1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the TwoAddress instruction pass which is used
10 // by most register allocators. Two-Address instructions are rewritten
20 // Note that if a register allocator chooses to use this pass, that it
21 // has to be capable of handling the non-SSA nature of these rewritten
24 // It is also worth noting that the duplicate operand of the two
25 // address instruction is removed.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveVariables.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/Passes.h"
47 #include "llvm/CodeGen/SlotIndexes.h"
48 #include "llvm/CodeGen/TargetInstrInfo.h"
49 #include "llvm/CodeGen/TargetOpcodes.h"
50 #include "llvm/CodeGen/TargetRegisterInfo.h"
51 #include "llvm/CodeGen/TargetSubtargetInfo.h"
52 #include "llvm/MC/MCInstrDesc.h"
53 #include "llvm/MC/MCInstrItineraries.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Target/TargetMachine.h"
67 #define DEBUG_TYPE "twoaddressinstruction"
69 STATISTIC(NumTwoAddressInstrs
, "Number of two-address instructions");
70 STATISTIC(NumCommuted
, "Number of instructions commuted to coalesce");
71 STATISTIC(NumAggrCommuted
, "Number of instructions aggressively commuted");
72 STATISTIC(NumConvertedTo3Addr
, "Number of instructions promoted to 3-address");
73 STATISTIC(NumReSchedUps
, "Number of instructions re-scheduled up");
74 STATISTIC(NumReSchedDowns
, "Number of instructions re-scheduled down");
76 // Temporary flag to disable rescheduling.
78 EnableRescheduling("twoaddr-reschedule",
79 cl::desc("Coalesce copies by rescheduling (default=true)"),
80 cl::init(true), cl::Hidden
);
82 // Limit the number of dataflow edges to traverse when evaluating the benefit
83 // of commuting operands.
84 static cl::opt
<unsigned> MaxDataFlowEdge(
85 "dataflow-edge-limit", cl::Hidden
, cl::init(3),
86 cl::desc("Maximum number of dataflow edges to traverse when evaluating "
87 "the benefit of commuting operands"));
91 class TwoAddressInstructionPass
: public MachineFunctionPass
{
93 const TargetInstrInfo
*TII
;
94 const TargetRegisterInfo
*TRI
;
95 const InstrItineraryData
*InstrItins
;
96 MachineRegisterInfo
*MRI
;
100 CodeGenOpt::Level OptLevel
;
102 // The current basic block being processed.
103 MachineBasicBlock
*MBB
;
105 // Keep track the distance of a MI from the start of the current basic block.
106 DenseMap
<MachineInstr
*, unsigned> DistanceMap
;
108 // Set of already processed instructions in the current block.
109 SmallPtrSet
<MachineInstr
*, 8> Processed
;
111 // A map from virtual registers to physical registers which are likely targets
112 // to be coalesced to due to copies from physical registers to virtual
113 // registers. e.g. v1024 = move r0.
114 DenseMap
<Register
, Register
> SrcRegMap
;
116 // A map from virtual registers to physical registers which are likely targets
117 // to be coalesced to due to copies to physical registers from virtual
118 // registers. e.g. r1 = move v1024.
119 DenseMap
<Register
, Register
> DstRegMap
;
121 void removeClobberedSrcRegMap(MachineInstr
*MI
);
123 bool isRevCopyChain(Register FromReg
, Register ToReg
, int Maxlen
);
125 bool noUseAfterLastDef(Register Reg
, unsigned Dist
, unsigned &LastDef
);
127 bool isProfitableToCommute(Register RegA
, Register RegB
, Register RegC
,
128 MachineInstr
*MI
, unsigned Dist
);
130 bool commuteInstruction(MachineInstr
*MI
, unsigned DstIdx
,
131 unsigned RegBIdx
, unsigned RegCIdx
, unsigned Dist
);
133 bool isProfitableToConv3Addr(Register RegA
, Register RegB
);
135 bool convertInstTo3Addr(MachineBasicBlock::iterator
&mi
,
136 MachineBasicBlock::iterator
&nmi
, Register RegA
,
137 Register RegB
, unsigned &Dist
);
139 bool isDefTooClose(Register Reg
, unsigned Dist
, MachineInstr
*MI
);
141 bool rescheduleMIBelowKill(MachineBasicBlock::iterator
&mi
,
142 MachineBasicBlock::iterator
&nmi
, Register Reg
);
143 bool rescheduleKillAboveMI(MachineBasicBlock::iterator
&mi
,
144 MachineBasicBlock::iterator
&nmi
, Register Reg
);
146 bool tryInstructionTransform(MachineBasicBlock::iterator
&mi
,
147 MachineBasicBlock::iterator
&nmi
,
148 unsigned SrcIdx
, unsigned DstIdx
,
149 unsigned &Dist
, bool shouldOnlyCommute
);
151 bool tryInstructionCommute(MachineInstr
*MI
,
156 void scanUses(Register DstReg
);
158 void processCopy(MachineInstr
*MI
);
160 using TiedPairList
= SmallVector
<std::pair
<unsigned, unsigned>, 4>;
161 using TiedOperandMap
= SmallDenseMap
<unsigned, TiedPairList
>;
163 bool collectTiedOperands(MachineInstr
*MI
, TiedOperandMap
&);
164 void processTiedPairs(MachineInstr
*MI
, TiedPairList
&, unsigned &Dist
);
165 void eliminateRegSequence(MachineBasicBlock::iterator
&);
168 static char ID
; // Pass identification, replacement for typeid
170 TwoAddressInstructionPass() : MachineFunctionPass(ID
) {
171 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
174 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
175 AU
.setPreservesCFG();
176 AU
.addUsedIfAvailable
<AAResultsWrapperPass
>();
177 AU
.addUsedIfAvailable
<LiveVariables
>();
178 AU
.addPreserved
<LiveVariables
>();
179 AU
.addPreserved
<SlotIndexes
>();
180 AU
.addPreserved
<LiveIntervals
>();
181 AU
.addPreservedID(MachineLoopInfoID
);
182 AU
.addPreservedID(MachineDominatorsID
);
183 MachineFunctionPass::getAnalysisUsage(AU
);
186 /// Pass entry point.
187 bool runOnMachineFunction(MachineFunction
&) override
;
190 } // end anonymous namespace
192 char TwoAddressInstructionPass::ID
= 0;
194 char &llvm::TwoAddressInstructionPassID
= TwoAddressInstructionPass::ID
;
196 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass
, DEBUG_TYPE
,
197 "Two-Address instruction pass", false, false)
198 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
199 INITIALIZE_PASS_END(TwoAddressInstructionPass
, DEBUG_TYPE
,
200 "Two-Address instruction pass", false, false)
202 static bool isPlainlyKilled(MachineInstr
*MI
, Register Reg
, LiveIntervals
*LIS
);
204 /// Return the MachineInstr* if it is the single def of the Reg in current BB.
205 static MachineInstr
*getSingleDef(Register Reg
, MachineBasicBlock
*BB
,
206 const MachineRegisterInfo
*MRI
) {
207 MachineInstr
*Ret
= nullptr;
208 for (MachineInstr
&DefMI
: MRI
->def_instructions(Reg
)) {
209 if (DefMI
.getParent() != BB
|| DefMI
.isDebugValue())
213 else if (Ret
!= &DefMI
)
219 /// Check if there is a reversed copy chain from FromReg to ToReg:
220 /// %Tmp1 = copy %Tmp2;
221 /// %FromReg = copy %Tmp1;
222 /// %ToReg = add %FromReg ...
223 /// %Tmp2 = copy %ToReg;
224 /// MaxLen specifies the maximum length of the copy chain the func
225 /// can walk through.
226 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg
, Register ToReg
,
228 Register TmpReg
= FromReg
;
229 for (int i
= 0; i
< Maxlen
; i
++) {
230 MachineInstr
*Def
= getSingleDef(TmpReg
, MBB
, MRI
);
231 if (!Def
|| !Def
->isCopy())
234 TmpReg
= Def
->getOperand(1).getReg();
242 /// Return true if there are no intervening uses between the last instruction
243 /// in the MBB that defines the specified register and the two-address
244 /// instruction which is being processed. It also returns the last def location
246 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg
, unsigned Dist
,
249 unsigned LastUse
= Dist
;
250 for (MachineOperand
&MO
: MRI
->reg_operands(Reg
)) {
251 MachineInstr
*MI
= MO
.getParent();
252 if (MI
->getParent() != MBB
|| MI
->isDebugValue())
254 DenseMap
<MachineInstr
*, unsigned>::iterator DI
= DistanceMap
.find(MI
);
255 if (DI
== DistanceMap
.end())
257 if (MO
.isUse() && DI
->second
< LastUse
)
258 LastUse
= DI
->second
;
259 if (MO
.isDef() && DI
->second
> LastDef
)
260 LastDef
= DI
->second
;
263 return !(LastUse
> LastDef
&& LastUse
< Dist
);
266 /// Return true if the specified MI is a copy instruction or an extract_subreg
267 /// instruction. It also returns the source and destination registers and
268 /// whether they are physical registers by reference.
269 static bool isCopyToReg(MachineInstr
&MI
, const TargetInstrInfo
*TII
,
270 Register
&SrcReg
, Register
&DstReg
, bool &IsSrcPhys
,
275 DstReg
= MI
.getOperand(0).getReg();
276 SrcReg
= MI
.getOperand(1).getReg();
277 } else if (MI
.isInsertSubreg() || MI
.isSubregToReg()) {
278 DstReg
= MI
.getOperand(0).getReg();
279 SrcReg
= MI
.getOperand(2).getReg();
284 IsSrcPhys
= SrcReg
.isPhysical();
285 IsDstPhys
= DstReg
.isPhysical();
289 /// Test if the given register value, which is used by the
290 /// given instruction, is killed by the given instruction.
291 static bool isPlainlyKilled(MachineInstr
*MI
, Register Reg
,
292 LiveIntervals
*LIS
) {
293 if (LIS
&& Reg
.isVirtual() && !LIS
->isNotInMIMap(*MI
)) {
294 // FIXME: Sometimes tryInstructionTransform() will add instructions and
295 // test whether they can be folded before keeping them. In this case it
296 // sets a kill before recursively calling tryInstructionTransform() again.
297 // If there is no interval available, we assume that this instruction is
298 // one of those. A kill flag is manually inserted on the operand so the
299 // check below will handle it.
300 LiveInterval
&LI
= LIS
->getInterval(Reg
);
301 // This is to match the kill flag version where undefs don't have kill
303 if (!LI
.hasAtLeastOneValue())
306 SlotIndex useIdx
= LIS
->getInstructionIndex(*MI
);
307 LiveInterval::const_iterator I
= LI
.find(useIdx
);
308 assert(I
!= LI
.end() && "Reg must be live-in to use.");
309 return !I
->end
.isBlock() && SlotIndex::isSameInstr(I
->end
, useIdx
);
312 return MI
->killsRegister(Reg
);
315 /// Test if the given register value, which is used by the given
316 /// instruction, is killed by the given instruction. This looks through
317 /// coalescable copies to see if the original value is potentially not killed.
319 /// For example, in this code:
321 /// %reg1034 = copy %reg1024
322 /// %reg1035 = copy killed %reg1025
323 /// %reg1036 = add killed %reg1034, killed %reg1035
325 /// %reg1034 is not considered to be killed, since it is copied from a
326 /// register which is not killed. Treating it as not killed lets the
327 /// normal heuristics commute the (two-address) add, which lets
328 /// coalescing eliminate the extra copy.
330 /// If allowFalsePositives is true then likely kills are treated as kills even
331 /// if it can't be proven that they are kills.
332 static bool isKilled(MachineInstr
&MI
, Register Reg
,
333 const MachineRegisterInfo
*MRI
, const TargetInstrInfo
*TII
,
334 LiveIntervals
*LIS
, bool allowFalsePositives
) {
335 MachineInstr
*DefMI
= &MI
;
337 // All uses of physical registers are likely to be kills.
338 if (Reg
.isPhysical() && (allowFalsePositives
|| MRI
->hasOneUse(Reg
)))
340 if (!isPlainlyKilled(DefMI
, Reg
, LIS
))
342 if (Reg
.isPhysical())
344 MachineRegisterInfo::def_iterator Begin
= MRI
->def_begin(Reg
);
345 // If there are multiple defs, we can't do a simple analysis, so just
346 // go with what the kill flag says.
347 if (std::next(Begin
) != MRI
->def_end())
349 DefMI
= Begin
->getParent();
350 bool IsSrcPhys
, IsDstPhys
;
351 Register SrcReg
, DstReg
;
352 // If the def is something other than a copy, then it isn't going to
353 // be coalesced, so follow the kill flag.
354 if (!isCopyToReg(*DefMI
, TII
, SrcReg
, DstReg
, IsSrcPhys
, IsDstPhys
))
360 /// Return true if the specified MI uses the specified register as a two-address
361 /// use. If so, return the destination register by reference.
362 static bool isTwoAddrUse(MachineInstr
&MI
, Register Reg
, Register
&DstReg
) {
363 for (unsigned i
= 0, NumOps
= MI
.getNumOperands(); i
!= NumOps
; ++i
) {
364 const MachineOperand
&MO
= MI
.getOperand(i
);
365 if (!MO
.isReg() || !MO
.isUse() || MO
.getReg() != Reg
)
368 if (MI
.isRegTiedToDefOperand(i
, &ti
)) {
369 DstReg
= MI
.getOperand(ti
).getReg();
376 /// Given a register, if all its uses are in the same basic block, return the
377 /// last use instruction if it's a copy or a two-address use.
378 static MachineInstr
*
379 findOnlyInterestingUse(Register Reg
, MachineBasicBlock
*MBB
,
380 MachineRegisterInfo
*MRI
, const TargetInstrInfo
*TII
,
381 bool &IsCopy
, Register
&DstReg
, bool &IsDstPhys
,
382 LiveIntervals
*LIS
) {
383 MachineOperand
*UseOp
= nullptr;
384 for (MachineOperand
&MO
: MRI
->use_nodbg_operands(Reg
)) {
385 MachineInstr
*MI
= MO
.getParent();
386 if (MI
->getParent() != MBB
)
388 if (isPlainlyKilled(MI
, Reg
, LIS
))
393 MachineInstr
&UseMI
= *UseOp
->getParent();
397 if (isCopyToReg(UseMI
, TII
, SrcReg
, DstReg
, IsSrcPhys
, IsDstPhys
)) {
402 if (isTwoAddrUse(UseMI
, Reg
, DstReg
)) {
403 IsDstPhys
= DstReg
.isPhysical();
406 if (UseMI
.isCommutable()) {
407 unsigned Src1
= TargetInstrInfo::CommuteAnyOperandIndex
;
408 unsigned Src2
= UseMI
.getOperandNo(UseOp
);
409 if (TII
->findCommutedOpIndices(UseMI
, Src1
, Src2
)) {
410 MachineOperand
&MO
= UseMI
.getOperand(Src1
);
411 if (MO
.isReg() && MO
.isUse() &&
412 isTwoAddrUse(UseMI
, MO
.getReg(), DstReg
)) {
413 IsDstPhys
= DstReg
.isPhysical();
421 /// Return the physical register the specified virtual register might be mapped
423 static MCRegister
getMappedReg(Register Reg
,
424 DenseMap
<Register
, Register
> &RegMap
) {
425 while (Reg
.isVirtual()) {
426 DenseMap
<Register
, Register
>::iterator SI
= RegMap
.find(Reg
);
427 if (SI
== RegMap
.end())
431 if (Reg
.isPhysical())
436 /// Return true if the two registers are equal or aliased.
437 static bool regsAreCompatible(Register RegA
, Register RegB
,
438 const TargetRegisterInfo
*TRI
) {
443 return TRI
->regsOverlap(RegA
, RegB
);
446 /// From RegMap remove entries mapped to a physical register which overlaps MO.
447 static void removeMapRegEntry(const MachineOperand
&MO
,
448 DenseMap
<Register
, Register
> &RegMap
,
449 const TargetRegisterInfo
*TRI
) {
451 (MO
.isReg() || MO
.isRegMask()) &&
452 "removeMapRegEntry must be called with a register or regmask operand.");
454 SmallVector
<Register
, 2> Srcs
;
455 for (auto SI
: RegMap
) {
456 Register ToReg
= SI
.second
;
457 if (ToReg
.isVirtual())
461 Register Reg
= MO
.getReg();
462 if (TRI
->regsOverlap(ToReg
, Reg
))
463 Srcs
.push_back(SI
.first
);
464 } else if (MO
.clobbersPhysReg(ToReg
))
465 Srcs
.push_back(SI
.first
);
468 for (auto SrcReg
: Srcs
)
469 RegMap
.erase(SrcReg
);
472 /// If a physical register is clobbered, old entries mapped to it should be
473 /// deleted. For example
475 /// %2:gr64 = COPY killed $rdx
476 /// MUL64r %3:gr64, implicit-def $rax, implicit-def $rdx
478 /// After the MUL instruction, $rdx contains different value than in the COPY
479 /// instruction. So %2 should not map to $rdx after MUL.
480 void TwoAddressInstructionPass::removeClobberedSrcRegMap(MachineInstr
*MI
) {
482 // If a virtual register is copied to its mapped physical register, it
483 // doesn't change the potential coalescing between them, so we don't remove
484 // entries mapped to the physical register. For example
490 // The first copy constructs SrcRegMap[%100] = $r8, the second copy doesn't
491 // destroy the content of $r8, and should not impact SrcRegMap.
492 Register Dst
= MI
->getOperand(0).getReg();
493 if (!Dst
|| Dst
.isVirtual())
496 Register Src
= MI
->getOperand(1).getReg();
497 if (regsAreCompatible(Dst
, getMappedReg(Src
, SrcRegMap
), TRI
))
501 for (const MachineOperand
&MO
: MI
->operands()) {
502 if (MO
.isRegMask()) {
503 removeMapRegEntry(MO
, SrcRegMap
, TRI
);
506 if (!MO
.isReg() || !MO
.isDef())
508 Register Reg
= MO
.getReg();
509 if (!Reg
|| Reg
.isVirtual())
511 removeMapRegEntry(MO
, SrcRegMap
, TRI
);
515 // Returns true if Reg is equal or aliased to at least one register in Set.
516 static bool regOverlapsSet(const SmallVectorImpl
<Register
> &Set
, Register Reg
,
517 const TargetRegisterInfo
*TRI
) {
518 for (unsigned R
: Set
)
519 if (TRI
->regsOverlap(R
, Reg
))
525 /// Return true if it's potentially profitable to commute the two-address
526 /// instruction that's being processed.
527 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA
,
532 if (OptLevel
== CodeGenOpt::None
)
535 // Determine if it's profitable to commute this two address instruction. In
536 // general, we want no uses between this instruction and the definition of
537 // the two-address register.
539 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
540 // %reg1029 = COPY %reg1028
541 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
542 // insert => %reg1030 = COPY %reg1028
543 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
544 // In this case, it might not be possible to coalesce the second COPY
545 // instruction if the first one is coalesced. So it would be profitable to
547 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
548 // %reg1029 = COPY %reg1028
549 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
550 // insert => %reg1030 = COPY %reg1029
551 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags
553 if (!isPlainlyKilled(MI
, RegC
, LIS
))
556 // Ok, we have something like:
557 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
558 // let's see if it's worth commuting it.
560 // Look for situations like this:
563 // %reg1026 = ADD %reg1024, %reg1025
565 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
566 MCRegister ToRegA
= getMappedReg(RegA
, DstRegMap
);
568 MCRegister FromRegB
= getMappedReg(RegB
, SrcRegMap
);
569 MCRegister FromRegC
= getMappedReg(RegC
, SrcRegMap
);
570 bool CompB
= FromRegB
&& regsAreCompatible(FromRegB
, ToRegA
, TRI
);
571 bool CompC
= FromRegC
&& regsAreCompatible(FromRegC
, ToRegA
, TRI
);
573 // Compute if any of the following are true:
574 // -RegB is not tied to a register and RegC is compatible with RegA.
575 // -RegB is tied to the wrong physical register, but RegC is.
576 // -RegB is tied to the wrong physical register, and RegC isn't tied.
577 if ((!FromRegB
&& CompC
) || (FromRegB
&& !CompB
&& (!FromRegC
|| CompC
)))
579 // Don't compute if any of the following are true:
580 // -RegC is not tied to a register and RegB is compatible with RegA.
581 // -RegC is tied to the wrong physical register, but RegB is.
582 // -RegC is tied to the wrong physical register, and RegB isn't tied.
583 if ((!FromRegC
&& CompB
) || (FromRegC
&& !CompC
&& (!FromRegB
|| CompB
)))
587 // If there is a use of RegC between its last def (could be livein) and this
588 // instruction, then bail.
589 unsigned LastDefC
= 0;
590 if (!noUseAfterLastDef(RegC
, Dist
, LastDefC
))
593 // If there is a use of RegB between its last def (could be livein) and this
594 // instruction, then go ahead and make this transformation.
595 unsigned LastDefB
= 0;
596 if (!noUseAfterLastDef(RegB
, Dist
, LastDefB
))
599 // Look for situation like this:
600 // %reg101 = MOV %reg100
602 // %reg103 = ADD %reg102, %reg101
604 // %reg100 = MOV %reg103
605 // If there is a reversed copy chain from reg101 to reg103, commute the ADD
606 // to eliminate an otherwise unavoidable copy.
608 // We can extend the logic further: If an pair of operands in an insn has
609 // been merged, the insn could be regarded as a virtual copy, and the virtual
610 // copy could also be used to construct a copy chain.
611 // To more generally minimize register copies, ideally the logic of two addr
612 // instruction pass should be integrated with register allocation pass where
613 // interference graph is available.
614 if (isRevCopyChain(RegC
, RegA
, MaxDataFlowEdge
))
617 if (isRevCopyChain(RegB
, RegA
, MaxDataFlowEdge
))
620 // Look for other target specific commute preference.
622 if (TII
->hasCommutePreference(*MI
, Commute
))
625 // Since there are no intervening uses for both registers, then commute
626 // if the def of RegC is closer. Its live interval is shorter.
627 return LastDefB
&& LastDefC
&& LastDefC
> LastDefB
;
630 /// Commute a two-address instruction and update the basic block, distance map,
631 /// and live variables if needed. Return true if it is successful.
632 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr
*MI
,
637 Register RegC
= MI
->getOperand(RegCIdx
).getReg();
638 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI
);
639 MachineInstr
*NewMI
= TII
->commuteInstruction(*MI
, false, RegBIdx
, RegCIdx
);
641 if (NewMI
== nullptr) {
642 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
646 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI
);
647 assert(NewMI
== MI
&&
648 "TargetInstrInfo::commuteInstruction() should not return a new "
649 "instruction unless it was requested.");
651 // Update source register map.
652 MCRegister FromRegC
= getMappedReg(RegC
, SrcRegMap
);
654 Register RegA
= MI
->getOperand(DstIdx
).getReg();
655 SrcRegMap
[RegA
] = FromRegC
;
661 /// Return true if it is profitable to convert the given 2-address instruction
662 /// to a 3-address one.
663 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA
,
665 // Look for situations like this:
668 // %reg1026 = ADD %reg1024, %reg1025
670 // Turn ADD into a 3-address instruction to avoid a copy.
671 MCRegister FromRegB
= getMappedReg(RegB
, SrcRegMap
);
674 MCRegister ToRegA
= getMappedReg(RegA
, DstRegMap
);
675 return (ToRegA
&& !regsAreCompatible(FromRegB
, ToRegA
, TRI
));
678 /// Convert the specified two-address instruction into a three address one.
679 /// Return true if this transformation was successful.
680 bool TwoAddressInstructionPass::convertInstTo3Addr(
681 MachineBasicBlock::iterator
&mi
, MachineBasicBlock::iterator
&nmi
,
682 Register RegA
, Register RegB
, unsigned &Dist
) {
683 MachineInstrSpan
MIS(mi
, MBB
);
684 MachineInstr
*NewMI
= TII
->convertToThreeAddress(*mi
, LV
, LIS
);
688 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi
);
689 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI
);
691 // If the old instruction is debug value tracked, an update is required.
692 if (auto OldInstrNum
= mi
->peekDebugInstrNum()) {
693 assert(mi
->getNumExplicitDefs() == 1);
694 assert(NewMI
->getNumExplicitDefs() == 1);
696 // Find the old and new def location.
697 auto OldIt
= mi
->defs().begin();
698 auto NewIt
= NewMI
->defs().begin();
699 unsigned OldIdx
= mi
->getOperandNo(OldIt
);
700 unsigned NewIdx
= NewMI
->getOperandNo(NewIt
);
702 // Record that one def has been replaced by the other.
703 unsigned NewInstrNum
= NewMI
->getDebugInstrNum();
704 MF
->makeDebugValueSubstitution(std::make_pair(OldInstrNum
, OldIdx
),
705 std::make_pair(NewInstrNum
, NewIdx
));
708 MBB
->erase(mi
); // Nuke the old inst.
710 for (MachineInstr
&MI
: MIS
)
711 DistanceMap
.insert(std::make_pair(&MI
, Dist
++));
716 // Update source and destination register maps.
717 SrcRegMap
.erase(RegA
);
718 DstRegMap
.erase(RegB
);
722 /// Scan forward recursively for only uses, update maps if the use is a copy or
723 /// a two-address instruction.
724 void TwoAddressInstructionPass::scanUses(Register DstReg
) {
725 SmallVector
<Register
, 4> VirtRegPairs
;
729 Register Reg
= DstReg
;
730 while (MachineInstr
*UseMI
= findOnlyInterestingUse(Reg
, MBB
, MRI
, TII
,IsCopy
,
731 NewReg
, IsDstPhys
, LIS
)) {
732 if (IsCopy
&& !Processed
.insert(UseMI
).second
)
735 DenseMap
<MachineInstr
*, unsigned>::iterator DI
= DistanceMap
.find(UseMI
);
736 if (DI
!= DistanceMap
.end())
737 // Earlier in the same MBB.Reached via a back edge.
741 VirtRegPairs
.push_back(NewReg
);
744 SrcRegMap
[NewReg
] = Reg
;
745 VirtRegPairs
.push_back(NewReg
);
749 if (!VirtRegPairs
.empty()) {
750 unsigned ToReg
= VirtRegPairs
.back();
751 VirtRegPairs
.pop_back();
752 while (!VirtRegPairs
.empty()) {
753 unsigned FromReg
= VirtRegPairs
.pop_back_val();
754 bool isNew
= DstRegMap
.insert(std::make_pair(FromReg
, ToReg
)).second
;
756 assert(DstRegMap
[FromReg
] == ToReg
&&"Can't map to two dst registers!");
759 bool isNew
= DstRegMap
.insert(std::make_pair(DstReg
, ToReg
)).second
;
761 assert(DstRegMap
[DstReg
] == ToReg
&& "Can't map to two dst registers!");
765 /// If the specified instruction is not yet processed, process it if it's a
766 /// copy. For a copy instruction, we find the physical registers the
767 /// source and destination registers might be mapped to. These are kept in
768 /// point-to maps used to determine future optimizations. e.g.
771 /// v1026 = add v1024, v1025
773 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
774 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
775 /// potentially joined with r1 on the output side. It's worthwhile to commute
776 /// 'add' to eliminate a copy.
777 void TwoAddressInstructionPass::processCopy(MachineInstr
*MI
) {
778 if (Processed
.count(MI
))
781 bool IsSrcPhys
, IsDstPhys
;
782 Register SrcReg
, DstReg
;
783 if (!isCopyToReg(*MI
, TII
, SrcReg
, DstReg
, IsSrcPhys
, IsDstPhys
))
786 if (IsDstPhys
&& !IsSrcPhys
) {
787 DstRegMap
.insert(std::make_pair(SrcReg
, DstReg
));
788 } else if (!IsDstPhys
&& IsSrcPhys
) {
789 bool isNew
= SrcRegMap
.insert(std::make_pair(DstReg
, SrcReg
)).second
;
791 assert(SrcRegMap
[DstReg
] == SrcReg
&&
792 "Can't map to two src physical registers!");
797 Processed
.insert(MI
);
800 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
801 /// consider moving the instruction below the kill instruction in order to
802 /// eliminate the need for the copy.
803 bool TwoAddressInstructionPass::rescheduleMIBelowKill(
804 MachineBasicBlock::iterator
&mi
, MachineBasicBlock::iterator
&nmi
,
806 // Bail immediately if we don't have LV or LIS available. We use them to find
807 // kills efficiently.
811 MachineInstr
*MI
= &*mi
;
812 DenseMap
<MachineInstr
*, unsigned>::iterator DI
= DistanceMap
.find(MI
);
813 if (DI
== DistanceMap
.end())
814 // Must be created from unfolded load. Don't waste time trying this.
817 MachineInstr
*KillMI
= nullptr;
819 LiveInterval
&LI
= LIS
->getInterval(Reg
);
820 assert(LI
.end() != LI
.begin() &&
821 "Reg should not have empty live interval.");
823 SlotIndex MBBEndIdx
= LIS
->getMBBEndIdx(MBB
).getPrevSlot();
824 LiveInterval::const_iterator I
= LI
.find(MBBEndIdx
);
825 if (I
!= LI
.end() && I
->start
< MBBEndIdx
)
829 KillMI
= LIS
->getInstructionFromIndex(I
->end
);
831 KillMI
= LV
->getVarInfo(Reg
).findKill(MBB
);
833 if (!KillMI
|| MI
== KillMI
|| KillMI
->isCopy() || KillMI
->isCopyLike())
834 // Don't mess with copies, they may be coalesced later.
837 if (KillMI
->hasUnmodeledSideEffects() || KillMI
->isCall() ||
838 KillMI
->isBranch() || KillMI
->isTerminator())
839 // Don't move pass calls, etc.
843 if (isTwoAddrUse(*KillMI
, Reg
, DstReg
))
846 bool SeenStore
= true;
847 if (!MI
->isSafeToMove(AA
, SeenStore
))
850 if (TII
->getInstrLatency(InstrItins
, *MI
) > 1)
851 // FIXME: Needs more sophisticated heuristics.
854 SmallVector
<Register
, 2> Uses
;
855 SmallVector
<Register
, 2> Kills
;
856 SmallVector
<Register
, 2> Defs
;
857 for (const MachineOperand
&MO
: MI
->operands()) {
860 Register MOReg
= MO
.getReg();
864 Defs
.push_back(MOReg
);
866 Uses
.push_back(MOReg
);
867 if (MOReg
!= Reg
&& (MO
.isKill() ||
868 (LIS
&& isPlainlyKilled(MI
, MOReg
, LIS
))))
869 Kills
.push_back(MOReg
);
873 // Move the copies connected to MI down as well.
874 MachineBasicBlock::iterator Begin
= MI
;
875 MachineBasicBlock::iterator AfterMI
= std::next(Begin
);
876 MachineBasicBlock::iterator End
= AfterMI
;
877 while (End
!= MBB
->end()) {
878 End
= skipDebugInstructionsForward(End
, MBB
->end());
879 if (End
->isCopy() && regOverlapsSet(Defs
, End
->getOperand(1).getReg(), TRI
))
880 Defs
.push_back(End
->getOperand(0).getReg());
886 // Check if the reschedule will not break dependencies.
887 unsigned NumVisited
= 0;
888 MachineBasicBlock::iterator KillPos
= KillMI
;
890 for (MachineInstr
&OtherMI
: make_range(End
, KillPos
)) {
891 // Debug or pseudo instructions cannot be counted against the limit.
892 if (OtherMI
.isDebugOrPseudoInstr())
894 if (NumVisited
> 10) // FIXME: Arbitrary limit to reduce compile time cost.
897 if (OtherMI
.hasUnmodeledSideEffects() || OtherMI
.isCall() ||
898 OtherMI
.isBranch() || OtherMI
.isTerminator())
899 // Don't move pass calls, etc.
901 for (const MachineOperand
&MO
: OtherMI
.operands()) {
904 Register MOReg
= MO
.getReg();
908 if (regOverlapsSet(Uses
, MOReg
, TRI
))
909 // Physical register use would be clobbered.
911 if (!MO
.isDead() && regOverlapsSet(Defs
, MOReg
, TRI
))
912 // May clobber a physical register def.
913 // FIXME: This may be too conservative. It's ok if the instruction
914 // is sunken completely below the use.
917 if (regOverlapsSet(Defs
, MOReg
, TRI
))
920 MO
.isKill() || (LIS
&& isPlainlyKilled(&OtherMI
, MOReg
, LIS
));
921 if (MOReg
!= Reg
&& ((isKill
&& regOverlapsSet(Uses
, MOReg
, TRI
)) ||
922 regOverlapsSet(Kills
, MOReg
, TRI
)))
923 // Don't want to extend other live ranges and update kills.
925 if (MOReg
== Reg
&& !isKill
)
926 // We can't schedule across a use of the register in question.
928 // Ensure that if this is register in question, its the kill we expect.
929 assert((MOReg
!= Reg
|| &OtherMI
== KillMI
) &&
930 "Found multiple kills of a register in a basic block");
935 // Move debug info as well.
936 while (Begin
!= MBB
->begin() && std::prev(Begin
)->isDebugInstr())
940 MachineBasicBlock::iterator InsertPos
= KillPos
;
942 // We have to move the copies (and any interleaved debug instructions)
943 // first so that the MBB is still well-formed when calling handleMove().
944 for (MachineBasicBlock::iterator MBBI
= AfterMI
; MBBI
!= End
;) {
945 auto CopyMI
= MBBI
++;
946 MBB
->splice(InsertPos
, MBB
, CopyMI
);
947 if (!CopyMI
->isDebugOrPseudoInstr())
948 LIS
->handleMove(*CopyMI
);
951 End
= std::next(MachineBasicBlock::iterator(MI
));
954 // Copies following MI may have been moved as well.
955 MBB
->splice(InsertPos
, MBB
, Begin
, End
);
956 DistanceMap
.erase(DI
);
958 // Update live variables
960 LIS
->handleMove(*MI
);
962 LV
->removeVirtualRegisterKilled(Reg
, *KillMI
);
963 LV
->addVirtualRegisterKilled(Reg
, *MI
);
966 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI
);
970 /// Return true if the re-scheduling will put the given instruction too close
971 /// to the defs of its register dependencies.
972 bool TwoAddressInstructionPass::isDefTooClose(Register Reg
, unsigned Dist
,
974 for (MachineInstr
&DefMI
: MRI
->def_instructions(Reg
)) {
975 if (DefMI
.getParent() != MBB
|| DefMI
.isCopy() || DefMI
.isCopyLike())
978 return true; // MI is defining something KillMI uses
979 DenseMap
<MachineInstr
*, unsigned>::iterator DDI
= DistanceMap
.find(&DefMI
);
980 if (DDI
== DistanceMap
.end())
981 return true; // Below MI
982 unsigned DefDist
= DDI
->second
;
983 assert(Dist
> DefDist
&& "Visited def already?");
984 if (TII
->getInstrLatency(InstrItins
, DefMI
) > (Dist
- DefDist
))
990 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
991 /// consider moving the kill instruction above the current two-address
992 /// instruction in order to eliminate the need for the copy.
993 bool TwoAddressInstructionPass::rescheduleKillAboveMI(
994 MachineBasicBlock::iterator
&mi
, MachineBasicBlock::iterator
&nmi
,
996 // Bail immediately if we don't have LV or LIS available. We use them to find
997 // kills efficiently.
1001 MachineInstr
*MI
= &*mi
;
1002 DenseMap
<MachineInstr
*, unsigned>::iterator DI
= DistanceMap
.find(MI
);
1003 if (DI
== DistanceMap
.end())
1004 // Must be created from unfolded load. Don't waste time trying this.
1007 MachineInstr
*KillMI
= nullptr;
1009 LiveInterval
&LI
= LIS
->getInterval(Reg
);
1010 assert(LI
.end() != LI
.begin() &&
1011 "Reg should not have empty live interval.");
1013 SlotIndex MBBEndIdx
= LIS
->getMBBEndIdx(MBB
).getPrevSlot();
1014 LiveInterval::const_iterator I
= LI
.find(MBBEndIdx
);
1015 if (I
!= LI
.end() && I
->start
< MBBEndIdx
)
1019 KillMI
= LIS
->getInstructionFromIndex(I
->end
);
1021 KillMI
= LV
->getVarInfo(Reg
).findKill(MBB
);
1023 if (!KillMI
|| MI
== KillMI
|| KillMI
->isCopy() || KillMI
->isCopyLike())
1024 // Don't mess with copies, they may be coalesced later.
1028 if (isTwoAddrUse(*KillMI
, Reg
, DstReg
))
1031 bool SeenStore
= true;
1032 if (!KillMI
->isSafeToMove(AA
, SeenStore
))
1035 SmallVector
<Register
, 2> Uses
;
1036 SmallVector
<Register
, 2> Kills
;
1037 SmallVector
<Register
, 2> Defs
;
1038 SmallVector
<Register
, 2> LiveDefs
;
1039 for (const MachineOperand
&MO
: KillMI
->operands()) {
1042 Register MOReg
= MO
.getReg();
1046 if (isDefTooClose(MOReg
, DI
->second
, MI
))
1048 bool isKill
= MO
.isKill() || (LIS
&& isPlainlyKilled(KillMI
, MOReg
, LIS
));
1049 if (MOReg
== Reg
&& !isKill
)
1051 Uses
.push_back(MOReg
);
1052 if (isKill
&& MOReg
!= Reg
)
1053 Kills
.push_back(MOReg
);
1054 } else if (MOReg
.isPhysical()) {
1055 Defs
.push_back(MOReg
);
1057 LiveDefs
.push_back(MOReg
);
1061 // Check if the reschedule will not break depedencies.
1062 unsigned NumVisited
= 0;
1063 for (MachineInstr
&OtherMI
:
1064 make_range(mi
, MachineBasicBlock::iterator(KillMI
))) {
1065 // Debug or pseudo instructions cannot be counted against the limit.
1066 if (OtherMI
.isDebugOrPseudoInstr())
1068 if (NumVisited
> 10) // FIXME: Arbitrary limit to reduce compile time cost.
1071 if (OtherMI
.hasUnmodeledSideEffects() || OtherMI
.isCall() ||
1072 OtherMI
.isBranch() || OtherMI
.isTerminator())
1073 // Don't move pass calls, etc.
1075 SmallVector
<Register
, 2> OtherDefs
;
1076 for (const MachineOperand
&MO
: OtherMI
.operands()) {
1079 Register MOReg
= MO
.getReg();
1083 if (regOverlapsSet(Defs
, MOReg
, TRI
))
1084 // Moving KillMI can clobber the physical register if the def has
1087 if (regOverlapsSet(Kills
, MOReg
, TRI
))
1088 // Don't want to extend other live ranges and update kills.
1090 if (&OtherMI
!= MI
&& MOReg
== Reg
&&
1091 !(MO
.isKill() || (LIS
&& isPlainlyKilled(&OtherMI
, MOReg
, LIS
))))
1092 // We can't schedule across a use of the register in question.
1095 OtherDefs
.push_back(MOReg
);
1099 for (unsigned i
= 0, e
= OtherDefs
.size(); i
!= e
; ++i
) {
1100 Register MOReg
= OtherDefs
[i
];
1101 if (regOverlapsSet(Uses
, MOReg
, TRI
))
1103 if (MOReg
.isPhysical() && regOverlapsSet(LiveDefs
, MOReg
, TRI
))
1105 // Physical register def is seen.
1106 llvm::erase_value(Defs
, MOReg
);
1110 // Move the old kill above MI, don't forget to move debug info as well.
1111 MachineBasicBlock::iterator InsertPos
= mi
;
1112 while (InsertPos
!= MBB
->begin() && std::prev(InsertPos
)->isDebugInstr())
1114 MachineBasicBlock::iterator From
= KillMI
;
1115 MachineBasicBlock::iterator To
= std::next(From
);
1116 while (std::prev(From
)->isDebugInstr())
1118 MBB
->splice(InsertPos
, MBB
, From
, To
);
1120 nmi
= std::prev(InsertPos
); // Backtrack so we process the moved instr.
1121 DistanceMap
.erase(DI
);
1123 // Update live variables
1125 LIS
->handleMove(*KillMI
);
1127 LV
->removeVirtualRegisterKilled(Reg
, *KillMI
);
1128 LV
->addVirtualRegisterKilled(Reg
, *MI
);
1131 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI
);
1135 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the
1136 /// given machine instruction to improve opportunities for coalescing and
1137 /// elimination of a register to register copy.
1139 /// 'DstOpIdx' specifies the index of MI def operand.
1140 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
1141 /// operand is killed by the given instruction.
1142 /// The 'Dist' arguments provides the distance of MI from the start of the
1143 /// current basic block and it is used to determine if it is profitable
1144 /// to commute operands in the instruction.
1146 /// Returns true if the transformation happened. Otherwise, returns false.
1147 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr
*MI
,
1152 if (!MI
->isCommutable())
1155 bool MadeChange
= false;
1156 Register DstOpReg
= MI
->getOperand(DstOpIdx
).getReg();
1157 Register BaseOpReg
= MI
->getOperand(BaseOpIdx
).getReg();
1158 unsigned OpsNum
= MI
->getDesc().getNumOperands();
1159 unsigned OtherOpIdx
= MI
->getDesc().getNumDefs();
1160 for (; OtherOpIdx
< OpsNum
; OtherOpIdx
++) {
1161 // The call of findCommutedOpIndices below only checks if BaseOpIdx
1162 // and OtherOpIdx are commutable, it does not really search for
1163 // other commutable operands and does not change the values of passed
1165 if (OtherOpIdx
== BaseOpIdx
|| !MI
->getOperand(OtherOpIdx
).isReg() ||
1166 !TII
->findCommutedOpIndices(*MI
, BaseOpIdx
, OtherOpIdx
))
1169 Register OtherOpReg
= MI
->getOperand(OtherOpIdx
).getReg();
1170 bool AggressiveCommute
= false;
1172 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
1173 // operands. This makes the live ranges of DstOp and OtherOp joinable.
1174 bool OtherOpKilled
= isKilled(*MI
, OtherOpReg
, MRI
, TII
, LIS
, false);
1175 bool DoCommute
= !BaseOpKilled
&& OtherOpKilled
;
1178 isProfitableToCommute(DstOpReg
, BaseOpReg
, OtherOpReg
, MI
, Dist
)) {
1180 AggressiveCommute
= true;
1183 // If it's profitable to commute, try to do so.
1184 if (DoCommute
&& commuteInstruction(MI
, DstOpIdx
, BaseOpIdx
, OtherOpIdx
,
1188 if (AggressiveCommute
)
1191 // There might be more than two commutable operands, update BaseOp and
1192 // continue scanning.
1193 // FIXME: This assumes that the new instruction's operands are in the
1194 // same positions and were simply swapped.
1195 BaseOpReg
= OtherOpReg
;
1196 BaseOpKilled
= OtherOpKilled
;
1197 // Resamples OpsNum in case the number of operands was reduced. This
1198 // happens with X86.
1199 OpsNum
= MI
->getDesc().getNumOperands();
1205 /// For the case where an instruction has a single pair of tied register
1206 /// operands, attempt some transformations that may either eliminate the tied
1207 /// operands or improve the opportunities for coalescing away the register copy.
1208 /// Returns true if no copy needs to be inserted to untie mi's operands
1209 /// (either because they were untied, or because mi was rescheduled, and will
1210 /// be visited again later). If the shouldOnlyCommute flag is true, only
1211 /// instruction commutation is attempted.
1212 bool TwoAddressInstructionPass::
1213 tryInstructionTransform(MachineBasicBlock::iterator
&mi
,
1214 MachineBasicBlock::iterator
&nmi
,
1215 unsigned SrcIdx
, unsigned DstIdx
,
1216 unsigned &Dist
, bool shouldOnlyCommute
) {
1217 if (OptLevel
== CodeGenOpt::None
)
1220 MachineInstr
&MI
= *mi
;
1221 Register regA
= MI
.getOperand(DstIdx
).getReg();
1222 Register regB
= MI
.getOperand(SrcIdx
).getReg();
1224 assert(regB
.isVirtual() && "cannot make instruction into two-address form");
1225 bool regBKilled
= isKilled(MI
, regB
, MRI
, TII
, LIS
, true);
1227 if (regA
.isVirtual())
1230 bool Commuted
= tryInstructionCommute(&MI
, DstIdx
, SrcIdx
, regBKilled
, Dist
);
1232 // If the instruction is convertible to 3 Addr, instead
1233 // of returning try 3 Addr transformation aggressively and
1234 // use this variable to check later. Because it might be better.
1235 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
1236 // instead of the following code.
1240 if (Commuted
&& !MI
.isConvertibleTo3Addr())
1243 if (shouldOnlyCommute
)
1246 // If there is one more use of regB later in the same MBB, consider
1247 // re-schedule this MI below it.
1248 if (!Commuted
&& EnableRescheduling
&& rescheduleMIBelowKill(mi
, nmi
, regB
)) {
1253 // If we commuted, regB may have changed so we should re-sample it to avoid
1254 // confusing the three address conversion below.
1256 regB
= MI
.getOperand(SrcIdx
).getReg();
1257 regBKilled
= isKilled(MI
, regB
, MRI
, TII
, LIS
, true);
1260 if (MI
.isConvertibleTo3Addr()) {
1261 // This instruction is potentially convertible to a true
1262 // three-address instruction. Check if it is profitable.
1263 if (!regBKilled
|| isProfitableToConv3Addr(regA
, regB
)) {
1264 // Try to convert it.
1265 if (convertInstTo3Addr(mi
, nmi
, regA
, regB
, Dist
)) {
1266 ++NumConvertedTo3Addr
;
1267 return true; // Done with this instruction.
1272 // Return if it is commuted but 3 addr conversion is failed.
1276 // If there is one more use of regB later in the same MBB, consider
1277 // re-schedule it before this MI if it's legal.
1278 if (EnableRescheduling
&& rescheduleKillAboveMI(mi
, nmi
, regB
)) {
1283 // If this is an instruction with a load folded into it, try unfolding
1284 // the load, e.g. avoid this:
1286 // addq (%rax), %rcx
1287 // in favor of this:
1288 // movq (%rax), %rcx
1290 // because it's preferable to schedule a load than a register copy.
1291 if (MI
.mayLoad() && !regBKilled
) {
1292 // Determine if a load can be unfolded.
1293 unsigned LoadRegIndex
;
1295 TII
->getOpcodeAfterMemoryUnfold(MI
.getOpcode(),
1296 /*UnfoldLoad=*/true,
1297 /*UnfoldStore=*/false,
1300 const MCInstrDesc
&UnfoldMCID
= TII
->get(NewOpc
);
1301 if (UnfoldMCID
.getNumDefs() == 1) {
1303 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI
);
1304 const TargetRegisterClass
*RC
=
1305 TRI
->getAllocatableClass(
1306 TII
->getRegClass(UnfoldMCID
, LoadRegIndex
, TRI
, *MF
));
1307 Register Reg
= MRI
->createVirtualRegister(RC
);
1308 SmallVector
<MachineInstr
*, 2> NewMIs
;
1309 if (!TII
->unfoldMemoryOperand(*MF
, MI
, Reg
,
1310 /*UnfoldLoad=*/true,
1311 /*UnfoldStore=*/false, NewMIs
)) {
1312 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1315 assert(NewMIs
.size() == 2 &&
1316 "Unfolded a load into multiple instructions!");
1317 // The load was previously folded, so this is the only use.
1318 NewMIs
[1]->addRegisterKilled(Reg
, TRI
);
1320 // Tentatively insert the instructions into the block so that they
1321 // look "normal" to the transformation logic.
1322 MBB
->insert(mi
, NewMIs
[0]);
1323 MBB
->insert(mi
, NewMIs
[1]);
1324 DistanceMap
.insert(std::make_pair(NewMIs
[0], Dist
++));
1325 DistanceMap
.insert(std::make_pair(NewMIs
[1], Dist
));
1327 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs
[0]
1328 << "2addr: NEW INST: " << *NewMIs
[1]);
1330 // Transform the instruction, now that it no longer has a load.
1331 unsigned NewDstIdx
= NewMIs
[1]->findRegisterDefOperandIdx(regA
);
1332 unsigned NewSrcIdx
= NewMIs
[1]->findRegisterUseOperandIdx(regB
);
1333 MachineBasicBlock::iterator NewMI
= NewMIs
[1];
1334 bool TransformResult
=
1335 tryInstructionTransform(NewMI
, mi
, NewSrcIdx
, NewDstIdx
, Dist
, true);
1336 (void)TransformResult
;
1337 assert(!TransformResult
&&
1338 "tryInstructionTransform() should return false.");
1339 if (NewMIs
[1]->getOperand(NewSrcIdx
).isKill()) {
1340 // Success, or at least we made an improvement. Keep the unfolded
1341 // instructions and discard the original.
1343 for (const MachineOperand
&MO
: MI
.operands()) {
1344 if (MO
.isReg() && MO
.getReg().isVirtual()) {
1347 if (NewMIs
[0]->killsRegister(MO
.getReg()))
1348 LV
->replaceKillInstruction(MO
.getReg(), MI
, *NewMIs
[0]);
1350 assert(NewMIs
[1]->killsRegister(MO
.getReg()) &&
1351 "Kill missing after load unfold!");
1352 LV
->replaceKillInstruction(MO
.getReg(), MI
, *NewMIs
[1]);
1355 } else if (LV
->removeVirtualRegisterDead(MO
.getReg(), MI
)) {
1356 if (NewMIs
[1]->registerDefIsDead(MO
.getReg()))
1357 LV
->addVirtualRegisterDead(MO
.getReg(), *NewMIs
[1]);
1359 assert(NewMIs
[0]->registerDefIsDead(MO
.getReg()) &&
1360 "Dead flag missing after load unfold!");
1361 LV
->addVirtualRegisterDead(MO
.getReg(), *NewMIs
[0]);
1366 LV
->addVirtualRegisterKilled(Reg
, *NewMIs
[1]);
1369 SmallVector
<Register
, 4> OrigRegs
;
1371 for (const MachineOperand
&MO
: MI
.operands()) {
1373 OrigRegs
.push_back(MO
.getReg());
1376 LIS
->RemoveMachineInstrFromMaps(MI
);
1379 MI
.eraseFromParent();
1380 DistanceMap
.erase(&MI
);
1382 // Update LiveIntervals.
1384 MachineBasicBlock::iterator
Begin(NewMIs
[0]);
1385 MachineBasicBlock::iterator
End(NewMIs
[1]);
1386 LIS
->repairIntervalsInRange(MBB
, Begin
, End
, OrigRegs
);
1391 // Transforming didn't eliminate the tie and didn't lead to an
1392 // improvement. Clean up the unfolded instructions and keep the
1394 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1395 NewMIs
[0]->eraseFromParent();
1396 NewMIs
[1]->eraseFromParent();
1397 DistanceMap
.erase(NewMIs
[0]);
1398 DistanceMap
.erase(NewMIs
[1]);
1408 // Collect tied operands of MI that need to be handled.
1409 // Rewrite trivial cases immediately.
1410 // Return true if any tied operands where found, including the trivial ones.
1411 bool TwoAddressInstructionPass::
1412 collectTiedOperands(MachineInstr
*MI
, TiedOperandMap
&TiedOperands
) {
1413 bool AnyOps
= false;
1414 unsigned NumOps
= MI
->getNumOperands();
1416 for (unsigned SrcIdx
= 0; SrcIdx
< NumOps
; ++SrcIdx
) {
1417 unsigned DstIdx
= 0;
1418 if (!MI
->isRegTiedToDefOperand(SrcIdx
, &DstIdx
))
1421 MachineOperand
&SrcMO
= MI
->getOperand(SrcIdx
);
1422 MachineOperand
&DstMO
= MI
->getOperand(DstIdx
);
1423 Register SrcReg
= SrcMO
.getReg();
1424 Register DstReg
= DstMO
.getReg();
1425 // Tied constraint already satisfied?
1426 if (SrcReg
== DstReg
)
1429 assert(SrcReg
&& SrcMO
.isUse() && "two address instruction invalid");
1431 // Deal with undef uses immediately - simply rewrite the src operand.
1432 if (SrcMO
.isUndef() && !DstMO
.getSubReg()) {
1433 // Constrain the DstReg register class if required.
1434 if (DstReg
.isVirtual()) {
1435 const TargetRegisterClass
*RC
= MRI
->getRegClass(SrcReg
);
1436 MRI
->constrainRegClass(DstReg
, RC
);
1438 SrcMO
.setReg(DstReg
);
1440 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI
);
1443 TiedOperands
[SrcReg
].push_back(std::make_pair(SrcIdx
, DstIdx
));
1448 // Process a list of tied MI operands that all use the same source register.
1449 // The tied pairs are of the form (SrcIdx, DstIdx).
1451 TwoAddressInstructionPass::processTiedPairs(MachineInstr
*MI
,
1452 TiedPairList
&TiedPairs
,
1454 bool IsEarlyClobber
= llvm::find_if(TiedPairs
, [MI
](auto const &TP
) {
1455 return MI
->getOperand(TP
.second
).isEarlyClobber();
1456 }) != TiedPairs
.end();
1458 bool RemovedKillFlag
= false;
1459 bool AllUsesCopied
= true;
1460 unsigned LastCopiedReg
= 0;
1461 SlotIndex LastCopyIdx
;
1463 unsigned SubRegB
= 0;
1464 for (auto &TP
: TiedPairs
) {
1465 unsigned SrcIdx
= TP
.first
;
1466 unsigned DstIdx
= TP
.second
;
1468 const MachineOperand
&DstMO
= MI
->getOperand(DstIdx
);
1469 Register RegA
= DstMO
.getReg();
1471 // Grab RegB from the instruction because it may have changed if the
1472 // instruction was commuted.
1473 RegB
= MI
->getOperand(SrcIdx
).getReg();
1474 SubRegB
= MI
->getOperand(SrcIdx
).getSubReg();
1477 // The register is tied to multiple destinations (or else we would
1478 // not have continued this far), but this use of the register
1479 // already matches the tied destination. Leave it.
1480 AllUsesCopied
= false;
1483 LastCopiedReg
= RegA
;
1485 assert(RegB
.isVirtual() && "cannot make instruction into two-address form");
1488 // First, verify that we don't have a use of "a" in the instruction
1489 // (a = b + a for example) because our transformation will not
1490 // work. This should never occur because we are in SSA form.
1491 for (unsigned i
= 0; i
!= MI
->getNumOperands(); ++i
)
1492 assert(i
== DstIdx
||
1493 !MI
->getOperand(i
).isReg() ||
1494 MI
->getOperand(i
).getReg() != RegA
);
1498 MachineInstrBuilder MIB
= BuildMI(*MI
->getParent(), MI
, MI
->getDebugLoc(),
1499 TII
->get(TargetOpcode::COPY
), RegA
);
1500 // If this operand is folding a truncation, the truncation now moves to the
1501 // copy so that the register classes remain valid for the operands.
1502 MIB
.addReg(RegB
, 0, SubRegB
);
1503 const TargetRegisterClass
*RC
= MRI
->getRegClass(RegB
);
1505 if (RegA
.isVirtual()) {
1506 assert(TRI
->getMatchingSuperRegClass(RC
, MRI
->getRegClass(RegA
),
1508 "tied subregister must be a truncation");
1509 // The superreg class will not be used to constrain the subreg class.
1512 assert(TRI
->getMatchingSuperReg(RegA
, SubRegB
, MRI
->getRegClass(RegB
))
1513 && "tied subregister must be a truncation");
1517 // Update DistanceMap.
1518 MachineBasicBlock::iterator PrevMI
= MI
;
1520 DistanceMap
.insert(std::make_pair(&*PrevMI
, Dist
));
1521 DistanceMap
[MI
] = ++Dist
;
1524 LastCopyIdx
= LIS
->InsertMachineInstrInMaps(*PrevMI
).getRegSlot();
1527 LIS
->getInstructionIndex(*MI
).getRegSlot(IsEarlyClobber
);
1528 if (RegA
.isVirtual()) {
1529 LiveInterval
&LI
= LIS
->getInterval(RegA
);
1530 VNInfo
*VNI
= LI
.getNextValue(LastCopyIdx
, LIS
->getVNInfoAllocator());
1531 LI
.addSegment(LiveRange::Segment(LastCopyIdx
, endIdx
, VNI
));
1532 for (auto &S
: LI
.subranges()) {
1533 VNI
= S
.getNextValue(LastCopyIdx
, LIS
->getVNInfoAllocator());
1534 S
.addSegment(LiveRange::Segment(LastCopyIdx
, endIdx
, VNI
));
1537 for (MCRegUnitIterator
Unit(RegA
, TRI
); Unit
.isValid(); ++Unit
) {
1538 if (LiveRange
*LR
= LIS
->getCachedRegUnit(*Unit
)) {
1540 LR
->getNextValue(LastCopyIdx
, LIS
->getVNInfoAllocator());
1541 LR
->addSegment(LiveRange::Segment(LastCopyIdx
, endIdx
, VNI
));
1547 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB
);
1549 MachineOperand
&MO
= MI
->getOperand(SrcIdx
);
1550 assert(MO
.isReg() && MO
.getReg() == RegB
&& MO
.isUse() &&
1551 "inconsistent operand info for 2-reg pass");
1553 MO
.setIsKill(false);
1554 RemovedKillFlag
= true;
1557 // Make sure regA is a legal regclass for the SrcIdx operand.
1558 if (RegA
.isVirtual() && RegB
.isVirtual())
1559 MRI
->constrainRegClass(RegA
, RC
);
1561 // The getMatchingSuper asserts guarantee that the register class projected
1562 // by SubRegB is compatible with RegA with no subregister. So regardless of
1563 // whether the dest oper writes a subreg, the source oper should not.
1567 if (AllUsesCopied
) {
1568 LaneBitmask RemainingUses
= LaneBitmask::getNone();
1569 // Replace other (un-tied) uses of regB with LastCopiedReg.
1570 for (MachineOperand
&MO
: MI
->operands()) {
1571 if (MO
.isReg() && MO
.getReg() == RegB
&& MO
.isUse()) {
1572 if (MO
.getSubReg() == SubRegB
&& !IsEarlyClobber
) {
1574 MO
.setIsKill(false);
1575 RemovedKillFlag
= true;
1577 MO
.setReg(LastCopiedReg
);
1580 RemainingUses
|= TRI
->getSubRegIndexLaneMask(MO
.getSubReg());
1585 // Update live variables for regB.
1586 if (RemovedKillFlag
&& RemainingUses
.none() && LV
&&
1587 LV
->getVarInfo(RegB
).removeKill(*MI
)) {
1588 MachineBasicBlock::iterator PrevMI
= MI
;
1590 LV
->addVirtualRegisterKilled(RegB
, *PrevMI
);
1593 if (RemovedKillFlag
&& RemainingUses
.none())
1594 SrcRegMap
[LastCopiedReg
] = RegB
;
1596 // Update LiveIntervals.
1598 SlotIndex UseIdx
= LIS
->getInstructionIndex(*MI
);
1599 auto Shrink
= [=](LiveRange
&LR
, LaneBitmask LaneMask
) {
1600 LiveRange::Segment
*S
= LR
.getSegmentContaining(LastCopyIdx
);
1603 if ((LaneMask
& RemainingUses
).any())
1605 if (S
->end
.getBaseIndex() != UseIdx
)
1607 S
->end
= LastCopyIdx
;
1611 LiveInterval
&LI
= LIS
->getInterval(RegB
);
1612 bool ShrinkLI
= true;
1613 for (auto &S
: LI
.subranges())
1614 ShrinkLI
&= Shrink(S
, S
.LaneMask
);
1616 Shrink(LI
, LaneBitmask::getAll());
1618 } else if (RemovedKillFlag
) {
1619 // Some tied uses of regB matched their destination registers, so
1620 // regB is still used in this instruction, but a kill flag was
1621 // removed from a different tied use of regB, so now we need to add
1622 // a kill flag to one of the remaining uses of regB.
1623 for (MachineOperand
&MO
: MI
->operands()) {
1624 if (MO
.isReg() && MO
.getReg() == RegB
&& MO
.isUse()) {
1632 /// Reduce two-address instructions to two operands.
1633 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction
&Func
) {
1635 const TargetMachine
&TM
= MF
->getTarget();
1636 MRI
= &MF
->getRegInfo();
1637 TII
= MF
->getSubtarget().getInstrInfo();
1638 TRI
= MF
->getSubtarget().getRegisterInfo();
1639 InstrItins
= MF
->getSubtarget().getInstrItineraryData();
1640 LV
= getAnalysisIfAvailable
<LiveVariables
>();
1641 LIS
= getAnalysisIfAvailable
<LiveIntervals
>();
1642 if (auto *AAPass
= getAnalysisIfAvailable
<AAResultsWrapperPass
>())
1643 AA
= &AAPass
->getAAResults();
1646 OptLevel
= TM
.getOptLevel();
1647 // Disable optimizations if requested. We cannot skip the whole pass as some
1648 // fixups are necessary for correctness.
1649 if (skipFunction(Func
.getFunction()))
1650 OptLevel
= CodeGenOpt::None
;
1652 bool MadeChange
= false;
1654 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1655 LLVM_DEBUG(dbgs() << "********** Function: " << MF
->getName() << '\n');
1657 // This pass takes the function out of SSA form.
1660 // This pass will rewrite the tied-def to meet the RegConstraint.
1662 .set(MachineFunctionProperties::Property::TiedOpsRewritten
);
1664 TiedOperandMap TiedOperands
;
1665 for (MachineBasicBlock
&MBBI
: *MF
) {
1668 DistanceMap
.clear();
1672 for (MachineBasicBlock::iterator mi
= MBB
->begin(), me
= MBB
->end();
1674 MachineBasicBlock::iterator nmi
= std::next(mi
);
1675 // Skip debug instructions.
1676 if (mi
->isDebugInstr()) {
1681 // Expand REG_SEQUENCE instructions. This will position mi at the first
1682 // expanded instruction.
1683 if (mi
->isRegSequence())
1684 eliminateRegSequence(mi
);
1686 DistanceMap
.insert(std::make_pair(&*mi
, ++Dist
));
1690 // First scan through all the tied register uses in this instruction
1691 // and record a list of pairs of tied operands for each register.
1692 if (!collectTiedOperands(&*mi
, TiedOperands
)) {
1693 removeClobberedSrcRegMap(&*mi
);
1698 ++NumTwoAddressInstrs
;
1700 LLVM_DEBUG(dbgs() << '\t' << *mi
);
1702 // If the instruction has a single pair of tied operands, try some
1703 // transformations that may either eliminate the tied operands or
1704 // improve the opportunities for coalescing away the register copy.
1705 if (TiedOperands
.size() == 1) {
1706 SmallVectorImpl
<std::pair
<unsigned, unsigned>> &TiedPairs
1707 = TiedOperands
.begin()->second
;
1708 if (TiedPairs
.size() == 1) {
1709 unsigned SrcIdx
= TiedPairs
[0].first
;
1710 unsigned DstIdx
= TiedPairs
[0].second
;
1711 Register SrcReg
= mi
->getOperand(SrcIdx
).getReg();
1712 Register DstReg
= mi
->getOperand(DstIdx
).getReg();
1713 if (SrcReg
!= DstReg
&&
1714 tryInstructionTransform(mi
, nmi
, SrcIdx
, DstIdx
, Dist
, false)) {
1715 // The tied operands have been eliminated or shifted further down
1716 // the block to ease elimination. Continue processing with 'nmi'.
1717 TiedOperands
.clear();
1718 removeClobberedSrcRegMap(&*mi
);
1725 // Now iterate over the information collected above.
1726 for (auto &TO
: TiedOperands
) {
1727 processTiedPairs(&*mi
, TO
.second
, Dist
);
1728 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi
);
1731 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1732 if (mi
->isInsertSubreg()) {
1733 // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1734 // To %reg:subidx = COPY %subreg
1735 unsigned SubIdx
= mi
->getOperand(3).getImm();
1736 mi
->RemoveOperand(3);
1737 assert(mi
->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1738 mi
->getOperand(0).setSubReg(SubIdx
);
1739 mi
->getOperand(0).setIsUndef(mi
->getOperand(1).isUndef());
1740 mi
->RemoveOperand(1);
1741 mi
->setDesc(TII
->get(TargetOpcode::COPY
));
1742 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi
);
1744 // Update LiveIntervals.
1746 Register Reg
= mi
->getOperand(0).getReg();
1747 LiveInterval
&LI
= LIS
->getInterval(Reg
);
1748 if (LI
.hasSubRanges()) {
1749 // The COPY no longer defines subregs of %reg except for
1751 LaneBitmask LaneMask
=
1752 TRI
->getSubRegIndexLaneMask(mi
->getOperand(0).getSubReg());
1753 SlotIndex Idx
= LIS
->getInstructionIndex(*mi
);
1754 for (auto &S
: LI
.subranges()) {
1755 if ((S
.LaneMask
& LaneMask
).none()) {
1756 LiveRange::iterator UseSeg
= S
.FindSegmentContaining(Idx
);
1757 LiveRange::iterator DefSeg
= std::next(UseSeg
);
1758 S
.MergeValueNumberInto(DefSeg
->valno
, UseSeg
->valno
);
1762 // The COPY no longer has a use of %reg.
1763 LIS
->shrinkToUses(&LI
);
1765 // The live interval for Reg did not have subranges but now it needs
1766 // them because we have introduced a subreg def. Recompute it.
1767 LIS
->removeInterval(Reg
);
1768 LIS
->createAndComputeVirtRegInterval(Reg
);
1773 // Clear TiedOperands here instead of at the top of the loop
1774 // since most instructions do not have tied operands.
1775 TiedOperands
.clear();
1776 removeClobberedSrcRegMap(&*mi
);
1784 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1786 /// The instruction is turned into a sequence of sub-register copies:
1788 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1792 /// undef %dst:ssub0 = COPY %v1
1793 /// %dst:ssub1 = COPY %v2
1794 void TwoAddressInstructionPass::
1795 eliminateRegSequence(MachineBasicBlock::iterator
&MBBI
) {
1796 MachineInstr
&MI
= *MBBI
;
1797 Register DstReg
= MI
.getOperand(0).getReg();
1798 if (MI
.getOperand(0).getSubReg() || DstReg
.isPhysical() ||
1799 !(MI
.getNumOperands() & 1)) {
1800 LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI
);
1801 llvm_unreachable(nullptr);
1804 SmallVector
<Register
, 4> OrigRegs
;
1806 OrigRegs
.push_back(MI
.getOperand(0).getReg());
1807 for (unsigned i
= 1, e
= MI
.getNumOperands(); i
< e
; i
+= 2)
1808 OrigRegs
.push_back(MI
.getOperand(i
).getReg());
1811 bool DefEmitted
= false;
1812 for (unsigned i
= 1, e
= MI
.getNumOperands(); i
< e
; i
+= 2) {
1813 MachineOperand
&UseMO
= MI
.getOperand(i
);
1814 Register SrcReg
= UseMO
.getReg();
1815 unsigned SubIdx
= MI
.getOperand(i
+1).getImm();
1816 // Nothing needs to be inserted for undef operands.
1817 if (UseMO
.isUndef())
1820 // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1821 // might insert a COPY that uses SrcReg after is was killed.
1822 bool isKill
= UseMO
.isKill();
1824 for (unsigned j
= i
+ 2; j
< e
; j
+= 2)
1825 if (MI
.getOperand(j
).getReg() == SrcReg
) {
1826 MI
.getOperand(j
).setIsKill();
1827 UseMO
.setIsKill(false);
1832 // Insert the sub-register copy.
1833 MachineInstr
*CopyMI
= BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(),
1834 TII
->get(TargetOpcode::COPY
))
1835 .addReg(DstReg
, RegState::Define
, SubIdx
)
1838 // The first def needs an undef flag because there is no live register
1841 CopyMI
->getOperand(0).setIsUndef(true);
1842 // Return an iterator pointing to the first inserted instr.
1847 // Update LiveVariables' kill info.
1848 if (LV
&& isKill
&& !SrcReg
.isPhysical())
1849 LV
->replaceKillInstruction(SrcReg
, MI
, *CopyMI
);
1851 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI
);
1854 MachineBasicBlock::iterator EndMBBI
=
1855 std::next(MachineBasicBlock::iterator(MI
));
1858 LLVM_DEBUG(dbgs() << "Turned: " << MI
<< " into an IMPLICIT_DEF");
1859 MI
.setDesc(TII
->get(TargetOpcode::IMPLICIT_DEF
));
1860 for (int j
= MI
.getNumOperands() - 1, ee
= 0; j
> ee
; --j
)
1861 MI
.RemoveOperand(j
);
1864 LIS
->RemoveMachineInstrFromMaps(MI
);
1866 LLVM_DEBUG(dbgs() << "Eliminated: " << MI
);
1867 MI
.eraseFromParent();
1870 // Udpate LiveIntervals.
1872 LIS
->repairIntervalsInRange(MBB
, MBBI
, EndMBBI
, OrigRegs
);