[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / lib / ProfileData / InstrProf.cpp
blob34e0c5ebcd58446d74cc0a009908a40102a6ef03
1 //===- InstrProf.cpp - Instrumented profiling format support --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for clang's instrumentation based PGO and
10 // coverage.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ProfileData/InstrProf.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Config/config.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/ProfileData/InstrProfReader.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/Compression.h"
38 #include "llvm/Support/Endian.h"
39 #include "llvm/Support/Error.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/LEB128.h"
42 #include "llvm/Support/ManagedStatic.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/Path.h"
45 #include "llvm/Support/SwapByteOrder.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstddef>
49 #include <cstdint>
50 #include <cstring>
51 #include <memory>
52 #include <string>
53 #include <system_error>
54 #include <utility>
55 #include <vector>
57 using namespace llvm;
59 static cl::opt<bool> StaticFuncFullModulePrefix(
60 "static-func-full-module-prefix", cl::init(true), cl::Hidden,
61 cl::desc("Use full module build paths in the profile counter names for "
62 "static functions."));
64 // This option is tailored to users that have different top-level directory in
65 // profile-gen and profile-use compilation. Users need to specific the number
66 // of levels to strip. A value larger than the number of directories in the
67 // source file will strip all the directory names and only leave the basename.
69 // Note current ThinLTO module importing for the indirect-calls assumes
70 // the source directory name not being stripped. A non-zero option value here
71 // can potentially prevent some inter-module indirect-call-promotions.
72 static cl::opt<unsigned> StaticFuncStripDirNamePrefix(
73 "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden,
74 cl::desc("Strip specified level of directory name from source path in "
75 "the profile counter name for static functions."));
77 static std::string getInstrProfErrString(instrprof_error Err,
78 const std::string &ErrMsg = "") {
79 std::string Msg;
80 raw_string_ostream OS(Msg);
82 switch (Err) {
83 case instrprof_error::success:
84 OS << "success";
85 break;
86 case instrprof_error::eof:
87 OS << "end of File";
88 break;
89 case instrprof_error::unrecognized_format:
90 OS << "unrecognized instrumentation profile encoding format";
91 break;
92 case instrprof_error::bad_magic:
93 OS << "invalid instrumentation profile data (bad magic)";
94 break;
95 case instrprof_error::bad_header:
96 OS << "invalid instrumentation profile data (file header is corrupt)";
97 break;
98 case instrprof_error::unsupported_version:
99 OS << "unsupported instrumentation profile format version";
100 break;
101 case instrprof_error::unsupported_hash_type:
102 OS << "unsupported instrumentation profile hash type";
103 break;
104 case instrprof_error::too_large:
105 OS << "too much profile data";
106 break;
107 case instrprof_error::truncated:
108 OS << "truncated profile data";
109 break;
110 case instrprof_error::malformed:
111 OS << "malformed instrumentation profile data";
112 break;
113 case instrprof_error::missing_debug_info_for_correlation:
114 OS << "debug info for correlation is required";
115 break;
116 case instrprof_error::unexpected_debug_info_for_correlation:
117 OS << "debug info for correlation is not necessary";
118 break;
119 case instrprof_error::unable_to_correlate_profile:
120 OS << "unable to correlate profile";
121 break;
122 case instrprof_error::unsupported_debug_format:
123 OS << "unsupported debug info format (only DWARF is supported)";
124 break;
125 case instrprof_error::invalid_prof:
126 OS << "invalid profile created. Please file a bug "
127 "at: " BUG_REPORT_URL
128 " and include the profraw files that caused this error.";
129 break;
130 case instrprof_error::unknown_function:
131 OS << "no profile data available for function";
132 break;
133 case instrprof_error::hash_mismatch:
134 OS << "function control flow change detected (hash mismatch)";
135 break;
136 case instrprof_error::count_mismatch:
137 OS << "function basic block count change detected (counter mismatch)";
138 break;
139 case instrprof_error::counter_overflow:
140 OS << "counter overflow";
141 break;
142 case instrprof_error::value_site_count_mismatch:
143 OS << "function value site count change detected (counter mismatch)";
144 break;
145 case instrprof_error::compress_failed:
146 OS << "failed to compress data (zlib)";
147 break;
148 case instrprof_error::uncompress_failed:
149 OS << "failed to uncompress data (zlib)";
150 break;
151 case instrprof_error::empty_raw_profile:
152 OS << "empty raw profile file";
153 break;
154 case instrprof_error::zlib_unavailable:
155 OS << "profile uses zlib compression but the profile reader was built "
156 "without zlib support";
157 break;
160 // If optional error message is not empty, append it to the message.
161 if (!ErrMsg.empty())
162 OS << ": " << ErrMsg;
164 return OS.str();
167 namespace {
169 // FIXME: This class is only here to support the transition to llvm::Error. It
170 // will be removed once this transition is complete. Clients should prefer to
171 // deal with the Error value directly, rather than converting to error_code.
172 class InstrProfErrorCategoryType : public std::error_category {
173 const char *name() const noexcept override { return "llvm.instrprof"; }
175 std::string message(int IE) const override {
176 return getInstrProfErrString(static_cast<instrprof_error>(IE));
180 } // end anonymous namespace
182 static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory;
184 const std::error_category &llvm::instrprof_category() {
185 return *ErrorCategory;
188 namespace {
190 const char *InstrProfSectNameCommon[] = {
191 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
192 SectNameCommon,
193 #include "llvm/ProfileData/InstrProfData.inc"
196 const char *InstrProfSectNameCoff[] = {
197 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
198 SectNameCoff,
199 #include "llvm/ProfileData/InstrProfData.inc"
202 const char *InstrProfSectNamePrefix[] = {
203 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
204 Prefix,
205 #include "llvm/ProfileData/InstrProfData.inc"
208 } // namespace
210 namespace llvm {
212 cl::opt<bool> DoInstrProfNameCompression(
213 "enable-name-compression",
214 cl::desc("Enable name/filename string compression"), cl::init(true));
216 std::string getInstrProfSectionName(InstrProfSectKind IPSK,
217 Triple::ObjectFormatType OF,
218 bool AddSegmentInfo) {
219 std::string SectName;
221 if (OF == Triple::MachO && AddSegmentInfo)
222 SectName = InstrProfSectNamePrefix[IPSK];
224 if (OF == Triple::COFF)
225 SectName += InstrProfSectNameCoff[IPSK];
226 else
227 SectName += InstrProfSectNameCommon[IPSK];
229 if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo)
230 SectName += ",regular,live_support";
232 return SectName;
235 void SoftInstrProfErrors::addError(instrprof_error IE) {
236 if (IE == instrprof_error::success)
237 return;
239 if (FirstError == instrprof_error::success)
240 FirstError = IE;
242 switch (IE) {
243 case instrprof_error::hash_mismatch:
244 ++NumHashMismatches;
245 break;
246 case instrprof_error::count_mismatch:
247 ++NumCountMismatches;
248 break;
249 case instrprof_error::counter_overflow:
250 ++NumCounterOverflows;
251 break;
252 case instrprof_error::value_site_count_mismatch:
253 ++NumValueSiteCountMismatches;
254 break;
255 default:
256 llvm_unreachable("Not a soft error");
260 std::string InstrProfError::message() const {
261 return getInstrProfErrString(Err, Msg);
264 char InstrProfError::ID = 0;
266 std::string getPGOFuncName(StringRef RawFuncName,
267 GlobalValue::LinkageTypes Linkage,
268 StringRef FileName,
269 uint64_t Version LLVM_ATTRIBUTE_UNUSED) {
270 return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName);
273 // Strip NumPrefix level of directory name from PathNameStr. If the number of
274 // directory separators is less than NumPrefix, strip all the directories and
275 // leave base file name only.
276 static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) {
277 uint32_t Count = NumPrefix;
278 uint32_t Pos = 0, LastPos = 0;
279 for (auto & CI : PathNameStr) {
280 ++Pos;
281 if (llvm::sys::path::is_separator(CI)) {
282 LastPos = Pos;
283 --Count;
285 if (Count == 0)
286 break;
288 return PathNameStr.substr(LastPos);
291 // Return the PGOFuncName. This function has some special handling when called
292 // in LTO optimization. The following only applies when calling in LTO passes
293 // (when \c InLTO is true): LTO's internalization privatizes many global linkage
294 // symbols. This happens after value profile annotation, but those internal
295 // linkage functions should not have a source prefix.
296 // Additionally, for ThinLTO mode, exported internal functions are promoted
297 // and renamed. We need to ensure that the original internal PGO name is
298 // used when computing the GUID that is compared against the profiled GUIDs.
299 // To differentiate compiler generated internal symbols from original ones,
300 // PGOFuncName meta data are created and attached to the original internal
301 // symbols in the value profile annotation step
302 // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta
303 // data, its original linkage must be non-internal.
304 std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) {
305 if (!InLTO) {
306 StringRef FileName(F.getParent()->getSourceFileName());
307 uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1;
308 if (StripLevel < StaticFuncStripDirNamePrefix)
309 StripLevel = StaticFuncStripDirNamePrefix;
310 if (StripLevel)
311 FileName = stripDirPrefix(FileName, StripLevel);
312 return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version);
315 // In LTO mode (when InLTO is true), first check if there is a meta data.
316 if (MDNode *MD = getPGOFuncNameMetadata(F)) {
317 StringRef S = cast<MDString>(MD->getOperand(0))->getString();
318 return S.str();
321 // If there is no meta data, the function must be a global before the value
322 // profile annotation pass. Its current linkage may be internal if it is
323 // internalized in LTO mode.
324 return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, "");
327 StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) {
328 if (FileName.empty())
329 return PGOFuncName;
330 // Drop the file name including ':'. See also getPGOFuncName.
331 if (PGOFuncName.startswith(FileName))
332 PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1);
333 return PGOFuncName;
336 // \p FuncName is the string used as profile lookup key for the function. A
337 // symbol is created to hold the name. Return the legalized symbol name.
338 std::string getPGOFuncNameVarName(StringRef FuncName,
339 GlobalValue::LinkageTypes Linkage) {
340 std::string VarName = std::string(getInstrProfNameVarPrefix());
341 VarName += FuncName;
343 if (!GlobalValue::isLocalLinkage(Linkage))
344 return VarName;
346 // Now fix up illegal chars in local VarName that may upset the assembler.
347 const char *InvalidChars = "-:<>/\"'";
348 size_t found = VarName.find_first_of(InvalidChars);
349 while (found != std::string::npos) {
350 VarName[found] = '_';
351 found = VarName.find_first_of(InvalidChars, found + 1);
353 return VarName;
356 GlobalVariable *createPGOFuncNameVar(Module &M,
357 GlobalValue::LinkageTypes Linkage,
358 StringRef PGOFuncName) {
359 // We generally want to match the function's linkage, but available_externally
360 // and extern_weak both have the wrong semantics, and anything that doesn't
361 // need to link across compilation units doesn't need to be visible at all.
362 if (Linkage == GlobalValue::ExternalWeakLinkage)
363 Linkage = GlobalValue::LinkOnceAnyLinkage;
364 else if (Linkage == GlobalValue::AvailableExternallyLinkage)
365 Linkage = GlobalValue::LinkOnceODRLinkage;
366 else if (Linkage == GlobalValue::InternalLinkage ||
367 Linkage == GlobalValue::ExternalLinkage)
368 Linkage = GlobalValue::PrivateLinkage;
370 auto *Value =
371 ConstantDataArray::getString(M.getContext(), PGOFuncName, false);
372 auto FuncNameVar =
373 new GlobalVariable(M, Value->getType(), true, Linkage, Value,
374 getPGOFuncNameVarName(PGOFuncName, Linkage));
376 // Hide the symbol so that we correctly get a copy for each executable.
377 if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage()))
378 FuncNameVar->setVisibility(GlobalValue::HiddenVisibility);
380 return FuncNameVar;
383 GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) {
384 return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName);
387 Error InstrProfSymtab::create(Module &M, bool InLTO) {
388 for (Function &F : M) {
389 // Function may not have a name: like using asm("") to overwrite the name.
390 // Ignore in this case.
391 if (!F.hasName())
392 continue;
393 const std::string &PGOFuncName = getPGOFuncName(F, InLTO);
394 if (Error E = addFuncName(PGOFuncName))
395 return E;
396 MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F);
397 // In ThinLTO, local function may have been promoted to global and have
398 // suffix ".llvm." added to the function name. We need to add the
399 // stripped function name to the symbol table so that we can find a match
400 // from profile.
402 // We may have other suffixes similar as ".llvm." which are needed to
403 // be stripped before the matching, but ".__uniq." suffix which is used
404 // to differentiate internal linkage functions in different modules
405 // should be kept. Now this is the only suffix with the pattern ".xxx"
406 // which is kept before matching.
407 const std::string UniqSuffix = ".__uniq.";
408 auto pos = PGOFuncName.find(UniqSuffix);
409 // Search '.' after ".__uniq." if ".__uniq." exists, otherwise
410 // search '.' from the beginning.
411 if (pos != std::string::npos)
412 pos += UniqSuffix.length();
413 else
414 pos = 0;
415 pos = PGOFuncName.find('.', pos);
416 if (pos != std::string::npos && pos != 0) {
417 const std::string &OtherFuncName = PGOFuncName.substr(0, pos);
418 if (Error E = addFuncName(OtherFuncName))
419 return E;
420 MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F);
423 Sorted = false;
424 finalizeSymtab();
425 return Error::success();
428 uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) {
429 finalizeSymtab();
430 auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) {
431 return A.first < Address;
433 // Raw function pointer collected by value profiler may be from
434 // external functions that are not instrumented. They won't have
435 // mapping data to be used by the deserializer. Force the value to
436 // be 0 in this case.
437 if (It != AddrToMD5Map.end() && It->first == Address)
438 return (uint64_t)It->second;
439 return 0;
442 Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs,
443 bool doCompression, std::string &Result) {
444 assert(!NameStrs.empty() && "No name data to emit");
446 uint8_t Header[16], *P = Header;
447 std::string UncompressedNameStrings =
448 join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator());
450 assert(StringRef(UncompressedNameStrings)
451 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) &&
452 "PGO name is invalid (contains separator token)");
454 unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P);
455 P += EncLen;
457 auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) {
458 EncLen = encodeULEB128(CompressedLen, P);
459 P += EncLen;
460 char *HeaderStr = reinterpret_cast<char *>(&Header[0]);
461 unsigned HeaderLen = P - &Header[0];
462 Result.append(HeaderStr, HeaderLen);
463 Result += InputStr;
464 return Error::success();
467 if (!doCompression) {
468 return WriteStringToResult(0, UncompressedNameStrings);
471 SmallString<128> CompressedNameStrings;
472 Error E = zlib::compress(StringRef(UncompressedNameStrings),
473 CompressedNameStrings, zlib::BestSizeCompression);
474 if (E) {
475 consumeError(std::move(E));
476 return make_error<InstrProfError>(instrprof_error::compress_failed);
479 return WriteStringToResult(CompressedNameStrings.size(),
480 CompressedNameStrings);
483 StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) {
484 auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer());
485 StringRef NameStr =
486 Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
487 return NameStr;
490 Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
491 std::string &Result, bool doCompression) {
492 std::vector<std::string> NameStrs;
493 for (auto *NameVar : NameVars) {
494 NameStrs.push_back(std::string(getPGOFuncNameVarInitializer(NameVar)));
496 return collectPGOFuncNameStrings(
497 NameStrs, zlib::isAvailable() && doCompression, Result);
500 Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) {
501 const uint8_t *P = NameStrings.bytes_begin();
502 const uint8_t *EndP = NameStrings.bytes_end();
503 while (P < EndP) {
504 uint32_t N;
505 uint64_t UncompressedSize = decodeULEB128(P, &N);
506 P += N;
507 uint64_t CompressedSize = decodeULEB128(P, &N);
508 P += N;
509 bool isCompressed = (CompressedSize != 0);
510 SmallString<128> UncompressedNameStrings;
511 StringRef NameStrings;
512 if (isCompressed) {
513 if (!llvm::zlib::isAvailable())
514 return make_error<InstrProfError>(instrprof_error::zlib_unavailable);
516 StringRef CompressedNameStrings(reinterpret_cast<const char *>(P),
517 CompressedSize);
518 if (Error E =
519 zlib::uncompress(CompressedNameStrings, UncompressedNameStrings,
520 UncompressedSize)) {
521 consumeError(std::move(E));
522 return make_error<InstrProfError>(instrprof_error::uncompress_failed);
524 P += CompressedSize;
525 NameStrings = StringRef(UncompressedNameStrings.data(),
526 UncompressedNameStrings.size());
527 } else {
528 NameStrings =
529 StringRef(reinterpret_cast<const char *>(P), UncompressedSize);
530 P += UncompressedSize;
532 // Now parse the name strings.
533 SmallVector<StringRef, 0> Names;
534 NameStrings.split(Names, getInstrProfNameSeparator());
535 for (StringRef &Name : Names)
536 if (Error E = Symtab.addFuncName(Name))
537 return E;
539 while (P < EndP && *P == 0)
540 P++;
542 return Error::success();
545 void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const {
546 uint64_t FuncSum = 0;
547 Sum.NumEntries += Counts.size();
548 for (uint64_t Count : Counts)
549 FuncSum += Count;
550 Sum.CountSum += FuncSum;
552 for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) {
553 uint64_t KindSum = 0;
554 uint32_t NumValueSites = getNumValueSites(VK);
555 for (size_t I = 0; I < NumValueSites; ++I) {
556 uint32_t NV = getNumValueDataForSite(VK, I);
557 std::unique_ptr<InstrProfValueData[]> VD = getValueForSite(VK, I);
558 for (uint32_t V = 0; V < NV; V++)
559 KindSum += VD[V].Count;
561 Sum.ValueCounts[VK] += KindSum;
565 void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input,
566 uint32_t ValueKind,
567 OverlapStats &Overlap,
568 OverlapStats &FuncLevelOverlap) {
569 this->sortByTargetValues();
570 Input.sortByTargetValues();
571 double Score = 0.0f, FuncLevelScore = 0.0f;
572 auto I = ValueData.begin();
573 auto IE = ValueData.end();
574 auto J = Input.ValueData.begin();
575 auto JE = Input.ValueData.end();
576 while (I != IE && J != JE) {
577 if (I->Value == J->Value) {
578 Score += OverlapStats::score(I->Count, J->Count,
579 Overlap.Base.ValueCounts[ValueKind],
580 Overlap.Test.ValueCounts[ValueKind]);
581 FuncLevelScore += OverlapStats::score(
582 I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind],
583 FuncLevelOverlap.Test.ValueCounts[ValueKind]);
584 ++I;
585 } else if (I->Value < J->Value) {
586 ++I;
587 continue;
589 ++J;
591 Overlap.Overlap.ValueCounts[ValueKind] += Score;
592 FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore;
595 // Return false on mismatch.
596 void InstrProfRecord::overlapValueProfData(uint32_t ValueKind,
597 InstrProfRecord &Other,
598 OverlapStats &Overlap,
599 OverlapStats &FuncLevelOverlap) {
600 uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
601 assert(ThisNumValueSites == Other.getNumValueSites(ValueKind));
602 if (!ThisNumValueSites)
603 return;
605 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
606 getOrCreateValueSitesForKind(ValueKind);
607 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
608 Other.getValueSitesForKind(ValueKind);
609 for (uint32_t I = 0; I < ThisNumValueSites; I++)
610 ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap,
611 FuncLevelOverlap);
614 void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap,
615 OverlapStats &FuncLevelOverlap,
616 uint64_t ValueCutoff) {
617 // FuncLevel CountSum for other should already computed and nonzero.
618 assert(FuncLevelOverlap.Test.CountSum >= 1.0f);
619 accumulateCounts(FuncLevelOverlap.Base);
620 bool Mismatch = (Counts.size() != Other.Counts.size());
622 // Check if the value profiles mismatch.
623 if (!Mismatch) {
624 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
625 uint32_t ThisNumValueSites = getNumValueSites(Kind);
626 uint32_t OtherNumValueSites = Other.getNumValueSites(Kind);
627 if (ThisNumValueSites != OtherNumValueSites) {
628 Mismatch = true;
629 break;
633 if (Mismatch) {
634 Overlap.addOneMismatch(FuncLevelOverlap.Test);
635 return;
638 // Compute overlap for value counts.
639 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
640 overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap);
642 double Score = 0.0;
643 uint64_t MaxCount = 0;
644 // Compute overlap for edge counts.
645 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
646 Score += OverlapStats::score(Counts[I], Other.Counts[I],
647 Overlap.Base.CountSum, Overlap.Test.CountSum);
648 MaxCount = std::max(Other.Counts[I], MaxCount);
650 Overlap.Overlap.CountSum += Score;
651 Overlap.Overlap.NumEntries += 1;
653 if (MaxCount >= ValueCutoff) {
654 double FuncScore = 0.0;
655 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I)
656 FuncScore += OverlapStats::score(Counts[I], Other.Counts[I],
657 FuncLevelOverlap.Base.CountSum,
658 FuncLevelOverlap.Test.CountSum);
659 FuncLevelOverlap.Overlap.CountSum = FuncScore;
660 FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size();
661 FuncLevelOverlap.Valid = true;
665 void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input,
666 uint64_t Weight,
667 function_ref<void(instrprof_error)> Warn) {
668 this->sortByTargetValues();
669 Input.sortByTargetValues();
670 auto I = ValueData.begin();
671 auto IE = ValueData.end();
672 for (const InstrProfValueData &J : Input.ValueData) {
673 while (I != IE && I->Value < J.Value)
674 ++I;
675 if (I != IE && I->Value == J.Value) {
676 bool Overflowed;
677 I->Count = SaturatingMultiplyAdd(J.Count, Weight, I->Count, &Overflowed);
678 if (Overflowed)
679 Warn(instrprof_error::counter_overflow);
680 ++I;
681 continue;
683 ValueData.insert(I, J);
687 void InstrProfValueSiteRecord::scale(uint64_t N, uint64_t D,
688 function_ref<void(instrprof_error)> Warn) {
689 for (InstrProfValueData &I : ValueData) {
690 bool Overflowed;
691 I.Count = SaturatingMultiply(I.Count, N, &Overflowed) / D;
692 if (Overflowed)
693 Warn(instrprof_error::counter_overflow);
697 // Merge Value Profile data from Src record to this record for ValueKind.
698 // Scale merged value counts by \p Weight.
699 void InstrProfRecord::mergeValueProfData(
700 uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight,
701 function_ref<void(instrprof_error)> Warn) {
702 uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
703 uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind);
704 if (ThisNumValueSites != OtherNumValueSites) {
705 Warn(instrprof_error::value_site_count_mismatch);
706 return;
708 if (!ThisNumValueSites)
709 return;
710 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
711 getOrCreateValueSitesForKind(ValueKind);
712 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
713 Src.getValueSitesForKind(ValueKind);
714 for (uint32_t I = 0; I < ThisNumValueSites; I++)
715 ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn);
718 void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight,
719 function_ref<void(instrprof_error)> Warn) {
720 // If the number of counters doesn't match we either have bad data
721 // or a hash collision.
722 if (Counts.size() != Other.Counts.size()) {
723 Warn(instrprof_error::count_mismatch);
724 return;
727 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
728 bool Overflowed;
729 Counts[I] =
730 SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed);
731 if (Overflowed)
732 Warn(instrprof_error::counter_overflow);
735 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
736 mergeValueProfData(Kind, Other, Weight, Warn);
739 void InstrProfRecord::scaleValueProfData(
740 uint32_t ValueKind, uint64_t N, uint64_t D,
741 function_ref<void(instrprof_error)> Warn) {
742 for (auto &R : getValueSitesForKind(ValueKind))
743 R.scale(N, D, Warn);
746 void InstrProfRecord::scale(uint64_t N, uint64_t D,
747 function_ref<void(instrprof_error)> Warn) {
748 assert(D != 0 && "D cannot be 0");
749 for (auto &Count : this->Counts) {
750 bool Overflowed;
751 Count = SaturatingMultiply(Count, N, &Overflowed) / D;
752 if (Overflowed)
753 Warn(instrprof_error::counter_overflow);
755 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
756 scaleValueProfData(Kind, N, D, Warn);
759 // Map indirect call target name hash to name string.
760 uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind,
761 InstrProfSymtab *SymTab) {
762 if (!SymTab)
763 return Value;
765 if (ValueKind == IPVK_IndirectCallTarget)
766 return SymTab->getFunctionHashFromAddress(Value);
768 return Value;
771 void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site,
772 InstrProfValueData *VData, uint32_t N,
773 InstrProfSymtab *ValueMap) {
774 for (uint32_t I = 0; I < N; I++) {
775 VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap);
777 std::vector<InstrProfValueSiteRecord> &ValueSites =
778 getOrCreateValueSitesForKind(ValueKind);
779 if (N == 0)
780 ValueSites.emplace_back();
781 else
782 ValueSites.emplace_back(VData, VData + N);
785 #define INSTR_PROF_COMMON_API_IMPL
786 #include "llvm/ProfileData/InstrProfData.inc"
789 * ValueProfRecordClosure Interface implementation for InstrProfRecord
790 * class. These C wrappers are used as adaptors so that C++ code can be
791 * invoked as callbacks.
793 uint32_t getNumValueKindsInstrProf(const void *Record) {
794 return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds();
797 uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) {
798 return reinterpret_cast<const InstrProfRecord *>(Record)
799 ->getNumValueSites(VKind);
802 uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) {
803 return reinterpret_cast<const InstrProfRecord *>(Record)
804 ->getNumValueData(VKind);
807 uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK,
808 uint32_t S) {
809 return reinterpret_cast<const InstrProfRecord *>(R)
810 ->getNumValueDataForSite(VK, S);
813 void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst,
814 uint32_t K, uint32_t S) {
815 reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S);
818 ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) {
819 ValueProfData *VD =
820 (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData());
821 memset(VD, 0, TotalSizeInBytes);
822 return VD;
825 static ValueProfRecordClosure InstrProfRecordClosure = {
826 nullptr,
827 getNumValueKindsInstrProf,
828 getNumValueSitesInstrProf,
829 getNumValueDataInstrProf,
830 getNumValueDataForSiteInstrProf,
831 nullptr,
832 getValueForSiteInstrProf,
833 allocValueProfDataInstrProf};
835 // Wrapper implementation using the closure mechanism.
836 uint32_t ValueProfData::getSize(const InstrProfRecord &Record) {
837 auto Closure = InstrProfRecordClosure;
838 Closure.Record = &Record;
839 return getValueProfDataSize(&Closure);
842 // Wrapper implementation using the closure mechanism.
843 std::unique_ptr<ValueProfData>
844 ValueProfData::serializeFrom(const InstrProfRecord &Record) {
845 InstrProfRecordClosure.Record = &Record;
847 std::unique_ptr<ValueProfData> VPD(
848 serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr));
849 return VPD;
852 void ValueProfRecord::deserializeTo(InstrProfRecord &Record,
853 InstrProfSymtab *SymTab) {
854 Record.reserveSites(Kind, NumValueSites);
856 InstrProfValueData *ValueData = getValueProfRecordValueData(this);
857 for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) {
858 uint8_t ValueDataCount = this->SiteCountArray[VSite];
859 Record.addValueData(Kind, VSite, ValueData, ValueDataCount, SymTab);
860 ValueData += ValueDataCount;
864 // For writing/serializing, Old is the host endianness, and New is
865 // byte order intended on disk. For Reading/deserialization, Old
866 // is the on-disk source endianness, and New is the host endianness.
867 void ValueProfRecord::swapBytes(support::endianness Old,
868 support::endianness New) {
869 using namespace support;
871 if (Old == New)
872 return;
874 if (getHostEndianness() != Old) {
875 sys::swapByteOrder<uint32_t>(NumValueSites);
876 sys::swapByteOrder<uint32_t>(Kind);
878 uint32_t ND = getValueProfRecordNumValueData(this);
879 InstrProfValueData *VD = getValueProfRecordValueData(this);
881 // No need to swap byte array: SiteCountArrray.
882 for (uint32_t I = 0; I < ND; I++) {
883 sys::swapByteOrder<uint64_t>(VD[I].Value);
884 sys::swapByteOrder<uint64_t>(VD[I].Count);
886 if (getHostEndianness() == Old) {
887 sys::swapByteOrder<uint32_t>(NumValueSites);
888 sys::swapByteOrder<uint32_t>(Kind);
892 void ValueProfData::deserializeTo(InstrProfRecord &Record,
893 InstrProfSymtab *SymTab) {
894 if (NumValueKinds == 0)
895 return;
897 ValueProfRecord *VR = getFirstValueProfRecord(this);
898 for (uint32_t K = 0; K < NumValueKinds; K++) {
899 VR->deserializeTo(Record, SymTab);
900 VR = getValueProfRecordNext(VR);
904 template <class T>
905 static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) {
906 using namespace support;
908 if (Orig == little)
909 return endian::readNext<T, little, unaligned>(D);
910 else
911 return endian::readNext<T, big, unaligned>(D);
914 static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) {
915 return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize))
916 ValueProfData());
919 Error ValueProfData::checkIntegrity() {
920 if (NumValueKinds > IPVK_Last + 1)
921 return make_error<InstrProfError>(
922 instrprof_error::malformed, "number of value profile kinds is invalid");
923 // Total size needs to be multiple of quadword size.
924 if (TotalSize % sizeof(uint64_t))
925 return make_error<InstrProfError>(
926 instrprof_error::malformed, "total size is not multiples of quardword");
928 ValueProfRecord *VR = getFirstValueProfRecord(this);
929 for (uint32_t K = 0; K < this->NumValueKinds; K++) {
930 if (VR->Kind > IPVK_Last)
931 return make_error<InstrProfError>(instrprof_error::malformed,
932 "value kind is invalid");
933 VR = getValueProfRecordNext(VR);
934 if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize)
935 return make_error<InstrProfError>(
936 instrprof_error::malformed,
937 "value profile address is greater than total size");
939 return Error::success();
942 Expected<std::unique_ptr<ValueProfData>>
943 ValueProfData::getValueProfData(const unsigned char *D,
944 const unsigned char *const BufferEnd,
945 support::endianness Endianness) {
946 using namespace support;
948 if (D + sizeof(ValueProfData) > BufferEnd)
949 return make_error<InstrProfError>(instrprof_error::truncated);
951 const unsigned char *Header = D;
952 uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness);
953 if (D + TotalSize > BufferEnd)
954 return make_error<InstrProfError>(instrprof_error::too_large);
956 std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize);
957 memcpy(VPD.get(), D, TotalSize);
958 // Byte swap.
959 VPD->swapBytesToHost(Endianness);
961 Error E = VPD->checkIntegrity();
962 if (E)
963 return std::move(E);
965 return std::move(VPD);
968 void ValueProfData::swapBytesToHost(support::endianness Endianness) {
969 using namespace support;
971 if (Endianness == getHostEndianness())
972 return;
974 sys::swapByteOrder<uint32_t>(TotalSize);
975 sys::swapByteOrder<uint32_t>(NumValueKinds);
977 ValueProfRecord *VR = getFirstValueProfRecord(this);
978 for (uint32_t K = 0; K < NumValueKinds; K++) {
979 VR->swapBytes(Endianness, getHostEndianness());
980 VR = getValueProfRecordNext(VR);
984 void ValueProfData::swapBytesFromHost(support::endianness Endianness) {
985 using namespace support;
987 if (Endianness == getHostEndianness())
988 return;
990 ValueProfRecord *VR = getFirstValueProfRecord(this);
991 for (uint32_t K = 0; K < NumValueKinds; K++) {
992 ValueProfRecord *NVR = getValueProfRecordNext(VR);
993 VR->swapBytes(getHostEndianness(), Endianness);
994 VR = NVR;
996 sys::swapByteOrder<uint32_t>(TotalSize);
997 sys::swapByteOrder<uint32_t>(NumValueKinds);
1000 void annotateValueSite(Module &M, Instruction &Inst,
1001 const InstrProfRecord &InstrProfR,
1002 InstrProfValueKind ValueKind, uint32_t SiteIdx,
1003 uint32_t MaxMDCount) {
1004 uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx);
1005 if (!NV)
1006 return;
1008 uint64_t Sum = 0;
1009 std::unique_ptr<InstrProfValueData[]> VD =
1010 InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum);
1012 ArrayRef<InstrProfValueData> VDs(VD.get(), NV);
1013 annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount);
1016 void annotateValueSite(Module &M, Instruction &Inst,
1017 ArrayRef<InstrProfValueData> VDs,
1018 uint64_t Sum, InstrProfValueKind ValueKind,
1019 uint32_t MaxMDCount) {
1020 LLVMContext &Ctx = M.getContext();
1021 MDBuilder MDHelper(Ctx);
1022 SmallVector<Metadata *, 3> Vals;
1023 // Tag
1024 Vals.push_back(MDHelper.createString("VP"));
1025 // Value Kind
1026 Vals.push_back(MDHelper.createConstant(
1027 ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind)));
1028 // Total Count
1029 Vals.push_back(
1030 MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum)));
1032 // Value Profile Data
1033 uint32_t MDCount = MaxMDCount;
1034 for (auto &VD : VDs) {
1035 Vals.push_back(MDHelper.createConstant(
1036 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value)));
1037 Vals.push_back(MDHelper.createConstant(
1038 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count)));
1039 if (--MDCount == 0)
1040 break;
1042 Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals));
1045 bool getValueProfDataFromInst(const Instruction &Inst,
1046 InstrProfValueKind ValueKind,
1047 uint32_t MaxNumValueData,
1048 InstrProfValueData ValueData[],
1049 uint32_t &ActualNumValueData, uint64_t &TotalC,
1050 bool GetNoICPValue) {
1051 MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof);
1052 if (!MD)
1053 return false;
1055 unsigned NOps = MD->getNumOperands();
1057 if (NOps < 5)
1058 return false;
1060 // Operand 0 is a string tag "VP":
1061 MDString *Tag = cast<MDString>(MD->getOperand(0));
1062 if (!Tag)
1063 return false;
1065 if (!Tag->getString().equals("VP"))
1066 return false;
1068 // Now check kind:
1069 ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
1070 if (!KindInt)
1071 return false;
1072 if (KindInt->getZExtValue() != ValueKind)
1073 return false;
1075 // Get total count
1076 ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
1077 if (!TotalCInt)
1078 return false;
1079 TotalC = TotalCInt->getZExtValue();
1081 ActualNumValueData = 0;
1083 for (unsigned I = 3; I < NOps; I += 2) {
1084 if (ActualNumValueData >= MaxNumValueData)
1085 break;
1086 ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I));
1087 ConstantInt *Count =
1088 mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1));
1089 if (!Value || !Count)
1090 return false;
1091 uint64_t CntValue = Count->getZExtValue();
1092 if (!GetNoICPValue && (CntValue == NOMORE_ICP_MAGICNUM))
1093 continue;
1094 ValueData[ActualNumValueData].Value = Value->getZExtValue();
1095 ValueData[ActualNumValueData].Count = CntValue;
1096 ActualNumValueData++;
1098 return true;
1101 MDNode *getPGOFuncNameMetadata(const Function &F) {
1102 return F.getMetadata(getPGOFuncNameMetadataName());
1105 void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) {
1106 // Only for internal linkage functions.
1107 if (PGOFuncName == F.getName())
1108 return;
1109 // Don't create duplicated meta-data.
1110 if (getPGOFuncNameMetadata(F))
1111 return;
1112 LLVMContext &C = F.getContext();
1113 MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName));
1114 F.setMetadata(getPGOFuncNameMetadataName(), N);
1117 bool needsComdatForCounter(const Function &F, const Module &M) {
1118 if (F.hasComdat())
1119 return true;
1121 if (!Triple(M.getTargetTriple()).supportsCOMDAT())
1122 return false;
1124 // See createPGOFuncNameVar for more details. To avoid link errors, profile
1125 // counters for function with available_externally linkage needs to be changed
1126 // to linkonce linkage. On ELF based systems, this leads to weak symbols to be
1127 // created. Without using comdat, duplicate entries won't be removed by the
1128 // linker leading to increased data segement size and raw profile size. Even
1129 // worse, since the referenced counter from profile per-function data object
1130 // will be resolved to the common strong definition, the profile counts for
1131 // available_externally functions will end up being duplicated in raw profile
1132 // data. This can result in distorted profile as the counts of those dups
1133 // will be accumulated by the profile merger.
1134 GlobalValue::LinkageTypes Linkage = F.getLinkage();
1135 if (Linkage != GlobalValue::ExternalWeakLinkage &&
1136 Linkage != GlobalValue::AvailableExternallyLinkage)
1137 return false;
1139 return true;
1142 // Check if INSTR_PROF_RAW_VERSION_VAR is defined.
1143 bool isIRPGOFlagSet(const Module *M) {
1144 auto IRInstrVar =
1145 M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
1146 if (!IRInstrVar || IRInstrVar->hasLocalLinkage())
1147 return false;
1149 // For CSPGO+LTO, this variable might be marked as non-prevailing and we only
1150 // have the decl.
1151 if (IRInstrVar->isDeclaration())
1152 return true;
1154 // Check if the flag is set.
1155 if (!IRInstrVar->hasInitializer())
1156 return false;
1158 auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer());
1159 if (!InitVal)
1160 return false;
1161 return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0;
1164 // Check if we can safely rename this Comdat function.
1165 bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) {
1166 if (F.getName().empty())
1167 return false;
1168 if (!needsComdatForCounter(F, *(F.getParent())))
1169 return false;
1170 // Unsafe to rename the address-taken function (which can be used in
1171 // function comparison).
1172 if (CheckAddressTaken && F.hasAddressTaken())
1173 return false;
1174 // Only safe to do if this function may be discarded if it is not used
1175 // in the compilation unit.
1176 if (!GlobalValue::isDiscardableIfUnused(F.getLinkage()))
1177 return false;
1179 // For AvailableExternallyLinkage functions.
1180 if (!F.hasComdat()) {
1181 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
1182 return true;
1184 return true;
1187 // Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime
1188 // aware this is an ir_level profile so it can set the version flag.
1189 GlobalVariable *createIRLevelProfileFlagVar(Module &M, bool IsCS,
1190 bool InstrEntryBBEnabled,
1191 bool DebugInfoCorrelate) {
1192 const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
1193 Type *IntTy64 = Type::getInt64Ty(M.getContext());
1194 uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF);
1195 if (IsCS)
1196 ProfileVersion |= VARIANT_MASK_CSIR_PROF;
1197 if (InstrEntryBBEnabled)
1198 ProfileVersion |= VARIANT_MASK_INSTR_ENTRY;
1199 if (DebugInfoCorrelate)
1200 ProfileVersion |= VARIANT_MASK_DBG_CORRELATE;
1201 auto IRLevelVersionVariable = new GlobalVariable(
1202 M, IntTy64, true, GlobalValue::WeakAnyLinkage,
1203 Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName);
1204 IRLevelVersionVariable->setVisibility(GlobalValue::DefaultVisibility);
1205 Triple TT(M.getTargetTriple());
1206 if (TT.supportsCOMDAT()) {
1207 IRLevelVersionVariable->setLinkage(GlobalValue::ExternalLinkage);
1208 IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName));
1210 return IRLevelVersionVariable;
1213 // Create the variable for the profile file name.
1214 void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) {
1215 if (InstrProfileOutput.empty())
1216 return;
1217 Constant *ProfileNameConst =
1218 ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true);
1219 GlobalVariable *ProfileNameVar = new GlobalVariable(
1220 M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage,
1221 ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR));
1222 Triple TT(M.getTargetTriple());
1223 if (TT.supportsCOMDAT()) {
1224 ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
1225 ProfileNameVar->setComdat(M.getOrInsertComdat(
1226 StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR))));
1230 Error OverlapStats::accumulateCounts(const std::string &BaseFilename,
1231 const std::string &TestFilename,
1232 bool IsCS) {
1233 auto getProfileSum = [IsCS](const std::string &Filename,
1234 CountSumOrPercent &Sum) -> Error {
1235 auto ReaderOrErr = InstrProfReader::create(Filename);
1236 if (Error E = ReaderOrErr.takeError()) {
1237 return E;
1239 auto Reader = std::move(ReaderOrErr.get());
1240 Reader->accumulateCounts(Sum, IsCS);
1241 return Error::success();
1243 auto Ret = getProfileSum(BaseFilename, Base);
1244 if (Ret)
1245 return Ret;
1246 Ret = getProfileSum(TestFilename, Test);
1247 if (Ret)
1248 return Ret;
1249 this->BaseFilename = &BaseFilename;
1250 this->TestFilename = &TestFilename;
1251 Valid = true;
1252 return Error::success();
1255 void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) {
1256 Mismatch.NumEntries += 1;
1257 Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum;
1258 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1259 if (Test.ValueCounts[I] >= 1.0f)
1260 Mismatch.ValueCounts[I] +=
1261 MismatchFunc.ValueCounts[I] / Test.ValueCounts[I];
1265 void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) {
1266 Unique.NumEntries += 1;
1267 Unique.CountSum += UniqueFunc.CountSum / Test.CountSum;
1268 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1269 if (Test.ValueCounts[I] >= 1.0f)
1270 Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I];
1274 void OverlapStats::dump(raw_fd_ostream &OS) const {
1275 if (!Valid)
1276 return;
1278 const char *EntryName =
1279 (Level == ProgramLevel ? "functions" : "edge counters");
1280 if (Level == ProgramLevel) {
1281 OS << "Profile overlap infomation for base_profile: " << *BaseFilename
1282 << " and test_profile: " << *TestFilename << "\nProgram level:\n";
1283 } else {
1284 OS << "Function level:\n"
1285 << " Function: " << FuncName << " (Hash=" << FuncHash << ")\n";
1288 OS << " # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n";
1289 if (Mismatch.NumEntries)
1290 OS << " # of " << EntryName << " mismatch: " << Mismatch.NumEntries
1291 << "\n";
1292 if (Unique.NumEntries)
1293 OS << " # of " << EntryName
1294 << " only in test_profile: " << Unique.NumEntries << "\n";
1296 OS << " Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100)
1297 << "\n";
1298 if (Mismatch.NumEntries)
1299 OS << " Mismatched count percentage (Edge): "
1300 << format("%.3f%%", Mismatch.CountSum * 100) << "\n";
1301 if (Unique.NumEntries)
1302 OS << " Percentage of Edge profile only in test_profile: "
1303 << format("%.3f%%", Unique.CountSum * 100) << "\n";
1304 OS << " Edge profile base count sum: " << format("%.0f", Base.CountSum)
1305 << "\n"
1306 << " Edge profile test count sum: " << format("%.0f", Test.CountSum)
1307 << "\n";
1309 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1310 if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f)
1311 continue;
1312 char ProfileKindName[20];
1313 switch (I) {
1314 case IPVK_IndirectCallTarget:
1315 strncpy(ProfileKindName, "IndirectCall", 19);
1316 break;
1317 case IPVK_MemOPSize:
1318 strncpy(ProfileKindName, "MemOP", 19);
1319 break;
1320 default:
1321 snprintf(ProfileKindName, 19, "VP[%d]", I);
1322 break;
1324 OS << " " << ProfileKindName
1325 << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100)
1326 << "\n";
1327 if (Mismatch.NumEntries)
1328 OS << " Mismatched count percentage (" << ProfileKindName
1329 << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n";
1330 if (Unique.NumEntries)
1331 OS << " Percentage of " << ProfileKindName
1332 << " profile only in test_profile: "
1333 << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n";
1334 OS << " " << ProfileKindName
1335 << " profile base count sum: " << format("%.0f", Base.ValueCounts[I])
1336 << "\n"
1337 << " " << ProfileKindName
1338 << " profile test count sum: " << format("%.0f", Test.ValueCounts[I])
1339 << "\n";
1343 } // end namespace llvm