[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / test / Transforms / InstCombine / logical-select-inseltpoison.ll
blob2d05c264db825e824983226e096f38a71ed838d9
1 ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
2 ; RUN: opt < %s -instcombine -S | FileCheck %s
5 define i32 @foo(i32 %a, i32 %b, i32 %c, i32 %d) {
6 ; CHECK-LABEL: @foo(
7 ; CHECK-NEXT:    [[E:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
8 ; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[E]], i32 [[C:%.*]], i32 [[D:%.*]]
9 ; CHECK-NEXT:    ret i32 [[TMP1]]
11   %e = icmp slt i32 %a, %b
12   %f = sext i1 %e to i32
13   %g = and i32 %c, %f
14   %h = xor i32 %f, -1
15   %i = and i32 %d, %h
16   %j = or i32 %g, %i
17   ret i32 %j
20 define i32 @bar(i32 %a, i32 %b, i32 %c, i32 %d) {
21 ; CHECK-LABEL: @bar(
22 ; CHECK-NEXT:    [[E:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
23 ; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[E]], i32 [[C:%.*]], i32 [[D:%.*]]
24 ; CHECK-NEXT:    ret i32 [[TMP1]]
26   %e = icmp slt i32 %a, %b
27   %f = sext i1 %e to i32
28   %g = and i32 %c, %f
29   %h = xor i32 %f, -1
30   %i = and i32 %d, %h
31   %j = or i32 %i, %g
32   ret i32 %j
35 define i32 @goo(i32 %a, i32 %b, i32 %c, i32 %d) {
36 ; CHECK-LABEL: @goo(
37 ; CHECK-NEXT:    [[T0:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
38 ; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[T0]], i32 [[C:%.*]], i32 [[D:%.*]]
39 ; CHECK-NEXT:    ret i32 [[TMP1]]
41   %t0 = icmp slt i32 %a, %b
42   %iftmp.0.0 = select i1 %t0, i32 -1, i32 0
43   %t1 = and i32 %iftmp.0.0, %c
44   %not = xor i32 %iftmp.0.0, -1
45   %t2 = and i32 %not, %d
46   %t3 = or i32 %t1, %t2
47   ret i32 %t3
50 define i32 @poo(i32 %a, i32 %b, i32 %c, i32 %d) {
51 ; CHECK-LABEL: @poo(
52 ; CHECK-NEXT:    [[T0:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
53 ; CHECK-NEXT:    [[T3:%.*]] = select i1 [[T0]], i32 [[C:%.*]], i32 [[D:%.*]]
54 ; CHECK-NEXT:    ret i32 [[T3]]
56   %t0 = icmp slt i32 %a, %b
57   %iftmp.0.0 = select i1 %t0, i32 -1, i32 0
58   %t1 = and i32 %iftmp.0.0, %c
59   %iftmp = select i1 %t0, i32 0, i32 -1
60   %t2 = and i32 %iftmp, %d
61   %t3 = or i32 %t1, %t2
62   ret i32 %t3
65 ; PR32791 - https://bugs.llvm.org//show_bug.cgi?id=32791
66 ; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this.
68 define i32 @fold_inverted_icmp_preds(i32 %a, i32 %b, i32 %c, i32 %d) {
69 ; CHECK-LABEL: @fold_inverted_icmp_preds(
70 ; CHECK-NEXT:    [[CMP1:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
71 ; CHECK-NEXT:    [[SEL1:%.*]] = select i1 [[CMP1]], i32 [[C:%.*]], i32 0
72 ; CHECK-NEXT:    [[CMP2_NOT:%.*]] = icmp slt i32 [[A]], [[B]]
73 ; CHECK-NEXT:    [[SEL2:%.*]] = select i1 [[CMP2_NOT]], i32 0, i32 [[D:%.*]]
74 ; CHECK-NEXT:    [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]]
75 ; CHECK-NEXT:    ret i32 [[OR]]
77   %cmp1 = icmp slt i32 %a, %b
78   %sel1 = select i1 %cmp1, i32 %c, i32 0
79   %cmp2 = icmp sge i32 %a, %b
80   %sel2 = select i1 %cmp2, i32 %d, i32 0
81   %or = or i32 %sel1, %sel2
82   ret i32 %or
85 ; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this.
87 define i32 @fold_inverted_icmp_preds_reverse(i32 %a, i32 %b, i32 %c, i32 %d) {
88 ; CHECK-LABEL: @fold_inverted_icmp_preds_reverse(
89 ; CHECK-NEXT:    [[CMP1:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
90 ; CHECK-NEXT:    [[SEL1:%.*]] = select i1 [[CMP1]], i32 0, i32 [[C:%.*]]
91 ; CHECK-NEXT:    [[CMP2_NOT:%.*]] = icmp slt i32 [[A]], [[B]]
92 ; CHECK-NEXT:    [[SEL2:%.*]] = select i1 [[CMP2_NOT]], i32 [[D:%.*]], i32 0
93 ; CHECK-NEXT:    [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]]
94 ; CHECK-NEXT:    ret i32 [[OR]]
96   %cmp1 = icmp slt i32 %a, %b
97   %sel1 = select i1 %cmp1, i32 0, i32 %c
98   %cmp2 = icmp sge i32 %a, %b
99   %sel2 = select i1 %cmp2, i32 0, i32 %d
100   %or = or i32 %sel1, %sel2
101   ret i32 %or
104 ; TODO: Should fcmp have the same sort of predicate canonicalization as icmp?
106 define i32 @fold_inverted_fcmp_preds(float %a, float %b, i32 %c, i32 %d) {
107 ; CHECK-LABEL: @fold_inverted_fcmp_preds(
108 ; CHECK-NEXT:    [[CMP1:%.*]] = fcmp olt float [[A:%.*]], [[B:%.*]]
109 ; CHECK-NEXT:    [[SEL1:%.*]] = select i1 [[CMP1]], i32 [[C:%.*]], i32 0
110 ; CHECK-NEXT:    [[CMP2:%.*]] = fcmp uge float [[A]], [[B]]
111 ; CHECK-NEXT:    [[SEL2:%.*]] = select i1 [[CMP2]], i32 [[D:%.*]], i32 0
112 ; CHECK-NEXT:    [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]]
113 ; CHECK-NEXT:    ret i32 [[OR]]
115   %cmp1 = fcmp olt float %a, %b
116   %sel1 = select i1 %cmp1, i32 %c, i32 0
117   %cmp2 = fcmp uge float %a, %b
118   %sel2 = select i1 %cmp2, i32 %d, i32 0
119   %or = or i32 %sel1, %sel2
120   ret i32 %or
123 ; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this.
125 define <2 x i32> @fold_inverted_icmp_vector_preds(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c, <2 x i32> %d) {
126 ; CHECK-LABEL: @fold_inverted_icmp_vector_preds(
127 ; CHECK-NEXT:    [[CMP1_NOT:%.*]] = icmp eq <2 x i32> [[A:%.*]], [[B:%.*]]
128 ; CHECK-NEXT:    [[SEL1:%.*]] = select <2 x i1> [[CMP1_NOT]], <2 x i32> zeroinitializer, <2 x i32> [[C:%.*]]
129 ; CHECK-NEXT:    [[CMP2:%.*]] = icmp eq <2 x i32> [[A]], [[B]]
130 ; CHECK-NEXT:    [[SEL2:%.*]] = select <2 x i1> [[CMP2]], <2 x i32> [[D:%.*]], <2 x i32> zeroinitializer
131 ; CHECK-NEXT:    [[OR:%.*]] = or <2 x i32> [[SEL1]], [[SEL2]]
132 ; CHECK-NEXT:    ret <2 x i32> [[OR]]
134   %cmp1 = icmp ne <2 x i32> %a, %b
135   %sel1 = select <2 x i1> %cmp1, <2 x i32> %c, <2 x i32> <i32 0, i32 0>
136   %cmp2 = icmp eq <2 x i32> %a, %b
137   %sel2 = select <2 x i1> %cmp2, <2 x i32> %d, <2 x i32> <i32 0, i32 0>
138   %or = or <2 x i32> %sel1, %sel2
139   ret <2 x i32> %or
142 define i32 @par(i32 %a, i32 %b, i32 %c, i32 %d) {
143 ; CHECK-LABEL: @par(
144 ; CHECK-NEXT:    [[T0:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
145 ; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[T0]], i32 [[C:%.*]], i32 [[D:%.*]]
146 ; CHECK-NEXT:    ret i32 [[TMP1]]
148   %t0 = icmp slt i32 %a, %b
149   %iftmp.1.0 = select i1 %t0, i32 -1, i32 0
150   %t1 = and i32 %iftmp.1.0, %c
151   %not = xor i32 %iftmp.1.0, -1
152   %t2 = and i32 %not, %d
153   %t3 = or i32 %t1, %t2
154   ret i32 %t3
157 ; In the following tests (8 commutation variants), verify that a bitcast doesn't get
158 ; in the way of a select transform. These bitcasts are common in SSE/AVX and possibly
159 ; other vector code because of canonicalization to i64 elements for vectors.
161 ; The fptosi instructions are included to avoid commutation canonicalization based on
162 ; operator weight. Using another cast operator ensures that both operands of all logic
163 ; ops are equally weighted, and this ensures that we're testing all commutation
164 ; possibilities.
166 define <2 x i64> @bitcast_select_swap0(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
167 ; CHECK-LABEL: @bitcast_select_swap0(
168 ; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
169 ; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
170 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
171 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
172 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
173 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
174 ; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
176   %sia = fptosi <2 x double> %a to <2 x i64>
177   %sib = fptosi <2 x double> %b to <2 x i64>
178   %sext = sext <4 x i1> %cmp to <4 x i32>
179   %bc1 = bitcast <4 x i32> %sext to <2 x i64>
180   %and1 = and <2 x i64> %bc1, %sia
181   %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
182   %bc2 = bitcast <4 x i32> %neg to <2 x i64>
183   %and2 = and <2 x i64> %bc2, %sib
184   %or = or <2 x i64> %and1, %and2
185   ret <2 x i64> %or
188 define <2 x i64> @bitcast_select_swap1(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
189 ; CHECK-LABEL: @bitcast_select_swap1(
190 ; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
191 ; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
192 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
193 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
194 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
195 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
196 ; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
198   %sia = fptosi <2 x double> %a to <2 x i64>
199   %sib = fptosi <2 x double> %b to <2 x i64>
200   %sext = sext <4 x i1> %cmp to <4 x i32>
201   %bc1 = bitcast <4 x i32> %sext to <2 x i64>
202   %and1 = and <2 x i64> %bc1, %sia
203   %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
204   %bc2 = bitcast <4 x i32> %neg to <2 x i64>
205   %and2 = and <2 x i64> %bc2, %sib
206   %or = or <2 x i64> %and2, %and1
207   ret <2 x i64> %or
210 define <2 x i64> @bitcast_select_swap2(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
211 ; CHECK-LABEL: @bitcast_select_swap2(
212 ; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
213 ; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
214 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
215 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
216 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
217 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
218 ; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
220   %sia = fptosi <2 x double> %a to <2 x i64>
221   %sib = fptosi <2 x double> %b to <2 x i64>
222   %sext = sext <4 x i1> %cmp to <4 x i32>
223   %bc1 = bitcast <4 x i32> %sext to <2 x i64>
224   %and1 = and <2 x i64> %bc1, %sia
225   %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
226   %bc2 = bitcast <4 x i32> %neg to <2 x i64>
227   %and2 = and <2 x i64> %sib, %bc2
228   %or = or <2 x i64> %and1, %and2
229   ret <2 x i64> %or
232 define <2 x i64> @bitcast_select_swap3(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
233 ; CHECK-LABEL: @bitcast_select_swap3(
234 ; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
235 ; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
236 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
237 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
238 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
239 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
240 ; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
242   %sia = fptosi <2 x double> %a to <2 x i64>
243   %sib = fptosi <2 x double> %b to <2 x i64>
244   %sext = sext <4 x i1> %cmp to <4 x i32>
245   %bc1 = bitcast <4 x i32> %sext to <2 x i64>
246   %and1 = and <2 x i64> %bc1, %sia
247   %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
248   %bc2 = bitcast <4 x i32> %neg to <2 x i64>
249   %and2 = and <2 x i64> %sib, %bc2
250   %or = or <2 x i64> %and2, %and1
251   ret <2 x i64> %or
254 define <2 x i64> @bitcast_select_swap4(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
255 ; CHECK-LABEL: @bitcast_select_swap4(
256 ; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
257 ; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
258 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
259 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
260 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
261 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
262 ; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
264   %sia = fptosi <2 x double> %a to <2 x i64>
265   %sib = fptosi <2 x double> %b to <2 x i64>
266   %sext = sext <4 x i1> %cmp to <4 x i32>
267   %bc1 = bitcast <4 x i32> %sext to <2 x i64>
268   %and1 = and <2 x i64> %sia, %bc1
269   %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
270   %bc2 = bitcast <4 x i32> %neg to <2 x i64>
271   %and2 = and <2 x i64> %bc2, %sib
272   %or = or <2 x i64> %and1, %and2
273   ret <2 x i64> %or
276 define <2 x i64> @bitcast_select_swap5(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
277 ; CHECK-LABEL: @bitcast_select_swap5(
278 ; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
279 ; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
280 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
281 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
282 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
283 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
284 ; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
286   %sia = fptosi <2 x double> %a to <2 x i64>
287   %sib = fptosi <2 x double> %b to <2 x i64>
288   %sext = sext <4 x i1> %cmp to <4 x i32>
289   %bc1 = bitcast <4 x i32> %sext to <2 x i64>
290   %and1 = and <2 x i64> %sia, %bc1
291   %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
292   %bc2 = bitcast <4 x i32> %neg to <2 x i64>
293   %and2 = and <2 x i64> %bc2, %sib
294   %or = or <2 x i64> %and2, %and1
295   ret <2 x i64> %or
298 define <2 x i64> @bitcast_select_swap6(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
299 ; CHECK-LABEL: @bitcast_select_swap6(
300 ; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
301 ; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
302 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
303 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
304 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
305 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
306 ; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
308   %sia = fptosi <2 x double> %a to <2 x i64>
309   %sib = fptosi <2 x double> %b to <2 x i64>
310   %sext = sext <4 x i1> %cmp to <4 x i32>
311   %bc1 = bitcast <4 x i32> %sext to <2 x i64>
312   %and1 = and <2 x i64> %sia, %bc1
313   %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
314   %bc2 = bitcast <4 x i32> %neg to <2 x i64>
315   %and2 = and <2 x i64> %sib, %bc2
316   %or = or <2 x i64> %and1, %and2
317   ret <2 x i64> %or
320 define <2 x i64> @bitcast_select_swap7(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
321 ; CHECK-LABEL: @bitcast_select_swap7(
322 ; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
323 ; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
324 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
325 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
326 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
327 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
328 ; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
330   %sia = fptosi <2 x double> %a to <2 x i64>
331   %sib = fptosi <2 x double> %b to <2 x i64>
332   %sext = sext <4 x i1> %cmp to <4 x i32>
333   %bc1 = bitcast <4 x i32> %sext to <2 x i64>
334   %and1 = and <2 x i64> %sia, %bc1
335   %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
336   %bc2 = bitcast <4 x i32> %neg to <2 x i64>
337   %and2 = and <2 x i64> %sib, %bc2
338   %or = or <2 x i64> %and2, %and1
339   ret <2 x i64> %or
342 define <2 x i64> @bitcast_select_multi_uses(<4 x i1> %cmp, <2 x i64> %a, <2 x i64> %b) {
343 ; CHECK-LABEL: @bitcast_select_multi_uses(
344 ; CHECK-NEXT:    [[SEXT:%.*]] = sext <4 x i1> [[CMP:%.*]] to <4 x i32>
345 ; CHECK-NEXT:    [[BC1:%.*]] = bitcast <4 x i32> [[SEXT]] to <2 x i64>
346 ; CHECK-NEXT:    [[AND1:%.*]] = and <2 x i64> [[BC1]], [[A:%.*]]
347 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <4 x i32> [[SEXT]] to <2 x i64>
348 ; CHECK-NEXT:    [[BC2:%.*]] = xor <2 x i64> [[TMP1]], <i64 -1, i64 -1>
349 ; CHECK-NEXT:    [[AND2:%.*]] = and <2 x i64> [[BC2]], [[B:%.*]]
350 ; CHECK-NEXT:    [[OR:%.*]] = or <2 x i64> [[AND2]], [[AND1]]
351 ; CHECK-NEXT:    [[ADD:%.*]] = add <2 x i64> [[AND2]], [[BC2]]
352 ; CHECK-NEXT:    [[SUB:%.*]] = sub <2 x i64> [[OR]], [[ADD]]
353 ; CHECK-NEXT:    ret <2 x i64> [[SUB]]
355   %sext = sext <4 x i1> %cmp to <4 x i32>
356   %bc1 = bitcast <4 x i32> %sext to <2 x i64>
357   %and1 = and <2 x i64> %a, %bc1
358   %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
359   %bc2 = bitcast <4 x i32> %neg to <2 x i64>
360   %and2 = and <2 x i64> %b, %bc2
361   %or = or <2 x i64> %and2, %and1
362   %add = add <2 x i64> %and2, %bc2
363   %sub = sub <2 x i64> %or, %add
364   ret <2 x i64> %sub
367 define i1 @bools(i1 %a, i1 %b, i1 %c) {
368 ; CHECK-LABEL: @bools(
369 ; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[C:%.*]], i1 [[B:%.*]], i1 [[A:%.*]]
370 ; CHECK-NEXT:    ret i1 [[TMP1]]
372   %not = xor i1 %c, -1
373   %and1 = and i1 %not, %a
374   %and2 = and i1 %c, %b
375   %or = or i1 %and1, %and2
376   ret i1 %or
379 define i1 @bools_logical(i1 %a, i1 %b, i1 %c) {
380 ; CHECK-LABEL: @bools_logical(
381 ; CHECK-NEXT:    [[OR:%.*]] = select i1 [[C:%.*]], i1 [[B:%.*]], i1 [[A:%.*]]
382 ; CHECK-NEXT:    ret i1 [[OR]]
384   %not = xor i1 %c, -1
385   %and1 = select i1 %not, i1 %a, i1 false
386   %and2 = select i1 %c, i1 %b, i1 false
387   %or = select i1 %and1, i1 true, i1 %and2
388   ret i1 %or
391 ; Form a select if we know we can get replace 2 simple logic ops.
393 define i1 @bools_multi_uses1(i1 %a, i1 %b, i1 %c) {
394 ; CHECK-LABEL: @bools_multi_uses1(
395 ; CHECK-NEXT:    [[NOT:%.*]] = xor i1 [[C:%.*]], true
396 ; CHECK-NEXT:    [[AND1:%.*]] = and i1 [[NOT]], [[A:%.*]]
397 ; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[C]], i1 [[B:%.*]], i1 [[A]]
398 ; CHECK-NEXT:    [[XOR:%.*]] = xor i1 [[TMP1]], [[AND1]]
399 ; CHECK-NEXT:    ret i1 [[XOR]]
401   %not = xor i1 %c, -1
402   %and1 = and i1 %not, %a
403   %and2 = and i1 %c, %b
404   %or = or i1 %and1, %and2
405   %xor = xor i1 %or, %and1
406   ret i1 %xor
409 define i1 @bools_multi_uses1_logical(i1 %a, i1 %b, i1 %c) {
410 ; CHECK-LABEL: @bools_multi_uses1_logical(
411 ; CHECK-NEXT:    [[NOT:%.*]] = xor i1 [[C:%.*]], true
412 ; CHECK-NEXT:    [[AND1:%.*]] = select i1 [[NOT]], i1 [[A:%.*]], i1 false
413 ; CHECK-NEXT:    [[OR:%.*]] = select i1 [[C]], i1 [[B:%.*]], i1 [[A]]
414 ; CHECK-NEXT:    [[XOR:%.*]] = xor i1 [[OR]], [[AND1]]
415 ; CHECK-NEXT:    ret i1 [[XOR]]
417   %not = xor i1 %c, -1
418   %and1 = select i1 %not, i1 %a, i1 false
419   %and2 = select i1 %c, i1 %b, i1 false
420   %or = select i1 %and1, i1 true, i1 %and2
421   %xor = xor i1 %or, %and1
422   ret i1 %xor
425 ; Don't replace a cheap logic op with a potentially expensive select
426 ; unless we can also eliminate one of the other original ops.
428 define i1 @bools_multi_uses2(i1 %a, i1 %b, i1 %c) {
429 ; CHECK-LABEL: @bools_multi_uses2(
430 ; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[C:%.*]], i1 [[B:%.*]], i1 [[A:%.*]]
431 ; CHECK-NEXT:    ret i1 [[TMP1]]
433   %not = xor i1 %c, -1
434   %and1 = and i1 %not, %a
435   %and2 = and i1 %c, %b
436   %or = or i1 %and1, %and2
437   %add = add i1 %and1, %and2
438   %and3 = and i1 %or, %add
439   ret i1 %and3
442 define i1 @bools_multi_uses2_logical(i1 %a, i1 %b, i1 %c) {
443 ; CHECK-LABEL: @bools_multi_uses2_logical(
444 ; CHECK-NEXT:    [[NOT:%.*]] = xor i1 [[C:%.*]], true
445 ; CHECK-NEXT:    [[AND1:%.*]] = select i1 [[NOT]], i1 [[A:%.*]], i1 false
446 ; CHECK-NEXT:    [[AND2:%.*]] = select i1 [[C]], i1 [[B:%.*]], i1 false
447 ; CHECK-NEXT:    [[OR:%.*]] = select i1 [[C]], i1 [[B]], i1 [[A]]
448 ; CHECK-NEXT:    [[ADD:%.*]] = xor i1 [[AND1]], [[AND2]]
449 ; CHECK-NEXT:    [[AND3:%.*]] = select i1 [[OR]], i1 [[ADD]], i1 false
450 ; CHECK-NEXT:    ret i1 [[AND3]]
452   %not = xor i1 %c, -1
453   %and1 = select i1 %not, i1 %a, i1 false
454   %and2 = select i1 %c, i1 %b, i1 false
455   %or = select i1 %and1, i1 true, i1 %and2
456   %add = add i1 %and1, %and2
457   %and3 = select i1 %or, i1 %add, i1 false
458   ret i1 %and3
461 define <4 x i1> @vec_of_bools(<4 x i1> %a, <4 x i1> %b, <4 x i1> %c) {
462 ; CHECK-LABEL: @vec_of_bools(
463 ; CHECK-NEXT:    [[TMP1:%.*]] = select <4 x i1> [[C:%.*]], <4 x i1> [[B:%.*]], <4 x i1> [[A:%.*]]
464 ; CHECK-NEXT:    ret <4 x i1> [[TMP1]]
466   %not = xor <4 x i1> %c, <i1 true, i1 true, i1 true, i1 true>
467   %and1 = and <4 x i1> %not, %a
468   %and2 = and <4 x i1> %b, %c
469   %or = or <4 x i1> %and2, %and1
470   ret <4 x i1> %or
473 define i4 @vec_of_casted_bools(i4 %a, i4 %b, <4 x i1> %c) {
474 ; CHECK-LABEL: @vec_of_casted_bools(
475 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast i4 [[B:%.*]] to <4 x i1>
476 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast i4 [[A:%.*]] to <4 x i1>
477 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[C:%.*]], <4 x i1> [[TMP1]], <4 x i1> [[TMP2]]
478 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i1> [[TMP3]] to i4
479 ; CHECK-NEXT:    ret i4 [[TMP4]]
481   %not = xor <4 x i1> %c, <i1 true, i1 true, i1 true, i1 true>
482   %bc1 = bitcast <4 x i1> %not to i4
483   %bc2 = bitcast <4 x i1> %c to i4
484   %and1 = and i4 %a, %bc1
485   %and2 = and i4 %bc2, %b
486   %or = or i4 %and1, %and2
487   ret i4 %or
490 ; Inverted 'and' constants mean this is a select which is canonicalized to a shuffle.
492 define <4 x i32> @vec_sel_consts(<4 x i32> %a, <4 x i32> %b) {
493 ; CHECK-LABEL: @vec_sel_consts(
494 ; CHECK-NEXT:    [[TMP1:%.*]] = shufflevector <4 x i32> [[A:%.*]], <4 x i32> [[B:%.*]], <4 x i32> <i32 0, i32 5, i32 6, i32 3>
495 ; CHECK-NEXT:    ret <4 x i32> [[TMP1]]
497   %and1 = and <4 x i32> %a, <i32 -1, i32 0, i32 0, i32 -1>
498   %and2 = and <4 x i32> %b, <i32 0, i32 -1, i32 -1, i32 0>
499   %or = or <4 x i32> %and1, %and2
500   ret <4 x i32> %or
503 define <3 x i129> @vec_sel_consts_weird(<3 x i129> %a, <3 x i129> %b) {
504 ; CHECK-LABEL: @vec_sel_consts_weird(
505 ; CHECK-NEXT:    [[TMP1:%.*]] = shufflevector <3 x i129> [[A:%.*]], <3 x i129> [[B:%.*]], <3 x i32> <i32 0, i32 4, i32 2>
506 ; CHECK-NEXT:    ret <3 x i129> [[TMP1]]
508   %and1 = and <3 x i129> %a, <i129 -1, i129 0, i129 -1>
509   %and2 = and <3 x i129> %b, <i129 0, i129 -1, i129 0>
510   %or = or <3 x i129> %and2, %and1
511   ret <3 x i129> %or
514 ; The mask elements must be inverted for this to be a select.
516 define <4 x i32> @vec_not_sel_consts(<4 x i32> %a, <4 x i32> %b) {
517 ; CHECK-LABEL: @vec_not_sel_consts(
518 ; CHECK-NEXT:    [[AND1:%.*]] = and <4 x i32> [[A:%.*]], <i32 -1, i32 0, i32 0, i32 0>
519 ; CHECK-NEXT:    [[AND2:%.*]] = and <4 x i32> [[B:%.*]], <i32 0, i32 -1, i32 0, i32 -1>
520 ; CHECK-NEXT:    [[OR:%.*]] = or <4 x i32> [[AND1]], [[AND2]]
521 ; CHECK-NEXT:    ret <4 x i32> [[OR]]
523   %and1 = and <4 x i32> %a, <i32 -1, i32 0, i32 0, i32 0>
524   %and2 = and <4 x i32> %b, <i32 0, i32 -1, i32 0, i32 -1>
525   %or = or <4 x i32> %and1, %and2
526   ret <4 x i32> %or
529 define <4 x i32> @vec_not_sel_consts_undef_elts(<4 x i32> %a, <4 x i32> %b) {
530 ; CHECK-LABEL: @vec_not_sel_consts_undef_elts(
531 ; CHECK-NEXT:    [[AND1:%.*]] = and <4 x i32> [[A:%.*]], <i32 -1, i32 undef, i32 0, i32 0>
532 ; CHECK-NEXT:    [[AND2:%.*]] = and <4 x i32> [[B:%.*]], <i32 0, i32 -1, i32 0, i32 undef>
533 ; CHECK-NEXT:    [[OR:%.*]] = or <4 x i32> [[AND1]], [[AND2]]
534 ; CHECK-NEXT:    ret <4 x i32> [[OR]]
536   %and1 = and <4 x i32> %a, <i32 -1, i32 undef, i32 0, i32 0>
537   %and2 = and <4 x i32> %b, <i32 0, i32 -1, i32 0, i32 undef>
538   %or = or <4 x i32> %and1, %and2
539   ret <4 x i32> %or
542 ; The inverted constants may be operands of xor instructions.
544 define <4 x i32> @vec_sel_xor(<4 x i32> %a, <4 x i32> %b, <4 x i1> %c) {
545 ; CHECK-LABEL: @vec_sel_xor(
546 ; CHECK-NEXT:    [[TMP1:%.*]] = xor <4 x i1> [[C:%.*]], <i1 false, i1 true, i1 true, i1 true>
547 ; CHECK-NEXT:    [[TMP2:%.*]] = select <4 x i1> [[TMP1]], <4 x i32> [[A:%.*]], <4 x i32> [[B:%.*]]
548 ; CHECK-NEXT:    ret <4 x i32> [[TMP2]]
550   %mask = sext <4 x i1> %c to <4 x i32>
551   %mask_flip1 = xor <4 x i32> %mask, <i32 -1, i32 0, i32 0, i32 0>
552   %not_mask_flip1 = xor <4 x i32> %mask, <i32 0, i32 -1, i32 -1, i32 -1>
553   %and1 = and <4 x i32> %not_mask_flip1, %a
554   %and2 = and <4 x i32> %mask_flip1, %b
555   %or = or <4 x i32> %and1, %and2
556   ret <4 x i32> %or
559 ; Allow the transform even if the mask values have multiple uses because
560 ; there's still a net reduction of instructions from removing the and/and/or.
562 define <4 x i32> @vec_sel_xor_multi_use(<4 x i32> %a, <4 x i32> %b, <4 x i1> %c) {
563 ; CHECK-LABEL: @vec_sel_xor_multi_use(
564 ; CHECK-NEXT:    [[TMP1:%.*]] = xor <4 x i1> [[C:%.*]], <i1 true, i1 false, i1 false, i1 false>
565 ; CHECK-NEXT:    [[MASK_FLIP1:%.*]] = sext <4 x i1> [[TMP1]] to <4 x i32>
566 ; CHECK-NEXT:    [[TMP2:%.*]] = xor <4 x i1> [[C]], <i1 false, i1 true, i1 true, i1 true>
567 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[TMP2]], <4 x i32> [[A:%.*]], <4 x i32> [[B:%.*]]
568 ; CHECK-NEXT:    [[ADD:%.*]] = add <4 x i32> [[TMP3]], [[MASK_FLIP1]]
569 ; CHECK-NEXT:    ret <4 x i32> [[ADD]]
571   %mask = sext <4 x i1> %c to <4 x i32>
572   %mask_flip1 = xor <4 x i32> %mask, <i32 -1, i32 0, i32 0, i32 0>
573   %not_mask_flip1 = xor <4 x i32> %mask, <i32 0, i32 -1, i32 -1, i32 -1>
574   %and1 = and <4 x i32> %not_mask_flip1, %a
575   %and2 = and <4 x i32> %mask_flip1, %b
576   %or = or <4 x i32> %and1, %and2
577   %add = add <4 x i32> %or, %mask_flip1
578   ret <4 x i32> %add
581 ; The 'ashr' guarantees that we have a bitmask, so this is select with truncated condition.
583 define i32 @allSignBits(i32 %cond, i32 %tval, i32 %fval) {
584 ; CHECK-LABEL: @allSignBits(
585 ; CHECK-NEXT:    [[ISNEG1:%.*]] = icmp slt i32 [[COND:%.*]], 0
586 ; CHECK-NEXT:    [[A1:%.*]] = select i1 [[ISNEG1]], i32 [[TVAL:%.*]], i32 0
587 ; CHECK-NEXT:    [[ISNEG:%.*]] = icmp slt i32 [[COND]], 0
588 ; CHECK-NEXT:    [[A2:%.*]] = select i1 [[ISNEG]], i32 0, i32 [[FVAL:%.*]]
589 ; CHECK-NEXT:    [[SEL:%.*]] = or i32 [[A1]], [[A2]]
590 ; CHECK-NEXT:    ret i32 [[SEL]]
592   %bitmask = ashr i32 %cond, 31
593   %not_bitmask = xor i32 %bitmask, -1
594   %a1 = and i32 %tval, %bitmask
595   %a2 = and i32 %not_bitmask, %fval
596   %sel = or i32 %a1, %a2
597   ret i32 %sel
600 define <4 x i8> @allSignBits_vec(<4 x i8> %cond, <4 x i8> %tval, <4 x i8> %fval) {
601 ; CHECK-LABEL: @allSignBits_vec(
602 ; CHECK-NEXT:    [[ISNEG1:%.*]] = icmp slt <4 x i8> [[COND:%.*]], zeroinitializer
603 ; CHECK-NEXT:    [[A1:%.*]] = select <4 x i1> [[ISNEG1]], <4 x i8> [[TVAL:%.*]], <4 x i8> zeroinitializer
604 ; CHECK-NEXT:    [[ISNEG:%.*]] = icmp slt <4 x i8> [[COND]], zeroinitializer
605 ; CHECK-NEXT:    [[A2:%.*]] = select <4 x i1> [[ISNEG]], <4 x i8> zeroinitializer, <4 x i8> [[FVAL:%.*]]
606 ; CHECK-NEXT:    [[SEL:%.*]] = or <4 x i8> [[A2]], [[A1]]
607 ; CHECK-NEXT:    ret <4 x i8> [[SEL]]
609   %bitmask = ashr <4 x i8> %cond, <i8 7, i8 7, i8 7, i8 7>
610   %not_bitmask = xor <4 x i8> %bitmask, <i8 -1, i8 -1, i8 -1, i8 -1>
611   %a1 = and <4 x i8> %tval, %bitmask
612   %a2 = and <4 x i8> %fval, %not_bitmask
613   %sel = or <4 x i8> %a2, %a1
614   ret <4 x i8> %sel
617 ; Negative test - make sure that bitcasts from FP do not cause a crash.
619 define <2 x i64> @fp_bitcast(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
620 ; CHECK-LABEL: @fp_bitcast(
621 ; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
622 ; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
623 ; CHECK-NEXT:    [[BC1:%.*]] = bitcast <2 x double> [[A]] to <2 x i64>
624 ; CHECK-NEXT:    [[AND1:%.*]] = and <2 x i64> [[SIA]], [[BC1]]
625 ; CHECK-NEXT:    [[BC2:%.*]] = bitcast <2 x double> [[B]] to <2 x i64>
626 ; CHECK-NEXT:    [[AND2:%.*]] = and <2 x i64> [[SIB]], [[BC2]]
627 ; CHECK-NEXT:    [[OR:%.*]] = or <2 x i64> [[AND2]], [[AND1]]
628 ; CHECK-NEXT:    ret <2 x i64> [[OR]]
630   %sia = fptosi <2 x double> %a to <2 x i64>
631   %sib = fptosi <2 x double> %b to <2 x i64>
632   %bc1 = bitcast <2 x double> %a to <2 x i64>
633   %and1 = and <2 x i64> %sia, %bc1
634   %bc2 = bitcast <2 x double> %b to <2 x i64>
635   %and2 = and <2 x i64> %sib, %bc2
636   %or = or <2 x i64> %and2, %and1
637   ret <2 x i64> %or
640 define <4 x i32> @computesignbits_through_shuffles(<4 x float> %x, <4 x float> %y, <4 x float> %z) {
641 ; CHECK-LABEL: @computesignbits_through_shuffles(
642 ; CHECK-NEXT:    [[CMP:%.*]] = fcmp ole <4 x float> [[X:%.*]], [[Y:%.*]]
643 ; CHECK-NEXT:    [[SEXT:%.*]] = sext <4 x i1> [[CMP]] to <4 x i32>
644 ; CHECK-NEXT:    [[S1:%.*]] = shufflevector <4 x i32> [[SEXT]], <4 x i32> poison, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
645 ; CHECK-NEXT:    [[S2:%.*]] = shufflevector <4 x i32> [[SEXT]], <4 x i32> poison, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
646 ; CHECK-NEXT:    [[SHUF_OR1:%.*]] = or <4 x i32> [[S1]], [[S2]]
647 ; CHECK-NEXT:    [[S3:%.*]] = shufflevector <4 x i32> [[SHUF_OR1]], <4 x i32> poison, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
648 ; CHECK-NEXT:    [[S4:%.*]] = shufflevector <4 x i32> [[SHUF_OR1]], <4 x i32> poison, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
649 ; CHECK-NEXT:    [[SHUF_OR2:%.*]] = or <4 x i32> [[S3]], [[S4]]
650 ; CHECK-NEXT:    [[TMP1:%.*]] = trunc <4 x i32> [[SHUF_OR2]] to <4 x i1>
651 ; CHECK-NEXT:    [[DOTV:%.*]] = select <4 x i1> [[TMP1]], <4 x float> [[Z:%.*]], <4 x float> [[X]]
652 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <4 x float> [[DOTV]] to <4 x i32>
653 ; CHECK-NEXT:    ret <4 x i32> [[TMP2]]
655   %cmp = fcmp ole <4 x float> %x, %y
656   %sext = sext <4 x i1> %cmp to <4 x i32>
657   %s1 = shufflevector <4 x i32> %sext, <4 x i32> poison, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
658   %s2 = shufflevector <4 x i32> %sext, <4 x i32> poison, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
659   %shuf_or1 = or <4 x i32> %s1, %s2
660   %s3 = shufflevector <4 x i32> %shuf_or1, <4 x i32> poison, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
661   %s4 = shufflevector <4 x i32> %shuf_or1, <4 x i32> poison, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
662   %shuf_or2 = or <4 x i32> %s3, %s4
663   %not_or2 = xor <4 x i32> %shuf_or2, <i32 -1, i32 -1, i32 -1, i32 -1>
664   %xbc = bitcast <4 x float> %x to <4 x i32>
665   %zbc = bitcast <4 x float> %z to <4 x i32>
666   %and1 = and <4 x i32> %not_or2, %xbc
667   %and2 = and <4 x i32> %shuf_or2, %zbc
668   %sel = or <4 x i32> %and1, %and2
669   ret <4 x i32> %sel
672 define <4 x i32> @computesignbits_through_two_input_shuffle(<4 x i32> %x, <4 x i32> %y, <4 x i1> %cond1, <4 x i1> %cond2) {
673 ; CHECK-LABEL: @computesignbits_through_two_input_shuffle(
674 ; CHECK-NEXT:    [[SEXT1:%.*]] = sext <4 x i1> [[COND1:%.*]] to <4 x i32>
675 ; CHECK-NEXT:    [[SEXT2:%.*]] = sext <4 x i1> [[COND2:%.*]] to <4 x i32>
676 ; CHECK-NEXT:    [[COND:%.*]] = shufflevector <4 x i32> [[SEXT1]], <4 x i32> [[SEXT2]], <4 x i32> <i32 0, i32 2, i32 4, i32 6>
677 ; CHECK-NEXT:    [[TMP1:%.*]] = trunc <4 x i32> [[COND]] to <4 x i1>
678 ; CHECK-NEXT:    [[TMP2:%.*]] = select <4 x i1> [[TMP1]], <4 x i32> [[Y:%.*]], <4 x i32> [[X:%.*]]
679 ; CHECK-NEXT:    ret <4 x i32> [[TMP2]]
681   %sext1 = sext <4 x i1> %cond1 to <4 x i32>
682   %sext2 = sext <4 x i1> %cond2 to <4 x i32>
683   %cond = shufflevector <4 x i32> %sext1, <4 x i32> %sext2, <4 x i32> <i32 0, i32 2, i32 4, i32 6>
684   %notcond = xor <4 x i32> %cond, <i32 -1, i32 -1, i32 -1, i32 -1>
685   %and1 = and <4 x i32> %notcond, %x
686   %and2 = and <4 x i32> %cond, %y
687   %sel = or <4 x i32> %and1, %and2
688   ret <4 x i32> %sel