1 ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
2 ; RUN: opt < %s -instsimplify -S | FileCheck %s
3 target datalayout = "p:32:32-p1:64:64"
5 declare void @llvm.assume(i1)
7 define i1 @ptrtoint() {
8 ; CHECK-LABEL: @ptrtoint(
9 ; CHECK-NEXT: ret i1 false
12 %tmp = ptrtoint i8* %a to i32
13 %r = icmp eq i32 %tmp, 0
17 define i1 @bitcast() {
18 ; CHECK-LABEL: @bitcast(
19 ; CHECK-NEXT: ret i1 false
23 %x = bitcast i32* %a to i8*
24 %y = bitcast i64* %b to i8*
25 %cmp = icmp eq i8* %x, %y
31 ; CHECK-NEXT: ret i1 false
33 %a = alloca [3 x i8], align 8
34 %x = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0
35 %cmp = icmp eq i8* %x, null
41 ; CHECK-NEXT: ret i1 true
43 %a = alloca [3 x i8], align 8
44 %x = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0
45 %y = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0
46 %cmp = icmp eq i8* %x, %y
51 %gept = type { i32, i32 }
52 @gepy = global %gept zeroinitializer, align 8
53 @gepz = extern_weak global %gept
57 ; CHECK-NEXT: ret i1 false
59 %x = alloca %gept, align 8
60 %a = getelementptr %gept, %gept* %x, i64 0, i32 0
61 %b = getelementptr %gept, %gept* %x, i64 0, i32 1
62 %equal = icmp eq i32* %a, %b
68 ; CHECK-NEXT: ret i1 false
70 %x = alloca %gept, align 8
71 %a = getelementptr %gept, %gept* @gepy, i64 0, i32 0
72 %b = getelementptr %gept, %gept* @gepy, i64 0, i32 1
73 %equal = icmp eq i32* %a, %b
77 @a = common global [1 x i32] zeroinitializer, align 4
79 define i1 @PR31262() {
80 ; CHECK-LABEL: @PR31262(
81 ; CHECK-NEXT: ret i1 icmp uge (i32* getelementptr ([1 x i32], [1 x i32]* @a, i32 0, i32 undef), i32* getelementptr inbounds ([1 x i32], [1 x i32]* @a, i32 0, i32 0))
83 %idx = getelementptr inbounds [1 x i32], [1 x i32]* @a, i64 0, i64 undef
84 %cmp = icmp uge i32* %idx, getelementptr inbounds ([1 x i32], [1 x i32]* @a, i32 0, i32 0)
90 ; CHECK-NEXT: ret i1 false
92 %x = alloca %gept, align 8
93 %a = getelementptr inbounds %gept, %gept* %x, i64 0, i32 1
94 %b = getelementptr %gept, %gept* @gepy, i64 0, i32 0
95 %equal = icmp eq i32* %a, %b
99 define i1 @gep6(%gept* %x) {
100 ; Same as @gep3 but potentially null.
101 ; CHECK-LABEL: @gep6(
102 ; CHECK-NEXT: ret i1 false
104 %a = getelementptr %gept, %gept* %x, i64 0, i32 0
105 %b = getelementptr %gept, %gept* %x, i64 0, i32 1
106 %equal = icmp eq i32* %a, %b
110 define i1 @gep7(%gept* %x) {
111 ; CHECK-LABEL: @gep7(
112 ; CHECK-NEXT: [[A:%.*]] = getelementptr [[GEPT:%.*]], %gept* [[X:%.*]], i64 0, i32 0
113 ; CHECK-NEXT: [[EQUAL:%.*]] = icmp eq i32* [[A]], getelementptr ([[GEPT]], %gept* @gepz, i32 0, i32 0)
114 ; CHECK-NEXT: ret i1 [[EQUAL]]
116 %a = getelementptr %gept, %gept* %x, i64 0, i32 0
117 %b = getelementptr %gept, %gept* @gepz, i64 0, i32 0
118 %equal = icmp eq i32* %a, %b
122 define i1 @gep8(%gept* %x) {
123 ; CHECK-LABEL: @gep8(
124 ; CHECK-NEXT: [[A:%.*]] = getelementptr [[GEPT:%.*]], %gept* [[X:%.*]], i32 1
125 ; CHECK-NEXT: [[B:%.*]] = getelementptr [[GEPT]], %gept* [[X]], i32 -1
126 ; CHECK-NEXT: [[EQUAL:%.*]] = icmp ugt %gept* [[A]], [[B]]
127 ; CHECK-NEXT: ret i1 [[EQUAL]]
129 %a = getelementptr %gept, %gept* %x, i32 1
130 %b = getelementptr %gept, %gept* %x, i32 -1
131 %equal = icmp ugt %gept* %a, %b
135 define i1 @gep9(i8* %ptr) {
136 ; CHECK-LABEL: @gep9(
138 ; CHECK-NEXT: ret i1 true
141 %first1 = getelementptr inbounds i8, i8* %ptr, i32 0
142 %first2 = getelementptr inbounds i8, i8* %first1, i32 1
143 %first3 = getelementptr inbounds i8, i8* %first2, i32 2
144 %first4 = getelementptr inbounds i8, i8* %first3, i32 4
145 %last1 = getelementptr inbounds i8, i8* %first2, i32 48
146 %last2 = getelementptr inbounds i8, i8* %last1, i32 8
147 %last3 = getelementptr inbounds i8, i8* %last2, i32 -4
148 %last4 = getelementptr inbounds i8, i8* %last3, i32 -4
149 %first.int = ptrtoint i8* %first4 to i32
150 %last.int = ptrtoint i8* %last4 to i32
151 %cmp = icmp ne i32 %last.int, %first.int
155 define i1 @gep10(i8* %ptr) {
156 ; CHECK-LABEL: @gep10(
158 ; CHECK-NEXT: ret i1 true
161 %first1 = getelementptr inbounds i8, i8* %ptr, i32 -2
162 %first2 = getelementptr inbounds i8, i8* %first1, i32 44
163 %last1 = getelementptr inbounds i8, i8* %ptr, i32 48
164 %last2 = getelementptr inbounds i8, i8* %last1, i32 -6
165 %first.int = ptrtoint i8* %first2 to i32
166 %last.int = ptrtoint i8* %last2 to i32
167 %cmp = icmp eq i32 %last.int, %first.int
171 define i1 @gep11(i8* %ptr) {
172 ; CHECK-LABEL: @gep11(
174 ; CHECK-NEXT: ret i1 true
177 %first1 = getelementptr inbounds i8, i8* %ptr, i32 -2
178 %last1 = getelementptr inbounds i8, i8* %ptr, i32 48
179 %last2 = getelementptr inbounds i8, i8* %last1, i32 -6
180 %cmp = icmp ult i8* %first1, %last2
184 define i1 @gep12(i8* %ptr) {
185 ; CHECK-LABEL: @gep12(
187 ; CHECK-NEXT: [[FIRST1:%.*]] = getelementptr inbounds i8, i8* [[PTR:%.*]], i32 -2
188 ; CHECK-NEXT: [[LAST1:%.*]] = getelementptr inbounds i8, i8* [[PTR]], i32 48
189 ; CHECK-NEXT: [[LAST2:%.*]] = getelementptr inbounds i8, i8* [[LAST1]], i32 -6
190 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i8* [[FIRST1]], [[LAST2]]
191 ; CHECK-NEXT: ret i1 [[CMP]]
194 %first1 = getelementptr inbounds i8, i8* %ptr, i32 -2
195 %last1 = getelementptr inbounds i8, i8* %ptr, i32 48
196 %last2 = getelementptr inbounds i8, i8* %last1, i32 -6
197 %cmp = icmp slt i8* %first1, %last2
201 define i1 @gep13(i8* %ptr) {
202 ; CHECK-LABEL: @gep13(
203 ; CHECK-NEXT: ret i1 false
205 ; We can prove this GEP is non-null because it is inbounds.
206 %x = getelementptr inbounds i8, i8* %ptr, i32 1
207 %cmp = icmp eq i8* %x, null
211 define i1 @gep13_no_null_opt(i8* %ptr) #0 {
212 ; We can't prove this GEP is non-null.
213 ; CHECK-LABEL: @gep13_no_null_opt(
214 ; CHECK-NEXT: [[X:%.*]] = getelementptr inbounds i8, i8* [[PTR:%.*]], i32 1
215 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i8* [[X]], null
216 ; CHECK-NEXT: ret i1 [[CMP]]
218 %x = getelementptr inbounds i8, i8* %ptr, i32 1
219 %cmp = icmp eq i8* %x, null
223 define i1 @gep14({ {}, i8 }* %ptr) {
224 ; CHECK-LABEL: @gep14(
225 ; CHECK-NEXT: [[X:%.*]] = getelementptr inbounds { {}, i8 }, { {}, i8 }* [[PTR:%.*]], i32 0, i32 1
226 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i8* [[X]], null
227 ; CHECK-NEXT: ret i1 [[CMP]]
229 ; We can't simplify this because the offset of one in the GEP actually doesn't
231 %x = getelementptr inbounds { {}, i8 }, { {}, i8 }* %ptr, i32 0, i32 1
232 %cmp = icmp eq i8* %x, null
236 define i1 @gep15({ {}, [4 x {i8, i8}]}* %ptr, i32 %y) {
237 ; CHECK-LABEL: @gep15(
238 ; CHECK-NEXT: ret i1 false
240 ; We can prove this GEP is non-null even though there is a user value, as we
241 ; would necessarily violate inbounds on one side or the other.
242 %x = getelementptr inbounds { {}, [4 x {i8, i8}]}, { {}, [4 x {i8, i8}]}* %ptr, i32 0, i32 1, i32 %y, i32 1
243 %cmp = icmp eq i8* %x, null
247 define i1 @gep15_no_null_opt({ {}, [4 x {i8, i8}]}* %ptr, i32 %y) #0 {
248 ; We can't prove this GEP is non-null.
249 ; CHECK-LABEL: @gep15_no_null_opt(
250 ; CHECK-NEXT: [[X:%.*]] = getelementptr inbounds { {}, [4 x { i8, i8 }] }, { {}, [4 x { i8, i8 }] }* [[PTR:%.*]], i32 0, i32 1, i32 [[Y:%.*]], i32 1
251 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i8* [[X]], null
252 ; CHECK-NEXT: ret i1 [[CMP]]
254 %x = getelementptr inbounds { {}, [4 x {i8, i8}]}, { {}, [4 x {i8, i8}]}* %ptr, i32 0, i32 1, i32 %y, i32 1
255 %cmp = icmp eq i8* %x, null
259 define i1 @gep16(i8* %ptr, i32 %a) {
260 ; CHECK-LABEL: @gep16(
261 ; CHECK-NEXT: ret i1 false
263 ; We can prove this GEP is non-null because it is inbounds and because we know
264 ; %b is non-zero even though we don't know its value.
266 %x = getelementptr inbounds i8, i8* %ptr, i32 %b
267 %cmp = icmp eq i8* %x, null
271 define i1 @gep16_no_null_opt(i8* %ptr, i32 %a) #0 {
272 ; We can't prove this GEP is non-null.
273 ; CHECK-LABEL: @gep16_no_null_opt(
274 ; CHECK-NEXT: [[B:%.*]] = or i32 [[A:%.*]], 1
275 ; CHECK-NEXT: [[X:%.*]] = getelementptr inbounds i8, i8* [[PTR:%.*]], i32 [[B]]
276 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i8* [[X]], null
277 ; CHECK-NEXT: ret i1 [[CMP]]
280 %x = getelementptr inbounds i8, i8* %ptr, i32 %b
281 %cmp = icmp eq i8* %x, null
286 ; CHECK-LABEL: @gep17(
287 ; CHECK-NEXT: ret i1 true
289 %alloca = alloca i32, align 4
290 %bc = bitcast i32* %alloca to [4 x i8]*
291 %gep1 = getelementptr inbounds i32, i32* %alloca, i32 1
292 %pti1 = ptrtoint i32* %gep1 to i32
293 %gep2 = getelementptr inbounds [4 x i8], [4 x i8]* %bc, i32 0, i32 1
294 %pti2 = ptrtoint i8* %gep2 to i32
295 %cmp = icmp ugt i32 %pti1, %pti2
299 ; Negative test: GEP inbounds may cross sign boundary.
300 define i1 @gep_same_base_constant_indices(i8* %a) {
301 ; CHECK-LABEL: @gep_same_base_constant_indices(
302 ; CHECK-NEXT: [[ARRAYIDX1:%.*]] = getelementptr inbounds i8, i8* [[A:%.*]], i64 1
303 ; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds i8, i8* [[A]], i64 10
304 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i8* [[ARRAYIDX1]], [[ARRAYIDX2]]
305 ; CHECK-NEXT: ret i1 [[CMP]]
307 %arrayidx1 = getelementptr inbounds i8, i8* %a, i64 1
308 %arrayidx2 = getelementptr inbounds i8, i8* %a, i64 10
309 %cmp = icmp slt i8* %arrayidx1, %arrayidx2
313 define i1 @zext(i32 %x) {
314 ; CHECK-LABEL: @zext(
315 ; CHECK-NEXT: ret i1 true
317 %e1 = zext i32 %x to i64
318 %e2 = zext i32 %x to i64
319 %r = icmp eq i64 %e1, %e2
323 define i1 @zext2(i1 %x) {
324 ; CHECK-LABEL: @zext2(
325 ; CHECK-NEXT: ret i1 [[X:%.*]]
327 %e = zext i1 %x to i32
328 %c = icmp ne i32 %e, 0
333 ; CHECK-LABEL: @zext3(
334 ; CHECK-NEXT: ret i1 true
336 %e = zext i1 1 to i32
337 %c = icmp ne i32 %e, 0
341 define i1 @sext(i32 %x) {
342 ; CHECK-LABEL: @sext(
343 ; CHECK-NEXT: ret i1 true
345 %e1 = sext i32 %x to i64
346 %e2 = sext i32 %x to i64
347 %r = icmp eq i64 %e1, %e2
351 define i1 @sext2(i1 %x) {
352 ; CHECK-LABEL: @sext2(
353 ; CHECK-NEXT: ret i1 [[X:%.*]]
355 %e = sext i1 %x to i32
356 %c = icmp ne i32 %e, 0
361 ; CHECK-LABEL: @sext3(
362 ; CHECK-NEXT: ret i1 true
364 %e = sext i1 1 to i32
365 %c = icmp ne i32 %e, 0
369 define i1 @add(i32 %x, i32 %y) {
371 ; CHECK-NEXT: ret i1 false
377 %c = icmp eq i32 %s, 0
381 define i1 @addv(<2 x i32> %x, <2 x i32> %y) {
382 ; CHECK-LABEL: @addv(
383 ; CHECK-NEXT: ret i1 false
385 %l = lshr <2 x i32> %x, <i32 1, i32 0>
386 %q = lshr <2 x i32> %y, <i32 1, i32 0>
387 %r = or <2 x i32> %q, <i32 1, i32 0>
388 %s = add <2 x i32> %l, %r
389 %e = extractelement <2 x i32> %s, i32 0
390 %c = icmp eq i32 %e, 0
394 define i1 @add2(i8 %x, i8 %y) {
395 ; CHECK-LABEL: @add2(
396 ; CHECK-NEXT: ret i1 false
401 %c = icmp eq i8 %s, 0
405 define i1 @add2v(<2 x i8> %x, <2 x i8> %y) {
406 ; CHECK-LABEL: @add2v(
407 ; CHECK-NEXT: ret i1 false
409 %l = or <2 x i8> %x, <i8 0, i8 128>
410 %r = or <2 x i8> %y, <i8 0, i8 129>
411 %s = add <2 x i8> %l, %r
412 %e = extractelement <2 x i8> %s, i32 1
413 %c = icmp eq i8 %e, 0
417 define i1 @add3(i8 %x, i8 %y) {
418 ; CHECK-LABEL: @add3(
419 ; CHECK-NEXT: [[L:%.*]] = zext i8 [[X:%.*]] to i32
420 ; CHECK-NEXT: [[R:%.*]] = zext i8 [[Y:%.*]] to i32
421 ; CHECK-NEXT: [[S:%.*]] = add i32 [[L]], [[R]]
422 ; CHECK-NEXT: [[C:%.*]] = icmp eq i32 [[S]], 0
423 ; CHECK-NEXT: ret i1 [[C]]
425 %l = zext i8 %x to i32
426 %r = zext i8 %y to i32
428 %c = icmp eq i32 %s, 0
432 define i1 @add4(i32 %x, i32 %y) {
433 ; CHECK-LABEL: @add4(
434 ; CHECK-NEXT: ret i1 true
436 %z = add nsw i32 %y, 1
437 %s1 = add nsw i32 %x, %y
438 %s2 = add nsw i32 %x, %z
439 %c = icmp slt i32 %s1, %s2
443 define i1 @add5(i32 %x, i32 %y) {
444 ; CHECK-LABEL: @add5(
445 ; CHECK-NEXT: ret i1 true
447 %z = add nuw i32 %y, 1
448 %s1 = add nuw i32 %x, %z
449 %s2 = add nuw i32 %x, %y
450 %c = icmp ugt i32 %s1, %s2
454 define i1 @add6(i64 %A, i64 %B) {
455 ; CHECK-LABEL: @add6(
456 ; CHECK-NEXT: ret i1 true
460 %cmp = icmp eq i64 %s1, %s2
464 define i1 @addpowtwo(i32 %x, i32 %y) {
465 ; CHECK-LABEL: @addpowtwo(
466 ; CHECK-NEXT: ret i1 false
471 %c = icmp eq i32 %s, 0
475 define i1 @addpowtwov(<2 x i32> %x, <2 x i32> %y) {
476 ; CHECK-LABEL: @addpowtwov(
477 ; CHECK-NEXT: [[L:%.*]] = lshr <2 x i32> [[X:%.*]], <i32 1, i32 0>
478 ; CHECK-NEXT: [[R:%.*]] = shl <2 x i32> <i32 1, i32 0>, [[Y:%.*]]
479 ; CHECK-NEXT: [[S:%.*]] = add <2 x i32> [[L]], [[R]]
480 ; CHECK-NEXT: [[E:%.*]] = extractelement <2 x i32> [[S]], i32 0
481 ; CHECK-NEXT: [[C:%.*]] = icmp eq i32 [[E]], 0
482 ; CHECK-NEXT: ret i1 [[C]]
484 %l = lshr <2 x i32> %x, <i32 1, i32 0>
485 %r = shl <2 x i32> <i32 1, i32 0>, %y
486 %s = add <2 x i32> %l, %r
487 %e = extractelement <2 x i32> %s, i32 0
488 %c = icmp eq i32 %e, 0
492 define i1 @or(i32 %x) {
494 ; CHECK-NEXT: ret i1 false
497 %c = icmp eq i32 %o, 0
501 ; Do not simplify if we cannot guarantee that the ConstantExpr is a non-zero
503 @GV = common global i32* null
504 define i1 @or_constexp(i32 %x) {
505 ; CHECK-LABEL: @or_constexp(
507 ; CHECK-NEXT: [[O:%.*]] = or i32 [[X:%.*]], and (i32 ptrtoint (i32** @GV to i32), i32 32)
508 ; CHECK-NEXT: [[C:%.*]] = icmp eq i32 [[O]], 0
509 ; CHECK-NEXT: ret i1 [[C]]
512 %0 = and i32 ptrtoint (i32** @GV to i32), 32
514 %c = icmp eq i32 %o, 0
518 define i1 @shl1(i32 %x) {
519 ; CHECK-LABEL: @shl1(
520 ; CHECK-NEXT: ret i1 false
523 %c = icmp eq i32 %s, 0
527 define i1 @lshr1(i32 %x) {
528 ; CHECK-LABEL: @lshr1(
529 ; CHECK-NEXT: ret i1 false
532 %c = icmp eq i32 %s, 0
536 define i1 @lshr3(i32 %x) {
537 ; CHECK-LABEL: @lshr3(
538 ; CHECK-NEXT: ret i1 true
541 %c = icmp eq i32 %s, 0
545 define i1 @lshr4(i32 %X, i32 %Y) {
546 ; CHECK-LABEL: @lshr4(
547 ; CHECK-NEXT: ret i1 true
550 %C = icmp ule i32 %A, %X
554 define i1 @lshr5(i32 %X, i32 %Y) {
555 ; CHECK-LABEL: @lshr5(
556 ; CHECK-NEXT: ret i1 false
559 %C = icmp ugt i32 %A, %X
563 define i1 @lshr6(i32 %X, i32 %Y) {
564 ; CHECK-LABEL: @lshr6(
565 ; CHECK-NEXT: ret i1 false
568 %C = icmp ult i32 %X, %A
572 define i1 @lshr7(i32 %X, i32 %Y) {
573 ; CHECK-LABEL: @lshr7(
574 ; CHECK-NEXT: ret i1 true
577 %C = icmp uge i32 %X, %A
581 define i1 @lshr_nonzero_eq(i32 %x) {
582 ; CHECK-LABEL: @lshr_nonzero_eq(
583 ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0
584 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]])
585 ; CHECK-NEXT: ret i1 false
587 %x_ne_0 = icmp ne i32 %x, 0
588 call void @llvm.assume(i1 %x_ne_0)
589 %lhs = lshr i32 %x, 1
590 %cmp = icmp eq i32 %lhs, %x
594 define i1 @lshr_nonzero_uge(i32 %x) {
595 ; CHECK-LABEL: @lshr_nonzero_uge(
596 ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0
597 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]])
598 ; CHECK-NEXT: ret i1 false
600 %x_ne_0 = icmp ne i32 %x, 0
601 call void @llvm.assume(i1 %x_ne_0)
602 %lhs = lshr i32 %x, 1
603 %cmp = icmp uge i32 %lhs, %x
607 define i1 @lshr_nonzero_ne(i32 %x) {
608 ; CHECK-LABEL: @lshr_nonzero_ne(
609 ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0
610 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]])
611 ; CHECK-NEXT: ret i1 true
613 %x_ne_0 = icmp ne i32 %x, 0
614 call void @llvm.assume(i1 %x_ne_0)
615 %lhs = lshr i32 %x, 1
616 %cmp = icmp ne i32 %lhs, %x
620 define i1 @lshr_nonzero_ult(i32 %x) {
621 ; CHECK-LABEL: @lshr_nonzero_ult(
622 ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0
623 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]])
624 ; CHECK-NEXT: ret i1 true
626 %x_ne_0 = icmp ne i32 %x, 0
627 call void @llvm.assume(i1 %x_ne_0)
628 %lhs = lshr i32 %x, 1
629 %cmp = icmp ult i32 %lhs, %x
633 ; Negative test - unknown shift amount
634 define i1 @lshr_nonzero_neg_unknown(i32 %x, i32 %c) {
635 ; CHECK-LABEL: @lshr_nonzero_neg_unknown(
636 ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0
637 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]])
638 ; CHECK-NEXT: [[LHS:%.*]] = lshr i32 [[X]], [[C:%.*]]
639 ; CHECK-NEXT: [[CMP:%.*]] = icmp ult i32 [[LHS]], [[X]]
640 ; CHECK-NEXT: ret i1 [[CMP]]
642 %x_ne_0 = icmp ne i32 %x, 0
643 call void @llvm.assume(i1 %x_ne_0)
644 %lhs = lshr i32 %x, %c
645 %cmp = icmp ult i32 %lhs, %x
649 ; Negative test - x may be zero
650 define i1 @lshr_nonzero_neg_maybe_zero(i32 %x) {
651 ; CHECK-LABEL: @lshr_nonzero_neg_maybe_zero(
652 ; CHECK-NEXT: [[LHS:%.*]] = lshr i32 [[X:%.*]], 1
653 ; CHECK-NEXT: [[CMP:%.*]] = icmp ult i32 [[LHS]], [[X]]
654 ; CHECK-NEXT: ret i1 [[CMP]]
656 %lhs = lshr i32 %x, 1
657 %cmp = icmp ult i32 %lhs, %x
661 ; Negative test - signed pred
662 define i1 @lshr_nonzero_neg_signed(i32 %x, i32 %c) {
663 ; CHECK-LABEL: @lshr_nonzero_neg_signed(
664 ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0
665 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]])
666 ; CHECK-NEXT: [[LHS:%.*]] = lshr i32 [[X]], 1
667 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[LHS]], [[X]]
668 ; CHECK-NEXT: ret i1 [[CMP]]
670 %x_ne_0 = icmp ne i32 %x, 0
671 call void @llvm.assume(i1 %x_ne_0)
672 %lhs = lshr i32 %x, 1
673 %cmp = icmp slt i32 %lhs, %x
677 define i1 @ashr1(i32 %x) {
678 ; CHECK-LABEL: @ashr1(
679 ; CHECK-NEXT: ret i1 false
682 %c = icmp eq i32 %s, 0
686 define i1 @ashr3(i32 %x) {
687 ; CHECK-LABEL: @ashr3(
688 ; CHECK-NEXT: ret i1 true
691 %c = icmp eq i32 %s, 0
695 define i1 @select1(i1 %cond) {
696 ; CHECK-LABEL: @select1(
697 ; CHECK-NEXT: ret i1 [[COND:%.*]]
699 %s = select i1 %cond, i32 1, i32 0
700 %c = icmp eq i32 %s, 1
704 define i1 @select2(i1 %cond) {
705 ; CHECK-LABEL: @select2(
706 ; CHECK-NEXT: ret i1 [[COND:%.*]]
708 %x = zext i1 %cond to i32
709 %s = select i1 %cond, i32 %x, i32 0
710 %c = icmp ne i32 %s, 0
714 define i1 @select3(i1 %cond) {
715 ; CHECK-LABEL: @select3(
716 ; CHECK-NEXT: ret i1 [[COND:%.*]]
718 %x = zext i1 %cond to i32
719 %s = select i1 %cond, i32 1, i32 %x
720 %c = icmp ne i32 %s, 0
724 define i1 @select4(i1 %cond) {
725 ; CHECK-LABEL: @select4(
726 ; CHECK-NEXT: ret i1 [[COND:%.*]]
728 %invert = xor i1 %cond, 1
729 %s = select i1 %invert, i32 0, i32 1
730 %c = icmp ne i32 %s, 0
734 define i1 @select5(i32 %x) {
735 ; CHECK-LABEL: @select5(
736 ; CHECK-NEXT: ret i1 false
738 %c = icmp eq i32 %x, 0
739 %s = select i1 %c, i32 1, i32 %x
740 %c2 = icmp eq i32 %s, 0
744 define i1 @select6(i32 %x) {
745 ; CHECK-LABEL: @select6(
746 ; CHECK-NEXT: [[C:%.*]] = icmp sgt i32 [[X:%.*]], 0
747 ; CHECK-NEXT: [[S:%.*]] = select i1 [[C]], i32 [[X]], i32 4
748 ; CHECK-NEXT: [[C2:%.*]] = icmp eq i32 [[S]], 0
749 ; CHECK-NEXT: ret i1 [[C2]]
751 %c = icmp sgt i32 %x, 0
752 %s = select i1 %c, i32 %x, i32 4
753 %c2 = icmp eq i32 %s, 0
757 define i1 @urem1(i32 %X, i32 %Y) {
758 ; CHECK-LABEL: @urem1(
759 ; CHECK-NEXT: ret i1 true
762 %B = icmp ult i32 %A, %Y
766 define i1 @urem2(i32 %X, i32 %Y) {
767 ; CHECK-LABEL: @urem2(
768 ; CHECK-NEXT: ret i1 false
771 %B = icmp eq i32 %A, %Y
775 define i1 @urem4(i32 %X) {
776 ; CHECK-LABEL: @urem4(
777 ; CHECK-NEXT: [[A:%.*]] = urem i32 [[X:%.*]], 15
778 ; CHECK-NEXT: [[B:%.*]] = icmp ult i32 [[A]], 10
779 ; CHECK-NEXT: ret i1 [[B]]
782 %B = icmp ult i32 %A, 10
786 define i1 @urem5(i16 %X, i32 %Y) {
787 ; CHECK-LABEL: @urem5(
788 ; CHECK-NEXT: [[A:%.*]] = zext i16 [[X:%.*]] to i32
789 ; CHECK-NEXT: [[B:%.*]] = urem i32 [[A]], [[Y:%.*]]
790 ; CHECK-NEXT: [[C:%.*]] = icmp slt i32 [[B]], [[Y]]
791 ; CHECK-NEXT: ret i1 [[C]]
793 %A = zext i16 %X to i32
795 %C = icmp slt i32 %B, %Y
799 define i1 @urem6(i32 %X, i32 %Y) {
800 ; CHECK-LABEL: @urem6(
801 ; CHECK-NEXT: ret i1 true
804 %B = icmp ugt i32 %Y, %A
808 define i1 @urem7(i32 %X) {
809 ; CHECK-LABEL: @urem7(
810 ; CHECK-NEXT: [[A:%.*]] = urem i32 1, [[X:%.*]]
811 ; CHECK-NEXT: [[B:%.*]] = icmp sgt i32 [[A]], [[X]]
812 ; CHECK-NEXT: ret i1 [[B]]
815 %B = icmp sgt i32 %A, %X
819 define i1 @urem8(i8 %X, i8 %Y) {
820 ; CHECK-LABEL: @urem8(
821 ; CHECK-NEXT: ret i1 true
824 %B = icmp ule i8 %A, %X
828 define i1 @urem9(i8 %X, i8 %Y) {
829 ; CHECK-LABEL: @urem9(
830 ; CHECK-NEXT: ret i1 false
833 %B = icmp ugt i8 %A, %X
837 define i1 @urem10(i8 %X, i8 %Y) {
838 ; CHECK-LABEL: @urem10(
839 ; CHECK-NEXT: ret i1 true
842 %B = icmp uge i8 %X, %A
846 define i1 @urem11(i8 %X, i8 %Y) {
847 ; CHECK-LABEL: @urem11(
848 ; CHECK-NEXT: ret i1 false
851 %B = icmp ult i8 %X, %A
856 define i1 @srem2(i16 %X, i32 %Y) {
857 ; CHECK-LABEL: @srem2(
858 ; CHECK-NEXT: ret i1 false
860 %A = zext i16 %X to i32
861 %B = add nsw i32 %A, 1
863 %D = icmp slt i32 %C, 0
867 define i1 @srem2v(<2 x i16> %X, <2 x i32> %Y) {
868 ; CHECK-LABEL: @srem2v(
869 ; CHECK-NEXT: ret i1 false
871 %A = zext <2 x i16> %X to <2 x i32>
872 %B = add nsw <2 x i32> %A, <i32 1, i32 0>
873 %C = srem <2 x i32> %B, %Y
874 %D = extractelement <2 x i32> %C, i32 0
875 %E = icmp slt i32 %D, 0
879 define i1 @srem3(i16 %X, i32 %Y) {
880 ; CHECK-LABEL: @srem3(
881 ; CHECK-NEXT: ret i1 false
883 %A = zext i16 %X to i32
884 %B = or i32 2147483648, %A
885 %C = sub nsw i32 1, %B
887 %E = icmp slt i32 %D, 0
891 define i1 @srem3v(<2 x i16> %X, <2 x i32> %Y) {
892 ; CHECK-LABEL: @srem3v(
893 ; CHECK-NEXT: ret i1 false
895 %A = zext <2 x i16> %X to <2 x i32>
896 %B = or <2 x i32> <i32 1, i32 2147483648>, %A
897 %C = sub nsw <2 x i32> <i32 0, i32 1>, %B
898 %D = srem <2 x i32> %C, %Y
899 %E = extractelement <2 x i32> %C, i32 1
900 %F = icmp slt i32 %E, 0
904 define i1 @udiv2(i32 %Z) {
905 ; CHECK-LABEL: @udiv2(
906 ; CHECK-NEXT: ret i1 true
908 %A = udiv exact i32 10, %Z
909 %B = udiv exact i32 20, %Z
910 %C = icmp ult i32 %A, %B
914 ; Exact sdiv and equality preds can simplify.
916 define i1 @sdiv_exact_equality(i32 %Z) {
917 ; CHECK-LABEL: @sdiv_exact_equality(
918 ; CHECK-NEXT: ret i1 false
920 %A = sdiv exact i32 10, %Z
921 %B = sdiv exact i32 20, %Z
922 %C = icmp eq i32 %A, %B
926 ; But not other preds: PR32949 - https://bugs.llvm.org/show_bug.cgi?id=32949
928 define i1 @sdiv_exact_not_equality(i32 %Z) {
929 ; CHECK-LABEL: @sdiv_exact_not_equality(
930 ; CHECK-NEXT: [[A:%.*]] = sdiv exact i32 10, [[Z:%.*]]
931 ; CHECK-NEXT: [[B:%.*]] = sdiv exact i32 20, [[Z]]
932 ; CHECK-NEXT: [[C:%.*]] = icmp ult i32 [[A]], [[B]]
933 ; CHECK-NEXT: ret i1 [[C]]
935 %A = sdiv exact i32 10, %Z
936 %B = sdiv exact i32 20, %Z
937 %C = icmp ult i32 %A, %B
941 define i1 @udiv3(i32 %X, i32 %Y) {
942 ; CHECK-LABEL: @udiv3(
943 ; CHECK-NEXT: ret i1 false
946 %C = icmp ugt i32 %A, %X
950 define i1 @udiv4(i32 %X, i32 %Y) {
951 ; CHECK-LABEL: @udiv4(
952 ; CHECK-NEXT: ret i1 true
955 %C = icmp ule i32 %A, %X
960 define i1 @udiv6(i32 %X) nounwind {
961 ; CHECK-LABEL: @udiv6(
962 ; CHECK-NEXT: [[A:%.*]] = udiv i32 1, [[X:%.*]]
963 ; CHECK-NEXT: [[C:%.*]] = icmp eq i32 [[A]], 0
964 ; CHECK-NEXT: ret i1 [[C]]
967 %C = icmp eq i32 %A, 0
971 define i1 @udiv7(i32 %X, i32 %Y) {
972 ; CHECK-LABEL: @udiv7(
973 ; CHECK-NEXT: ret i1 false
976 %C = icmp ult i32 %X, %A
980 define i1 @udiv8(i32 %X, i32 %Y) {
981 ; CHECK-LABEL: @udiv8(
982 ; CHECK-NEXT: ret i1 true
985 %C = icmp uge i32 %X, %A
989 define i1 @udiv_nonzero_eq(i32 %x) {
990 ; CHECK-LABEL: @udiv_nonzero_eq(
991 ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0
992 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]])
993 ; CHECK-NEXT: ret i1 false
995 %x_ne_0 = icmp ne i32 %x, 0
996 call void @llvm.assume(i1 %x_ne_0)
997 %lhs = udiv i32 %x, 3
998 %cmp = icmp eq i32 %lhs, %x
1002 define i1 @udiv_nonzero_uge(i32 %x) {
1003 ; CHECK-LABEL: @udiv_nonzero_uge(
1004 ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0
1005 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]])
1006 ; CHECK-NEXT: ret i1 false
1008 %x_ne_0 = icmp ne i32 %x, 0
1009 call void @llvm.assume(i1 %x_ne_0)
1010 %lhs = udiv i32 %x, 3
1011 %cmp = icmp uge i32 %lhs, %x
1015 define i1 @udiv_nonzero_ne(i32 %x) {
1016 ; CHECK-LABEL: @udiv_nonzero_ne(
1017 ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0
1018 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]])
1019 ; CHECK-NEXT: ret i1 true
1021 %x_ne_0 = icmp ne i32 %x, 0
1022 call void @llvm.assume(i1 %x_ne_0)
1023 %lhs = udiv i32 %x, 3
1024 %cmp = icmp ne i32 %lhs, %x
1028 define i1 @udiv_nonzero_ult(i32 %x) {
1029 ; CHECK-LABEL: @udiv_nonzero_ult(
1030 ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0
1031 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]])
1032 ; CHECK-NEXT: ret i1 true
1034 %x_ne_0 = icmp ne i32 %x, 0
1035 call void @llvm.assume(i1 %x_ne_0)
1036 %lhs = udiv i32 %x, 3
1037 %cmp = icmp ult i32 %lhs, %x
1041 ; Negative test - unknown divisor
1042 define i1 @udiv_nonzero_neg_unknown(i32 %x, i32 %c) {
1043 ; CHECK-LABEL: @udiv_nonzero_neg_unknown(
1044 ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0
1045 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]])
1046 ; CHECK-NEXT: [[LHS:%.*]] = udiv i32 [[X]], [[C:%.*]]
1047 ; CHECK-NEXT: [[CMP:%.*]] = icmp ult i32 [[LHS]], [[X]]
1048 ; CHECK-NEXT: ret i1 [[CMP]]
1050 %x_ne_0 = icmp ne i32 %x, 0
1051 call void @llvm.assume(i1 %x_ne_0)
1052 %lhs = udiv i32 %x, %c
1053 %cmp = icmp ult i32 %lhs, %x
1057 ; Negative test - x may be zero
1058 define i1 @udiv_nonzero_neg_maybe_zero(i32 %x) {
1059 ; CHECK-LABEL: @udiv_nonzero_neg_maybe_zero(
1060 ; CHECK-NEXT: [[LHS:%.*]] = udiv i32 [[X:%.*]], 3
1061 ; CHECK-NEXT: [[CMP:%.*]] = icmp ult i32 [[LHS]], [[X]]
1062 ; CHECK-NEXT: ret i1 [[CMP]]
1064 %lhs = udiv i32 %x, 3
1065 %cmp = icmp ult i32 %lhs, %x
1069 ; Negative test - signed pred
1070 define i1 @udiv_nonzero_neg_signed(i32 %x) {
1071 ; CHECK-LABEL: @udiv_nonzero_neg_signed(
1072 ; CHECK-NEXT: [[X_NE_0:%.*]] = icmp ne i32 [[X:%.*]], 0
1073 ; CHECK-NEXT: call void @llvm.assume(i1 [[X_NE_0]])
1074 ; CHECK-NEXT: [[LHS:%.*]] = udiv i32 [[X]], 3
1075 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[LHS]], [[X]]
1076 ; CHECK-NEXT: ret i1 [[CMP]]
1078 %x_ne_0 = icmp ne i32 %x, 0
1079 call void @llvm.assume(i1 %x_ne_0)
1080 %lhs = udiv i32 %x, 3
1081 %cmp = icmp slt i32 %lhs, %x
1085 ; Square of a non-zero number is non-zero if there is no overflow.
1086 define i1 @mul1(i32 %X) {
1087 ; CHECK-LABEL: @mul1(
1088 ; CHECK-NEXT: ret i1 false
1091 %M = mul nuw i32 %Y, %Y
1092 %C = icmp eq i32 %M, 0
1096 define i1 @mul1v(<2 x i32> %X) {
1097 ; CHECK-LABEL: @mul1v(
1098 ; CHECK-NEXT: ret i1 false
1100 %Y = or <2 x i32> %X, <i32 1, i32 0>
1101 %M = mul nuw <2 x i32> %Y, %Y
1102 %E = extractelement <2 x i32> %M, i32 0
1103 %C = icmp eq i32 %E, 0
1107 ; Square of a non-zero number is positive if there is no signed overflow.
1108 define i1 @mul2(i32 %X) {
1109 ; CHECK-LABEL: @mul2(
1110 ; CHECK-NEXT: ret i1 true
1113 %M = mul nsw i32 %Y, %Y
1114 %C = icmp sgt i32 %M, 0
1118 define i1 @mul2v(<2 x i32> %X) {
1119 ; CHECK-LABEL: @mul2v(
1120 ; CHECK-NEXT: ret i1 true
1122 %Y = or <2 x i32> %X, <i32 0, i32 1>
1123 %M = mul nsw <2 x i32> %Y, %Y
1124 %E = extractelement <2 x i32> %M, i32 1
1125 %C = icmp sgt i32 %E, 0
1129 ; Product of non-negative numbers is non-negative if there is no signed overflow.
1130 define i1 @mul3(i32 %X, i32 %Y) {
1131 ; CHECK-LABEL: @mul3(
1132 ; CHECK-NEXT: ret i1 true
1134 %XX = mul nsw i32 %X, %X
1135 %YY = mul nsw i32 %Y, %Y
1136 %M = mul nsw i32 %XX, %YY
1137 %C = icmp sge i32 %M, 0
1141 define <2 x i1> @mul3v(<2 x i32> %X, <2 x i32> %Y) {
1142 ; CHECK-LABEL: @mul3v(
1143 ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true>
1145 %XX = mul nsw <2 x i32> %X, %X
1146 %YY = mul nsw <2 x i32> %Y, %Y
1147 %M = mul nsw <2 x i32> %XX, %YY
1148 %C = icmp sge <2 x i32> %M, zeroinitializer
1152 define <2 x i1> @vectorselect1(<2 x i1> %cond) {
1153 ; CHECK-LABEL: @vectorselect1(
1154 ; CHECK-NEXT: ret <2 x i1> [[COND:%.*]]
1156 %invert = xor <2 x i1> %cond, <i1 1, i1 1>
1157 %s = select <2 x i1> %invert, <2 x i32> <i32 0, i32 0>, <2 x i32> <i32 1, i32 1>
1158 %c = icmp ne <2 x i32> %s, <i32 0, i32 0>
1163 define <2 x i1> @vectorselectcrash(i32 %arg1) {
1164 ; CHECK-LABEL: @vectorselectcrash(
1165 ; CHECK-NEXT: [[TOBOOL40:%.*]] = icmp ne i32 [[ARG1:%.*]], 0
1166 ; CHECK-NEXT: [[COND43:%.*]] = select i1 [[TOBOOL40]], <2 x i16> <i16 -5, i16 66>, <2 x i16> <i16 46, i16 1>
1167 ; CHECK-NEXT: [[CMP45:%.*]] = icmp ugt <2 x i16> [[COND43]], <i16 73, i16 21>
1168 ; CHECK-NEXT: ret <2 x i1> [[CMP45]]
1170 %tobool40 = icmp ne i32 %arg1, 0
1171 %cond43 = select i1 %tobool40, <2 x i16> <i16 -5, i16 66>, <2 x i16> <i16 46, i16 1>
1172 %cmp45 = icmp ugt <2 x i16> %cond43, <i16 73, i16 21>
1177 define i1 @alloca_compare(i64 %idx) {
1178 ; CHECK-LABEL: @alloca_compare(
1179 ; CHECK-NEXT: ret i1 false
1181 %sv = alloca { i32, i32, [124 x i32] }
1182 %1 = getelementptr inbounds { i32, i32, [124 x i32] }, { i32, i32, [124 x i32] }* %sv, i32 0, i32 2, i64 %idx
1183 %2 = icmp eq i32* %1, null
1187 define i1 @alloca_compare_no_null_opt(i64 %idx) #0 {
1188 ; CHECK-LABEL: @alloca_compare_no_null_opt(
1189 ; CHECK-NEXT: [[SV:%.*]] = alloca { i32, i32, [124 x i32] }, align 8
1190 ; CHECK-NEXT: [[CMP:%.*]] = getelementptr inbounds { i32, i32, [124 x i32] }, { i32, i32, [124 x i32] }* [[SV]], i32 0, i32 2, i64 [[IDX:%.*]]
1191 ; CHECK-NEXT: [[X:%.*]] = icmp eq i32* [[CMP]], null
1192 ; CHECK-NEXT: ret i1 [[X]]
1194 %sv = alloca { i32, i32, [124 x i32] }
1195 %cmp = getelementptr inbounds { i32, i32, [124 x i32] }, { i32, i32, [124 x i32] }* %sv, i32 0, i32 2, i64 %idx
1196 %X = icmp eq i32* %cmp, null
1200 define i1 @infinite_gep() {
1201 ; CHECK-LABEL: @infinite_gep(
1202 ; CHECK-NEXT: ret i1 true
1203 ; CHECK: unreachableblock:
1204 ; CHECK-NEXT: [[X:%.*]] = getelementptr i32, i32* [[X]], i32 1
1205 ; CHECK-NEXT: [[Y:%.*]] = icmp eq i32* [[X]], null
1206 ; CHECK-NEXT: ret i1 [[Y]]
1211 %X = getelementptr i32, i32 *%X, i32 1
1212 %Y = icmp eq i32* %X, null
1216 ; It's not valid to fold a comparison of an argument with an alloca, even though
1217 ; that's tempting. An argument can't *alias* an alloca, however the aliasing rule
1218 ; relies on restrictions against guessing an object's address and dereferencing.
1219 ; There are no restrictions against guessing an object's address and comparing.
1221 define i1 @alloca_argument_compare(i64* %arg) {
1222 ; CHECK-LABEL: @alloca_argument_compare(
1223 ; CHECK-NEXT: [[ALLOC:%.*]] = alloca i64, align 8
1224 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i64* [[ARG:%.*]], [[ALLOC]]
1225 ; CHECK-NEXT: ret i1 [[CMP]]
1228 %cmp = icmp eq i64* %arg, %alloc
1232 ; As above, but with the operands reversed.
1234 define i1 @alloca_argument_compare_swapped(i64* %arg) {
1235 ; CHECK-LABEL: @alloca_argument_compare_swapped(
1236 ; CHECK-NEXT: [[ALLOC:%.*]] = alloca i64, align 8
1237 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i64* [[ALLOC]], [[ARG:%.*]]
1238 ; CHECK-NEXT: ret i1 [[CMP]]
1241 %cmp = icmp eq i64* %alloc, %arg
1245 ; Don't assume that a noalias argument isn't equal to a global variable's
1246 ; address. This is an example where AliasAnalysis' NoAlias concept is
1247 ; different from actual pointer inequality.
1249 @y = external global i32
1250 define zeroext i1 @external_compare(i32* noalias %x) {
1251 ; CHECK-LABEL: @external_compare(
1252 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32* [[X:%.*]], @y
1253 ; CHECK-NEXT: ret i1 [[CMP]]
1255 %cmp = icmp eq i32* %x, @y
1259 define i1 @alloca_gep(i64 %a, i64 %b) {
1260 ; CHECK-LABEL: @alloca_gep(
1261 ; CHECK-NEXT: ret i1 false
1263 ; We can prove this GEP is non-null because it is inbounds and the pointer
1265 %strs = alloca [1000 x [1001 x i8]], align 16
1266 %x = getelementptr inbounds [1000 x [1001 x i8]], [1000 x [1001 x i8]]* %strs, i64 0, i64 %a, i64 %b
1267 %cmp = icmp eq i8* %x, null
1271 define i1 @alloca_gep_no_null_opt(i64 %a, i64 %b) #0 {
1272 ; CHECK-LABEL: @alloca_gep_no_null_opt(
1273 ; CHECK-NEXT: [[STRS:%.*]] = alloca [1000 x [1001 x i8]], align 16
1274 ; CHECK-NEXT: [[X:%.*]] = getelementptr inbounds [1000 x [1001 x i8]], [1000 x [1001 x i8]]* [[STRS]], i64 0, i64 [[A:%.*]], i64 [[B:%.*]]
1275 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i8* [[X]], null
1276 ; CHECK-NEXT: ret i1 [[CMP]]
1278 ; We can't prove this GEP is non-null.
1279 %strs = alloca [1000 x [1001 x i8]], align 16
1280 %x = getelementptr inbounds [1000 x [1001 x i8]], [1000 x [1001 x i8]]* %strs, i64 0, i64 %a, i64 %b
1281 %cmp = icmp eq i8* %x, null
1285 define i1 @non_inbounds_gep_compare(i64* %a) {
1286 ; CHECK-LABEL: @non_inbounds_gep_compare(
1287 ; CHECK-NEXT: ret i1 true
1289 ; Equality compares with non-inbounds GEPs can be folded.
1290 %x = getelementptr i64, i64* %a, i64 42
1291 %y = getelementptr inbounds i64, i64* %x, i64 -42
1292 %z = getelementptr i64, i64* %a, i64 -42
1293 %w = getelementptr inbounds i64, i64* %z, i64 42
1294 %cmp = icmp eq i64* %y, %w
1298 define i1 @non_inbounds_gep_compare2(i64* %a) {
1299 ; CHECK-LABEL: @non_inbounds_gep_compare2(
1300 ; CHECK-NEXT: ret i1 true
1302 ; Equality compares with non-inbounds GEPs can be folded.
1303 %x = getelementptr i64, i64* %a, i64 4294967297
1304 %y = getelementptr i64, i64* %a, i64 1
1305 %cmp = icmp eq i64* %y, %y
1309 define i1 @compare_always_true_slt(i16 %a) {
1310 ; CHECK-LABEL: @compare_always_true_slt(
1311 ; CHECK-NEXT: ret i1 true
1313 %t1 = zext i16 %a to i32
1314 %t2 = sub i32 0, %t1
1315 %t3 = icmp slt i32 %t2, 1
1319 define <2 x i1> @compare_always_true_slt_splat(<2 x i16> %a) {
1320 ; CHECK-LABEL: @compare_always_true_slt_splat(
1321 ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true>
1323 %t1 = zext <2 x i16> %a to <2 x i32>
1324 %t2 = sub <2 x i32> zeroinitializer, %t1
1325 %t3 = icmp slt <2 x i32> %t2, <i32 1, i32 1>
1329 define i1 @compare_always_true_sle(i16 %a) {
1330 ; CHECK-LABEL: @compare_always_true_sle(
1331 ; CHECK-NEXT: ret i1 true
1333 %t1 = zext i16 %a to i32
1334 %t2 = sub i32 0, %t1
1335 %t3 = icmp sle i32 %t2, 0
1339 define <2 x i1> @compare_always_true_sle_splat(<2 x i16> %a) {
1340 ; CHECK-LABEL: @compare_always_true_sle_splat(
1341 ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true>
1343 %t1 = zext <2 x i16> %a to <2 x i32>
1344 %t2 = sub <2 x i32> zeroinitializer, %t1
1345 %t3 = icmp sle <2 x i32> %t2, zeroinitializer
1349 define i1 @compare_always_false_sgt(i16 %a) {
1350 ; CHECK-LABEL: @compare_always_false_sgt(
1351 ; CHECK-NEXT: ret i1 false
1353 %t1 = zext i16 %a to i32
1354 %t2 = sub i32 0, %t1
1355 %t3 = icmp sgt i32 %t2, 0
1359 define <2 x i1> @compare_always_false_sgt_splat(<2 x i16> %a) {
1360 ; CHECK-LABEL: @compare_always_false_sgt_splat(
1361 ; CHECK-NEXT: ret <2 x i1> zeroinitializer
1363 %t1 = zext <2 x i16> %a to <2 x i32>
1364 %t2 = sub <2 x i32> zeroinitializer, %t1
1365 %t3 = icmp sgt <2 x i32> %t2, zeroinitializer
1369 define i1 @compare_always_false_sge(i16 %a) {
1370 ; CHECK-LABEL: @compare_always_false_sge(
1371 ; CHECK-NEXT: ret i1 false
1373 %t1 = zext i16 %a to i32
1374 %t2 = sub i32 0, %t1
1375 %t3 = icmp sge i32 %t2, 1
1379 define <2 x i1> @compare_always_false_sge_splat(<2 x i16> %a) {
1380 ; CHECK-LABEL: @compare_always_false_sge_splat(
1381 ; CHECK-NEXT: ret <2 x i1> zeroinitializer
1383 %t1 = zext <2 x i16> %a to <2 x i32>
1384 %t2 = sub <2 x i32> zeroinitializer, %t1
1385 %t3 = icmp sge <2 x i32> %t2, <i32 1, i32 1>
1389 define i1 @compare_always_false_eq(i16 %a) {
1390 ; CHECK-LABEL: @compare_always_false_eq(
1391 ; CHECK-NEXT: ret i1 false
1393 %t1 = zext i16 %a to i32
1394 %t2 = sub i32 0, %t1
1395 %t3 = icmp eq i32 %t2, 1
1399 define <2 x i1> @compare_always_false_eq_splat(<2 x i16> %a) {
1400 ; CHECK-LABEL: @compare_always_false_eq_splat(
1401 ; CHECK-NEXT: ret <2 x i1> zeroinitializer
1403 %t1 = zext <2 x i16> %a to <2 x i32>
1404 %t2 = sub <2 x i32> zeroinitializer, %t1
1405 %t3 = icmp eq <2 x i32> %t2, <i32 1, i32 1>
1409 define i1 @compare_always_true_ne(i16 %a) {
1410 ; CHECK-LABEL: @compare_always_true_ne(
1411 ; CHECK-NEXT: ret i1 true
1413 %t1 = zext i16 %a to i32
1414 %t2 = sub i32 0, %t1
1415 %t3 = icmp ne i32 %t2, 1
1419 define <2 x i1> @compare_always_true_ne_splat(<2 x i16> %a) {
1420 ; CHECK-LABEL: @compare_always_true_ne_splat(
1421 ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true>
1423 %t1 = zext <2 x i16> %a to <2 x i32>
1424 %t2 = sub <2 x i32> zeroinitializer, %t1
1425 %t3 = icmp ne <2 x i32> %t2, <i32 1, i32 1>
1429 define i1 @lshr_ugt_false(i32 %a) {
1430 ; CHECK-LABEL: @lshr_ugt_false(
1431 ; CHECK-NEXT: ret i1 false
1433 %shr = lshr i32 1, %a
1434 %cmp = icmp ugt i32 %shr, 1
1438 define i1 @nonnull_arg(i32* nonnull %i) {
1439 ; CHECK-LABEL: @nonnull_arg(
1440 ; CHECK-NEXT: ret i1 false
1442 %cmp = icmp eq i32* %i, null
1446 define i1 @nonnull_arg_no_null_opt(i32* nonnull %i) #0 {
1447 ; CHECK-LABEL: @nonnull_arg_no_null_opt(
1448 ; CHECK-NEXT: ret i1 false
1450 %cmp = icmp eq i32* %i, null
1454 define i1 @nonnull_deref_arg(i32* dereferenceable(4) %i) {
1455 ; CHECK-LABEL: @nonnull_deref_arg(
1456 ; CHECK-NEXT: ret i1 false
1458 %cmp = icmp eq i32* %i, null
1462 define i1 @nonnull_deref_arg_no_null_opt(i32* dereferenceable(4) %i) #0 {
1463 ; CHECK-LABEL: @nonnull_deref_arg_no_null_opt(
1464 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32* [[I:%.*]], null
1465 ; CHECK-NEXT: ret i1 [[CMP]]
1467 %cmp = icmp eq i32* %i, null
1470 define i1 @nonnull_deref_as_arg(i32 addrspace(1)* dereferenceable(4) %i) {
1471 ; CHECK-LABEL: @nonnull_deref_as_arg(
1472 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 addrspace(1)* [[I:%.*]], null
1473 ; CHECK-NEXT: ret i1 [[CMP]]
1475 %cmp = icmp eq i32 addrspace(1)* %i, null
1479 declare nonnull i32* @returns_nonnull_helper()
1480 define i1 @returns_nonnull() {
1481 ; CHECK-LABEL: @returns_nonnull(
1482 ; CHECK-NEXT: [[CALL:%.*]] = call nonnull i32* @returns_nonnull_helper()
1483 ; CHECK-NEXT: ret i1 false
1485 %call = call nonnull i32* @returns_nonnull_helper()
1486 %cmp = icmp eq i32* %call, null
1490 declare dereferenceable(4) i32* @returns_nonnull_deref_helper()
1491 define i1 @returns_nonnull_deref() {
1492 ; CHECK-LABEL: @returns_nonnull_deref(
1493 ; CHECK-NEXT: [[CALL:%.*]] = call dereferenceable(4) i32* @returns_nonnull_deref_helper()
1494 ; CHECK-NEXT: ret i1 false
1496 %call = call dereferenceable(4) i32* @returns_nonnull_deref_helper()
1497 %cmp = icmp eq i32* %call, null
1501 define i1 @returns_nonnull_deref_no_null_opt () #0 {
1502 ; CHECK-LABEL: @returns_nonnull_deref_no_null_opt(
1503 ; CHECK-NEXT: [[CALL:%.*]] = call dereferenceable(4) i32* @returns_nonnull_deref_helper()
1504 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32* [[CALL]], null
1505 ; CHECK-NEXT: ret i1 [[CMP]]
1507 %call = call dereferenceable(4) i32* @returns_nonnull_deref_helper()
1508 %cmp = icmp eq i32* %call, null
1512 declare dereferenceable(4) i32 addrspace(1)* @returns_nonnull_deref_as_helper()
1513 define i1 @returns_nonnull_as_deref() {
1514 ; CHECK-LABEL: @returns_nonnull_as_deref(
1515 ; CHECK-NEXT: [[CALL:%.*]] = call dereferenceable(4) i32 addrspace(1)* @returns_nonnull_deref_as_helper()
1516 ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 addrspace(1)* [[CALL]], null
1517 ; CHECK-NEXT: ret i1 [[CMP]]
1519 %call = call dereferenceable(4) i32 addrspace(1)* @returns_nonnull_deref_as_helper()
1520 %cmp = icmp eq i32 addrspace(1)* %call, null
1524 define i1 @nonnull_load(i32** %addr) {
1525 ; CHECK-LABEL: @nonnull_load(
1526 ; CHECK-NEXT: ret i1 false
1528 %ptr = load i32*, i32** %addr, !nonnull !{}
1529 %cmp = icmp eq i32* %ptr, null
1533 define i1 @nonnull_load_as_outer(i32* addrspace(1)* %addr) {
1534 ; CHECK-LABEL: @nonnull_load_as_outer(
1535 ; CHECK-NEXT: ret i1 false
1537 %ptr = load i32*, i32* addrspace(1)* %addr, !nonnull !{}
1538 %cmp = icmp eq i32* %ptr, null
1541 define i1 @nonnull_load_as_inner(i32 addrspace(1)** %addr) {
1542 ; CHECK-LABEL: @nonnull_load_as_inner(
1543 ; CHECK-NEXT: ret i1 false
1545 %ptr = load i32 addrspace(1)*, i32 addrspace(1)** %addr, !nonnull !{}
1546 %cmp = icmp eq i32 addrspace(1)* %ptr, null
1550 ; If a bit is known to be zero for A and known to be one for B,
1551 ; then A and B cannot be equal.
1552 define i1 @icmp_eq_const(i32 %a) {
1553 ; CHECK-LABEL: @icmp_eq_const(
1554 ; CHECK-NEXT: ret i1 false
1556 %b = mul nsw i32 %a, -2
1557 %c = icmp eq i32 %b, 1
1561 define <2 x i1> @icmp_eq_const_vec(<2 x i32> %a) {
1562 ; CHECK-LABEL: @icmp_eq_const_vec(
1563 ; CHECK-NEXT: ret <2 x i1> zeroinitializer
1565 %b = mul nsw <2 x i32> %a, <i32 -2, i32 -2>
1566 %c = icmp eq <2 x i32> %b, <i32 1, i32 1>
1570 define i1 @icmp_ne_const(i32 %a) {
1571 ; CHECK-LABEL: @icmp_ne_const(
1572 ; CHECK-NEXT: ret i1 true
1574 %b = mul nsw i32 %a, -2
1575 %c = icmp ne i32 %b, 1
1579 define <2 x i1> @icmp_ne_const_vec(<2 x i32> %a) {
1580 ; CHECK-LABEL: @icmp_ne_const_vec(
1581 ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true>
1583 %b = mul nsw <2 x i32> %a, <i32 -2, i32 -2>
1584 %c = icmp ne <2 x i32> %b, <i32 1, i32 1>
1588 define i1 @icmp_sdiv_int_min(i32 %a) {
1589 ; CHECK-LABEL: @icmp_sdiv_int_min(
1590 ; CHECK-NEXT: [[DIV:%.*]] = sdiv i32 -2147483648, [[A:%.*]]
1591 ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32 [[DIV]], -1073741824
1592 ; CHECK-NEXT: ret i1 [[CMP]]
1594 %div = sdiv i32 -2147483648, %a
1595 %cmp = icmp ne i32 %div, -1073741824
1600 define i1 @icmp_sdiv_pr20288(i64 %a) {
1601 ; CHECK-LABEL: @icmp_sdiv_pr20288(
1602 ; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 [[A:%.*]], -8589934592
1603 ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i64 [[DIV]], 1073741824
1604 ; CHECK-NEXT: ret i1 [[CMP]]
1606 %div = sdiv i64 %a, -8589934592
1607 %cmp = icmp ne i64 %div, 1073741824
1612 define i1 @icmp_sdiv_neg1(i64 %a) {
1613 ; CHECK-LABEL: @icmp_sdiv_neg1(
1614 ; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 [[A:%.*]], -1
1615 ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i64 [[DIV]], 1073741824
1616 ; CHECK-NEXT: ret i1 [[CMP]]
1618 %div = sdiv i64 %a, -1
1619 %cmp = icmp ne i64 %div, 1073741824
1624 define i1 @icmp_known_bits(i4 %x, i4 %y) {
1625 ; CHECK-LABEL: @icmp_known_bits(
1626 ; CHECK-NEXT: ret i1 false
1628 %and1 = and i4 %y, -7
1629 %and2 = and i4 %x, -7
1630 %or1 = or i4 %and1, 2
1631 %or2 = or i4 %and2, 2
1632 %add = add i4 %or1, %or2
1633 %cmp = icmp eq i4 %add, 0
1637 define i1 @icmp_known_bits_vec(<2 x i4> %x, <2 x i4> %y) {
1638 ; CHECK-LABEL: @icmp_known_bits_vec(
1639 ; CHECK-NEXT: ret i1 false
1641 %and1 = and <2 x i4> %y, <i4 -7, i4 -1>
1642 %and2 = and <2 x i4> %x, <i4 -7, i4 -1>
1643 %or1 = or <2 x i4> %and1, <i4 2, i4 2>
1644 %or2 = or <2 x i4> %and2, <i4 2, i4 2>
1645 %add = add <2 x i4> %or1, %or2
1646 %ext = extractelement <2 x i4> %add,i32 0
1647 %cmp = icmp eq i4 %ext, 0
1651 define i1 @icmp_shl_nuw_1(i64 %a) {
1652 ; CHECK-LABEL: @icmp_shl_nuw_1(
1653 ; CHECK-NEXT: ret i1 true
1655 %shl = shl nuw i64 1, %a
1656 %cmp = icmp ne i64 %shl, 0
1660 define i1 @icmp_shl_1_V_ugt_2147483648(i32 %V) {
1661 ; CHECK-LABEL: @icmp_shl_1_V_ugt_2147483648(
1662 ; CHECK-NEXT: ret i1 false
1664 %shl = shl i32 1, %V
1665 %cmp = icmp ugt i32 %shl, 2147483648
1669 define <2 x i1> @icmp_shl_1_ugt_signmask(<2 x i8> %V) {
1670 ; CHECK-LABEL: @icmp_shl_1_ugt_signmask(
1671 ; CHECK-NEXT: ret <2 x i1> zeroinitializer
1673 %shl = shl <2 x i8> <i8 1, i8 1>, %V
1674 %cmp = icmp ugt <2 x i8> %shl, <i8 128, i8 128>
1678 define <2 x i1> @icmp_shl_1_ugt_signmask_undef(<2 x i8> %V) {
1679 ; CHECK-LABEL: @icmp_shl_1_ugt_signmask_undef(
1680 ; CHECK-NEXT: ret <2 x i1> zeroinitializer
1682 %shl = shl <2 x i8> <i8 1, i8 1>, %V
1683 %cmp = icmp ugt <2 x i8> %shl, <i8 128, i8 undef>
1687 define <2 x i1> @icmp_shl_1_ugt_signmask_undef2(<2 x i8> %V) {
1688 ; CHECK-LABEL: @icmp_shl_1_ugt_signmask_undef2(
1689 ; CHECK-NEXT: ret <2 x i1> zeroinitializer
1691 %shl = shl <2 x i8> <i8 1, i8 undef>, %V
1692 %cmp = icmp ugt <2 x i8> %shl, <i8 undef, i8 128>
1696 define i1 @icmp_shl_1_V_ule_2147483648(i32 %V) {
1697 ; CHECK-LABEL: @icmp_shl_1_V_ule_2147483648(
1698 ; CHECK-NEXT: ret i1 true
1700 %shl = shl i32 1, %V
1701 %cmp = icmp ule i32 %shl, 2147483648
1705 define <2 x i1> @icmp_shl_1_ule_signmask(<2 x i8> %V) {
1706 ; CHECK-LABEL: @icmp_shl_1_ule_signmask(
1707 ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true>
1709 %shl = shl <2 x i8> <i8 1, i8 1>, %V
1710 %cmp = icmp ule <2 x i8> %shl, <i8 128, i8 128>
1714 define <2 x i1> @icmp_shl_1_ule_signmask_undef(<2 x i8> %V) {
1715 ; CHECK-LABEL: @icmp_shl_1_ule_signmask_undef(
1716 ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true>
1718 %shl = shl <2 x i8> <i8 1, i8 1>, %V
1719 %cmp = icmp ule <2 x i8> %shl, <i8 128, i8 undef>
1723 define <2 x i1> @icmp_shl_1_ule_signmask_undef2(<2 x i8> %V) {
1724 ; CHECK-LABEL: @icmp_shl_1_ule_signmask_undef2(
1725 ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true>
1727 %shl = shl <2 x i8> <i8 1, i8 undef>, %V
1728 %cmp = icmp ule <2 x i8> %shl, <i8 undef, i8 128>
1732 define i1 @shl_1_cmp_eq_nonpow2(i32 %x) {
1733 ; CHECK-LABEL: @shl_1_cmp_eq_nonpow2(
1734 ; CHECK-NEXT: ret i1 false
1737 %c = icmp eq i32 %s, 31
1741 define <2 x i1> @shl_1_cmp_eq_nonpow2_splat(<2 x i32> %x) {
1742 ; CHECK-LABEL: @shl_1_cmp_eq_nonpow2_splat(
1743 ; CHECK-NEXT: ret <2 x i1> zeroinitializer
1745 %s = shl <2 x i32> <i32 1, i32 1>, %x
1746 %c = icmp eq <2 x i32> %s, <i32 31, i32 31>
1750 define <2 x i1> @shl_1_cmp_eq_nonpow2_splat_undef(<2 x i32> %x) {
1751 ; CHECK-LABEL: @shl_1_cmp_eq_nonpow2_splat_undef(
1752 ; CHECK-NEXT: ret <2 x i1> zeroinitializer
1754 %s = shl <2 x i32> <i32 1, i32 1>, %x
1755 %c = icmp eq <2 x i32> %s, <i32 31, i32 undef>
1759 define i1 @shl_1_cmp_ne_nonpow2(i32 %x) {
1760 ; CHECK-LABEL: @shl_1_cmp_ne_nonpow2(
1761 ; CHECK-NEXT: ret i1 true
1764 %c = icmp ne i32 %s, 42
1768 define <2 x i1> @shl_1_cmp_ne_nonpow2_splat(<2 x i32> %x) {
1769 ; CHECK-LABEL: @shl_1_cmp_ne_nonpow2_splat(
1770 ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true>
1772 %s = shl <2 x i32> <i32 1, i32 1>, %x
1773 %c = icmp ne <2 x i32> %s, <i32 42, i32 42>
1777 define <2 x i1> @shl_1_cmp_ne_nonpow2_splat_undef(<2 x i32> %x) {
1778 ; CHECK-LABEL: @shl_1_cmp_ne_nonpow2_splat_undef(
1779 ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true>
1781 %s = shl <2 x i32> <i32 undef, i32 1>, %x
1782 %c = icmp ne <2 x i32> %s, <i32 42, i32 undef>
1786 define i1 @shl_pow2_cmp_eq_nonpow2(i32 %x) {
1787 ; CHECK-LABEL: @shl_pow2_cmp_eq_nonpow2(
1788 ; CHECK-NEXT: ret i1 false
1791 %c = icmp eq i32 %s, 31
1795 define <2 x i1> @shl_pow21_cmp_ne_nonpow2_splat_undef(<2 x i32> %x) {
1796 ; CHECK-LABEL: @shl_pow21_cmp_ne_nonpow2_splat_undef(
1797 ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true>
1799 %s = shl <2 x i32> <i32 undef, i32 4>, %x
1800 %c = icmp ne <2 x i32> %s, <i32 31, i32 undef>
1804 ; Negative test - overflowing shift could be zero.
1806 define i1 @shl_pow2_cmp_ne_zero(i32 %x) {
1807 ; CHECK-LABEL: @shl_pow2_cmp_ne_zero(
1808 ; CHECK-NEXT: [[S:%.*]] = shl i32 16, [[X:%.*]]
1809 ; CHECK-NEXT: [[C:%.*]] = icmp ne i32 [[S]], 0
1810 ; CHECK-NEXT: ret i1 [[C]]
1813 %c = icmp ne i32 %s, 0
1817 ; Negative test - overflowing shift could be zero.
1819 define <2 x i1> @shl_pow2_cmp_ne_zero_splat(<2 x i32> %x) {
1820 ; CHECK-LABEL: @shl_pow2_cmp_ne_zero_splat(
1821 ; CHECK-NEXT: [[S:%.*]] = shl <2 x i32> <i32 16, i32 16>, [[X:%.*]]
1822 ; CHECK-NEXT: [[C:%.*]] = icmp ne <2 x i32> [[S]], zeroinitializer
1823 ; CHECK-NEXT: ret <2 x i1> [[C]]
1825 %s = shl <2 x i32> <i32 16, i32 16>, %x
1826 %c = icmp ne <2 x i32> %s, zeroinitializer
1830 define i1 @shl_pow2_cmp_eq_zero_nuw(i32 %x) {
1831 ; CHECK-LABEL: @shl_pow2_cmp_eq_zero_nuw(
1832 ; CHECK-NEXT: ret i1 false
1834 %s = shl nuw i32 16, %x
1835 %c = icmp eq i32 %s, 0
1839 define <2 x i1> @shl_pow2_cmp_ne_zero_nuw_splat_undef(<2 x i32> %x) {
1840 ; CHECK-LABEL: @shl_pow2_cmp_ne_zero_nuw_splat_undef(
1841 ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true>
1843 %s = shl nuw <2 x i32> <i32 16, i32 undef>, %x
1844 %c = icmp ne <2 x i32> %s, <i32 undef, i32 0>
1848 define i1 @shl_pow2_cmp_ne_zero_nsw(i32 %x) {
1849 ; CHECK-LABEL: @shl_pow2_cmp_ne_zero_nsw(
1850 ; CHECK-NEXT: ret i1 true
1852 %s = shl nsw i32 16, %x
1853 %c = icmp ne i32 %s, 0
1857 define <2 x i1> @shl_pow2_cmp_eq_zero_nsw_splat_undef(<2 x i32> %x) {
1858 ; CHECK-LABEL: @shl_pow2_cmp_eq_zero_nsw_splat_undef(
1859 ; CHECK-NEXT: ret <2 x i1> zeroinitializer
1861 %s = shl nsw <2 x i32> <i32 undef, i32 16>, %x
1862 %c = icmp eq <2 x i32> %s, <i32 0, i32 undef>
1866 define i1 @tautological1(i32 %A, i32 %B) {
1867 ; CHECK-LABEL: @tautological1(
1868 ; CHECK-NEXT: ret i1 false
1871 %D = icmp ugt i32 %C, %A
1875 define i1 @tautological2(i32 %A, i32 %B) {
1876 ; CHECK-LABEL: @tautological2(
1877 ; CHECK-NEXT: ret i1 true
1880 %D = icmp ule i32 %C, %A
1884 define i1 @tautological3(i32 %A, i32 %B) {
1885 ; CHECK-LABEL: @tautological3(
1886 ; CHECK-NEXT: ret i1 true
1889 %D = icmp ule i32 %A, %C
1893 define i1 @tautological4(i32 %A, i32 %B) {
1894 ; CHECK-LABEL: @tautological4(
1895 ; CHECK-NEXT: ret i1 false
1898 %D = icmp ugt i32 %A, %C
1902 define i1 @tautological5(i32 %A, i32 %B) {
1903 ; CHECK-LABEL: @tautological5(
1904 ; CHECK-NEXT: ret i1 false
1907 %D = icmp ult i32 %C, %A
1911 define i1 @tautological6(i32 %A, i32 %B) {
1912 ; CHECK-LABEL: @tautological6(
1913 ; CHECK-NEXT: ret i1 true
1916 %D = icmp uge i32 %C, %A
1920 define i1 @tautological7(i32 %A, i32 %B) {
1921 ; CHECK-LABEL: @tautological7(
1922 ; CHECK-NEXT: ret i1 true
1925 %D = icmp uge i32 %A, %C
1929 define i1 @tautological8(i32 %A, i32 %B) {
1930 ; CHECK-LABEL: @tautological8(
1931 ; CHECK-NEXT: ret i1 false
1934 %D = icmp ult i32 %A, %C
1938 declare void @helper_i1(i1)
1939 ; Series of tests for icmp s[lt|ge] (or A, B), A and icmp s[gt|le] A, (or A, B)
1940 define void @icmp_slt_sge_or(i32 %Ax, i32 %Bx) {
1941 ; 'p' for positive, 'n' for negative, 'x' for potentially either.
1942 ; %D is 'icmp slt (or A, B), A'
1943 ; %E is 'icmp sge (or A, B), A' making it the not of %D
1944 ; %F is 'icmp sgt A, (or A, B)' making it the same as %D
1945 ; %G is 'icmp sle A, (or A, B)' making it the not of %D
1946 ; CHECK-LABEL: @icmp_slt_sge_or(
1947 ; CHECK-NEXT: [[APOS:%.*]] = and i32 [[AX:%.*]], 2147483647
1948 ; CHECK-NEXT: [[BNEG:%.*]] = or i32 [[BX:%.*]], -2147483648
1949 ; CHECK-NEXT: [[CPX:%.*]] = or i32 [[APOS]], [[BX]]
1950 ; CHECK-NEXT: [[DPX:%.*]] = icmp slt i32 [[CPX]], [[APOS]]
1951 ; CHECK-NEXT: [[EPX:%.*]] = icmp sge i32 [[CPX]], [[APOS]]
1952 ; CHECK-NEXT: [[FPX:%.*]] = icmp sgt i32 [[APOS]], [[CPX]]
1953 ; CHECK-NEXT: [[GPX:%.*]] = icmp sle i32 [[APOS]], [[CPX]]
1954 ; CHECK-NEXT: [[CXX:%.*]] = or i32 [[AX]], [[BX]]
1955 ; CHECK-NEXT: [[DXX:%.*]] = icmp slt i32 [[CXX]], [[AX]]
1956 ; CHECK-NEXT: [[EXX:%.*]] = icmp sge i32 [[CXX]], [[AX]]
1957 ; CHECK-NEXT: [[FXX:%.*]] = icmp sgt i32 [[AX]], [[CXX]]
1958 ; CHECK-NEXT: [[GXX:%.*]] = icmp sle i32 [[AX]], [[CXX]]
1959 ; CHECK-NEXT: [[CXN:%.*]] = or i32 [[AX]], [[BNEG]]
1960 ; CHECK-NEXT: [[DXN:%.*]] = icmp slt i32 [[CXN]], [[AX]]
1961 ; CHECK-NEXT: [[EXN:%.*]] = icmp sge i32 [[CXN]], [[AX]]
1962 ; CHECK-NEXT: [[FXN:%.*]] = icmp sgt i32 [[AX]], [[CXN]]
1963 ; CHECK-NEXT: [[GXN:%.*]] = icmp sle i32 [[AX]], [[CXN]]
1964 ; CHECK-NEXT: call void @helper_i1(i1 false)
1965 ; CHECK-NEXT: call void @helper_i1(i1 true)
1966 ; CHECK-NEXT: call void @helper_i1(i1 false)
1967 ; CHECK-NEXT: call void @helper_i1(i1 true)
1968 ; CHECK-NEXT: call void @helper_i1(i1 [[DPX]])
1969 ; CHECK-NEXT: call void @helper_i1(i1 [[EPX]])
1970 ; CHECK-NEXT: call void @helper_i1(i1 [[FPX]])
1971 ; CHECK-NEXT: call void @helper_i1(i1 [[GPX]])
1972 ; CHECK-NEXT: call void @helper_i1(i1 true)
1973 ; CHECK-NEXT: call void @helper_i1(i1 false)
1974 ; CHECK-NEXT: call void @helper_i1(i1 true)
1975 ; CHECK-NEXT: call void @helper_i1(i1 false)
1976 ; CHECK-NEXT: call void @helper_i1(i1 false)
1977 ; CHECK-NEXT: call void @helper_i1(i1 true)
1978 ; CHECK-NEXT: call void @helper_i1(i1 false)
1979 ; CHECK-NEXT: call void @helper_i1(i1 true)
1980 ; CHECK-NEXT: call void @helper_i1(i1 [[DXX]])
1981 ; CHECK-NEXT: call void @helper_i1(i1 [[EXX]])
1982 ; CHECK-NEXT: call void @helper_i1(i1 [[FXX]])
1983 ; CHECK-NEXT: call void @helper_i1(i1 [[GXX]])
1984 ; CHECK-NEXT: call void @helper_i1(i1 [[DXN]])
1985 ; CHECK-NEXT: call void @helper_i1(i1 [[EXN]])
1986 ; CHECK-NEXT: call void @helper_i1(i1 [[FXN]])
1987 ; CHECK-NEXT: call void @helper_i1(i1 [[GXN]])
1988 ; CHECK-NEXT: call void @helper_i1(i1 false)
1989 ; CHECK-NEXT: call void @helper_i1(i1 true)
1990 ; CHECK-NEXT: call void @helper_i1(i1 false)
1991 ; CHECK-NEXT: call void @helper_i1(i1 true)
1992 ; CHECK-NEXT: call void @helper_i1(i1 false)
1993 ; CHECK-NEXT: call void @helper_i1(i1 true)
1994 ; CHECK-NEXT: call void @helper_i1(i1 false)
1995 ; CHECK-NEXT: call void @helper_i1(i1 true)
1996 ; CHECK-NEXT: call void @helper_i1(i1 false)
1997 ; CHECK-NEXT: call void @helper_i1(i1 true)
1998 ; CHECK-NEXT: call void @helper_i1(i1 false)
1999 ; CHECK-NEXT: call void @helper_i1(i1 true)
2000 ; CHECK-NEXT: ret void
2002 %Aneg = or i32 %Ax, 2147483648
2003 %Apos = and i32 %Ax, 2147483647
2004 %Bneg = or i32 %Bx, 2147483648
2005 %Bpos = and i32 %Bx, 2147483647
2007 %Cpp = or i32 %Apos, %Bpos
2008 %Dpp = icmp slt i32 %Cpp, %Apos
2009 %Epp = icmp sge i32 %Cpp, %Apos
2010 %Fpp = icmp sgt i32 %Apos, %Cpp
2011 %Gpp = icmp sle i32 %Apos, %Cpp
2012 %Cpx = or i32 %Apos, %Bx
2013 %Dpx = icmp slt i32 %Cpx, %Apos
2014 %Epx = icmp sge i32 %Cpx, %Apos
2015 %Fpx = icmp sgt i32 %Apos, %Cpx
2016 %Gpx = icmp sle i32 %Apos, %Cpx
2017 %Cpn = or i32 %Apos, %Bneg
2018 %Dpn = icmp slt i32 %Cpn, %Apos
2019 %Epn = icmp sge i32 %Cpn, %Apos
2020 %Fpn = icmp sgt i32 %Apos, %Cpn
2021 %Gpn = icmp sle i32 %Apos, %Cpn
2023 %Cxp = or i32 %Ax, %Bpos
2024 %Dxp = icmp slt i32 %Cxp, %Ax
2025 %Exp = icmp sge i32 %Cxp, %Ax
2026 %Fxp = icmp sgt i32 %Ax, %Cxp
2027 %Gxp = icmp sle i32 %Ax, %Cxp
2028 %Cxx = or i32 %Ax, %Bx
2029 %Dxx = icmp slt i32 %Cxx, %Ax
2030 %Exx = icmp sge i32 %Cxx, %Ax
2031 %Fxx = icmp sgt i32 %Ax, %Cxx
2032 %Gxx = icmp sle i32 %Ax, %Cxx
2033 %Cxn = or i32 %Ax, %Bneg
2034 %Dxn = icmp slt i32 %Cxn, %Ax
2035 %Exn = icmp sge i32 %Cxn, %Ax
2036 %Fxn = icmp sgt i32 %Ax, %Cxn
2037 %Gxn = icmp sle i32 %Ax, %Cxn
2039 %Cnp = or i32 %Aneg, %Bpos
2040 %Dnp = icmp slt i32 %Cnp, %Aneg
2041 %Enp = icmp sge i32 %Cnp, %Aneg
2042 %Fnp = icmp sgt i32 %Aneg, %Cnp
2043 %Gnp = icmp sle i32 %Aneg, %Cnp
2044 %Cnx = or i32 %Aneg, %Bx
2045 %Dnx = icmp slt i32 %Cnx, %Aneg
2046 %Enx = icmp sge i32 %Cnx, %Aneg
2047 %Fnx = icmp sgt i32 %Aneg, %Cnx
2048 %Gnx = icmp sle i32 %Aneg, %Cnx
2049 %Cnn = or i32 %Aneg, %Bneg
2050 %Dnn = icmp slt i32 %Cnn, %Aneg
2051 %Enn = icmp sge i32 %Cnn, %Aneg
2052 %Fnn = icmp sgt i32 %Aneg, %Cnn
2053 %Gnn = icmp sle i32 %Aneg, %Cnn
2055 call void @helper_i1(i1 %Dpp)
2056 call void @helper_i1(i1 %Epp)
2057 call void @helper_i1(i1 %Fpp)
2058 call void @helper_i1(i1 %Gpp)
2059 call void @helper_i1(i1 %Dpx)
2060 call void @helper_i1(i1 %Epx)
2061 call void @helper_i1(i1 %Fpx)
2062 call void @helper_i1(i1 %Gpx)
2063 call void @helper_i1(i1 %Dpn)
2064 call void @helper_i1(i1 %Epn)
2065 call void @helper_i1(i1 %Fpn)
2066 call void @helper_i1(i1 %Gpn)
2067 call void @helper_i1(i1 %Dxp)
2068 call void @helper_i1(i1 %Exp)
2069 call void @helper_i1(i1 %Fxp)
2070 call void @helper_i1(i1 %Gxp)
2071 call void @helper_i1(i1 %Dxx)
2072 call void @helper_i1(i1 %Exx)
2073 call void @helper_i1(i1 %Fxx)
2074 call void @helper_i1(i1 %Gxx)
2075 call void @helper_i1(i1 %Dxn)
2076 call void @helper_i1(i1 %Exn)
2077 call void @helper_i1(i1 %Fxn)
2078 call void @helper_i1(i1 %Gxn)
2079 call void @helper_i1(i1 %Dnp)
2080 call void @helper_i1(i1 %Enp)
2081 call void @helper_i1(i1 %Fnp)
2082 call void @helper_i1(i1 %Gnp)
2083 call void @helper_i1(i1 %Dnx)
2084 call void @helper_i1(i1 %Enx)
2085 call void @helper_i1(i1 %Fnx)
2086 call void @helper_i1(i1 %Gnx)
2087 call void @helper_i1(i1 %Dnn)
2088 call void @helper_i1(i1 %Enn)
2089 call void @helper_i1(i1 %Fnn)
2090 call void @helper_i1(i1 %Gnn)
2094 define i1 @constant_fold_inttoptr_null() {
2095 ; CHECK-LABEL: @constant_fold_inttoptr_null(
2096 ; CHECK-NEXT: ret i1 false
2098 %x = icmp eq i32* inttoptr (i64 32 to i32*), null
2102 define i1 @constant_fold_null_inttoptr() {
2103 ; CHECK-LABEL: @constant_fold_null_inttoptr(
2104 ; CHECK-NEXT: ret i1 false
2106 %x = icmp eq i32* null, inttoptr (i64 32 to i32*)
2110 define i1 @cmp_through_addrspacecast(i32 addrspace(1)* %p1) {
2111 ; CHECK-LABEL: @cmp_through_addrspacecast(
2112 ; CHECK-NEXT: ret i1 true
2114 %p0 = addrspacecast i32 addrspace(1)* %p1 to i32*
2115 %p0.1 = getelementptr inbounds i32, i32* %p0, i64 1
2116 %cmp = icmp ne i32* %p0, %p0.1
2120 ; Test simplifications for: icmp (X+Y), (X+Z) -> icmp Y,Z
2121 ; Test the overflow check when the RHS has NSW set and constant Z is greater
2122 ; than Y, then we know X+Y also can't overflow.
2124 define i1 @icmp_nsw_1(i32 %V) {
2125 ; CHECK-LABEL: @icmp_nsw_1(
2126 ; CHECK-NEXT: ret i1 true
2128 %add5 = add i32 %V, 5
2129 %add6 = add nsw i32 %V, 6
2130 %s1 = sext i32 %add5 to i64
2131 %s2 = sext i32 %add6 to i64
2132 %cmp = icmp slt i64 %s1, %s2
2136 define i1 @icmp_nsw_2(i32 %V) {
2137 ; CHECK-LABEL: @icmp_nsw_2(
2138 ; CHECK-NEXT: ret i1 true
2140 %add5 = add i32 %V, 5
2141 %add6 = add nsw i32 %V, 6
2142 %cmp = icmp slt i32 %add5, %add6
2146 define i1 @icmp_nsw_commute(i32 %V) {
2147 ; CHECK-LABEL: @icmp_nsw_commute(
2148 ; CHECK-NEXT: ret i1 true
2150 %add5 = add i32 5, %V
2151 %add6 = add nsw i32 %V, 6
2152 %cmp = icmp slt i32 %add5, %add6
2156 define i1 @icmp_nsw_commute2(i32 %V) {
2157 ; CHECK-LABEL: @icmp_nsw_commute2(
2158 ; CHECK-NEXT: ret i1 true
2160 %add5 = add i32 %V, 5
2161 %add6 = add nsw i32 6, %V
2162 %cmp = icmp slt i32 %add5, %add6
2166 define i1 @icmp_nsw_commute3(i32 %V) {
2167 ; CHECK-LABEL: @icmp_nsw_commute3(
2168 ; CHECK-NEXT: ret i1 true
2170 %add5 = add i32 5, %V
2171 %add6 = add nsw i32 6, %V
2172 %cmp = icmp slt i32 %add5, %add6
2176 define i1 @icmp_nsw_22(i32 %V) {
2177 ; CHECK-LABEL: @icmp_nsw_22(
2178 ; CHECK-NEXT: ret i1 true
2180 %add5 = add nsw i32 %V, 5
2181 %add6 = add nsw i32 %V, 6
2182 %cmp = icmp slt i32 %add5, %add6
2186 define i1 @icmp_nsw_23(i32 %V) {
2187 ; CHECK-LABEL: @icmp_nsw_23(
2188 ; CHECK-NEXT: [[ADD5:%.*]] = add nsw i32 [[V:%.*]], 5
2189 ; CHECK-NEXT: [[ADD6:%.*]] = add i32 [[V]], 6
2190 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD5]], [[ADD6]]
2191 ; CHECK-NEXT: ret i1 [[CMP]]
2193 %add5 = add nsw i32 %V, 5
2194 %add6 = add i32 %V, 6
2195 %cmp = icmp slt i32 %add5, %add6
2199 define i1 @icmp_nsw_false(i32 %V) {
2200 ; CHECK-LABEL: @icmp_nsw_false(
2201 ; CHECK-NEXT: ret i1 false
2203 %add5 = add nsw i32 %V, 6
2204 %add6 = add i32 %V, 5
2205 %cmp = icmp slt i32 %add5, %add6
2209 define i1 @icmp_nsw_false_2(i32 %V) {
2210 ; CHECK-LABEL: @icmp_nsw_false_2(
2211 ; CHECK-NEXT: ret i1 false
2213 %add5 = add nsw i32 %V, 6
2214 %add6 = add nsw i32 %V, 5
2215 %cmp = icmp slt i32 %add5, %add6
2219 define i1 @icmp_nsw_false_3(i32 %V) {
2220 ; CHECK-LABEL: @icmp_nsw_false_3(
2221 ; CHECK-NEXT: [[ADD5:%.*]] = add nsw i32 [[V:%.*]], 5
2222 ; CHECK-NEXT: [[ADD6:%.*]] = add i32 [[V]], 5
2223 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD5]], [[ADD6]]
2224 ; CHECK-NEXT: ret i1 [[CMP]]
2226 %add5 = add nsw i32 %V, 5
2227 %add6 = add i32 %V, 5
2228 %cmp = icmp slt i32 %add5, %add6
2232 define i1 @icmp_nsw_false_4(i32 %V) {
2233 ; CHECK-LABEL: @icmp_nsw_false_4(
2234 ; CHECK-NEXT: [[ADD5:%.*]] = add i32 [[V:%.*]], 6
2235 ; CHECK-NEXT: [[ADD6:%.*]] = add nsw i32 [[V]], 5
2236 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD5]], [[ADD6]]
2237 ; CHECK-NEXT: ret i1 [[CMP]]
2239 %add5 = add i32 %V, 6
2240 %add6 = add nsw i32 %V, 5
2241 %cmp = icmp slt i32 %add5, %add6
2245 define i1 @icmp_nsw_false_5(i8 %V) {
2246 ; CHECK-LABEL: @icmp_nsw_false_5(
2247 ; CHECK-NEXT: [[ADD:%.*]] = add i8 [[V:%.*]], 121
2248 ; CHECK-NEXT: [[ADDNSW:%.*]] = add nsw i8 [[V]], -104
2249 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i8 [[ADD]], [[ADDNSW]]
2250 ; CHECK-NEXT: ret i1 [[CMP]]
2252 %add = add i8 %V, 121
2253 %addnsw = add nsw i8 %V, -104
2254 %cmp = icmp slt i8 %add, %addnsw
2258 define i1 @icmp_nsw_i8(i8 %V) {
2259 ; CHECK-LABEL: @icmp_nsw_i8(
2260 ; CHECK-NEXT: ret i1 true
2262 %add5 = add i8 %V, 5
2263 %add6 = add nsw i8 %V, 6
2264 %cmp = icmp slt i8 %add5, %add6
2268 define i1 @icmp_nsw_i16(i16 %V) {
2269 ; CHECK-LABEL: @icmp_nsw_i16(
2270 ; CHECK-NEXT: ret i1 true
2272 %add5 = add i16 %V, 0
2273 %add6 = add nsw i16 %V, 1
2274 %cmp = icmp slt i16 %add5, %add6
2278 define i1 @icmp_nsw_i64(i64 %V) {
2279 ; CHECK-LABEL: @icmp_nsw_i64(
2280 ; CHECK-NEXT: ret i1 true
2282 %add5 = add i64 %V, 5
2283 %add6 = add nsw i64 %V, 6
2284 %cmp = icmp slt i64 %add5, %add6
2288 define <4 x i1> @icmp_nsw_vec(<4 x i32> %V) {
2289 ; CHECK-LABEL: @icmp_nsw_vec(
2290 ; CHECK-NEXT: ret <4 x i1> <i1 true, i1 true, i1 true, i1 true>
2292 %add5 = add <4 x i32> %V, <i32 5, i32 5, i32 5, i32 5>
2293 %add6 = add nsw <4 x i32> %V, <i32 6, i32 6, i32 6, i32 6>
2294 %cmp = icmp slt <4 x i32> %add5, %add6
2298 define i1 @icmp_nsw_3(i32 %V) {
2299 ; CHECK-LABEL: @icmp_nsw_3(
2300 ; CHECK-NEXT: [[ADD5:%.*]] = add i32 [[V:%.*]], 5
2301 ; CHECK-NEXT: [[ADD5_2:%.*]] = add nsw i32 [[V]], 5
2302 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD5]], [[ADD5_2]]
2303 ; CHECK-NEXT: ret i1 [[CMP]]
2305 %add5 = add i32 %V, 5
2306 %add5_2 = add nsw i32 %V, 5
2307 %cmp = icmp slt i32 %add5, %add5_2
2311 define i1 @icmp_nsw_4(i32 %V) {
2312 ; CHECK-LABEL: @icmp_nsw_4(
2313 ; CHECK-NEXT: [[ADD5:%.*]] = add i32 [[V:%.*]], 5
2314 ; CHECK-NEXT: [[ADD4:%.*]] = add nsw i32 [[V]], 4
2315 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD5]], [[ADD4]]
2316 ; CHECK-NEXT: ret i1 [[CMP]]
2318 %add5 = add i32 %V, 5
2319 %add4 = add nsw i32 %V, 4
2320 %cmp = icmp slt i32 %add5, %add4
2324 define i1 @icmp_nsw_5(i32 %V) {
2325 ; CHECK-LABEL: @icmp_nsw_5(
2326 ; CHECK-NEXT: [[ADD5:%.*]] = add nsw i32 [[V:%.*]], 5
2327 ; CHECK-NEXT: [[ADD6:%.*]] = add i32 [[V]], 6
2328 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD5]], [[ADD6]]
2329 ; CHECK-NEXT: ret i1 [[CMP]]
2331 %add5 = add nsw i32 %V, 5
2332 %add6 = add i32 %V, 6
2333 %cmp = icmp slt i32 %add5, %add6
2337 define i1 @icmp_nsw_7(i32 %V, i32 %arg) {
2338 ; CHECK-LABEL: @icmp_nsw_7(
2339 ; CHECK-NEXT: [[ADD5:%.*]] = add i32 [[V:%.*]], 5
2340 ; CHECK-NEXT: [[ADDARG:%.*]] = add nsw i32 [[V]], [[ARG:%.*]]
2341 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD5]], [[ADDARG]]
2342 ; CHECK-NEXT: ret i1 [[CMP]]
2344 %add5 = add i32 %V, 5
2345 %addarg = add nsw i32 %V, %arg
2346 %cmp = icmp slt i32 %add5, %addarg
2350 define i1 @icmp_nsw_8(i32 %V, i32 %arg) {
2351 ; CHECK-LABEL: @icmp_nsw_8(
2352 ; CHECK-NEXT: [[ADDARG:%.*]] = add i32 [[V:%.*]], [[ARG:%.*]]
2353 ; CHECK-NEXT: [[ADD6:%.*]] = add nsw i32 [[V]], 5
2354 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADDARG]], [[ADD6]]
2355 ; CHECK-NEXT: ret i1 [[CMP]]
2357 %addarg = add i32 %V, %arg
2358 %add6 = add nsw i32 %V, 5
2359 %cmp = icmp slt i32 %addarg, %add6
2363 define i1 @icmp_nsw_9(i32 %V1, i32 %V2) {
2364 ; CHECK-LABEL: @icmp_nsw_9(
2365 ; CHECK-NEXT: [[ADD_V1:%.*]] = add i32 [[V1:%.*]], 5
2366 ; CHECK-NEXT: [[ADD_V2:%.*]] = add nsw i32 [[V2:%.*]], 6
2367 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD_V1]], [[ADD_V2]]
2368 ; CHECK-NEXT: ret i1 [[CMP]]
2370 %add_V1 = add i32 %V1, 5
2371 %add_V2 = add nsw i32 %V2, 6
2372 %cmp = icmp slt i32 %add_V1, %add_V2
2376 define i1 @icmp_nsw_10(i32 %V) {
2377 ; CHECK-LABEL: @icmp_nsw_10(
2378 ; CHECK-NEXT: [[ADD5:%.*]] = add i32 [[V:%.*]], 5
2379 ; CHECK-NEXT: [[ADD6:%.*]] = add nsw i32 [[V]], 6
2380 ; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[ADD6]], [[ADD5]]
2381 ; CHECK-NEXT: ret i1 [[CMP]]
2383 %add5 = add i32 %V, 5
2384 %add6 = add nsw i32 %V, 6
2385 %cmp = icmp sgt i32 %add6, %add5
2389 define i1 @icmp_nsw_11(i32 %V) {
2390 ; CHECK-LABEL: @icmp_nsw_11(
2391 ; CHECK-NEXT: [[ADD5:%.*]] = add i32 [[V:%.*]], -125
2392 ; CHECK-NEXT: [[ADD6:%.*]] = add nsw i32 [[V]], -99
2393 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD5]], [[ADD6]]
2394 ; CHECK-NEXT: ret i1 [[CMP]]
2396 %add5 = add i32 %V, -125
2397 %add6 = add nsw i32 %V, -99
2398 %cmp = icmp slt i32 %add5, %add6
2402 define i1 @icmp_nsw_nonpos(i32 %V) {
2403 ; CHECK-LABEL: @icmp_nsw_nonpos(
2404 ; CHECK-NEXT: ret i1 false
2406 %add5 = add i32 %V, 0
2407 %add6 = add nsw i32 %V, -1
2408 %cmp = icmp slt i32 %add5, %add6
2412 define i1 @icmp_nsw_nonpos2(i32 %V) {
2413 ; CHECK-LABEL: @icmp_nsw_nonpos2(
2414 ; CHECK-NEXT: [[ADD5:%.*]] = add i32 [[V:%.*]], 1
2415 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[ADD5]], [[V]]
2416 ; CHECK-NEXT: ret i1 [[CMP]]
2418 %add5 = add i32 %V, 1
2419 %add6 = add nsw i32 %V, 0
2420 %cmp = icmp slt i32 %add5, %add6
2424 declare i11 @llvm.ctpop.i11(i11)
2425 declare i73 @llvm.ctpop.i73(i73)
2426 declare <2 x i13> @llvm.ctpop.v2i13(<2 x i13>)
2428 define i1 @ctpop_sgt_bitwidth(i11 %x) {
2429 ; CHECK-LABEL: @ctpop_sgt_bitwidth(
2430 ; CHECK-NEXT: ret i1 false
2432 %pop = call i11 @llvm.ctpop.i11(i11 %x)
2433 %cmp = icmp sgt i11 %pop, 11
2437 define i1 @ctpop_sle_minus1(i11 %x) {
2438 ; CHECK-LABEL: @ctpop_sle_minus1(
2439 ; CHECK-NEXT: ret i1 false
2441 %pop = call i11 @llvm.ctpop.i11(i11 %x)
2442 %cmp = icmp sle i11 %pop, -1
2446 define i1 @ctpop_ugt_bitwidth(i73 %x) {
2447 ; CHECK-LABEL: @ctpop_ugt_bitwidth(
2448 ; CHECK-NEXT: ret i1 false
2450 %pop = call i73 @llvm.ctpop.i73(i73 %x)
2451 %cmp = icmp ugt i73 %pop, 73
2455 ; Negative test - does not simplify, but instcombine could reduce this.
2457 define i1 @ctpop_ugt_bitwidth_minus1(i73 %x) {
2458 ; CHECK-LABEL: @ctpop_ugt_bitwidth_minus1(
2459 ; CHECK-NEXT: [[POP:%.*]] = call i73 @llvm.ctpop.i73(i73 [[X:%.*]])
2460 ; CHECK-NEXT: [[CMP:%.*]] = icmp ugt i73 [[POP]], 72
2461 ; CHECK-NEXT: ret i1 [[CMP]]
2463 %pop = call i73 @llvm.ctpop.i73(i73 %x)
2464 %cmp = icmp ugt i73 %pop, 72
2468 define <2 x i1> @ctpop_sgt_bitwidth_splat(<2 x i13> %x) {
2469 ; CHECK-LABEL: @ctpop_sgt_bitwidth_splat(
2470 ; CHECK-NEXT: ret <2 x i1> zeroinitializer
2472 %pop = call <2 x i13> @llvm.ctpop.v2i13(<2 x i13> %x)
2473 %cmp = icmp sgt <2 x i13> %pop, <i13 13, i13 13>
2477 define i1 @ctpop_ult_plus1_bitwidth(i11 %x) {
2478 ; CHECK-LABEL: @ctpop_ult_plus1_bitwidth(
2479 ; CHECK-NEXT: ret i1 true
2481 %pop = call i11 @llvm.ctpop.i11(i11 %x)
2482 %cmp = icmp ult i11 %pop, 12
2486 define i1 @ctpop_ne_big_bitwidth(i73 %x) {
2487 ; CHECK-LABEL: @ctpop_ne_big_bitwidth(
2488 ; CHECK-NEXT: ret i1 true
2490 %pop = call i73 @llvm.ctpop.i73(i73 %x)
2491 %cmp = icmp ne i73 %pop, 75
2495 define <2 x i1> @ctpop_slt_bitwidth_plus1_splat(<2 x i13> %x) {
2496 ; CHECK-LABEL: @ctpop_slt_bitwidth_plus1_splat(
2497 ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true>
2499 %pop = call <2 x i13> @llvm.ctpop.v2i13(<2 x i13> %x)
2500 %cmp = icmp slt <2 x i13> %pop, <i13 14, i13 14>
2504 ; Negative test - does not simplify, but instcombine could reduce this.
2506 define <2 x i1> @ctpop_slt_bitwidth_splat(<2 x i13> %x) {
2507 ; CHECK-LABEL: @ctpop_slt_bitwidth_splat(
2508 ; CHECK-NEXT: [[POP:%.*]] = call <2 x i13> @llvm.ctpop.v2i13(<2 x i13> [[X:%.*]])
2509 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt <2 x i13> [[POP]], <i13 13, i13 13>
2510 ; CHECK-NEXT: ret <2 x i1> [[CMP]]
2512 %pop = call <2 x i13> @llvm.ctpop.v2i13(<2 x i13> %x)
2513 %cmp = icmp slt <2 x i13> %pop, <i13 13, i13 13>
2517 declare i11 @llvm.ctlz.i11(i11)
2518 declare i73 @llvm.ctlz.i73(i73)
2519 declare <2 x i13> @llvm.ctlz.v2i13(<2 x i13>)
2521 define i1 @ctlz_sgt_bitwidth(i11 %x) {
2522 ; CHECK-LABEL: @ctlz_sgt_bitwidth(
2523 ; CHECK-NEXT: ret i1 false
2525 %pop = call i11 @llvm.ctlz.i11(i11 %x)
2526 %cmp = icmp sgt i11 %pop, 11
2530 define i1 @ctlz_sle_minus1(i11 %x) {
2531 ; CHECK-LABEL: @ctlz_sle_minus1(
2532 ; CHECK-NEXT: ret i1 false
2534 %pop = call i11 @llvm.ctlz.i11(i11 %x)
2535 %cmp = icmp sle i11 %pop, -1
2539 define i1 @ctlz_ugt_bitwidth(i73 %x) {
2540 ; CHECK-LABEL: @ctlz_ugt_bitwidth(
2541 ; CHECK-NEXT: ret i1 false
2543 %pop = call i73 @llvm.ctlz.i73(i73 %x)
2544 %cmp = icmp ugt i73 %pop, 73
2548 ; Negative test - does not simplify, but instcombine could reduce this.
2550 define i1 @ctlz_ugt_bitwidth_minus1(i73 %x) {
2551 ; CHECK-LABEL: @ctlz_ugt_bitwidth_minus1(
2552 ; CHECK-NEXT: [[POP:%.*]] = call i73 @llvm.ctlz.i73(i73 [[X:%.*]], i1 false)
2553 ; CHECK-NEXT: [[CMP:%.*]] = icmp ugt i73 [[POP]], 72
2554 ; CHECK-NEXT: ret i1 [[CMP]]
2556 %pop = call i73 @llvm.ctlz.i73(i73 %x)
2557 %cmp = icmp ugt i73 %pop, 72
2561 define <2 x i1> @ctlz_sgt_bitwidth_splat(<2 x i13> %x) {
2562 ; CHECK-LABEL: @ctlz_sgt_bitwidth_splat(
2563 ; CHECK-NEXT: ret <2 x i1> zeroinitializer
2565 %pop = call <2 x i13> @llvm.ctlz.v2i13(<2 x i13> %x)
2566 %cmp = icmp sgt <2 x i13> %pop, <i13 13, i13 13>
2570 define i1 @ctlz_ult_plus1_bitwidth(i11 %x) {
2571 ; CHECK-LABEL: @ctlz_ult_plus1_bitwidth(
2572 ; CHECK-NEXT: ret i1 true
2574 %pop = call i11 @llvm.ctlz.i11(i11 %x)
2575 %cmp = icmp ult i11 %pop, 12
2579 define i1 @ctlz_ne_big_bitwidth(i73 %x) {
2580 ; CHECK-LABEL: @ctlz_ne_big_bitwidth(
2581 ; CHECK-NEXT: ret i1 true
2583 %pop = call i73 @llvm.ctlz.i73(i73 %x)
2584 %cmp = icmp ne i73 %pop, 75
2588 define <2 x i1> @ctlz_slt_bitwidth_plus1_splat(<2 x i13> %x) {
2589 ; CHECK-LABEL: @ctlz_slt_bitwidth_plus1_splat(
2590 ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true>
2592 %pop = call <2 x i13> @llvm.ctlz.v2i13(<2 x i13> %x)
2593 %cmp = icmp slt <2 x i13> %pop, <i13 14, i13 14>
2597 ; Negative test - does not simplify, but instcombine could reduce this.
2599 define <2 x i1> @ctlz_slt_bitwidth_splat(<2 x i13> %x) {
2600 ; CHECK-LABEL: @ctlz_slt_bitwidth_splat(
2601 ; CHECK-NEXT: [[POP:%.*]] = call <2 x i13> @llvm.ctlz.v2i13(<2 x i13> [[X:%.*]], i1 false)
2602 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt <2 x i13> [[POP]], <i13 13, i13 13>
2603 ; CHECK-NEXT: ret <2 x i1> [[CMP]]
2605 %pop = call <2 x i13> @llvm.ctlz.v2i13(<2 x i13> %x)
2606 %cmp = icmp slt <2 x i13> %pop, <i13 13, i13 13>
2610 declare i11 @llvm.cttz.i11(i11)
2611 declare i73 @llvm.cttz.i73(i73)
2612 declare <2 x i13> @llvm.cttz.v2i13(<2 x i13>)
2614 define i1 @cttz_sgt_bitwidth(i11 %x) {
2615 ; CHECK-LABEL: @cttz_sgt_bitwidth(
2616 ; CHECK-NEXT: ret i1 false
2618 %pop = call i11 @llvm.cttz.i11(i11 %x)
2619 %cmp = icmp sgt i11 %pop, 11
2623 define i1 @cttz_sle_minus1(i11 %x) {
2624 ; CHECK-LABEL: @cttz_sle_minus1(
2625 ; CHECK-NEXT: ret i1 false
2627 %pop = call i11 @llvm.cttz.i11(i11 %x)
2628 %cmp = icmp sle i11 %pop, -1
2632 define i1 @cttz_ugt_bitwidth(i73 %x) {
2633 ; CHECK-LABEL: @cttz_ugt_bitwidth(
2634 ; CHECK-NEXT: ret i1 false
2636 %pop = call i73 @llvm.cttz.i73(i73 %x)
2637 %cmp = icmp ugt i73 %pop, 73
2641 ; Negative test - does not simplify, but instcombine could reduce this.
2643 define i1 @cttz_ugt_bitwidth_minus1(i73 %x) {
2644 ; CHECK-LABEL: @cttz_ugt_bitwidth_minus1(
2645 ; CHECK-NEXT: [[POP:%.*]] = call i73 @llvm.cttz.i73(i73 [[X:%.*]], i1 false)
2646 ; CHECK-NEXT: [[CMP:%.*]] = icmp ugt i73 [[POP]], 72
2647 ; CHECK-NEXT: ret i1 [[CMP]]
2649 %pop = call i73 @llvm.cttz.i73(i73 %x)
2650 %cmp = icmp ugt i73 %pop, 72
2654 define <2 x i1> @cttz_sgt_bitwidth_splat(<2 x i13> %x) {
2655 ; CHECK-LABEL: @cttz_sgt_bitwidth_splat(
2656 ; CHECK-NEXT: ret <2 x i1> zeroinitializer
2658 %pop = call <2 x i13> @llvm.cttz.v2i13(<2 x i13> %x)
2659 %cmp = icmp sgt <2 x i13> %pop, <i13 13, i13 13>
2663 define i1 @cttz_ult_plus1_bitwidth(i11 %x) {
2664 ; CHECK-LABEL: @cttz_ult_plus1_bitwidth(
2665 ; CHECK-NEXT: ret i1 true
2667 %pop = call i11 @llvm.cttz.i11(i11 %x)
2668 %cmp = icmp ult i11 %pop, 12
2672 define i1 @cttz_ne_big_bitwidth(i73 %x) {
2673 ; CHECK-LABEL: @cttz_ne_big_bitwidth(
2674 ; CHECK-NEXT: ret i1 true
2676 %pop = call i73 @llvm.cttz.i73(i73 %x)
2677 %cmp = icmp ne i73 %pop, 75
2681 define <2 x i1> @cttz_slt_bitwidth_plus1_splat(<2 x i13> %x) {
2682 ; CHECK-LABEL: @cttz_slt_bitwidth_plus1_splat(
2683 ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true>
2685 %pop = call <2 x i13> @llvm.cttz.v2i13(<2 x i13> %x)
2686 %cmp = icmp slt <2 x i13> %pop, <i13 14, i13 14>
2690 ; Negative test - does not simplify, but instcombine could reduce this.
2692 define <2 x i1> @cttz_slt_bitwidth_splat(<2 x i13> %x) {
2693 ; CHECK-LABEL: @cttz_slt_bitwidth_splat(
2694 ; CHECK-NEXT: [[POP:%.*]] = call <2 x i13> @llvm.cttz.v2i13(<2 x i13> [[X:%.*]], i1 false)
2695 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt <2 x i13> [[POP]], <i13 13, i13 13>
2696 ; CHECK-NEXT: ret <2 x i1> [[CMP]]
2698 %pop = call <2 x i13> @llvm.cttz.v2i13(<2 x i13> %x)
2699 %cmp = icmp slt <2 x i13> %pop, <i13 13, i13 13>
2703 attributes #0 = { null_pointer_is_valid }