[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / test / Transforms / InstCombine / logical-select.ll
blobc23f851bf8da781765bfc1af33f9caa64a91b6b0
1 ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
2 ; RUN: opt < %s -instcombine -S | FileCheck %s
4 declare void @use(i8)
6 define i32 @foo(i32 %a, i32 %b, i32 %c, i32 %d) {
7 ; CHECK-LABEL: @foo(
8 ; CHECK-NEXT:    [[E:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
9 ; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[E]], i32 [[C:%.*]], i32 [[D:%.*]]
10 ; CHECK-NEXT:    ret i32 [[TMP1]]
12   %e = icmp slt i32 %a, %b
13   %f = sext i1 %e to i32
14   %g = and i32 %c, %f
15   %h = xor i32 %f, -1
16   %i = and i32 %d, %h
17   %j = or i32 %g, %i
18   ret i32 %j
21 define i32 @bar(i32 %a, i32 %b, i32 %c, i32 %d) {
22 ; CHECK-LABEL: @bar(
23 ; CHECK-NEXT:    [[E:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
24 ; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[E]], i32 [[C:%.*]], i32 [[D:%.*]]
25 ; CHECK-NEXT:    ret i32 [[TMP1]]
27   %e = icmp slt i32 %a, %b
28   %f = sext i1 %e to i32
29   %g = and i32 %c, %f
30   %h = xor i32 %f, -1
31   %i = and i32 %d, %h
32   %j = or i32 %i, %g
33   ret i32 %j
36 define i32 @goo(i32 %a, i32 %b, i32 %c, i32 %d) {
37 ; CHECK-LABEL: @goo(
38 ; CHECK-NEXT:    [[T0:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
39 ; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[T0]], i32 [[C:%.*]], i32 [[D:%.*]]
40 ; CHECK-NEXT:    ret i32 [[TMP1]]
42   %t0 = icmp slt i32 %a, %b
43   %iftmp.0.0 = select i1 %t0, i32 -1, i32 0
44   %t1 = and i32 %iftmp.0.0, %c
45   %not = xor i32 %iftmp.0.0, -1
46   %t2 = and i32 %not, %d
47   %t3 = or i32 %t1, %t2
48   ret i32 %t3
51 define i32 @poo(i32 %a, i32 %b, i32 %c, i32 %d) {
52 ; CHECK-LABEL: @poo(
53 ; CHECK-NEXT:    [[T0:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
54 ; CHECK-NEXT:    [[T3:%.*]] = select i1 [[T0]], i32 [[C:%.*]], i32 [[D:%.*]]
55 ; CHECK-NEXT:    ret i32 [[T3]]
57   %t0 = icmp slt i32 %a, %b
58   %iftmp.0.0 = select i1 %t0, i32 -1, i32 0
59   %t1 = and i32 %iftmp.0.0, %c
60   %iftmp = select i1 %t0, i32 0, i32 -1
61   %t2 = and i32 %iftmp, %d
62   %t3 = or i32 %t1, %t2
63   ret i32 %t3
66 ; PR32791 - https://bugs.llvm.org//show_bug.cgi?id=32791
67 ; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this.
69 define i32 @fold_inverted_icmp_preds(i32 %a, i32 %b, i32 %c, i32 %d) {
70 ; CHECK-LABEL: @fold_inverted_icmp_preds(
71 ; CHECK-NEXT:    [[CMP1:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
72 ; CHECK-NEXT:    [[SEL1:%.*]] = select i1 [[CMP1]], i32 [[C:%.*]], i32 0
73 ; CHECK-NEXT:    [[CMP2_NOT:%.*]] = icmp slt i32 [[A]], [[B]]
74 ; CHECK-NEXT:    [[SEL2:%.*]] = select i1 [[CMP2_NOT]], i32 0, i32 [[D:%.*]]
75 ; CHECK-NEXT:    [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]]
76 ; CHECK-NEXT:    ret i32 [[OR]]
78   %cmp1 = icmp slt i32 %a, %b
79   %sel1 = select i1 %cmp1, i32 %c, i32 0
80   %cmp2 = icmp sge i32 %a, %b
81   %sel2 = select i1 %cmp2, i32 %d, i32 0
82   %or = or i32 %sel1, %sel2
83   ret i32 %or
86 ; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this.
88 define i32 @fold_inverted_icmp_preds_reverse(i32 %a, i32 %b, i32 %c, i32 %d) {
89 ; CHECK-LABEL: @fold_inverted_icmp_preds_reverse(
90 ; CHECK-NEXT:    [[CMP1:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
91 ; CHECK-NEXT:    [[SEL1:%.*]] = select i1 [[CMP1]], i32 0, i32 [[C:%.*]]
92 ; CHECK-NEXT:    [[CMP2_NOT:%.*]] = icmp slt i32 [[A]], [[B]]
93 ; CHECK-NEXT:    [[SEL2:%.*]] = select i1 [[CMP2_NOT]], i32 [[D:%.*]], i32 0
94 ; CHECK-NEXT:    [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]]
95 ; CHECK-NEXT:    ret i32 [[OR]]
97   %cmp1 = icmp slt i32 %a, %b
98   %sel1 = select i1 %cmp1, i32 0, i32 %c
99   %cmp2 = icmp sge i32 %a, %b
100   %sel2 = select i1 %cmp2, i32 0, i32 %d
101   %or = or i32 %sel1, %sel2
102   ret i32 %or
105 ; TODO: Should fcmp have the same sort of predicate canonicalization as icmp?
107 define i32 @fold_inverted_fcmp_preds(float %a, float %b, i32 %c, i32 %d) {
108 ; CHECK-LABEL: @fold_inverted_fcmp_preds(
109 ; CHECK-NEXT:    [[CMP1:%.*]] = fcmp olt float [[A:%.*]], [[B:%.*]]
110 ; CHECK-NEXT:    [[SEL1:%.*]] = select i1 [[CMP1]], i32 [[C:%.*]], i32 0
111 ; CHECK-NEXT:    [[CMP2:%.*]] = fcmp uge float [[A]], [[B]]
112 ; CHECK-NEXT:    [[SEL2:%.*]] = select i1 [[CMP2]], i32 [[D:%.*]], i32 0
113 ; CHECK-NEXT:    [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]]
114 ; CHECK-NEXT:    ret i32 [[OR]]
116   %cmp1 = fcmp olt float %a, %b
117   %sel1 = select i1 %cmp1, i32 %c, i32 0
118   %cmp2 = fcmp uge float %a, %b
119   %sel2 = select i1 %cmp2, i32 %d, i32 0
120   %or = or i32 %sel1, %sel2
121   ret i32 %or
124 ; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this.
126 define <2 x i32> @fold_inverted_icmp_vector_preds(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c, <2 x i32> %d) {
127 ; CHECK-LABEL: @fold_inverted_icmp_vector_preds(
128 ; CHECK-NEXT:    [[CMP1_NOT:%.*]] = icmp eq <2 x i32> [[A:%.*]], [[B:%.*]]
129 ; CHECK-NEXT:    [[SEL1:%.*]] = select <2 x i1> [[CMP1_NOT]], <2 x i32> zeroinitializer, <2 x i32> [[C:%.*]]
130 ; CHECK-NEXT:    [[CMP2:%.*]] = icmp eq <2 x i32> [[A]], [[B]]
131 ; CHECK-NEXT:    [[SEL2:%.*]] = select <2 x i1> [[CMP2]], <2 x i32> [[D:%.*]], <2 x i32> zeroinitializer
132 ; CHECK-NEXT:    [[OR:%.*]] = or <2 x i32> [[SEL1]], [[SEL2]]
133 ; CHECK-NEXT:    ret <2 x i32> [[OR]]
135   %cmp1 = icmp ne <2 x i32> %a, %b
136   %sel1 = select <2 x i1> %cmp1, <2 x i32> %c, <2 x i32> <i32 0, i32 0>
137   %cmp2 = icmp eq <2 x i32> %a, %b
138   %sel2 = select <2 x i1> %cmp2, <2 x i32> %d, <2 x i32> <i32 0, i32 0>
139   %or = or <2 x i32> %sel1, %sel2
140   ret <2 x i32> %or
143 define i32 @par(i32 %a, i32 %b, i32 %c, i32 %d) {
144 ; CHECK-LABEL: @par(
145 ; CHECK-NEXT:    [[T0:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
146 ; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[T0]], i32 [[C:%.*]], i32 [[D:%.*]]
147 ; CHECK-NEXT:    ret i32 [[TMP1]]
149   %t0 = icmp slt i32 %a, %b
150   %iftmp.1.0 = select i1 %t0, i32 -1, i32 0
151   %t1 = and i32 %iftmp.1.0, %c
152   %not = xor i32 %iftmp.1.0, -1
153   %t2 = and i32 %not, %d
154   %t3 = or i32 %t1, %t2
155   ret i32 %t3
158 ; In the following tests (8 commutation variants), verify that a bitcast doesn't get
159 ; in the way of a select transform. These bitcasts are common in SSE/AVX and possibly
160 ; other vector code because of canonicalization to i64 elements for vectors.
162 ; The fptosi instructions are included to avoid commutation canonicalization based on
163 ; operator weight. Using another cast operator ensures that both operands of all logic
164 ; ops are equally weighted, and this ensures that we're testing all commutation
165 ; possibilities.
167 define <2 x i64> @bitcast_select_swap0(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
168 ; CHECK-LABEL: @bitcast_select_swap0(
169 ; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
170 ; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
171 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
172 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
173 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
174 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
175 ; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
177   %sia = fptosi <2 x double> %a to <2 x i64>
178   %sib = fptosi <2 x double> %b to <2 x i64>
179   %sext = sext <4 x i1> %cmp to <4 x i32>
180   %bc1 = bitcast <4 x i32> %sext to <2 x i64>
181   %and1 = and <2 x i64> %bc1, %sia
182   %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
183   %bc2 = bitcast <4 x i32> %neg to <2 x i64>
184   %and2 = and <2 x i64> %bc2, %sib
185   %or = or <2 x i64> %and1, %and2
186   ret <2 x i64> %or
189 define <2 x i64> @bitcast_select_swap1(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
190 ; CHECK-LABEL: @bitcast_select_swap1(
191 ; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
192 ; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
193 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
194 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
195 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
196 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
197 ; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
199   %sia = fptosi <2 x double> %a to <2 x i64>
200   %sib = fptosi <2 x double> %b to <2 x i64>
201   %sext = sext <4 x i1> %cmp to <4 x i32>
202   %bc1 = bitcast <4 x i32> %sext to <2 x i64>
203   %and1 = and <2 x i64> %bc1, %sia
204   %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
205   %bc2 = bitcast <4 x i32> %neg to <2 x i64>
206   %and2 = and <2 x i64> %bc2, %sib
207   %or = or <2 x i64> %and2, %and1
208   ret <2 x i64> %or
211 define <2 x i64> @bitcast_select_swap2(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
212 ; CHECK-LABEL: @bitcast_select_swap2(
213 ; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
214 ; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
215 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
216 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
217 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
218 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
219 ; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
221   %sia = fptosi <2 x double> %a to <2 x i64>
222   %sib = fptosi <2 x double> %b to <2 x i64>
223   %sext = sext <4 x i1> %cmp to <4 x i32>
224   %bc1 = bitcast <4 x i32> %sext to <2 x i64>
225   %and1 = and <2 x i64> %bc1, %sia
226   %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
227   %bc2 = bitcast <4 x i32> %neg to <2 x i64>
228   %and2 = and <2 x i64> %sib, %bc2
229   %or = or <2 x i64> %and1, %and2
230   ret <2 x i64> %or
233 define <2 x i64> @bitcast_select_swap3(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
234 ; CHECK-LABEL: @bitcast_select_swap3(
235 ; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
236 ; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
237 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
238 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
239 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
240 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
241 ; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
243   %sia = fptosi <2 x double> %a to <2 x i64>
244   %sib = fptosi <2 x double> %b to <2 x i64>
245   %sext = sext <4 x i1> %cmp to <4 x i32>
246   %bc1 = bitcast <4 x i32> %sext to <2 x i64>
247   %and1 = and <2 x i64> %bc1, %sia
248   %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
249   %bc2 = bitcast <4 x i32> %neg to <2 x i64>
250   %and2 = and <2 x i64> %sib, %bc2
251   %or = or <2 x i64> %and2, %and1
252   ret <2 x i64> %or
255 define <2 x i64> @bitcast_select_swap4(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
256 ; CHECK-LABEL: @bitcast_select_swap4(
257 ; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
258 ; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
259 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
260 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
261 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
262 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
263 ; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
265   %sia = fptosi <2 x double> %a to <2 x i64>
266   %sib = fptosi <2 x double> %b to <2 x i64>
267   %sext = sext <4 x i1> %cmp to <4 x i32>
268   %bc1 = bitcast <4 x i32> %sext to <2 x i64>
269   %and1 = and <2 x i64> %sia, %bc1
270   %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
271   %bc2 = bitcast <4 x i32> %neg to <2 x i64>
272   %and2 = and <2 x i64> %bc2, %sib
273   %or = or <2 x i64> %and1, %and2
274   ret <2 x i64> %or
277 define <2 x i64> @bitcast_select_swap5(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
278 ; CHECK-LABEL: @bitcast_select_swap5(
279 ; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
280 ; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
281 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
282 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
283 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
284 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
285 ; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
287   %sia = fptosi <2 x double> %a to <2 x i64>
288   %sib = fptosi <2 x double> %b to <2 x i64>
289   %sext = sext <4 x i1> %cmp to <4 x i32>
290   %bc1 = bitcast <4 x i32> %sext to <2 x i64>
291   %and1 = and <2 x i64> %sia, %bc1
292   %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
293   %bc2 = bitcast <4 x i32> %neg to <2 x i64>
294   %and2 = and <2 x i64> %bc2, %sib
295   %or = or <2 x i64> %and2, %and1
296   ret <2 x i64> %or
299 define <2 x i64> @bitcast_select_swap6(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
300 ; CHECK-LABEL: @bitcast_select_swap6(
301 ; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
302 ; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
303 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
304 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
305 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
306 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
307 ; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
309   %sia = fptosi <2 x double> %a to <2 x i64>
310   %sib = fptosi <2 x double> %b to <2 x i64>
311   %sext = sext <4 x i1> %cmp to <4 x i32>
312   %bc1 = bitcast <4 x i32> %sext to <2 x i64>
313   %and1 = and <2 x i64> %sia, %bc1
314   %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
315   %bc2 = bitcast <4 x i32> %neg to <2 x i64>
316   %and2 = and <2 x i64> %sib, %bc2
317   %or = or <2 x i64> %and1, %and2
318   ret <2 x i64> %or
321 define <2 x i64> @bitcast_select_swap7(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
322 ; CHECK-LABEL: @bitcast_select_swap7(
323 ; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
324 ; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
325 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
326 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
327 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
328 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
329 ; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
331   %sia = fptosi <2 x double> %a to <2 x i64>
332   %sib = fptosi <2 x double> %b to <2 x i64>
333   %sext = sext <4 x i1> %cmp to <4 x i32>
334   %bc1 = bitcast <4 x i32> %sext to <2 x i64>
335   %and1 = and <2 x i64> %sia, %bc1
336   %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
337   %bc2 = bitcast <4 x i32> %neg to <2 x i64>
338   %and2 = and <2 x i64> %sib, %bc2
339   %or = or <2 x i64> %and2, %and1
340   ret <2 x i64> %or
343 define <2 x i64> @bitcast_select_multi_uses(<4 x i1> %cmp, <2 x i64> %a, <2 x i64> %b) {
344 ; CHECK-LABEL: @bitcast_select_multi_uses(
345 ; CHECK-NEXT:    [[SEXT:%.*]] = sext <4 x i1> [[CMP:%.*]] to <4 x i32>
346 ; CHECK-NEXT:    [[BC1:%.*]] = bitcast <4 x i32> [[SEXT]] to <2 x i64>
347 ; CHECK-NEXT:    [[AND1:%.*]] = and <2 x i64> [[BC1]], [[A:%.*]]
348 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <4 x i32> [[SEXT]] to <2 x i64>
349 ; CHECK-NEXT:    [[BC2:%.*]] = xor <2 x i64> [[TMP1]], <i64 -1, i64 -1>
350 ; CHECK-NEXT:    [[AND2:%.*]] = and <2 x i64> [[BC2]], [[B:%.*]]
351 ; CHECK-NEXT:    [[OR:%.*]] = or <2 x i64> [[AND2]], [[AND1]]
352 ; CHECK-NEXT:    [[ADD:%.*]] = add <2 x i64> [[AND2]], [[BC2]]
353 ; CHECK-NEXT:    [[SUB:%.*]] = sub <2 x i64> [[OR]], [[ADD]]
354 ; CHECK-NEXT:    ret <2 x i64> [[SUB]]
356   %sext = sext <4 x i1> %cmp to <4 x i32>
357   %bc1 = bitcast <4 x i32> %sext to <2 x i64>
358   %and1 = and <2 x i64> %a, %bc1
359   %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
360   %bc2 = bitcast <4 x i32> %neg to <2 x i64>
361   %and2 = and <2 x i64> %b, %bc2
362   %or = or <2 x i64> %and2, %and1
363   %add = add <2 x i64> %and2, %bc2
364   %sub = sub <2 x i64> %or, %add
365   ret <2 x i64> %sub
368 define i1 @bools(i1 %a, i1 %b, i1 %c) {
369 ; CHECK-LABEL: @bools(
370 ; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[C:%.*]], i1 [[B:%.*]], i1 [[A:%.*]]
371 ; CHECK-NEXT:    ret i1 [[TMP1]]
373   %not = xor i1 %c, -1
374   %and1 = and i1 %not, %a
375   %and2 = and i1 %c, %b
376   %or = or i1 %and1, %and2
377   ret i1 %or
380 define i1 @bools_logical(i1 %a, i1 %b, i1 %c) {
381 ; CHECK-LABEL: @bools_logical(
382 ; CHECK-NEXT:    [[OR:%.*]] = select i1 [[C:%.*]], i1 [[B:%.*]], i1 [[A:%.*]]
383 ; CHECK-NEXT:    ret i1 [[OR]]
385   %not = xor i1 %c, -1
386   %and1 = select i1 %not, i1 %a, i1 false
387   %and2 = select i1 %c, i1 %b, i1 false
388   %or = select i1 %and1, i1 true, i1 %and2
389   ret i1 %or
392 ; Form a select if we know we can replace 2 simple logic ops.
394 define i1 @bools_multi_uses1(i1 %a, i1 %b, i1 %c) {
395 ; CHECK-LABEL: @bools_multi_uses1(
396 ; CHECK-NEXT:    [[NOT:%.*]] = xor i1 [[C:%.*]], true
397 ; CHECK-NEXT:    [[AND1:%.*]] = and i1 [[NOT]], [[A:%.*]]
398 ; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[C]], i1 [[B:%.*]], i1 [[A]]
399 ; CHECK-NEXT:    [[XOR:%.*]] = xor i1 [[TMP1]], [[AND1]]
400 ; CHECK-NEXT:    ret i1 [[XOR]]
402   %not = xor i1 %c, -1
403   %and1 = and i1 %not, %a
404   %and2 = and i1 %c, %b
405   %or = or i1 %and1, %and2
406   %xor = xor i1 %or, %and1
407   ret i1 %xor
410 define i1 @bools_multi_uses1_logical(i1 %a, i1 %b, i1 %c) {
411 ; CHECK-LABEL: @bools_multi_uses1_logical(
412 ; CHECK-NEXT:    [[NOT:%.*]] = xor i1 [[C:%.*]], true
413 ; CHECK-NEXT:    [[AND1:%.*]] = select i1 [[NOT]], i1 [[A:%.*]], i1 false
414 ; CHECK-NEXT:    [[OR:%.*]] = select i1 [[C]], i1 [[B:%.*]], i1 [[A]]
415 ; CHECK-NEXT:    [[XOR:%.*]] = xor i1 [[OR]], [[AND1]]
416 ; CHECK-NEXT:    ret i1 [[XOR]]
418   %not = xor i1 %c, -1
419   %and1 = select i1 %not, i1 %a, i1 false
420   %and2 = select i1 %c, i1 %b, i1 false
421   %or = select i1 %and1, i1 true, i1 %and2
422   %xor = xor i1 %or, %and1
423   ret i1 %xor
426 ; Don't replace a cheap logic op with a potentially expensive select
427 ; unless we can also eliminate one of the other original ops.
429 define i1 @bools_multi_uses2(i1 %a, i1 %b, i1 %c) {
430 ; CHECK-LABEL: @bools_multi_uses2(
431 ; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[C:%.*]], i1 [[B:%.*]], i1 [[A:%.*]]
432 ; CHECK-NEXT:    ret i1 [[TMP1]]
434   %not = xor i1 %c, -1
435   %and1 = and i1 %not, %a
436   %and2 = and i1 %c, %b
437   %or = or i1 %and1, %and2
438   %add = add i1 %and1, %and2
439   %and3 = and i1 %or, %add
440   ret i1 %and3
443 define i1 @bools_multi_uses2_logical(i1 %a, i1 %b, i1 %c) {
444 ; CHECK-LABEL: @bools_multi_uses2_logical(
445 ; CHECK-NEXT:    [[NOT:%.*]] = xor i1 [[C:%.*]], true
446 ; CHECK-NEXT:    [[AND1:%.*]] = select i1 [[NOT]], i1 [[A:%.*]], i1 false
447 ; CHECK-NEXT:    [[AND2:%.*]] = select i1 [[C]], i1 [[B:%.*]], i1 false
448 ; CHECK-NEXT:    [[OR:%.*]] = select i1 [[C]], i1 [[B]], i1 [[A]]
449 ; CHECK-NEXT:    [[ADD:%.*]] = xor i1 [[AND1]], [[AND2]]
450 ; CHECK-NEXT:    [[AND3:%.*]] = select i1 [[OR]], i1 [[ADD]], i1 false
451 ; CHECK-NEXT:    ret i1 [[AND3]]
453   %not = xor i1 %c, -1
454   %and1 = select i1 %not, i1 %a, i1 false
455   %and2 = select i1 %c, i1 %b, i1 false
456   %or = select i1 %and1, i1 true, i1 %and2
457   %add = add i1 %and1, %and2
458   %and3 = select i1 %or, i1 %add, i1 false
459   ret i1 %and3
462 define <4 x i1> @vec_of_bools(<4 x i1> %a, <4 x i1> %b, <4 x i1> %c) {
463 ; CHECK-LABEL: @vec_of_bools(
464 ; CHECK-NEXT:    [[TMP1:%.*]] = select <4 x i1> [[C:%.*]], <4 x i1> [[B:%.*]], <4 x i1> [[A:%.*]]
465 ; CHECK-NEXT:    ret <4 x i1> [[TMP1]]
467   %not = xor <4 x i1> %c, <i1 true, i1 true, i1 true, i1 true>
468   %and1 = and <4 x i1> %not, %a
469   %and2 = and <4 x i1> %b, %c
470   %or = or <4 x i1> %and2, %and1
471   ret <4 x i1> %or
474 define i4 @vec_of_casted_bools(i4 %a, i4 %b, <4 x i1> %c) {
475 ; CHECK-LABEL: @vec_of_casted_bools(
476 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast i4 [[B:%.*]] to <4 x i1>
477 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast i4 [[A:%.*]] to <4 x i1>
478 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[C:%.*]], <4 x i1> [[TMP1]], <4 x i1> [[TMP2]]
479 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i1> [[TMP3]] to i4
480 ; CHECK-NEXT:    ret i4 [[TMP4]]
482   %not = xor <4 x i1> %c, <i1 true, i1 true, i1 true, i1 true>
483   %bc1 = bitcast <4 x i1> %not to i4
484   %bc2 = bitcast <4 x i1> %c to i4
485   %and1 = and i4 %a, %bc1
486   %and2 = and i4 %bc2, %b
487   %or = or i4 %and1, %and2
488   ret i4 %or
491 ; Inverted 'and' constants mean this is a select which is canonicalized to a shuffle.
493 define <4 x i32> @vec_sel_consts(<4 x i32> %a, <4 x i32> %b) {
494 ; CHECK-LABEL: @vec_sel_consts(
495 ; CHECK-NEXT:    [[TMP1:%.*]] = shufflevector <4 x i32> [[A:%.*]], <4 x i32> [[B:%.*]], <4 x i32> <i32 0, i32 5, i32 6, i32 3>
496 ; CHECK-NEXT:    ret <4 x i32> [[TMP1]]
498   %and1 = and <4 x i32> %a, <i32 -1, i32 0, i32 0, i32 -1>
499   %and2 = and <4 x i32> %b, <i32 0, i32 -1, i32 -1, i32 0>
500   %or = or <4 x i32> %and1, %and2
501   ret <4 x i32> %or
504 define <3 x i129> @vec_sel_consts_weird(<3 x i129> %a, <3 x i129> %b) {
505 ; CHECK-LABEL: @vec_sel_consts_weird(
506 ; CHECK-NEXT:    [[TMP1:%.*]] = shufflevector <3 x i129> [[A:%.*]], <3 x i129> [[B:%.*]], <3 x i32> <i32 0, i32 4, i32 2>
507 ; CHECK-NEXT:    ret <3 x i129> [[TMP1]]
509   %and1 = and <3 x i129> %a, <i129 -1, i129 0, i129 -1>
510   %and2 = and <3 x i129> %b, <i129 0, i129 -1, i129 0>
511   %or = or <3 x i129> %and2, %and1
512   ret <3 x i129> %or
515 ; The mask elements must be inverted for this to be a select.
517 define <4 x i32> @vec_not_sel_consts(<4 x i32> %a, <4 x i32> %b) {
518 ; CHECK-LABEL: @vec_not_sel_consts(
519 ; CHECK-NEXT:    [[AND1:%.*]] = and <4 x i32> [[A:%.*]], <i32 -1, i32 0, i32 0, i32 0>
520 ; CHECK-NEXT:    [[AND2:%.*]] = and <4 x i32> [[B:%.*]], <i32 0, i32 -1, i32 0, i32 -1>
521 ; CHECK-NEXT:    [[OR:%.*]] = or <4 x i32> [[AND1]], [[AND2]]
522 ; CHECK-NEXT:    ret <4 x i32> [[OR]]
524   %and1 = and <4 x i32> %a, <i32 -1, i32 0, i32 0, i32 0>
525   %and2 = and <4 x i32> %b, <i32 0, i32 -1, i32 0, i32 -1>
526   %or = or <4 x i32> %and1, %and2
527   ret <4 x i32> %or
530 define <4 x i32> @vec_not_sel_consts_undef_elts(<4 x i32> %a, <4 x i32> %b) {
531 ; CHECK-LABEL: @vec_not_sel_consts_undef_elts(
532 ; CHECK-NEXT:    [[AND1:%.*]] = and <4 x i32> [[A:%.*]], <i32 -1, i32 undef, i32 0, i32 0>
533 ; CHECK-NEXT:    [[AND2:%.*]] = and <4 x i32> [[B:%.*]], <i32 0, i32 -1, i32 0, i32 undef>
534 ; CHECK-NEXT:    [[OR:%.*]] = or <4 x i32> [[AND1]], [[AND2]]
535 ; CHECK-NEXT:    ret <4 x i32> [[OR]]
537   %and1 = and <4 x i32> %a, <i32 -1, i32 undef, i32 0, i32 0>
538   %and2 = and <4 x i32> %b, <i32 0, i32 -1, i32 0, i32 undef>
539   %or = or <4 x i32> %and1, %and2
540   ret <4 x i32> %or
543 ; The inverted constants may be operands of xor instructions.
545 define <4 x i32> @vec_sel_xor(<4 x i32> %a, <4 x i32> %b, <4 x i1> %c) {
546 ; CHECK-LABEL: @vec_sel_xor(
547 ; CHECK-NEXT:    [[TMP1:%.*]] = xor <4 x i1> [[C:%.*]], <i1 false, i1 true, i1 true, i1 true>
548 ; CHECK-NEXT:    [[TMP2:%.*]] = select <4 x i1> [[TMP1]], <4 x i32> [[A:%.*]], <4 x i32> [[B:%.*]]
549 ; CHECK-NEXT:    ret <4 x i32> [[TMP2]]
551   %mask = sext <4 x i1> %c to <4 x i32>
552   %mask_flip1 = xor <4 x i32> %mask, <i32 -1, i32 0, i32 0, i32 0>
553   %not_mask_flip1 = xor <4 x i32> %mask, <i32 0, i32 -1, i32 -1, i32 -1>
554   %and1 = and <4 x i32> %not_mask_flip1, %a
555   %and2 = and <4 x i32> %mask_flip1, %b
556   %or = or <4 x i32> %and1, %and2
557   ret <4 x i32> %or
560 ; Allow the transform even if the mask values have multiple uses because
561 ; there's still a net reduction of instructions from removing the and/and/or.
563 define <4 x i32> @vec_sel_xor_multi_use(<4 x i32> %a, <4 x i32> %b, <4 x i1> %c) {
564 ; CHECK-LABEL: @vec_sel_xor_multi_use(
565 ; CHECK-NEXT:    [[TMP1:%.*]] = xor <4 x i1> [[C:%.*]], <i1 true, i1 false, i1 false, i1 false>
566 ; CHECK-NEXT:    [[MASK_FLIP1:%.*]] = sext <4 x i1> [[TMP1]] to <4 x i32>
567 ; CHECK-NEXT:    [[TMP2:%.*]] = xor <4 x i1> [[C]], <i1 false, i1 true, i1 true, i1 true>
568 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[TMP2]], <4 x i32> [[A:%.*]], <4 x i32> [[B:%.*]]
569 ; CHECK-NEXT:    [[ADD:%.*]] = add <4 x i32> [[TMP3]], [[MASK_FLIP1]]
570 ; CHECK-NEXT:    ret <4 x i32> [[ADD]]
572   %mask = sext <4 x i1> %c to <4 x i32>
573   %mask_flip1 = xor <4 x i32> %mask, <i32 -1, i32 0, i32 0, i32 0>
574   %not_mask_flip1 = xor <4 x i32> %mask, <i32 0, i32 -1, i32 -1, i32 -1>
575   %and1 = and <4 x i32> %not_mask_flip1, %a
576   %and2 = and <4 x i32> %mask_flip1, %b
577   %or = or <4 x i32> %and1, %and2
578   %add = add <4 x i32> %or, %mask_flip1
579   ret <4 x i32> %add
582 ; The 'ashr' guarantees that we have a bitmask, so this is select with truncated condition.
584 define i32 @allSignBits(i32 %cond, i32 %tval, i32 %fval) {
585 ; CHECK-LABEL: @allSignBits(
586 ; CHECK-NEXT:    [[ISNEG1:%.*]] = icmp slt i32 [[COND:%.*]], 0
587 ; CHECK-NEXT:    [[A1:%.*]] = select i1 [[ISNEG1]], i32 [[TVAL:%.*]], i32 0
588 ; CHECK-NEXT:    [[ISNEG:%.*]] = icmp slt i32 [[COND]], 0
589 ; CHECK-NEXT:    [[A2:%.*]] = select i1 [[ISNEG]], i32 0, i32 [[FVAL:%.*]]
590 ; CHECK-NEXT:    [[SEL:%.*]] = or i32 [[A1]], [[A2]]
591 ; CHECK-NEXT:    ret i32 [[SEL]]
593   %bitmask = ashr i32 %cond, 31
594   %not_bitmask = xor i32 %bitmask, -1
595   %a1 = and i32 %tval, %bitmask
596   %a2 = and i32 %not_bitmask, %fval
597   %sel = or i32 %a1, %a2
598   ret i32 %sel
601 define <4 x i8> @allSignBits_vec(<4 x i8> %cond, <4 x i8> %tval, <4 x i8> %fval) {
602 ; CHECK-LABEL: @allSignBits_vec(
603 ; CHECK-NEXT:    [[ISNEG1:%.*]] = icmp slt <4 x i8> [[COND:%.*]], zeroinitializer
604 ; CHECK-NEXT:    [[A1:%.*]] = select <4 x i1> [[ISNEG1]], <4 x i8> [[TVAL:%.*]], <4 x i8> zeroinitializer
605 ; CHECK-NEXT:    [[ISNEG:%.*]] = icmp slt <4 x i8> [[COND]], zeroinitializer
606 ; CHECK-NEXT:    [[A2:%.*]] = select <4 x i1> [[ISNEG]], <4 x i8> zeroinitializer, <4 x i8> [[FVAL:%.*]]
607 ; CHECK-NEXT:    [[SEL:%.*]] = or <4 x i8> [[A2]], [[A1]]
608 ; CHECK-NEXT:    ret <4 x i8> [[SEL]]
610   %bitmask = ashr <4 x i8> %cond, <i8 7, i8 7, i8 7, i8 7>
611   %not_bitmask = xor <4 x i8> %bitmask, <i8 -1, i8 -1, i8 -1, i8 -1>
612   %a1 = and <4 x i8> %tval, %bitmask
613   %a2 = and <4 x i8> %fval, %not_bitmask
614   %sel = or <4 x i8> %a2, %a1
615   ret <4 x i8> %sel
618 ; Negative test - make sure that bitcasts from FP do not cause a crash.
620 define <2 x i64> @fp_bitcast(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
621 ; CHECK-LABEL: @fp_bitcast(
622 ; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
623 ; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
624 ; CHECK-NEXT:    [[BC1:%.*]] = bitcast <2 x double> [[A]] to <2 x i64>
625 ; CHECK-NEXT:    [[AND1:%.*]] = and <2 x i64> [[SIA]], [[BC1]]
626 ; CHECK-NEXT:    [[BC2:%.*]] = bitcast <2 x double> [[B]] to <2 x i64>
627 ; CHECK-NEXT:    [[AND2:%.*]] = and <2 x i64> [[SIB]], [[BC2]]
628 ; CHECK-NEXT:    [[OR:%.*]] = or <2 x i64> [[AND2]], [[AND1]]
629 ; CHECK-NEXT:    ret <2 x i64> [[OR]]
631   %sia = fptosi <2 x double> %a to <2 x i64>
632   %sib = fptosi <2 x double> %b to <2 x i64>
633   %bc1 = bitcast <2 x double> %a to <2 x i64>
634   %and1 = and <2 x i64> %sia, %bc1
635   %bc2 = bitcast <2 x double> %b to <2 x i64>
636   %and2 = and <2 x i64> %sib, %bc2
637   %or = or <2 x i64> %and2, %and1
638   ret <2 x i64> %or
641 define <4 x i32> @computesignbits_through_shuffles(<4 x float> %x, <4 x float> %y, <4 x float> %z) {
642 ; CHECK-LABEL: @computesignbits_through_shuffles(
643 ; CHECK-NEXT:    [[CMP:%.*]] = fcmp ole <4 x float> [[X:%.*]], [[Y:%.*]]
644 ; CHECK-NEXT:    [[SEXT:%.*]] = sext <4 x i1> [[CMP]] to <4 x i32>
645 ; CHECK-NEXT:    [[S1:%.*]] = shufflevector <4 x i32> [[SEXT]], <4 x i32> undef, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
646 ; CHECK-NEXT:    [[S2:%.*]] = shufflevector <4 x i32> [[SEXT]], <4 x i32> undef, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
647 ; CHECK-NEXT:    [[SHUF_OR1:%.*]] = or <4 x i32> [[S1]], [[S2]]
648 ; CHECK-NEXT:    [[S3:%.*]] = shufflevector <4 x i32> [[SHUF_OR1]], <4 x i32> undef, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
649 ; CHECK-NEXT:    [[S4:%.*]] = shufflevector <4 x i32> [[SHUF_OR1]], <4 x i32> undef, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
650 ; CHECK-NEXT:    [[SHUF_OR2:%.*]] = or <4 x i32> [[S3]], [[S4]]
651 ; CHECK-NEXT:    [[TMP1:%.*]] = trunc <4 x i32> [[SHUF_OR2]] to <4 x i1>
652 ; CHECK-NEXT:    [[DOTV:%.*]] = select <4 x i1> [[TMP1]], <4 x float> [[Z:%.*]], <4 x float> [[X]]
653 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <4 x float> [[DOTV]] to <4 x i32>
654 ; CHECK-NEXT:    ret <4 x i32> [[TMP2]]
656   %cmp = fcmp ole <4 x float> %x, %y
657   %sext = sext <4 x i1> %cmp to <4 x i32>
658   %s1 = shufflevector <4 x i32> %sext, <4 x i32> undef, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
659   %s2 = shufflevector <4 x i32> %sext, <4 x i32> undef, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
660   %shuf_or1 = or <4 x i32> %s1, %s2
661   %s3 = shufflevector <4 x i32> %shuf_or1, <4 x i32> undef, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
662   %s4 = shufflevector <4 x i32> %shuf_or1, <4 x i32> undef, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
663   %shuf_or2 = or <4 x i32> %s3, %s4
664   %not_or2 = xor <4 x i32> %shuf_or2, <i32 -1, i32 -1, i32 -1, i32 -1>
665   %xbc = bitcast <4 x float> %x to <4 x i32>
666   %zbc = bitcast <4 x float> %z to <4 x i32>
667   %and1 = and <4 x i32> %not_or2, %xbc
668   %and2 = and <4 x i32> %shuf_or2, %zbc
669   %sel = or <4 x i32> %and1, %and2
670   ret <4 x i32> %sel
673 define <4 x i32> @computesignbits_through_two_input_shuffle(<4 x i32> %x, <4 x i32> %y, <4 x i1> %cond1, <4 x i1> %cond2) {
674 ; CHECK-LABEL: @computesignbits_through_two_input_shuffle(
675 ; CHECK-NEXT:    [[SEXT1:%.*]] = sext <4 x i1> [[COND1:%.*]] to <4 x i32>
676 ; CHECK-NEXT:    [[SEXT2:%.*]] = sext <4 x i1> [[COND2:%.*]] to <4 x i32>
677 ; CHECK-NEXT:    [[COND:%.*]] = shufflevector <4 x i32> [[SEXT1]], <4 x i32> [[SEXT2]], <4 x i32> <i32 0, i32 2, i32 4, i32 6>
678 ; CHECK-NEXT:    [[TMP1:%.*]] = trunc <4 x i32> [[COND]] to <4 x i1>
679 ; CHECK-NEXT:    [[TMP2:%.*]] = select <4 x i1> [[TMP1]], <4 x i32> [[Y:%.*]], <4 x i32> [[X:%.*]]
680 ; CHECK-NEXT:    ret <4 x i32> [[TMP2]]
682   %sext1 = sext <4 x i1> %cond1 to <4 x i32>
683   %sext2 = sext <4 x i1> %cond2 to <4 x i32>
684   %cond = shufflevector <4 x i32> %sext1, <4 x i32> %sext2, <4 x i32> <i32 0, i32 2, i32 4, i32 6>
685   %notcond = xor <4 x i32> %cond, <i32 -1, i32 -1, i32 -1, i32 -1>
686   %and1 = and <4 x i32> %notcond, %x
687   %and2 = and <4 x i32> %cond, %y
688   %sel = or <4 x i32> %and1, %and2
689   ret <4 x i32> %sel
692 ; Bitcast of condition from narrow source element type can be converted to select.
694 define <2 x i64> @bitcast_vec_cond(<16 x i1> %cond, <2 x i64> %c, <2 x i64> %d) {
695 ; CHECK-LABEL: @bitcast_vec_cond(
696 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[D:%.*]] to <16 x i8>
697 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[C:%.*]] to <16 x i8>
698 ; CHECK-NEXT:    [[TMP3:%.*]] = select <16 x i1> [[COND:%.*]], <16 x i8> [[TMP1]], <16 x i8> [[TMP2]]
699 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <16 x i8> [[TMP3]] to <2 x i64>
700 ; CHECK-NEXT:    ret <2 x i64> [[TMP4]]
702   %s = sext <16 x i1> %cond to <16 x i8>
703   %t9 = bitcast <16 x i8> %s to <2 x i64>
704   %nott9 = xor <2 x i64> %t9, <i64 -1, i64 -1>
705   %t11 = and <2 x i64> %nott9, %c
706   %t12 = and <2 x i64> %t9, %d
707   %r = or <2 x i64> %t11, %t12
708   ret <2 x i64> %r
711 ; Negative test - bitcast of condition from wide source element type cannot be converted to select.
713 define <8 x i3> @bitcast_vec_cond_commute1(<3 x i1> %cond, <8 x i3> %pc, <8 x i3> %d) {
714 ; CHECK-LABEL: @bitcast_vec_cond_commute1(
715 ; CHECK-NEXT:    [[C:%.*]] = mul <8 x i3> [[PC:%.*]], [[PC]]
716 ; CHECK-NEXT:    [[S:%.*]] = sext <3 x i1> [[COND:%.*]] to <3 x i8>
717 ; CHECK-NEXT:    [[T9:%.*]] = bitcast <3 x i8> [[S]] to <8 x i3>
718 ; CHECK-NEXT:    [[NOTT9:%.*]] = xor <8 x i3> [[T9]], <i3 -1, i3 -1, i3 -1, i3 -1, i3 -1, i3 -1, i3 -1, i3 -1>
719 ; CHECK-NEXT:    [[T11:%.*]] = and <8 x i3> [[C]], [[NOTT9]]
720 ; CHECK-NEXT:    [[T12:%.*]] = and <8 x i3> [[T9]], [[D:%.*]]
721 ; CHECK-NEXT:    [[R:%.*]] = or <8 x i3> [[T11]], [[T12]]
722 ; CHECK-NEXT:    ret <8 x i3> [[R]]
724   %c = mul <8 x i3> %pc, %pc ; thwart complexity-based canonicalization
725   %s = sext <3 x i1> %cond to <3 x i8>
726   %t9 = bitcast <3 x i8> %s to <8 x i3>
727   %nott9 = xor <8 x i3> %t9, <i3 -1, i3 -1, i3 -1, i3 -1, i3 -1, i3 -1, i3 -1, i3 -1>
728   %t11 = and <8 x i3> %c, %nott9
729   %t12 = and <8 x i3> %t9, %d
730   %r = or <8 x i3> %t11, %t12
731   ret <8 x i3> %r
734 define <2 x i16> @bitcast_vec_cond_commute2(<4 x i1> %cond, <2 x i16> %pc, <2 x i16> %pd) {
735 ; CHECK-LABEL: @bitcast_vec_cond_commute2(
736 ; CHECK-NEXT:    [[C:%.*]] = mul <2 x i16> [[PC:%.*]], [[PC]]
737 ; CHECK-NEXT:    [[D:%.*]] = mul <2 x i16> [[PD:%.*]], [[PD]]
738 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i16> [[D]] to <4 x i8>
739 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i16> [[C]] to <4 x i8>
740 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[COND:%.*]], <4 x i8> [[TMP1]], <4 x i8> [[TMP2]]
741 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i8> [[TMP3]] to <2 x i16>
742 ; CHECK-NEXT:    ret <2 x i16> [[TMP4]]
744   %c = mul <2 x i16> %pc, %pc ; thwart complexity-based canonicalization
745   %d = mul <2 x i16> %pd, %pd ; thwart complexity-based canonicalization
746   %s = sext <4 x i1> %cond to <4 x i8>
747   %t9 = bitcast <4 x i8> %s to <2 x i16>
748   %nott9 = xor <2 x i16> %t9, <i16 -1, i16 -1>
749   %t11 = and <2 x i16> %c, %nott9
750   %t12 = and <2 x i16> %d, %t9
751   %r = or <2 x i16> %t11, %t12
752   ret <2 x i16> %r
755 ; Condition doesn't have to be a bool vec - just all signbits.
757 define <2 x i16> @bitcast_vec_cond_commute3(<4 x i8> %cond, <2 x i16> %pc, <2 x i16> %pd) {
758 ; CHECK-LABEL: @bitcast_vec_cond_commute3(
759 ; CHECK-NEXT:    [[C:%.*]] = mul <2 x i16> [[PC:%.*]], [[PC]]
760 ; CHECK-NEXT:    [[D:%.*]] = mul <2 x i16> [[PD:%.*]], [[PD]]
761 ; CHECK-NEXT:    [[DOTNOT:%.*]] = icmp sgt <4 x i8> [[COND:%.*]], <i8 -1, i8 -1, i8 -1, i8 -1>
762 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i16> [[D]] to <4 x i8>
763 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i16> [[C]] to <4 x i8>
764 ; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[DOTNOT]], <4 x i8> [[TMP2]], <4 x i8> [[TMP1]]
765 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <4 x i8> [[TMP3]] to <2 x i16>
766 ; CHECK-NEXT:    ret <2 x i16> [[TMP4]]
768   %c = mul <2 x i16> %pc, %pc ; thwart complexity-based canonicalization
769   %d = mul <2 x i16> %pd, %pd ; thwart complexity-based canonicalization
770   %s = ashr <4 x i8> %cond, <i8 7, i8 7, i8 7, i8 7>
771   %t9 = bitcast <4 x i8> %s to <2 x i16>
772   %nott9 = xor <2 x i16> %t9, <i16 -1, i16 -1>
773   %t11 = and <2 x i16> %c, %nott9
774   %t12 = and <2 x i16> %d, %t9
775   %r = or <2 x i16> %t11, %t12
776   ret <2 x i16> %r
779 ; Don't crash on invalid type for compute signbits.
781 define <2 x i64> @bitcast_fp_vec_cond(<2 x double> %s, <2 x i64> %c, <2 x i64> %d) {
782 ; CHECK-LABEL: @bitcast_fp_vec_cond(
783 ; CHECK-NEXT:    [[T9:%.*]] = bitcast <2 x double> [[S:%.*]] to <2 x i64>
784 ; CHECK-NEXT:    [[NOTT9:%.*]] = xor <2 x i64> [[T9]], <i64 -1, i64 -1>
785 ; CHECK-NEXT:    [[T11:%.*]] = and <2 x i64> [[NOTT9]], [[C:%.*]]
786 ; CHECK-NEXT:    [[T12:%.*]] = and <2 x i64> [[T9]], [[D:%.*]]
787 ; CHECK-NEXT:    [[R:%.*]] = or <2 x i64> [[T11]], [[T12]]
788 ; CHECK-NEXT:    ret <2 x i64> [[R]]
790   %t9 = bitcast <2 x double> %s to <2 x i64>
791   %nott9 = xor <2 x i64> %t9, <i64 -1, i64 -1>
792   %t11 = and <2 x i64> %nott9, %c
793   %t12 = and <2 x i64> %t9, %d
794   %r = or <2 x i64> %t11, %t12
795   ret <2 x i64> %r
798 ; Wider source type would be ok except poison could leak across elements.
800 define <2 x i64> @bitcast_int_vec_cond(i1 %b, <2 x i64> %c, <2 x i64> %d) {
801 ; CHECK-LABEL: @bitcast_int_vec_cond(
802 ; CHECK-NEXT:    [[S:%.*]] = sext i1 [[B:%.*]] to i128
803 ; CHECK-NEXT:    [[T9:%.*]] = bitcast i128 [[S]] to <2 x i64>
804 ; CHECK-NEXT:    [[NOTT9:%.*]] = xor <2 x i64> [[T9]], <i64 -1, i64 -1>
805 ; CHECK-NEXT:    [[T11:%.*]] = and <2 x i64> [[NOTT9]], [[C:%.*]]
806 ; CHECK-NEXT:    [[T12:%.*]] = and <2 x i64> [[T9]], [[D:%.*]]
807 ; CHECK-NEXT:    [[R:%.*]] = or <2 x i64> [[T11]], [[T12]]
808 ; CHECK-NEXT:    ret <2 x i64> [[R]]
810   %s = sext i1 %b to i128
811   %t9 = bitcast i128 %s to <2 x i64>
812   %nott9 = xor <2 x i64> %t9, <i64 -1, i64 -1>
813   %t11 = and <2 x i64> %nott9, %c
814   %t12 = and <2 x i64> %t9, %d
815   %r = or <2 x i64> %t11, %t12
816   ret <2 x i64> %r
819 ; Converting integer logic ops to vector select is allowed.
821 define i64 @bitcast_int_scalar_cond(<2 x i1> %b, i64 %c, i64 %d) {
822 ; CHECK-LABEL: @bitcast_int_scalar_cond(
823 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast i64 [[D:%.*]] to <2 x i32>
824 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast i64 [[C:%.*]] to <2 x i32>
825 ; CHECK-NEXT:    [[TMP3:%.*]] = select <2 x i1> [[B:%.*]], <2 x i32> [[TMP1]], <2 x i32> [[TMP2]]
826 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <2 x i32> [[TMP3]] to i64
827 ; CHECK-NEXT:    ret i64 [[TMP4]]
829   %s = sext <2 x i1> %b to <2 x i32>
830   %t9 = bitcast <2 x i32> %s to i64
831   %nott9 = xor i64 %t9, -1
832   %t11 = and i64 %nott9, %c
833   %t12 = and i64 %t9, %d
834   %r = or i64 %t11, %t12
835   ret i64 %r
838 ; Peek through bitcasts and sexts to find negated bool condition.
840 define <1 x i6> @bitcast_sext_cond(<2 x i1> %cmp, <1 x i6> %a, <1 x i6> %b) {
841 ; CHECK-LABEL: @bitcast_sext_cond(
842 ; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <1 x i6> [[A:%.*]] to <2 x i3>
843 ; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <1 x i6> [[B:%.*]] to <2 x i3>
844 ; CHECK-NEXT:    [[TMP3:%.*]] = select <2 x i1> [[CMP:%.*]], <2 x i3> [[TMP1]], <2 x i3> [[TMP2]]
845 ; CHECK-NEXT:    [[TMP4:%.*]] = bitcast <2 x i3> [[TMP3]] to <1 x i6>
846 ; CHECK-NEXT:    ret <1 x i6> [[TMP4]]
848   %sext = sext <2 x i1> %cmp to <2 x i3>
849   %bc1 = bitcast <2 x i3> %sext to <1 x i6>
850   %neg = xor <2 x i1> %cmp, <i1 -1, i1 -1>
851   %sext2 = sext <2 x i1> %neg to <2 x i3>
852   %bc2 = bitcast <2 x i3> %sext2 to <1 x i6>
853   %and1 = and <1 x i6> %bc1, %a
854   %and2 = and <1 x i6> %bc2, %b
855   %or = or <1 x i6> %and1, %and2
856   ret <1 x i6> %or
859 ; Extra uses may prevent other transforms from creating the canonical patterns.
861 define i8 @sext_cond_extra_uses(i1 %cmp, i8 %a, i8 %b) {
862 ; CHECK-LABEL: @sext_cond_extra_uses(
863 ; CHECK-NEXT:    [[NEG:%.*]] = xor i1 [[CMP:%.*]], true
864 ; CHECK-NEXT:    [[SEXT1:%.*]] = sext i1 [[CMP]] to i8
865 ; CHECK-NEXT:    call void @use(i8 [[SEXT1]])
866 ; CHECK-NEXT:    [[SEXT2:%.*]] = sext i1 [[NEG]] to i8
867 ; CHECK-NEXT:    call void @use(i8 [[SEXT2]])
868 ; CHECK-NEXT:    [[TMP1:%.*]] = select i1 [[CMP]], i8 [[A:%.*]], i8 [[B:%.*]]
869 ; CHECK-NEXT:    ret i8 [[TMP1]]
871   %neg = xor i1 %cmp, -1
872   %sext1 = sext i1 %cmp to i8
873   call void @use(i8 %sext1)
874   %sext2 = sext i1 %neg to i8
875   call void @use(i8 %sext2)
876   %and1 = and i8 %sext1, %a
877   %and2 = and i8 %sext2, %b
878   %or = or i8 %and1, %and2
879   ret i8 %or