[sanitizer] Improve FreeBSD ASLR detection
[llvm-project.git] / llvm / tools / llvm-readobj / ELFDumper.cpp
blobc95ba7cec704a9af4957ecd6ec196dc864124f2d
1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/PointerIntPair.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
33 #include "llvm/BinaryFormat/ELF.h"
34 #include "llvm/Demangle/Demangle.h"
35 #include "llvm/Object/Archive.h"
36 #include "llvm/Object/ELF.h"
37 #include "llvm/Object/ELFObjectFile.h"
38 #include "llvm/Object/ELFTypes.h"
39 #include "llvm/Object/Error.h"
40 #include "llvm/Object/ObjectFile.h"
41 #include "llvm/Object/RelocationResolver.h"
42 #include "llvm/Object/StackMapParser.h"
43 #include "llvm/Support/AMDGPUMetadata.h"
44 #include "llvm/Support/ARMAttributeParser.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Endian.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/Format.h"
51 #include "llvm/Support/FormatVariadic.h"
52 #include "llvm/Support/FormattedStream.h"
53 #include "llvm/Support/LEB128.h"
54 #include "llvm/Support/MSP430AttributeParser.h"
55 #include "llvm/Support/MSP430Attributes.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/MipsABIFlags.h"
58 #include "llvm/Support/RISCVAttributeParser.h"
59 #include "llvm/Support/RISCVAttributes.h"
60 #include "llvm/Support/ScopedPrinter.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cinttypes>
64 #include <cstddef>
65 #include <cstdint>
66 #include <cstdlib>
67 #include <iterator>
68 #include <memory>
69 #include <string>
70 #include <system_error>
71 #include <vector>
73 using namespace llvm;
74 using namespace llvm::object;
75 using namespace ELF;
77 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
78 case ns::enum: \
79 return #enum;
81 #define ENUM_ENT(enum, altName) \
82 { #enum, altName, ELF::enum }
84 #define ENUM_ENT_1(enum) \
85 { #enum, #enum, ELF::enum }
87 namespace {
89 template <class ELFT> struct RelSymbol {
90 RelSymbol(const typename ELFT::Sym *S, StringRef N)
91 : Sym(S), Name(N.str()) {}
92 const typename ELFT::Sym *Sym;
93 std::string Name;
96 /// Represents a contiguous uniform range in the file. We cannot just create a
97 /// range directly because when creating one of these from the .dynamic table
98 /// the size, entity size and virtual address are different entries in arbitrary
99 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
100 struct DynRegionInfo {
101 DynRegionInfo(const Binary &Owner, const ObjDumper &D)
102 : Obj(&Owner), Dumper(&D) {}
103 DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
104 uint64_t S, uint64_t ES)
105 : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
107 /// Address in current address space.
108 const uint8_t *Addr = nullptr;
109 /// Size in bytes of the region.
110 uint64_t Size = 0;
111 /// Size of each entity in the region.
112 uint64_t EntSize = 0;
114 /// Owner object. Used for error reporting.
115 const Binary *Obj;
116 /// Dumper used for error reporting.
117 const ObjDumper *Dumper;
118 /// Error prefix. Used for error reporting to provide more information.
119 std::string Context;
120 /// Region size name. Used for error reporting.
121 StringRef SizePrintName = "size";
122 /// Entry size name. Used for error reporting. If this field is empty, errors
123 /// will not mention the entry size.
124 StringRef EntSizePrintName = "entry size";
126 template <typename Type> ArrayRef<Type> getAsArrayRef() const {
127 const Type *Start = reinterpret_cast<const Type *>(Addr);
128 if (!Start)
129 return {Start, Start};
131 const uint64_t Offset =
132 Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
133 const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
135 if (Size > ObjSize - Offset) {
136 Dumper->reportUniqueWarning(
137 "unable to read data at 0x" + Twine::utohexstr(Offset) +
138 " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
139 "): it goes past the end of the file of size 0x" +
140 Twine::utohexstr(ObjSize));
141 return {Start, Start};
144 if (EntSize == sizeof(Type) && (Size % EntSize == 0))
145 return {Start, Start + (Size / EntSize)};
147 std::string Msg;
148 if (!Context.empty())
149 Msg += Context + " has ";
151 Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
152 .str();
153 if (!EntSizePrintName.empty())
154 Msg +=
155 (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
156 .str();
158 Dumper->reportUniqueWarning(Msg);
159 return {Start, Start};
163 struct GroupMember {
164 StringRef Name;
165 uint64_t Index;
168 struct GroupSection {
169 StringRef Name;
170 std::string Signature;
171 uint64_t ShName;
172 uint64_t Index;
173 uint32_t Link;
174 uint32_t Info;
175 uint32_t Type;
176 std::vector<GroupMember> Members;
179 namespace {
181 struct NoteType {
182 uint32_t ID;
183 StringRef Name;
186 } // namespace
188 template <class ELFT> class Relocation {
189 public:
190 Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
191 : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
192 Offset(R.r_offset), Info(R.r_info) {}
194 Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
195 : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
196 Addend = R.r_addend;
199 uint32_t Type;
200 uint32_t Symbol;
201 typename ELFT::uint Offset;
202 typename ELFT::uint Info;
203 Optional<int64_t> Addend;
206 template <class ELFT> class MipsGOTParser;
208 template <typename ELFT> class ELFDumper : public ObjDumper {
209 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
211 public:
212 ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
214 void printUnwindInfo() override;
215 void printNeededLibraries() override;
216 void printHashTable() override;
217 void printGnuHashTable() override;
218 void printLoadName() override;
219 void printVersionInfo() override;
220 void printArchSpecificInfo() override;
221 void printStackMap() const override;
223 const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
225 std::string describe(const Elf_Shdr &Sec) const;
227 unsigned getHashTableEntSize() const {
228 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
229 // sections. This violates the ELF specification.
230 if (Obj.getHeader().e_machine == ELF::EM_S390 ||
231 Obj.getHeader().e_machine == ELF::EM_ALPHA)
232 return 8;
233 return 4;
236 Elf_Dyn_Range dynamic_table() const {
237 // A valid .dynamic section contains an array of entries terminated
238 // with a DT_NULL entry. However, sometimes the section content may
239 // continue past the DT_NULL entry, so to dump the section correctly,
240 // we first find the end of the entries by iterating over them.
241 Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
243 size_t Size = 0;
244 while (Size < Table.size())
245 if (Table[Size++].getTag() == DT_NULL)
246 break;
248 return Table.slice(0, Size);
251 Elf_Sym_Range dynamic_symbols() const {
252 if (!DynSymRegion)
253 return Elf_Sym_Range();
254 return DynSymRegion->template getAsArrayRef<Elf_Sym>();
257 const Elf_Shdr *findSectionByName(StringRef Name) const;
259 StringRef getDynamicStringTable() const { return DynamicStringTable; }
261 protected:
262 virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
263 virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
264 virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
266 void
267 printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
268 function_ref<void(StringRef, uint64_t)> OnLibEntry);
270 virtual void printRelRelaReloc(const Relocation<ELFT> &R,
271 const RelSymbol<ELFT> &RelSym) = 0;
272 virtual void printRelrReloc(const Elf_Relr &R) = 0;
273 virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
274 const DynRegionInfo &Reg) {}
275 void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
276 const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
277 void printDynamicReloc(const Relocation<ELFT> &R);
278 void printDynamicRelocationsHelper();
279 void printRelocationsHelper(const Elf_Shdr &Sec);
280 void forEachRelocationDo(
281 const Elf_Shdr &Sec, bool RawRelr,
282 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
283 const Elf_Shdr &, const Elf_Shdr *)>
284 RelRelaFn,
285 llvm::function_ref<void(const Elf_Relr &)> RelrFn);
287 virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
288 bool NonVisibilityBitsUsed) const {};
289 virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
290 DataRegion<Elf_Word> ShndxTable,
291 Optional<StringRef> StrTable, bool IsDynamic,
292 bool NonVisibilityBitsUsed) const = 0;
294 virtual void printMipsABIFlags() = 0;
295 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
296 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
298 Expected<ArrayRef<Elf_Versym>>
299 getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
300 StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
301 StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
303 std::vector<GroupSection> getGroups();
305 // Returns the function symbol index for the given address. Matches the
306 // symbol's section with FunctionSec when specified.
307 // Returns None if no function symbol can be found for the address or in case
308 // it is not defined in the specified section.
309 SmallVector<uint32_t>
310 getSymbolIndexesForFunctionAddress(uint64_t SymValue,
311 Optional<const Elf_Shdr *> FunctionSec);
312 bool printFunctionStackSize(uint64_t SymValue,
313 Optional<const Elf_Shdr *> FunctionSec,
314 const Elf_Shdr &StackSizeSec, DataExtractor Data,
315 uint64_t *Offset);
316 void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
317 unsigned Ndx, const Elf_Shdr *SymTab,
318 const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
319 const RelocationResolver &Resolver, DataExtractor Data);
320 virtual void printStackSizeEntry(uint64_t Size,
321 ArrayRef<std::string> FuncNames) = 0;
323 void printRelocatableStackSizes(std::function<void()> PrintHeader);
324 void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
326 /// Retrieves sections with corresponding relocation sections based on
327 /// IsMatch.
328 void getSectionAndRelocations(
329 std::function<bool(const Elf_Shdr &)> IsMatch,
330 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap);
332 const object::ELFObjectFile<ELFT> &ObjF;
333 const ELFFile<ELFT> &Obj;
334 StringRef FileName;
336 Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
337 uint64_t EntSize) {
338 if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
339 return createError("offset (0x" + Twine::utohexstr(Offset) +
340 ") + size (0x" + Twine::utohexstr(Size) +
341 ") is greater than the file size (0x" +
342 Twine::utohexstr(Obj.getBufSize()) + ")");
343 return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
346 void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>,
347 support::endianness);
348 void printMipsReginfo();
349 void printMipsOptions();
351 std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
352 void loadDynamicTable();
353 void parseDynamicTable();
355 Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
356 bool &IsDefault) const;
357 Expected<SmallVector<Optional<VersionEntry>, 0> *> getVersionMap() const;
359 DynRegionInfo DynRelRegion;
360 DynRegionInfo DynRelaRegion;
361 DynRegionInfo DynRelrRegion;
362 DynRegionInfo DynPLTRelRegion;
363 Optional<DynRegionInfo> DynSymRegion;
364 DynRegionInfo DynSymTabShndxRegion;
365 DynRegionInfo DynamicTable;
366 StringRef DynamicStringTable;
367 const Elf_Hash *HashTable = nullptr;
368 const Elf_GnuHash *GnuHashTable = nullptr;
369 const Elf_Shdr *DotSymtabSec = nullptr;
370 const Elf_Shdr *DotDynsymSec = nullptr;
371 const Elf_Shdr *DotAddrsigSec = nullptr;
372 DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
373 Optional<uint64_t> SONameOffset;
374 Optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap;
376 const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version
377 const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
378 const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
380 std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
381 DataRegion<Elf_Word> ShndxTable,
382 Optional<StringRef> StrTable,
383 bool IsDynamic) const;
384 Expected<unsigned>
385 getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
386 DataRegion<Elf_Word> ShndxTable) const;
387 Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
388 unsigned SectionIndex) const;
389 std::string getStaticSymbolName(uint32_t Index) const;
390 StringRef getDynamicString(uint64_t Value) const;
392 void printSymbolsHelper(bool IsDynamic) const;
393 std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
395 Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
396 const Elf_Shdr *SymTab) const;
398 ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
400 private:
401 mutable SmallVector<Optional<VersionEntry>, 0> VersionMap;
404 template <class ELFT>
405 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
406 return ::describe(Obj, Sec);
409 namespace {
411 template <class ELFT> struct SymtabLink {
412 typename ELFT::SymRange Symbols;
413 StringRef StringTable;
414 const typename ELFT::Shdr *SymTab;
417 // Returns the linked symbol table, symbols and associated string table for a
418 // given section.
419 template <class ELFT>
420 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
421 const typename ELFT::Shdr &Sec,
422 unsigned ExpectedType) {
423 Expected<const typename ELFT::Shdr *> SymtabOrErr =
424 Obj.getSection(Sec.sh_link);
425 if (!SymtabOrErr)
426 return createError("invalid section linked to " + describe(Obj, Sec) +
427 ": " + toString(SymtabOrErr.takeError()));
429 if ((*SymtabOrErr)->sh_type != ExpectedType)
430 return createError(
431 "invalid section linked to " + describe(Obj, Sec) + ": expected " +
432 object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
433 ", but got " +
434 object::getELFSectionTypeName(Obj.getHeader().e_machine,
435 (*SymtabOrErr)->sh_type));
437 Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
438 if (!StrTabOrErr)
439 return createError(
440 "can't get a string table for the symbol table linked to " +
441 describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
443 Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
444 if (!SymsOrErr)
445 return createError("unable to read symbols from the " + describe(Obj, Sec) +
446 ": " + toString(SymsOrErr.takeError()));
448 return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
451 } // namespace
453 template <class ELFT>
454 Expected<ArrayRef<typename ELFT::Versym>>
455 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
456 StringRef *StrTab,
457 const Elf_Shdr **SymTabSec) const {
458 assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec));
459 if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
460 sizeof(uint16_t) !=
462 return createError("the " + describe(Sec) + " is misaligned");
464 Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
465 Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
466 if (!VersionsOrErr)
467 return createError("cannot read content of " + describe(Sec) + ": " +
468 toString(VersionsOrErr.takeError()));
470 Expected<SymtabLink<ELFT>> SymTabOrErr =
471 getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
472 if (!SymTabOrErr) {
473 reportUniqueWarning(SymTabOrErr.takeError());
474 return *VersionsOrErr;
477 if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
478 reportUniqueWarning(describe(Sec) + ": the number of entries (" +
479 Twine(VersionsOrErr->size()) +
480 ") does not match the number of symbols (" +
481 Twine(SymTabOrErr->Symbols.size()) +
482 ") in the symbol table with index " +
483 Twine(Sec.sh_link));
485 if (SymTab) {
486 *SymTab = SymTabOrErr->Symbols;
487 *StrTab = SymTabOrErr->StringTable;
488 *SymTabSec = SymTabOrErr->SymTab;
490 return *VersionsOrErr;
493 template <class ELFT>
494 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
495 Optional<StringRef> StrTable;
496 size_t Entries = 0;
497 Elf_Sym_Range Syms(nullptr, nullptr);
498 const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
500 if (IsDynamic) {
501 StrTable = DynamicStringTable;
502 Syms = dynamic_symbols();
503 Entries = Syms.size();
504 } else if (DotSymtabSec) {
505 if (Expected<StringRef> StrTableOrErr =
506 Obj.getStringTableForSymtab(*DotSymtabSec))
507 StrTable = *StrTableOrErr;
508 else
509 reportUniqueWarning(
510 "unable to get the string table for the SHT_SYMTAB section: " +
511 toString(StrTableOrErr.takeError()));
513 if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
514 Syms = *SymsOrErr;
515 else
516 reportUniqueWarning(
517 "unable to read symbols from the SHT_SYMTAB section: " +
518 toString(SymsOrErr.takeError()));
519 Entries = DotSymtabSec->getEntityCount();
521 if (Syms.empty())
522 return;
524 // The st_other field has 2 logical parts. The first two bits hold the symbol
525 // visibility (STV_*) and the remainder hold other platform-specific values.
526 bool NonVisibilityBitsUsed =
527 llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
529 DataRegion<Elf_Word> ShndxTable =
530 IsDynamic ? DataRegion<Elf_Word>(
531 (const Elf_Word *)this->DynSymTabShndxRegion.Addr,
532 this->getElfObject().getELFFile().end())
533 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
535 printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed);
536 for (const Elf_Sym &Sym : Syms)
537 printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
538 NonVisibilityBitsUsed);
541 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
542 formatted_raw_ostream &OS;
544 public:
545 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
547 GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
548 : ELFDumper<ELFT>(ObjF, Writer),
549 OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
550 assert(&this->W.getOStream() == &llvm::fouts());
553 void printFileSummary(StringRef FileStr, ObjectFile &Obj,
554 ArrayRef<std::string> InputFilenames,
555 const Archive *A) override;
556 void printFileHeaders() override;
557 void printGroupSections() override;
558 void printRelocations() override;
559 void printSectionHeaders() override;
560 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
561 void printHashSymbols() override;
562 void printSectionDetails() override;
563 void printDependentLibs() override;
564 void printDynamicTable() override;
565 void printDynamicRelocations() override;
566 void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
567 bool NonVisibilityBitsUsed) const override;
568 void printProgramHeaders(bool PrintProgramHeaders,
569 cl::boolOrDefault PrintSectionMapping) override;
570 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
571 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
572 void printVersionDependencySection(const Elf_Shdr *Sec) override;
573 void printHashHistograms() override;
574 void printCGProfile() override;
575 void printBBAddrMaps() override;
576 void printAddrsig() override;
577 void printNotes() override;
578 void printELFLinkerOptions() override;
579 void printStackSizes() override;
581 private:
582 void printHashHistogram(const Elf_Hash &HashTable);
583 void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable);
584 void printHashTableSymbols(const Elf_Hash &HashTable);
585 void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
587 struct Field {
588 std::string Str;
589 unsigned Column;
591 Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
592 Field(unsigned Col) : Column(Col) {}
595 template <typename T, typename TEnum>
596 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
597 TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
598 TEnum EnumMask3 = {}) const {
599 std::string Str;
600 for (const EnumEntry<TEnum> &Flag : EnumValues) {
601 if (Flag.Value == 0)
602 continue;
604 TEnum EnumMask{};
605 if (Flag.Value & EnumMask1)
606 EnumMask = EnumMask1;
607 else if (Flag.Value & EnumMask2)
608 EnumMask = EnumMask2;
609 else if (Flag.Value & EnumMask3)
610 EnumMask = EnumMask3;
611 bool IsEnum = (Flag.Value & EnumMask) != 0;
612 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
613 (IsEnum && (Value & EnumMask) == Flag.Value)) {
614 if (!Str.empty())
615 Str += ", ";
616 Str += Flag.AltName;
619 return Str;
622 formatted_raw_ostream &printField(struct Field F) const {
623 if (F.Column != 0)
624 OS.PadToColumn(F.Column);
625 OS << F.Str;
626 OS.flush();
627 return OS;
629 void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
630 DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
631 uint32_t Bucket);
632 void printRelrReloc(const Elf_Relr &R) override;
633 void printRelRelaReloc(const Relocation<ELFT> &R,
634 const RelSymbol<ELFT> &RelSym) override;
635 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
636 DataRegion<Elf_Word> ShndxTable,
637 Optional<StringRef> StrTable, bool IsDynamic,
638 bool NonVisibilityBitsUsed) const override;
639 void printDynamicRelocHeader(unsigned Type, StringRef Name,
640 const DynRegionInfo &Reg) override;
642 std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
643 DataRegion<Elf_Word> ShndxTable) const;
644 void printProgramHeaders() override;
645 void printSectionMapping() override;
646 void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
647 const Twine &Label, unsigned EntriesNum);
649 void printStackSizeEntry(uint64_t Size,
650 ArrayRef<std::string> FuncNames) override;
652 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
653 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
654 void printMipsABIFlags() override;
657 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
658 public:
659 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
661 LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
662 : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
664 void printFileHeaders() override;
665 void printGroupSections() override;
666 void printRelocations() override;
667 void printSectionHeaders() override;
668 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
669 void printDependentLibs() override;
670 void printDynamicTable() override;
671 void printDynamicRelocations() override;
672 void printProgramHeaders(bool PrintProgramHeaders,
673 cl::boolOrDefault PrintSectionMapping) override;
674 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
675 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
676 void printVersionDependencySection(const Elf_Shdr *Sec) override;
677 void printHashHistograms() override;
678 void printCGProfile() override;
679 void printBBAddrMaps() override;
680 void printAddrsig() override;
681 void printNotes() override;
682 void printELFLinkerOptions() override;
683 void printStackSizes() override;
685 private:
686 void printRelrReloc(const Elf_Relr &R) override;
687 void printRelRelaReloc(const Relocation<ELFT> &R,
688 const RelSymbol<ELFT> &RelSym) override;
690 void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
691 DataRegion<Elf_Word> ShndxTable) const;
692 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
693 DataRegion<Elf_Word> ShndxTable,
694 Optional<StringRef> StrTable, bool IsDynamic,
695 bool /*NonVisibilityBitsUsed*/) const override;
696 void printProgramHeaders() override;
697 void printSectionMapping() override {}
698 void printStackSizeEntry(uint64_t Size,
699 ArrayRef<std::string> FuncNames) override;
701 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
702 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
703 void printMipsABIFlags() override;
705 protected:
706 ScopedPrinter &W;
709 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except
710 // it uses a JSONScopedPrinter.
711 template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> {
712 public:
713 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
715 JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
716 : LLVMELFDumper<ELFT>(ObjF, Writer) {}
718 void printFileSummary(StringRef FileStr, ObjectFile &Obj,
719 ArrayRef<std::string> InputFilenames,
720 const Archive *A) override;
722 private:
723 std::unique_ptr<DictScope> FileScope;
726 } // end anonymous namespace
728 namespace llvm {
730 template <class ELFT>
731 static std::unique_ptr<ObjDumper>
732 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
733 if (opts::Output == opts::GNU)
734 return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
735 else if (opts::Output == opts::JSON)
736 return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer);
737 return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
740 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
741 ScopedPrinter &Writer) {
742 // Little-endian 32-bit
743 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
744 return createELFDumper(*ELFObj, Writer);
746 // Big-endian 32-bit
747 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
748 return createELFDumper(*ELFObj, Writer);
750 // Little-endian 64-bit
751 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
752 return createELFDumper(*ELFObj, Writer);
754 // Big-endian 64-bit
755 return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
758 } // end namespace llvm
760 template <class ELFT>
761 Expected<SmallVector<Optional<VersionEntry>, 0> *>
762 ELFDumper<ELFT>::getVersionMap() const {
763 // If the VersionMap has already been loaded or if there is no dynamic symtab
764 // or version table, there is nothing to do.
765 if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
766 return &VersionMap;
768 Expected<SmallVector<Optional<VersionEntry>, 0>> MapOrErr =
769 Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
770 if (MapOrErr)
771 VersionMap = *MapOrErr;
772 else
773 return MapOrErr.takeError();
775 return &VersionMap;
778 template <typename ELFT>
779 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
780 bool &IsDefault) const {
781 // This is a dynamic symbol. Look in the GNU symbol version table.
782 if (!SymbolVersionSection) {
783 // No version table.
784 IsDefault = false;
785 return "";
788 assert(DynSymRegion && "DynSymRegion has not been initialised");
789 // Determine the position in the symbol table of this entry.
790 size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
791 reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
792 sizeof(Elf_Sym);
794 // Get the corresponding version index entry.
795 Expected<const Elf_Versym *> EntryOrErr =
796 Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
797 if (!EntryOrErr)
798 return EntryOrErr.takeError();
800 unsigned Version = (*EntryOrErr)->vs_index;
801 if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
802 IsDefault = false;
803 return "";
806 Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
807 getVersionMap();
808 if (!MapOrErr)
809 return MapOrErr.takeError();
811 return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
812 Sym.st_shndx == ELF::SHN_UNDEF);
815 template <typename ELFT>
816 Expected<RelSymbol<ELFT>>
817 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
818 const Elf_Shdr *SymTab) const {
819 if (R.Symbol == 0)
820 return RelSymbol<ELFT>(nullptr, "");
822 Expected<const Elf_Sym *> SymOrErr =
823 Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
824 if (!SymOrErr)
825 return createError("unable to read an entry with index " + Twine(R.Symbol) +
826 " from " + describe(*SymTab) + ": " +
827 toString(SymOrErr.takeError()));
828 const Elf_Sym *Sym = *SymOrErr;
829 if (!Sym)
830 return RelSymbol<ELFT>(nullptr, "");
832 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
833 if (!StrTableOrErr)
834 return StrTableOrErr.takeError();
836 const Elf_Sym *FirstSym =
837 cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
838 std::string SymbolName =
839 getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
840 *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
841 return RelSymbol<ELFT>(Sym, SymbolName);
844 template <typename ELFT>
845 ArrayRef<typename ELFT::Word>
846 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
847 if (Symtab) {
848 auto It = ShndxTables.find(Symtab);
849 if (It != ShndxTables.end())
850 return It->second;
852 return {};
855 static std::string maybeDemangle(StringRef Name) {
856 return opts::Demangle ? demangle(std::string(Name)) : Name.str();
859 template <typename ELFT>
860 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
861 auto Warn = [&](Error E) -> std::string {
862 reportUniqueWarning("unable to read the name of symbol with index " +
863 Twine(Index) + ": " + toString(std::move(E)));
864 return "<?>";
867 Expected<const typename ELFT::Sym *> SymOrErr =
868 Obj.getSymbol(DotSymtabSec, Index);
869 if (!SymOrErr)
870 return Warn(SymOrErr.takeError());
872 Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
873 if (!StrTabOrErr)
874 return Warn(StrTabOrErr.takeError());
876 Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
877 if (!NameOrErr)
878 return Warn(NameOrErr.takeError());
879 return maybeDemangle(*NameOrErr);
882 template <typename ELFT>
883 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym &Symbol,
884 unsigned SymIndex,
885 DataRegion<Elf_Word> ShndxTable,
886 Optional<StringRef> StrTable,
887 bool IsDynamic) const {
888 if (!StrTable)
889 return "<?>";
891 std::string SymbolName;
892 if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
893 SymbolName = maybeDemangle(*NameOrErr);
894 } else {
895 reportUniqueWarning(NameOrErr.takeError());
896 return "<?>";
899 if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
900 Expected<unsigned> SectionIndex =
901 getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
902 if (!SectionIndex) {
903 reportUniqueWarning(SectionIndex.takeError());
904 return "<?>";
906 Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
907 if (!NameOrErr) {
908 reportUniqueWarning(NameOrErr.takeError());
909 return ("<section " + Twine(*SectionIndex) + ">").str();
911 return std::string(*NameOrErr);
914 if (!IsDynamic)
915 return SymbolName;
917 bool IsDefault;
918 Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
919 if (!VersionOrErr) {
920 reportUniqueWarning(VersionOrErr.takeError());
921 return SymbolName + "@<corrupt>";
924 if (!VersionOrErr->empty()) {
925 SymbolName += (IsDefault ? "@@" : "@");
926 SymbolName += *VersionOrErr;
928 return SymbolName;
931 template <typename ELFT>
932 Expected<unsigned>
933 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
934 DataRegion<Elf_Word> ShndxTable) const {
935 unsigned Ndx = Symbol.st_shndx;
936 if (Ndx == SHN_XINDEX)
937 return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
938 ShndxTable);
939 if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
940 return Ndx;
942 auto CreateErr = [&](const Twine &Name, Optional<unsigned> Offset = None) {
943 std::string Desc;
944 if (Offset)
945 Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
946 else
947 Desc = Name.str();
948 return createError(
949 "unable to get section index for symbol with st_shndx = 0x" +
950 Twine::utohexstr(Ndx) + " (" + Desc + ")");
953 if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
954 return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
955 if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
956 return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
957 if (Ndx == ELF::SHN_UNDEF)
958 return CreateErr("SHN_UNDEF");
959 if (Ndx == ELF::SHN_ABS)
960 return CreateErr("SHN_ABS");
961 if (Ndx == ELF::SHN_COMMON)
962 return CreateErr("SHN_COMMON");
963 return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
966 template <typename ELFT>
967 Expected<StringRef>
968 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
969 unsigned SectionIndex) const {
970 Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
971 if (!SecOrErr)
972 return SecOrErr.takeError();
973 return Obj.getSectionName(**SecOrErr);
976 template <class ELFO>
977 static const typename ELFO::Elf_Shdr *
978 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
979 uint64_t Addr) {
980 for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
981 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
982 return &Shdr;
983 return nullptr;
986 const EnumEntry<unsigned> ElfClass[] = {
987 {"None", "none", ELF::ELFCLASSNONE},
988 {"32-bit", "ELF32", ELF::ELFCLASS32},
989 {"64-bit", "ELF64", ELF::ELFCLASS64},
992 const EnumEntry<unsigned> ElfDataEncoding[] = {
993 {"None", "none", ELF::ELFDATANONE},
994 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
995 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB},
998 const EnumEntry<unsigned> ElfObjectFileType[] = {
999 {"None", "NONE (none)", ELF::ET_NONE},
1000 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL},
1001 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC},
1002 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1003 {"Core", "CORE (Core file)", ELF::ET_CORE},
1006 const EnumEntry<unsigned> ElfOSABI[] = {
1007 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE},
1008 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX},
1009 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD},
1010 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX},
1011 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD},
1012 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS},
1013 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX},
1014 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX},
1015 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD},
1016 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64},
1017 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO},
1018 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD},
1019 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS},
1020 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1021 {"AROS", "AROS", ELF::ELFOSABI_AROS},
1022 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS},
1023 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI},
1024 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE}
1027 const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1028 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA},
1029 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL},
1030 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1033 const EnumEntry<unsigned> ARMElfOSABI[] = {
1034 {"ARM", "ARM", ELF::ELFOSABI_ARM}
1037 const EnumEntry<unsigned> C6000ElfOSABI[] = {
1038 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1039 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX}
1042 const EnumEntry<unsigned> ElfMachineType[] = {
1043 ENUM_ENT(EM_NONE, "None"),
1044 ENUM_ENT(EM_M32, "WE32100"),
1045 ENUM_ENT(EM_SPARC, "Sparc"),
1046 ENUM_ENT(EM_386, "Intel 80386"),
1047 ENUM_ENT(EM_68K, "MC68000"),
1048 ENUM_ENT(EM_88K, "MC88000"),
1049 ENUM_ENT(EM_IAMCU, "EM_IAMCU"),
1050 ENUM_ENT(EM_860, "Intel 80860"),
1051 ENUM_ENT(EM_MIPS, "MIPS R3000"),
1052 ENUM_ENT(EM_S370, "IBM System/370"),
1053 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"),
1054 ENUM_ENT(EM_PARISC, "HPPA"),
1055 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"),
1056 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"),
1057 ENUM_ENT(EM_960, "Intel 80960"),
1058 ENUM_ENT(EM_PPC, "PowerPC"),
1059 ENUM_ENT(EM_PPC64, "PowerPC64"),
1060 ENUM_ENT(EM_S390, "IBM S/390"),
1061 ENUM_ENT(EM_SPU, "SPU"),
1062 ENUM_ENT(EM_V800, "NEC V800 series"),
1063 ENUM_ENT(EM_FR20, "Fujistsu FR20"),
1064 ENUM_ENT(EM_RH32, "TRW RH-32"),
1065 ENUM_ENT(EM_RCE, "Motorola RCE"),
1066 ENUM_ENT(EM_ARM, "ARM"),
1067 ENUM_ENT(EM_ALPHA, "EM_ALPHA"),
1068 ENUM_ENT(EM_SH, "Hitachi SH"),
1069 ENUM_ENT(EM_SPARCV9, "Sparc v9"),
1070 ENUM_ENT(EM_TRICORE, "Siemens Tricore"),
1071 ENUM_ENT(EM_ARC, "ARC"),
1072 ENUM_ENT(EM_H8_300, "Hitachi H8/300"),
1073 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"),
1074 ENUM_ENT(EM_H8S, "Hitachi H8S"),
1075 ENUM_ENT(EM_H8_500, "Hitachi H8/500"),
1076 ENUM_ENT(EM_IA_64, "Intel IA-64"),
1077 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"),
1078 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"),
1079 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"),
1080 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"),
1081 ENUM_ENT(EM_PCP, "Siemens PCP"),
1082 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"),
1083 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"),
1084 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"),
1085 ENUM_ENT(EM_ME16, "Toyota ME16 processor"),
1086 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"),
1087 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"),
1088 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"),
1089 ENUM_ENT(EM_PDSP, "Sony DSP processor"),
1090 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"),
1091 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"),
1092 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"),
1093 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1094 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"),
1095 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"),
1096 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"),
1097 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"),
1098 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"),
1099 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"),
1100 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"),
1101 ENUM_ENT(EM_VAX, "Digital VAX"),
1102 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"),
1103 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"),
1104 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"),
1105 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"),
1106 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"),
1107 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"),
1108 ENUM_ENT(EM_PRISM, "Vitesse Prism"),
1109 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"),
1110 ENUM_ENT(EM_FR30, "Fujitsu FR30"),
1111 ENUM_ENT(EM_D10V, "Mitsubishi D10V"),
1112 ENUM_ENT(EM_D30V, "Mitsubishi D30V"),
1113 ENUM_ENT(EM_V850, "NEC v850"),
1114 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"),
1115 ENUM_ENT(EM_MN10300, "Matsushita MN10300"),
1116 ENUM_ENT(EM_MN10200, "Matsushita MN10200"),
1117 ENUM_ENT(EM_PJ, "picoJava"),
1118 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"),
1119 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"),
1120 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"),
1121 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"),
1122 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"),
1123 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"),
1124 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"),
1125 ENUM_ENT(EM_SNP1K, "EM_SNP1K"),
1126 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"),
1127 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"),
1128 ENUM_ENT(EM_MAX, "MAX Processor"),
1129 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"),
1130 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"),
1131 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"),
1132 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"),
1133 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"),
1134 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"),
1135 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"),
1136 ENUM_ENT(EM_UNICORE, "Unicore"),
1137 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"),
1138 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"),
1139 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"),
1140 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"),
1141 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"),
1142 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"),
1143 ENUM_ENT(EM_M16C, "Renesas M16C"),
1144 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"),
1145 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"),
1146 ENUM_ENT(EM_M32C, "Renesas M32C"),
1147 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"),
1148 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"),
1149 ENUM_ENT(EM_SHARC, "EM_SHARC"),
1150 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"),
1151 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"),
1152 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"),
1153 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"),
1154 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1155 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"),
1156 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"),
1157 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"),
1158 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"),
1159 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"),
1160 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"),
1161 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"),
1162 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"),
1163 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"),
1164 ENUM_ENT(EM_8051, "Intel 8051 and variants"),
1165 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"),
1166 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"),
1167 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"),
1168 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1169 // an identical number to EM_ECOG1.
1170 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"),
1171 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1172 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"),
1173 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"),
1174 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"),
1175 ENUM_ENT(EM_RX, "Renesas RX"),
1176 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"),
1177 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"),
1178 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"),
1179 ENUM_ENT(EM_CR16, "National Semiconductor CompactRISC 16-bit processor"),
1180 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"),
1181 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"),
1182 ENUM_ENT(EM_L10M, "EM_L10M"),
1183 ENUM_ENT(EM_K10M, "EM_K10M"),
1184 ENUM_ENT(EM_AARCH64, "AArch64"),
1185 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"),
1186 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"),
1187 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"),
1188 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"),
1189 ENUM_ENT(EM_MICROBLAZE, "Xilinx MicroBlaze 32-bit RISC soft processor core"),
1190 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"),
1191 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"),
1192 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"),
1193 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"),
1194 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"),
1195 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"),
1196 ENUM_ENT(EM_OPEN8, "EM_OPEN8"),
1197 ENUM_ENT(EM_RL78, "Renesas RL78"),
1198 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"),
1199 ENUM_ENT(EM_78KOR, "EM_78KOR"),
1200 ENUM_ENT(EM_56800EX, "EM_56800EX"),
1201 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"),
1202 ENUM_ENT(EM_RISCV, "RISC-V"),
1203 ENUM_ENT(EM_LANAI, "EM_LANAI"),
1204 ENUM_ENT(EM_BPF, "EM_BPF"),
1205 ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"),
1208 const EnumEntry<unsigned> ElfSymbolBindings[] = {
1209 {"Local", "LOCAL", ELF::STB_LOCAL},
1210 {"Global", "GLOBAL", ELF::STB_GLOBAL},
1211 {"Weak", "WEAK", ELF::STB_WEAK},
1212 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1214 const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1215 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT},
1216 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL},
1217 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN},
1218 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1220 const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1221 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL }
1224 static const char *getGroupType(uint32_t Flag) {
1225 if (Flag & ELF::GRP_COMDAT)
1226 return "COMDAT";
1227 else
1228 return "(unknown)";
1231 const EnumEntry<unsigned> ElfSectionFlags[] = {
1232 ENUM_ENT(SHF_WRITE, "W"),
1233 ENUM_ENT(SHF_ALLOC, "A"),
1234 ENUM_ENT(SHF_EXECINSTR, "X"),
1235 ENUM_ENT(SHF_MERGE, "M"),
1236 ENUM_ENT(SHF_STRINGS, "S"),
1237 ENUM_ENT(SHF_INFO_LINK, "I"),
1238 ENUM_ENT(SHF_LINK_ORDER, "L"),
1239 ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
1240 ENUM_ENT(SHF_GROUP, "G"),
1241 ENUM_ENT(SHF_TLS, "T"),
1242 ENUM_ENT(SHF_COMPRESSED, "C"),
1243 ENUM_ENT(SHF_GNU_RETAIN, "R"),
1244 ENUM_ENT(SHF_EXCLUDE, "E"),
1247 const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1248 ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
1249 ENUM_ENT(XCORE_SHF_DP_SECTION, "")
1252 const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1253 ENUM_ENT(SHF_ARM_PURECODE, "y")
1256 const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1257 ENUM_ENT(SHF_HEX_GPREL, "")
1260 const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1261 ENUM_ENT(SHF_MIPS_NODUPES, ""),
1262 ENUM_ENT(SHF_MIPS_NAMES, ""),
1263 ENUM_ENT(SHF_MIPS_LOCAL, ""),
1264 ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
1265 ENUM_ENT(SHF_MIPS_GPREL, ""),
1266 ENUM_ENT(SHF_MIPS_MERGE, ""),
1267 ENUM_ENT(SHF_MIPS_ADDR, ""),
1268 ENUM_ENT(SHF_MIPS_STRING, "")
1271 const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1272 ENUM_ENT(SHF_X86_64_LARGE, "l")
1275 static std::vector<EnumEntry<unsigned>>
1276 getSectionFlagsForTarget(unsigned EMachine) {
1277 std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1278 std::end(ElfSectionFlags));
1279 switch (EMachine) {
1280 case EM_ARM:
1281 Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1282 std::end(ElfARMSectionFlags));
1283 break;
1284 case EM_HEXAGON:
1285 Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1286 std::end(ElfHexagonSectionFlags));
1287 break;
1288 case EM_MIPS:
1289 Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1290 std::end(ElfMipsSectionFlags));
1291 break;
1292 case EM_X86_64:
1293 Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1294 std::end(ElfX86_64SectionFlags));
1295 break;
1296 case EM_XCORE:
1297 Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1298 std::end(ElfXCoreSectionFlags));
1299 break;
1300 default:
1301 break;
1303 return Ret;
1306 static std::string getGNUFlags(unsigned EMachine, uint64_t Flags) {
1307 // Here we are trying to build the flags string in the same way as GNU does.
1308 // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1309 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1310 // GNU readelf will not print "E" or "Ep" in this case, but will print just
1311 // "p". It only will print "E" when no other processor flag is set.
1312 std::string Str;
1313 bool HasUnknownFlag = false;
1314 bool HasOSFlag = false;
1315 bool HasProcFlag = false;
1316 std::vector<EnumEntry<unsigned>> FlagsList =
1317 getSectionFlagsForTarget(EMachine);
1318 while (Flags) {
1319 // Take the least significant bit as a flag.
1320 uint64_t Flag = Flags & -Flags;
1321 Flags -= Flag;
1323 // Find the flag in the known flags list.
1324 auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1325 // Flags with empty names are not printed in GNU style output.
1326 return E.Value == Flag && !E.AltName.empty();
1328 if (I != FlagsList.end()) {
1329 Str += I->AltName;
1330 continue;
1333 // If we did not find a matching regular flag, then we deal with an OS
1334 // specific flag, processor specific flag or an unknown flag.
1335 if (Flag & ELF::SHF_MASKOS) {
1336 HasOSFlag = true;
1337 Flags &= ~ELF::SHF_MASKOS;
1338 } else if (Flag & ELF::SHF_MASKPROC) {
1339 HasProcFlag = true;
1340 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1341 // bit if set so that it doesn't also get printed.
1342 Flags &= ~ELF::SHF_MASKPROC;
1343 } else {
1344 HasUnknownFlag = true;
1348 // "o", "p" and "x" are printed last.
1349 if (HasOSFlag)
1350 Str += "o";
1351 if (HasProcFlag)
1352 Str += "p";
1353 if (HasUnknownFlag)
1354 Str += "x";
1355 return Str;
1358 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1359 // Check potentially overlapped processor-specific program header type.
1360 switch (Arch) {
1361 case ELF::EM_ARM:
1362 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1363 break;
1364 case ELF::EM_MIPS:
1365 case ELF::EM_MIPS_RS3_LE:
1366 switch (Type) {
1367 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1368 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1369 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1370 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1372 break;
1375 switch (Type) {
1376 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL);
1377 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD);
1378 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1379 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP);
1380 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE);
1381 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB);
1382 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR);
1383 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS);
1385 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1386 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1388 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1389 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1390 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
1392 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1393 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1394 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1395 default:
1396 return "";
1400 static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1401 StringRef Seg = segmentTypeToString(Arch, Type);
1402 if (Seg.empty())
1403 return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1405 // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1406 if (Seg.startswith("PT_ARM_"))
1407 return Seg.drop_front(7).str();
1409 // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1410 if (Seg.startswith("PT_MIPS_"))
1411 return Seg.drop_front(8).str();
1413 // E.g. "PT_LOAD" -> "LOAD".
1414 assert(Seg.startswith("PT_"));
1415 return Seg.drop_front(3).str();
1418 const EnumEntry<unsigned> ElfSegmentFlags[] = {
1419 LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1420 LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1421 LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1424 const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1425 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1426 ENUM_ENT(EF_MIPS_PIC, "pic"),
1427 ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1428 ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1429 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1430 ENUM_ENT(EF_MIPS_FP64, "fp64"),
1431 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1432 ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1433 ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1434 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1435 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1436 ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1437 ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1438 ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1439 ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1440 ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1441 ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1442 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1443 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1444 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1445 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1446 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1447 ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1448 ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1449 ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1450 ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1451 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1452 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1453 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1454 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1455 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1456 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1457 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1458 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1459 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1460 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1461 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1462 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1463 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1464 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1465 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1466 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1467 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1470 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
1471 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1472 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1473 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1474 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1475 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1476 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1477 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1478 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1479 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1480 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1481 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1482 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1483 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1484 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1485 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1486 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1487 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1488 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1489 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1490 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1491 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1492 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1493 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1494 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1495 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1496 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1497 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1498 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1499 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1500 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1501 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1502 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1503 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1504 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1505 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1506 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1507 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1508 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1509 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1510 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1511 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1512 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1513 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1514 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1515 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1516 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1517 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1518 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1519 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1520 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3),
1521 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3)
1524 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
1525 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1526 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1527 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1528 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1529 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1530 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1531 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1532 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1533 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1534 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1535 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1536 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1537 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1538 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1539 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1540 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1541 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1542 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1543 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1544 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1545 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1546 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1547 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1548 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1549 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1550 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1551 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1552 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1553 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1554 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1555 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1556 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1557 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1558 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1559 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1560 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1561 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1562 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1563 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1564 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1565 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1566 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1567 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1568 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1569 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1570 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1571 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1572 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1573 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1574 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4),
1575 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4),
1576 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4),
1577 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4),
1578 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4),
1579 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4)
1582 const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1583 ENUM_ENT(EF_RISCV_RVC, "RVC"),
1584 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1585 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1586 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1587 ENUM_ENT(EF_RISCV_RVE, "RVE"),
1588 ENUM_ENT(EF_RISCV_TSO, "TSO"),
1591 const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
1592 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1),
1593 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2),
1594 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25),
1595 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3),
1596 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31),
1597 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35),
1598 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4),
1599 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5),
1600 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51),
1601 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6),
1602 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY),
1603 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1),
1604 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2),
1605 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3),
1606 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4),
1607 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5),
1608 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6),
1609 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7),
1610 ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"),
1614 const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1615 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1616 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1617 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1620 const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1621 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1622 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1623 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1624 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1627 const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1628 LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS)
1631 const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1632 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1633 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1634 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1637 const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = {
1638 LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)};
1640 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1641 switch (Odk) {
1642 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1643 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1644 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1645 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1646 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1647 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1648 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1649 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1650 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1651 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1652 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1653 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1654 default:
1655 return "Unknown";
1659 template <typename ELFT>
1660 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1661 ELFDumper<ELFT>::findDynamic() {
1662 // Try to locate the PT_DYNAMIC header.
1663 const Elf_Phdr *DynamicPhdr = nullptr;
1664 if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1665 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1666 if (Phdr.p_type != ELF::PT_DYNAMIC)
1667 continue;
1668 DynamicPhdr = &Phdr;
1669 break;
1671 } else {
1672 reportUniqueWarning(
1673 "unable to read program headers to locate the PT_DYNAMIC segment: " +
1674 toString(PhdrsOrErr.takeError()));
1677 // Try to locate the .dynamic section in the sections header table.
1678 const Elf_Shdr *DynamicSec = nullptr;
1679 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1680 if (Sec.sh_type != ELF::SHT_DYNAMIC)
1681 continue;
1682 DynamicSec = &Sec;
1683 break;
1686 if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1687 ObjF.getMemoryBufferRef().getBufferSize()) ||
1688 (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1689 DynamicPhdr->p_offset))) {
1690 reportUniqueWarning(
1691 "PT_DYNAMIC segment offset (0x" +
1692 Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1693 Twine::utohexstr(DynamicPhdr->p_filesz) +
1694 ") exceeds the size of the file (0x" +
1695 Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1696 // Don't use the broken dynamic header.
1697 DynamicPhdr = nullptr;
1700 if (DynamicPhdr && DynamicSec) {
1701 if (DynamicSec->sh_addr + DynamicSec->sh_size >
1702 DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1703 DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1704 reportUniqueWarning(describe(*DynamicSec) +
1705 " is not contained within the "
1706 "PT_DYNAMIC segment");
1708 if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1709 reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1710 "PT_DYNAMIC segment");
1713 return std::make_pair(DynamicPhdr, DynamicSec);
1716 template <typename ELFT>
1717 void ELFDumper<ELFT>::loadDynamicTable() {
1718 const Elf_Phdr *DynamicPhdr;
1719 const Elf_Shdr *DynamicSec;
1720 std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1721 if (!DynamicPhdr && !DynamicSec)
1722 return;
1724 DynRegionInfo FromPhdr(ObjF, *this);
1725 bool IsPhdrTableValid = false;
1726 if (DynamicPhdr) {
1727 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1728 // validated in findDynamic() and so createDRI() is not expected to fail.
1729 FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1730 sizeof(Elf_Dyn)));
1731 FromPhdr.SizePrintName = "PT_DYNAMIC size";
1732 FromPhdr.EntSizePrintName = "";
1733 IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
1736 // Locate the dynamic table described in a section header.
1737 // Ignore sh_entsize and use the expected value for entry size explicitly.
1738 // This allows us to dump dynamic sections with a broken sh_entsize
1739 // field.
1740 DynRegionInfo FromSec(ObjF, *this);
1741 bool IsSecTableValid = false;
1742 if (DynamicSec) {
1743 Expected<DynRegionInfo> RegOrErr =
1744 createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1745 if (RegOrErr) {
1746 FromSec = *RegOrErr;
1747 FromSec.Context = describe(*DynamicSec);
1748 FromSec.EntSizePrintName = "";
1749 IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
1750 } else {
1751 reportUniqueWarning("unable to read the dynamic table from " +
1752 describe(*DynamicSec) + ": " +
1753 toString(RegOrErr.takeError()));
1757 // When we only have information from one of the SHT_DYNAMIC section header or
1758 // PT_DYNAMIC program header, just use that.
1759 if (!DynamicPhdr || !DynamicSec) {
1760 if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1761 DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1762 parseDynamicTable();
1763 } else {
1764 reportUniqueWarning("no valid dynamic table was found");
1766 return;
1769 // At this point we have tables found from the section header and from the
1770 // dynamic segment. Usually they match, but we have to do sanity checks to
1771 // verify that.
1773 if (FromPhdr.Addr != FromSec.Addr)
1774 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1775 "program header disagree about "
1776 "the location of the dynamic table");
1778 if (!IsPhdrTableValid && !IsSecTableValid) {
1779 reportUniqueWarning("no valid dynamic table was found");
1780 return;
1783 // Information in the PT_DYNAMIC program header has priority over the
1784 // information in a section header.
1785 if (IsPhdrTableValid) {
1786 if (!IsSecTableValid)
1787 reportUniqueWarning(
1788 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1789 DynamicTable = FromPhdr;
1790 } else {
1791 reportUniqueWarning(
1792 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1793 DynamicTable = FromSec;
1796 parseDynamicTable();
1799 template <typename ELFT>
1800 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
1801 ScopedPrinter &Writer)
1802 : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
1803 FileName(O.getFileName()), DynRelRegion(O, *this),
1804 DynRelaRegion(O, *this), DynRelrRegion(O, *this),
1805 DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
1806 DynamicTable(O, *this) {
1807 if (!O.IsContentValid())
1808 return;
1810 typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
1811 for (const Elf_Shdr &Sec : Sections) {
1812 switch (Sec.sh_type) {
1813 case ELF::SHT_SYMTAB:
1814 if (!DotSymtabSec)
1815 DotSymtabSec = &Sec;
1816 break;
1817 case ELF::SHT_DYNSYM:
1818 if (!DotDynsymSec)
1819 DotDynsymSec = &Sec;
1821 if (!DynSymRegion) {
1822 Expected<DynRegionInfo> RegOrErr =
1823 createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
1824 if (RegOrErr) {
1825 DynSymRegion = *RegOrErr;
1826 DynSymRegion->Context = describe(Sec);
1828 if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
1829 DynamicStringTable = *E;
1830 else
1831 reportUniqueWarning("unable to get the string table for the " +
1832 describe(Sec) + ": " + toString(E.takeError()));
1833 } else {
1834 reportUniqueWarning("unable to read dynamic symbols from " +
1835 describe(Sec) + ": " +
1836 toString(RegOrErr.takeError()));
1839 break;
1840 case ELF::SHT_SYMTAB_SHNDX: {
1841 uint32_t SymtabNdx = Sec.sh_link;
1842 if (SymtabNdx >= Sections.size()) {
1843 reportUniqueWarning(
1844 "unable to get the associated symbol table for " + describe(Sec) +
1845 ": sh_link (" + Twine(SymtabNdx) +
1846 ") is greater than or equal to the total number of sections (" +
1847 Twine(Sections.size()) + ")");
1848 continue;
1851 if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
1852 Obj.getSHNDXTable(Sec)) {
1853 if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
1854 .second)
1855 reportUniqueWarning(
1856 "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1857 describe(Sec));
1858 } else {
1859 reportUniqueWarning(ShndxTableOrErr.takeError());
1861 break;
1863 case ELF::SHT_GNU_versym:
1864 if (!SymbolVersionSection)
1865 SymbolVersionSection = &Sec;
1866 break;
1867 case ELF::SHT_GNU_verdef:
1868 if (!SymbolVersionDefSection)
1869 SymbolVersionDefSection = &Sec;
1870 break;
1871 case ELF::SHT_GNU_verneed:
1872 if (!SymbolVersionNeedSection)
1873 SymbolVersionNeedSection = &Sec;
1874 break;
1875 case ELF::SHT_LLVM_ADDRSIG:
1876 if (!DotAddrsigSec)
1877 DotAddrsigSec = &Sec;
1878 break;
1882 loadDynamicTable();
1885 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
1886 auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
1887 auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
1888 this->reportUniqueWarning(Msg);
1889 return Error::success();
1891 if (!MappedAddrOrError) {
1892 this->reportUniqueWarning("unable to parse DT_" +
1893 Obj.getDynamicTagAsString(Tag) + ": " +
1894 llvm::toString(MappedAddrOrError.takeError()));
1895 return nullptr;
1897 return MappedAddrOrError.get();
1900 const char *StringTableBegin = nullptr;
1901 uint64_t StringTableSize = 0;
1902 Optional<DynRegionInfo> DynSymFromTable;
1903 for (const Elf_Dyn &Dyn : dynamic_table()) {
1904 switch (Dyn.d_tag) {
1905 case ELF::DT_HASH:
1906 HashTable = reinterpret_cast<const Elf_Hash *>(
1907 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1908 break;
1909 case ELF::DT_GNU_HASH:
1910 GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
1911 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1912 break;
1913 case ELF::DT_STRTAB:
1914 StringTableBegin = reinterpret_cast<const char *>(
1915 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1916 break;
1917 case ELF::DT_STRSZ:
1918 StringTableSize = Dyn.getVal();
1919 break;
1920 case ELF::DT_SYMTAB: {
1921 // If we can't map the DT_SYMTAB value to an address (e.g. when there are
1922 // no program headers), we ignore its value.
1923 if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
1924 DynSymFromTable.emplace(ObjF, *this);
1925 DynSymFromTable->Addr = VA;
1926 DynSymFromTable->EntSize = sizeof(Elf_Sym);
1927 DynSymFromTable->EntSizePrintName = "";
1929 break;
1931 case ELF::DT_SYMENT: {
1932 uint64_t Val = Dyn.getVal();
1933 if (Val != sizeof(Elf_Sym))
1934 this->reportUniqueWarning("DT_SYMENT value of 0x" +
1935 Twine::utohexstr(Val) +
1936 " is not the size of a symbol (0x" +
1937 Twine::utohexstr(sizeof(Elf_Sym)) + ")");
1938 break;
1940 case ELF::DT_RELA:
1941 DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1942 break;
1943 case ELF::DT_RELASZ:
1944 DynRelaRegion.Size = Dyn.getVal();
1945 DynRelaRegion.SizePrintName = "DT_RELASZ value";
1946 break;
1947 case ELF::DT_RELAENT:
1948 DynRelaRegion.EntSize = Dyn.getVal();
1949 DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
1950 break;
1951 case ELF::DT_SONAME:
1952 SONameOffset = Dyn.getVal();
1953 break;
1954 case ELF::DT_REL:
1955 DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1956 break;
1957 case ELF::DT_RELSZ:
1958 DynRelRegion.Size = Dyn.getVal();
1959 DynRelRegion.SizePrintName = "DT_RELSZ value";
1960 break;
1961 case ELF::DT_RELENT:
1962 DynRelRegion.EntSize = Dyn.getVal();
1963 DynRelRegion.EntSizePrintName = "DT_RELENT value";
1964 break;
1965 case ELF::DT_RELR:
1966 case ELF::DT_ANDROID_RELR:
1967 DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1968 break;
1969 case ELF::DT_RELRSZ:
1970 case ELF::DT_ANDROID_RELRSZ:
1971 DynRelrRegion.Size = Dyn.getVal();
1972 DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
1973 ? "DT_RELRSZ value"
1974 : "DT_ANDROID_RELRSZ value";
1975 break;
1976 case ELF::DT_RELRENT:
1977 case ELF::DT_ANDROID_RELRENT:
1978 DynRelrRegion.EntSize = Dyn.getVal();
1979 DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
1980 ? "DT_RELRENT value"
1981 : "DT_ANDROID_RELRENT value";
1982 break;
1983 case ELF::DT_PLTREL:
1984 if (Dyn.getVal() == DT_REL)
1985 DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
1986 else if (Dyn.getVal() == DT_RELA)
1987 DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
1988 else
1989 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
1990 Twine((uint64_t)Dyn.getVal()));
1991 DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
1992 break;
1993 case ELF::DT_JMPREL:
1994 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1995 break;
1996 case ELF::DT_PLTRELSZ:
1997 DynPLTRelRegion.Size = Dyn.getVal();
1998 DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
1999 break;
2000 case ELF::DT_SYMTAB_SHNDX:
2001 DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2002 DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
2003 break;
2007 if (StringTableBegin) {
2008 const uint64_t FileSize = Obj.getBufSize();
2009 const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
2010 if (StringTableSize > FileSize - Offset)
2011 reportUniqueWarning(
2012 "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
2013 " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
2014 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
2015 else
2016 DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2019 const bool IsHashTableSupported = getHashTableEntSize() == 4;
2020 if (DynSymRegion) {
2021 // Often we find the information about the dynamic symbol table
2022 // location in the SHT_DYNSYM section header. However, the value in
2023 // DT_SYMTAB has priority, because it is used by dynamic loaders to
2024 // locate .dynsym at runtime. The location we find in the section header
2025 // and the location we find here should match.
2026 if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2027 reportUniqueWarning(
2028 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2029 "the location of the dynamic symbol table"));
2031 // According to the ELF gABI: "The number of symbol table entries should
2032 // equal nchain". Check to see if the DT_HASH hash table nchain value
2033 // conflicts with the number of symbols in the dynamic symbol table
2034 // according to the section header.
2035 if (HashTable && IsHashTableSupported) {
2036 if (DynSymRegion->EntSize == 0)
2037 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2038 else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2039 reportUniqueWarning(
2040 "hash table nchain (" + Twine(HashTable->nchain) +
2041 ") differs from symbol count derived from SHT_DYNSYM section "
2042 "header (" +
2043 Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2047 // Delay the creation of the actual dynamic symbol table until now, so that
2048 // checks can always be made against the section header-based properties,
2049 // without worrying about tag order.
2050 if (DynSymFromTable) {
2051 if (!DynSymRegion) {
2052 DynSymRegion = DynSymFromTable;
2053 } else {
2054 DynSymRegion->Addr = DynSymFromTable->Addr;
2055 DynSymRegion->EntSize = DynSymFromTable->EntSize;
2056 DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2060 // Derive the dynamic symbol table size from the DT_HASH hash table, if
2061 // present.
2062 if (HashTable && IsHashTableSupported && DynSymRegion) {
2063 const uint64_t FileSize = Obj.getBufSize();
2064 const uint64_t DerivedSize =
2065 (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2066 const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2067 if (DerivedSize > FileSize - Offset)
2068 reportUniqueWarning(
2069 "the size (0x" + Twine::utohexstr(DerivedSize) +
2070 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2071 ", derived from the hash table, goes past the end of the file (0x" +
2072 Twine::utohexstr(FileSize) + ") and will be ignored");
2073 else
2074 DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2078 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2079 // Dump version symbol section.
2080 printVersionSymbolSection(SymbolVersionSection);
2082 // Dump version definition section.
2083 printVersionDefinitionSection(SymbolVersionDefSection);
2085 // Dump version dependency section.
2086 printVersionDependencySection(SymbolVersionNeedSection);
2089 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
2090 { #enum, prefix##_##enum }
2092 const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2093 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2094 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2095 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2096 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2097 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2100 const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2101 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2102 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2103 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2104 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2105 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2106 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2107 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2108 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2109 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2110 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2111 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2112 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2113 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2114 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2115 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2116 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2117 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2118 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2119 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2120 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2121 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2122 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2123 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2124 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2125 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2126 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2127 LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2130 const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2131 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2132 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2133 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2134 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2135 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2136 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2137 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2138 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2139 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2140 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2141 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2142 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2143 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2144 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2145 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2146 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2149 #undef LLVM_READOBJ_DT_FLAG_ENT
2151 template <typename T, typename TFlag>
2152 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2153 SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2154 for (const EnumEntry<TFlag> &Flag : Flags)
2155 if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2156 SetFlags.push_back(Flag);
2158 for (const EnumEntry<TFlag> &Flag : SetFlags)
2159 OS << Flag.Name << " ";
2162 template <class ELFT>
2163 const typename ELFT::Shdr *
2164 ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2165 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2166 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2167 if (*NameOrErr == Name)
2168 return &Shdr;
2169 } else {
2170 reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2171 ": " + toString(NameOrErr.takeError()));
2174 return nullptr;
2177 template <class ELFT>
2178 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2179 uint64_t Value) const {
2180 auto FormatHexValue = [](uint64_t V) {
2181 std::string Str;
2182 raw_string_ostream OS(Str);
2183 const char *ConvChar =
2184 (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
2185 OS << format(ConvChar, V);
2186 return OS.str();
2189 auto FormatFlags = [](uint64_t V,
2190 llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2191 std::string Str;
2192 raw_string_ostream OS(Str);
2193 printFlags(V, Array, OS);
2194 return OS.str();
2197 // Handle custom printing of architecture specific tags
2198 switch (Obj.getHeader().e_machine) {
2199 case EM_AARCH64:
2200 switch (Type) {
2201 case DT_AARCH64_BTI_PLT:
2202 case DT_AARCH64_PAC_PLT:
2203 case DT_AARCH64_VARIANT_PCS:
2204 return std::to_string(Value);
2205 default:
2206 break;
2208 break;
2209 case EM_HEXAGON:
2210 switch (Type) {
2211 case DT_HEXAGON_VER:
2212 return std::to_string(Value);
2213 case DT_HEXAGON_SYMSZ:
2214 case DT_HEXAGON_PLT:
2215 return FormatHexValue(Value);
2216 default:
2217 break;
2219 break;
2220 case EM_MIPS:
2221 switch (Type) {
2222 case DT_MIPS_RLD_VERSION:
2223 case DT_MIPS_LOCAL_GOTNO:
2224 case DT_MIPS_SYMTABNO:
2225 case DT_MIPS_UNREFEXTNO:
2226 return std::to_string(Value);
2227 case DT_MIPS_TIME_STAMP:
2228 case DT_MIPS_ICHECKSUM:
2229 case DT_MIPS_IVERSION:
2230 case DT_MIPS_BASE_ADDRESS:
2231 case DT_MIPS_MSYM:
2232 case DT_MIPS_CONFLICT:
2233 case DT_MIPS_LIBLIST:
2234 case DT_MIPS_CONFLICTNO:
2235 case DT_MIPS_LIBLISTNO:
2236 case DT_MIPS_GOTSYM:
2237 case DT_MIPS_HIPAGENO:
2238 case DT_MIPS_RLD_MAP:
2239 case DT_MIPS_DELTA_CLASS:
2240 case DT_MIPS_DELTA_CLASS_NO:
2241 case DT_MIPS_DELTA_INSTANCE:
2242 case DT_MIPS_DELTA_RELOC:
2243 case DT_MIPS_DELTA_RELOC_NO:
2244 case DT_MIPS_DELTA_SYM:
2245 case DT_MIPS_DELTA_SYM_NO:
2246 case DT_MIPS_DELTA_CLASSSYM:
2247 case DT_MIPS_DELTA_CLASSSYM_NO:
2248 case DT_MIPS_CXX_FLAGS:
2249 case DT_MIPS_PIXIE_INIT:
2250 case DT_MIPS_SYMBOL_LIB:
2251 case DT_MIPS_LOCALPAGE_GOTIDX:
2252 case DT_MIPS_LOCAL_GOTIDX:
2253 case DT_MIPS_HIDDEN_GOTIDX:
2254 case DT_MIPS_PROTECTED_GOTIDX:
2255 case DT_MIPS_OPTIONS:
2256 case DT_MIPS_INTERFACE:
2257 case DT_MIPS_DYNSTR_ALIGN:
2258 case DT_MIPS_INTERFACE_SIZE:
2259 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2260 case DT_MIPS_PERF_SUFFIX:
2261 case DT_MIPS_COMPACT_SIZE:
2262 case DT_MIPS_GP_VALUE:
2263 case DT_MIPS_AUX_DYNAMIC:
2264 case DT_MIPS_PLTGOT:
2265 case DT_MIPS_RWPLT:
2266 case DT_MIPS_RLD_MAP_REL:
2267 return FormatHexValue(Value);
2268 case DT_MIPS_FLAGS:
2269 return FormatFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags));
2270 default:
2271 break;
2273 break;
2274 default:
2275 break;
2278 switch (Type) {
2279 case DT_PLTREL:
2280 if (Value == DT_REL)
2281 return "REL";
2282 if (Value == DT_RELA)
2283 return "RELA";
2284 LLVM_FALLTHROUGH;
2285 case DT_PLTGOT:
2286 case DT_HASH:
2287 case DT_STRTAB:
2288 case DT_SYMTAB:
2289 case DT_RELA:
2290 case DT_INIT:
2291 case DT_FINI:
2292 case DT_REL:
2293 case DT_JMPREL:
2294 case DT_INIT_ARRAY:
2295 case DT_FINI_ARRAY:
2296 case DT_PREINIT_ARRAY:
2297 case DT_DEBUG:
2298 case DT_VERDEF:
2299 case DT_VERNEED:
2300 case DT_VERSYM:
2301 case DT_GNU_HASH:
2302 case DT_NULL:
2303 return FormatHexValue(Value);
2304 case DT_RELACOUNT:
2305 case DT_RELCOUNT:
2306 case DT_VERDEFNUM:
2307 case DT_VERNEEDNUM:
2308 return std::to_string(Value);
2309 case DT_PLTRELSZ:
2310 case DT_RELASZ:
2311 case DT_RELAENT:
2312 case DT_STRSZ:
2313 case DT_SYMENT:
2314 case DT_RELSZ:
2315 case DT_RELENT:
2316 case DT_INIT_ARRAYSZ:
2317 case DT_FINI_ARRAYSZ:
2318 case DT_PREINIT_ARRAYSZ:
2319 case DT_RELRSZ:
2320 case DT_RELRENT:
2321 case DT_ANDROID_RELSZ:
2322 case DT_ANDROID_RELASZ:
2323 return std::to_string(Value) + " (bytes)";
2324 case DT_NEEDED:
2325 case DT_SONAME:
2326 case DT_AUXILIARY:
2327 case DT_USED:
2328 case DT_FILTER:
2329 case DT_RPATH:
2330 case DT_RUNPATH: {
2331 const std::map<uint64_t, const char *> TagNames = {
2332 {DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"},
2333 {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2334 {DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"},
2335 {DT_RUNPATH, "Library runpath"},
2338 return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2339 .str();
2341 case DT_FLAGS:
2342 return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags));
2343 case DT_FLAGS_1:
2344 return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags1));
2345 default:
2346 return FormatHexValue(Value);
2350 template <class ELFT>
2351 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2352 if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2353 reportUniqueWarning("string table was not found");
2354 return "<?>";
2357 auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2358 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2359 Msg);
2360 return "<?>";
2363 const uint64_t FileSize = Obj.getBufSize();
2364 const uint64_t Offset =
2365 (const uint8_t *)DynamicStringTable.data() - Obj.base();
2366 if (DynamicStringTable.size() > FileSize - Offset)
2367 return WarnAndReturn(" with size 0x" +
2368 Twine::utohexstr(DynamicStringTable.size()) +
2369 " goes past the end of the file (0x" +
2370 Twine::utohexstr(FileSize) + ")",
2371 Offset);
2373 if (Value >= DynamicStringTable.size())
2374 return WarnAndReturn(
2375 ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2376 ": it goes past the end of the table (0x" +
2377 Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2378 Offset);
2380 if (DynamicStringTable.back() != '\0')
2381 return WarnAndReturn(": unable to read the string at 0x" +
2382 Twine::utohexstr(Offset + Value) +
2383 ": the string table is not null-terminated",
2384 Offset);
2386 return DynamicStringTable.data() + Value;
2389 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2390 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2391 Ctx.printUnwindInformation();
2394 // The namespace is needed to fix the compilation with GCC older than 7.0+.
2395 namespace {
2396 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2397 if (Obj.getHeader().e_machine == EM_ARM) {
2398 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2399 DotSymtabSec);
2400 Ctx.PrintUnwindInformation();
2402 DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2403 Ctx.printUnwindInformation();
2405 } // namespace
2407 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2408 ListScope D(W, "NeededLibraries");
2410 std::vector<StringRef> Libs;
2411 for (const auto &Entry : dynamic_table())
2412 if (Entry.d_tag == ELF::DT_NEEDED)
2413 Libs.push_back(getDynamicString(Entry.d_un.d_val));
2415 llvm::sort(Libs);
2417 for (StringRef L : Libs)
2418 W.startLine() << L << "\n";
2421 template <class ELFT>
2422 static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2423 const typename ELFT::Hash *H,
2424 bool *IsHeaderValid = nullptr) {
2425 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2426 const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2427 if (Dumper.getHashTableEntSize() == 8) {
2428 auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2429 return E.Value == Obj.getHeader().e_machine;
2431 if (IsHeaderValid)
2432 *IsHeaderValid = false;
2433 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2434 " is not supported: it contains non-standard 8 "
2435 "byte entries on " +
2436 It->AltName + " platform");
2439 auto MakeError = [&](const Twine &Msg = "") {
2440 return createError("the hash table at offset 0x" +
2441 Twine::utohexstr(SecOffset) +
2442 " goes past the end of the file (0x" +
2443 Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2446 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2447 const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2449 if (IsHeaderValid)
2450 *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2452 if (Obj.getBufSize() - SecOffset < HeaderSize)
2453 return MakeError();
2455 if (Obj.getBufSize() - SecOffset - HeaderSize <
2456 ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2457 return MakeError(", nbucket = " + Twine(H->nbucket) +
2458 ", nchain = " + Twine(H->nchain));
2459 return Error::success();
2462 template <class ELFT>
2463 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2464 const typename ELFT::GnuHash *GnuHashTable,
2465 bool *IsHeaderValid = nullptr) {
2466 const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2467 assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&
2468 "GnuHashTable must always point to a location inside the file");
2470 uint64_t TableOffset = TableData - Obj.base();
2471 if (IsHeaderValid)
2472 *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2473 if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2474 (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2475 Obj.getBufSize())
2476 return createError("unable to dump the SHT_GNU_HASH "
2477 "section at 0x" +
2478 Twine::utohexstr(TableOffset) +
2479 ": it goes past the end of the file");
2480 return Error::success();
2483 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2484 DictScope D(W, "HashTable");
2485 if (!HashTable)
2486 return;
2488 bool IsHeaderValid;
2489 Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2490 if (IsHeaderValid) {
2491 W.printNumber("Num Buckets", HashTable->nbucket);
2492 W.printNumber("Num Chains", HashTable->nchain);
2495 if (Err) {
2496 reportUniqueWarning(std::move(Err));
2497 return;
2500 W.printList("Buckets", HashTable->buckets());
2501 W.printList("Chains", HashTable->chains());
2504 template <class ELFT>
2505 static Expected<ArrayRef<typename ELFT::Word>>
2506 getGnuHashTableChains(Optional<DynRegionInfo> DynSymRegion,
2507 const typename ELFT::GnuHash *GnuHashTable) {
2508 if (!DynSymRegion)
2509 return createError("no dynamic symbol table found");
2511 ArrayRef<typename ELFT::Sym> DynSymTable =
2512 DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
2513 size_t NumSyms = DynSymTable.size();
2514 if (!NumSyms)
2515 return createError("the dynamic symbol table is empty");
2517 if (GnuHashTable->symndx < NumSyms)
2518 return GnuHashTable->values(NumSyms);
2520 // A normal empty GNU hash table section produced by linker might have
2521 // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2522 // and have dummy null values in the Bloom filter and in the buckets
2523 // vector (or no values at all). It happens because the value of symndx is not
2524 // important for dynamic loaders when the GNU hash table is empty. They just
2525 // skip the whole object during symbol lookup. In such cases, the symndx value
2526 // is irrelevant and we should not report a warning.
2527 ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2528 if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2529 return createError(
2530 "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2531 ") is greater than or equal to the number of dynamic symbols (" +
2532 Twine(NumSyms) + ")");
2533 // There is no way to represent an array of (dynamic symbols count - symndx)
2534 // length.
2535 return ArrayRef<typename ELFT::Word>();
2538 template <typename ELFT>
2539 void ELFDumper<ELFT>::printGnuHashTable() {
2540 DictScope D(W, "GnuHashTable");
2541 if (!GnuHashTable)
2542 return;
2544 bool IsHeaderValid;
2545 Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2546 if (IsHeaderValid) {
2547 W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2548 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2549 W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2550 W.printNumber("Shift Count", GnuHashTable->shift2);
2553 if (Err) {
2554 reportUniqueWarning(std::move(Err));
2555 return;
2558 ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2559 W.printHexList("Bloom Filter", BloomFilter);
2561 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2562 W.printList("Buckets", Buckets);
2564 Expected<ArrayRef<Elf_Word>> Chains =
2565 getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2566 if (!Chains) {
2567 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2568 "section: " +
2569 toString(Chains.takeError()));
2570 return;
2573 W.printHexList("Values", *Chains);
2576 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2577 StringRef SOName = "<Not found>";
2578 if (SONameOffset)
2579 SOName = getDynamicString(*SONameOffset);
2580 W.printString("LoadName", SOName);
2583 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2584 switch (Obj.getHeader().e_machine) {
2585 case EM_ARM:
2586 if (Obj.isLE())
2587 printAttributes(ELF::SHT_ARM_ATTRIBUTES,
2588 std::make_unique<ARMAttributeParser>(&W),
2589 support::little);
2590 else
2591 reportUniqueWarning("attribute printing not implemented for big-endian "
2592 "ARM objects");
2593 break;
2594 case EM_RISCV:
2595 if (Obj.isLE())
2596 printAttributes(ELF::SHT_RISCV_ATTRIBUTES,
2597 std::make_unique<RISCVAttributeParser>(&W),
2598 support::little);
2599 else
2600 reportUniqueWarning("attribute printing not implemented for big-endian "
2601 "RISC-V objects");
2602 break;
2603 case EM_MSP430:
2604 printAttributes(ELF::SHT_MSP430_ATTRIBUTES,
2605 std::make_unique<MSP430AttributeParser>(&W),
2606 support::little);
2607 break;
2608 case EM_MIPS: {
2609 printMipsABIFlags();
2610 printMipsOptions();
2611 printMipsReginfo();
2612 MipsGOTParser<ELFT> Parser(*this);
2613 if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2614 reportUniqueWarning(std::move(E));
2615 else if (!Parser.isGotEmpty())
2616 printMipsGOT(Parser);
2618 if (Error E = Parser.findPLT(dynamic_table()))
2619 reportUniqueWarning(std::move(E));
2620 else if (!Parser.isPltEmpty())
2621 printMipsPLT(Parser);
2622 break;
2624 default:
2625 break;
2629 template <class ELFT>
2630 void ELFDumper<ELFT>::printAttributes(
2631 unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser,
2632 support::endianness Endianness) {
2633 assert((AttrShType != ELF::SHT_NULL) && AttrParser &&
2634 "Incomplete ELF attribute implementation");
2635 DictScope BA(W, "BuildAttributes");
2636 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2637 if (Sec.sh_type != AttrShType)
2638 continue;
2640 ArrayRef<uint8_t> Contents;
2641 if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2642 Obj.getSectionContents(Sec)) {
2643 Contents = *ContentOrErr;
2644 if (Contents.empty()) {
2645 reportUniqueWarning("the " + describe(Sec) + " is empty");
2646 continue;
2648 } else {
2649 reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2650 ": " + toString(ContentOrErr.takeError()));
2651 continue;
2654 W.printHex("FormatVersion", Contents[0]);
2656 if (Error E = AttrParser->parse(Contents, Endianness))
2657 reportUniqueWarning("unable to dump attributes from the " +
2658 describe(Sec) + ": " + toString(std::move(E)));
2662 namespace {
2664 template <class ELFT> class MipsGOTParser {
2665 public:
2666 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
2667 using Entry = typename ELFT::Addr;
2668 using Entries = ArrayRef<Entry>;
2670 const bool IsStatic;
2671 const ELFFile<ELFT> &Obj;
2672 const ELFDumper<ELFT> &Dumper;
2674 MipsGOTParser(const ELFDumper<ELFT> &D);
2675 Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2676 Error findPLT(Elf_Dyn_Range DynTable);
2678 bool isGotEmpty() const { return GotEntries.empty(); }
2679 bool isPltEmpty() const { return PltEntries.empty(); }
2681 uint64_t getGp() const;
2683 const Entry *getGotLazyResolver() const;
2684 const Entry *getGotModulePointer() const;
2685 const Entry *getPltLazyResolver() const;
2686 const Entry *getPltModulePointer() const;
2688 Entries getLocalEntries() const;
2689 Entries getGlobalEntries() const;
2690 Entries getOtherEntries() const;
2691 Entries getPltEntries() const;
2693 uint64_t getGotAddress(const Entry * E) const;
2694 int64_t getGotOffset(const Entry * E) const;
2695 const Elf_Sym *getGotSym(const Entry *E) const;
2697 uint64_t getPltAddress(const Entry * E) const;
2698 const Elf_Sym *getPltSym(const Entry *E) const;
2700 StringRef getPltStrTable() const { return PltStrTable; }
2701 const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2703 private:
2704 const Elf_Shdr *GotSec;
2705 size_t LocalNum;
2706 size_t GlobalNum;
2708 const Elf_Shdr *PltSec;
2709 const Elf_Shdr *PltRelSec;
2710 const Elf_Shdr *PltSymTable;
2711 StringRef FileName;
2713 Elf_Sym_Range GotDynSyms;
2714 StringRef PltStrTable;
2716 Entries GotEntries;
2717 Entries PltEntries;
2720 } // end anonymous namespace
2722 template <class ELFT>
2723 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
2724 : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
2725 Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2726 PltRelSec(nullptr), PltSymTable(nullptr),
2727 FileName(D.getElfObject().getFileName()) {}
2729 template <class ELFT>
2730 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
2731 Elf_Sym_Range DynSyms) {
2732 // See "Global Offset Table" in Chapter 5 in the following document
2733 // for detailed GOT description.
2734 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2736 // Find static GOT secton.
2737 if (IsStatic) {
2738 GotSec = Dumper.findSectionByName(".got");
2739 if (!GotSec)
2740 return Error::success();
2742 ArrayRef<uint8_t> Content =
2743 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2744 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2745 Content.size() / sizeof(Entry));
2746 LocalNum = GotEntries.size();
2747 return Error::success();
2750 // Lookup dynamic table tags which define the GOT layout.
2751 Optional<uint64_t> DtPltGot;
2752 Optional<uint64_t> DtLocalGotNum;
2753 Optional<uint64_t> DtGotSym;
2754 for (const auto &Entry : DynTable) {
2755 switch (Entry.getTag()) {
2756 case ELF::DT_PLTGOT:
2757 DtPltGot = Entry.getVal();
2758 break;
2759 case ELF::DT_MIPS_LOCAL_GOTNO:
2760 DtLocalGotNum = Entry.getVal();
2761 break;
2762 case ELF::DT_MIPS_GOTSYM:
2763 DtGotSym = Entry.getVal();
2764 break;
2768 if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
2769 return Error::success();
2771 if (!DtPltGot)
2772 return createError("cannot find PLTGOT dynamic tag");
2773 if (!DtLocalGotNum)
2774 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
2775 if (!DtGotSym)
2776 return createError("cannot find MIPS_GOTSYM dynamic tag");
2778 size_t DynSymTotal = DynSyms.size();
2779 if (*DtGotSym > DynSymTotal)
2780 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
2781 ") exceeds the number of dynamic symbols (" +
2782 Twine(DynSymTotal) + ")");
2784 GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
2785 if (!GotSec)
2786 return createError("there is no non-empty GOT section at 0x" +
2787 Twine::utohexstr(*DtPltGot));
2789 LocalNum = *DtLocalGotNum;
2790 GlobalNum = DynSymTotal - *DtGotSym;
2792 ArrayRef<uint8_t> Content =
2793 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2794 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2795 Content.size() / sizeof(Entry));
2796 GotDynSyms = DynSyms.drop_front(*DtGotSym);
2798 return Error::success();
2801 template <class ELFT>
2802 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
2803 // Lookup dynamic table tags which define the PLT layout.
2804 Optional<uint64_t> DtMipsPltGot;
2805 Optional<uint64_t> DtJmpRel;
2806 for (const auto &Entry : DynTable) {
2807 switch (Entry.getTag()) {
2808 case ELF::DT_MIPS_PLTGOT:
2809 DtMipsPltGot = Entry.getVal();
2810 break;
2811 case ELF::DT_JMPREL:
2812 DtJmpRel = Entry.getVal();
2813 break;
2817 if (!DtMipsPltGot && !DtJmpRel)
2818 return Error::success();
2820 // Find PLT section.
2821 if (!DtMipsPltGot)
2822 return createError("cannot find MIPS_PLTGOT dynamic tag");
2823 if (!DtJmpRel)
2824 return createError("cannot find JMPREL dynamic tag");
2826 PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
2827 if (!PltSec)
2828 return createError("there is no non-empty PLTGOT section at 0x" +
2829 Twine::utohexstr(*DtMipsPltGot));
2831 PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
2832 if (!PltRelSec)
2833 return createError("there is no non-empty RELPLT section at 0x" +
2834 Twine::utohexstr(*DtJmpRel));
2836 if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
2837 Obj.getSectionContents(*PltSec))
2838 PltEntries =
2839 Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
2840 PltContentOrErr->size() / sizeof(Entry));
2841 else
2842 return createError("unable to read PLTGOT section content: " +
2843 toString(PltContentOrErr.takeError()));
2845 if (Expected<const Elf_Shdr *> PltSymTableOrErr =
2846 Obj.getSection(PltRelSec->sh_link))
2847 PltSymTable = *PltSymTableOrErr;
2848 else
2849 return createError("unable to get a symbol table linked to the " +
2850 describe(Obj, *PltRelSec) + ": " +
2851 toString(PltSymTableOrErr.takeError()));
2853 if (Expected<StringRef> StrTabOrErr =
2854 Obj.getStringTableForSymtab(*PltSymTable))
2855 PltStrTable = *StrTabOrErr;
2856 else
2857 return createError("unable to get a string table for the " +
2858 describe(Obj, *PltSymTable) + ": " +
2859 toString(StrTabOrErr.takeError()));
2861 return Error::success();
2864 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
2865 return GotSec->sh_addr + 0x7ff0;
2868 template <class ELFT>
2869 const typename MipsGOTParser<ELFT>::Entry *
2870 MipsGOTParser<ELFT>::getGotLazyResolver() const {
2871 return LocalNum > 0 ? &GotEntries[0] : nullptr;
2874 template <class ELFT>
2875 const typename MipsGOTParser<ELFT>::Entry *
2876 MipsGOTParser<ELFT>::getGotModulePointer() const {
2877 if (LocalNum < 2)
2878 return nullptr;
2879 const Entry &E = GotEntries[1];
2880 if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
2881 return nullptr;
2882 return &E;
2885 template <class ELFT>
2886 typename MipsGOTParser<ELFT>::Entries
2887 MipsGOTParser<ELFT>::getLocalEntries() const {
2888 size_t Skip = getGotModulePointer() ? 2 : 1;
2889 if (LocalNum - Skip <= 0)
2890 return Entries();
2891 return GotEntries.slice(Skip, LocalNum - Skip);
2894 template <class ELFT>
2895 typename MipsGOTParser<ELFT>::Entries
2896 MipsGOTParser<ELFT>::getGlobalEntries() const {
2897 if (GlobalNum == 0)
2898 return Entries();
2899 return GotEntries.slice(LocalNum, GlobalNum);
2902 template <class ELFT>
2903 typename MipsGOTParser<ELFT>::Entries
2904 MipsGOTParser<ELFT>::getOtherEntries() const {
2905 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
2906 if (OtherNum == 0)
2907 return Entries();
2908 return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
2911 template <class ELFT>
2912 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
2913 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2914 return GotSec->sh_addr + Offset;
2917 template <class ELFT>
2918 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
2919 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2920 return Offset - 0x7ff0;
2923 template <class ELFT>
2924 const typename MipsGOTParser<ELFT>::Elf_Sym *
2925 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
2926 int64_t Offset = std::distance(GotEntries.data(), E);
2927 return &GotDynSyms[Offset - LocalNum];
2930 template <class ELFT>
2931 const typename MipsGOTParser<ELFT>::Entry *
2932 MipsGOTParser<ELFT>::getPltLazyResolver() const {
2933 return PltEntries.empty() ? nullptr : &PltEntries[0];
2936 template <class ELFT>
2937 const typename MipsGOTParser<ELFT>::Entry *
2938 MipsGOTParser<ELFT>::getPltModulePointer() const {
2939 return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
2942 template <class ELFT>
2943 typename MipsGOTParser<ELFT>::Entries
2944 MipsGOTParser<ELFT>::getPltEntries() const {
2945 if (PltEntries.size() <= 2)
2946 return Entries();
2947 return PltEntries.slice(2, PltEntries.size() - 2);
2950 template <class ELFT>
2951 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
2952 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
2953 return PltSec->sh_addr + Offset;
2956 template <class ELFT>
2957 const typename MipsGOTParser<ELFT>::Elf_Sym *
2958 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
2959 int64_t Offset = std::distance(getPltEntries().data(), E);
2960 if (PltRelSec->sh_type == ELF::SHT_REL) {
2961 Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
2962 return unwrapOrError(FileName,
2963 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
2964 } else {
2965 Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
2966 return unwrapOrError(FileName,
2967 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
2971 const EnumEntry<unsigned> ElfMipsISAExtType[] = {
2972 {"None", Mips::AFL_EXT_NONE},
2973 {"Broadcom SB-1", Mips::AFL_EXT_SB1},
2974 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
2975 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
2976 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
2977 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
2978 {"LSI R4010", Mips::AFL_EXT_4010},
2979 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
2980 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
2981 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
2982 {"MIPS R4650", Mips::AFL_EXT_4650},
2983 {"MIPS R5900", Mips::AFL_EXT_5900},
2984 {"MIPS R10000", Mips::AFL_EXT_10000},
2985 {"NEC VR4100", Mips::AFL_EXT_4100},
2986 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
2987 {"NEC VR4120", Mips::AFL_EXT_4120},
2988 {"NEC VR5400", Mips::AFL_EXT_5400},
2989 {"NEC VR5500", Mips::AFL_EXT_5500},
2990 {"RMI Xlr", Mips::AFL_EXT_XLR},
2991 {"Toshiba R3900", Mips::AFL_EXT_3900}
2994 const EnumEntry<unsigned> ElfMipsASEFlags[] = {
2995 {"DSP", Mips::AFL_ASE_DSP},
2996 {"DSPR2", Mips::AFL_ASE_DSPR2},
2997 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
2998 {"MCU", Mips::AFL_ASE_MCU},
2999 {"MDMX", Mips::AFL_ASE_MDMX},
3000 {"MIPS-3D", Mips::AFL_ASE_MIPS3D},
3001 {"MT", Mips::AFL_ASE_MT},
3002 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
3003 {"VZ", Mips::AFL_ASE_VIRT},
3004 {"MSA", Mips::AFL_ASE_MSA},
3005 {"MIPS16", Mips::AFL_ASE_MIPS16},
3006 {"microMIPS", Mips::AFL_ASE_MICROMIPS},
3007 {"XPA", Mips::AFL_ASE_XPA},
3008 {"CRC", Mips::AFL_ASE_CRC},
3009 {"GINV", Mips::AFL_ASE_GINV},
3012 const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3013 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
3014 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3015 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3016 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3017 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3018 Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3019 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
3020 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3021 {"Hard float compat (32-bit CPU, 64-bit FPU)",
3022 Mips::Val_GNU_MIPS_ABI_FP_64A}
3025 static const EnumEntry<unsigned> ElfMipsFlags1[] {
3026 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3029 static int getMipsRegisterSize(uint8_t Flag) {
3030 switch (Flag) {
3031 case Mips::AFL_REG_NONE:
3032 return 0;
3033 case Mips::AFL_REG_32:
3034 return 32;
3035 case Mips::AFL_REG_64:
3036 return 64;
3037 case Mips::AFL_REG_128:
3038 return 128;
3039 default:
3040 return -1;
3044 template <class ELFT>
3045 static void printMipsReginfoData(ScopedPrinter &W,
3046 const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3047 W.printHex("GP", Reginfo.ri_gp_value);
3048 W.printHex("General Mask", Reginfo.ri_gprmask);
3049 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3050 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3051 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3052 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3055 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3056 const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3057 if (!RegInfoSec) {
3058 W.startLine() << "There is no .reginfo section in the file.\n";
3059 return;
3062 Expected<ArrayRef<uint8_t>> ContentsOrErr =
3063 Obj.getSectionContents(*RegInfoSec);
3064 if (!ContentsOrErr) {
3065 this->reportUniqueWarning(
3066 "unable to read the content of the .reginfo section (" +
3067 describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3068 return;
3071 if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3072 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3073 Twine::utohexstr(ContentsOrErr->size()) + ")");
3074 return;
3077 DictScope GS(W, "MIPS RegInfo");
3078 printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3079 ContentsOrErr->data()));
3082 template <class ELFT>
3083 static Expected<const Elf_Mips_Options<ELFT> *>
3084 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3085 bool &IsSupported) {
3086 if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3087 return createError("the .MIPS.options section has an invalid size (0x" +
3088 Twine::utohexstr(SecData.size()) + ")");
3090 const Elf_Mips_Options<ELFT> *O =
3091 reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3092 const uint8_t Size = O->size;
3093 if (Size > SecData.size()) {
3094 const uint64_t Offset = SecData.data() - SecBegin;
3095 const uint64_t SecSize = Offset + SecData.size();
3096 return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3097 " at offset 0x" + Twine::utohexstr(Offset) +
3098 " goes past the end of the .MIPS.options "
3099 "section of size 0x" +
3100 Twine::utohexstr(SecSize));
3103 IsSupported = O->kind == ODK_REGINFO;
3104 const size_t ExpectedSize =
3105 sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3107 if (IsSupported)
3108 if (Size < ExpectedSize)
3109 return createError(
3110 "a .MIPS.options entry of kind " +
3111 Twine(getElfMipsOptionsOdkType(O->kind)) +
3112 " has an invalid size (0x" + Twine::utohexstr(Size) +
3113 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3115 SecData = SecData.drop_front(Size);
3116 return O;
3119 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3120 const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3121 if (!MipsOpts) {
3122 W.startLine() << "There is no .MIPS.options section in the file.\n";
3123 return;
3126 DictScope GS(W, "MIPS Options");
3128 ArrayRef<uint8_t> Data =
3129 unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3130 const uint8_t *const SecBegin = Data.begin();
3131 while (!Data.empty()) {
3132 bool IsSupported;
3133 Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3134 readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3135 if (!OptsOrErr) {
3136 reportUniqueWarning(OptsOrErr.takeError());
3137 break;
3140 unsigned Kind = (*OptsOrErr)->kind;
3141 const char *Type = getElfMipsOptionsOdkType(Kind);
3142 if (!IsSupported) {
3143 W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3144 << ")\n";
3145 continue;
3148 DictScope GS(W, Type);
3149 if (Kind == ODK_REGINFO)
3150 printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3151 else
3152 llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3156 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3157 const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3158 if (!StackMapSection)
3159 return;
3161 auto Warn = [&](Error &&E) {
3162 this->reportUniqueWarning("unable to read the stack map from " +
3163 describe(*StackMapSection) + ": " +
3164 toString(std::move(E)));
3167 Expected<ArrayRef<uint8_t>> ContentOrErr =
3168 Obj.getSectionContents(*StackMapSection);
3169 if (!ContentOrErr) {
3170 Warn(ContentOrErr.takeError());
3171 return;
3174 if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
3175 *ContentOrErr)) {
3176 Warn(std::move(E));
3177 return;
3180 prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
3183 template <class ELFT>
3184 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3185 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3186 Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
3187 if (!Target)
3188 reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3189 " in " + describe(Sec) + ": " +
3190 toString(Target.takeError()));
3191 else
3192 printRelRelaReloc(R, *Target);
3195 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3196 StringRef Str2) {
3197 OS.PadToColumn(2u);
3198 OS << Str1;
3199 OS.PadToColumn(37u);
3200 OS << Str2 << "\n";
3201 OS.flush();
3204 template <class ELFT>
3205 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3206 StringRef FileName) {
3207 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3208 if (ElfHeader.e_shnum != 0)
3209 return to_string(ElfHeader.e_shnum);
3211 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3212 if (!ArrOrErr) {
3213 // In this case we can ignore an error, because we have already reported a
3214 // warning about the broken section header table earlier.
3215 consumeError(ArrOrErr.takeError());
3216 return "<?>";
3219 if (ArrOrErr->empty())
3220 return "0";
3221 return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3224 template <class ELFT>
3225 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3226 StringRef FileName) {
3227 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3228 if (ElfHeader.e_shstrndx != SHN_XINDEX)
3229 return to_string(ElfHeader.e_shstrndx);
3231 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3232 if (!ArrOrErr) {
3233 // In this case we can ignore an error, because we have already reported a
3234 // warning about the broken section header table earlier.
3235 consumeError(ArrOrErr.takeError());
3236 return "<?>";
3239 if (ArrOrErr->empty())
3240 return "65535 (corrupt: out of range)";
3241 return to_string(ElfHeader.e_shstrndx) + " (" +
3242 to_string((*ArrOrErr)[0].sh_link) + ")";
3245 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
3246 auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3247 return E.Value == Type;
3249 if (It != makeArrayRef(ElfObjectFileType).end())
3250 return It;
3251 return nullptr;
3254 template <class ELFT>
3255 void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
3256 ArrayRef<std::string> InputFilenames,
3257 const Archive *A) {
3258 if (InputFilenames.size() > 1 || A) {
3259 this->W.startLine() << "\n";
3260 this->W.printString("File", FileStr);
3264 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
3265 const Elf_Ehdr &e = this->Obj.getHeader();
3266 OS << "ELF Header:\n";
3267 OS << " Magic: ";
3268 std::string Str;
3269 for (int i = 0; i < ELF::EI_NIDENT; i++)
3270 OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3271 OS << "\n";
3272 Str = enumToString(e.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
3273 printFields(OS, "Class:", Str);
3274 Str = enumToString(e.e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
3275 printFields(OS, "Data:", Str);
3276 OS.PadToColumn(2u);
3277 OS << "Version:";
3278 OS.PadToColumn(37u);
3279 OS << to_hexString(e.e_ident[ELF::EI_VERSION]);
3280 if (e.e_version == ELF::EV_CURRENT)
3281 OS << " (current)";
3282 OS << "\n";
3283 Str = enumToString(e.e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
3284 printFields(OS, "OS/ABI:", Str);
3285 printFields(OS,
3286 "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3288 if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
3289 Str = E->AltName.str();
3290 } else {
3291 if (e.e_type >= ET_LOPROC)
3292 Str = "Processor Specific: (" + to_hexString(e.e_type, false) + ")";
3293 else if (e.e_type >= ET_LOOS)
3294 Str = "OS Specific: (" + to_hexString(e.e_type, false) + ")";
3295 else
3296 Str = "<unknown>: " + to_hexString(e.e_type, false);
3298 printFields(OS, "Type:", Str);
3300 Str = enumToString(e.e_machine, makeArrayRef(ElfMachineType));
3301 printFields(OS, "Machine:", Str);
3302 Str = "0x" + to_hexString(e.e_version);
3303 printFields(OS, "Version:", Str);
3304 Str = "0x" + to_hexString(e.e_entry);
3305 printFields(OS, "Entry point address:", Str);
3306 Str = to_string(e.e_phoff) + " (bytes into file)";
3307 printFields(OS, "Start of program headers:", Str);
3308 Str = to_string(e.e_shoff) + " (bytes into file)";
3309 printFields(OS, "Start of section headers:", Str);
3310 std::string ElfFlags;
3311 if (e.e_machine == EM_MIPS)
3312 ElfFlags =
3313 printFlags(e.e_flags, makeArrayRef(ElfHeaderMipsFlags),
3314 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
3315 unsigned(ELF::EF_MIPS_MACH));
3316 else if (e.e_machine == EM_RISCV)
3317 ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
3318 else if (e.e_machine == EM_AVR)
3319 ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderAVRFlags),
3320 unsigned(ELF::EF_AVR_ARCH_MASK));
3321 Str = "0x" + to_hexString(e.e_flags);
3322 if (!ElfFlags.empty())
3323 Str = Str + ", " + ElfFlags;
3324 printFields(OS, "Flags:", Str);
3325 Str = to_string(e.e_ehsize) + " (bytes)";
3326 printFields(OS, "Size of this header:", Str);
3327 Str = to_string(e.e_phentsize) + " (bytes)";
3328 printFields(OS, "Size of program headers:", Str);
3329 Str = to_string(e.e_phnum);
3330 printFields(OS, "Number of program headers:", Str);
3331 Str = to_string(e.e_shentsize) + " (bytes)";
3332 printFields(OS, "Size of section headers:", Str);
3333 Str = getSectionHeadersNumString(this->Obj, this->FileName);
3334 printFields(OS, "Number of section headers:", Str);
3335 Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3336 printFields(OS, "Section header string table index:", Str);
3339 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
3340 auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3341 const Elf_Shdr &Symtab) -> StringRef {
3342 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3343 if (!StrTableOrErr) {
3344 reportUniqueWarning("unable to get the string table for " +
3345 describe(Symtab) + ": " +
3346 toString(StrTableOrErr.takeError()));
3347 return "<?>";
3350 StringRef Strings = *StrTableOrErr;
3351 if (Sym.st_name >= Strings.size()) {
3352 reportUniqueWarning("unable to get the name of the symbol with index " +
3353 Twine(SymNdx) + ": st_name (0x" +
3354 Twine::utohexstr(Sym.st_name) +
3355 ") is past the end of the string table of size 0x" +
3356 Twine::utohexstr(Strings.size()));
3357 return "<?>";
3360 return StrTableOrErr->data() + Sym.st_name;
3363 std::vector<GroupSection> Ret;
3364 uint64_t I = 0;
3365 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3366 ++I;
3367 if (Sec.sh_type != ELF::SHT_GROUP)
3368 continue;
3370 StringRef Signature = "<?>";
3371 if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3372 if (Expected<const Elf_Sym *> SymOrErr =
3373 Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3374 Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3375 else
3376 reportUniqueWarning("unable to get the signature symbol for " +
3377 describe(Sec) + ": " +
3378 toString(SymOrErr.takeError()));
3379 } else {
3380 reportUniqueWarning("unable to get the symbol table for " +
3381 describe(Sec) + ": " +
3382 toString(SymtabOrErr.takeError()));
3385 ArrayRef<Elf_Word> Data;
3386 if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3387 Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3388 if (ContentsOrErr->empty())
3389 reportUniqueWarning("unable to read the section group flag from the " +
3390 describe(Sec) + ": the section is empty");
3391 else
3392 Data = *ContentsOrErr;
3393 } else {
3394 reportUniqueWarning("unable to get the content of the " + describe(Sec) +
3395 ": " + toString(ContentsOrErr.takeError()));
3398 Ret.push_back({getPrintableSectionName(Sec),
3399 maybeDemangle(Signature),
3400 Sec.sh_name,
3401 I - 1,
3402 Sec.sh_link,
3403 Sec.sh_info,
3404 Data.empty() ? Elf_Word(0) : Data[0],
3405 {}});
3407 if (Data.empty())
3408 continue;
3410 std::vector<GroupMember> &GM = Ret.back().Members;
3411 for (uint32_t Ndx : Data.slice(1)) {
3412 if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3413 GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3414 } else {
3415 reportUniqueWarning("unable to get the section with index " +
3416 Twine(Ndx) + " when dumping the " + describe(Sec) +
3417 ": " + toString(SecOrErr.takeError()));
3418 GM.push_back({"<?>", Ndx});
3422 return Ret;
3425 static DenseMap<uint64_t, const GroupSection *>
3426 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3427 DenseMap<uint64_t, const GroupSection *> Ret;
3428 for (const GroupSection &G : Groups)
3429 for (const GroupMember &GM : G.Members)
3430 Ret.insert({GM.Index, &G});
3431 return Ret;
3434 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
3435 std::vector<GroupSection> V = this->getGroups();
3436 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3437 for (const GroupSection &G : V) {
3438 OS << "\n"
3439 << getGroupType(G.Type) << " group section ["
3440 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3441 << "] contains " << G.Members.size() << " sections:\n"
3442 << " [Index] Name\n";
3443 for (const GroupMember &GM : G.Members) {
3444 const GroupSection *MainGroup = Map[GM.Index];
3445 if (MainGroup != &G)
3446 this->reportUniqueWarning(
3447 "section with index " + Twine(GM.Index) +
3448 ", included in the group section with index " +
3449 Twine(MainGroup->Index) +
3450 ", was also found in the group section with index " +
3451 Twine(G.Index));
3452 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n";
3456 if (V.empty())
3457 OS << "There are no section groups in this file.\n";
3460 template <class ELFT>
3461 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
3462 OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
3465 template <class ELFT>
3466 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3467 const RelSymbol<ELFT> &RelSym) {
3468 // First two fields are bit width dependent. The rest of them are fixed width.
3469 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3470 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3471 unsigned Width = ELFT::Is64Bits ? 16 : 8;
3473 Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3474 Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3476 SmallString<32> RelocName;
3477 this->Obj.getRelocationTypeName(R.Type, RelocName);
3478 Fields[2].Str = RelocName.c_str();
3480 if (RelSym.Sym)
3481 Fields[3].Str =
3482 to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3484 Fields[4].Str = std::string(RelSym.Name);
3485 for (const Field &F : Fields)
3486 printField(F);
3488 std::string Addend;
3489 if (Optional<int64_t> A = R.Addend) {
3490 int64_t RelAddend = *A;
3491 if (!RelSym.Name.empty()) {
3492 if (RelAddend < 0) {
3493 Addend = " - ";
3494 RelAddend = std::abs(RelAddend);
3495 } else {
3496 Addend = " + ";
3499 Addend += to_hexString(RelAddend, false);
3501 OS << Addend << "\n";
3504 template <class ELFT>
3505 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) {
3506 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3507 bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
3508 if (ELFT::Is64Bits)
3509 OS << " ";
3510 else
3511 OS << " ";
3512 if (IsRelr && opts::RawRelr)
3513 OS << "Data ";
3514 else
3515 OS << "Offset";
3516 if (ELFT::Is64Bits)
3517 OS << " Info Type"
3518 << " Symbol's Value Symbol's Name";
3519 else
3520 OS << " Info Type Sym. Value Symbol's Name";
3521 if (IsRela)
3522 OS << " + Addend";
3523 OS << "\n";
3526 template <class ELFT>
3527 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3528 const DynRegionInfo &Reg) {
3529 uint64_t Offset = Reg.Addr - this->Obj.base();
3530 OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3531 << to_hexString(Offset, false) << " contains " << Reg.Size << " bytes:\n";
3532 printRelocHeaderFields<ELFT>(OS, Type);
3535 template <class ELFT>
3536 static bool isRelocationSec(const typename ELFT::Shdr &Sec) {
3537 return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3538 Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
3539 Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3540 Sec.sh_type == ELF::SHT_ANDROID_RELR;
3543 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
3544 auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3545 // Android's packed relocation section needs to be unpacked first
3546 // to get the actual number of entries.
3547 if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3548 Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3549 Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3550 this->Obj.android_relas(Sec);
3551 if (!RelasOrErr)
3552 return RelasOrErr.takeError();
3553 return RelasOrErr->size();
3556 if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3557 Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3558 Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3559 if (!RelrsOrErr)
3560 return RelrsOrErr.takeError();
3561 return this->Obj.decode_relrs(*RelrsOrErr).size();
3564 return Sec.getEntityCount();
3567 bool HasRelocSections = false;
3568 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3569 if (!isRelocationSec<ELFT>(Sec))
3570 continue;
3571 HasRelocSections = true;
3573 std::string EntriesNum = "<?>";
3574 if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3575 EntriesNum = std::to_string(*NumOrErr);
3576 else
3577 this->reportUniqueWarning("unable to get the number of relocations in " +
3578 this->describe(Sec) + ": " +
3579 toString(NumOrErr.takeError()));
3581 uintX_t Offset = Sec.sh_offset;
3582 StringRef Name = this->getPrintableSectionName(Sec);
3583 OS << "\nRelocation section '" << Name << "' at offset 0x"
3584 << to_hexString(Offset, false) << " contains " << EntriesNum
3585 << " entries:\n";
3586 printRelocHeaderFields<ELFT>(OS, Sec.sh_type);
3587 this->printRelocationsHelper(Sec);
3589 if (!HasRelocSections)
3590 OS << "\nThere are no relocations in this file.\n";
3593 // Print the offset of a particular section from anyone of the ranges:
3594 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3595 // If 'Type' does not fall within any of those ranges, then a string is
3596 // returned as '<unknown>' followed by the type value.
3597 static std::string getSectionTypeOffsetString(unsigned Type) {
3598 if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3599 return "LOOS+0x" + to_hexString(Type - SHT_LOOS);
3600 else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3601 return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC);
3602 else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3603 return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER);
3604 return "0x" + to_hexString(Type) + ": <unknown>";
3607 static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
3608 StringRef Name = getELFSectionTypeName(Machine, Type);
3610 // Handle SHT_GNU_* type names.
3611 if (Name.startswith("SHT_GNU_")) {
3612 if (Name == "SHT_GNU_HASH")
3613 return "GNU_HASH";
3614 // E.g. SHT_GNU_verneed -> VERNEED.
3615 return Name.drop_front(8).upper();
3618 if (Name == "SHT_SYMTAB_SHNDX")
3619 return "SYMTAB SECTION INDICES";
3621 if (Name.startswith("SHT_"))
3622 return Name.drop_front(4).str();
3623 return getSectionTypeOffsetString(Type);
3626 static void printSectionDescription(formatted_raw_ostream &OS,
3627 unsigned EMachine) {
3628 OS << "Key to Flags:\n";
3629 OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I "
3630 "(info),\n";
3631 OS << " L (link order), O (extra OS processing required), G (group), T "
3632 "(TLS),\n";
3633 OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3634 OS << " R (retain)";
3636 if (EMachine == EM_X86_64)
3637 OS << ", l (large)";
3638 else if (EMachine == EM_ARM)
3639 OS << ", y (purecode)";
3641 OS << ", p (processor specific)\n";
3644 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
3645 unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3646 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
3647 OS << "There are " << to_string(Sections.size())
3648 << " section headers, starting at offset "
3649 << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n";
3650 OS << "Section Headers:\n";
3651 Field Fields[11] = {
3652 {"[Nr]", 2}, {"Name", 7}, {"Type", 25},
3653 {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias},
3654 {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3655 {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3656 for (const Field &F : Fields)
3657 printField(F);
3658 OS << "\n";
3660 StringRef SecStrTable;
3661 if (Expected<StringRef> SecStrTableOrErr =
3662 this->Obj.getSectionStringTable(Sections, this->WarningHandler))
3663 SecStrTable = *SecStrTableOrErr;
3664 else
3665 this->reportUniqueWarning(SecStrTableOrErr.takeError());
3667 size_t SectionIndex = 0;
3668 for (const Elf_Shdr &Sec : Sections) {
3669 Fields[0].Str = to_string(SectionIndex);
3670 if (SecStrTable.empty())
3671 Fields[1].Str = "<no-strings>";
3672 else
3673 Fields[1].Str = std::string(unwrapOrError<StringRef>(
3674 this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
3675 Fields[2].Str =
3676 getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
3677 Fields[3].Str =
3678 to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3679 Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3680 Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3681 Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3682 Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_machine, Sec.sh_flags);
3683 Fields[8].Str = to_string(Sec.sh_link);
3684 Fields[9].Str = to_string(Sec.sh_info);
3685 Fields[10].Str = to_string(Sec.sh_addralign);
3687 OS.PadToColumn(Fields[0].Column);
3688 OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3689 for (int i = 1; i < 7; i++)
3690 printField(Fields[i]);
3691 OS.PadToColumn(Fields[7].Column);
3692 OS << right_justify(Fields[7].Str, 3);
3693 OS.PadToColumn(Fields[8].Column);
3694 OS << right_justify(Fields[8].Str, 2);
3695 OS.PadToColumn(Fields[9].Column);
3696 OS << right_justify(Fields[9].Str, 3);
3697 OS.PadToColumn(Fields[10].Column);
3698 OS << right_justify(Fields[10].Str, 2);
3699 OS << "\n";
3700 ++SectionIndex;
3702 printSectionDescription(OS, this->Obj.getHeader().e_machine);
3705 template <class ELFT>
3706 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
3707 size_t Entries,
3708 bool NonVisibilityBitsUsed) const {
3709 StringRef Name;
3710 if (Symtab)
3711 Name = this->getPrintableSectionName(*Symtab);
3712 if (!Name.empty())
3713 OS << "\nSymbol table '" << Name << "'";
3714 else
3715 OS << "\nSymbol table for image";
3716 OS << " contains " << Entries << " entries:\n";
3718 if (ELFT::Is64Bits)
3719 OS << " Num: Value Size Type Bind Vis";
3720 else
3721 OS << " Num: Value Size Type Bind Vis";
3723 if (NonVisibilityBitsUsed)
3724 OS << " ";
3725 OS << " Ndx Name\n";
3728 template <class ELFT>
3729 std::string
3730 GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol,
3731 unsigned SymIndex,
3732 DataRegion<Elf_Word> ShndxTable) const {
3733 unsigned SectionIndex = Symbol.st_shndx;
3734 switch (SectionIndex) {
3735 case ELF::SHN_UNDEF:
3736 return "UND";
3737 case ELF::SHN_ABS:
3738 return "ABS";
3739 case ELF::SHN_COMMON:
3740 return "COM";
3741 case ELF::SHN_XINDEX: {
3742 Expected<uint32_t> IndexOrErr =
3743 object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
3744 if (!IndexOrErr) {
3745 assert(Symbol.st_shndx == SHN_XINDEX &&
3746 "getExtendedSymbolTableIndex should only fail due to an invalid "
3747 "SHT_SYMTAB_SHNDX table/reference");
3748 this->reportUniqueWarning(IndexOrErr.takeError());
3749 return "RSV[0xffff]";
3751 return to_string(format_decimal(*IndexOrErr, 3));
3753 default:
3754 // Find if:
3755 // Processor specific
3756 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
3757 return std::string("PRC[0x") +
3758 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3759 // OS specific
3760 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
3761 return std::string("OS[0x") +
3762 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3763 // Architecture reserved:
3764 if (SectionIndex >= ELF::SHN_LORESERVE &&
3765 SectionIndex <= ELF::SHN_HIRESERVE)
3766 return std::string("RSV[0x") +
3767 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3768 // A normal section with an index
3769 return to_string(format_decimal(SectionIndex, 3));
3773 template <class ELFT>
3774 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
3775 DataRegion<Elf_Word> ShndxTable,
3776 Optional<StringRef> StrTable,
3777 bool IsDynamic,
3778 bool NonVisibilityBitsUsed) const {
3779 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3780 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias,
3781 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
3782 Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
3783 Fields[1].Str =
3784 to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
3785 Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
3787 unsigned char SymbolType = Symbol.getType();
3788 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3789 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3790 Fields[3].Str = enumToString(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3791 else
3792 Fields[3].Str = enumToString(SymbolType, makeArrayRef(ElfSymbolTypes));
3794 Fields[4].Str =
3795 enumToString(Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
3796 Fields[5].Str =
3797 enumToString(Symbol.getVisibility(), makeArrayRef(ElfSymbolVisibilities));
3799 if (Symbol.st_other & ~0x3) {
3800 if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
3801 uint8_t Other = Symbol.st_other & ~0x3;
3802 if (Other & STO_AARCH64_VARIANT_PCS) {
3803 Other &= ~STO_AARCH64_VARIANT_PCS;
3804 Fields[5].Str += " [VARIANT_PCS";
3805 if (Other != 0)
3806 Fields[5].Str.append(" | " + to_hexString(Other, false));
3807 Fields[5].Str.append("]");
3809 } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) {
3810 uint8_t Other = Symbol.st_other & ~0x3;
3811 if (Other & STO_RISCV_VARIANT_CC) {
3812 Other &= ~STO_RISCV_VARIANT_CC;
3813 Fields[5].Str += " [VARIANT_CC";
3814 if (Other != 0)
3815 Fields[5].Str.append(" | " + to_hexString(Other, false));
3816 Fields[5].Str.append("]");
3818 } else {
3819 Fields[5].Str +=
3820 " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
3824 Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
3825 Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable);
3827 Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
3828 StrTable, IsDynamic);
3829 for (const Field &Entry : Fields)
3830 printField(Entry);
3831 OS << "\n";
3834 template <class ELFT>
3835 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
3836 unsigned SymIndex,
3837 DataRegion<Elf_Word> ShndxTable,
3838 StringRef StrTable,
3839 uint32_t Bucket) {
3840 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3841 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias,
3842 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
3843 Fields[0].Str = to_string(format_decimal(SymIndex, 5));
3844 Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
3846 Fields[2].Str = to_string(
3847 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
3848 Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
3850 unsigned char SymbolType = Symbol->getType();
3851 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3852 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3853 Fields[4].Str = enumToString(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3854 else
3855 Fields[4].Str = enumToString(SymbolType, makeArrayRef(ElfSymbolTypes));
3857 Fields[5].Str =
3858 enumToString(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3859 Fields[6].Str = enumToString(Symbol->getVisibility(),
3860 makeArrayRef(ElfSymbolVisibilities));
3861 Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
3862 Fields[8].Str =
3863 this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
3865 for (const Field &Entry : Fields)
3866 printField(Entry);
3867 OS << "\n";
3870 template <class ELFT>
3871 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
3872 bool PrintDynamicSymbols) {
3873 if (!PrintSymbols && !PrintDynamicSymbols)
3874 return;
3875 // GNU readelf prints both the .dynsym and .symtab with --symbols.
3876 this->printSymbolsHelper(true);
3877 if (PrintSymbols)
3878 this->printSymbolsHelper(false);
3881 template <class ELFT>
3882 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
3883 if (this->DynamicStringTable.empty())
3884 return;
3886 if (ELFT::Is64Bits)
3887 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3888 else
3889 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3890 OS << "\n";
3892 Elf_Sym_Range DynSyms = this->dynamic_symbols();
3893 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3894 if (!FirstSym) {
3895 this->reportUniqueWarning(
3896 Twine("unable to print symbols for the .hash table: the "
3897 "dynamic symbol table ") +
3898 (this->DynSymRegion ? "is empty" : "was not found"));
3899 return;
3902 DataRegion<Elf_Word> ShndxTable(
3903 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
3904 auto Buckets = SysVHash.buckets();
3905 auto Chains = SysVHash.chains();
3906 for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
3907 if (Buckets[Buc] == ELF::STN_UNDEF)
3908 continue;
3909 BitVector Visited(SysVHash.nchain);
3910 for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
3911 if (Ch == ELF::STN_UNDEF)
3912 break;
3914 if (Visited[Ch]) {
3915 this->reportUniqueWarning(".hash section is invalid: bucket " +
3916 Twine(Ch) +
3917 ": a cycle was detected in the linked chain");
3918 break;
3921 printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
3922 Buc);
3923 Visited[Ch] = true;
3928 template <class ELFT>
3929 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
3930 if (this->DynamicStringTable.empty())
3931 return;
3933 Elf_Sym_Range DynSyms = this->dynamic_symbols();
3934 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3935 if (!FirstSym) {
3936 this->reportUniqueWarning(
3937 Twine("unable to print symbols for the .gnu.hash table: the "
3938 "dynamic symbol table ") +
3939 (this->DynSymRegion ? "is empty" : "was not found"));
3940 return;
3943 auto GetSymbol = [&](uint64_t SymIndex,
3944 uint64_t SymsTotal) -> const Elf_Sym * {
3945 if (SymIndex >= SymsTotal) {
3946 this->reportUniqueWarning(
3947 "unable to print hashed symbol with index " + Twine(SymIndex) +
3948 ", which is greater than or equal to the number of dynamic symbols "
3949 "(" +
3950 Twine::utohexstr(SymsTotal) + ")");
3951 return nullptr;
3953 return FirstSym + SymIndex;
3956 Expected<ArrayRef<Elf_Word>> ValuesOrErr =
3957 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
3958 ArrayRef<Elf_Word> Values;
3959 if (!ValuesOrErr)
3960 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
3961 "section: " +
3962 toString(ValuesOrErr.takeError()));
3963 else
3964 Values = *ValuesOrErr;
3966 DataRegion<Elf_Word> ShndxTable(
3967 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
3968 ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
3969 for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
3970 if (Buckets[Buc] == ELF::STN_UNDEF)
3971 continue;
3972 uint32_t Index = Buckets[Buc];
3973 // Print whole chain.
3974 while (true) {
3975 uint32_t SymIndex = Index++;
3976 if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
3977 printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
3978 Buc);
3979 else
3980 break;
3982 if (SymIndex < GnuHash.symndx) {
3983 this->reportUniqueWarning(
3984 "unable to read the hash value for symbol with index " +
3985 Twine(SymIndex) +
3986 ", which is less than the index of the first hashed symbol (" +
3987 Twine(GnuHash.symndx) + ")");
3988 break;
3991 // Chain ends at symbol with stopper bit.
3992 if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
3993 break;
3998 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
3999 if (this->HashTable) {
4000 OS << "\n Symbol table of .hash for image:\n";
4001 if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4002 this->reportUniqueWarning(std::move(E));
4003 else
4004 printHashTableSymbols(*this->HashTable);
4007 // Try printing the .gnu.hash table.
4008 if (this->GnuHashTable) {
4009 OS << "\n Symbol table of .gnu.hash for image:\n";
4010 if (ELFT::Is64Bits)
4011 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4012 else
4013 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4014 OS << "\n";
4016 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4017 this->reportUniqueWarning(std::move(E));
4018 else
4019 printGnuHashTableSymbols(*this->GnuHashTable);
4023 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
4024 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4025 OS << "There are " << to_string(Sections.size())
4026 << " section headers, starting at offset "
4027 << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n";
4029 OS << "Section Headers:\n";
4031 auto PrintFields = [&](ArrayRef<Field> V) {
4032 for (const Field &F : V)
4033 printField(F);
4034 OS << "\n";
4037 PrintFields({{"[Nr]", 2}, {"Name", 7}});
4039 constexpr bool Is64 = ELFT::Is64Bits;
4040 PrintFields({{"Type", 7},
4041 {Is64 ? "Address" : "Addr", 23},
4042 {"Off", Is64 ? 40 : 32},
4043 {"Size", Is64 ? 47 : 39},
4044 {"ES", Is64 ? 54 : 46},
4045 {"Lk", Is64 ? 59 : 51},
4046 {"Inf", Is64 ? 62 : 54},
4047 {"Al", Is64 ? 66 : 57}});
4048 PrintFields({{"Flags", 7}});
4050 StringRef SecStrTable;
4051 if (Expected<StringRef> SecStrTableOrErr =
4052 this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4053 SecStrTable = *SecStrTableOrErr;
4054 else
4055 this->reportUniqueWarning(SecStrTableOrErr.takeError());
4057 size_t SectionIndex = 0;
4058 const unsigned AddrSize = Is64 ? 16 : 8;
4059 for (const Elf_Shdr &S : Sections) {
4060 StringRef Name = "<?>";
4061 if (Expected<StringRef> NameOrErr =
4062 this->Obj.getSectionName(S, SecStrTable))
4063 Name = *NameOrErr;
4064 else
4065 this->reportUniqueWarning(NameOrErr.takeError());
4067 OS.PadToColumn(2);
4068 OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4069 PrintFields({{Name, 7}});
4070 PrintFields(
4071 {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4072 {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4073 {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4074 {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4075 {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4076 {to_string(S.sh_link), Is64 ? 59 : 51},
4077 {to_string(S.sh_info), Is64 ? 63 : 55},
4078 {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4080 OS.PadToColumn(7);
4081 OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4083 DenseMap<unsigned, StringRef> FlagToName = {
4084 {SHF_WRITE, "WRITE"}, {SHF_ALLOC, "ALLOC"},
4085 {SHF_EXECINSTR, "EXEC"}, {SHF_MERGE, "MERGE"},
4086 {SHF_STRINGS, "STRINGS"}, {SHF_INFO_LINK, "INFO LINK"},
4087 {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4088 {SHF_GROUP, "GROUP"}, {SHF_TLS, "TLS"},
4089 {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4091 uint64_t Flags = S.sh_flags;
4092 uint64_t UnknownFlags = 0;
4093 ListSeparator LS;
4094 while (Flags) {
4095 // Take the least significant bit as a flag.
4096 uint64_t Flag = Flags & -Flags;
4097 Flags -= Flag;
4099 auto It = FlagToName.find(Flag);
4100 if (It != FlagToName.end())
4101 OS << LS << It->second;
4102 else
4103 UnknownFlags |= Flag;
4106 auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4107 uint64_t FlagsToPrint = UnknownFlags & Mask;
4108 if (!FlagsToPrint)
4109 return;
4111 OS << LS << Name << " ("
4112 << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4113 UnknownFlags &= ~Mask;
4116 PrintUnknownFlags(SHF_MASKOS, "OS");
4117 PrintUnknownFlags(SHF_MASKPROC, "PROC");
4118 PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4120 OS << "\n";
4121 ++SectionIndex;
4125 static inline std::string printPhdrFlags(unsigned Flag) {
4126 std::string Str;
4127 Str = (Flag & PF_R) ? "R" : " ";
4128 Str += (Flag & PF_W) ? "W" : " ";
4129 Str += (Flag & PF_X) ? "E" : " ";
4130 return Str;
4133 template <class ELFT>
4134 static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4135 const typename ELFT::Shdr &Sec) {
4136 if (Sec.sh_flags & ELF::SHF_TLS) {
4137 // .tbss must only be shown in the PT_TLS segment.
4138 if (Sec.sh_type == ELF::SHT_NOBITS)
4139 return Phdr.p_type == ELF::PT_TLS;
4141 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4142 // segments.
4143 return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4144 (Phdr.p_type == ELF::PT_GNU_RELRO);
4147 // PT_TLS must only have SHF_TLS sections.
4148 return Phdr.p_type != ELF::PT_TLS;
4151 template <class ELFT>
4152 static bool checkOffsets(const typename ELFT::Phdr &Phdr,
4153 const typename ELFT::Shdr &Sec) {
4154 // SHT_NOBITS sections don't need to have an offset inside the segment.
4155 if (Sec.sh_type == ELF::SHT_NOBITS)
4156 return true;
4158 if (Sec.sh_offset < Phdr.p_offset)
4159 return false;
4161 // Only non-empty sections can be at the end of a segment.
4162 if (Sec.sh_size == 0)
4163 return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
4164 return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
4167 // Check that an allocatable section belongs to a virtual address
4168 // space of a segment.
4169 template <class ELFT>
4170 static bool checkVMA(const typename ELFT::Phdr &Phdr,
4171 const typename ELFT::Shdr &Sec) {
4172 if (!(Sec.sh_flags & ELF::SHF_ALLOC))
4173 return true;
4175 if (Sec.sh_addr < Phdr.p_vaddr)
4176 return false;
4178 bool IsTbss =
4179 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
4180 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4181 bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
4182 // Only non-empty sections can be at the end of a segment.
4183 if (Sec.sh_size == 0 || IsTbssInNonTLS)
4184 return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
4185 return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
4188 template <class ELFT>
4189 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4190 const typename ELFT::Shdr &Sec) {
4191 if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4192 return true;
4194 // We get here when we have an empty section. Only non-empty sections can be
4195 // at the start or at the end of PT_DYNAMIC.
4196 // Is section within the phdr both based on offset and VMA?
4197 bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4198 (Sec.sh_offset > Phdr.p_offset &&
4199 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4200 bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4201 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4202 return CheckOffset && CheckVA;
4205 template <class ELFT>
4206 void GNUELFDumper<ELFT>::printProgramHeaders(
4207 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4208 if (PrintProgramHeaders)
4209 printProgramHeaders();
4211 // Display the section mapping along with the program headers, unless
4212 // -section-mapping is explicitly set to false.
4213 if (PrintSectionMapping != cl::BOU_FALSE)
4214 printSectionMapping();
4217 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
4218 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4219 const Elf_Ehdr &Header = this->Obj.getHeader();
4220 Field Fields[8] = {2, 17, 26, 37 + Bias,
4221 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4222 OS << "\nElf file type is "
4223 << enumToString(Header.e_type, makeArrayRef(ElfObjectFileType)) << "\n"
4224 << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4225 << "There are " << Header.e_phnum << " program headers,"
4226 << " starting at offset " << Header.e_phoff << "\n\n"
4227 << "Program Headers:\n";
4228 if (ELFT::Is64Bits)
4229 OS << " Type Offset VirtAddr PhysAddr "
4230 << " FileSiz MemSiz Flg Align\n";
4231 else
4232 OS << " Type Offset VirtAddr PhysAddr FileSiz "
4233 << "MemSiz Flg Align\n";
4235 unsigned Width = ELFT::Is64Bits ? 18 : 10;
4236 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4238 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4239 if (!PhdrsOrErr) {
4240 this->reportUniqueWarning("unable to dump program headers: " +
4241 toString(PhdrsOrErr.takeError()));
4242 return;
4245 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4246 Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4247 Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4248 Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4249 Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4250 Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4251 Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4252 Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4253 Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4254 for (const Field &F : Fields)
4255 printField(F);
4256 if (Phdr.p_type == ELF::PT_INTERP) {
4257 OS << "\n";
4258 auto ReportBadInterp = [&](const Twine &Msg) {
4259 this->reportUniqueWarning(
4260 "unable to read program interpreter name at offset 0x" +
4261 Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4264 if (Phdr.p_offset >= this->Obj.getBufSize()) {
4265 ReportBadInterp("it goes past the end of the file (0x" +
4266 Twine::utohexstr(this->Obj.getBufSize()) + ")");
4267 continue;
4270 const char *Data =
4271 reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4272 size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4273 size_t Len = strnlen(Data, MaxSize);
4274 if (Len == MaxSize) {
4275 ReportBadInterp("it is not null-terminated");
4276 continue;
4279 OS << " [Requesting program interpreter: ";
4280 OS << StringRef(Data, Len) << "]";
4282 OS << "\n";
4286 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
4287 OS << "\n Section to Segment mapping:\n Segment Sections...\n";
4288 DenseSet<const Elf_Shdr *> BelongsToSegment;
4289 int Phnum = 0;
4291 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4292 if (!PhdrsOrErr) {
4293 this->reportUniqueWarning(
4294 "can't read program headers to build section to segment mapping: " +
4295 toString(PhdrsOrErr.takeError()));
4296 return;
4299 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4300 std::string Sections;
4301 OS << format(" %2.2d ", Phnum++);
4302 // Check if each section is in a segment and then print mapping.
4303 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4304 if (Sec.sh_type == ELF::SHT_NULL)
4305 continue;
4307 // readelf additionally makes sure it does not print zero sized sections
4308 // at end of segments and for PT_DYNAMIC both start and end of section
4309 // .tbss must only be shown in PT_TLS section.
4310 if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
4311 checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
4312 Sections +=
4313 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4314 " ";
4315 BelongsToSegment.insert(&Sec);
4318 OS << Sections << "\n";
4319 OS.flush();
4322 // Display sections that do not belong to a segment.
4323 std::string Sections;
4324 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4325 if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4326 Sections +=
4327 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4328 ' ';
4330 if (!Sections.empty()) {
4331 OS << " None " << Sections << '\n';
4332 OS.flush();
4336 namespace {
4338 template <class ELFT>
4339 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4340 const Relocation<ELFT> &Reloc) {
4341 using Elf_Sym = typename ELFT::Sym;
4342 auto WarnAndReturn = [&](const Elf_Sym *Sym,
4343 const Twine &Reason) -> RelSymbol<ELFT> {
4344 Dumper.reportUniqueWarning(
4345 "unable to get name of the dynamic symbol with index " +
4346 Twine(Reloc.Symbol) + ": " + Reason);
4347 return {Sym, "<corrupt>"};
4350 ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4351 const Elf_Sym *FirstSym = Symbols.begin();
4352 if (!FirstSym)
4353 return WarnAndReturn(nullptr, "no dynamic symbol table found");
4355 // We might have an object without a section header. In this case the size of
4356 // Symbols is zero, because there is no way to know the size of the dynamic
4357 // table. We should allow this case and not print a warning.
4358 if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4359 return WarnAndReturn(
4360 nullptr,
4361 "index is greater than or equal to the number of dynamic symbols (" +
4362 Twine(Symbols.size()) + ")");
4364 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4365 const uint64_t FileSize = Obj.getBufSize();
4366 const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4367 (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4368 if (SymOffset + sizeof(Elf_Sym) > FileSize)
4369 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4370 " goes past the end of the file (0x" +
4371 Twine::utohexstr(FileSize) + ")");
4373 const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4374 Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4375 if (!ErrOrName)
4376 return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4378 return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4380 } // namespace
4382 template <class ELFT>
4383 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4384 typename ELFT::DynRange Tags) {
4385 size_t Max = 0;
4386 for (const typename ELFT::Dyn &Dyn : Tags)
4387 Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4388 return Max;
4391 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
4392 Elf_Dyn_Range Table = this->dynamic_table();
4393 if (Table.empty())
4394 return;
4396 OS << "Dynamic section at offset "
4397 << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
4398 this->Obj.base(),
4400 << " contains " << Table.size() << " entries:\n";
4402 // The type name is surrounded with round brackets, hence add 2.
4403 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4404 // The "Name/Value" column should be indented from the "Type" column by N
4405 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4406 // space (1) = 3.
4407 OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4408 << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4410 std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4411 for (auto Entry : Table) {
4412 uintX_t Tag = Entry.getTag();
4413 std::string Type =
4414 std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")";
4415 std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
4416 OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4417 << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4421 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
4422 this->printDynamicRelocationsHelper();
4425 template <class ELFT>
4426 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4427 printRelRelaReloc(R, getSymbolForReloc(*this, R));
4430 template <class ELFT>
4431 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4432 this->forEachRelocationDo(
4433 Sec, opts::RawRelr,
4434 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4435 const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
4436 [&](const Elf_Relr &R) { printRelrReloc(R); });
4439 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
4440 const bool IsMips64EL = this->Obj.isMips64EL();
4441 if (this->DynRelaRegion.Size > 0) {
4442 printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
4443 for (const Elf_Rela &Rela :
4444 this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
4445 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4448 if (this->DynRelRegion.Size > 0) {
4449 printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
4450 for (const Elf_Rel &Rel :
4451 this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
4452 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4455 if (this->DynRelrRegion.Size > 0) {
4456 printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
4457 Elf_Relr_Range Relrs =
4458 this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
4459 for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4460 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4463 if (this->DynPLTRelRegion.Size) {
4464 if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4465 printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
4466 for (const Elf_Rela &Rela :
4467 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
4468 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4469 } else {
4470 printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
4471 for (const Elf_Rel &Rel :
4472 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
4473 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4478 template <class ELFT>
4479 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
4480 const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
4481 // Don't inline the SecName, because it might report a warning to stderr and
4482 // corrupt the output.
4483 StringRef SecName = this->getPrintableSectionName(Sec);
4484 OS << Label << " section '" << SecName << "' "
4485 << "contains " << EntriesNum << " entries:\n";
4487 StringRef LinkedSecName = "<corrupt>";
4488 if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
4489 this->Obj.getSection(Sec.sh_link))
4490 LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
4491 else
4492 this->reportUniqueWarning("invalid section linked to " +
4493 this->describe(Sec) + ": " +
4494 toString(LinkedSecOrErr.takeError()));
4496 OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
4497 << " Offset: " << format_hex(Sec.sh_offset, 8)
4498 << " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
4501 template <class ELFT>
4502 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
4503 if (!Sec)
4504 return;
4506 printGNUVersionSectionProlog(*Sec, "Version symbols",
4507 Sec->sh_size / sizeof(Elf_Versym));
4508 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4509 this->getVersionTable(*Sec, /*SymTab=*/nullptr,
4510 /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4511 if (!VerTableOrErr) {
4512 this->reportUniqueWarning(VerTableOrErr.takeError());
4513 return;
4516 SmallVector<Optional<VersionEntry>, 0> *VersionMap = nullptr;
4517 if (Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
4518 this->getVersionMap())
4519 VersionMap = *MapOrErr;
4520 else
4521 this->reportUniqueWarning(MapOrErr.takeError());
4523 ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4524 std::vector<StringRef> Versions;
4525 for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4526 unsigned Ndx = VerTable[I].vs_index;
4527 if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4528 Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4529 continue;
4532 if (!VersionMap) {
4533 Versions.emplace_back("<corrupt>");
4534 continue;
4537 bool IsDefault;
4538 Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
4539 Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/None);
4540 if (!NameOrErr) {
4541 this->reportUniqueWarning("unable to get a version for entry " +
4542 Twine(I) + " of " + this->describe(*Sec) +
4543 ": " + toString(NameOrErr.takeError()));
4544 Versions.emplace_back("<corrupt>");
4545 continue;
4547 Versions.emplace_back(*NameOrErr);
4550 // readelf prints 4 entries per line.
4551 uint64_t Entries = VerTable.size();
4552 for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4553 OS << " " << format_hex_no_prefix(VersymRow, 3) << ":";
4554 for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4555 unsigned Ndx = VerTable[VersymRow + I].vs_index;
4556 OS << format("%4x%c", Ndx & VERSYM_VERSION,
4557 Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4558 OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4560 OS << '\n';
4562 OS << '\n';
4565 static std::string versionFlagToString(unsigned Flags) {
4566 if (Flags == 0)
4567 return "none";
4569 std::string Ret;
4570 auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4571 if (!(Flags & Flag))
4572 return;
4573 if (!Ret.empty())
4574 Ret += " | ";
4575 Ret += Name;
4576 Flags &= ~Flag;
4579 AddFlag(VER_FLG_BASE, "BASE");
4580 AddFlag(VER_FLG_WEAK, "WEAK");
4581 AddFlag(VER_FLG_INFO, "INFO");
4582 AddFlag(~0, "<unknown>");
4583 return Ret;
4586 template <class ELFT>
4587 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
4588 if (!Sec)
4589 return;
4591 printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
4593 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
4594 if (!V) {
4595 this->reportUniqueWarning(V.takeError());
4596 return;
4599 for (const VerDef &Def : *V) {
4600 OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n",
4601 Def.Offset, Def.Version,
4602 versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4603 Def.Name.data());
4604 unsigned I = 0;
4605 for (const VerdAux &Aux : Def.AuxV)
4606 OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4607 Aux.Name.data());
4610 OS << '\n';
4613 template <class ELFT>
4614 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
4615 if (!Sec)
4616 return;
4618 unsigned VerneedNum = Sec->sh_info;
4619 printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
4621 Expected<std::vector<VerNeed>> V =
4622 this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
4623 if (!V) {
4624 this->reportUniqueWarning(V.takeError());
4625 return;
4628 for (const VerNeed &VN : *V) {
4629 OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset,
4630 VN.Version, VN.File.data(), VN.Cnt);
4631 for (const VernAux &Aux : VN.AuxV)
4632 OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset,
4633 Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
4634 Aux.Other);
4636 OS << '\n';
4639 template <class ELFT>
4640 void GNUELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) {
4641 size_t NBucket = HashTable.nbucket;
4642 size_t NChain = HashTable.nchain;
4643 ArrayRef<Elf_Word> Buckets = HashTable.buckets();
4644 ArrayRef<Elf_Word> Chains = HashTable.chains();
4645 size_t TotalSyms = 0;
4646 // If hash table is correct, we have at least chains with 0 length
4647 size_t MaxChain = 1;
4648 size_t CumulativeNonZero = 0;
4650 if (NChain == 0 || NBucket == 0)
4651 return;
4653 std::vector<size_t> ChainLen(NBucket, 0);
4654 // Go over all buckets and and note chain lengths of each bucket (total
4655 // unique chain lengths).
4656 for (size_t B = 0; B < NBucket; B++) {
4657 BitVector Visited(NChain);
4658 for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
4659 if (C == ELF::STN_UNDEF)
4660 break;
4661 if (Visited[C]) {
4662 this->reportUniqueWarning(".hash section is invalid: bucket " +
4663 Twine(C) +
4664 ": a cycle was detected in the linked chain");
4665 break;
4667 Visited[C] = true;
4668 if (MaxChain <= ++ChainLen[B])
4669 MaxChain++;
4671 TotalSyms += ChainLen[B];
4674 if (!TotalSyms)
4675 return;
4677 std::vector<size_t> Count(MaxChain, 0);
4678 // Count how long is the chain for each bucket
4679 for (size_t B = 0; B < NBucket; B++)
4680 ++Count[ChainLen[B]];
4681 // Print Number of buckets with each chain lengths and their cumulative
4682 // coverage of the symbols
4683 OS << "Histogram for bucket list length (total of " << NBucket
4684 << " buckets)\n"
4685 << " Length Number % of total Coverage\n";
4686 for (size_t I = 0; I < MaxChain; I++) {
4687 CumulativeNonZero += Count[I] * I;
4688 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
4689 (Count[I] * 100.0) / NBucket,
4690 (CumulativeNonZero * 100.0) / TotalSyms);
4694 template <class ELFT>
4695 void GNUELFDumper<ELFT>::printGnuHashHistogram(
4696 const Elf_GnuHash &GnuHashTable) {
4697 Expected<ArrayRef<Elf_Word>> ChainsOrErr =
4698 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
4699 if (!ChainsOrErr) {
4700 this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
4701 toString(ChainsOrErr.takeError()));
4702 return;
4705 ArrayRef<Elf_Word> Chains = *ChainsOrErr;
4706 size_t Symndx = GnuHashTable.symndx;
4707 size_t TotalSyms = 0;
4708 size_t MaxChain = 1;
4709 size_t CumulativeNonZero = 0;
4711 size_t NBucket = GnuHashTable.nbuckets;
4712 if (Chains.empty() || NBucket == 0)
4713 return;
4715 ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
4716 std::vector<size_t> ChainLen(NBucket, 0);
4717 for (size_t B = 0; B < NBucket; B++) {
4718 if (!Buckets[B])
4719 continue;
4720 size_t Len = 1;
4721 for (size_t C = Buckets[B] - Symndx;
4722 C < Chains.size() && (Chains[C] & 1) == 0; C++)
4723 if (MaxChain < ++Len)
4724 MaxChain++;
4725 ChainLen[B] = Len;
4726 TotalSyms += Len;
4728 MaxChain++;
4730 if (!TotalSyms)
4731 return;
4733 std::vector<size_t> Count(MaxChain, 0);
4734 for (size_t B = 0; B < NBucket; B++)
4735 ++Count[ChainLen[B]];
4736 // Print Number of buckets with each chain lengths and their cumulative
4737 // coverage of the symbols
4738 OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4739 << " buckets)\n"
4740 << " Length Number % of total Coverage\n";
4741 for (size_t I = 0; I < MaxChain; I++) {
4742 CumulativeNonZero += Count[I] * I;
4743 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
4744 (Count[I] * 100.0) / NBucket,
4745 (CumulativeNonZero * 100.0) / TotalSyms);
4749 // Hash histogram shows statistics of how efficient the hash was for the
4750 // dynamic symbol table. The table shows the number of hash buckets for
4751 // different lengths of chains as an absolute number and percentage of the total
4752 // buckets, and the cumulative coverage of symbols for each set of buckets.
4753 template <class ELFT> void GNUELFDumper<ELFT>::printHashHistograms() {
4754 // Print histogram for the .hash section.
4755 if (this->HashTable) {
4756 if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4757 this->reportUniqueWarning(std::move(E));
4758 else
4759 printHashHistogram(*this->HashTable);
4762 // Print histogram for the .gnu.hash section.
4763 if (this->GnuHashTable) {
4764 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4765 this->reportUniqueWarning(std::move(E));
4766 else
4767 printGnuHashHistogram(*this->GnuHashTable);
4771 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
4772 OS << "GNUStyle::printCGProfile not implemented\n";
4775 template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
4776 OS << "GNUStyle::printBBAddrMaps not implemented\n";
4779 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
4780 std::vector<uint64_t> Ret;
4781 const uint8_t *Cur = Data.begin();
4782 const uint8_t *End = Data.end();
4783 while (Cur != End) {
4784 unsigned Size;
4785 const char *Err;
4786 Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
4787 if (Err)
4788 return createError(Err);
4789 Cur += Size;
4791 return Ret;
4794 template <class ELFT>
4795 static Expected<std::vector<uint64_t>>
4796 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
4797 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
4798 if (!ContentsOrErr)
4799 return ContentsOrErr.takeError();
4801 if (Expected<std::vector<uint64_t>> SymsOrErr =
4802 toULEB128Array(*ContentsOrErr))
4803 return *SymsOrErr;
4804 else
4805 return createError("unable to decode " + describe(Obj, Sec) + ": " +
4806 toString(SymsOrErr.takeError()));
4809 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
4810 if (!this->DotAddrsigSec)
4811 return;
4813 Expected<std::vector<uint64_t>> SymsOrErr =
4814 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
4815 if (!SymsOrErr) {
4816 this->reportUniqueWarning(SymsOrErr.takeError());
4817 return;
4820 StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
4821 OS << "\nAddress-significant symbols section '" << Name << "'"
4822 << " contains " << SymsOrErr->size() << " entries:\n";
4823 OS << " Num: Name\n";
4825 Field Fields[2] = {0, 8};
4826 size_t SymIndex = 0;
4827 for (uint64_t Sym : *SymsOrErr) {
4828 Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
4829 Fields[1].Str = this->getStaticSymbolName(Sym);
4830 for (const Field &Entry : Fields)
4831 printField(Entry);
4832 OS << "\n";
4836 template <typename ELFT>
4837 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
4838 ArrayRef<uint8_t> Data) {
4839 std::string str;
4840 raw_string_ostream OS(str);
4841 uint32_t PrData;
4842 auto DumpBit = [&](uint32_t Flag, StringRef Name) {
4843 if (PrData & Flag) {
4844 PrData &= ~Flag;
4845 OS << Name;
4846 if (PrData)
4847 OS << ", ";
4851 switch (Type) {
4852 default:
4853 OS << format("<application-specific type 0x%x>", Type);
4854 return OS.str();
4855 case GNU_PROPERTY_STACK_SIZE: {
4856 OS << "stack size: ";
4857 if (DataSize == sizeof(typename ELFT::uint))
4858 OS << formatv("{0:x}",
4859 (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
4860 else
4861 OS << format("<corrupt length: 0x%x>", DataSize);
4862 return OS.str();
4864 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
4865 OS << "no copy on protected";
4866 if (DataSize)
4867 OS << format(" <corrupt length: 0x%x>", DataSize);
4868 return OS.str();
4869 case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
4870 case GNU_PROPERTY_X86_FEATURE_1_AND:
4871 OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
4872 : "x86 feature: ");
4873 if (DataSize != 4) {
4874 OS << format("<corrupt length: 0x%x>", DataSize);
4875 return OS.str();
4877 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4878 if (PrData == 0) {
4879 OS << "<None>";
4880 return OS.str();
4882 if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
4883 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
4884 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
4885 } else {
4886 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
4887 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
4889 if (PrData)
4890 OS << format("<unknown flags: 0x%x>", PrData);
4891 return OS.str();
4892 case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
4893 case GNU_PROPERTY_X86_FEATURE_2_USED:
4894 OS << "x86 feature "
4895 << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
4896 if (DataSize != 4) {
4897 OS << format("<corrupt length: 0x%x>", DataSize);
4898 return OS.str();
4900 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4901 if (PrData == 0) {
4902 OS << "<None>";
4903 return OS.str();
4905 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
4906 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
4907 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
4908 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
4909 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
4910 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
4911 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
4912 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
4913 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
4914 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
4915 if (PrData)
4916 OS << format("<unknown flags: 0x%x>", PrData);
4917 return OS.str();
4918 case GNU_PROPERTY_X86_ISA_1_NEEDED:
4919 case GNU_PROPERTY_X86_ISA_1_USED:
4920 OS << "x86 ISA "
4921 << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
4922 if (DataSize != 4) {
4923 OS << format("<corrupt length: 0x%x>", DataSize);
4924 return OS.str();
4926 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4927 if (PrData == 0) {
4928 OS << "<None>";
4929 return OS.str();
4931 DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
4932 DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
4933 DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
4934 DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
4935 if (PrData)
4936 OS << format("<unknown flags: 0x%x>", PrData);
4937 return OS.str();
4941 template <typename ELFT>
4942 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
4943 using Elf_Word = typename ELFT::Word;
4945 SmallVector<std::string, 4> Properties;
4946 while (Arr.size() >= 8) {
4947 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
4948 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
4949 Arr = Arr.drop_front(8);
4951 // Take padding size into account if present.
4952 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
4953 std::string str;
4954 raw_string_ostream OS(str);
4955 if (Arr.size() < PaddedSize) {
4956 OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
4957 Properties.push_back(OS.str());
4958 break;
4960 Properties.push_back(
4961 getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
4962 Arr = Arr.drop_front(PaddedSize);
4965 if (!Arr.empty())
4966 Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
4968 return Properties;
4971 struct GNUAbiTag {
4972 std::string OSName;
4973 std::string ABI;
4974 bool IsValid;
4977 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
4978 typedef typename ELFT::Word Elf_Word;
4980 ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
4981 reinterpret_cast<const Elf_Word *>(Desc.end()));
4983 if (Words.size() < 4)
4984 return {"", "", /*IsValid=*/false};
4986 static const char *OSNames[] = {
4987 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
4989 StringRef OSName = "Unknown";
4990 if (Words[0] < array_lengthof(OSNames))
4991 OSName = OSNames[Words[0]];
4992 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
4993 std::string str;
4994 raw_string_ostream ABI(str);
4995 ABI << Major << "." << Minor << "." << Patch;
4996 return {std::string(OSName), ABI.str(), /*IsValid=*/true};
4999 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5000 std::string str;
5001 raw_string_ostream OS(str);
5002 for (uint8_t B : Desc)
5003 OS << format_hex_no_prefix(B, 2);
5004 return OS.str();
5007 static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) {
5008 return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5011 template <typename ELFT>
5012 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
5013 ArrayRef<uint8_t> Desc) {
5014 // Return true if we were able to pretty-print the note, false otherwise.
5015 switch (NoteType) {
5016 default:
5017 return false;
5018 case ELF::NT_GNU_ABI_TAG: {
5019 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5020 if (!AbiTag.IsValid)
5021 OS << " <corrupt GNU_ABI_TAG>";
5022 else
5023 OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5024 break;
5026 case ELF::NT_GNU_BUILD_ID: {
5027 OS << " Build ID: " << getGNUBuildId(Desc);
5028 break;
5030 case ELF::NT_GNU_GOLD_VERSION:
5031 OS << " Version: " << getDescAsStringRef(Desc);
5032 break;
5033 case ELF::NT_GNU_PROPERTY_TYPE_0:
5034 OS << " Properties:";
5035 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
5036 OS << " " << Property << "\n";
5037 break;
5039 OS << '\n';
5040 return true;
5043 template <typename ELFT>
5044 static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType,
5045 ArrayRef<uint8_t> Desc) {
5046 switch (NoteType) {
5047 default:
5048 return false;
5049 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
5050 OS << " Version: " << getDescAsStringRef(Desc);
5051 break;
5052 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
5053 OS << " Producer: " << getDescAsStringRef(Desc);
5054 break;
5055 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
5056 OS << " Producer version: " << getDescAsStringRef(Desc);
5057 break;
5059 OS << '\n';
5060 return true;
5063 const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
5064 {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
5065 {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
5066 {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
5067 {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
5068 {"LA48", NT_FREEBSD_FCTL_LA48},
5069 {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
5072 struct FreeBSDNote {
5073 std::string Type;
5074 std::string Value;
5077 template <typename ELFT>
5078 static Optional<FreeBSDNote>
5079 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
5080 if (IsCore)
5081 return None; // No pretty-printing yet.
5082 switch (NoteType) {
5083 case ELF::NT_FREEBSD_ABI_TAG:
5084 if (Desc.size() != 4)
5085 return None;
5086 return FreeBSDNote{
5087 "ABI tag",
5088 utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
5089 case ELF::NT_FREEBSD_ARCH_TAG:
5090 return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
5091 case ELF::NT_FREEBSD_FEATURE_CTL: {
5092 if (Desc.size() != 4)
5093 return None;
5094 unsigned Value =
5095 support::endian::read32<ELFT::TargetEndianness>(Desc.data());
5096 std::string FlagsStr;
5097 raw_string_ostream OS(FlagsStr);
5098 printFlags(Value, makeArrayRef(FreeBSDFeatureCtlFlags), OS);
5099 if (OS.str().empty())
5100 OS << "0x" << utohexstr(Value);
5101 else
5102 OS << "(0x" << utohexstr(Value) << ")";
5103 return FreeBSDNote{"Feature flags", OS.str()};
5105 default:
5106 return None;
5110 struct AMDNote {
5111 std::string Type;
5112 std::string Value;
5115 template <typename ELFT>
5116 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5117 switch (NoteType) {
5118 default:
5119 return {"", ""};
5120 case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
5121 struct CodeObjectVersion {
5122 uint32_t MajorVersion;
5123 uint32_t MinorVersion;
5125 if (Desc.size() != sizeof(CodeObjectVersion))
5126 return {"AMD HSA Code Object Version",
5127 "Invalid AMD HSA Code Object Version"};
5128 std::string VersionString;
5129 raw_string_ostream StrOS(VersionString);
5130 auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
5131 StrOS << "[Major: " << Version->MajorVersion
5132 << ", Minor: " << Version->MinorVersion << "]";
5133 return {"AMD HSA Code Object Version", VersionString};
5135 case ELF::NT_AMD_HSA_HSAIL: {
5136 struct HSAILProperties {
5137 uint32_t HSAILMajorVersion;
5138 uint32_t HSAILMinorVersion;
5139 uint8_t Profile;
5140 uint8_t MachineModel;
5141 uint8_t DefaultFloatRound;
5143 if (Desc.size() != sizeof(HSAILProperties))
5144 return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5145 auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
5146 std::string HSAILPropetiesString;
5147 raw_string_ostream StrOS(HSAILPropetiesString);
5148 StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
5149 << ", HSAIL Minor: " << Properties->HSAILMinorVersion
5150 << ", Profile: " << uint32_t(Properties->Profile)
5151 << ", Machine Model: " << uint32_t(Properties->MachineModel)
5152 << ", Default Float Round: "
5153 << uint32_t(Properties->DefaultFloatRound) << "]";
5154 return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
5156 case ELF::NT_AMD_HSA_ISA_VERSION: {
5157 struct IsaVersion {
5158 uint16_t VendorNameSize;
5159 uint16_t ArchitectureNameSize;
5160 uint32_t Major;
5161 uint32_t Minor;
5162 uint32_t Stepping;
5164 if (Desc.size() < sizeof(IsaVersion))
5165 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5166 auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
5167 if (Desc.size() < sizeof(IsaVersion) +
5168 Isa->VendorNameSize + Isa->ArchitectureNameSize ||
5169 Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
5170 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5171 std::string IsaString;
5172 raw_string_ostream StrOS(IsaString);
5173 StrOS << "[Vendor: "
5174 << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
5175 << ", Architecture: "
5176 << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
5177 Isa->ArchitectureNameSize - 1)
5178 << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
5179 << ", Stepping: " << Isa->Stepping << "]";
5180 return {"AMD HSA ISA Version", IsaString};
5182 case ELF::NT_AMD_HSA_METADATA: {
5183 if (Desc.size() == 0)
5184 return {"AMD HSA Metadata", ""};
5185 return {
5186 "AMD HSA Metadata",
5187 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
5189 case ELF::NT_AMD_HSA_ISA_NAME: {
5190 if (Desc.size() == 0)
5191 return {"AMD HSA ISA Name", ""};
5192 return {
5193 "AMD HSA ISA Name",
5194 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5196 case ELF::NT_AMD_PAL_METADATA: {
5197 struct PALMetadata {
5198 uint32_t Key;
5199 uint32_t Value;
5201 if (Desc.size() % sizeof(PALMetadata) != 0)
5202 return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5203 auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
5204 std::string MetadataString;
5205 raw_string_ostream StrOS(MetadataString);
5206 for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
5207 StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
5209 return {"AMD PAL Metadata", MetadataString};
5214 struct AMDGPUNote {
5215 std::string Type;
5216 std::string Value;
5219 template <typename ELFT>
5220 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5221 switch (NoteType) {
5222 default:
5223 return {"", ""};
5224 case ELF::NT_AMDGPU_METADATA: {
5225 StringRef MsgPackString =
5226 StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5227 msgpack::Document MsgPackDoc;
5228 if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5229 return {"", ""};
5231 AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5232 std::string MetadataString;
5233 if (!Verifier.verify(MsgPackDoc.getRoot()))
5234 MetadataString = "Invalid AMDGPU Metadata\n";
5236 raw_string_ostream StrOS(MetadataString);
5237 if (MsgPackDoc.getRoot().isScalar()) {
5238 // TODO: passing a scalar root to toYAML() asserts:
5239 // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5240 // "plain scalar documents are not supported")
5241 // To avoid this crash we print the raw data instead.
5242 return {"", ""};
5244 MsgPackDoc.toYAML(StrOS);
5245 return {"AMDGPU Metadata", StrOS.str()};
5250 struct CoreFileMapping {
5251 uint64_t Start, End, Offset;
5252 StringRef Filename;
5255 struct CoreNote {
5256 uint64_t PageSize;
5257 std::vector<CoreFileMapping> Mappings;
5260 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5261 // Expected format of the NT_FILE note description:
5262 // 1. # of file mappings (call it N)
5263 // 2. Page size
5264 // 3. N (start, end, offset) triples
5265 // 4. N packed filenames (null delimited)
5266 // Each field is an Elf_Addr, except for filenames which are char* strings.
5268 CoreNote Ret;
5269 const int Bytes = Desc.getAddressSize();
5271 if (!Desc.isValidOffsetForAddress(2))
5272 return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5273 " is too short, expected at least 0x" +
5274 Twine::utohexstr(Bytes * 2));
5275 if (Desc.getData().back() != 0)
5276 return createError("the note is not NUL terminated");
5278 uint64_t DescOffset = 0;
5279 uint64_t FileCount = Desc.getAddress(&DescOffset);
5280 Ret.PageSize = Desc.getAddress(&DescOffset);
5282 if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5283 return createError("unable to read file mappings (found " +
5284 Twine(FileCount) + "): the note of size 0x" +
5285 Twine::utohexstr(Desc.size()) + " is too short");
5287 uint64_t FilenamesOffset = 0;
5288 DataExtractor Filenames(
5289 Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5290 Desc.isLittleEndian(), Desc.getAddressSize());
5292 Ret.Mappings.resize(FileCount);
5293 size_t I = 0;
5294 for (CoreFileMapping &Mapping : Ret.Mappings) {
5295 ++I;
5296 if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5297 return createError(
5298 "unable to read the file name for the mapping with index " +
5299 Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5300 " is truncated");
5301 Mapping.Start = Desc.getAddress(&DescOffset);
5302 Mapping.End = Desc.getAddress(&DescOffset);
5303 Mapping.Offset = Desc.getAddress(&DescOffset);
5304 Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5307 return Ret;
5310 template <typename ELFT>
5311 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5312 // Length of "0x<address>" string.
5313 const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5315 OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5316 OS << " " << right_justify("Start", FieldWidth) << " "
5317 << right_justify("End", FieldWidth) << " "
5318 << right_justify("Page Offset", FieldWidth) << '\n';
5319 for (const CoreFileMapping &Mapping : Note.Mappings) {
5320 OS << " " << format_hex(Mapping.Start, FieldWidth) << " "
5321 << format_hex(Mapping.End, FieldWidth) << " "
5322 << format_hex(Mapping.Offset, FieldWidth) << "\n "
5323 << Mapping.Filename << '\n';
5327 const NoteType GenericNoteTypes[] = {
5328 {ELF::NT_VERSION, "NT_VERSION (version)"},
5329 {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5330 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5331 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5334 const NoteType GNUNoteTypes[] = {
5335 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5336 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5337 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5338 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5339 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5342 const NoteType FreeBSDCoreNoteTypes[] = {
5343 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5344 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5345 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5346 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5347 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5348 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5349 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5350 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5351 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5352 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5353 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5356 const NoteType FreeBSDNoteTypes[] = {
5357 {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5358 {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5359 {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5360 {ELF::NT_FREEBSD_FEATURE_CTL,
5361 "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5364 const NoteType NetBSDCoreNoteTypes[] = {
5365 {ELF::NT_NETBSDCORE_PROCINFO,
5366 "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5367 {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5368 {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5371 const NoteType OpenBSDCoreNoteTypes[] = {
5372 {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5373 {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5374 {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"},
5375 {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"},
5376 {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"},
5379 const NoteType AMDNoteTypes[] = {
5380 {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
5381 "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5382 {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5383 {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5384 {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5385 {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5386 {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5389 const NoteType AMDGPUNoteTypes[] = {
5390 {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5393 const NoteType LLVMOMPOFFLOADNoteTypes[] = {
5394 {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION,
5395 "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5396 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER,
5397 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5398 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION,
5399 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5402 const NoteType CoreNoteTypes[] = {
5403 {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5404 {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5405 {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5406 {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5407 {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5408 {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5409 {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5410 {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5411 {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5412 {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5413 {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5415 {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5416 {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5417 {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5418 {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5419 {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5420 {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5421 {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5422 {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5423 {ELF::NT_PPC_TM_CFPR,
5424 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5425 {ELF::NT_PPC_TM_CVMX,
5426 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5427 {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5428 {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5429 {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5430 {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5431 {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5433 {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
5434 {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
5435 {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5437 {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5438 {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
5439 {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
5440 {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
5441 {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
5442 {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
5443 {ELF::NT_S390_LAST_BREAK,
5444 "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5445 {ELF::NT_S390_SYSTEM_CALL,
5446 "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5447 {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
5448 {ELF::NT_S390_VXRS_LOW,
5449 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5450 {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5451 {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5452 {ELF::NT_S390_GS_BC,
5453 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5455 {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
5456 {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
5457 {ELF::NT_ARM_HW_BREAK,
5458 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5459 {ELF::NT_ARM_HW_WATCH,
5460 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5462 {ELF::NT_FILE, "NT_FILE (mapped files)"},
5463 {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5464 {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5467 template <class ELFT>
5468 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
5469 uint32_t Type = Note.getType();
5470 auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
5471 for (const NoteType &N : V)
5472 if (N.ID == Type)
5473 return N.Name;
5474 return "";
5477 StringRef Name = Note.getName();
5478 if (Name == "GNU")
5479 return FindNote(GNUNoteTypes);
5480 if (Name == "FreeBSD") {
5481 if (ELFType == ELF::ET_CORE) {
5482 // FreeBSD also places the generic core notes in the FreeBSD namespace.
5483 StringRef Result = FindNote(FreeBSDCoreNoteTypes);
5484 if (!Result.empty())
5485 return Result;
5486 return FindNote(CoreNoteTypes);
5487 } else {
5488 return FindNote(FreeBSDNoteTypes);
5491 if (ELFType == ELF::ET_CORE && Name.startswith("NetBSD-CORE")) {
5492 StringRef Result = FindNote(NetBSDCoreNoteTypes);
5493 if (!Result.empty())
5494 return Result;
5495 return FindNote(CoreNoteTypes);
5497 if (ELFType == ELF::ET_CORE && Name.startswith("OpenBSD")) {
5498 // OpenBSD also places the generic core notes in the OpenBSD namespace.
5499 StringRef Result = FindNote(OpenBSDCoreNoteTypes);
5500 if (!Result.empty())
5501 return Result;
5502 return FindNote(CoreNoteTypes);
5504 if (Name == "AMD")
5505 return FindNote(AMDNoteTypes);
5506 if (Name == "AMDGPU")
5507 return FindNote(AMDGPUNoteTypes);
5508 if (Name == "LLVMOMPOFFLOAD")
5509 return FindNote(LLVMOMPOFFLOADNoteTypes);
5511 if (ELFType == ELF::ET_CORE)
5512 return FindNote(CoreNoteTypes);
5513 return FindNote(GenericNoteTypes);
5516 template <class ELFT>
5517 static void printNotesHelper(
5518 const ELFDumper<ELFT> &Dumper,
5519 llvm::function_ref<void(Optional<StringRef>, typename ELFT::Off,
5520 typename ELFT::Addr)>
5521 StartNotesFn,
5522 llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
5523 llvm::function_ref<void()> FinishNotesFn) {
5524 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
5525 bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
5527 ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
5528 if (!IsCoreFile && !Sections.empty()) {
5529 for (const typename ELFT::Shdr &S : Sections) {
5530 if (S.sh_type != SHT_NOTE)
5531 continue;
5532 StartNotesFn(expectedToOptional(Obj.getSectionName(S)), S.sh_offset,
5533 S.sh_size);
5534 Error Err = Error::success();
5535 size_t I = 0;
5536 for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
5537 if (Error E = ProcessNoteFn(Note, IsCoreFile))
5538 Dumper.reportUniqueWarning(
5539 "unable to read note with index " + Twine(I) + " from the " +
5540 describe(Obj, S) + ": " + toString(std::move(E)));
5541 ++I;
5543 if (Err)
5544 Dumper.reportUniqueWarning("unable to read notes from the " +
5545 describe(Obj, S) + ": " +
5546 toString(std::move(Err)));
5547 FinishNotesFn();
5549 return;
5552 Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
5553 if (!PhdrsOrErr) {
5554 Dumper.reportUniqueWarning(
5555 "unable to read program headers to locate the PT_NOTE segment: " +
5556 toString(PhdrsOrErr.takeError()));
5557 return;
5560 for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
5561 const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
5562 if (P.p_type != PT_NOTE)
5563 continue;
5564 StartNotesFn(/*SecName=*/None, P.p_offset, P.p_filesz);
5565 Error Err = Error::success();
5566 size_t Index = 0;
5567 for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
5568 if (Error E = ProcessNoteFn(Note, IsCoreFile))
5569 Dumper.reportUniqueWarning("unable to read note with index " +
5570 Twine(Index) +
5571 " from the PT_NOTE segment with index " +
5572 Twine(I) + ": " + toString(std::move(E)));
5573 ++Index;
5575 if (Err)
5576 Dumper.reportUniqueWarning(
5577 "unable to read notes from the PT_NOTE segment with index " +
5578 Twine(I) + ": " + toString(std::move(Err)));
5579 FinishNotesFn();
5583 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
5584 bool IsFirstHeader = true;
5585 auto PrintHeader = [&](Optional<StringRef> SecName,
5586 const typename ELFT::Off Offset,
5587 const typename ELFT::Addr Size) {
5588 // Print a newline between notes sections to match GNU readelf.
5589 if (!IsFirstHeader) {
5590 OS << '\n';
5591 } else {
5592 IsFirstHeader = false;
5595 OS << "Displaying notes found ";
5597 if (SecName)
5598 OS << "in: " << *SecName << "\n";
5599 else
5600 OS << "at file offset " << format_hex(Offset, 10) << " with length "
5601 << format_hex(Size, 10) << ":\n";
5603 OS << " Owner Data size \tDescription\n";
5606 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
5607 StringRef Name = Note.getName();
5608 ArrayRef<uint8_t> Descriptor = Note.getDesc();
5609 Elf_Word Type = Note.getType();
5611 // Print the note owner/type.
5612 OS << " " << left_justify(Name, 20) << ' '
5613 << format_hex(Descriptor.size(), 10) << '\t';
5615 StringRef NoteType =
5616 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
5617 if (!NoteType.empty())
5618 OS << NoteType << '\n';
5619 else
5620 OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
5622 // Print the description, or fallback to printing raw bytes for unknown
5623 // owners/if we fail to pretty-print the contents.
5624 if (Name == "GNU") {
5625 if (printGNUNote<ELFT>(OS, Type, Descriptor))
5626 return Error::success();
5627 } else if (Name == "FreeBSD") {
5628 if (Optional<FreeBSDNote> N =
5629 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
5630 OS << " " << N->Type << ": " << N->Value << '\n';
5631 return Error::success();
5633 } else if (Name == "AMD") {
5634 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5635 if (!N.Type.empty()) {
5636 OS << " " << N.Type << ":\n " << N.Value << '\n';
5637 return Error::success();
5639 } else if (Name == "AMDGPU") {
5640 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5641 if (!N.Type.empty()) {
5642 OS << " " << N.Type << ":\n " << N.Value << '\n';
5643 return Error::success();
5645 } else if (Name == "LLVMOMPOFFLOAD") {
5646 if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor))
5647 return Error::success();
5648 } else if (Name == "CORE") {
5649 if (Type == ELF::NT_FILE) {
5650 DataExtractor DescExtractor(Descriptor,
5651 ELFT::TargetEndianness == support::little,
5652 sizeof(Elf_Addr));
5653 if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
5654 printCoreNote<ELFT>(OS, *NoteOrErr);
5655 return Error::success();
5656 } else {
5657 return NoteOrErr.takeError();
5661 if (!Descriptor.empty()) {
5662 OS << " description data:";
5663 for (uint8_t B : Descriptor)
5664 OS << " " << format("%02x", B);
5665 OS << '\n';
5667 return Error::success();
5670 printNotesHelper(*this, PrintHeader, ProcessNote, []() {});
5673 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
5674 OS << "printELFLinkerOptions not implemented!\n";
5677 template <class ELFT>
5678 void ELFDumper<ELFT>::printDependentLibsHelper(
5679 function_ref<void(const Elf_Shdr &)> OnSectionStart,
5680 function_ref<void(StringRef, uint64_t)> OnLibEntry) {
5681 auto Warn = [this](unsigned SecNdx, StringRef Msg) {
5682 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
5683 Twine(SecNdx) + " is broken: " + Msg);
5686 unsigned I = -1;
5687 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
5688 ++I;
5689 if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
5690 continue;
5692 OnSectionStart(Shdr);
5694 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
5695 if (!ContentsOrErr) {
5696 Warn(I, toString(ContentsOrErr.takeError()));
5697 continue;
5700 ArrayRef<uint8_t> Contents = *ContentsOrErr;
5701 if (!Contents.empty() && Contents.back() != 0) {
5702 Warn(I, "the content is not null-terminated");
5703 continue;
5706 for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
5707 StringRef Lib((const char *)I);
5708 OnLibEntry(Lib, I - Contents.begin());
5709 I += Lib.size() + 1;
5714 template <class ELFT>
5715 void ELFDumper<ELFT>::forEachRelocationDo(
5716 const Elf_Shdr &Sec, bool RawRelr,
5717 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
5718 const Elf_Shdr &, const Elf_Shdr *)>
5719 RelRelaFn,
5720 llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
5721 auto Warn = [&](Error &&E,
5722 const Twine &Prefix = "unable to read relocations from") {
5723 this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
5724 toString(std::move(E)));
5727 // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
5728 // For them we should not treat the value of the sh_link field as an index of
5729 // a symbol table.
5730 const Elf_Shdr *SymTab;
5731 if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) {
5732 Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
5733 if (!SymTabOrErr) {
5734 Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
5735 return;
5737 SymTab = *SymTabOrErr;
5740 unsigned RelNdx = 0;
5741 const bool IsMips64EL = this->Obj.isMips64EL();
5742 switch (Sec.sh_type) {
5743 case ELF::SHT_REL:
5744 if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
5745 for (const Elf_Rel &R : *RangeOrErr)
5746 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5747 } else {
5748 Warn(RangeOrErr.takeError());
5750 break;
5751 case ELF::SHT_RELA:
5752 if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
5753 for (const Elf_Rela &R : *RangeOrErr)
5754 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5755 } else {
5756 Warn(RangeOrErr.takeError());
5758 break;
5759 case ELF::SHT_RELR:
5760 case ELF::SHT_ANDROID_RELR: {
5761 Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
5762 if (!RangeOrErr) {
5763 Warn(RangeOrErr.takeError());
5764 break;
5766 if (RawRelr) {
5767 for (const Elf_Relr &R : *RangeOrErr)
5768 RelrFn(R);
5769 break;
5772 for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
5773 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
5774 /*SymTab=*/nullptr);
5775 break;
5777 case ELF::SHT_ANDROID_REL:
5778 case ELF::SHT_ANDROID_RELA:
5779 if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
5780 for (const Elf_Rela &R : *RelasOrErr)
5781 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5782 } else {
5783 Warn(RelasOrErr.takeError());
5785 break;
5789 template <class ELFT>
5790 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
5791 StringRef Name = "<?>";
5792 if (Expected<StringRef> SecNameOrErr =
5793 Obj.getSectionName(Sec, this->WarningHandler))
5794 Name = *SecNameOrErr;
5795 else
5796 this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
5797 ": " + toString(SecNameOrErr.takeError()));
5798 return Name;
5801 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
5802 bool SectionStarted = false;
5803 struct NameOffset {
5804 StringRef Name;
5805 uint64_t Offset;
5807 std::vector<NameOffset> SecEntries;
5808 NameOffset Current;
5809 auto PrintSection = [&]() {
5810 OS << "Dependent libraries section " << Current.Name << " at offset "
5811 << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
5812 << " entries:\n";
5813 for (NameOffset Entry : SecEntries)
5814 OS << " [" << format("%6" PRIx64, Entry.Offset) << "] " << Entry.Name
5815 << "\n";
5816 OS << "\n";
5817 SecEntries.clear();
5820 auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
5821 if (SectionStarted)
5822 PrintSection();
5823 SectionStarted = true;
5824 Current.Offset = Shdr.sh_offset;
5825 Current.Name = this->getPrintableSectionName(Shdr);
5827 auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
5828 SecEntries.push_back(NameOffset{Lib, Offset});
5831 this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
5832 if (SectionStarted)
5833 PrintSection();
5836 template <class ELFT>
5837 SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress(
5838 uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec) {
5839 SmallVector<uint32_t> SymbolIndexes;
5840 if (!this->AddressToIndexMap.hasValue()) {
5841 // Populate the address to index map upon the first invocation of this
5842 // function.
5843 this->AddressToIndexMap.emplace();
5844 if (this->DotSymtabSec) {
5845 if (Expected<Elf_Sym_Range> SymsOrError =
5846 Obj.symbols(this->DotSymtabSec)) {
5847 uint32_t Index = (uint32_t)-1;
5848 for (const Elf_Sym &Sym : *SymsOrError) {
5849 ++Index;
5851 if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
5852 continue;
5854 Expected<uint64_t> SymAddrOrErr =
5855 ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress();
5856 if (!SymAddrOrErr) {
5857 std::string Name = this->getStaticSymbolName(Index);
5858 reportUniqueWarning("unable to get address of symbol '" + Name +
5859 "': " + toString(SymAddrOrErr.takeError()));
5860 return SymbolIndexes;
5863 (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index);
5865 } else {
5866 reportUniqueWarning("unable to read the symbol table: " +
5867 toString(SymsOrError.takeError()));
5872 auto Symbols = this->AddressToIndexMap->find(SymValue);
5873 if (Symbols == this->AddressToIndexMap->end())
5874 return SymbolIndexes;
5876 for (uint32_t Index : Symbols->second) {
5877 // Check if the symbol is in the right section. FunctionSec == None
5878 // means "any section".
5879 if (FunctionSec) {
5880 const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index));
5881 if (Expected<const Elf_Shdr *> SecOrErr =
5882 Obj.getSection(Sym, this->DotSymtabSec,
5883 this->getShndxTable(this->DotSymtabSec))) {
5884 if (*FunctionSec != *SecOrErr)
5885 continue;
5886 } else {
5887 std::string Name = this->getStaticSymbolName(Index);
5888 // Note: it is impossible to trigger this error currently, it is
5889 // untested.
5890 reportUniqueWarning("unable to get section of symbol '" + Name +
5891 "': " + toString(SecOrErr.takeError()));
5892 return SymbolIndexes;
5896 SymbolIndexes.push_back(Index);
5899 return SymbolIndexes;
5902 template <class ELFT>
5903 bool ELFDumper<ELFT>::printFunctionStackSize(
5904 uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec,
5905 const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
5906 SmallVector<uint32_t> FuncSymIndexes =
5907 this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec);
5908 if (FuncSymIndexes.empty())
5909 reportUniqueWarning(
5910 "could not identify function symbol for stack size entry in " +
5911 describe(StackSizeSec));
5913 // Extract the size. The expectation is that Offset is pointing to the right
5914 // place, i.e. past the function address.
5915 Error Err = Error::success();
5916 uint64_t StackSize = Data.getULEB128(Offset, &Err);
5917 if (Err) {
5918 reportUniqueWarning("could not extract a valid stack size from " +
5919 describe(StackSizeSec) + ": " +
5920 toString(std::move(Err)));
5921 return false;
5924 if (FuncSymIndexes.empty()) {
5925 printStackSizeEntry(StackSize, {"?"});
5926 } else {
5927 SmallVector<std::string> FuncSymNames;
5928 for (uint32_t Index : FuncSymIndexes)
5929 FuncSymNames.push_back(this->getStaticSymbolName(Index));
5930 printStackSizeEntry(StackSize, FuncSymNames);
5933 return true;
5936 template <class ELFT>
5937 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
5938 ArrayRef<std::string> FuncNames) {
5939 OS.PadToColumn(2);
5940 OS << format_decimal(Size, 11);
5941 OS.PadToColumn(18);
5943 OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n";
5946 template <class ELFT>
5947 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
5948 const Elf_Shdr &RelocSec, unsigned Ndx,
5949 const Elf_Shdr *SymTab,
5950 const Elf_Shdr *FunctionSec,
5951 const Elf_Shdr &StackSizeSec,
5952 const RelocationResolver &Resolver,
5953 DataExtractor Data) {
5954 // This function ignores potentially erroneous input, unless it is directly
5955 // related to stack size reporting.
5956 const Elf_Sym *Sym = nullptr;
5957 Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
5958 if (!TargetOrErr)
5959 reportUniqueWarning("unable to get the target of relocation with index " +
5960 Twine(Ndx) + " in " + describe(RelocSec) + ": " +
5961 toString(TargetOrErr.takeError()));
5962 else
5963 Sym = TargetOrErr->Sym;
5965 uint64_t RelocSymValue = 0;
5966 if (Sym) {
5967 Expected<const Elf_Shdr *> SectionOrErr =
5968 this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
5969 if (!SectionOrErr) {
5970 reportUniqueWarning(
5971 "cannot identify the section for relocation symbol '" +
5972 (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
5973 } else if (*SectionOrErr != FunctionSec) {
5974 reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
5975 "' is not in the expected section");
5976 // Pretend that the symbol is in the correct section and report its
5977 // stack size anyway.
5978 FunctionSec = *SectionOrErr;
5981 RelocSymValue = Sym->st_value;
5984 uint64_t Offset = R.Offset;
5985 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
5986 reportUniqueWarning("found invalid relocation offset (0x" +
5987 Twine::utohexstr(Offset) + ") into " +
5988 describe(StackSizeSec) +
5989 " while trying to extract a stack size entry");
5990 return;
5993 uint64_t SymValue =
5994 Resolver(R.Type, Offset, RelocSymValue, Data.getAddress(&Offset),
5995 R.Addend.getValueOr(0));
5996 this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
5997 &Offset);
6000 template <class ELFT>
6001 void ELFDumper<ELFT>::printNonRelocatableStackSizes(
6002 std::function<void()> PrintHeader) {
6003 // This function ignores potentially erroneous input, unless it is directly
6004 // related to stack size reporting.
6005 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6006 if (this->getPrintableSectionName(Sec) != ".stack_sizes")
6007 continue;
6008 PrintHeader();
6009 ArrayRef<uint8_t> Contents =
6010 unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
6011 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6012 uint64_t Offset = 0;
6013 while (Offset < Contents.size()) {
6014 // The function address is followed by a ULEB representing the stack
6015 // size. Check for an extra byte before we try to process the entry.
6016 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6017 reportUniqueWarning(
6018 describe(Sec) +
6019 " ended while trying to extract a stack size entry");
6020 break;
6022 uint64_t SymValue = Data.getAddress(&Offset);
6023 if (!printFunctionStackSize(SymValue, /*FunctionSec=*/None, Sec, Data,
6024 &Offset))
6025 break;
6030 template <class ELFT>
6031 void ELFDumper<ELFT>::getSectionAndRelocations(
6032 std::function<bool(const Elf_Shdr &)> IsMatch,
6033 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap) {
6034 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6035 if (IsMatch(Sec))
6036 if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
6037 .second)
6038 continue;
6040 if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
6041 continue;
6043 Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info);
6044 if (!RelSecOrErr) {
6045 reportUniqueWarning(describe(Sec) +
6046 ": failed to get a relocated section: " +
6047 toString(RelSecOrErr.takeError()));
6048 continue;
6050 const Elf_Shdr *ContentsSec = *RelSecOrErr;
6051 if (IsMatch(*ContentsSec))
6052 SecToRelocMap[ContentsSec] = &Sec;
6056 template <class ELFT>
6057 void ELFDumper<ELFT>::printRelocatableStackSizes(
6058 std::function<void()> PrintHeader) {
6059 // Build a map between stack size sections and their corresponding relocation
6060 // sections.
6061 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap;
6062 auto IsMatch = [&](const Elf_Shdr &Sec) -> bool {
6063 StringRef SectionName;
6064 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
6065 SectionName = *NameOrErr;
6066 else
6067 consumeError(NameOrErr.takeError());
6069 return SectionName == ".stack_sizes";
6071 getSectionAndRelocations(IsMatch, StackSizeRelocMap);
6073 for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
6074 PrintHeader();
6075 const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
6076 const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
6078 // Warn about stack size sections without a relocation section.
6079 if (!RelocSec) {
6080 reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
6081 ") does not have a corresponding "
6082 "relocation section"),
6083 FileName);
6084 continue;
6087 // A .stack_sizes section header's sh_link field is supposed to point
6088 // to the section that contains the functions whose stack sizes are
6089 // described in it.
6090 const Elf_Shdr *FunctionSec = unwrapOrError(
6091 this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
6093 SupportsRelocation IsSupportedFn;
6094 RelocationResolver Resolver;
6095 std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
6096 ArrayRef<uint8_t> Contents =
6097 unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
6098 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6100 forEachRelocationDo(
6101 *RelocSec, /*RawRelr=*/false,
6102 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
6103 const Elf_Shdr *SymTab) {
6104 if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
6105 reportUniqueWarning(
6106 describe(*RelocSec) +
6107 " contains an unsupported relocation with index " + Twine(Ndx) +
6108 ": " + Obj.getRelocationTypeName(R.Type));
6109 return;
6112 this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
6113 *StackSizesELFSec, Resolver, Data);
6115 [](const Elf_Relr &) {
6116 llvm_unreachable("can't get here, because we only support "
6117 "SHT_REL/SHT_RELA sections");
6122 template <class ELFT>
6123 void GNUELFDumper<ELFT>::printStackSizes() {
6124 bool HeaderHasBeenPrinted = false;
6125 auto PrintHeader = [&]() {
6126 if (HeaderHasBeenPrinted)
6127 return;
6128 OS << "\nStack Sizes:\n";
6129 OS.PadToColumn(9);
6130 OS << "Size";
6131 OS.PadToColumn(18);
6132 OS << "Functions\n";
6133 HeaderHasBeenPrinted = true;
6136 // For non-relocatable objects, look directly for sections whose name starts
6137 // with .stack_sizes and process the contents.
6138 if (this->Obj.getHeader().e_type == ELF::ET_REL)
6139 this->printRelocatableStackSizes(PrintHeader);
6140 else
6141 this->printNonRelocatableStackSizes(PrintHeader);
6144 template <class ELFT>
6145 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6146 size_t Bias = ELFT::Is64Bits ? 8 : 0;
6147 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6148 OS.PadToColumn(2);
6149 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
6150 OS.PadToColumn(11 + Bias);
6151 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
6152 OS.PadToColumn(22 + Bias);
6153 OS << format_hex_no_prefix(*E, 8 + Bias);
6154 OS.PadToColumn(31 + 2 * Bias);
6155 OS << Purpose << "\n";
6158 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6159 OS << " Canonical gp value: "
6160 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6162 OS << " Reserved entries:\n";
6163 if (ELFT::Is64Bits)
6164 OS << " Address Access Initial Purpose\n";
6165 else
6166 OS << " Address Access Initial Purpose\n";
6167 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6168 if (Parser.getGotModulePointer())
6169 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6171 if (!Parser.getLocalEntries().empty()) {
6172 OS << "\n";
6173 OS << " Local entries:\n";
6174 if (ELFT::Is64Bits)
6175 OS << " Address Access Initial\n";
6176 else
6177 OS << " Address Access Initial\n";
6178 for (auto &E : Parser.getLocalEntries())
6179 PrintEntry(&E, "");
6182 if (Parser.IsStatic)
6183 return;
6185 if (!Parser.getGlobalEntries().empty()) {
6186 OS << "\n";
6187 OS << " Global entries:\n";
6188 if (ELFT::Is64Bits)
6189 OS << " Address Access Initial Sym.Val."
6190 << " Type Ndx Name\n";
6191 else
6192 OS << " Address Access Initial Sym.Val. Type Ndx Name\n";
6194 DataRegion<Elf_Word> ShndxTable(
6195 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6196 for (auto &E : Parser.getGlobalEntries()) {
6197 const Elf_Sym &Sym = *Parser.getGotSym(&E);
6198 const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
6199 std::string SymName = this->getFullSymbolName(
6200 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6202 OS.PadToColumn(2);
6203 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6204 OS.PadToColumn(11 + Bias);
6205 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6206 OS.PadToColumn(22 + Bias);
6207 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6208 OS.PadToColumn(31 + 2 * Bias);
6209 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6210 OS.PadToColumn(40 + 3 * Bias);
6211 OS << enumToString(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6212 OS.PadToColumn(48 + 3 * Bias);
6213 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6214 ShndxTable);
6215 OS.PadToColumn(52 + 3 * Bias);
6216 OS << SymName << "\n";
6220 if (!Parser.getOtherEntries().empty())
6221 OS << "\n Number of TLS and multi-GOT entries "
6222 << Parser.getOtherEntries().size() << "\n";
6225 template <class ELFT>
6226 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6227 size_t Bias = ELFT::Is64Bits ? 8 : 0;
6228 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6229 OS.PadToColumn(2);
6230 OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6231 OS.PadToColumn(11 + Bias);
6232 OS << format_hex_no_prefix(*E, 8 + Bias);
6233 OS.PadToColumn(20 + 2 * Bias);
6234 OS << Purpose << "\n";
6237 OS << "PLT GOT:\n\n";
6239 OS << " Reserved entries:\n";
6240 OS << " Address Initial Purpose\n";
6241 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6242 if (Parser.getPltModulePointer())
6243 PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6245 if (!Parser.getPltEntries().empty()) {
6246 OS << "\n";
6247 OS << " Entries:\n";
6248 OS << " Address Initial Sym.Val. Type Ndx Name\n";
6249 DataRegion<Elf_Word> ShndxTable(
6250 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6251 for (auto &E : Parser.getPltEntries()) {
6252 const Elf_Sym &Sym = *Parser.getPltSym(&E);
6253 const Elf_Sym &FirstSym = *cantFail(
6254 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
6255 std::string SymName = this->getFullSymbolName(
6256 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6258 OS.PadToColumn(2);
6259 OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6260 OS.PadToColumn(11 + Bias);
6261 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6262 OS.PadToColumn(20 + 2 * Bias);
6263 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6264 OS.PadToColumn(29 + 3 * Bias);
6265 OS << enumToString(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6266 OS.PadToColumn(37 + 3 * Bias);
6267 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6268 ShndxTable);
6269 OS.PadToColumn(41 + 3 * Bias);
6270 OS << SymName << "\n";
6275 template <class ELFT>
6276 Expected<const Elf_Mips_ABIFlags<ELFT> *>
6277 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6278 const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6279 if (Sec == nullptr)
6280 return nullptr;
6282 constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6283 Expected<ArrayRef<uint8_t>> DataOrErr =
6284 Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6285 if (!DataOrErr)
6286 return createError(ErrPrefix + toString(DataOrErr.takeError()));
6288 if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6289 return createError(ErrPrefix + "it has a wrong size (" +
6290 Twine(DataOrErr->size()) + ")");
6291 return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6294 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
6295 const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6296 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6297 getMipsAbiFlagsSection(*this))
6298 Flags = *SecOrErr;
6299 else
6300 this->reportUniqueWarning(SecOrErr.takeError());
6301 if (!Flags)
6302 return;
6304 OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6305 OS << "ISA: MIPS" << int(Flags->isa_level);
6306 if (Flags->isa_rev > 1)
6307 OS << "r" << int(Flags->isa_rev);
6308 OS << "\n";
6309 OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6310 OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6311 OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6312 OS << "FP ABI: "
6313 << enumToString(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)) << "\n";
6314 OS << "ISA Extension: "
6315 << enumToString(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n";
6316 if (Flags->ases == 0)
6317 OS << "ASEs: None\n";
6318 else
6319 // FIXME: Print each flag on a separate line.
6320 OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags))
6321 << "\n";
6322 OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6323 OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6324 OS << "\n";
6327 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
6328 const Elf_Ehdr &E = this->Obj.getHeader();
6330 DictScope D(W, "ElfHeader");
6332 DictScope D(W, "Ident");
6333 W.printBinary("Magic", makeArrayRef(E.e_ident).slice(ELF::EI_MAG0, 4));
6334 W.printEnum("Class", E.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
6335 W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
6336 makeArrayRef(ElfDataEncoding));
6337 W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
6339 auto OSABI = makeArrayRef(ElfOSABI);
6340 if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6341 E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6342 switch (E.e_machine) {
6343 case ELF::EM_AMDGPU:
6344 OSABI = makeArrayRef(AMDGPUElfOSABI);
6345 break;
6346 case ELF::EM_ARM:
6347 OSABI = makeArrayRef(ARMElfOSABI);
6348 break;
6349 case ELF::EM_TI_C6000:
6350 OSABI = makeArrayRef(C6000ElfOSABI);
6351 break;
6354 W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
6355 W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
6356 W.printBinary("Unused", makeArrayRef(E.e_ident).slice(ELF::EI_PAD));
6359 std::string TypeStr;
6360 if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
6361 TypeStr = Ent->Name.str();
6362 } else {
6363 if (E.e_type >= ET_LOPROC)
6364 TypeStr = "Processor Specific";
6365 else if (E.e_type >= ET_LOOS)
6366 TypeStr = "OS Specific";
6367 else
6368 TypeStr = "Unknown";
6370 W.printString("Type", TypeStr + " (0x" + to_hexString(E.e_type) + ")");
6372 W.printEnum("Machine", E.e_machine, makeArrayRef(ElfMachineType));
6373 W.printNumber("Version", E.e_version);
6374 W.printHex("Entry", E.e_entry);
6375 W.printHex("ProgramHeaderOffset", E.e_phoff);
6376 W.printHex("SectionHeaderOffset", E.e_shoff);
6377 if (E.e_machine == EM_MIPS)
6378 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderMipsFlags),
6379 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6380 unsigned(ELF::EF_MIPS_MACH));
6381 else if (E.e_machine == EM_AMDGPU) {
6382 switch (E.e_ident[ELF::EI_ABIVERSION]) {
6383 default:
6384 W.printHex("Flags", E.e_flags);
6385 break;
6386 case 0:
6387 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6388 LLVM_FALLTHROUGH;
6389 case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
6390 W.printFlags("Flags", E.e_flags,
6391 makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
6392 unsigned(ELF::EF_AMDGPU_MACH));
6393 break;
6394 case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
6395 W.printFlags("Flags", E.e_flags,
6396 makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
6397 unsigned(ELF::EF_AMDGPU_MACH),
6398 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
6399 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
6400 break;
6402 } else if (E.e_machine == EM_RISCV)
6403 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
6404 else if (E.e_machine == EM_AVR)
6405 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderAVRFlags),
6406 unsigned(ELF::EF_AVR_ARCH_MASK));
6407 else
6408 W.printFlags("Flags", E.e_flags);
6409 W.printNumber("HeaderSize", E.e_ehsize);
6410 W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
6411 W.printNumber("ProgramHeaderCount", E.e_phnum);
6412 W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
6413 W.printString("SectionHeaderCount",
6414 getSectionHeadersNumString(this->Obj, this->FileName));
6415 W.printString("StringTableSectionIndex",
6416 getSectionHeaderTableIndexString(this->Obj, this->FileName));
6420 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
6421 DictScope Lists(W, "Groups");
6422 std::vector<GroupSection> V = this->getGroups();
6423 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6424 for (const GroupSection &G : V) {
6425 DictScope D(W, "Group");
6426 W.printNumber("Name", G.Name, G.ShName);
6427 W.printNumber("Index", G.Index);
6428 W.printNumber("Link", G.Link);
6429 W.printNumber("Info", G.Info);
6430 W.printHex("Type", getGroupType(G.Type), G.Type);
6431 W.startLine() << "Signature: " << G.Signature << "\n";
6433 ListScope L(W, "Section(s) in group");
6434 for (const GroupMember &GM : G.Members) {
6435 const GroupSection *MainGroup = Map[GM.Index];
6436 if (MainGroup != &G)
6437 this->reportUniqueWarning(
6438 "section with index " + Twine(GM.Index) +
6439 ", included in the group section with index " +
6440 Twine(MainGroup->Index) +
6441 ", was also found in the group section with index " +
6442 Twine(G.Index));
6443 W.startLine() << GM.Name << " (" << GM.Index << ")\n";
6447 if (V.empty())
6448 W.startLine() << "There are no group sections in the file.\n";
6451 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
6452 ListScope D(W, "Relocations");
6454 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6455 if (!isRelocationSec<ELFT>(Sec))
6456 continue;
6458 StringRef Name = this->getPrintableSectionName(Sec);
6459 unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
6460 W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n";
6461 W.indent();
6462 this->printRelocationsHelper(Sec);
6463 W.unindent();
6464 W.startLine() << "}\n";
6468 template <class ELFT>
6469 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
6470 W.startLine() << W.hex(R) << "\n";
6473 template <class ELFT>
6474 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
6475 const RelSymbol<ELFT> &RelSym) {
6476 StringRef SymbolName = RelSym.Name;
6477 SmallString<32> RelocName;
6478 this->Obj.getRelocationTypeName(R.Type, RelocName);
6480 if (opts::ExpandRelocs) {
6481 DictScope Group(W, "Relocation");
6482 W.printHex("Offset", R.Offset);
6483 W.printNumber("Type", RelocName, R.Type);
6484 W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
6485 if (R.Addend)
6486 W.printHex("Addend", (uintX_t)*R.Addend);
6487 } else {
6488 raw_ostream &OS = W.startLine();
6489 OS << W.hex(R.Offset) << " " << RelocName << " "
6490 << (!SymbolName.empty() ? SymbolName : "-");
6491 if (R.Addend)
6492 OS << " " << W.hex((uintX_t)*R.Addend);
6493 OS << "\n";
6497 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
6498 ListScope SectionsD(W, "Sections");
6500 int SectionIndex = -1;
6501 std::vector<EnumEntry<unsigned>> FlagsList =
6502 getSectionFlagsForTarget(this->Obj.getHeader().e_machine);
6503 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6504 DictScope SectionD(W, "Section");
6505 W.printNumber("Index", ++SectionIndex);
6506 W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
6507 W.printHex("Type",
6508 object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
6509 Sec.sh_type),
6510 Sec.sh_type);
6511 W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList));
6512 W.printHex("Address", Sec.sh_addr);
6513 W.printHex("Offset", Sec.sh_offset);
6514 W.printNumber("Size", Sec.sh_size);
6515 W.printNumber("Link", Sec.sh_link);
6516 W.printNumber("Info", Sec.sh_info);
6517 W.printNumber("AddressAlignment", Sec.sh_addralign);
6518 W.printNumber("EntrySize", Sec.sh_entsize);
6520 if (opts::SectionRelocations) {
6521 ListScope D(W, "Relocations");
6522 this->printRelocationsHelper(Sec);
6525 if (opts::SectionSymbols) {
6526 ListScope D(W, "Symbols");
6527 if (this->DotSymtabSec) {
6528 StringRef StrTable = unwrapOrError(
6529 this->FileName,
6530 this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
6531 ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
6533 typename ELFT::SymRange Symbols = unwrapOrError(
6534 this->FileName, this->Obj.symbols(this->DotSymtabSec));
6535 for (const Elf_Sym &Sym : Symbols) {
6536 const Elf_Shdr *SymSec = unwrapOrError(
6537 this->FileName,
6538 this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
6539 if (SymSec == &Sec)
6540 printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
6541 false);
6546 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
6547 ArrayRef<uint8_t> Data =
6548 unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
6549 W.printBinaryBlock(
6550 "SectionData",
6551 StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
6556 template <class ELFT>
6557 void LLVMELFDumper<ELFT>::printSymbolSection(
6558 const Elf_Sym &Symbol, unsigned SymIndex,
6559 DataRegion<Elf_Word> ShndxTable) const {
6560 auto GetSectionSpecialType = [&]() -> Optional<StringRef> {
6561 if (Symbol.isUndefined())
6562 return StringRef("Undefined");
6563 if (Symbol.isProcessorSpecific())
6564 return StringRef("Processor Specific");
6565 if (Symbol.isOSSpecific())
6566 return StringRef("Operating System Specific");
6567 if (Symbol.isAbsolute())
6568 return StringRef("Absolute");
6569 if (Symbol.isCommon())
6570 return StringRef("Common");
6571 if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
6572 return StringRef("Reserved");
6573 return None;
6576 if (Optional<StringRef> Type = GetSectionSpecialType()) {
6577 W.printHex("Section", *Type, Symbol.st_shndx);
6578 return;
6581 Expected<unsigned> SectionIndex =
6582 this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
6583 if (!SectionIndex) {
6584 assert(Symbol.st_shndx == SHN_XINDEX &&
6585 "getSymbolSectionIndex should only fail due to an invalid "
6586 "SHT_SYMTAB_SHNDX table/reference");
6587 this->reportUniqueWarning(SectionIndex.takeError());
6588 W.printHex("Section", "Reserved", SHN_XINDEX);
6589 return;
6592 Expected<StringRef> SectionName =
6593 this->getSymbolSectionName(Symbol, *SectionIndex);
6594 if (!SectionName) {
6595 // Don't report an invalid section name if the section headers are missing.
6596 // In such situations, all sections will be "invalid".
6597 if (!this->ObjF.sections().empty())
6598 this->reportUniqueWarning(SectionName.takeError());
6599 else
6600 consumeError(SectionName.takeError());
6601 W.printHex("Section", "<?>", *SectionIndex);
6602 } else {
6603 W.printHex("Section", *SectionName, *SectionIndex);
6607 template <class ELFT>
6608 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
6609 DataRegion<Elf_Word> ShndxTable,
6610 Optional<StringRef> StrTable,
6611 bool IsDynamic,
6612 bool /*NonVisibilityBitsUsed*/) const {
6613 std::string FullSymbolName = this->getFullSymbolName(
6614 Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
6615 unsigned char SymbolType = Symbol.getType();
6617 DictScope D(W, "Symbol");
6618 W.printNumber("Name", FullSymbolName, Symbol.st_name);
6619 W.printHex("Value", Symbol.st_value);
6620 W.printNumber("Size", Symbol.st_size);
6621 W.printEnum("Binding", Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
6622 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
6623 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
6624 W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
6625 else
6626 W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
6627 if (Symbol.st_other == 0)
6628 // Usually st_other flag is zero. Do not pollute the output
6629 // by flags enumeration in that case.
6630 W.printNumber("Other", 0);
6631 else {
6632 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
6633 std::end(ElfSymOtherFlags));
6634 if (this->Obj.getHeader().e_machine == EM_MIPS) {
6635 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
6636 // flag overlapped with other ST_MIPS_xxx flags. So consider both
6637 // cases separately.
6638 if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
6639 SymOtherFlags.insert(SymOtherFlags.end(),
6640 std::begin(ElfMips16SymOtherFlags),
6641 std::end(ElfMips16SymOtherFlags));
6642 else
6643 SymOtherFlags.insert(SymOtherFlags.end(),
6644 std::begin(ElfMipsSymOtherFlags),
6645 std::end(ElfMipsSymOtherFlags));
6646 } else if (this->Obj.getHeader().e_machine == EM_AARCH64) {
6647 SymOtherFlags.insert(SymOtherFlags.end(),
6648 std::begin(ElfAArch64SymOtherFlags),
6649 std::end(ElfAArch64SymOtherFlags));
6650 } else if (this->Obj.getHeader().e_machine == EM_RISCV) {
6651 SymOtherFlags.insert(SymOtherFlags.end(),
6652 std::begin(ElfRISCVSymOtherFlags),
6653 std::end(ElfRISCVSymOtherFlags));
6655 W.printFlags("Other", Symbol.st_other, makeArrayRef(SymOtherFlags), 0x3u);
6657 printSymbolSection(Symbol, SymIndex, ShndxTable);
6660 template <class ELFT>
6661 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
6662 bool PrintDynamicSymbols) {
6663 if (PrintSymbols) {
6664 ListScope Group(W, "Symbols");
6665 this->printSymbolsHelper(false);
6667 if (PrintDynamicSymbols) {
6668 ListScope Group(W, "DynamicSymbols");
6669 this->printSymbolsHelper(true);
6673 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
6674 Elf_Dyn_Range Table = this->dynamic_table();
6675 if (Table.empty())
6676 return;
6678 W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
6680 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
6681 // The "Name/Value" column should be indented from the "Type" column by N
6682 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
6683 // space (1) = -3.
6684 W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
6685 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
6687 std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
6688 for (auto Entry : Table) {
6689 uintX_t Tag = Entry.getTag();
6690 std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
6691 W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
6692 << " "
6693 << format(ValueFmt.c_str(),
6694 this->Obj.getDynamicTagAsString(Tag).c_str())
6695 << Value << "\n";
6697 W.startLine() << "]\n";
6700 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
6701 W.startLine() << "Dynamic Relocations {\n";
6702 W.indent();
6703 this->printDynamicRelocationsHelper();
6704 W.unindent();
6705 W.startLine() << "}\n";
6708 template <class ELFT>
6709 void LLVMELFDumper<ELFT>::printProgramHeaders(
6710 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
6711 if (PrintProgramHeaders)
6712 printProgramHeaders();
6713 if (PrintSectionMapping == cl::BOU_TRUE)
6714 printSectionMapping();
6717 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
6718 ListScope L(W, "ProgramHeaders");
6720 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
6721 if (!PhdrsOrErr) {
6722 this->reportUniqueWarning("unable to dump program headers: " +
6723 toString(PhdrsOrErr.takeError()));
6724 return;
6727 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
6728 DictScope P(W, "ProgramHeader");
6729 StringRef Type =
6730 segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
6732 W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
6733 W.printHex("Offset", Phdr.p_offset);
6734 W.printHex("VirtualAddress", Phdr.p_vaddr);
6735 W.printHex("PhysicalAddress", Phdr.p_paddr);
6736 W.printNumber("FileSize", Phdr.p_filesz);
6737 W.printNumber("MemSize", Phdr.p_memsz);
6738 W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
6739 W.printNumber("Alignment", Phdr.p_align);
6743 template <class ELFT>
6744 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
6745 ListScope SS(W, "VersionSymbols");
6746 if (!Sec)
6747 return;
6749 StringRef StrTable;
6750 ArrayRef<Elf_Sym> Syms;
6751 const Elf_Shdr *SymTabSec;
6752 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
6753 this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
6754 if (!VerTableOrErr) {
6755 this->reportUniqueWarning(VerTableOrErr.takeError());
6756 return;
6759 if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
6760 return;
6762 ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
6763 for (size_t I = 0, E = Syms.size(); I < E; ++I) {
6764 DictScope S(W, "Symbol");
6765 W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
6766 W.printString("Name",
6767 this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
6768 /*IsDynamic=*/true));
6772 const EnumEntry<unsigned> SymVersionFlags[] = {
6773 {"Base", "BASE", VER_FLG_BASE},
6774 {"Weak", "WEAK", VER_FLG_WEAK},
6775 {"Info", "INFO", VER_FLG_INFO}};
6777 template <class ELFT>
6778 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
6779 ListScope SD(W, "VersionDefinitions");
6780 if (!Sec)
6781 return;
6783 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
6784 if (!V) {
6785 this->reportUniqueWarning(V.takeError());
6786 return;
6789 for (const VerDef &D : *V) {
6790 DictScope Def(W, "Definition");
6791 W.printNumber("Version", D.Version);
6792 W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags));
6793 W.printNumber("Index", D.Ndx);
6794 W.printNumber("Hash", D.Hash);
6795 W.printString("Name", D.Name.c_str());
6796 W.printList(
6797 "Predecessors", D.AuxV,
6798 [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
6802 template <class ELFT>
6803 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
6804 ListScope SD(W, "VersionRequirements");
6805 if (!Sec)
6806 return;
6808 Expected<std::vector<VerNeed>> V =
6809 this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
6810 if (!V) {
6811 this->reportUniqueWarning(V.takeError());
6812 return;
6815 for (const VerNeed &VN : *V) {
6816 DictScope Entry(W, "Dependency");
6817 W.printNumber("Version", VN.Version);
6818 W.printNumber("Count", VN.Cnt);
6819 W.printString("FileName", VN.File.c_str());
6821 ListScope L(W, "Entries");
6822 for (const VernAux &Aux : VN.AuxV) {
6823 DictScope Entry(W, "Entry");
6824 W.printNumber("Hash", Aux.Hash);
6825 W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags));
6826 W.printNumber("Index", Aux.Other);
6827 W.printString("Name", Aux.Name.c_str());
6832 template <class ELFT> void LLVMELFDumper<ELFT>::printHashHistograms() {
6833 W.startLine() << "Hash Histogram not implemented!\n";
6836 // Returns true if rel/rela section exists, and populates SymbolIndices.
6837 // Otherwise returns false.
6838 template <class ELFT>
6839 static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection,
6840 const ELFFile<ELFT> &Obj,
6841 const LLVMELFDumper<ELFT> *Dumper,
6842 SmallVector<uint32_t, 128> &SymbolIndices) {
6843 if (!CGRelSection) {
6844 Dumper->reportUniqueWarning(
6845 "relocation section for a call graph section doesn't exist");
6846 return false;
6849 if (CGRelSection->sh_type == SHT_REL) {
6850 typename ELFT::RelRange CGProfileRel;
6851 Expected<typename ELFT::RelRange> CGProfileRelOrError =
6852 Obj.rels(*CGRelSection);
6853 if (!CGProfileRelOrError) {
6854 Dumper->reportUniqueWarning("unable to load relocations for "
6855 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6856 toString(CGProfileRelOrError.takeError()));
6857 return false;
6860 CGProfileRel = *CGProfileRelOrError;
6861 for (const typename ELFT::Rel &Rel : CGProfileRel)
6862 SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL()));
6863 } else {
6864 // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
6865 // the format to SHT_RELA
6866 // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
6867 typename ELFT::RelaRange CGProfileRela;
6868 Expected<typename ELFT::RelaRange> CGProfileRelaOrError =
6869 Obj.relas(*CGRelSection);
6870 if (!CGProfileRelaOrError) {
6871 Dumper->reportUniqueWarning("unable to load relocations for "
6872 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6873 toString(CGProfileRelaOrError.takeError()));
6874 return false;
6877 CGProfileRela = *CGProfileRelaOrError;
6878 for (const typename ELFT::Rela &Rela : CGProfileRela)
6879 SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL()));
6882 return true;
6885 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
6886 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap;
6888 auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
6889 return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
6891 this->getSectionAndRelocations(IsMatch, SecToRelocMap);
6893 for (const auto &CGMapEntry : SecToRelocMap) {
6894 const Elf_Shdr *CGSection = CGMapEntry.first;
6895 const Elf_Shdr *CGRelSection = CGMapEntry.second;
6897 Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
6898 this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection);
6899 if (!CGProfileOrErr) {
6900 this->reportUniqueWarning(
6901 "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6902 toString(CGProfileOrErr.takeError()));
6903 return;
6906 SmallVector<uint32_t, 128> SymbolIndices;
6907 bool UseReloc =
6908 getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices);
6909 if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) {
6910 this->reportUniqueWarning(
6911 "number of from/to pairs does not match number of frequencies");
6912 UseReloc = false;
6915 ListScope L(W, "CGProfile");
6916 for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) {
6917 const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I];
6918 DictScope D(W, "CGProfileEntry");
6919 if (UseReloc) {
6920 uint32_t From = SymbolIndices[I * 2];
6921 uint32_t To = SymbolIndices[I * 2 + 1];
6922 W.printNumber("From", this->getStaticSymbolName(From), From);
6923 W.printNumber("To", this->getStaticSymbolName(To), To);
6925 W.printNumber("Weight", CGPE.cgp_weight);
6930 template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
6931 bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL;
6932 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6933 if (Sec.sh_type != SHT_LLVM_BB_ADDR_MAP)
6934 continue;
6935 Optional<const Elf_Shdr *> FunctionSec = None;
6936 if (IsRelocatable)
6937 FunctionSec =
6938 unwrapOrError(this->FileName, this->Obj.getSection(Sec.sh_link));
6939 ListScope L(W, "BBAddrMap");
6940 Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
6941 this->Obj.decodeBBAddrMap(Sec);
6942 if (!BBAddrMapOrErr) {
6943 this->reportUniqueWarning("unable to dump " + this->describe(Sec) + ": " +
6944 toString(BBAddrMapOrErr.takeError()));
6945 continue;
6947 for (const BBAddrMap &AM : *BBAddrMapOrErr) {
6948 DictScope D(W, "Function");
6949 W.printHex("At", AM.Addr);
6950 SmallVector<uint32_t> FuncSymIndex =
6951 this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec);
6952 std::string FuncName = "<?>";
6953 if (FuncSymIndex.empty())
6954 this->reportUniqueWarning(
6955 "could not identify function symbol for address (0x" +
6956 Twine::utohexstr(AM.Addr) + ") in " + this->describe(Sec));
6957 else
6958 FuncName = this->getStaticSymbolName(FuncSymIndex.front());
6959 W.printString("Name", FuncName);
6961 ListScope L(W, "BB entries");
6962 for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) {
6963 DictScope L(W);
6964 W.printHex("Offset", BBE.Offset);
6965 W.printHex("Size", BBE.Size);
6966 W.printBoolean("HasReturn", BBE.HasReturn);
6967 W.printBoolean("HasTailCall", BBE.HasTailCall);
6968 W.printBoolean("IsEHPad", BBE.IsEHPad);
6969 W.printBoolean("CanFallThrough", BBE.CanFallThrough);
6975 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
6976 ListScope L(W, "Addrsig");
6977 if (!this->DotAddrsigSec)
6978 return;
6980 Expected<std::vector<uint64_t>> SymsOrErr =
6981 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
6982 if (!SymsOrErr) {
6983 this->reportUniqueWarning(SymsOrErr.takeError());
6984 return;
6987 for (uint64_t Sym : *SymsOrErr)
6988 W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
6991 template <typename ELFT>
6992 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
6993 ScopedPrinter &W) {
6994 // Return true if we were able to pretty-print the note, false otherwise.
6995 switch (NoteType) {
6996 default:
6997 return false;
6998 case ELF::NT_GNU_ABI_TAG: {
6999 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
7000 if (!AbiTag.IsValid) {
7001 W.printString("ABI", "<corrupt GNU_ABI_TAG>");
7002 return false;
7003 } else {
7004 W.printString("OS", AbiTag.OSName);
7005 W.printString("ABI", AbiTag.ABI);
7007 break;
7009 case ELF::NT_GNU_BUILD_ID: {
7010 W.printString("Build ID", getGNUBuildId(Desc));
7011 break;
7013 case ELF::NT_GNU_GOLD_VERSION:
7014 W.printString("Version", getDescAsStringRef(Desc));
7015 break;
7016 case ELF::NT_GNU_PROPERTY_TYPE_0:
7017 ListScope D(W, "Property");
7018 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
7019 W.printString(Property);
7020 break;
7022 return true;
7025 template <typename ELFT>
7026 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,
7027 ArrayRef<uint8_t> Desc,
7028 ScopedPrinter &W) {
7029 switch (NoteType) {
7030 default:
7031 return false;
7032 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
7033 W.printString("Version", getDescAsStringRef(Desc));
7034 break;
7035 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
7036 W.printString("Producer", getDescAsStringRef(Desc));
7037 break;
7038 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
7039 W.printString("Producer version", getDescAsStringRef(Desc));
7040 break;
7042 return true;
7045 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
7046 W.printNumber("Page Size", Note.PageSize);
7047 for (const CoreFileMapping &Mapping : Note.Mappings) {
7048 ListScope D(W, "Mapping");
7049 W.printHex("Start", Mapping.Start);
7050 W.printHex("End", Mapping.End);
7051 W.printHex("Offset", Mapping.Offset);
7052 W.printString("Filename", Mapping.Filename);
7056 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
7057 ListScope L(W, "Notes");
7059 std::unique_ptr<DictScope> NoteScope;
7060 auto StartNotes = [&](Optional<StringRef> SecName,
7061 const typename ELFT::Off Offset,
7062 const typename ELFT::Addr Size) {
7063 NoteScope = std::make_unique<DictScope>(W, "NoteSection");
7064 W.printString("Name", SecName ? *SecName : "<?>");
7065 W.printHex("Offset", Offset);
7066 W.printHex("Size", Size);
7069 auto EndNotes = [&] { NoteScope.reset(); };
7071 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
7072 DictScope D2(W, "Note");
7073 StringRef Name = Note.getName();
7074 ArrayRef<uint8_t> Descriptor = Note.getDesc();
7075 Elf_Word Type = Note.getType();
7077 // Print the note owner/type.
7078 W.printString("Owner", Name);
7079 W.printHex("Data size", Descriptor.size());
7081 StringRef NoteType =
7082 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
7083 if (!NoteType.empty())
7084 W.printString("Type", NoteType);
7085 else
7086 W.printString("Type",
7087 "Unknown (" + to_string(format_hex(Type, 10)) + ")");
7089 // Print the description, or fallback to printing raw bytes for unknown
7090 // owners/if we fail to pretty-print the contents.
7091 if (Name == "GNU") {
7092 if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7093 return Error::success();
7094 } else if (Name == "FreeBSD") {
7095 if (Optional<FreeBSDNote> N =
7096 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
7097 W.printString(N->Type, N->Value);
7098 return Error::success();
7100 } else if (Name == "AMD") {
7101 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
7102 if (!N.Type.empty()) {
7103 W.printString(N.Type, N.Value);
7104 return Error::success();
7106 } else if (Name == "AMDGPU") {
7107 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
7108 if (!N.Type.empty()) {
7109 W.printString(N.Type, N.Value);
7110 return Error::success();
7112 } else if (Name == "LLVMOMPOFFLOAD") {
7113 if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7114 return Error::success();
7115 } else if (Name == "CORE") {
7116 if (Type == ELF::NT_FILE) {
7117 DataExtractor DescExtractor(Descriptor,
7118 ELFT::TargetEndianness == support::little,
7119 sizeof(Elf_Addr));
7120 if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
7121 printCoreNoteLLVMStyle(*N, W);
7122 return Error::success();
7123 } else {
7124 return N.takeError();
7128 if (!Descriptor.empty()) {
7129 W.printBinaryBlock("Description data", Descriptor);
7131 return Error::success();
7134 printNotesHelper(*this, StartNotes, ProcessNote, EndNotes);
7137 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
7138 ListScope L(W, "LinkerOptions");
7140 unsigned I = -1;
7141 for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
7142 ++I;
7143 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
7144 continue;
7146 Expected<ArrayRef<uint8_t>> ContentsOrErr =
7147 this->Obj.getSectionContents(Shdr);
7148 if (!ContentsOrErr) {
7149 this->reportUniqueWarning("unable to read the content of the "
7150 "SHT_LLVM_LINKER_OPTIONS section: " +
7151 toString(ContentsOrErr.takeError()));
7152 continue;
7154 if (ContentsOrErr->empty())
7155 continue;
7157 if (ContentsOrErr->back() != 0) {
7158 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
7159 Twine(I) +
7160 " is broken: the "
7161 "content is not null-terminated");
7162 continue;
7165 SmallVector<StringRef, 16> Strings;
7166 toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
7167 if (Strings.size() % 2 != 0) {
7168 this->reportUniqueWarning(
7169 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
7170 " is broken: an incomplete "
7171 "key-value pair was found. The last possible key was: \"" +
7172 Strings.back() + "\"");
7173 continue;
7176 for (size_t I = 0; I < Strings.size(); I += 2)
7177 W.printString(Strings[I], Strings[I + 1]);
7181 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
7182 ListScope L(W, "DependentLibs");
7183 this->printDependentLibsHelper(
7184 [](const Elf_Shdr &) {},
7185 [this](StringRef Lib, uint64_t) { W.printString(Lib); });
7188 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
7189 ListScope L(W, "StackSizes");
7190 if (this->Obj.getHeader().e_type == ELF::ET_REL)
7191 this->printRelocatableStackSizes([]() {});
7192 else
7193 this->printNonRelocatableStackSizes([]() {});
7196 template <class ELFT>
7197 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
7198 ArrayRef<std::string> FuncNames) {
7199 DictScope D(W, "Entry");
7200 W.printList("Functions", FuncNames);
7201 W.printHex("Size", Size);
7204 template <class ELFT>
7205 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
7206 auto PrintEntry = [&](const Elf_Addr *E) {
7207 W.printHex("Address", Parser.getGotAddress(E));
7208 W.printNumber("Access", Parser.getGotOffset(E));
7209 W.printHex("Initial", *E);
7212 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
7214 W.printHex("Canonical gp value", Parser.getGp());
7216 ListScope RS(W, "Reserved entries");
7218 DictScope D(W, "Entry");
7219 PrintEntry(Parser.getGotLazyResolver());
7220 W.printString("Purpose", StringRef("Lazy resolver"));
7223 if (Parser.getGotModulePointer()) {
7224 DictScope D(W, "Entry");
7225 PrintEntry(Parser.getGotModulePointer());
7226 W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7230 ListScope LS(W, "Local entries");
7231 for (auto &E : Parser.getLocalEntries()) {
7232 DictScope D(W, "Entry");
7233 PrintEntry(&E);
7237 if (Parser.IsStatic)
7238 return;
7241 ListScope GS(W, "Global entries");
7242 for (auto &E : Parser.getGlobalEntries()) {
7243 DictScope D(W, "Entry");
7245 PrintEntry(&E);
7247 const Elf_Sym &Sym = *Parser.getGotSym(&E);
7248 W.printHex("Value", Sym.st_value);
7249 W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
7251 const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
7252 DataRegion<Elf_Word> ShndxTable(
7253 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7254 printSymbolSection(Sym, SymIndex, ShndxTable);
7256 std::string SymName = this->getFullSymbolName(
7257 Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
7258 W.printNumber("Name", SymName, Sym.st_name);
7262 W.printNumber("Number of TLS and multi-GOT entries",
7263 uint64_t(Parser.getOtherEntries().size()));
7266 template <class ELFT>
7267 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
7268 auto PrintEntry = [&](const Elf_Addr *E) {
7269 W.printHex("Address", Parser.getPltAddress(E));
7270 W.printHex("Initial", *E);
7273 DictScope GS(W, "PLT GOT");
7276 ListScope RS(W, "Reserved entries");
7278 DictScope D(W, "Entry");
7279 PrintEntry(Parser.getPltLazyResolver());
7280 W.printString("Purpose", StringRef("PLT lazy resolver"));
7283 if (auto E = Parser.getPltModulePointer()) {
7284 DictScope D(W, "Entry");
7285 PrintEntry(E);
7286 W.printString("Purpose", StringRef("Module pointer"));
7290 ListScope LS(W, "Entries");
7291 DataRegion<Elf_Word> ShndxTable(
7292 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7293 for (auto &E : Parser.getPltEntries()) {
7294 DictScope D(W, "Entry");
7295 PrintEntry(&E);
7297 const Elf_Sym &Sym = *Parser.getPltSym(&E);
7298 W.printHex("Value", Sym.st_value);
7299 W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
7300 printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
7301 ShndxTable);
7303 const Elf_Sym *FirstSym = cantFail(
7304 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
7305 std::string SymName = this->getFullSymbolName(
7306 Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
7307 W.printNumber("Name", SymName, Sym.st_name);
7312 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
7313 const Elf_Mips_ABIFlags<ELFT> *Flags;
7314 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
7315 getMipsAbiFlagsSection(*this)) {
7316 Flags = *SecOrErr;
7317 if (!Flags) {
7318 W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7319 return;
7321 } else {
7322 this->reportUniqueWarning(SecOrErr.takeError());
7323 return;
7326 raw_ostream &OS = W.getOStream();
7327 DictScope GS(W, "MIPS ABI Flags");
7329 W.printNumber("Version", Flags->version);
7330 W.startLine() << "ISA: ";
7331 if (Flags->isa_rev <= 1)
7332 OS << format("MIPS%u", Flags->isa_level);
7333 else
7334 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
7335 OS << "\n";
7336 W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
7337 W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
7338 W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
7339 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
7340 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
7341 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
7342 W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
7343 W.printHex("Flags 2", Flags->flags2);
7346 template <class ELFT>
7347 void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
7348 ArrayRef<std::string> InputFilenames,
7349 const Archive *A) {
7350 FileScope = std::make_unique<DictScope>(this->W, FileStr);
7351 DictScope D(this->W, "FileSummary");
7352 this->W.printString("File", FileStr);
7353 this->W.printString("Format", Obj.getFileFormatName());
7354 this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch()));
7355 this->W.printString(
7356 "AddressSize",
7357 std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress())));
7358 this->printLoadName();