[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / tools / llvm-profgen / ProfileGenerator.h
blobaf349ac9911ad78070af62f731f214189950ab09
1 //===-- ProfileGenerator.h - Profile Generator -----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_TOOLS_LLVM_PROGEN_PROFILEGENERATOR_H
10 #define LLVM_TOOLS_LLVM_PROGEN_PROFILEGENERATOR_H
11 #include "CSPreInliner.h"
12 #include "ErrorHandling.h"
13 #include "PerfReader.h"
14 #include "ProfiledBinary.h"
15 #include "llvm/ProfileData/SampleProfWriter.h"
16 #include <memory>
17 #include <unordered_set>
19 using namespace llvm;
20 using namespace sampleprof;
22 namespace llvm {
23 namespace sampleprof {
25 // This base class for profile generation of sample-based PGO. We reuse all
26 // structures relating to function profiles and profile writers as seen in
27 // /ProfileData/SampleProf.h.
28 class ProfileGeneratorBase {
30 public:
31 ProfileGeneratorBase(ProfiledBinary *Binary,
32 const ContextSampleCounterMap &Counters)
33 : Binary(Binary), SampleCounters(Counters){};
34 virtual ~ProfileGeneratorBase() = default;
35 static std::unique_ptr<ProfileGeneratorBase>
36 create(ProfiledBinary *Binary, const ContextSampleCounterMap &SampleCounters,
37 bool ProfileIsCSFlat);
38 virtual void generateProfile() = 0;
39 void write();
41 static uint32_t
42 getDuplicationFactor(unsigned Discriminator,
43 bool UseFSD = ProfileGeneratorBase::UseFSDiscriminator) {
44 return UseFSD ? 1
45 : llvm::DILocation::getDuplicationFactorFromDiscriminator(
46 Discriminator);
49 static uint32_t
50 getBaseDiscriminator(unsigned Discriminator,
51 bool UseFSD = ProfileGeneratorBase::UseFSDiscriminator) {
52 return UseFSD ? Discriminator
53 : DILocation::getBaseDiscriminatorFromDiscriminator(
54 Discriminator, /* IsFSDiscriminator */ false);
57 static bool UseFSDiscriminator;
59 protected:
60 // Use SampleProfileWriter to serialize profile map
61 void write(std::unique_ptr<SampleProfileWriter> Writer,
62 SampleProfileMap &ProfileMap);
64 For each region boundary point, mark if it is begin or end (or both) of
65 the region. Boundary points are inclusive. Log the sample count as well
66 so we can use it when we compute the sample count of each disjoint region
67 later. Note that there might be multiple ranges with different sample
68 count that share same begin/end point. We need to accumulate the sample
69 count for the boundary point for such case, because for the example
70 below,
72 |<--100-->|
73 |<------200------>|
74 A B C
76 sample count for disjoint region [A,B] would be 300.
78 void findDisjointRanges(RangeSample &DisjointRanges,
79 const RangeSample &Ranges);
80 // Helper function for updating body sample for a leaf location in
81 // FunctionProfile
82 void updateBodySamplesforFunctionProfile(FunctionSamples &FunctionProfile,
83 const SampleContextFrame &LeafLoc,
84 uint64_t Count);
85 void updateTotalSamples();
87 StringRef getCalleeNameForOffset(uint64_t TargetOffset);
89 void computeSummaryAndThreshold();
91 void calculateAndShowDensity(const SampleProfileMap &Profiles);
93 double calculateDensity(const SampleProfileMap &Profiles,
94 uint64_t HotCntThreshold);
96 void showDensitySuggestion(double Density);
98 // Thresholds from profile summary to answer isHotCount/isColdCount queries.
99 uint64_t HotCountThreshold;
101 uint64_t ColdCountThreshold;
103 // Used by SampleProfileWriter
104 SampleProfileMap ProfileMap;
106 ProfiledBinary *Binary = nullptr;
108 const ContextSampleCounterMap &SampleCounters;
111 class ProfileGenerator : public ProfileGeneratorBase {
113 public:
114 ProfileGenerator(ProfiledBinary *Binary,
115 const ContextSampleCounterMap &Counters)
116 : ProfileGeneratorBase(Binary, Counters){};
117 void generateProfile() override;
119 private:
120 void generateLineNumBasedProfile();
121 RangeSample preprocessRangeCounter(const RangeSample &RangeCounter);
122 FunctionSamples &getTopLevelFunctionProfile(StringRef FuncName);
123 // Helper function to get the leaf frame's FunctionProfile by traversing the
124 // inline stack and meanwhile it adds the total samples for each frame's
125 // function profile.
126 FunctionSamples &
127 getLeafProfileAndAddTotalSamples(const SampleContextFrameVector &FrameVec,
128 uint64_t Count);
129 void populateBodySamplesForAllFunctions(const RangeSample &RangeCounter);
130 void
131 populateBoundarySamplesForAllFunctions(const BranchSample &BranchCounters);
132 void postProcessProfiles();
133 void trimColdProfiles(const SampleProfileMap &Profiles,
134 uint64_t ColdCntThreshold);
137 using ProbeCounterMap =
138 std::unordered_map<const MCDecodedPseudoProbe *, uint64_t>;
140 class CSProfileGenerator : public ProfileGeneratorBase {
141 public:
142 CSProfileGenerator(ProfiledBinary *Binary,
143 const ContextSampleCounterMap &Counters)
144 : ProfileGeneratorBase(Binary, Counters){};
146 void generateProfile() override;
148 // Trim the context stack at a given depth.
149 template <typename T>
150 static void trimContext(SmallVectorImpl<T> &S, int Depth = MaxContextDepth) {
151 if (Depth < 0 || static_cast<size_t>(Depth) >= S.size())
152 return;
153 std::copy(S.begin() + S.size() - static_cast<size_t>(Depth), S.end(),
154 S.begin());
155 S.resize(Depth);
158 // Remove adjacent repeated context sequences up to a given sequence length,
159 // -1 means no size limit. Note that repeated sequences are identified based
160 // on the exact call site, this is finer granularity than function recursion.
161 template <typename T>
162 static void compressRecursionContext(SmallVectorImpl<T> &Context,
163 int32_t CSize = MaxCompressionSize) {
164 uint32_t I = 1;
165 uint32_t HS = static_cast<uint32_t>(Context.size() / 2);
166 uint32_t MaxDedupSize =
167 CSize == -1 ? HS : std::min(static_cast<uint32_t>(CSize), HS);
168 auto BeginIter = Context.begin();
169 // Use an in-place algorithm to save memory copy
170 // End indicates the end location of current iteration's data
171 uint32_t End = 0;
172 // Deduplicate from length 1 to the max possible size of a repeated
173 // sequence.
174 while (I <= MaxDedupSize) {
175 // This is a linear algorithm that deduplicates adjacent repeated
176 // sequences of size I. The deduplication detection runs on a sliding
177 // window whose size is 2*I and it keeps sliding the window to deduplicate
178 // the data inside. Once duplication is detected, deduplicate it by
179 // skipping the right half part of the window, otherwise just copy back
180 // the new one by appending them at the back of End pointer(for the next
181 // iteration).
183 // For example:
184 // Input: [a1, a2, b1, b2]
185 // (Added index to distinguish the same char, the origin is [a, a, b,
186 // b], the size of the dedup window is 2(I = 1) at the beginning)
188 // 1) The initial status is a dummy window[null, a1], then just copy the
189 // right half of the window(End = 0), then slide the window.
190 // Result: [a1], a2, b1, b2 (End points to the element right before ],
191 // after ] is the data of the previous iteration)
193 // 2) Next window is [a1, a2]. Since a1 == a2, then skip the right half of
194 // the window i.e the duplication happen. Only slide the window.
195 // Result: [a1], a2, b1, b2
197 // 3) Next window is [a2, b1], copy the right half of the window(b1 is
198 // new) to the End and slide the window.
199 // Result: [a1, b1], b1, b2
201 // 4) Next window is [b1, b2], same to 2), skip b2.
202 // Result: [a1, b1], b1, b2
203 // After resize, it will be [a, b]
205 // Use pointers like below to do comparison inside the window
206 // [a b c a b c]
207 // | | | | |
208 // LeftBoundary Left Right Left+I Right+I
209 // A duplication found if Left < LeftBoundry.
211 int32_t Right = I - 1;
212 End = I;
213 int32_t LeftBoundary = 0;
214 while (Right + I < Context.size()) {
215 // To avoids scanning a part of a sequence repeatedly, it finds out
216 // the common suffix of two hald in the window. The common suffix will
217 // serve as the common prefix of next possible pair of duplicate
218 // sequences. The non-common part will be ignored and never scanned
219 // again.
221 // For example.
222 // Input: [a, b1], c1, b2, c2
223 // I = 2
225 // 1) For the window [a, b1, c1, b2], non-common-suffix for the right
226 // part is 'c1', copy it and only slide the window 1 step.
227 // Result: [a, b1, c1], b2, c2
229 // 2) Next window is [b1, c1, b2, c2], so duplication happen.
230 // Result after resize: [a, b, c]
232 int32_t Left = Right;
233 while (Left >= LeftBoundary && Context[Left] == Context[Left + I]) {
234 // Find the longest suffix inside the window. When stops, Left points
235 // at the diverging point in the current sequence.
236 Left--;
239 bool DuplicationFound = (Left < LeftBoundary);
240 // Don't need to recheck the data before Right
241 LeftBoundary = Right + 1;
242 if (DuplicationFound) {
243 // Duplication found, skip right half of the window.
244 Right += I;
245 } else {
246 // Copy the non-common-suffix part of the adjacent sequence.
247 std::copy(BeginIter + Right + 1, BeginIter + Left + I + 1,
248 BeginIter + End);
249 End += Left + I - Right;
250 // Only slide the window by the size of non-common-suffix
251 Right = Left + I;
254 // Don't forget the remaining part that's not scanned.
255 std::copy(BeginIter + Right + 1, Context.end(), BeginIter + End);
256 End += Context.size() - Right - 1;
257 I++;
258 Context.resize(End);
259 MaxDedupSize = std::min(static_cast<uint32_t>(End / 2), MaxDedupSize);
263 private:
264 void generateLineNumBasedProfile();
265 // Lookup or create FunctionSamples for the context
266 FunctionSamples &
267 getFunctionProfileForContext(const SampleContextFrameVector &Context,
268 bool WasLeafInlined = false);
269 // For profiled only functions, on-demand compute their inline context
270 // function byte size which is used by the pre-inliner.
271 void computeSizeForProfiledFunctions();
272 // Post processing for profiles before writing out, such as mermining
273 // and trimming cold profiles, running preinliner on profiles.
274 void postProcessProfiles();
276 void populateBodySamplesForFunction(FunctionSamples &FunctionProfile,
277 const RangeSample &RangeCounters);
278 void populateBoundarySamplesForFunction(SampleContextFrames ContextId,
279 FunctionSamples &FunctionProfile,
280 const BranchSample &BranchCounters);
281 void populateInferredFunctionSamples();
283 void generateProbeBasedProfile();
284 // Go through each address from range to extract the top frame probe by
285 // looking up in the Address2ProbeMap
286 void extractProbesFromRange(const RangeSample &RangeCounter,
287 ProbeCounterMap &ProbeCounter);
288 // Fill in function body samples from probes
289 void populateBodySamplesWithProbes(const RangeSample &RangeCounter,
290 SampleContextFrames ContextStack);
291 // Fill in boundary samples for a call probe
292 void populateBoundarySamplesWithProbes(const BranchSample &BranchCounter,
293 SampleContextFrames ContextStack);
294 // Helper function to get FunctionSamples for the leaf probe
295 FunctionSamples &
296 getFunctionProfileForLeafProbe(SampleContextFrames ContextStack,
297 const MCDecodedPseudoProbe *LeafProbe);
299 // Underlying context table serves for sample profile writer.
300 std::unordered_set<SampleContextFrameVector, SampleContextFrameHash> Contexts;
302 public:
303 // Deduplicate adjacent repeated context sequences up to a given sequence
304 // length. -1 means no size limit.
305 static int32_t MaxCompressionSize;
306 static int MaxContextDepth;
309 } // end namespace sampleprof
310 } // end namespace llvm
312 #endif