 NumElts = NumElts.coefficientNextPowerOf2();
1022 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1023 return LegalizeKind(TypeWidenVector, NVT);
1026 // Examine the element type.
1027 LegalizeKind LK = getTypeConversion(Context, EltVT);
1029 // If type is to be expanded, split the vector.
1030 // <4 x i140> -> <2 x i140>
1031 if (LK.first == TypeExpandInteger) {
1032 if (VT.getVectorElementCount().isScalable())
1033 return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1034 return LegalizeKind(TypeSplitVector,
1035 VT.getHalfNumVectorElementsVT(Context));
1038 // Promote the integer element types until a legal vector type is found
1039 // or until the element integer type is too big. If a legal type was not
1040 // found, fallback to the usual mechanism of widening/splitting the
1041 // vector.
1042 EVT OldEltVT = EltVT;
1043 while (true) {
1044 // Increase the bitwidth of the element to the next pow-of-two
1045 // (which is greater than 8 bits).
1046 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1047 .getRoundIntegerType(Context);
1049 // Stop trying when getting a non-simple element type.
1050 // Note that vector elements may be greater than legal vector element
1051 // types. Example: X86 XMM registers hold 64bit element on 32bit
1052 // systems.
1053 if (!EltVT.isSimple())
1054 break;
1056 // Build a new vector type and check if it is legal.
1057 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1058 // Found a legal promoted vector type.
1059 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1060 return LegalizeKind(TypePromoteInteger,
1061 EVT::getVectorVT(Context, EltVT, NumElts));
1064 // Reset the type to the unexpanded type if we did not find a legal vector
1065 // type with a promoted vector element type.
1066 EltVT = OldEltVT;
1069 // Try to widen the vector until a legal type is found.
1070 // If there is no wider legal type, split the vector.
1071 while (true) {
1072 // Round up to the next power of 2.
1073 NumElts = NumElts.coefficientNextPowerOf2();
1075 // If there is no simple vector type with this many elements then there
1076 // cannot be a larger legal vector type. Note that this assumes that
1077 // there are no skipped intermediate vector types in the simple types.
1078 if (!EltVT.isSimple())
1079 break;
1080 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1081 if (LargerVector == MVT())
1082 break;
1084 // If this type is legal then widen the vector.
1085 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1086 return LegalizeKind(TypeWidenVector, LargerVector);
1089 // Widen odd vectors to next power of two.
1090 if (!VT.isPow2VectorType()) {
1091 EVT NVT = VT.getPow2VectorType(Context);
1092 return LegalizeKind(TypeWidenVector, NVT);
1095 if (VT.getVectorElementCount() == ElementCount::getScalable(1))
1096 return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1098 // Vectors with illegal element types are expanded.
1099 EVT NVT = EVT::getVectorVT(Context, EltVT,
1100 VT.getVectorElementCount().divideCoefficientBy(2));
1101 return LegalizeKind(TypeSplitVector, NVT);
1104 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1105 unsigned &NumIntermediates,
1106 MVT &RegisterVT,
1107 TargetLoweringBase *TLI) {
1108 // Figure out the right, legal destination reg to copy into.
1109 ElementCount EC = VT.getVectorElementCount();
1110 MVT EltTy = VT.getVectorElementType();
1112 unsigned NumVectorRegs = 1;
1114 // Scalable vectors cannot be scalarized, so splitting or widening is
1115 // required.
1116 if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1117 llvm_unreachable(
1118 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1120 // FIXME: We don't support non-power-of-2-sized vectors for now.
1121 // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1122 if (!isPowerOf2_32(EC.getKnownMinValue())) {
1123 // Split EC to unit size (scalable property is preserved).
1124 NumVectorRegs = EC.getKnownMinValue();
1125 EC = ElementCount::getFixed(1);
1128 // Divide the input until we get to a supported size. This will
1129 // always end up with an EC that represent a scalar or a scalable
1130 // scalar.
1131 while (EC.getKnownMinValue() > 1 &&
1132 !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1133 EC = EC.divideCoefficientBy(2);
1134 NumVectorRegs <<= 1;
1137 NumIntermediates = NumVectorRegs;
1139 MVT NewVT = MVT::getVectorVT(EltTy, EC);
1140 if (!TLI->isTypeLegal(NewVT))
1141 NewVT = EltTy;
1142 IntermediateVT = NewVT;
1144 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1146 // Convert sizes such as i33 to i64.
1147 if (!isPowerOf2_32(LaneSizeInBits))
1148 LaneSizeInBits = NextPowerOf2(LaneSizeInBits);
1150 MVT DestVT = TLI->getRegisterType(NewVT);
1151 RegisterVT = DestVT;
1152 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
1153 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1155 // Otherwise, promotion or legal types use the same number of registers as
1156 // the vector decimated to the appropriate level.
1157 return NumVectorRegs;
1160 /// isLegalRC - Return true if the value types that can be represented by the
1161 /// specified register class are all legal.
1162 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1163 const TargetRegisterClass &RC) const {
1164 for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1165 if (isTypeLegal(*I))
1166 return true;
1167 return false;
1170 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1171 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1172 MachineBasicBlock *
1173 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1174 MachineBasicBlock *MBB) const {
1175 MachineInstr *MI = &InitialMI;
1176 MachineFunction &MF = *MI->getMF();
1177 MachineFrameInfo &MFI = MF.getFrameInfo();
1179 // We're handling multiple types of operands here:
1180 // PATCHPOINT MetaArgs - live-in, read only, direct
1181 // STATEPOINT Deopt Spill - live-through, read only, indirect
1182 // STATEPOINT Deopt Alloca - live-through, read only, direct
1183 // (We're currently conservative and mark the deopt slots read/write in
1184 // practice.)
1185 // STATEPOINT GC Spill - live-through, read/write, indirect
1186 // STATEPOINT GC Alloca - live-through, read/write, direct
1187 // The live-in vs live-through is handled already (the live through ones are
1188 // all stack slots), but we need to handle the different type of stackmap
1189 // operands and memory effects here.
1191 if (llvm::none_of(MI->operands(),
1192 [](MachineOperand &Operand) { return Operand.isFI(); }))
1193 return MBB;
1195 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1197 // Inherit previous memory operands.
1198 MIB.cloneMemRefs(*MI);
1200 for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1201 MachineOperand &MO = MI->getOperand(i);
1202 if (!MO.isFI()) {
1203 // Index of Def operand this Use it tied to.
1204 // Since Defs are coming before Uses, if Use is tied, then
1205 // index of Def must be smaller that index of that Use.
1206 // Also, Defs preserve their position in new MI.
1207 unsigned TiedTo = i;
1208 if (MO.isReg() && MO.isTied())
1209 TiedTo = MI->findTiedOperandIdx(i);
1210 MIB.add(MO);
1211 if (TiedTo < i)
1212 MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1213 continue;
1216 // foldMemoryOperand builds a new MI after replacing a single FI operand
1217 // with the canonical set of five x86 addressing-mode operands.
1218 int FI = MO.getIndex();
1220 // Add frame index operands recognized by stackmaps.cpp
1221 if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1222 // indirect-mem-ref tag, size, #FI, offset.
1223 // Used for spills inserted by StatepointLowering. This codepath is not
1224 // used for patchpoints/stackmaps at all, for these spilling is done via
1225 // foldMemoryOperand callback only.
1226 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1227 MIB.addImm(StackMaps::IndirectMemRefOp);
1228 MIB.addImm(MFI.getObjectSize(FI));
1229 MIB.add(MO);
1230 MIB.addImm(0);
1231 } else {
1232 // direct-mem-ref tag, #FI, offset.
1233 // Used by patchpoint, and direct alloca arguments to statepoints
1234 MIB.addImm(StackMaps::DirectMemRefOp);
1235 MIB.add(MO);
1236 MIB.addImm(0);
1239 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1241 // Add a new memory operand for this FI.
1242 assert(MFI.getObjectOffset(FI) != -1);
1244 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and
1245 // PATCHPOINT should be updated to do the same. (TODO)
1246 if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1247 auto Flags = MachineMemOperand::MOLoad;
1248 MachineMemOperand *MMO = MF.getMachineMemOperand(
1249 MachinePointerInfo::getFixedStack(MF, FI), Flags,
1250 MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1251 MIB->addMemOperand(MF, MMO);
1254 MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1255 MI->eraseFromParent();
1256 return MBB;
1259 /// findRepresentativeClass - Return the largest legal super-reg register class
1260 /// of the register class for the specified type and its associated "cost".
1261 // This function is in TargetLowering because it uses RegClassForVT which would
1262 // need to be moved to TargetRegisterInfo and would necessitate moving
1263 // isTypeLegal over as well - a massive change that would just require
1264 // TargetLowering having a TargetRegisterInfo class member that it would use.
1265 std::pair<const TargetRegisterClass *, uint8_t>
1266 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1267 MVT VT) const {
1268 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1269 if (!RC)
1270 return std::make_pair(RC, 0);
1272 // Compute the set of all super-register classes.
1273 BitVector SuperRegRC(TRI->getNumRegClasses());
1274 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1275 SuperRegRC.setBitsInMask(RCI.getMask());
1277 // Find the first legal register class with the largest spill size.
1278 const TargetRegisterClass *BestRC = RC;
1279 for (unsigned i : SuperRegRC.set_bits()) {
1280 const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1281 // We want the largest possible spill size.
1282 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1283 continue;
1284 if (!isLegalRC(*TRI, *SuperRC))
1285 continue;
1286 BestRC = SuperRC;
1288 return std::make_pair(BestRC, 1);
1291 /// computeRegisterProperties - Once all of the register classes are added,
1292 /// this allows us to compute derived properties we expose.
1293 void TargetLoweringBase::computeRegisterProperties(
1294 const TargetRegisterInfo *TRI) {
1295 static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE,
1296 "Too many value types for ValueTypeActions to hold!");
1298 // Everything defaults to needing one register.
1299 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1300 NumRegistersForVT[i] = 1;
1301 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1303 // ...except isVoid, which doesn't need any registers.
1304 NumRegistersForVT[MVT::isVoid] = 0;
1306 // Find the largest integer register class.
1307 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1308 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1309 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1311 // Every integer value type larger than this largest register takes twice as
1312 // many registers to represent as the previous ValueType.
1313 for (unsigned ExpandedReg = LargestIntReg + 1;
1314 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1315 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1316 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1317 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1318 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1319 TypeExpandInteger);
1322 // Inspect all of the ValueType's smaller than the largest integer
1323 // register to see which ones need promotion.
1324 unsigned LegalIntReg = LargestIntReg;
1325 for (unsigned IntReg = LargestIntReg - 1;
1326 IntReg >= (unsigned)MVT::i1; --IntReg) {
1327 MVT IVT = (MVT::SimpleValueType)IntReg;
1328 if (isTypeLegal(IVT)) {
1329 LegalIntReg = IntReg;
1330 } else {
1331 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1332 (MVT::SimpleValueType)LegalIntReg;
1333 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1337 // ppcf128 type is really two f64's.
1338 if (!isTypeLegal(MVT::ppcf128)) {
1339 if (isTypeLegal(MVT::f64)) {
1340 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1341 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1342 TransformToType[MVT::ppcf128] = MVT::f64;
1343 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1344 } else {
1345 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1346 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1347 TransformToType[MVT::ppcf128] = MVT::i128;
1348 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1352 // Decide how to handle f128. If the target does not have native f128 support,
1353 // expand it to i128 and we will be generating soft float library calls.
1354 if (!isTypeLegal(MVT::f128)) {
1355 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1356 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1357 TransformToType[MVT::f128] = MVT::i128;
1358 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1361 // Decide how to handle f64. If the target does not have native f64 support,
1362 // expand it to i64 and we will be generating soft float library calls.
1363 if (!isTypeLegal(MVT::f64)) {
1364 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1365 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1366 TransformToType[MVT::f64] = MVT::i64;
1367 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1370 // Decide how to handle f32. If the target does not have native f32 support,
1371 // expand it to i32 and we will be generating soft float library calls.
1372 if (!isTypeLegal(MVT::f32)) {
1373 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1374 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1375 TransformToType[MVT::f32] = MVT::i32;
1376 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1379 // Decide how to handle f16. If the target does not have native f16 support,
1380 // promote it to f32, because there are no f16 library calls (except for
1381 // conversions).
1382 if (!isTypeLegal(MVT::f16)) {
1383 // Allow targets to control how we legalize half.
1384 if (softPromoteHalfType()) {
1385 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1386 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1387 TransformToType[MVT::f16] = MVT::f32;
1388 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1389 } else {
1390 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1391 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1392 TransformToType[MVT::f16] = MVT::f32;
1393 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1397 // Loop over all of the vector value types to see which need transformations.
1398 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1399 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1400 MVT VT = (MVT::SimpleValueType) i;
1401 if (isTypeLegal(VT))
1402 continue;
1404 MVT EltVT = VT.getVectorElementType();
1405 ElementCount EC = VT.getVectorElementCount();
1406 bool IsLegalWiderType = false;
1407 bool IsScalable = VT.isScalableVector();
1408 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1409 switch (PreferredAction) {
1410 case TypePromoteInteger: {
1411 MVT::SimpleValueType EndVT = IsScalable ?
1412 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1413 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1414 // Try to promote the elements of integer vectors. If no legal
1415 // promotion was found, fall through to the widen-vector method.
1416 for (unsigned nVT = i + 1;
1417 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1418 MVT SVT = (MVT::SimpleValueType) nVT;
1419 // Promote vectors of integers to vectors with the same number
1420 // of elements, with a wider element type.
1421 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1422 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1423 TransformToType[i] = SVT;
1424 RegisterTypeForVT[i] = SVT;
1425 NumRegistersForVT[i] = 1;
1426 ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1427 IsLegalWiderType = true;
1428 break;
1431 if (IsLegalWiderType)
1432 break;
1433 LLVM_FALLTHROUGH;
1436 case TypeWidenVector:
1437 if (isPowerOf2_32(EC.getKnownMinValue())) {
1438 // Try to widen the vector.
1439 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1440 MVT SVT = (MVT::SimpleValueType) nVT;
1441 if (SVT.getVectorElementType() == EltVT &&
1442 SVT.isScalableVector() == IsScalable &&
1443 SVT.getVectorElementCount().getKnownMinValue() >
1444 EC.getKnownMinValue() &&
1445 isTypeLegal(SVT)) {
1446 TransformToType[i] = SVT;
1447 RegisterTypeForVT[i] = SVT;
1448 NumRegistersForVT[i] = 1;
1449 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1450 IsLegalWiderType = true;
1451 break;
1454 if (IsLegalWiderType)
1455 break;
1456 } else {
1457 // Only widen to the next power of 2 to keep consistency with EVT.
1458 MVT NVT = VT.getPow2VectorType();
1459 if (isTypeLegal(NVT)) {
1460 TransformToType[i] = NVT;
1461 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1462 RegisterTypeForVT[i] = NVT;
1463 NumRegistersForVT[i] = 1;
1464 break;
1467 LLVM_FALLTHROUGH;
1469 case TypeSplitVector:
1470 case TypeScalarizeVector: {
1471 MVT IntermediateVT;
1472 MVT RegisterVT;
1473 unsigned NumIntermediates;
1474 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1475 NumIntermediates, RegisterVT, this);
1476 NumRegistersForVT[i] = NumRegisters;
1477 assert(NumRegistersForVT[i] == NumRegisters &&
1478 "NumRegistersForVT size cannot represent NumRegisters!");
1479 RegisterTypeForVT[i] = RegisterVT;
1481 MVT NVT = VT.getPow2VectorType();
1482 if (NVT == VT) {
1483 // Type is already a power of 2. The default action is to split.
1484 TransformToType[i] = MVT::Other;
1485 if (PreferredAction == TypeScalarizeVector)
1486 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1487 else if (PreferredAction == TypeSplitVector)
1488 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1489 else if (EC.getKnownMinValue() > 1)
1490 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1491 else
1492 ValueTypeActions.setTypeAction(VT, EC.isScalable()
1493 ? TypeScalarizeScalableVector
1494 : TypeScalarizeVector);
1495 } else {
1496 TransformToType[i] = NVT;
1497 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1499 break;
1501 default:
1502 llvm_unreachable("Unknown vector legalization action!");
1506 // Determine the 'representative' register class for each value type.
1507 // An representative register class is the largest (meaning one which is
1508 // not a sub-register class / subreg register class) legal register class for
1509 // a group of value types. For example, on i386, i8, i16, and i32
1510 // representative would be GR32; while on x86_64 it's GR64.
1511 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1512 const TargetRegisterClass* RRC;
1513 uint8_t Cost;
1514 std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1515 RepRegClassForVT[i] = RRC;
1516 RepRegClassCostForVT[i] = Cost;
1520 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1521 EVT VT) const {
1522 assert(!VT.isVector() && "No default SetCC type for vectors!");
1523 return getPointerTy(DL).SimpleTy;
1526 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1527 return MVT::i32; // return the default value
1530 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1531 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
1532 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1533 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1535 /// This method returns the number of registers needed, and the VT for each
1536 /// register. It also returns the VT and quantity of the intermediate values
1537 /// before they are promoted/expanded.
1538 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context,
1539 EVT VT, EVT &IntermediateVT,
1540 unsigned &NumIntermediates,
1541 MVT &RegisterVT) const {
1542 ElementCount EltCnt = VT.getVectorElementCount();
1544 // If there is a wider vector type with the same element type as this one,
1545 // or a promoted vector type that has the same number of elements which
1546 // are wider, then we should convert to that legal vector type.
1547 // This handles things like <2 x float> -> <4 x float> and
1548 // <4 x i1> -> <4 x i32>.
1549 LegalizeTypeAction TA = getTypeAction(Context, VT);
1550 if (!EltCnt.isScalar() &&
1551 (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1552 EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1553 if (isTypeLegal(RegisterEVT)) {
1554 IntermediateVT = RegisterEVT;
1555 RegisterVT = RegisterEVT.getSimpleVT();
1556 NumIntermediates = 1;
1557 return 1;
1561 // Figure out the right, legal destination reg to copy into.
1562 EVT EltTy = VT.getVectorElementType();
1564 unsigned NumVectorRegs = 1;
1566 // Scalable vectors cannot be scalarized, so handle the legalisation of the
1567 // types like done elsewhere in SelectionDAG.
1568 if (EltCnt.isScalable()) {
1569 LegalizeKind LK;
1570 EVT PartVT = VT;
1571 do {
1572 // Iterate until we've found a legal (part) type to hold VT.
1573 LK = getTypeConversion(Context, PartVT);
1574 PartVT = LK.second;
1575 } while (LK.first != TypeLegal);
1577 if (!PartVT.isVector()) {
1578 report_fatal_error(
1579 "Don't know how to legalize this scalable vector type");
1582 NumIntermediates =
1583 divideCeil(VT.getVectorElementCount().getKnownMinValue(),
1584 PartVT.getVectorElementCount().getKnownMinValue());
1585 IntermediateVT = PartVT;
1586 RegisterVT = getRegisterType(Context, IntermediateVT);
1587 return NumIntermediates;
1590 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally
1591 // we could break down into LHS/RHS like LegalizeDAG does.
1592 if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1593 NumVectorRegs = EltCnt.getKnownMinValue();
1594 EltCnt = ElementCount::getFixed(1);
1597 // Divide the input until we get to a supported size. This will always
1598 // end with a scalar if the target doesn't support vectors.
1599 while (EltCnt.getKnownMinValue() > 1 &&
1600 !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1601 EltCnt = EltCnt.divideCoefficientBy(2);
1602 NumVectorRegs <<= 1;
1605 NumIntermediates = NumVectorRegs;
1607 EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1608 if (!isTypeLegal(NewVT))
1609 NewVT = EltTy;
1610 IntermediateVT = NewVT;
1612 MVT DestVT = getRegisterType(Context, NewVT);
1613 RegisterVT = DestVT;
1615 if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16.
1616 TypeSize NewVTSize = NewVT.getSizeInBits();
1617 // Convert sizes such as i33 to i64.
1618 if (!isPowerOf2_32(NewVTSize.getKnownMinSize()))
1619 NewVTSize = NewVTSize.coefficientNextPowerOf2();
1620 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1623 // Otherwise, promotion or legal types use the same number of registers as
1624 // the vector decimated to the appropriate level.
1625 return NumVectorRegs;
1628 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1629 uint64_t NumCases,
1630 uint64_t Range,
1631 ProfileSummaryInfo *PSI,
1632 BlockFrequencyInfo *BFI) const {
1633 // FIXME: This function check the maximum table size and density, but the
1634 // minimum size is not checked. It would be nice if the minimum size is
1635 // also combined within this function. Currently, the minimum size check is
1636 // performed in findJumpTable() in SelectionDAGBuiler and
1637 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1638 const bool OptForSize =
1639 SI->getParent()->getParent()->hasOptSize() ||
1640 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1641 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1642 const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1644 // Check whether the number of cases is small enough and
1645 // the range is dense enough for a jump table.
1646 return (OptForSize || Range <= MaxJumpTableSize) &&
1647 (NumCases * 100 >= Range * MinDensity);
1650 /// Get the EVTs and ArgFlags collections that represent the legalized return
1651 /// type of the given function. This does not require a DAG or a return value,
1652 /// and is suitable for use before any DAGs for the function are constructed.
1653 /// TODO: Move this out of TargetLowering.cpp.
1654 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1655 AttributeList attr,
1656 SmallVectorImpl<ISD::OutputArg> &Outs,
1657 const TargetLowering &TLI, const DataLayout &DL) {
1658 SmallVector<EVT, 4> ValueVTs;
1659 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1660 unsigned NumValues = ValueVTs.size();
1661 if (NumValues == 0) return;
1663 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1664 EVT VT = ValueVTs[j];
1665 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1667 if (attr.hasRetAttr(Attribute::SExt))
1668 ExtendKind = ISD::SIGN_EXTEND;
1669 else if (attr.hasRetAttr(Attribute::ZExt))
1670 ExtendKind = ISD::ZERO_EXTEND;
1672 // FIXME: C calling convention requires the return type to be promoted to
1673 // at least 32-bit. But this is not necessary for non-C calling
1674 // conventions. The frontend should mark functions whose return values
1675 // require promoting with signext or zeroext attributes.
1676 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1677 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1678 if (VT.bitsLT(MinVT))
1679 VT = MinVT;
1682 unsigned NumParts =
1683 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1684 MVT PartVT =
1685 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1687 // 'inreg' on function refers to return value
1688 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1689 if (attr.hasRetAttr(Attribute::InReg))
1690 Flags.setInReg();
1692 // Propagate extension type if any
1693 if (attr.hasRetAttr(Attribute::SExt))
1694 Flags.setSExt();
1695 else if (attr.hasRetAttr(Attribute::ZExt))
1696 Flags.setZExt();
1698 for (unsigned i = 0; i < NumParts; ++i)
1699 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1703 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1704 /// function arguments in the caller parameter area. This is the actual
1705 /// alignment, not its logarithm.
1706 uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1707 const DataLayout &DL) const {
1708 return DL.getABITypeAlign(Ty).value();
1711 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1712 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1713 Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1714 // Check if the specified alignment is sufficient based on the data layout.
1715 // TODO: While using the data layout works in practice, a better solution
1716 // would be to implement this check directly (make this a virtual function).
1717 // For example, the ABI alignment may change based on software platform while
1718 // this function should only be affected by hardware implementation.
1719 Type *Ty = VT.getTypeForEVT(Context);
1720 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1721 // Assume that an access that meets the ABI-specified alignment is fast.
1722 if (Fast != nullptr)
1723 *Fast = true;
1724 return true;
1727 // This is a misaligned access.
1728 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1731 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1732 LLVMContext &Context, const DataLayout &DL, EVT VT,
1733 const MachineMemOperand &MMO, bool *Fast) const {
1734 return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1735 MMO.getAlign(), MMO.getFlags(), Fast);
1738 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1739 const DataLayout &DL, EVT VT,
1740 unsigned AddrSpace, Align Alignment,
1741 MachineMemOperand::Flags Flags,
1742 bool *Fast) const {
1743 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1744 Flags, Fast);
1747 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1748 const DataLayout &DL, EVT VT,
1749 const MachineMemOperand &MMO,
1750 bool *Fast) const {
1751 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1752 MMO.getFlags(), Fast);
1755 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1756 const DataLayout &DL, LLT Ty,
1757 const MachineMemOperand &MMO,
1758 bool *Fast) const {
1759 EVT VT = getApproximateEVTForLLT(Ty, DL, Context);
1760 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1761 MMO.getFlags(), Fast);
1764 //===----------------------------------------------------------------------===//
1765 // TargetTransformInfo Helpers
1766 //===----------------------------------------------------------------------===//
1768 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1769 enum InstructionOpcodes {
1770 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1771 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1772 #include "llvm/IR/Instruction.def"
1774 switch (static_cast<InstructionOpcodes>(Opcode)) {
1775 case Ret: return 0;
1776 case Br: return 0;
1777 case Switch: return 0;
1778 case IndirectBr: return 0;
1779 case Invoke: return 0;
1780 case CallBr: return 0;
1781 case Resume: return 0;
1782 case Unreachable: return 0;
1783 case CleanupRet: return 0;
1784 case CatchRet: return 0;
1785 case CatchPad: return 0;
1786 case CatchSwitch: return 0;
1787 case CleanupPad: return 0;
1788 case FNeg: return ISD::FNEG;
1789 case Add: return ISD::ADD;
1790 case FAdd: return ISD::FADD;
1791 case Sub: return ISD::SUB;
1792 case FSub: return ISD::FSUB;
1793 case Mul: return ISD::MUL;
1794 case FMul: return ISD::FMUL;
1795 case UDiv: return ISD::UDIV;
1796 case SDiv: return ISD::SDIV;
1797 case FDiv: return ISD::FDIV;
1798 case URem: return ISD::UREM;
1799 case SRem: return ISD::SREM;
1800 case FRem: return ISD::FREM;
1801 case Shl: return ISD::SHL;
1802 case LShr: return ISD::SRL;
1803 case AShr: return ISD::SRA;
1804 case And: return ISD::AND;
1805 case Or: return ISD::OR;
1806 case Xor: return ISD::XOR;
1807 case Alloca: return 0;
1808 case Load: return ISD::LOAD;
1809 case Store: return ISD::STORE;
1810 case GetElementPtr: return 0;
1811 case Fence: return 0;
1812 case AtomicCmpXchg: return 0;
1813 case AtomicRMW: return 0;
1814 case Trunc: return ISD::TRUNCATE;
1815 case ZExt: return ISD::ZERO_EXTEND;
1816 case SExt: return ISD::SIGN_EXTEND;
1817 case FPToUI: return ISD::FP_TO_UINT;
1818 case FPToSI: return ISD::FP_TO_SINT;
1819 case UIToFP: return ISD::UINT_TO_FP;
1820 case SIToFP: return ISD::SINT_TO_FP;
1821 case FPTrunc: return ISD::FP_ROUND;
1822 case FPExt: return ISD::FP_EXTEND;
1823 case PtrToInt: return ISD::BITCAST;
1824 case IntToPtr: return ISD::BITCAST;
1825 case BitCast: return ISD::BITCAST;
1826 case AddrSpaceCast: return ISD::ADDRSPACECAST;
1827 case ICmp: return ISD::SETCC;
1828 case FCmp: return ISD::SETCC;
1829 case PHI: return 0;
1830 case Call: return 0;
1831 case Select: return ISD::SELECT;
1832 case UserOp1: return 0;
1833 case UserOp2: return 0;
1834 case VAArg: return 0;
1835 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1836 case InsertElement: return ISD::INSERT_VECTOR_ELT;
1837 case ShuffleVector: return ISD::VECTOR_SHUFFLE;
1838 case ExtractValue: return ISD::MERGE_VALUES;
1839 case InsertValue: return ISD::MERGE_VALUES;
1840 case LandingPad: return 0;
1841 case Freeze: return ISD::FREEZE;
1844 llvm_unreachable("Unknown instruction type encountered!");
1847 std::pair<InstructionCost, MVT>
1848 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1849 Type *Ty) const {
1850 LLVMContext &C = Ty->getContext();
1851 EVT MTy = getValueType(DL, Ty);
1853 InstructionCost Cost = 1;
1854 // We keep legalizing the type until we find a legal kind. We assume that
1855 // the only operation that costs anything is the split. After splitting
1856 // we need to handle two types.
1857 while (true) {
1858 LegalizeKind LK = getTypeConversion(C, MTy);
1860 if (LK.first == TypeScalarizeScalableVector) {
1861 // Ensure we return a sensible simple VT here, since many callers of this
1862 // function require it.
1863 MVT VT = MTy.isSimple() ? MTy.getSimpleVT() : MVT::i64;
1864 return std::make_pair(InstructionCost::getInvalid(), VT);
1867 if (LK.first == TypeLegal)
1868 return std::make_pair(Cost, MTy.getSimpleVT());
1870 if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1871 Cost *= 2;
1873 // Do not loop with f128 type.
1874 if (MTy == LK.second)
1875 return std::make_pair(Cost, MTy.getSimpleVT());
1877 // Keep legalizing the type.
1878 MTy = LK.second;
1882 Value *
1883 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
1884 bool UseTLS) const {
1885 // compiler-rt provides a variable with a magic name. Targets that do not
1886 // link with compiler-rt may also provide such a variable.
1887 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1888 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1889 auto UnsafeStackPtr =
1890 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1892 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1894 if (!UnsafeStackPtr) {
1895 auto TLSModel = UseTLS ?
1896 GlobalValue::InitialExecTLSModel :
1897 GlobalValue::NotThreadLocal;
1898 // The global variable is not defined yet, define it ourselves.
1899 // We use the initial-exec TLS model because we do not support the
1900 // variable living anywhere other than in the main executable.
1901 UnsafeStackPtr = new GlobalVariable(
1902 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1903 UnsafeStackPtrVar, nullptr, TLSModel);
1904 } else {
1905 // The variable exists, check its type and attributes.
1906 if (UnsafeStackPtr->getValueType() != StackPtrTy)
1907 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1908 if (UseTLS != UnsafeStackPtr->isThreadLocal())
1909 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1910 (UseTLS ? "" : "not ") + "be thread-local");
1912 return UnsafeStackPtr;
1915 Value *
1916 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
1917 if (!TM.getTargetTriple().isAndroid())
1918 return getDefaultSafeStackPointerLocation(IRB, true);
1920 // Android provides a libc function to retrieve the address of the current
1921 // thread's unsafe stack pointer.
1922 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1923 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1924 FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1925 StackPtrTy->getPointerTo(0));
1926 return IRB.CreateCall(Fn);
1929 //===----------------------------------------------------------------------===//
1930 // Loop Strength Reduction hooks
1931 //===----------------------------------------------------------------------===//
1933 /// isLegalAddressingMode - Return true if the addressing mode represented
1934 /// by AM is legal for this target, for a load/store of the specified type.
1935 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1936 const AddrMode &AM, Type *Ty,
1937 unsigned AS, Instruction *I) const {
1938 // The default implementation of this implements a conservative RISCy, r+r and
1939 // r+i addr mode.
1941 // Allows a sign-extended 16-bit immediate field.
1942 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1943 return false;
1945 // No global is ever allowed as a base.
1946 if (AM.BaseGV)
1947 return false;
1949 // Only support r+r,
1950 switch (AM.Scale) {
1951 case 0: // "r+i" or just "i", depending on HasBaseReg.
1952 break;
1953 case 1:
1954 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
1955 return false;
1956 // Otherwise we have r+r or r+i.
1957 break;
1958 case 2:
1959 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
1960 return false;
1961 // Allow 2*r as r+r.
1962 break;
1963 default: // Don't allow n * r
1964 return false;
1967 return true;
1970 //===----------------------------------------------------------------------===//
1971 // Stack Protector
1972 //===----------------------------------------------------------------------===//
1974 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1975 // so that SelectionDAG handle SSP.
1976 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const {
1977 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1978 Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1979 PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1980 Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
1981 if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
1982 G->setVisibility(GlobalValue::HiddenVisibility);
1983 return C;
1985 return nullptr;
1988 // Currently only support "standard" __stack_chk_guard.
1989 // TODO: add LOAD_STACK_GUARD support.
1990 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1991 if (!M.getNamedValue("__stack_chk_guard")) {
1992 auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1993 GlobalVariable::ExternalLinkage, nullptr,
1994 "__stack_chk_guard");
1996 // FreeBSD has "__stack_chk_guard" defined externally on libc.so
1997 if (TM.getRelocationModel() == Reloc::Static &&
1998 !TM.getTargetTriple().isWindowsGNUEnvironment() &&
1999 !TM.getTargetTriple().isOSFreeBSD())
2000 GV->setDSOLocal(true);
2004 // Currently only support "standard" __stack_chk_guard.
2005 // TODO: add LOAD_STACK_GUARD support.
2006 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
2007 return M.getNamedValue("__stack_chk_guard");
2010 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
2011 return nullptr;
2014 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
2015 return MinimumJumpTableEntries;
2018 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
2019 MinimumJumpTableEntries = Val;
2022 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2023 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2026 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
2027 return MaximumJumpTableSize;
2030 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
2031 MaximumJumpTableSize = Val;
2034 bool TargetLoweringBase::isJumpTableRelative() const {
2035 return getTargetMachine().isPositionIndependent();
2038 Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const {
2039 if (TM.Options.LoopAlignment)
2040 return Align(TM.Options.LoopAlignment);
2041 return PrefLoopAlignment;
2044 unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment(
2045 MachineBasicBlock *MBB) const {
2046 return MaxBytesForAlignment;
2049 //===----------------------------------------------------------------------===//
2050 // Reciprocal Estimates
2051 //===----------------------------------------------------------------------===//
2053 /// Get the reciprocal estimate attribute string for a function that will
2054 /// override the target defaults.
2055 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
2056 const Function &F = MF.getFunction();
2057 return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2060 /// Construct a string for the given reciprocal operation of the given type.
2061 /// This string should match the corresponding option to the front-end's
2062 /// "-mrecip" flag assuming those strings have been passed through in an
2063 /// attribute string. For example, "vec-divf" for a division of a vXf32.
2064 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2065 std::string Name = VT.isVector() ? "vec-" : "";
2067 Name += IsSqrt ? "sqrt" : "div";
2069 // TODO: Handle "half" or other float types?
2070 if (VT.getScalarType() == MVT::f64) {
2071 Name += "d";
2072 } else {
2073 assert(VT.getScalarType() == MVT::f32 &&
2074 "Unexpected FP type for reciprocal estimate");
2075 Name += "f";
2078 return Name;
2081 /// Return the character position and value (a single numeric character) of a
2082 /// customized refinement operation in the input string if it exists. Return
2083 /// false if there is no customized refinement step count.
2084 static bool parseRefinementStep(StringRef In, size_t &Position,
2085 uint8_t &Value) {
2086 const char RefStepToken = ':';
2087 Position = In.find(RefStepToken);
2088 if (Position == StringRef::npos)
2089 return false;
2091 StringRef RefStepString = In.substr(Position + 1);
2092 // Allow exactly one numeric character for the additional refinement
2093 // step parameter.
2094 if (RefStepString.size() == 1) {
2095 char RefStepChar = RefStepString[0];
2096 if (isDigit(RefStepChar)) {
2097 Value = RefStepChar - '0';
2098 return true;
2101 report_fatal_error("Invalid refinement step for -recip.");
2104 /// For the input attribute string, return one of the ReciprocalEstimate enum
2105 /// status values (enabled, disabled, or not specified) for this operation on
2106 /// the specified data type.
2107 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2108 if (Override.empty())
2109 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2111 SmallVector<StringRef, 4> OverrideVector;
2112 Override.split(OverrideVector, ',');
2113 unsigned NumArgs = OverrideVector.size();
2115 // Check if "all", "none", or "default" was specified.
2116 if (NumArgs == 1) {
2117 // Look for an optional setting of the number of refinement steps needed
2118 // for this type of reciprocal operation.
2119 size_t RefPos;
2120 uint8_t RefSteps;
2121 if (parseRefinementStep(Override, RefPos, RefSteps)) {
2122 // Split the string for further processing.
2123 Override = Override.substr(0, RefPos);
2126 // All reciprocal types are enabled.
2127 if (Override == "all")
2128 return TargetLoweringBase::ReciprocalEstimate::Enabled;
2130 // All reciprocal types are disabled.
2131 if (Override == "none")
2132 return TargetLoweringBase::ReciprocalEstimate::Disabled;
2134 // Target defaults for enablement are used.
2135 if (Override == "default")
2136 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2139 // The attribute string may omit the size suffix ('f'/'d').
2140 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2141 std::string VTNameNoSize = VTName;
2142 VTNameNoSize.pop_back();
2143 static const char DisabledPrefix = '!';
2145 for (StringRef RecipType : OverrideVector) {
2146 size_t RefPos;
2147 uint8_t RefSteps;
2148 if (parseRefinementStep(RecipType, RefPos, RefSteps))
2149 RecipType = RecipType.substr(0, RefPos);
2151 // Ignore the disablement token for string matching.
2152 bool IsDisabled = RecipType[0] == DisabledPrefix;
2153 if (IsDisabled)
2154 RecipType = RecipType.substr(1);
2156 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2157 return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2158 : TargetLoweringBase::ReciprocalEstimate::Enabled;
2161 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2164 /// For the input attribute string, return the customized refinement step count
2165 /// for this operation on the specified data type. If the step count does not
2166 /// exist, return the ReciprocalEstimate enum value for unspecified.
2167 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2168 if (Override.empty())
2169 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2171 SmallVector<StringRef, 4> OverrideVector;
2172 Override.split(OverrideVector, ',');
2173 unsigned NumArgs = OverrideVector.size();
2175 // Check if "all", "default", or "none" was specified.
2176 if (NumArgs == 1) {
2177 // Look for an optional setting of the number of refinement steps needed
2178 // for this type of reciprocal operation.
2179 size_t RefPos;
2180 uint8_t RefSteps;
2181 if (!parseRefinementStep(Override, RefPos, RefSteps))
2182 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2184 // Split the string for further processing.
2185 Override = Override.substr(0, RefPos);
2186 assert(Override != "none" &&
2187 "Disabled reciprocals, but specifed refinement steps?");
2189 // If this is a general override, return the specified number of steps.
2190 if (Override == "all" || Override == "default")
2191 return RefSteps;
2194 // The attribute string may omit the size suffix ('f'/'d').
2195 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2196 std::string VTNameNoSize = VTName;
2197 VTNameNoSize.pop_back();
2199 for (StringRef RecipType : OverrideVector) {
2200 size_t RefPos;
2201 uint8_t RefSteps;
2202 if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2203 continue;
2205 RecipType = RecipType.substr(0, RefPos);
2206 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2207 return RefSteps;
2210 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2213 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2214 MachineFunction &MF) const {
2215 return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2218 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2219 MachineFunction &MF) const {
2220 return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2223 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2224 MachineFunction &MF) const {
2225 return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2228 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2229 MachineFunction &MF) const {
2230 return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2233 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2234 MF.getRegInfo().freezeReservedRegs(MF);
2237 MachineMemOperand::Flags
2238 TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI,
2239 const DataLayout &DL) const {
2240 MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2241 if (LI.isVolatile())
2242 Flags |= MachineMemOperand::MOVolatile;
2244 if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2245 Flags |= MachineMemOperand::MONonTemporal;
2247 if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2248 Flags |= MachineMemOperand::MOInvariant;
2250 if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL))
2251 Flags |= MachineMemOperand::MODereferenceable;
2253 Flags |= getTargetMMOFlags(LI);
2254 return Flags;
2257 MachineMemOperand::Flags
2258 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2259 const DataLayout &DL) const {
2260 MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2262 if (SI.isVolatile())
2263 Flags |= MachineMemOperand::MOVolatile;
2265 if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2266 Flags |= MachineMemOperand::MONonTemporal;
2268 // FIXME: Not preserving dereferenceable
2269 Flags |= getTargetMMOFlags(SI);
2270 return Flags;
2273 MachineMemOperand::Flags
2274 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2275 const DataLayout &DL) const {
2276 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2278 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2279 if (RMW->isVolatile())
2280 Flags |= MachineMemOperand::MOVolatile;
2281 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2282 if (CmpX->isVolatile())
2283 Flags |= MachineMemOperand::MOVolatile;
2284 } else
2285 llvm_unreachable("not an atomic instruction");
2287 // FIXME: Not preserving dereferenceable
2288 Flags |= getTargetMMOFlags(AI);
2289 return Flags;
2292 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder,
2293 Instruction *Inst,
2294 AtomicOrdering Ord) const {
2295 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2296 return Builder.CreateFence(Ord);
2297 else
2298 return nullptr;
2301 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder,
2302 Instruction *Inst,
2303 AtomicOrdering Ord) const {
2304 if (isAcquireOrStronger(Ord))
2305 return Builder.CreateFence(Ord);
2306 else
2307 return nullptr;
2310 //===----------------------------------------------------------------------===//
2311 // GlobalISel Hooks
2312 //===----------------------------------------------------------------------===//
2314 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2315 const TargetTransformInfo *TTI) const {
2316 auto &MF = *MI.getMF();
2317 auto &MRI = MF.getRegInfo();
2318 // Assuming a spill and reload of a value has a cost of 1 instruction each,
2319 // this helper function computes the maximum number of uses we should consider
2320 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2321 // break even in terms of code size when the original MI has 2 users vs
2322 // choosing to potentially spill. Any more than 2 users we we have a net code
2323 // size increase. This doesn't take into account register pressure though.
2324 auto maxUses = [](unsigned RematCost) {
2325 // A cost of 1 means remats are basically free.
2326 if (RematCost == 1)
2327 return UINT_MAX;
2328 if (RematCost == 2)
2329 return 2U;
2331 // Remat is too expensive, only sink if there's one user.
2332 if (RematCost > 2)
2333 return 1U;
2334 llvm_unreachable("Unexpected remat cost");
2337 // Helper to walk through uses and terminate if we've reached a limit. Saves
2338 // us spending time traversing uses if all we want to know is if it's >= min.
2339 auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) {
2340 unsigned NumUses = 0;
2341 auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end();
2342 for (; UI != UE && NumUses < MaxUses; ++UI) {
2343 NumUses++;
2345 // If we haven't reached the end yet then there are more than MaxUses users.
2346 return UI == UE;
2349 switch (MI.getOpcode()) {
2350 default:
2351 return false;
2352 // Constants-like instructions should be close to their users.
2353 // We don't want long live-ranges for them.
2354 case TargetOpcode::G_CONSTANT:
2355 case TargetOpcode::G_FCONSTANT:
2356 case TargetOpcode::G_FRAME_INDEX:
2357 case TargetOpcode::G_INTTOPTR:
2358 return true;
2359 case TargetOpcode::G_GLOBAL_VALUE: {
2360 unsigned RematCost = TTI->getGISelRematGlobalCost();
2361 Register Reg = MI.getOperand(0).getReg();
2362 unsigned MaxUses = maxUses(RematCost);
2363 if (MaxUses == UINT_MAX)
2364 return true; // Remats are "free" so always localize.
2365 bool B = isUsesAtMost(Reg, MaxUses);
2366 return B;