1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass lowers LLVM IR exception handling into something closer to what the
10 // backend wants for functions using a personality function from a runtime
11 // provided by MSVC. Functions with other personality functions are left alone
12 // and may be prepared by other passes. In particular, all supported MSVC
13 // personality functions require cleanup code to be outlined, and the C++
14 // personality requires catch handler code to be outlined.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/EHPersonalities.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/WinEHFuncInfo.h"
27 #include "llvm/IR/Verifier.h"
28 #include "llvm/InitializePasses.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Transforms/Utils/SSAUpdater.h"
41 #define DEBUG_TYPE "winehprepare"
43 static cl::opt
<bool> DisableDemotion(
44 "disable-demotion", cl::Hidden
,
46 "Clone multicolor basic blocks but do not demote cross scopes"),
49 static cl::opt
<bool> DisableCleanups(
50 "disable-cleanups", cl::Hidden
,
51 cl::desc("Do not remove implausible terminators or other similar cleanups"),
54 static cl::opt
<bool> DemoteCatchSwitchPHIOnlyOpt(
55 "demote-catchswitch-only", cl::Hidden
,
56 cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));
60 class WinEHPrepare
: public FunctionPass
{
62 static char ID
; // Pass identification, replacement for typeid.
63 WinEHPrepare(bool DemoteCatchSwitchPHIOnly
= false)
64 : FunctionPass(ID
), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly
) {}
66 bool runOnFunction(Function
&Fn
) override
;
68 bool doFinalization(Module
&M
) override
;
70 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
72 StringRef
getPassName() const override
{
73 return "Windows exception handling preparation";
77 void insertPHIStores(PHINode
*OriginalPHI
, AllocaInst
*SpillSlot
);
79 insertPHIStore(BasicBlock
*PredBlock
, Value
*PredVal
, AllocaInst
*SpillSlot
,
80 SmallVectorImpl
<std::pair
<BasicBlock
*, Value
*>> &Worklist
);
81 AllocaInst
*insertPHILoads(PHINode
*PN
, Function
&F
);
82 void replaceUseWithLoad(Value
*V
, Use
&U
, AllocaInst
*&SpillSlot
,
83 DenseMap
<BasicBlock
*, Value
*> &Loads
, Function
&F
);
84 bool prepareExplicitEH(Function
&F
);
85 void colorFunclets(Function
&F
);
87 void demotePHIsOnFunclets(Function
&F
, bool DemoteCatchSwitchPHIOnly
);
88 void cloneCommonBlocks(Function
&F
);
89 void removeImplausibleInstructions(Function
&F
);
90 void cleanupPreparedFunclets(Function
&F
);
91 void verifyPreparedFunclets(Function
&F
);
93 bool DemoteCatchSwitchPHIOnly
;
95 // All fields are reset by runOnFunction.
96 EHPersonality Personality
= EHPersonality::Unknown
;
98 const DataLayout
*DL
= nullptr;
99 DenseMap
<BasicBlock
*, ColorVector
> BlockColors
;
100 MapVector
<BasicBlock
*, std::vector
<BasicBlock
*>> FuncletBlocks
;
103 } // end anonymous namespace
105 char WinEHPrepare::ID
= 0;
106 INITIALIZE_PASS(WinEHPrepare
, DEBUG_TYPE
, "Prepare Windows exceptions",
109 FunctionPass
*llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly
) {
110 return new WinEHPrepare(DemoteCatchSwitchPHIOnly
);
113 bool WinEHPrepare::runOnFunction(Function
&Fn
) {
114 if (!Fn
.hasPersonalityFn())
117 // Classify the personality to see what kind of preparation we need.
118 Personality
= classifyEHPersonality(Fn
.getPersonalityFn());
120 // Do nothing if this is not a scope-based personality.
121 if (!isScopedEHPersonality(Personality
))
124 DL
= &Fn
.getParent()->getDataLayout();
125 return prepareExplicitEH(Fn
);
128 bool WinEHPrepare::doFinalization(Module
&M
) { return false; }
130 void WinEHPrepare::getAnalysisUsage(AnalysisUsage
&AU
) const {}
132 static int addUnwindMapEntry(WinEHFuncInfo
&FuncInfo
, int ToState
,
133 const BasicBlock
*BB
) {
134 CxxUnwindMapEntry UME
;
135 UME
.ToState
= ToState
;
137 FuncInfo
.CxxUnwindMap
.push_back(UME
);
138 return FuncInfo
.getLastStateNumber();
141 static void addTryBlockMapEntry(WinEHFuncInfo
&FuncInfo
, int TryLow
,
142 int TryHigh
, int CatchHigh
,
143 ArrayRef
<const CatchPadInst
*> Handlers
) {
144 WinEHTryBlockMapEntry TBME
;
145 TBME
.TryLow
= TryLow
;
146 TBME
.TryHigh
= TryHigh
;
147 TBME
.CatchHigh
= CatchHigh
;
148 assert(TBME
.TryLow
<= TBME
.TryHigh
);
149 for (const CatchPadInst
*CPI
: Handlers
) {
151 Constant
*TypeInfo
= cast
<Constant
>(CPI
->getArgOperand(0));
152 if (TypeInfo
->isNullValue())
153 HT
.TypeDescriptor
= nullptr;
155 HT
.TypeDescriptor
= cast
<GlobalVariable
>(TypeInfo
->stripPointerCasts());
156 HT
.Adjectives
= cast
<ConstantInt
>(CPI
->getArgOperand(1))->getZExtValue();
157 HT
.Handler
= CPI
->getParent();
159 dyn_cast
<AllocaInst
>(CPI
->getArgOperand(2)->stripPointerCasts()))
160 HT
.CatchObj
.Alloca
= AI
;
162 HT
.CatchObj
.Alloca
= nullptr;
163 TBME
.HandlerArray
.push_back(HT
);
165 FuncInfo
.TryBlockMap
.push_back(TBME
);
168 static BasicBlock
*getCleanupRetUnwindDest(const CleanupPadInst
*CleanupPad
) {
169 for (const User
*U
: CleanupPad
->users())
170 if (const auto *CRI
= dyn_cast
<CleanupReturnInst
>(U
))
171 return CRI
->getUnwindDest();
175 static void calculateStateNumbersForInvokes(const Function
*Fn
,
176 WinEHFuncInfo
&FuncInfo
) {
177 auto *F
= const_cast<Function
*>(Fn
);
178 DenseMap
<BasicBlock
*, ColorVector
> BlockColors
= colorEHFunclets(*F
);
179 for (BasicBlock
&BB
: *F
) {
180 auto *II
= dyn_cast
<InvokeInst
>(BB
.getTerminator());
184 auto &BBColors
= BlockColors
[&BB
];
185 assert(BBColors
.size() == 1 && "multi-color BB not removed by preparation");
186 BasicBlock
*FuncletEntryBB
= BBColors
.front();
188 BasicBlock
*FuncletUnwindDest
;
190 dyn_cast
<FuncletPadInst
>(FuncletEntryBB
->getFirstNonPHI());
191 assert(FuncletPad
|| FuncletEntryBB
== &Fn
->getEntryBlock());
193 FuncletUnwindDest
= nullptr;
194 else if (auto *CatchPad
= dyn_cast
<CatchPadInst
>(FuncletPad
))
195 FuncletUnwindDest
= CatchPad
->getCatchSwitch()->getUnwindDest();
196 else if (auto *CleanupPad
= dyn_cast
<CleanupPadInst
>(FuncletPad
))
197 FuncletUnwindDest
= getCleanupRetUnwindDest(CleanupPad
);
199 llvm_unreachable("unexpected funclet pad!");
201 BasicBlock
*InvokeUnwindDest
= II
->getUnwindDest();
203 if (FuncletUnwindDest
== InvokeUnwindDest
) {
204 auto BaseStateI
= FuncInfo
.FuncletBaseStateMap
.find(FuncletPad
);
205 if (BaseStateI
!= FuncInfo
.FuncletBaseStateMap
.end())
206 BaseState
= BaseStateI
->second
;
209 if (BaseState
!= -1) {
210 FuncInfo
.InvokeStateMap
[II
] = BaseState
;
212 Instruction
*PadInst
= InvokeUnwindDest
->getFirstNonPHI();
213 assert(FuncInfo
.EHPadStateMap
.count(PadInst
) && "EH Pad has no state!");
214 FuncInfo
.InvokeStateMap
[II
] = FuncInfo
.EHPadStateMap
[PadInst
];
219 // Given BB which ends in an unwind edge, return the EHPad that this BB belongs
220 // to. If the unwind edge came from an invoke, return null.
221 static const BasicBlock
*getEHPadFromPredecessor(const BasicBlock
*BB
,
223 const Instruction
*TI
= BB
->getTerminator();
224 if (isa
<InvokeInst
>(TI
))
226 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(TI
)) {
227 if (CatchSwitch
->getParentPad() != ParentPad
)
231 assert(!TI
->isEHPad() && "unexpected EHPad!");
232 auto *CleanupPad
= cast
<CleanupReturnInst
>(TI
)->getCleanupPad();
233 if (CleanupPad
->getParentPad() != ParentPad
)
235 return CleanupPad
->getParent();
238 // Starting from a EHPad, Backward walk through control-flow graph
239 // to produce two primary outputs:
240 // FuncInfo.EHPadStateMap[] and FuncInfo.CxxUnwindMap[]
241 static void calculateCXXStateNumbers(WinEHFuncInfo
&FuncInfo
,
242 const Instruction
*FirstNonPHI
,
244 const BasicBlock
*BB
= FirstNonPHI
->getParent();
245 assert(BB
->isEHPad() && "not a funclet!");
247 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(FirstNonPHI
)) {
248 assert(FuncInfo
.EHPadStateMap
.count(CatchSwitch
) == 0 &&
249 "shouldn't revist catch funclets!");
251 SmallVector
<const CatchPadInst
*, 2> Handlers
;
252 for (const BasicBlock
*CatchPadBB
: CatchSwitch
->handlers()) {
253 auto *CatchPad
= cast
<CatchPadInst
>(CatchPadBB
->getFirstNonPHI());
254 Handlers
.push_back(CatchPad
);
256 int TryLow
= addUnwindMapEntry(FuncInfo
, ParentState
, nullptr);
257 FuncInfo
.EHPadStateMap
[CatchSwitch
] = TryLow
;
258 for (const BasicBlock
*PredBlock
: predecessors(BB
))
259 if ((PredBlock
= getEHPadFromPredecessor(PredBlock
,
260 CatchSwitch
->getParentPad())))
261 calculateCXXStateNumbers(FuncInfo
, PredBlock
->getFirstNonPHI(),
263 int CatchLow
= addUnwindMapEntry(FuncInfo
, ParentState
, nullptr);
265 // catchpads are separate funclets in C++ EH due to the way rethrow works.
266 int TryHigh
= CatchLow
- 1;
268 // MSVC FrameHandler3/4 on x64&Arm64 expect Catch Handlers in $tryMap$
269 // stored in pre-order (outer first, inner next), not post-order
270 // Add to map here. Fix the CatchHigh after children are processed
271 const Module
*Mod
= BB
->getParent()->getParent();
272 bool IsPreOrder
= Triple(Mod
->getTargetTriple()).isArch64Bit();
274 addTryBlockMapEntry(FuncInfo
, TryLow
, TryHigh
, CatchLow
, Handlers
);
275 unsigned TBMEIdx
= FuncInfo
.TryBlockMap
.size() - 1;
277 for (const auto *CatchPad
: Handlers
) {
278 FuncInfo
.FuncletBaseStateMap
[CatchPad
] = CatchLow
;
279 for (const User
*U
: CatchPad
->users()) {
280 const auto *UserI
= cast
<Instruction
>(U
);
281 if (auto *InnerCatchSwitch
= dyn_cast
<CatchSwitchInst
>(UserI
)) {
282 BasicBlock
*UnwindDest
= InnerCatchSwitch
->getUnwindDest();
283 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
284 calculateCXXStateNumbers(FuncInfo
, UserI
, CatchLow
);
286 if (auto *InnerCleanupPad
= dyn_cast
<CleanupPadInst
>(UserI
)) {
287 BasicBlock
*UnwindDest
= getCleanupRetUnwindDest(InnerCleanupPad
);
288 // If a nested cleanup pad reports a null unwind destination and the
289 // enclosing catch pad doesn't it must be post-dominated by an
290 // unreachable instruction.
291 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
292 calculateCXXStateNumbers(FuncInfo
, UserI
, CatchLow
);
296 int CatchHigh
= FuncInfo
.getLastStateNumber();
297 // Now child Catches are processed, update CatchHigh
299 FuncInfo
.TryBlockMap
[TBMEIdx
].CatchHigh
= CatchHigh
;
301 addTryBlockMapEntry(FuncInfo
, TryLow
, TryHigh
, CatchHigh
, Handlers
);
303 LLVM_DEBUG(dbgs() << "TryLow[" << BB
->getName() << "]: " << TryLow
<< '\n');
304 LLVM_DEBUG(dbgs() << "TryHigh[" << BB
->getName() << "]: " << TryHigh
306 LLVM_DEBUG(dbgs() << "CatchHigh[" << BB
->getName() << "]: " << CatchHigh
309 auto *CleanupPad
= cast
<CleanupPadInst
>(FirstNonPHI
);
311 // It's possible for a cleanup to be visited twice: it might have multiple
312 // cleanupret instructions.
313 if (FuncInfo
.EHPadStateMap
.count(CleanupPad
))
316 int CleanupState
= addUnwindMapEntry(FuncInfo
, ParentState
, BB
);
317 FuncInfo
.EHPadStateMap
[CleanupPad
] = CleanupState
;
318 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState
<< " to BB "
319 << BB
->getName() << '\n');
320 for (const BasicBlock
*PredBlock
: predecessors(BB
)) {
321 if ((PredBlock
= getEHPadFromPredecessor(PredBlock
,
322 CleanupPad
->getParentPad()))) {
323 calculateCXXStateNumbers(FuncInfo
, PredBlock
->getFirstNonPHI(),
327 for (const User
*U
: CleanupPad
->users()) {
328 const auto *UserI
= cast
<Instruction
>(U
);
329 if (UserI
->isEHPad())
330 report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
331 "contain exceptional actions");
336 static int addSEHExcept(WinEHFuncInfo
&FuncInfo
, int ParentState
,
337 const Function
*Filter
, const BasicBlock
*Handler
) {
338 SEHUnwindMapEntry Entry
;
339 Entry
.ToState
= ParentState
;
340 Entry
.IsFinally
= false;
341 Entry
.Filter
= Filter
;
342 Entry
.Handler
= Handler
;
343 FuncInfo
.SEHUnwindMap
.push_back(Entry
);
344 return FuncInfo
.SEHUnwindMap
.size() - 1;
347 static int addSEHFinally(WinEHFuncInfo
&FuncInfo
, int ParentState
,
348 const BasicBlock
*Handler
) {
349 SEHUnwindMapEntry Entry
;
350 Entry
.ToState
= ParentState
;
351 Entry
.IsFinally
= true;
352 Entry
.Filter
= nullptr;
353 Entry
.Handler
= Handler
;
354 FuncInfo
.SEHUnwindMap
.push_back(Entry
);
355 return FuncInfo
.SEHUnwindMap
.size() - 1;
358 // Starting from a EHPad, Backward walk through control-flow graph
359 // to produce two primary outputs:
360 // FuncInfo.EHPadStateMap[] and FuncInfo.SEHUnwindMap[]
361 static void calculateSEHStateNumbers(WinEHFuncInfo
&FuncInfo
,
362 const Instruction
*FirstNonPHI
,
364 const BasicBlock
*BB
= FirstNonPHI
->getParent();
365 assert(BB
->isEHPad() && "no a funclet!");
367 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(FirstNonPHI
)) {
368 assert(FuncInfo
.EHPadStateMap
.count(CatchSwitch
) == 0 &&
369 "shouldn't revist catch funclets!");
371 // Extract the filter function and the __except basic block and create a
373 assert(CatchSwitch
->getNumHandlers() == 1 &&
374 "SEH doesn't have multiple handlers per __try");
375 const auto *CatchPad
=
376 cast
<CatchPadInst
>((*CatchSwitch
->handler_begin())->getFirstNonPHI());
377 const BasicBlock
*CatchPadBB
= CatchPad
->getParent();
378 const Constant
*FilterOrNull
=
379 cast
<Constant
>(CatchPad
->getArgOperand(0)->stripPointerCasts());
380 const Function
*Filter
= dyn_cast
<Function
>(FilterOrNull
);
381 assert((Filter
|| FilterOrNull
->isNullValue()) &&
382 "unexpected filter value");
383 int TryState
= addSEHExcept(FuncInfo
, ParentState
, Filter
, CatchPadBB
);
385 // Everything in the __try block uses TryState as its parent state.
386 FuncInfo
.EHPadStateMap
[CatchSwitch
] = TryState
;
387 LLVM_DEBUG(dbgs() << "Assigning state #" << TryState
<< " to BB "
388 << CatchPadBB
->getName() << '\n');
389 for (const BasicBlock
*PredBlock
: predecessors(BB
))
390 if ((PredBlock
= getEHPadFromPredecessor(PredBlock
,
391 CatchSwitch
->getParentPad())))
392 calculateSEHStateNumbers(FuncInfo
, PredBlock
->getFirstNonPHI(),
395 // Everything in the __except block unwinds to ParentState, just like code
396 // outside the __try.
397 for (const User
*U
: CatchPad
->users()) {
398 const auto *UserI
= cast
<Instruction
>(U
);
399 if (auto *InnerCatchSwitch
= dyn_cast
<CatchSwitchInst
>(UserI
)) {
400 BasicBlock
*UnwindDest
= InnerCatchSwitch
->getUnwindDest();
401 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
402 calculateSEHStateNumbers(FuncInfo
, UserI
, ParentState
);
404 if (auto *InnerCleanupPad
= dyn_cast
<CleanupPadInst
>(UserI
)) {
405 BasicBlock
*UnwindDest
= getCleanupRetUnwindDest(InnerCleanupPad
);
406 // If a nested cleanup pad reports a null unwind destination and the
407 // enclosing catch pad doesn't it must be post-dominated by an
408 // unreachable instruction.
409 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
410 calculateSEHStateNumbers(FuncInfo
, UserI
, ParentState
);
414 auto *CleanupPad
= cast
<CleanupPadInst
>(FirstNonPHI
);
416 // It's possible for a cleanup to be visited twice: it might have multiple
417 // cleanupret instructions.
418 if (FuncInfo
.EHPadStateMap
.count(CleanupPad
))
421 int CleanupState
= addSEHFinally(FuncInfo
, ParentState
, BB
);
422 FuncInfo
.EHPadStateMap
[CleanupPad
] = CleanupState
;
423 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState
<< " to BB "
424 << BB
->getName() << '\n');
425 for (const BasicBlock
*PredBlock
: predecessors(BB
))
427 getEHPadFromPredecessor(PredBlock
, CleanupPad
->getParentPad())))
428 calculateSEHStateNumbers(FuncInfo
, PredBlock
->getFirstNonPHI(),
430 for (const User
*U
: CleanupPad
->users()) {
431 const auto *UserI
= cast
<Instruction
>(U
);
432 if (UserI
->isEHPad())
433 report_fatal_error("Cleanup funclets for the SEH personality cannot "
434 "contain exceptional actions");
439 static bool isTopLevelPadForMSVC(const Instruction
*EHPad
) {
440 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(EHPad
))
441 return isa
<ConstantTokenNone
>(CatchSwitch
->getParentPad()) &&
442 CatchSwitch
->unwindsToCaller();
443 if (auto *CleanupPad
= dyn_cast
<CleanupPadInst
>(EHPad
))
444 return isa
<ConstantTokenNone
>(CleanupPad
->getParentPad()) &&
445 getCleanupRetUnwindDest(CleanupPad
) == nullptr;
446 if (isa
<CatchPadInst
>(EHPad
))
448 llvm_unreachable("unexpected EHPad!");
451 void llvm::calculateSEHStateNumbers(const Function
*Fn
,
452 WinEHFuncInfo
&FuncInfo
) {
453 // Don't compute state numbers twice.
454 if (!FuncInfo
.SEHUnwindMap
.empty())
457 for (const BasicBlock
&BB
: *Fn
) {
460 const Instruction
*FirstNonPHI
= BB
.getFirstNonPHI();
461 if (!isTopLevelPadForMSVC(FirstNonPHI
))
463 ::calculateSEHStateNumbers(FuncInfo
, FirstNonPHI
, -1);
466 calculateStateNumbersForInvokes(Fn
, FuncInfo
);
469 void llvm::calculateWinCXXEHStateNumbers(const Function
*Fn
,
470 WinEHFuncInfo
&FuncInfo
) {
471 // Return if it's already been done.
472 if (!FuncInfo
.EHPadStateMap
.empty())
475 for (const BasicBlock
&BB
: *Fn
) {
478 const Instruction
*FirstNonPHI
= BB
.getFirstNonPHI();
479 if (!isTopLevelPadForMSVC(FirstNonPHI
))
481 calculateCXXStateNumbers(FuncInfo
, FirstNonPHI
, -1);
484 calculateStateNumbersForInvokes(Fn
, FuncInfo
);
487 static int addClrEHHandler(WinEHFuncInfo
&FuncInfo
, int HandlerParentState
,
488 int TryParentState
, ClrHandlerType HandlerType
,
489 uint32_t TypeToken
, const BasicBlock
*Handler
) {
490 ClrEHUnwindMapEntry Entry
;
491 Entry
.HandlerParentState
= HandlerParentState
;
492 Entry
.TryParentState
= TryParentState
;
493 Entry
.Handler
= Handler
;
494 Entry
.HandlerType
= HandlerType
;
495 Entry
.TypeToken
= TypeToken
;
496 FuncInfo
.ClrEHUnwindMap
.push_back(Entry
);
497 return FuncInfo
.ClrEHUnwindMap
.size() - 1;
500 void llvm::calculateClrEHStateNumbers(const Function
*Fn
,
501 WinEHFuncInfo
&FuncInfo
) {
502 // Return if it's already been done.
503 if (!FuncInfo
.EHPadStateMap
.empty())
506 // This numbering assigns one state number to each catchpad and cleanuppad.
507 // It also computes two tree-like relations over states:
508 // 1) Each state has a "HandlerParentState", which is the state of the next
509 // outer handler enclosing this state's handler (same as nearest ancestor
510 // per the ParentPad linkage on EH pads, but skipping over catchswitches).
511 // 2) Each state has a "TryParentState", which:
512 // a) for a catchpad that's not the last handler on its catchswitch, is
513 // the state of the next catchpad on that catchswitch
514 // b) for all other pads, is the state of the pad whose try region is the
515 // next outer try region enclosing this state's try region. The "try
516 // regions are not present as such in the IR, but will be inferred
517 // based on the placement of invokes and pads which reach each other
518 // by exceptional exits
519 // Catchswitches do not get their own states, but each gets mapped to the
520 // state of its first catchpad.
522 // Step one: walk down from outermost to innermost funclets, assigning each
523 // catchpad and cleanuppad a state number. Add an entry to the
524 // ClrEHUnwindMap for each state, recording its HandlerParentState and
525 // handler attributes. Record the TryParentState as well for each catchpad
526 // that's not the last on its catchswitch, but initialize all other entries'
527 // TryParentStates to a sentinel -1 value that the next pass will update.
529 // Seed a worklist with pads that have no parent.
530 SmallVector
<std::pair
<const Instruction
*, int>, 8> Worklist
;
531 for (const BasicBlock
&BB
: *Fn
) {
532 const Instruction
*FirstNonPHI
= BB
.getFirstNonPHI();
533 const Value
*ParentPad
;
534 if (const auto *CPI
= dyn_cast
<CleanupPadInst
>(FirstNonPHI
))
535 ParentPad
= CPI
->getParentPad();
536 else if (const auto *CSI
= dyn_cast
<CatchSwitchInst
>(FirstNonPHI
))
537 ParentPad
= CSI
->getParentPad();
540 if (isa
<ConstantTokenNone
>(ParentPad
))
541 Worklist
.emplace_back(FirstNonPHI
, -1);
544 // Use the worklist to visit all pads, from outer to inner. Record
545 // HandlerParentState for all pads. Record TryParentState only for catchpads
546 // that aren't the last on their catchswitch (setting all other entries'
547 // TryParentStates to an initial value of -1). This loop is also responsible
548 // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
550 while (!Worklist
.empty()) {
551 const Instruction
*Pad
;
552 int HandlerParentState
;
553 std::tie(Pad
, HandlerParentState
) = Worklist
.pop_back_val();
555 if (const auto *Cleanup
= dyn_cast
<CleanupPadInst
>(Pad
)) {
556 // Create the entry for this cleanup with the appropriate handler
557 // properties. Finally and fault handlers are distinguished by arity.
558 ClrHandlerType HandlerType
=
559 (Cleanup
->getNumArgOperands() ? ClrHandlerType::Fault
560 : ClrHandlerType::Finally
);
561 int CleanupState
= addClrEHHandler(FuncInfo
, HandlerParentState
, -1,
562 HandlerType
, 0, Pad
->getParent());
563 // Queue any child EH pads on the worklist.
564 for (const User
*U
: Cleanup
->users())
565 if (const auto *I
= dyn_cast
<Instruction
>(U
))
567 Worklist
.emplace_back(I
, CleanupState
);
568 // Remember this pad's state.
569 FuncInfo
.EHPadStateMap
[Cleanup
] = CleanupState
;
571 // Walk the handlers of this catchswitch in reverse order since all but
572 // the last need to set the following one as its TryParentState.
573 const auto *CatchSwitch
= cast
<CatchSwitchInst
>(Pad
);
574 int CatchState
= -1, FollowerState
= -1;
575 SmallVector
<const BasicBlock
*, 4> CatchBlocks(CatchSwitch
->handlers());
576 for (const BasicBlock
*CatchBlock
: llvm::reverse(CatchBlocks
)) {
577 // Create the entry for this catch with the appropriate handler
579 const auto *Catch
= cast
<CatchPadInst
>(CatchBlock
->getFirstNonPHI());
580 uint32_t TypeToken
= static_cast<uint32_t>(
581 cast
<ConstantInt
>(Catch
->getArgOperand(0))->getZExtValue());
583 addClrEHHandler(FuncInfo
, HandlerParentState
, FollowerState
,
584 ClrHandlerType::Catch
, TypeToken
, CatchBlock
);
585 // Queue any child EH pads on the worklist.
586 for (const User
*U
: Catch
->users())
587 if (const auto *I
= dyn_cast
<Instruction
>(U
))
589 Worklist
.emplace_back(I
, CatchState
);
590 // Remember this catch's state.
591 FuncInfo
.EHPadStateMap
[Catch
] = CatchState
;
592 FollowerState
= CatchState
;
594 // Associate the catchswitch with the state of its first catch.
595 assert(CatchSwitch
->getNumHandlers());
596 FuncInfo
.EHPadStateMap
[CatchSwitch
] = CatchState
;
600 // Step two: record the TryParentState of each state. For cleanuppads that
601 // don't have cleanuprets, we may need to infer this from their child pads,
602 // so visit pads in descendant-most to ancestor-most order.
603 for (ClrEHUnwindMapEntry
&Entry
: llvm::reverse(FuncInfo
.ClrEHUnwindMap
)) {
604 const Instruction
*Pad
=
605 Entry
.Handler
.get
<const BasicBlock
*>()->getFirstNonPHI();
606 // For most pads, the TryParentState is the state associated with the
607 // unwind dest of exceptional exits from it.
608 const BasicBlock
*UnwindDest
;
609 if (const auto *Catch
= dyn_cast
<CatchPadInst
>(Pad
)) {
610 // If a catch is not the last in its catchswitch, its TryParentState is
611 // the state associated with the next catch in the switch, even though
612 // that's not the unwind dest of exceptions escaping the catch. Those
613 // cases were already assigned a TryParentState in the first pass, so
615 if (Entry
.TryParentState
!= -1)
617 // Otherwise, get the unwind dest from the catchswitch.
618 UnwindDest
= Catch
->getCatchSwitch()->getUnwindDest();
620 const auto *Cleanup
= cast
<CleanupPadInst
>(Pad
);
621 UnwindDest
= nullptr;
622 for (const User
*U
: Cleanup
->users()) {
623 if (auto *CleanupRet
= dyn_cast
<CleanupReturnInst
>(U
)) {
624 // Common and unambiguous case -- cleanupret indicates cleanup's
626 UnwindDest
= CleanupRet
->getUnwindDest();
630 // Get an unwind dest for the user
631 const BasicBlock
*UserUnwindDest
= nullptr;
632 if (auto *Invoke
= dyn_cast
<InvokeInst
>(U
)) {
633 UserUnwindDest
= Invoke
->getUnwindDest();
634 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(U
)) {
635 UserUnwindDest
= CatchSwitch
->getUnwindDest();
636 } else if (auto *ChildCleanup
= dyn_cast
<CleanupPadInst
>(U
)) {
637 int UserState
= FuncInfo
.EHPadStateMap
[ChildCleanup
];
638 int UserUnwindState
=
639 FuncInfo
.ClrEHUnwindMap
[UserState
].TryParentState
;
640 if (UserUnwindState
!= -1)
641 UserUnwindDest
= FuncInfo
.ClrEHUnwindMap
[UserUnwindState
]
642 .Handler
.get
<const BasicBlock
*>();
645 // Not having an unwind dest for this user might indicate that it
646 // doesn't unwind, so can't be taken as proof that the cleanup itself
647 // may unwind to caller (see e.g. SimplifyUnreachable and
648 // RemoveUnwindEdge).
652 // Now we have an unwind dest for the user, but we need to see if it
653 // unwinds all the way out of the cleanup or if it stays within it.
654 const Instruction
*UserUnwindPad
= UserUnwindDest
->getFirstNonPHI();
655 const Value
*UserUnwindParent
;
656 if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(UserUnwindPad
))
657 UserUnwindParent
= CSI
->getParentPad();
660 cast
<CleanupPadInst
>(UserUnwindPad
)->getParentPad();
662 // The unwind stays within the cleanup iff it targets a child of the
664 if (UserUnwindParent
== Cleanup
)
667 // This unwind exits the cleanup, so its dest is the cleanup's dest.
668 UnwindDest
= UserUnwindDest
;
673 // Record the state of the unwind dest as the TryParentState.
676 // If UnwindDest is null at this point, either the pad in question can
677 // be exited by unwind to caller, or it cannot be exited by unwind. In
678 // either case, reporting such cases as unwinding to caller is correct.
679 // This can lead to EH tables that "look strange" -- if this pad's is in
680 // a parent funclet which has other children that do unwind to an enclosing
681 // pad, the try region for this pad will be missing the "duplicate" EH
682 // clause entries that you'd expect to see covering the whole parent. That
683 // should be benign, since the unwind never actually happens. If it were
684 // an issue, we could add a subsequent pass that pushes unwind dests down
685 // from parents that have them to children that appear to unwind to caller.
687 UnwindDestState
= -1;
689 UnwindDestState
= FuncInfo
.EHPadStateMap
[UnwindDest
->getFirstNonPHI()];
692 Entry
.TryParentState
= UnwindDestState
;
695 // Step three: transfer information from pads to invokes.
696 calculateStateNumbersForInvokes(Fn
, FuncInfo
);
699 void WinEHPrepare::colorFunclets(Function
&F
) {
700 BlockColors
= colorEHFunclets(F
);
702 // Invert the map from BB to colors to color to BBs.
703 for (BasicBlock
&BB
: F
) {
704 ColorVector
&Colors
= BlockColors
[&BB
];
705 for (BasicBlock
*Color
: Colors
)
706 FuncletBlocks
[Color
].push_back(&BB
);
710 void WinEHPrepare::demotePHIsOnFunclets(Function
&F
,
711 bool DemoteCatchSwitchPHIOnly
) {
712 // Strip PHI nodes off of EH pads.
713 SmallVector
<PHINode
*, 16> PHINodes
;
714 for (BasicBlock
&BB
: make_early_inc_range(F
)) {
717 if (DemoteCatchSwitchPHIOnly
&& !isa
<CatchSwitchInst
>(BB
.getFirstNonPHI()))
720 for (Instruction
&I
: make_early_inc_range(BB
)) {
721 auto *PN
= dyn_cast
<PHINode
>(&I
);
722 // Stop at the first non-PHI.
726 AllocaInst
*SpillSlot
= insertPHILoads(PN
, F
);
728 insertPHIStores(PN
, SpillSlot
);
730 PHINodes
.push_back(PN
);
734 for (auto *PN
: PHINodes
) {
735 // There may be lingering uses on other EH PHIs being removed
736 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
737 PN
->eraseFromParent();
741 void WinEHPrepare::cloneCommonBlocks(Function
&F
) {
742 // We need to clone all blocks which belong to multiple funclets. Values are
743 // remapped throughout the funclet to propagate both the new instructions
744 // *and* the new basic blocks themselves.
745 for (auto &Funclets
: FuncletBlocks
) {
746 BasicBlock
*FuncletPadBB
= Funclets
.first
;
747 std::vector
<BasicBlock
*> &BlocksInFunclet
= Funclets
.second
;
749 if (FuncletPadBB
== &F
.getEntryBlock())
750 FuncletToken
= ConstantTokenNone::get(F
.getContext());
752 FuncletToken
= FuncletPadBB
->getFirstNonPHI();
754 std::vector
<std::pair
<BasicBlock
*, BasicBlock
*>> Orig2Clone
;
755 ValueToValueMapTy VMap
;
756 for (BasicBlock
*BB
: BlocksInFunclet
) {
757 ColorVector
&ColorsForBB
= BlockColors
[BB
];
758 // We don't need to do anything if the block is monochromatic.
759 size_t NumColorsForBB
= ColorsForBB
.size();
760 if (NumColorsForBB
== 1)
763 DEBUG_WITH_TYPE("winehprepare-coloring",
764 dbgs() << " Cloning block \'" << BB
->getName()
765 << "\' for funclet \'" << FuncletPadBB
->getName()
768 // Create a new basic block and copy instructions into it!
770 CloneBasicBlock(BB
, VMap
, Twine(".for.", FuncletPadBB
->getName()));
771 // Insert the clone immediately after the original to ensure determinism
772 // and to keep the same relative ordering of any funclet's blocks.
773 CBB
->insertInto(&F
, BB
->getNextNode());
775 // Add basic block mapping.
778 // Record delta operations that we need to perform to our color mappings.
779 Orig2Clone
.emplace_back(BB
, CBB
);
782 // If nothing was cloned, we're done cloning in this funclet.
783 if (Orig2Clone
.empty())
786 // Update our color mappings to reflect that one block has lost a color and
787 // another has gained a color.
788 for (auto &BBMapping
: Orig2Clone
) {
789 BasicBlock
*OldBlock
= BBMapping
.first
;
790 BasicBlock
*NewBlock
= BBMapping
.second
;
792 BlocksInFunclet
.push_back(NewBlock
);
793 ColorVector
&NewColors
= BlockColors
[NewBlock
];
794 assert(NewColors
.empty() && "A new block should only have one color!");
795 NewColors
.push_back(FuncletPadBB
);
797 DEBUG_WITH_TYPE("winehprepare-coloring",
798 dbgs() << " Assigned color \'" << FuncletPadBB
->getName()
799 << "\' to block \'" << NewBlock
->getName()
802 llvm::erase_value(BlocksInFunclet
, OldBlock
);
803 ColorVector
&OldColors
= BlockColors
[OldBlock
];
804 llvm::erase_value(OldColors
, FuncletPadBB
);
806 DEBUG_WITH_TYPE("winehprepare-coloring",
807 dbgs() << " Removed color \'" << FuncletPadBB
->getName()
808 << "\' from block \'" << OldBlock
->getName()
812 // Loop over all of the instructions in this funclet, fixing up operand
813 // references as we go. This uses VMap to do all the hard work.
814 for (BasicBlock
*BB
: BlocksInFunclet
)
815 // Loop over all instructions, fixing each one as we find it...
816 for (Instruction
&I
: *BB
)
817 RemapInstruction(&I
, VMap
,
818 RF_IgnoreMissingLocals
| RF_NoModuleLevelChanges
);
820 // Catchrets targeting cloned blocks need to be updated separately from
821 // the loop above because they are not in the current funclet.
822 SmallVector
<CatchReturnInst
*, 2> FixupCatchrets
;
823 for (auto &BBMapping
: Orig2Clone
) {
824 BasicBlock
*OldBlock
= BBMapping
.first
;
825 BasicBlock
*NewBlock
= BBMapping
.second
;
827 FixupCatchrets
.clear();
828 for (BasicBlock
*Pred
: predecessors(OldBlock
))
829 if (auto *CatchRet
= dyn_cast
<CatchReturnInst
>(Pred
->getTerminator()))
830 if (CatchRet
->getCatchSwitchParentPad() == FuncletToken
)
831 FixupCatchrets
.push_back(CatchRet
);
833 for (CatchReturnInst
*CatchRet
: FixupCatchrets
)
834 CatchRet
->setSuccessor(NewBlock
);
837 auto UpdatePHIOnClonedBlock
= [&](PHINode
*PN
, bool IsForOldBlock
) {
838 unsigned NumPreds
= PN
->getNumIncomingValues();
839 for (unsigned PredIdx
= 0, PredEnd
= NumPreds
; PredIdx
!= PredEnd
;
841 BasicBlock
*IncomingBlock
= PN
->getIncomingBlock(PredIdx
);
842 bool EdgeTargetsFunclet
;
844 dyn_cast
<CatchReturnInst
>(IncomingBlock
->getTerminator())) {
845 EdgeTargetsFunclet
= (CRI
->getCatchSwitchParentPad() == FuncletToken
);
847 ColorVector
&IncomingColors
= BlockColors
[IncomingBlock
];
848 assert(!IncomingColors
.empty() && "Block not colored!");
849 assert((IncomingColors
.size() == 1 ||
850 llvm::all_of(IncomingColors
,
851 [&](BasicBlock
*Color
) {
852 return Color
!= FuncletPadBB
;
854 "Cloning should leave this funclet's blocks monochromatic");
855 EdgeTargetsFunclet
= (IncomingColors
.front() == FuncletPadBB
);
857 if (IsForOldBlock
!= EdgeTargetsFunclet
)
859 PN
->removeIncomingValue(IncomingBlock
, /*DeletePHIIfEmpty=*/false);
860 // Revisit the next entry.
866 for (auto &BBMapping
: Orig2Clone
) {
867 BasicBlock
*OldBlock
= BBMapping
.first
;
868 BasicBlock
*NewBlock
= BBMapping
.second
;
869 for (PHINode
&OldPN
: OldBlock
->phis()) {
870 UpdatePHIOnClonedBlock(&OldPN
, /*IsForOldBlock=*/true);
872 for (PHINode
&NewPN
: NewBlock
->phis()) {
873 UpdatePHIOnClonedBlock(&NewPN
, /*IsForOldBlock=*/false);
877 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
878 // the PHI nodes for NewBB now.
879 for (auto &BBMapping
: Orig2Clone
) {
880 BasicBlock
*OldBlock
= BBMapping
.first
;
881 BasicBlock
*NewBlock
= BBMapping
.second
;
882 for (BasicBlock
*SuccBB
: successors(NewBlock
)) {
883 for (PHINode
&SuccPN
: SuccBB
->phis()) {
884 // Ok, we have a PHI node. Figure out what the incoming value was for
886 int OldBlockIdx
= SuccPN
.getBasicBlockIndex(OldBlock
);
887 if (OldBlockIdx
== -1)
889 Value
*IV
= SuccPN
.getIncomingValue(OldBlockIdx
);
891 // Remap the value if necessary.
892 if (auto *Inst
= dyn_cast
<Instruction
>(IV
)) {
893 ValueToValueMapTy::iterator I
= VMap
.find(Inst
);
898 SuccPN
.addIncoming(IV
, NewBlock
);
903 for (ValueToValueMapTy::value_type VT
: VMap
) {
904 // If there were values defined in BB that are used outside the funclet,
905 // then we now have to update all uses of the value to use either the
906 // original value, the cloned value, or some PHI derived value. This can
907 // require arbitrary PHI insertion, of which we are prepared to do, clean
909 SmallVector
<Use
*, 16> UsesToRename
;
911 auto *OldI
= dyn_cast
<Instruction
>(const_cast<Value
*>(VT
.first
));
914 auto *NewI
= cast
<Instruction
>(VT
.second
);
915 // Scan all uses of this instruction to see if it is used outside of its
916 // funclet, and if so, record them in UsesToRename.
917 for (Use
&U
: OldI
->uses()) {
918 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
919 BasicBlock
*UserBB
= UserI
->getParent();
920 ColorVector
&ColorsForUserBB
= BlockColors
[UserBB
];
921 assert(!ColorsForUserBB
.empty());
922 if (ColorsForUserBB
.size() > 1 ||
923 *ColorsForUserBB
.begin() != FuncletPadBB
)
924 UsesToRename
.push_back(&U
);
927 // If there are no uses outside the block, we're done with this
929 if (UsesToRename
.empty())
932 // We found a use of OldI outside of the funclet. Rename all uses of OldI
933 // that are outside its funclet to be uses of the appropriate PHI node
935 SSAUpdater SSAUpdate
;
936 SSAUpdate
.Initialize(OldI
->getType(), OldI
->getName());
937 SSAUpdate
.AddAvailableValue(OldI
->getParent(), OldI
);
938 SSAUpdate
.AddAvailableValue(NewI
->getParent(), NewI
);
940 while (!UsesToRename
.empty())
941 SSAUpdate
.RewriteUseAfterInsertions(*UsesToRename
.pop_back_val());
946 void WinEHPrepare::removeImplausibleInstructions(Function
&F
) {
947 // Remove implausible terminators and replace them with UnreachableInst.
948 for (auto &Funclet
: FuncletBlocks
) {
949 BasicBlock
*FuncletPadBB
= Funclet
.first
;
950 std::vector
<BasicBlock
*> &BlocksInFunclet
= Funclet
.second
;
951 Instruction
*FirstNonPHI
= FuncletPadBB
->getFirstNonPHI();
952 auto *FuncletPad
= dyn_cast
<FuncletPadInst
>(FirstNonPHI
);
953 auto *CatchPad
= dyn_cast_or_null
<CatchPadInst
>(FuncletPad
);
954 auto *CleanupPad
= dyn_cast_or_null
<CleanupPadInst
>(FuncletPad
);
956 for (BasicBlock
*BB
: BlocksInFunclet
) {
957 for (Instruction
&I
: *BB
) {
958 auto *CB
= dyn_cast
<CallBase
>(&I
);
962 Value
*FuncletBundleOperand
= nullptr;
963 if (auto BU
= CB
->getOperandBundle(LLVMContext::OB_funclet
))
964 FuncletBundleOperand
= BU
->Inputs
.front();
966 if (FuncletBundleOperand
== FuncletPad
)
969 // Skip call sites which are nounwind intrinsics or inline asm.
971 dyn_cast
<Function
>(CB
->getCalledOperand()->stripPointerCasts());
972 if (CalledFn
&& ((CalledFn
->isIntrinsic() && CB
->doesNotThrow()) ||
976 // This call site was not part of this funclet, remove it.
977 if (isa
<InvokeInst
>(CB
)) {
978 // Remove the unwind edge if it was an invoke.
979 removeUnwindEdge(BB
);
980 // Get a pointer to the new call.
981 BasicBlock::iterator CallI
=
982 std::prev(BB
->getTerminator()->getIterator());
983 auto *CI
= cast
<CallInst
>(&*CallI
);
984 changeToUnreachable(CI
);
986 changeToUnreachable(&I
);
989 // There are no more instructions in the block (except for unreachable),
994 Instruction
*TI
= BB
->getTerminator();
995 // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
996 bool IsUnreachableRet
= isa
<ReturnInst
>(TI
) && FuncletPad
;
997 // The token consumed by a CatchReturnInst must match the funclet token.
998 bool IsUnreachableCatchret
= false;
999 if (auto *CRI
= dyn_cast
<CatchReturnInst
>(TI
))
1000 IsUnreachableCatchret
= CRI
->getCatchPad() != CatchPad
;
1001 // The token consumed by a CleanupReturnInst must match the funclet token.
1002 bool IsUnreachableCleanupret
= false;
1003 if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(TI
))
1004 IsUnreachableCleanupret
= CRI
->getCleanupPad() != CleanupPad
;
1005 if (IsUnreachableRet
|| IsUnreachableCatchret
||
1006 IsUnreachableCleanupret
) {
1007 changeToUnreachable(TI
);
1008 } else if (isa
<InvokeInst
>(TI
)) {
1009 if (Personality
== EHPersonality::MSVC_CXX
&& CleanupPad
) {
1010 // Invokes within a cleanuppad for the MSVC++ personality never
1011 // transfer control to their unwind edge: the personality will
1012 // terminate the program.
1013 removeUnwindEdge(BB
);
1020 void WinEHPrepare::cleanupPreparedFunclets(Function
&F
) {
1021 // Clean-up some of the mess we made by removing useles PHI nodes, trivial
1023 for (BasicBlock
&BB
: llvm::make_early_inc_range(F
)) {
1024 SimplifyInstructionsInBlock(&BB
);
1025 ConstantFoldTerminator(&BB
, /*DeleteDeadConditions=*/true);
1026 MergeBlockIntoPredecessor(&BB
);
1029 // We might have some unreachable blocks after cleaning up some impossible
1031 removeUnreachableBlocks(F
);
1035 void WinEHPrepare::verifyPreparedFunclets(Function
&F
) {
1036 for (BasicBlock
&BB
: F
) {
1037 size_t NumColors
= BlockColors
[&BB
].size();
1038 assert(NumColors
== 1 && "Expected monochromatic BB!");
1040 report_fatal_error("Uncolored BB!");
1042 report_fatal_error("Multicolor BB!");
1043 assert((DisableDemotion
|| !(BB
.isEHPad() && isa
<PHINode
>(BB
.begin()))) &&
1044 "EH Pad still has a PHI!");
1049 bool WinEHPrepare::prepareExplicitEH(Function
&F
) {
1050 // Remove unreachable blocks. It is not valuable to assign them a color and
1051 // their existence can trick us into thinking values are alive when they are
1053 removeUnreachableBlocks(F
);
1055 // Determine which blocks are reachable from which funclet entries.
1058 cloneCommonBlocks(F
);
1060 if (!DisableDemotion
)
1061 demotePHIsOnFunclets(F
, DemoteCatchSwitchPHIOnly
||
1062 DemoteCatchSwitchPHIOnlyOpt
);
1064 if (!DisableCleanups
) {
1065 assert(!verifyFunction(F
, &dbgs()));
1066 removeImplausibleInstructions(F
);
1068 assert(!verifyFunction(F
, &dbgs()));
1069 cleanupPreparedFunclets(F
);
1072 LLVM_DEBUG(verifyPreparedFunclets(F
));
1073 // Recolor the CFG to verify that all is well.
1074 LLVM_DEBUG(colorFunclets(F
));
1075 LLVM_DEBUG(verifyPreparedFunclets(F
));
1077 BlockColors
.clear();
1078 FuncletBlocks
.clear();
1083 // TODO: Share loads when one use dominates another, or when a catchpad exit
1084 // dominates uses (needs dominators).
1085 AllocaInst
*WinEHPrepare::insertPHILoads(PHINode
*PN
, Function
&F
) {
1086 BasicBlock
*PHIBlock
= PN
->getParent();
1087 AllocaInst
*SpillSlot
= nullptr;
1088 Instruction
*EHPad
= PHIBlock
->getFirstNonPHI();
1090 if (!EHPad
->isTerminator()) {
1091 // If the EHPad isn't a terminator, then we can insert a load in this block
1092 // that will dominate all uses.
1093 SpillSlot
= new AllocaInst(PN
->getType(), DL
->getAllocaAddrSpace(), nullptr,
1094 Twine(PN
->getName(), ".wineh.spillslot"),
1095 &F
.getEntryBlock().front());
1096 Value
*V
= new LoadInst(PN
->getType(), SpillSlot
,
1097 Twine(PN
->getName(), ".wineh.reload"),
1098 &*PHIBlock
->getFirstInsertionPt());
1099 PN
->replaceAllUsesWith(V
);
1103 // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
1104 // loads of the slot before every use.
1105 DenseMap
<BasicBlock
*, Value
*> Loads
;
1106 for (Use
&U
: llvm::make_early_inc_range(PN
->uses())) {
1107 auto *UsingInst
= cast
<Instruction
>(U
.getUser());
1108 if (isa
<PHINode
>(UsingInst
) && UsingInst
->getParent()->isEHPad()) {
1109 // Use is on an EH pad phi. Leave it alone; we'll insert loads and
1110 // stores for it separately.
1113 replaceUseWithLoad(PN
, U
, SpillSlot
, Loads
, F
);
1118 // TODO: improve store placement. Inserting at def is probably good, but need
1119 // to be careful not to introduce interfering stores (needs liveness analysis).
1120 // TODO: identify related phi nodes that can share spill slots, and share them
1121 // (also needs liveness).
1122 void WinEHPrepare::insertPHIStores(PHINode
*OriginalPHI
,
1123 AllocaInst
*SpillSlot
) {
1124 // Use a worklist of (Block, Value) pairs -- the given Value needs to be
1125 // stored to the spill slot by the end of the given Block.
1126 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 4> Worklist
;
1128 Worklist
.push_back({OriginalPHI
->getParent(), OriginalPHI
});
1130 while (!Worklist
.empty()) {
1131 BasicBlock
*EHBlock
;
1133 std::tie(EHBlock
, InVal
) = Worklist
.pop_back_val();
1135 PHINode
*PN
= dyn_cast
<PHINode
>(InVal
);
1136 if (PN
&& PN
->getParent() == EHBlock
) {
1137 // The value is defined by another PHI we need to remove, with no room to
1138 // insert a store after the PHI, so each predecessor needs to store its
1140 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
< e
; ++i
) {
1141 Value
*PredVal
= PN
->getIncomingValue(i
);
1143 // Undef can safely be skipped.
1144 if (isa
<UndefValue
>(PredVal
))
1147 insertPHIStore(PN
->getIncomingBlock(i
), PredVal
, SpillSlot
, Worklist
);
1150 // We need to store InVal, which dominates EHBlock, but can't put a store
1151 // in EHBlock, so need to put stores in each predecessor.
1152 for (BasicBlock
*PredBlock
: predecessors(EHBlock
)) {
1153 insertPHIStore(PredBlock
, InVal
, SpillSlot
, Worklist
);
1159 void WinEHPrepare::insertPHIStore(
1160 BasicBlock
*PredBlock
, Value
*PredVal
, AllocaInst
*SpillSlot
,
1161 SmallVectorImpl
<std::pair
<BasicBlock
*, Value
*>> &Worklist
) {
1163 if (PredBlock
->isEHPad() && PredBlock
->getFirstNonPHI()->isTerminator()) {
1164 // Pred is unsplittable, so we need to queue it on the worklist.
1165 Worklist
.push_back({PredBlock
, PredVal
});
1169 // Otherwise, insert the store at the end of the basic block.
1170 new StoreInst(PredVal
, SpillSlot
, PredBlock
->getTerminator());
1173 void WinEHPrepare::replaceUseWithLoad(Value
*V
, Use
&U
, AllocaInst
*&SpillSlot
,
1174 DenseMap
<BasicBlock
*, Value
*> &Loads
,
1176 // Lazilly create the spill slot.
1178 SpillSlot
= new AllocaInst(V
->getType(), DL
->getAllocaAddrSpace(), nullptr,
1179 Twine(V
->getName(), ".wineh.spillslot"),
1180 &F
.getEntryBlock().front());
1182 auto *UsingInst
= cast
<Instruction
>(U
.getUser());
1183 if (auto *UsingPHI
= dyn_cast
<PHINode
>(UsingInst
)) {
1184 // If this is a PHI node, we can't insert a load of the value before
1185 // the use. Instead insert the load in the predecessor block
1186 // corresponding to the incoming value.
1188 // Note that if there are multiple edges from a basic block to this
1189 // PHI node that we cannot have multiple loads. The problem is that
1190 // the resulting PHI node will have multiple values (from each load)
1191 // coming in from the same block, which is illegal SSA form.
1192 // For this reason, we keep track of and reuse loads we insert.
1193 BasicBlock
*IncomingBlock
= UsingPHI
->getIncomingBlock(U
);
1194 if (auto *CatchRet
=
1195 dyn_cast
<CatchReturnInst
>(IncomingBlock
->getTerminator())) {
1196 // Putting a load above a catchret and use on the phi would still leave
1197 // a cross-funclet def/use. We need to split the edge, change the
1198 // catchret to target the new block, and put the load there.
1199 BasicBlock
*PHIBlock
= UsingInst
->getParent();
1200 BasicBlock
*NewBlock
= SplitEdge(IncomingBlock
, PHIBlock
);
1201 // SplitEdge gives us:
1204 // br label %NewBlock
1206 // catchret label %PHIBlock
1210 // catchret label %NewBlock
1212 // br label %PHIBlock
1213 // So move the terminators to each others' blocks and swap their
1215 BranchInst
*Goto
= cast
<BranchInst
>(IncomingBlock
->getTerminator());
1216 Goto
->removeFromParent();
1217 CatchRet
->removeFromParent();
1218 IncomingBlock
->getInstList().push_back(CatchRet
);
1219 NewBlock
->getInstList().push_back(Goto
);
1220 Goto
->setSuccessor(0, PHIBlock
);
1221 CatchRet
->setSuccessor(NewBlock
);
1222 // Update the color mapping for the newly split edge.
1223 // Grab a reference to the ColorVector to be inserted before getting the
1224 // reference to the vector we are copying because inserting the new
1225 // element in BlockColors might cause the map to be reallocated.
1226 ColorVector
&ColorsForNewBlock
= BlockColors
[NewBlock
];
1227 ColorVector
&ColorsForPHIBlock
= BlockColors
[PHIBlock
];
1228 ColorsForNewBlock
= ColorsForPHIBlock
;
1229 for (BasicBlock
*FuncletPad
: ColorsForPHIBlock
)
1230 FuncletBlocks
[FuncletPad
].push_back(NewBlock
);
1231 // Treat the new block as incoming for load insertion.
1232 IncomingBlock
= NewBlock
;
1234 Value
*&Load
= Loads
[IncomingBlock
];
1235 // Insert the load into the predecessor block
1237 Load
= new LoadInst(V
->getType(), SpillSlot
,
1238 Twine(V
->getName(), ".wineh.reload"),
1239 /*isVolatile=*/false, IncomingBlock
->getTerminator());
1243 // Reload right before the old use.
1244 auto *Load
= new LoadInst(V
->getType(), SpillSlot
,
1245 Twine(V
->getName(), ".wineh.reload"),
1246 /*isVolatile=*/false, UsingInst
);
1251 void WinEHFuncInfo::addIPToStateRange(const InvokeInst
*II
,
1252 MCSymbol
*InvokeBegin
,
1253 MCSymbol
*InvokeEnd
) {
1254 assert(InvokeStateMap
.count(II
) &&
1255 "should get invoke with precomputed state");
1256 LabelToStateMap
[InvokeBegin
] = std::make_pair(InvokeStateMap
[II
], InvokeEnd
);
1259 WinEHFuncInfo::WinEHFuncInfo() {}