[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / CodeGen / TwoAddressInstructionPass.cpp
blobdfd962be2882adaac4422b2a03461380761daa7e
1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TwoAddress instruction pass which is used
10 // by most register allocators. Two-Address instructions are rewritten
11 // from:
13 // A = B op C
15 // to:
17 // A = B
18 // A op= C
20 // Note that if a register allocator chooses to use this pass, that it
21 // has to be capable of handling the non-SSA nature of these rewritten
22 // virtual registers.
24 // It is also worth noting that the duplicate operand of the two
25 // address instruction is removed.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveVariables.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/Passes.h"
47 #include "llvm/CodeGen/SlotIndexes.h"
48 #include "llvm/CodeGen/TargetInstrInfo.h"
49 #include "llvm/CodeGen/TargetOpcodes.h"
50 #include "llvm/CodeGen/TargetRegisterInfo.h"
51 #include "llvm/CodeGen/TargetSubtargetInfo.h"
52 #include "llvm/MC/MCInstrDesc.h"
53 #include "llvm/MC/MCInstrItineraries.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Target/TargetMachine.h"
61 #include <cassert>
62 #include <iterator>
63 #include <utility>
65 using namespace llvm;
67 #define DEBUG_TYPE "twoaddressinstruction"
69 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
70 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
71 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
72 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
73 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up");
74 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down");
76 // Temporary flag to disable rescheduling.
77 static cl::opt<bool>
78 EnableRescheduling("twoaddr-reschedule",
79 cl::desc("Coalesce copies by rescheduling (default=true)"),
80 cl::init(true), cl::Hidden);
82 // Limit the number of dataflow edges to traverse when evaluating the benefit
83 // of commuting operands.
84 static cl::opt<unsigned> MaxDataFlowEdge(
85 "dataflow-edge-limit", cl::Hidden, cl::init(3),
86 cl::desc("Maximum number of dataflow edges to traverse when evaluating "
87 "the benefit of commuting operands"));
89 namespace {
91 class TwoAddressInstructionPass : public MachineFunctionPass {
92 MachineFunction *MF;
93 const TargetInstrInfo *TII;
94 const TargetRegisterInfo *TRI;
95 const InstrItineraryData *InstrItins;
96 MachineRegisterInfo *MRI;
97 LiveVariables *LV;
98 LiveIntervals *LIS;
99 AliasAnalysis *AA;
100 CodeGenOpt::Level OptLevel;
102 // The current basic block being processed.
103 MachineBasicBlock *MBB;
105 // Keep track the distance of a MI from the start of the current basic block.
106 DenseMap<MachineInstr*, unsigned> DistanceMap;
108 // Set of already processed instructions in the current block.
109 SmallPtrSet<MachineInstr*, 8> Processed;
111 // A map from virtual registers to physical registers which are likely targets
112 // to be coalesced to due to copies from physical registers to virtual
113 // registers. e.g. v1024 = move r0.
114 DenseMap<Register, Register> SrcRegMap;
116 // A map from virtual registers to physical registers which are likely targets
117 // to be coalesced to due to copies to physical registers from virtual
118 // registers. e.g. r1 = move v1024.
119 DenseMap<Register, Register> DstRegMap;
121 void removeClobberedSrcRegMap(MachineInstr *MI);
123 bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen);
125 bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef);
127 bool isProfitableToCommute(Register RegA, Register RegB, Register RegC,
128 MachineInstr *MI, unsigned Dist);
130 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx,
131 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist);
133 bool isProfitableToConv3Addr(Register RegA, Register RegB);
135 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
136 MachineBasicBlock::iterator &nmi, Register RegA,
137 Register RegB, unsigned &Dist);
139 bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI);
141 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
142 MachineBasicBlock::iterator &nmi, Register Reg);
143 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
144 MachineBasicBlock::iterator &nmi, Register Reg);
146 bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
147 MachineBasicBlock::iterator &nmi,
148 unsigned SrcIdx, unsigned DstIdx,
149 unsigned &Dist, bool shouldOnlyCommute);
151 bool tryInstructionCommute(MachineInstr *MI,
152 unsigned DstOpIdx,
153 unsigned BaseOpIdx,
154 bool BaseOpKilled,
155 unsigned Dist);
156 void scanUses(Register DstReg);
158 void processCopy(MachineInstr *MI);
160 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>;
161 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>;
163 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
164 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
165 void eliminateRegSequence(MachineBasicBlock::iterator&);
167 public:
168 static char ID; // Pass identification, replacement for typeid
170 TwoAddressInstructionPass() : MachineFunctionPass(ID) {
171 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
174 void getAnalysisUsage(AnalysisUsage &AU) const override {
175 AU.setPreservesCFG();
176 AU.addUsedIfAvailable<AAResultsWrapperPass>();
177 AU.addUsedIfAvailable<LiveVariables>();
178 AU.addPreserved<LiveVariables>();
179 AU.addPreserved<SlotIndexes>();
180 AU.addPreserved<LiveIntervals>();
181 AU.addPreservedID(MachineLoopInfoID);
182 AU.addPreservedID(MachineDominatorsID);
183 MachineFunctionPass::getAnalysisUsage(AU);
186 /// Pass entry point.
187 bool runOnMachineFunction(MachineFunction&) override;
190 } // end anonymous namespace
192 char TwoAddressInstructionPass::ID = 0;
194 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
196 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE,
197 "Two-Address instruction pass", false, false)
198 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
199 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE,
200 "Two-Address instruction pass", false, false)
202 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, LiveIntervals *LIS);
204 /// Return the MachineInstr* if it is the single def of the Reg in current BB.
205 static MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB,
206 const MachineRegisterInfo *MRI) {
207 MachineInstr *Ret = nullptr;
208 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
209 if (DefMI.getParent() != BB || DefMI.isDebugValue())
210 continue;
211 if (!Ret)
212 Ret = &DefMI;
213 else if (Ret != &DefMI)
214 return nullptr;
216 return Ret;
219 /// Check if there is a reversed copy chain from FromReg to ToReg:
220 /// %Tmp1 = copy %Tmp2;
221 /// %FromReg = copy %Tmp1;
222 /// %ToReg = add %FromReg ...
223 /// %Tmp2 = copy %ToReg;
224 /// MaxLen specifies the maximum length of the copy chain the func
225 /// can walk through.
226 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg,
227 int Maxlen) {
228 Register TmpReg = FromReg;
229 for (int i = 0; i < Maxlen; i++) {
230 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI);
231 if (!Def || !Def->isCopy())
232 return false;
234 TmpReg = Def->getOperand(1).getReg();
236 if (TmpReg == ToReg)
237 return true;
239 return false;
242 /// Return true if there are no intervening uses between the last instruction
243 /// in the MBB that defines the specified register and the two-address
244 /// instruction which is being processed. It also returns the last def location
245 /// by reference.
246 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist,
247 unsigned &LastDef) {
248 LastDef = 0;
249 unsigned LastUse = Dist;
250 for (MachineOperand &MO : MRI->reg_operands(Reg)) {
251 MachineInstr *MI = MO.getParent();
252 if (MI->getParent() != MBB || MI->isDebugValue())
253 continue;
254 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
255 if (DI == DistanceMap.end())
256 continue;
257 if (MO.isUse() && DI->second < LastUse)
258 LastUse = DI->second;
259 if (MO.isDef() && DI->second > LastDef)
260 LastDef = DI->second;
263 return !(LastUse > LastDef && LastUse < Dist);
266 /// Return true if the specified MI is a copy instruction or an extract_subreg
267 /// instruction. It also returns the source and destination registers and
268 /// whether they are physical registers by reference.
269 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
270 Register &SrcReg, Register &DstReg, bool &IsSrcPhys,
271 bool &IsDstPhys) {
272 SrcReg = 0;
273 DstReg = 0;
274 if (MI.isCopy()) {
275 DstReg = MI.getOperand(0).getReg();
276 SrcReg = MI.getOperand(1).getReg();
277 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
278 DstReg = MI.getOperand(0).getReg();
279 SrcReg = MI.getOperand(2).getReg();
280 } else {
281 return false;
284 IsSrcPhys = SrcReg.isPhysical();
285 IsDstPhys = DstReg.isPhysical();
286 return true;
289 /// Test if the given register value, which is used by the
290 /// given instruction, is killed by the given instruction.
291 static bool isPlainlyKilled(MachineInstr *MI, Register Reg,
292 LiveIntervals *LIS) {
293 if (LIS && Reg.isVirtual() && !LIS->isNotInMIMap(*MI)) {
294 // FIXME: Sometimes tryInstructionTransform() will add instructions and
295 // test whether they can be folded before keeping them. In this case it
296 // sets a kill before recursively calling tryInstructionTransform() again.
297 // If there is no interval available, we assume that this instruction is
298 // one of those. A kill flag is manually inserted on the operand so the
299 // check below will handle it.
300 LiveInterval &LI = LIS->getInterval(Reg);
301 // This is to match the kill flag version where undefs don't have kill
302 // flags.
303 if (!LI.hasAtLeastOneValue())
304 return false;
306 SlotIndex useIdx = LIS->getInstructionIndex(*MI);
307 LiveInterval::const_iterator I = LI.find(useIdx);
308 assert(I != LI.end() && "Reg must be live-in to use.");
309 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
312 return MI->killsRegister(Reg);
315 /// Test if the given register value, which is used by the given
316 /// instruction, is killed by the given instruction. This looks through
317 /// coalescable copies to see if the original value is potentially not killed.
319 /// For example, in this code:
321 /// %reg1034 = copy %reg1024
322 /// %reg1035 = copy killed %reg1025
323 /// %reg1036 = add killed %reg1034, killed %reg1035
325 /// %reg1034 is not considered to be killed, since it is copied from a
326 /// register which is not killed. Treating it as not killed lets the
327 /// normal heuristics commute the (two-address) add, which lets
328 /// coalescing eliminate the extra copy.
330 /// If allowFalsePositives is true then likely kills are treated as kills even
331 /// if it can't be proven that they are kills.
332 static bool isKilled(MachineInstr &MI, Register Reg,
333 const MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
334 LiveIntervals *LIS, bool allowFalsePositives) {
335 MachineInstr *DefMI = &MI;
336 while (true) {
337 // All uses of physical registers are likely to be kills.
338 if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg)))
339 return true;
340 if (!isPlainlyKilled(DefMI, Reg, LIS))
341 return false;
342 if (Reg.isPhysical())
343 return true;
344 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
345 // If there are multiple defs, we can't do a simple analysis, so just
346 // go with what the kill flag says.
347 if (std::next(Begin) != MRI->def_end())
348 return true;
349 DefMI = Begin->getParent();
350 bool IsSrcPhys, IsDstPhys;
351 Register SrcReg, DstReg;
352 // If the def is something other than a copy, then it isn't going to
353 // be coalesced, so follow the kill flag.
354 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
355 return true;
356 Reg = SrcReg;
360 /// Return true if the specified MI uses the specified register as a two-address
361 /// use. If so, return the destination register by reference.
362 static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) {
363 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
364 const MachineOperand &MO = MI.getOperand(i);
365 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
366 continue;
367 unsigned ti;
368 if (MI.isRegTiedToDefOperand(i, &ti)) {
369 DstReg = MI.getOperand(ti).getReg();
370 return true;
373 return false;
376 /// Given a register, if all its uses are in the same basic block, return the
377 /// last use instruction if it's a copy or a two-address use.
378 static MachineInstr *
379 findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB,
380 MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
381 bool &IsCopy, Register &DstReg, bool &IsDstPhys,
382 LiveIntervals *LIS) {
383 MachineOperand *UseOp = nullptr;
384 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
385 MachineInstr *MI = MO.getParent();
386 if (MI->getParent() != MBB)
387 return nullptr;
388 if (isPlainlyKilled(MI, Reg, LIS))
389 UseOp = &MO;
391 if (!UseOp)
392 return nullptr;
393 MachineInstr &UseMI = *UseOp->getParent();
395 Register SrcReg;
396 bool IsSrcPhys;
397 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
398 IsCopy = true;
399 return &UseMI;
401 IsDstPhys = false;
402 if (isTwoAddrUse(UseMI, Reg, DstReg)) {
403 IsDstPhys = DstReg.isPhysical();
404 return &UseMI;
406 if (UseMI.isCommutable()) {
407 unsigned Src1 = TargetInstrInfo::CommuteAnyOperandIndex;
408 unsigned Src2 = UseMI.getOperandNo(UseOp);
409 if (TII->findCommutedOpIndices(UseMI, Src1, Src2)) {
410 MachineOperand &MO = UseMI.getOperand(Src1);
411 if (MO.isReg() && MO.isUse() &&
412 isTwoAddrUse(UseMI, MO.getReg(), DstReg)) {
413 IsDstPhys = DstReg.isPhysical();
414 return &UseMI;
418 return nullptr;
421 /// Return the physical register the specified virtual register might be mapped
422 /// to.
423 static MCRegister getMappedReg(Register Reg,
424 DenseMap<Register, Register> &RegMap) {
425 while (Reg.isVirtual()) {
426 DenseMap<Register, Register>::iterator SI = RegMap.find(Reg);
427 if (SI == RegMap.end())
428 return 0;
429 Reg = SI->second;
431 if (Reg.isPhysical())
432 return Reg;
433 return 0;
436 /// Return true if the two registers are equal or aliased.
437 static bool regsAreCompatible(Register RegA, Register RegB,
438 const TargetRegisterInfo *TRI) {
439 if (RegA == RegB)
440 return true;
441 if (!RegA || !RegB)
442 return false;
443 return TRI->regsOverlap(RegA, RegB);
446 /// From RegMap remove entries mapped to a physical register which overlaps MO.
447 static void removeMapRegEntry(const MachineOperand &MO,
448 DenseMap<Register, Register> &RegMap,
449 const TargetRegisterInfo *TRI) {
450 assert(
451 (MO.isReg() || MO.isRegMask()) &&
452 "removeMapRegEntry must be called with a register or regmask operand.");
454 SmallVector<Register, 2> Srcs;
455 for (auto SI : RegMap) {
456 Register ToReg = SI.second;
457 if (ToReg.isVirtual())
458 continue;
460 if (MO.isReg()) {
461 Register Reg = MO.getReg();
462 if (TRI->regsOverlap(ToReg, Reg))
463 Srcs.push_back(SI.first);
464 } else if (MO.clobbersPhysReg(ToReg))
465 Srcs.push_back(SI.first);
468 for (auto SrcReg : Srcs)
469 RegMap.erase(SrcReg);
472 /// If a physical register is clobbered, old entries mapped to it should be
473 /// deleted. For example
475 /// %2:gr64 = COPY killed $rdx
476 /// MUL64r %3:gr64, implicit-def $rax, implicit-def $rdx
478 /// After the MUL instruction, $rdx contains different value than in the COPY
479 /// instruction. So %2 should not map to $rdx after MUL.
480 void TwoAddressInstructionPass::removeClobberedSrcRegMap(MachineInstr *MI) {
481 if (MI->isCopy()) {
482 // If a virtual register is copied to its mapped physical register, it
483 // doesn't change the potential coalescing between them, so we don't remove
484 // entries mapped to the physical register. For example
486 // %100 = COPY $r8
487 // ...
488 // $r8 = COPY %100
490 // The first copy constructs SrcRegMap[%100] = $r8, the second copy doesn't
491 // destroy the content of $r8, and should not impact SrcRegMap.
492 Register Dst = MI->getOperand(0).getReg();
493 if (!Dst || Dst.isVirtual())
494 return;
496 Register Src = MI->getOperand(1).getReg();
497 if (regsAreCompatible(Dst, getMappedReg(Src, SrcRegMap), TRI))
498 return;
501 for (const MachineOperand &MO : MI->operands()) {
502 if (MO.isRegMask()) {
503 removeMapRegEntry(MO, SrcRegMap, TRI);
504 continue;
506 if (!MO.isReg() || !MO.isDef())
507 continue;
508 Register Reg = MO.getReg();
509 if (!Reg || Reg.isVirtual())
510 continue;
511 removeMapRegEntry(MO, SrcRegMap, TRI);
515 // Returns true if Reg is equal or aliased to at least one register in Set.
516 static bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg,
517 const TargetRegisterInfo *TRI) {
518 for (unsigned R : Set)
519 if (TRI->regsOverlap(R, Reg))
520 return true;
522 return false;
525 /// Return true if it's potentially profitable to commute the two-address
526 /// instruction that's being processed.
527 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA,
528 Register RegB,
529 Register RegC,
530 MachineInstr *MI,
531 unsigned Dist) {
532 if (OptLevel == CodeGenOpt::None)
533 return false;
535 // Determine if it's profitable to commute this two address instruction. In
536 // general, we want no uses between this instruction and the definition of
537 // the two-address register.
538 // e.g.
539 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
540 // %reg1029 = COPY %reg1028
541 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
542 // insert => %reg1030 = COPY %reg1028
543 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
544 // In this case, it might not be possible to coalesce the second COPY
545 // instruction if the first one is coalesced. So it would be profitable to
546 // commute it:
547 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
548 // %reg1029 = COPY %reg1028
549 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
550 // insert => %reg1030 = COPY %reg1029
551 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags
553 if (!isPlainlyKilled(MI, RegC, LIS))
554 return false;
556 // Ok, we have something like:
557 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
558 // let's see if it's worth commuting it.
560 // Look for situations like this:
561 // %reg1024 = MOV r1
562 // %reg1025 = MOV r0
563 // %reg1026 = ADD %reg1024, %reg1025
564 // r0 = MOV %reg1026
565 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
566 MCRegister ToRegA = getMappedReg(RegA, DstRegMap);
567 if (ToRegA) {
568 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap);
569 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap);
570 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI);
571 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI);
573 // Compute if any of the following are true:
574 // -RegB is not tied to a register and RegC is compatible with RegA.
575 // -RegB is tied to the wrong physical register, but RegC is.
576 // -RegB is tied to the wrong physical register, and RegC isn't tied.
577 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
578 return true;
579 // Don't compute if any of the following are true:
580 // -RegC is not tied to a register and RegB is compatible with RegA.
581 // -RegC is tied to the wrong physical register, but RegB is.
582 // -RegC is tied to the wrong physical register, and RegB isn't tied.
583 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
584 return false;
587 // If there is a use of RegC between its last def (could be livein) and this
588 // instruction, then bail.
589 unsigned LastDefC = 0;
590 if (!noUseAfterLastDef(RegC, Dist, LastDefC))
591 return false;
593 // If there is a use of RegB between its last def (could be livein) and this
594 // instruction, then go ahead and make this transformation.
595 unsigned LastDefB = 0;
596 if (!noUseAfterLastDef(RegB, Dist, LastDefB))
597 return true;
599 // Look for situation like this:
600 // %reg101 = MOV %reg100
601 // %reg102 = ...
602 // %reg103 = ADD %reg102, %reg101
603 // ... = %reg103 ...
604 // %reg100 = MOV %reg103
605 // If there is a reversed copy chain from reg101 to reg103, commute the ADD
606 // to eliminate an otherwise unavoidable copy.
607 // FIXME:
608 // We can extend the logic further: If an pair of operands in an insn has
609 // been merged, the insn could be regarded as a virtual copy, and the virtual
610 // copy could also be used to construct a copy chain.
611 // To more generally minimize register copies, ideally the logic of two addr
612 // instruction pass should be integrated with register allocation pass where
613 // interference graph is available.
614 if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge))
615 return true;
617 if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge))
618 return false;
620 // Look for other target specific commute preference.
621 bool Commute;
622 if (TII->hasCommutePreference(*MI, Commute))
623 return Commute;
625 // Since there are no intervening uses for both registers, then commute
626 // if the def of RegC is closer. Its live interval is shorter.
627 return LastDefB && LastDefC && LastDefC > LastDefB;
630 /// Commute a two-address instruction and update the basic block, distance map,
631 /// and live variables if needed. Return true if it is successful.
632 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI,
633 unsigned DstIdx,
634 unsigned RegBIdx,
635 unsigned RegCIdx,
636 unsigned Dist) {
637 Register RegC = MI->getOperand(RegCIdx).getReg();
638 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI);
639 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx);
641 if (NewMI == nullptr) {
642 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
643 return false;
646 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
647 assert(NewMI == MI &&
648 "TargetInstrInfo::commuteInstruction() should not return a new "
649 "instruction unless it was requested.");
651 // Update source register map.
652 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap);
653 if (FromRegC) {
654 Register RegA = MI->getOperand(DstIdx).getReg();
655 SrcRegMap[RegA] = FromRegC;
658 return true;
661 /// Return true if it is profitable to convert the given 2-address instruction
662 /// to a 3-address one.
663 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA,
664 Register RegB) {
665 // Look for situations like this:
666 // %reg1024 = MOV r1
667 // %reg1025 = MOV r0
668 // %reg1026 = ADD %reg1024, %reg1025
669 // r2 = MOV %reg1026
670 // Turn ADD into a 3-address instruction to avoid a copy.
671 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap);
672 if (!FromRegB)
673 return false;
674 MCRegister ToRegA = getMappedReg(RegA, DstRegMap);
675 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
678 /// Convert the specified two-address instruction into a three address one.
679 /// Return true if this transformation was successful.
680 bool TwoAddressInstructionPass::convertInstTo3Addr(
681 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
682 Register RegA, Register RegB, unsigned &Dist) {
683 MachineInstrSpan MIS(mi, MBB);
684 MachineInstr *NewMI = TII->convertToThreeAddress(*mi, LV, LIS);
685 if (!NewMI)
686 return false;
688 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
689 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI);
691 // If the old instruction is debug value tracked, an update is required.
692 if (auto OldInstrNum = mi->peekDebugInstrNum()) {
693 assert(mi->getNumExplicitDefs() == 1);
694 assert(NewMI->getNumExplicitDefs() == 1);
696 // Find the old and new def location.
697 auto OldIt = mi->defs().begin();
698 auto NewIt = NewMI->defs().begin();
699 unsigned OldIdx = mi->getOperandNo(OldIt);
700 unsigned NewIdx = NewMI->getOperandNo(NewIt);
702 // Record that one def has been replaced by the other.
703 unsigned NewInstrNum = NewMI->getDebugInstrNum();
704 MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx),
705 std::make_pair(NewInstrNum, NewIdx));
708 MBB->erase(mi); // Nuke the old inst.
710 for (MachineInstr &MI : MIS)
711 DistanceMap.insert(std::make_pair(&MI, Dist++));
712 Dist--;
713 mi = NewMI;
714 nmi = std::next(mi);
716 // Update source and destination register maps.
717 SrcRegMap.erase(RegA);
718 DstRegMap.erase(RegB);
719 return true;
722 /// Scan forward recursively for only uses, update maps if the use is a copy or
723 /// a two-address instruction.
724 void TwoAddressInstructionPass::scanUses(Register DstReg) {
725 SmallVector<Register, 4> VirtRegPairs;
726 bool IsDstPhys;
727 bool IsCopy = false;
728 Register NewReg;
729 Register Reg = DstReg;
730 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
731 NewReg, IsDstPhys, LIS)) {
732 if (IsCopy && !Processed.insert(UseMI).second)
733 break;
735 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
736 if (DI != DistanceMap.end())
737 // Earlier in the same MBB.Reached via a back edge.
738 break;
740 if (IsDstPhys) {
741 VirtRegPairs.push_back(NewReg);
742 break;
744 SrcRegMap[NewReg] = Reg;
745 VirtRegPairs.push_back(NewReg);
746 Reg = NewReg;
749 if (!VirtRegPairs.empty()) {
750 unsigned ToReg = VirtRegPairs.back();
751 VirtRegPairs.pop_back();
752 while (!VirtRegPairs.empty()) {
753 unsigned FromReg = VirtRegPairs.pop_back_val();
754 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
755 if (!isNew)
756 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
757 ToReg = FromReg;
759 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
760 if (!isNew)
761 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
765 /// If the specified instruction is not yet processed, process it if it's a
766 /// copy. For a copy instruction, we find the physical registers the
767 /// source and destination registers might be mapped to. These are kept in
768 /// point-to maps used to determine future optimizations. e.g.
769 /// v1024 = mov r0
770 /// v1025 = mov r1
771 /// v1026 = add v1024, v1025
772 /// r1 = mov r1026
773 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
774 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
775 /// potentially joined with r1 on the output side. It's worthwhile to commute
776 /// 'add' to eliminate a copy.
777 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
778 if (Processed.count(MI))
779 return;
781 bool IsSrcPhys, IsDstPhys;
782 Register SrcReg, DstReg;
783 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
784 return;
786 if (IsDstPhys && !IsSrcPhys) {
787 DstRegMap.insert(std::make_pair(SrcReg, DstReg));
788 } else if (!IsDstPhys && IsSrcPhys) {
789 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
790 if (!isNew)
791 assert(SrcRegMap[DstReg] == SrcReg &&
792 "Can't map to two src physical registers!");
794 scanUses(DstReg);
797 Processed.insert(MI);
800 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
801 /// consider moving the instruction below the kill instruction in order to
802 /// eliminate the need for the copy.
803 bool TwoAddressInstructionPass::rescheduleMIBelowKill(
804 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
805 Register Reg) {
806 // Bail immediately if we don't have LV or LIS available. We use them to find
807 // kills efficiently.
808 if (!LV && !LIS)
809 return false;
811 MachineInstr *MI = &*mi;
812 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
813 if (DI == DistanceMap.end())
814 // Must be created from unfolded load. Don't waste time trying this.
815 return false;
817 MachineInstr *KillMI = nullptr;
818 if (LIS) {
819 LiveInterval &LI = LIS->getInterval(Reg);
820 assert(LI.end() != LI.begin() &&
821 "Reg should not have empty live interval.");
823 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
824 LiveInterval::const_iterator I = LI.find(MBBEndIdx);
825 if (I != LI.end() && I->start < MBBEndIdx)
826 return false;
828 --I;
829 KillMI = LIS->getInstructionFromIndex(I->end);
830 } else {
831 KillMI = LV->getVarInfo(Reg).findKill(MBB);
833 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
834 // Don't mess with copies, they may be coalesced later.
835 return false;
837 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
838 KillMI->isBranch() || KillMI->isTerminator())
839 // Don't move pass calls, etc.
840 return false;
842 Register DstReg;
843 if (isTwoAddrUse(*KillMI, Reg, DstReg))
844 return false;
846 bool SeenStore = true;
847 if (!MI->isSafeToMove(AA, SeenStore))
848 return false;
850 if (TII->getInstrLatency(InstrItins, *MI) > 1)
851 // FIXME: Needs more sophisticated heuristics.
852 return false;
854 SmallVector<Register, 2> Uses;
855 SmallVector<Register, 2> Kills;
856 SmallVector<Register, 2> Defs;
857 for (const MachineOperand &MO : MI->operands()) {
858 if (!MO.isReg())
859 continue;
860 Register MOReg = MO.getReg();
861 if (!MOReg)
862 continue;
863 if (MO.isDef())
864 Defs.push_back(MOReg);
865 else {
866 Uses.push_back(MOReg);
867 if (MOReg != Reg && (MO.isKill() ||
868 (LIS && isPlainlyKilled(MI, MOReg, LIS))))
869 Kills.push_back(MOReg);
873 // Move the copies connected to MI down as well.
874 MachineBasicBlock::iterator Begin = MI;
875 MachineBasicBlock::iterator AfterMI = std::next(Begin);
876 MachineBasicBlock::iterator End = AfterMI;
877 while (End != MBB->end()) {
878 End = skipDebugInstructionsForward(End, MBB->end());
879 if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI))
880 Defs.push_back(End->getOperand(0).getReg());
881 else
882 break;
883 ++End;
886 // Check if the reschedule will not break dependencies.
887 unsigned NumVisited = 0;
888 MachineBasicBlock::iterator KillPos = KillMI;
889 ++KillPos;
890 for (MachineInstr &OtherMI : make_range(End, KillPos)) {
891 // Debug or pseudo instructions cannot be counted against the limit.
892 if (OtherMI.isDebugOrPseudoInstr())
893 continue;
894 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
895 return false;
896 ++NumVisited;
897 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
898 OtherMI.isBranch() || OtherMI.isTerminator())
899 // Don't move pass calls, etc.
900 return false;
901 for (const MachineOperand &MO : OtherMI.operands()) {
902 if (!MO.isReg())
903 continue;
904 Register MOReg = MO.getReg();
905 if (!MOReg)
906 continue;
907 if (MO.isDef()) {
908 if (regOverlapsSet(Uses, MOReg, TRI))
909 // Physical register use would be clobbered.
910 return false;
911 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI))
912 // May clobber a physical register def.
913 // FIXME: This may be too conservative. It's ok if the instruction
914 // is sunken completely below the use.
915 return false;
916 } else {
917 if (regOverlapsSet(Defs, MOReg, TRI))
918 return false;
919 bool isKill =
920 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS));
921 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) ||
922 regOverlapsSet(Kills, MOReg, TRI)))
923 // Don't want to extend other live ranges and update kills.
924 return false;
925 if (MOReg == Reg && !isKill)
926 // We can't schedule across a use of the register in question.
927 return false;
928 // Ensure that if this is register in question, its the kill we expect.
929 assert((MOReg != Reg || &OtherMI == KillMI) &&
930 "Found multiple kills of a register in a basic block");
935 // Move debug info as well.
936 while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr())
937 --Begin;
939 nmi = End;
940 MachineBasicBlock::iterator InsertPos = KillPos;
941 if (LIS) {
942 // We have to move the copies (and any interleaved debug instructions)
943 // first so that the MBB is still well-formed when calling handleMove().
944 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
945 auto CopyMI = MBBI++;
946 MBB->splice(InsertPos, MBB, CopyMI);
947 if (!CopyMI->isDebugOrPseudoInstr())
948 LIS->handleMove(*CopyMI);
949 InsertPos = CopyMI;
951 End = std::next(MachineBasicBlock::iterator(MI));
954 // Copies following MI may have been moved as well.
955 MBB->splice(InsertPos, MBB, Begin, End);
956 DistanceMap.erase(DI);
958 // Update live variables
959 if (LIS) {
960 LIS->handleMove(*MI);
961 } else {
962 LV->removeVirtualRegisterKilled(Reg, *KillMI);
963 LV->addVirtualRegisterKilled(Reg, *MI);
966 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
967 return true;
970 /// Return true if the re-scheduling will put the given instruction too close
971 /// to the defs of its register dependencies.
972 bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist,
973 MachineInstr *MI) {
974 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
975 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
976 continue;
977 if (&DefMI == MI)
978 return true; // MI is defining something KillMI uses
979 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
980 if (DDI == DistanceMap.end())
981 return true; // Below MI
982 unsigned DefDist = DDI->second;
983 assert(Dist > DefDist && "Visited def already?");
984 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist))
985 return true;
987 return false;
990 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
991 /// consider moving the kill instruction above the current two-address
992 /// instruction in order to eliminate the need for the copy.
993 bool TwoAddressInstructionPass::rescheduleKillAboveMI(
994 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
995 Register Reg) {
996 // Bail immediately if we don't have LV or LIS available. We use them to find
997 // kills efficiently.
998 if (!LV && !LIS)
999 return false;
1001 MachineInstr *MI = &*mi;
1002 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
1003 if (DI == DistanceMap.end())
1004 // Must be created from unfolded load. Don't waste time trying this.
1005 return false;
1007 MachineInstr *KillMI = nullptr;
1008 if (LIS) {
1009 LiveInterval &LI = LIS->getInterval(Reg);
1010 assert(LI.end() != LI.begin() &&
1011 "Reg should not have empty live interval.");
1013 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
1014 LiveInterval::const_iterator I = LI.find(MBBEndIdx);
1015 if (I != LI.end() && I->start < MBBEndIdx)
1016 return false;
1018 --I;
1019 KillMI = LIS->getInstructionFromIndex(I->end);
1020 } else {
1021 KillMI = LV->getVarInfo(Reg).findKill(MBB);
1023 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1024 // Don't mess with copies, they may be coalesced later.
1025 return false;
1027 Register DstReg;
1028 if (isTwoAddrUse(*KillMI, Reg, DstReg))
1029 return false;
1031 bool SeenStore = true;
1032 if (!KillMI->isSafeToMove(AA, SeenStore))
1033 return false;
1035 SmallVector<Register, 2> Uses;
1036 SmallVector<Register, 2> Kills;
1037 SmallVector<Register, 2> Defs;
1038 SmallVector<Register, 2> LiveDefs;
1039 for (const MachineOperand &MO : KillMI->operands()) {
1040 if (!MO.isReg())
1041 continue;
1042 Register MOReg = MO.getReg();
1043 if (MO.isUse()) {
1044 if (!MOReg)
1045 continue;
1046 if (isDefTooClose(MOReg, DI->second, MI))
1047 return false;
1048 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
1049 if (MOReg == Reg && !isKill)
1050 return false;
1051 Uses.push_back(MOReg);
1052 if (isKill && MOReg != Reg)
1053 Kills.push_back(MOReg);
1054 } else if (MOReg.isPhysical()) {
1055 Defs.push_back(MOReg);
1056 if (!MO.isDead())
1057 LiveDefs.push_back(MOReg);
1061 // Check if the reschedule will not break depedencies.
1062 unsigned NumVisited = 0;
1063 for (MachineInstr &OtherMI :
1064 make_range(mi, MachineBasicBlock::iterator(KillMI))) {
1065 // Debug or pseudo instructions cannot be counted against the limit.
1066 if (OtherMI.isDebugOrPseudoInstr())
1067 continue;
1068 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
1069 return false;
1070 ++NumVisited;
1071 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
1072 OtherMI.isBranch() || OtherMI.isTerminator())
1073 // Don't move pass calls, etc.
1074 return false;
1075 SmallVector<Register, 2> OtherDefs;
1076 for (const MachineOperand &MO : OtherMI.operands()) {
1077 if (!MO.isReg())
1078 continue;
1079 Register MOReg = MO.getReg();
1080 if (!MOReg)
1081 continue;
1082 if (MO.isUse()) {
1083 if (regOverlapsSet(Defs, MOReg, TRI))
1084 // Moving KillMI can clobber the physical register if the def has
1085 // not been seen.
1086 return false;
1087 if (regOverlapsSet(Kills, MOReg, TRI))
1088 // Don't want to extend other live ranges and update kills.
1089 return false;
1090 if (&OtherMI != MI && MOReg == Reg &&
1091 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))))
1092 // We can't schedule across a use of the register in question.
1093 return false;
1094 } else {
1095 OtherDefs.push_back(MOReg);
1099 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1100 Register MOReg = OtherDefs[i];
1101 if (regOverlapsSet(Uses, MOReg, TRI))
1102 return false;
1103 if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg, TRI))
1104 return false;
1105 // Physical register def is seen.
1106 llvm::erase_value(Defs, MOReg);
1110 // Move the old kill above MI, don't forget to move debug info as well.
1111 MachineBasicBlock::iterator InsertPos = mi;
1112 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr())
1113 --InsertPos;
1114 MachineBasicBlock::iterator From = KillMI;
1115 MachineBasicBlock::iterator To = std::next(From);
1116 while (std::prev(From)->isDebugInstr())
1117 --From;
1118 MBB->splice(InsertPos, MBB, From, To);
1120 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
1121 DistanceMap.erase(DI);
1123 // Update live variables
1124 if (LIS) {
1125 LIS->handleMove(*KillMI);
1126 } else {
1127 LV->removeVirtualRegisterKilled(Reg, *KillMI);
1128 LV->addVirtualRegisterKilled(Reg, *MI);
1131 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
1132 return true;
1135 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the
1136 /// given machine instruction to improve opportunities for coalescing and
1137 /// elimination of a register to register copy.
1139 /// 'DstOpIdx' specifies the index of MI def operand.
1140 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
1141 /// operand is killed by the given instruction.
1142 /// The 'Dist' arguments provides the distance of MI from the start of the
1143 /// current basic block and it is used to determine if it is profitable
1144 /// to commute operands in the instruction.
1146 /// Returns true if the transformation happened. Otherwise, returns false.
1147 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
1148 unsigned DstOpIdx,
1149 unsigned BaseOpIdx,
1150 bool BaseOpKilled,
1151 unsigned Dist) {
1152 if (!MI->isCommutable())
1153 return false;
1155 bool MadeChange = false;
1156 Register DstOpReg = MI->getOperand(DstOpIdx).getReg();
1157 Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg();
1158 unsigned OpsNum = MI->getDesc().getNumOperands();
1159 unsigned OtherOpIdx = MI->getDesc().getNumDefs();
1160 for (; OtherOpIdx < OpsNum; OtherOpIdx++) {
1161 // The call of findCommutedOpIndices below only checks if BaseOpIdx
1162 // and OtherOpIdx are commutable, it does not really search for
1163 // other commutable operands and does not change the values of passed
1164 // variables.
1165 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() ||
1166 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx))
1167 continue;
1169 Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg();
1170 bool AggressiveCommute = false;
1172 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
1173 // operands. This makes the live ranges of DstOp and OtherOp joinable.
1174 bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false);
1175 bool DoCommute = !BaseOpKilled && OtherOpKilled;
1177 if (!DoCommute &&
1178 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) {
1179 DoCommute = true;
1180 AggressiveCommute = true;
1183 // If it's profitable to commute, try to do so.
1184 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx,
1185 Dist)) {
1186 MadeChange = true;
1187 ++NumCommuted;
1188 if (AggressiveCommute)
1189 ++NumAggrCommuted;
1191 // There might be more than two commutable operands, update BaseOp and
1192 // continue scanning.
1193 // FIXME: This assumes that the new instruction's operands are in the
1194 // same positions and were simply swapped.
1195 BaseOpReg = OtherOpReg;
1196 BaseOpKilled = OtherOpKilled;
1197 // Resamples OpsNum in case the number of operands was reduced. This
1198 // happens with X86.
1199 OpsNum = MI->getDesc().getNumOperands();
1202 return MadeChange;
1205 /// For the case where an instruction has a single pair of tied register
1206 /// operands, attempt some transformations that may either eliminate the tied
1207 /// operands or improve the opportunities for coalescing away the register copy.
1208 /// Returns true if no copy needs to be inserted to untie mi's operands
1209 /// (either because they were untied, or because mi was rescheduled, and will
1210 /// be visited again later). If the shouldOnlyCommute flag is true, only
1211 /// instruction commutation is attempted.
1212 bool TwoAddressInstructionPass::
1213 tryInstructionTransform(MachineBasicBlock::iterator &mi,
1214 MachineBasicBlock::iterator &nmi,
1215 unsigned SrcIdx, unsigned DstIdx,
1216 unsigned &Dist, bool shouldOnlyCommute) {
1217 if (OptLevel == CodeGenOpt::None)
1218 return false;
1220 MachineInstr &MI = *mi;
1221 Register regA = MI.getOperand(DstIdx).getReg();
1222 Register regB = MI.getOperand(SrcIdx).getReg();
1224 assert(regB.isVirtual() && "cannot make instruction into two-address form");
1225 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1227 if (regA.isVirtual())
1228 scanUses(regA);
1230 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist);
1232 // If the instruction is convertible to 3 Addr, instead
1233 // of returning try 3 Addr transformation aggressively and
1234 // use this variable to check later. Because it might be better.
1235 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
1236 // instead of the following code.
1237 // addl %esi, %edi
1238 // movl %edi, %eax
1239 // ret
1240 if (Commuted && !MI.isConvertibleTo3Addr())
1241 return false;
1243 if (shouldOnlyCommute)
1244 return false;
1246 // If there is one more use of regB later in the same MBB, consider
1247 // re-schedule this MI below it.
1248 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
1249 ++NumReSchedDowns;
1250 return true;
1253 // If we commuted, regB may have changed so we should re-sample it to avoid
1254 // confusing the three address conversion below.
1255 if (Commuted) {
1256 regB = MI.getOperand(SrcIdx).getReg();
1257 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1260 if (MI.isConvertibleTo3Addr()) {
1261 // This instruction is potentially convertible to a true
1262 // three-address instruction. Check if it is profitable.
1263 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1264 // Try to convert it.
1265 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
1266 ++NumConvertedTo3Addr;
1267 return true; // Done with this instruction.
1272 // Return if it is commuted but 3 addr conversion is failed.
1273 if (Commuted)
1274 return false;
1276 // If there is one more use of regB later in the same MBB, consider
1277 // re-schedule it before this MI if it's legal.
1278 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
1279 ++NumReSchedUps;
1280 return true;
1283 // If this is an instruction with a load folded into it, try unfolding
1284 // the load, e.g. avoid this:
1285 // movq %rdx, %rcx
1286 // addq (%rax), %rcx
1287 // in favor of this:
1288 // movq (%rax), %rcx
1289 // addq %rdx, %rcx
1290 // because it's preferable to schedule a load than a register copy.
1291 if (MI.mayLoad() && !regBKilled) {
1292 // Determine if a load can be unfolded.
1293 unsigned LoadRegIndex;
1294 unsigned NewOpc =
1295 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1296 /*UnfoldLoad=*/true,
1297 /*UnfoldStore=*/false,
1298 &LoadRegIndex);
1299 if (NewOpc != 0) {
1300 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1301 if (UnfoldMCID.getNumDefs() == 1) {
1302 // Unfold the load.
1303 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI);
1304 const TargetRegisterClass *RC =
1305 TRI->getAllocatableClass(
1306 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
1307 Register Reg = MRI->createVirtualRegister(RC);
1308 SmallVector<MachineInstr *, 2> NewMIs;
1309 if (!TII->unfoldMemoryOperand(*MF, MI, Reg,
1310 /*UnfoldLoad=*/true,
1311 /*UnfoldStore=*/false, NewMIs)) {
1312 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1313 return false;
1315 assert(NewMIs.size() == 2 &&
1316 "Unfolded a load into multiple instructions!");
1317 // The load was previously folded, so this is the only use.
1318 NewMIs[1]->addRegisterKilled(Reg, TRI);
1320 // Tentatively insert the instructions into the block so that they
1321 // look "normal" to the transformation logic.
1322 MBB->insert(mi, NewMIs[0]);
1323 MBB->insert(mi, NewMIs[1]);
1324 DistanceMap.insert(std::make_pair(NewMIs[0], Dist++));
1325 DistanceMap.insert(std::make_pair(NewMIs[1], Dist));
1327 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0]
1328 << "2addr: NEW INST: " << *NewMIs[1]);
1330 // Transform the instruction, now that it no longer has a load.
1331 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1332 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1333 MachineBasicBlock::iterator NewMI = NewMIs[1];
1334 bool TransformResult =
1335 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
1336 (void)TransformResult;
1337 assert(!TransformResult &&
1338 "tryInstructionTransform() should return false.");
1339 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1340 // Success, or at least we made an improvement. Keep the unfolded
1341 // instructions and discard the original.
1342 if (LV) {
1343 for (const MachineOperand &MO : MI.operands()) {
1344 if (MO.isReg() && MO.getReg().isVirtual()) {
1345 if (MO.isUse()) {
1346 if (MO.isKill()) {
1347 if (NewMIs[0]->killsRegister(MO.getReg()))
1348 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]);
1349 else {
1350 assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1351 "Kill missing after load unfold!");
1352 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]);
1355 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) {
1356 if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1357 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]);
1358 else {
1359 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1360 "Dead flag missing after load unfold!");
1361 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]);
1366 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]);
1369 SmallVector<Register, 4> OrigRegs;
1370 if (LIS) {
1371 for (const MachineOperand &MO : MI.operands()) {
1372 if (MO.isReg())
1373 OrigRegs.push_back(MO.getReg());
1376 LIS->RemoveMachineInstrFromMaps(MI);
1379 MI.eraseFromParent();
1380 DistanceMap.erase(&MI);
1382 // Update LiveIntervals.
1383 if (LIS) {
1384 MachineBasicBlock::iterator Begin(NewMIs[0]);
1385 MachineBasicBlock::iterator End(NewMIs[1]);
1386 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
1389 mi = NewMIs[1];
1390 } else {
1391 // Transforming didn't eliminate the tie and didn't lead to an
1392 // improvement. Clean up the unfolded instructions and keep the
1393 // original.
1394 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1395 NewMIs[0]->eraseFromParent();
1396 NewMIs[1]->eraseFromParent();
1397 DistanceMap.erase(NewMIs[0]);
1398 DistanceMap.erase(NewMIs[1]);
1399 Dist--;
1405 return false;
1408 // Collect tied operands of MI that need to be handled.
1409 // Rewrite trivial cases immediately.
1410 // Return true if any tied operands where found, including the trivial ones.
1411 bool TwoAddressInstructionPass::
1412 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
1413 bool AnyOps = false;
1414 unsigned NumOps = MI->getNumOperands();
1416 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1417 unsigned DstIdx = 0;
1418 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1419 continue;
1420 AnyOps = true;
1421 MachineOperand &SrcMO = MI->getOperand(SrcIdx);
1422 MachineOperand &DstMO = MI->getOperand(DstIdx);
1423 Register SrcReg = SrcMO.getReg();
1424 Register DstReg = DstMO.getReg();
1425 // Tied constraint already satisfied?
1426 if (SrcReg == DstReg)
1427 continue;
1429 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
1431 // Deal with undef uses immediately - simply rewrite the src operand.
1432 if (SrcMO.isUndef() && !DstMO.getSubReg()) {
1433 // Constrain the DstReg register class if required.
1434 if (DstReg.isVirtual()) {
1435 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
1436 MRI->constrainRegClass(DstReg, RC);
1438 SrcMO.setReg(DstReg);
1439 SrcMO.setSubReg(0);
1440 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
1441 continue;
1443 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
1445 return AnyOps;
1448 // Process a list of tied MI operands that all use the same source register.
1449 // The tied pairs are of the form (SrcIdx, DstIdx).
1450 void
1451 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
1452 TiedPairList &TiedPairs,
1453 unsigned &Dist) {
1454 bool IsEarlyClobber = llvm::find_if(TiedPairs, [MI](auto const &TP) {
1455 return MI->getOperand(TP.second).isEarlyClobber();
1456 }) != TiedPairs.end();
1458 bool RemovedKillFlag = false;
1459 bool AllUsesCopied = true;
1460 unsigned LastCopiedReg = 0;
1461 SlotIndex LastCopyIdx;
1462 Register RegB = 0;
1463 unsigned SubRegB = 0;
1464 for (auto &TP : TiedPairs) {
1465 unsigned SrcIdx = TP.first;
1466 unsigned DstIdx = TP.second;
1468 const MachineOperand &DstMO = MI->getOperand(DstIdx);
1469 Register RegA = DstMO.getReg();
1471 // Grab RegB from the instruction because it may have changed if the
1472 // instruction was commuted.
1473 RegB = MI->getOperand(SrcIdx).getReg();
1474 SubRegB = MI->getOperand(SrcIdx).getSubReg();
1476 if (RegA == RegB) {
1477 // The register is tied to multiple destinations (or else we would
1478 // not have continued this far), but this use of the register
1479 // already matches the tied destination. Leave it.
1480 AllUsesCopied = false;
1481 continue;
1483 LastCopiedReg = RegA;
1485 assert(RegB.isVirtual() && "cannot make instruction into two-address form");
1487 #ifndef NDEBUG
1488 // First, verify that we don't have a use of "a" in the instruction
1489 // (a = b + a for example) because our transformation will not
1490 // work. This should never occur because we are in SSA form.
1491 for (unsigned i = 0; i != MI->getNumOperands(); ++i)
1492 assert(i == DstIdx ||
1493 !MI->getOperand(i).isReg() ||
1494 MI->getOperand(i).getReg() != RegA);
1495 #endif
1497 // Emit a copy.
1498 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1499 TII->get(TargetOpcode::COPY), RegA);
1500 // If this operand is folding a truncation, the truncation now moves to the
1501 // copy so that the register classes remain valid for the operands.
1502 MIB.addReg(RegB, 0, SubRegB);
1503 const TargetRegisterClass *RC = MRI->getRegClass(RegB);
1504 if (SubRegB) {
1505 if (RegA.isVirtual()) {
1506 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
1507 SubRegB) &&
1508 "tied subregister must be a truncation");
1509 // The superreg class will not be used to constrain the subreg class.
1510 RC = nullptr;
1511 } else {
1512 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
1513 && "tied subregister must be a truncation");
1517 // Update DistanceMap.
1518 MachineBasicBlock::iterator PrevMI = MI;
1519 --PrevMI;
1520 DistanceMap.insert(std::make_pair(&*PrevMI, Dist));
1521 DistanceMap[MI] = ++Dist;
1523 if (LIS) {
1524 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot();
1526 SlotIndex endIdx =
1527 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber);
1528 if (RegA.isVirtual()) {
1529 LiveInterval &LI = LIS->getInterval(RegA);
1530 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1531 LI.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI));
1532 for (auto &S : LI.subranges()) {
1533 VNI = S.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1534 S.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI));
1536 } else {
1537 for (MCRegUnitIterator Unit(RegA, TRI); Unit.isValid(); ++Unit) {
1538 if (LiveRange *LR = LIS->getCachedRegUnit(*Unit)) {
1539 VNInfo *VNI =
1540 LR->getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1541 LR->addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI));
1547 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
1549 MachineOperand &MO = MI->getOperand(SrcIdx);
1550 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
1551 "inconsistent operand info for 2-reg pass");
1552 if (MO.isKill()) {
1553 MO.setIsKill(false);
1554 RemovedKillFlag = true;
1557 // Make sure regA is a legal regclass for the SrcIdx operand.
1558 if (RegA.isVirtual() && RegB.isVirtual())
1559 MRI->constrainRegClass(RegA, RC);
1560 MO.setReg(RegA);
1561 // The getMatchingSuper asserts guarantee that the register class projected
1562 // by SubRegB is compatible with RegA with no subregister. So regardless of
1563 // whether the dest oper writes a subreg, the source oper should not.
1564 MO.setSubReg(0);
1567 if (AllUsesCopied) {
1568 LaneBitmask RemainingUses = LaneBitmask::getNone();
1569 // Replace other (un-tied) uses of regB with LastCopiedReg.
1570 for (MachineOperand &MO : MI->operands()) {
1571 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1572 if (MO.getSubReg() == SubRegB && !IsEarlyClobber) {
1573 if (MO.isKill()) {
1574 MO.setIsKill(false);
1575 RemovedKillFlag = true;
1577 MO.setReg(LastCopiedReg);
1578 MO.setSubReg(0);
1579 } else {
1580 RemainingUses |= TRI->getSubRegIndexLaneMask(MO.getSubReg());
1585 // Update live variables for regB.
1586 if (RemovedKillFlag && RemainingUses.none() && LV &&
1587 LV->getVarInfo(RegB).removeKill(*MI)) {
1588 MachineBasicBlock::iterator PrevMI = MI;
1589 --PrevMI;
1590 LV->addVirtualRegisterKilled(RegB, *PrevMI);
1593 if (RemovedKillFlag && RemainingUses.none())
1594 SrcRegMap[LastCopiedReg] = RegB;
1596 // Update LiveIntervals.
1597 if (LIS) {
1598 SlotIndex UseIdx = LIS->getInstructionIndex(*MI);
1599 auto Shrink = [=](LiveRange &LR, LaneBitmask LaneMask) {
1600 LiveRange::Segment *S = LR.getSegmentContaining(LastCopyIdx);
1601 if (!S)
1602 return true;
1603 if ((LaneMask & RemainingUses).any())
1604 return false;
1605 if (S->end.getBaseIndex() != UseIdx)
1606 return false;
1607 S->end = LastCopyIdx;
1608 return true;
1611 LiveInterval &LI = LIS->getInterval(RegB);
1612 bool ShrinkLI = true;
1613 for (auto &S : LI.subranges())
1614 ShrinkLI &= Shrink(S, S.LaneMask);
1615 if (ShrinkLI)
1616 Shrink(LI, LaneBitmask::getAll());
1618 } else if (RemovedKillFlag) {
1619 // Some tied uses of regB matched their destination registers, so
1620 // regB is still used in this instruction, but a kill flag was
1621 // removed from a different tied use of regB, so now we need to add
1622 // a kill flag to one of the remaining uses of regB.
1623 for (MachineOperand &MO : MI->operands()) {
1624 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1625 MO.setIsKill(true);
1626 break;
1632 /// Reduce two-address instructions to two operands.
1633 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
1634 MF = &Func;
1635 const TargetMachine &TM = MF->getTarget();
1636 MRI = &MF->getRegInfo();
1637 TII = MF->getSubtarget().getInstrInfo();
1638 TRI = MF->getSubtarget().getRegisterInfo();
1639 InstrItins = MF->getSubtarget().getInstrItineraryData();
1640 LV = getAnalysisIfAvailable<LiveVariables>();
1641 LIS = getAnalysisIfAvailable<LiveIntervals>();
1642 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>())
1643 AA = &AAPass->getAAResults();
1644 else
1645 AA = nullptr;
1646 OptLevel = TM.getOptLevel();
1647 // Disable optimizations if requested. We cannot skip the whole pass as some
1648 // fixups are necessary for correctness.
1649 if (skipFunction(Func.getFunction()))
1650 OptLevel = CodeGenOpt::None;
1652 bool MadeChange = false;
1654 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1655 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n');
1657 // This pass takes the function out of SSA form.
1658 MRI->leaveSSA();
1660 // This pass will rewrite the tied-def to meet the RegConstraint.
1661 MF->getProperties()
1662 .set(MachineFunctionProperties::Property::TiedOpsRewritten);
1664 TiedOperandMap TiedOperands;
1665 for (MachineBasicBlock &MBBI : *MF) {
1666 MBB = &MBBI;
1667 unsigned Dist = 0;
1668 DistanceMap.clear();
1669 SrcRegMap.clear();
1670 DstRegMap.clear();
1671 Processed.clear();
1672 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
1673 mi != me; ) {
1674 MachineBasicBlock::iterator nmi = std::next(mi);
1675 // Skip debug instructions.
1676 if (mi->isDebugInstr()) {
1677 mi = nmi;
1678 continue;
1681 // Expand REG_SEQUENCE instructions. This will position mi at the first
1682 // expanded instruction.
1683 if (mi->isRegSequence())
1684 eliminateRegSequence(mi);
1686 DistanceMap.insert(std::make_pair(&*mi, ++Dist));
1688 processCopy(&*mi);
1690 // First scan through all the tied register uses in this instruction
1691 // and record a list of pairs of tied operands for each register.
1692 if (!collectTiedOperands(&*mi, TiedOperands)) {
1693 removeClobberedSrcRegMap(&*mi);
1694 mi = nmi;
1695 continue;
1698 ++NumTwoAddressInstrs;
1699 MadeChange = true;
1700 LLVM_DEBUG(dbgs() << '\t' << *mi);
1702 // If the instruction has a single pair of tied operands, try some
1703 // transformations that may either eliminate the tied operands or
1704 // improve the opportunities for coalescing away the register copy.
1705 if (TiedOperands.size() == 1) {
1706 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs
1707 = TiedOperands.begin()->second;
1708 if (TiedPairs.size() == 1) {
1709 unsigned SrcIdx = TiedPairs[0].first;
1710 unsigned DstIdx = TiedPairs[0].second;
1711 Register SrcReg = mi->getOperand(SrcIdx).getReg();
1712 Register DstReg = mi->getOperand(DstIdx).getReg();
1713 if (SrcReg != DstReg &&
1714 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
1715 // The tied operands have been eliminated or shifted further down
1716 // the block to ease elimination. Continue processing with 'nmi'.
1717 TiedOperands.clear();
1718 removeClobberedSrcRegMap(&*mi);
1719 mi = nmi;
1720 continue;
1725 // Now iterate over the information collected above.
1726 for (auto &TO : TiedOperands) {
1727 processTiedPairs(&*mi, TO.second, Dist);
1728 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1731 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1732 if (mi->isInsertSubreg()) {
1733 // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1734 // To %reg:subidx = COPY %subreg
1735 unsigned SubIdx = mi->getOperand(3).getImm();
1736 mi->RemoveOperand(3);
1737 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1738 mi->getOperand(0).setSubReg(SubIdx);
1739 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
1740 mi->RemoveOperand(1);
1741 mi->setDesc(TII->get(TargetOpcode::COPY));
1742 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1744 // Update LiveIntervals.
1745 if (LIS) {
1746 Register Reg = mi->getOperand(0).getReg();
1747 LiveInterval &LI = LIS->getInterval(Reg);
1748 if (LI.hasSubRanges()) {
1749 // The COPY no longer defines subregs of %reg except for
1750 // %reg.subidx.
1751 LaneBitmask LaneMask =
1752 TRI->getSubRegIndexLaneMask(mi->getOperand(0).getSubReg());
1753 SlotIndex Idx = LIS->getInstructionIndex(*mi);
1754 for (auto &S : LI.subranges()) {
1755 if ((S.LaneMask & LaneMask).none()) {
1756 LiveRange::iterator UseSeg = S.FindSegmentContaining(Idx);
1757 LiveRange::iterator DefSeg = std::next(UseSeg);
1758 S.MergeValueNumberInto(DefSeg->valno, UseSeg->valno);
1762 // The COPY no longer has a use of %reg.
1763 LIS->shrinkToUses(&LI);
1764 } else {
1765 // The live interval for Reg did not have subranges but now it needs
1766 // them because we have introduced a subreg def. Recompute it.
1767 LIS->removeInterval(Reg);
1768 LIS->createAndComputeVirtRegInterval(Reg);
1773 // Clear TiedOperands here instead of at the top of the loop
1774 // since most instructions do not have tied operands.
1775 TiedOperands.clear();
1776 removeClobberedSrcRegMap(&*mi);
1777 mi = nmi;
1781 return MadeChange;
1784 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1786 /// The instruction is turned into a sequence of sub-register copies:
1788 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1790 /// Becomes:
1792 /// undef %dst:ssub0 = COPY %v1
1793 /// %dst:ssub1 = COPY %v2
1794 void TwoAddressInstructionPass::
1795 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
1796 MachineInstr &MI = *MBBI;
1797 Register DstReg = MI.getOperand(0).getReg();
1798 if (MI.getOperand(0).getSubReg() || DstReg.isPhysical() ||
1799 !(MI.getNumOperands() & 1)) {
1800 LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI);
1801 llvm_unreachable(nullptr);
1804 SmallVector<Register, 4> OrigRegs;
1805 if (LIS) {
1806 OrigRegs.push_back(MI.getOperand(0).getReg());
1807 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2)
1808 OrigRegs.push_back(MI.getOperand(i).getReg());
1811 bool DefEmitted = false;
1812 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) {
1813 MachineOperand &UseMO = MI.getOperand(i);
1814 Register SrcReg = UseMO.getReg();
1815 unsigned SubIdx = MI.getOperand(i+1).getImm();
1816 // Nothing needs to be inserted for undef operands.
1817 if (UseMO.isUndef())
1818 continue;
1820 // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1821 // might insert a COPY that uses SrcReg after is was killed.
1822 bool isKill = UseMO.isKill();
1823 if (isKill)
1824 for (unsigned j = i + 2; j < e; j += 2)
1825 if (MI.getOperand(j).getReg() == SrcReg) {
1826 MI.getOperand(j).setIsKill();
1827 UseMO.setIsKill(false);
1828 isKill = false;
1829 break;
1832 // Insert the sub-register copy.
1833 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
1834 TII->get(TargetOpcode::COPY))
1835 .addReg(DstReg, RegState::Define, SubIdx)
1836 .add(UseMO);
1838 // The first def needs an undef flag because there is no live register
1839 // before it.
1840 if (!DefEmitted) {
1841 CopyMI->getOperand(0).setIsUndef(true);
1842 // Return an iterator pointing to the first inserted instr.
1843 MBBI = CopyMI;
1845 DefEmitted = true;
1847 // Update LiveVariables' kill info.
1848 if (LV && isKill && !SrcReg.isPhysical())
1849 LV->replaceKillInstruction(SrcReg, MI, *CopyMI);
1851 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI);
1854 MachineBasicBlock::iterator EndMBBI =
1855 std::next(MachineBasicBlock::iterator(MI));
1857 if (!DefEmitted) {
1858 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF");
1859 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1860 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j)
1861 MI.RemoveOperand(j);
1862 } else {
1863 if (LIS)
1864 LIS->RemoveMachineInstrFromMaps(MI);
1866 LLVM_DEBUG(dbgs() << "Eliminated: " << MI);
1867 MI.eraseFromParent();
1870 // Udpate LiveIntervals.
1871 if (LIS)
1872 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);