1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements the ELF-specific dumper for llvm-readobj.
12 //===----------------------------------------------------------------------===//
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/PointerIntPair.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
33 #include "llvm/BinaryFormat/ELF.h"
34 #include "llvm/Demangle/Demangle.h"
35 #include "llvm/Object/Archive.h"
36 #include "llvm/Object/ELF.h"
37 #include "llvm/Object/ELFObjectFile.h"
38 #include "llvm/Object/ELFTypes.h"
39 #include "llvm/Object/Error.h"
40 #include "llvm/Object/ObjectFile.h"
41 #include "llvm/Object/RelocationResolver.h"
42 #include "llvm/Object/StackMapParser.h"
43 #include "llvm/Support/AMDGPUMetadata.h"
44 #include "llvm/Support/ARMAttributeParser.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Endian.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/Format.h"
51 #include "llvm/Support/FormatVariadic.h"
52 #include "llvm/Support/FormattedStream.h"
53 #include "llvm/Support/LEB128.h"
54 #include "llvm/Support/MSP430AttributeParser.h"
55 #include "llvm/Support/MSP430Attributes.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/MipsABIFlags.h"
58 #include "llvm/Support/RISCVAttributeParser.h"
59 #include "llvm/Support/RISCVAttributes.h"
60 #include "llvm/Support/ScopedPrinter.h"
61 #include "llvm/Support/raw_ostream.h"
70 #include <system_error>
74 using namespace llvm::object
;
77 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
81 #define ENUM_ENT(enum, altName) \
82 { #enum, altName, ELF::enum }
84 #define ENUM_ENT_1(enum) \
85 { #enum, #enum, ELF::enum }
89 template <class ELFT
> struct RelSymbol
{
90 RelSymbol(const typename
ELFT::Sym
*S
, StringRef N
)
91 : Sym(S
), Name(N
.str()) {}
92 const typename
ELFT::Sym
*Sym
;
96 /// Represents a contiguous uniform range in the file. We cannot just create a
97 /// range directly because when creating one of these from the .dynamic table
98 /// the size, entity size and virtual address are different entries in arbitrary
99 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
100 struct DynRegionInfo
{
101 DynRegionInfo(const Binary
&Owner
, const ObjDumper
&D
)
102 : Obj(&Owner
), Dumper(&D
) {}
103 DynRegionInfo(const Binary
&Owner
, const ObjDumper
&D
, const uint8_t *A
,
104 uint64_t S
, uint64_t ES
)
105 : Addr(A
), Size(S
), EntSize(ES
), Obj(&Owner
), Dumper(&D
) {}
107 /// Address in current address space.
108 const uint8_t *Addr
= nullptr;
109 /// Size in bytes of the region.
111 /// Size of each entity in the region.
112 uint64_t EntSize
= 0;
114 /// Owner object. Used for error reporting.
116 /// Dumper used for error reporting.
117 const ObjDumper
*Dumper
;
118 /// Error prefix. Used for error reporting to provide more information.
120 /// Region size name. Used for error reporting.
121 StringRef SizePrintName
= "size";
122 /// Entry size name. Used for error reporting. If this field is empty, errors
123 /// will not mention the entry size.
124 StringRef EntSizePrintName
= "entry size";
126 template <typename Type
> ArrayRef
<Type
> getAsArrayRef() const {
127 const Type
*Start
= reinterpret_cast<const Type
*>(Addr
);
129 return {Start
, Start
};
131 const uint64_t Offset
=
132 Addr
- (const uint8_t *)Obj
->getMemoryBufferRef().getBufferStart();
133 const uint64_t ObjSize
= Obj
->getMemoryBufferRef().getBufferSize();
135 if (Size
> ObjSize
- Offset
) {
136 Dumper
->reportUniqueWarning(
137 "unable to read data at 0x" + Twine::utohexstr(Offset
) +
138 " of size 0x" + Twine::utohexstr(Size
) + " (" + SizePrintName
+
139 "): it goes past the end of the file of size 0x" +
140 Twine::utohexstr(ObjSize
));
141 return {Start
, Start
};
144 if (EntSize
== sizeof(Type
) && (Size
% EntSize
== 0))
145 return {Start
, Start
+ (Size
/ EntSize
)};
148 if (!Context
.empty())
149 Msg
+= Context
+ " has ";
151 Msg
+= ("invalid " + SizePrintName
+ " (0x" + Twine::utohexstr(Size
) + ")")
153 if (!EntSizePrintName
.empty())
155 (" or " + EntSizePrintName
+ " (0x" + Twine::utohexstr(EntSize
) + ")")
158 Dumper
->reportUniqueWarning(Msg
);
159 return {Start
, Start
};
168 struct GroupSection
{
170 std::string Signature
;
176 std::vector
<GroupMember
> Members
;
188 template <class ELFT
> class Relocation
{
190 Relocation(const typename
ELFT::Rel
&R
, bool IsMips64EL
)
191 : Type(R
.getType(IsMips64EL
)), Symbol(R
.getSymbol(IsMips64EL
)),
192 Offset(R
.r_offset
), Info(R
.r_info
) {}
194 Relocation(const typename
ELFT::Rela
&R
, bool IsMips64EL
)
195 : Relocation((const typename
ELFT::Rel
&)R
, IsMips64EL
) {
201 typename
ELFT::uint Offset
;
202 typename
ELFT::uint Info
;
203 Optional
<int64_t> Addend
;
206 template <class ELFT
> class MipsGOTParser
;
208 template <typename ELFT
> class ELFDumper
: public ObjDumper
{
209 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
212 ELFDumper(const object::ELFObjectFile
<ELFT
> &ObjF
, ScopedPrinter
&Writer
);
214 void printUnwindInfo() override
;
215 void printNeededLibraries() override
;
216 void printHashTable() override
;
217 void printGnuHashTable() override
;
218 void printLoadName() override
;
219 void printVersionInfo() override
;
220 void printArchSpecificInfo() override
;
221 void printStackMap() const override
;
223 const object::ELFObjectFile
<ELFT
> &getElfObject() const { return ObjF
; };
225 std::string
describe(const Elf_Shdr
&Sec
) const;
227 unsigned getHashTableEntSize() const {
228 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
229 // sections. This violates the ELF specification.
230 if (Obj
.getHeader().e_machine
== ELF::EM_S390
||
231 Obj
.getHeader().e_machine
== ELF::EM_ALPHA
)
236 Elf_Dyn_Range
dynamic_table() const {
237 // A valid .dynamic section contains an array of entries terminated
238 // with a DT_NULL entry. However, sometimes the section content may
239 // continue past the DT_NULL entry, so to dump the section correctly,
240 // we first find the end of the entries by iterating over them.
241 Elf_Dyn_Range Table
= DynamicTable
.template getAsArrayRef
<Elf_Dyn
>();
244 while (Size
< Table
.size())
245 if (Table
[Size
++].getTag() == DT_NULL
)
248 return Table
.slice(0, Size
);
251 Elf_Sym_Range
dynamic_symbols() const {
253 return Elf_Sym_Range();
254 return DynSymRegion
->template getAsArrayRef
<Elf_Sym
>();
257 const Elf_Shdr
*findSectionByName(StringRef Name
) const;
259 StringRef
getDynamicStringTable() const { return DynamicStringTable
; }
262 virtual void printVersionSymbolSection(const Elf_Shdr
*Sec
) = 0;
263 virtual void printVersionDefinitionSection(const Elf_Shdr
*Sec
) = 0;
264 virtual void printVersionDependencySection(const Elf_Shdr
*Sec
) = 0;
267 printDependentLibsHelper(function_ref
<void(const Elf_Shdr
&)> OnSectionStart
,
268 function_ref
<void(StringRef
, uint64_t)> OnLibEntry
);
270 virtual void printRelRelaReloc(const Relocation
<ELFT
> &R
,
271 const RelSymbol
<ELFT
> &RelSym
) = 0;
272 virtual void printRelrReloc(const Elf_Relr
&R
) = 0;
273 virtual void printDynamicRelocHeader(unsigned Type
, StringRef Name
,
274 const DynRegionInfo
&Reg
) {}
275 void printReloc(const Relocation
<ELFT
> &R
, unsigned RelIndex
,
276 const Elf_Shdr
&Sec
, const Elf_Shdr
*SymTab
);
277 void printDynamicReloc(const Relocation
<ELFT
> &R
);
278 void printDynamicRelocationsHelper();
279 void printRelocationsHelper(const Elf_Shdr
&Sec
);
280 void forEachRelocationDo(
281 const Elf_Shdr
&Sec
, bool RawRelr
,
282 llvm::function_ref
<void(const Relocation
<ELFT
> &, unsigned,
283 const Elf_Shdr
&, const Elf_Shdr
*)>
285 llvm::function_ref
<void(const Elf_Relr
&)> RelrFn
);
287 virtual void printSymtabMessage(const Elf_Shdr
*Symtab
, size_t Offset
,
288 bool NonVisibilityBitsUsed
) const {};
289 virtual void printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
290 DataRegion
<Elf_Word
> ShndxTable
,
291 Optional
<StringRef
> StrTable
, bool IsDynamic
,
292 bool NonVisibilityBitsUsed
) const = 0;
294 virtual void printMipsABIFlags() = 0;
295 virtual void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) = 0;
296 virtual void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) = 0;
298 Expected
<ArrayRef
<Elf_Versym
>>
299 getVersionTable(const Elf_Shdr
&Sec
, ArrayRef
<Elf_Sym
> *SymTab
,
300 StringRef
*StrTab
, const Elf_Shdr
**SymTabSec
) const;
301 StringRef
getPrintableSectionName(const Elf_Shdr
&Sec
) const;
303 std::vector
<GroupSection
> getGroups();
305 // Returns the function symbol index for the given address. Matches the
306 // symbol's section with FunctionSec when specified.
307 // Returns None if no function symbol can be found for the address or in case
308 // it is not defined in the specified section.
309 SmallVector
<uint32_t>
310 getSymbolIndexesForFunctionAddress(uint64_t SymValue
,
311 Optional
<const Elf_Shdr
*> FunctionSec
);
312 bool printFunctionStackSize(uint64_t SymValue
,
313 Optional
<const Elf_Shdr
*> FunctionSec
,
314 const Elf_Shdr
&StackSizeSec
, DataExtractor Data
,
316 void printStackSize(const Relocation
<ELFT
> &R
, const Elf_Shdr
&RelocSec
,
317 unsigned Ndx
, const Elf_Shdr
*SymTab
,
318 const Elf_Shdr
*FunctionSec
, const Elf_Shdr
&StackSizeSec
,
319 const RelocationResolver
&Resolver
, DataExtractor Data
);
320 virtual void printStackSizeEntry(uint64_t Size
,
321 ArrayRef
<std::string
> FuncNames
) = 0;
323 void printRelocatableStackSizes(std::function
<void()> PrintHeader
);
324 void printNonRelocatableStackSizes(std::function
<void()> PrintHeader
);
326 /// Retrieves sections with corresponding relocation sections based on
328 void getSectionAndRelocations(
329 std::function
<bool(const Elf_Shdr
&)> IsMatch
,
330 llvm::MapVector
<const Elf_Shdr
*, const Elf_Shdr
*> &SecToRelocMap
);
332 const object::ELFObjectFile
<ELFT
> &ObjF
;
333 const ELFFile
<ELFT
> &Obj
;
336 Expected
<DynRegionInfo
> createDRI(uint64_t Offset
, uint64_t Size
,
338 if (Offset
+ Size
< Offset
|| Offset
+ Size
> Obj
.getBufSize())
339 return createError("offset (0x" + Twine::utohexstr(Offset
) +
340 ") + size (0x" + Twine::utohexstr(Size
) +
341 ") is greater than the file size (0x" +
342 Twine::utohexstr(Obj
.getBufSize()) + ")");
343 return DynRegionInfo(ObjF
, *this, Obj
.base() + Offset
, Size
, EntSize
);
346 void printAttributes(unsigned, std::unique_ptr
<ELFAttributeParser
>,
347 support::endianness
);
348 void printMipsReginfo();
349 void printMipsOptions();
351 std::pair
<const Elf_Phdr
*, const Elf_Shdr
*> findDynamic();
352 void loadDynamicTable();
353 void parseDynamicTable();
355 Expected
<StringRef
> getSymbolVersion(const Elf_Sym
&Sym
,
356 bool &IsDefault
) const;
357 Expected
<SmallVector
<Optional
<VersionEntry
>, 0> *> getVersionMap() const;
359 DynRegionInfo DynRelRegion
;
360 DynRegionInfo DynRelaRegion
;
361 DynRegionInfo DynRelrRegion
;
362 DynRegionInfo DynPLTRelRegion
;
363 Optional
<DynRegionInfo
> DynSymRegion
;
364 DynRegionInfo DynSymTabShndxRegion
;
365 DynRegionInfo DynamicTable
;
366 StringRef DynamicStringTable
;
367 const Elf_Hash
*HashTable
= nullptr;
368 const Elf_GnuHash
*GnuHashTable
= nullptr;
369 const Elf_Shdr
*DotSymtabSec
= nullptr;
370 const Elf_Shdr
*DotDynsymSec
= nullptr;
371 const Elf_Shdr
*DotAddrsigSec
= nullptr;
372 DenseMap
<const Elf_Shdr
*, ArrayRef
<Elf_Word
>> ShndxTables
;
373 Optional
<uint64_t> SONameOffset
;
374 Optional
<DenseMap
<uint64_t, std::vector
<uint32_t>>> AddressToIndexMap
;
376 const Elf_Shdr
*SymbolVersionSection
= nullptr; // .gnu.version
377 const Elf_Shdr
*SymbolVersionNeedSection
= nullptr; // .gnu.version_r
378 const Elf_Shdr
*SymbolVersionDefSection
= nullptr; // .gnu.version_d
380 std::string
getFullSymbolName(const Elf_Sym
&Symbol
, unsigned SymIndex
,
381 DataRegion
<Elf_Word
> ShndxTable
,
382 Optional
<StringRef
> StrTable
,
383 bool IsDynamic
) const;
385 getSymbolSectionIndex(const Elf_Sym
&Symbol
, unsigned SymIndex
,
386 DataRegion
<Elf_Word
> ShndxTable
) const;
387 Expected
<StringRef
> getSymbolSectionName(const Elf_Sym
&Symbol
,
388 unsigned SectionIndex
) const;
389 std::string
getStaticSymbolName(uint32_t Index
) const;
390 StringRef
getDynamicString(uint64_t Value
) const;
392 void printSymbolsHelper(bool IsDynamic
) const;
393 std::string
getDynamicEntry(uint64_t Type
, uint64_t Value
) const;
395 Expected
<RelSymbol
<ELFT
>> getRelocationTarget(const Relocation
<ELFT
> &R
,
396 const Elf_Shdr
*SymTab
) const;
398 ArrayRef
<Elf_Word
> getShndxTable(const Elf_Shdr
*Symtab
) const;
401 mutable SmallVector
<Optional
<VersionEntry
>, 0> VersionMap
;
404 template <class ELFT
>
405 std::string ELFDumper
<ELFT
>::describe(const Elf_Shdr
&Sec
) const {
406 return ::describe(Obj
, Sec
);
411 template <class ELFT
> struct SymtabLink
{
412 typename
ELFT::SymRange Symbols
;
413 StringRef StringTable
;
414 const typename
ELFT::Shdr
*SymTab
;
417 // Returns the linked symbol table, symbols and associated string table for a
419 template <class ELFT
>
420 Expected
<SymtabLink
<ELFT
>> getLinkAsSymtab(const ELFFile
<ELFT
> &Obj
,
421 const typename
ELFT::Shdr
&Sec
,
422 unsigned ExpectedType
) {
423 Expected
<const typename
ELFT::Shdr
*> SymtabOrErr
=
424 Obj
.getSection(Sec
.sh_link
);
426 return createError("invalid section linked to " + describe(Obj
, Sec
) +
427 ": " + toString(SymtabOrErr
.takeError()));
429 if ((*SymtabOrErr
)->sh_type
!= ExpectedType
)
431 "invalid section linked to " + describe(Obj
, Sec
) + ": expected " +
432 object::getELFSectionTypeName(Obj
.getHeader().e_machine
, ExpectedType
) +
434 object::getELFSectionTypeName(Obj
.getHeader().e_machine
,
435 (*SymtabOrErr
)->sh_type
));
437 Expected
<StringRef
> StrTabOrErr
= Obj
.getLinkAsStrtab(**SymtabOrErr
);
440 "can't get a string table for the symbol table linked to " +
441 describe(Obj
, Sec
) + ": " + toString(StrTabOrErr
.takeError()));
443 Expected
<typename
ELFT::SymRange
> SymsOrErr
= Obj
.symbols(*SymtabOrErr
);
445 return createError("unable to read symbols from the " + describe(Obj
, Sec
) +
446 ": " + toString(SymsOrErr
.takeError()));
448 return SymtabLink
<ELFT
>{*SymsOrErr
, *StrTabOrErr
, *SymtabOrErr
};
453 template <class ELFT
>
454 Expected
<ArrayRef
<typename
ELFT::Versym
>>
455 ELFDumper
<ELFT
>::getVersionTable(const Elf_Shdr
&Sec
, ArrayRef
<Elf_Sym
> *SymTab
,
457 const Elf_Shdr
**SymTabSec
) const {
458 assert((!SymTab
&& !StrTab
&& !SymTabSec
) || (SymTab
&& StrTab
&& SymTabSec
));
459 if (reinterpret_cast<uintptr_t>(Obj
.base() + Sec
.sh_offset
) %
462 return createError("the " + describe(Sec
) + " is misaligned");
464 Expected
<ArrayRef
<Elf_Versym
>> VersionsOrErr
=
465 Obj
.template getSectionContentsAsArray
<Elf_Versym
>(Sec
);
467 return createError("cannot read content of " + describe(Sec
) + ": " +
468 toString(VersionsOrErr
.takeError()));
470 Expected
<SymtabLink
<ELFT
>> SymTabOrErr
=
471 getLinkAsSymtab(Obj
, Sec
, SHT_DYNSYM
);
473 reportUniqueWarning(SymTabOrErr
.takeError());
474 return *VersionsOrErr
;
477 if (SymTabOrErr
->Symbols
.size() != VersionsOrErr
->size())
478 reportUniqueWarning(describe(Sec
) + ": the number of entries (" +
479 Twine(VersionsOrErr
->size()) +
480 ") does not match the number of symbols (" +
481 Twine(SymTabOrErr
->Symbols
.size()) +
482 ") in the symbol table with index " +
486 *SymTab
= SymTabOrErr
->Symbols
;
487 *StrTab
= SymTabOrErr
->StringTable
;
488 *SymTabSec
= SymTabOrErr
->SymTab
;
490 return *VersionsOrErr
;
493 template <class ELFT
>
494 void ELFDumper
<ELFT
>::printSymbolsHelper(bool IsDynamic
) const {
495 Optional
<StringRef
> StrTable
;
497 Elf_Sym_Range
Syms(nullptr, nullptr);
498 const Elf_Shdr
*SymtabSec
= IsDynamic
? DotDynsymSec
: DotSymtabSec
;
501 StrTable
= DynamicStringTable
;
502 Syms
= dynamic_symbols();
503 Entries
= Syms
.size();
504 } else if (DotSymtabSec
) {
505 if (Expected
<StringRef
> StrTableOrErr
=
506 Obj
.getStringTableForSymtab(*DotSymtabSec
))
507 StrTable
= *StrTableOrErr
;
510 "unable to get the string table for the SHT_SYMTAB section: " +
511 toString(StrTableOrErr
.takeError()));
513 if (Expected
<Elf_Sym_Range
> SymsOrErr
= Obj
.symbols(DotSymtabSec
))
517 "unable to read symbols from the SHT_SYMTAB section: " +
518 toString(SymsOrErr
.takeError()));
519 Entries
= DotSymtabSec
->getEntityCount();
524 // The st_other field has 2 logical parts. The first two bits hold the symbol
525 // visibility (STV_*) and the remainder hold other platform-specific values.
526 bool NonVisibilityBitsUsed
=
527 llvm::any_of(Syms
, [](const Elf_Sym
&S
) { return S
.st_other
& ~0x3; });
529 DataRegion
<Elf_Word
> ShndxTable
=
530 IsDynamic
? DataRegion
<Elf_Word
>(
531 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
,
532 this->getElfObject().getELFFile().end())
533 : DataRegion
<Elf_Word
>(this->getShndxTable(SymtabSec
));
535 printSymtabMessage(SymtabSec
, Entries
, NonVisibilityBitsUsed
);
536 for (const Elf_Sym
&Sym
: Syms
)
537 printSymbol(Sym
, &Sym
- Syms
.begin(), ShndxTable
, StrTable
, IsDynamic
,
538 NonVisibilityBitsUsed
);
541 template <typename ELFT
> class GNUELFDumper
: public ELFDumper
<ELFT
> {
542 formatted_raw_ostream
&OS
;
545 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
547 GNUELFDumper(const object::ELFObjectFile
<ELFT
> &ObjF
, ScopedPrinter
&Writer
)
548 : ELFDumper
<ELFT
>(ObjF
, Writer
),
549 OS(static_cast<formatted_raw_ostream
&>(Writer
.getOStream())) {
550 assert(&this->W
.getOStream() == &llvm::fouts());
553 void printFileSummary(StringRef FileStr
, ObjectFile
&Obj
,
554 ArrayRef
<std::string
> InputFilenames
,
555 const Archive
*A
) override
;
556 void printFileHeaders() override
;
557 void printGroupSections() override
;
558 void printRelocations() override
;
559 void printSectionHeaders() override
;
560 void printSymbols(bool PrintSymbols
, bool PrintDynamicSymbols
) override
;
561 void printHashSymbols() override
;
562 void printSectionDetails() override
;
563 void printDependentLibs() override
;
564 void printDynamicTable() override
;
565 void printDynamicRelocations() override
;
566 void printSymtabMessage(const Elf_Shdr
*Symtab
, size_t Offset
,
567 bool NonVisibilityBitsUsed
) const override
;
568 void printProgramHeaders(bool PrintProgramHeaders
,
569 cl::boolOrDefault PrintSectionMapping
) override
;
570 void printVersionSymbolSection(const Elf_Shdr
*Sec
) override
;
571 void printVersionDefinitionSection(const Elf_Shdr
*Sec
) override
;
572 void printVersionDependencySection(const Elf_Shdr
*Sec
) override
;
573 void printHashHistograms() override
;
574 void printCGProfile() override
;
575 void printBBAddrMaps() override
;
576 void printAddrsig() override
;
577 void printNotes() override
;
578 void printELFLinkerOptions() override
;
579 void printStackSizes() override
;
582 void printHashHistogram(const Elf_Hash
&HashTable
);
583 void printGnuHashHistogram(const Elf_GnuHash
&GnuHashTable
);
584 void printHashTableSymbols(const Elf_Hash
&HashTable
);
585 void printGnuHashTableSymbols(const Elf_GnuHash
&GnuHashTable
);
591 Field(StringRef S
, unsigned Col
) : Str(std::string(S
)), Column(Col
) {}
592 Field(unsigned Col
) : Column(Col
) {}
595 template <typename T
, typename TEnum
>
596 std::string
printFlags(T Value
, ArrayRef
<EnumEntry
<TEnum
>> EnumValues
,
597 TEnum EnumMask1
= {}, TEnum EnumMask2
= {},
598 TEnum EnumMask3
= {}) const {
600 for (const EnumEntry
<TEnum
> &Flag
: EnumValues
) {
605 if (Flag
.Value
& EnumMask1
)
606 EnumMask
= EnumMask1
;
607 else if (Flag
.Value
& EnumMask2
)
608 EnumMask
= EnumMask2
;
609 else if (Flag
.Value
& EnumMask3
)
610 EnumMask
= EnumMask3
;
611 bool IsEnum
= (Flag
.Value
& EnumMask
) != 0;
612 if ((!IsEnum
&& (Value
& Flag
.Value
) == Flag
.Value
) ||
613 (IsEnum
&& (Value
& EnumMask
) == Flag
.Value
)) {
622 formatted_raw_ostream
&printField(struct Field F
) const {
624 OS
.PadToColumn(F
.Column
);
629 void printHashedSymbol(const Elf_Sym
*Sym
, unsigned SymIndex
,
630 DataRegion
<Elf_Word
> ShndxTable
, StringRef StrTable
,
632 void printRelrReloc(const Elf_Relr
&R
) override
;
633 void printRelRelaReloc(const Relocation
<ELFT
> &R
,
634 const RelSymbol
<ELFT
> &RelSym
) override
;
635 void printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
636 DataRegion
<Elf_Word
> ShndxTable
,
637 Optional
<StringRef
> StrTable
, bool IsDynamic
,
638 bool NonVisibilityBitsUsed
) const override
;
639 void printDynamicRelocHeader(unsigned Type
, StringRef Name
,
640 const DynRegionInfo
&Reg
) override
;
642 std::string
getSymbolSectionNdx(const Elf_Sym
&Symbol
, unsigned SymIndex
,
643 DataRegion
<Elf_Word
> ShndxTable
) const;
644 void printProgramHeaders() override
;
645 void printSectionMapping() override
;
646 void printGNUVersionSectionProlog(const typename
ELFT::Shdr
&Sec
,
647 const Twine
&Label
, unsigned EntriesNum
);
649 void printStackSizeEntry(uint64_t Size
,
650 ArrayRef
<std::string
> FuncNames
) override
;
652 void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) override
;
653 void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) override
;
654 void printMipsABIFlags() override
;
657 template <typename ELFT
> class LLVMELFDumper
: public ELFDumper
<ELFT
> {
659 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
661 LLVMELFDumper(const object::ELFObjectFile
<ELFT
> &ObjF
, ScopedPrinter
&Writer
)
662 : ELFDumper
<ELFT
>(ObjF
, Writer
), W(Writer
) {}
664 void printFileHeaders() override
;
665 void printGroupSections() override
;
666 void printRelocations() override
;
667 void printSectionHeaders() override
;
668 void printSymbols(bool PrintSymbols
, bool PrintDynamicSymbols
) override
;
669 void printDependentLibs() override
;
670 void printDynamicTable() override
;
671 void printDynamicRelocations() override
;
672 void printProgramHeaders(bool PrintProgramHeaders
,
673 cl::boolOrDefault PrintSectionMapping
) override
;
674 void printVersionSymbolSection(const Elf_Shdr
*Sec
) override
;
675 void printVersionDefinitionSection(const Elf_Shdr
*Sec
) override
;
676 void printVersionDependencySection(const Elf_Shdr
*Sec
) override
;
677 void printHashHistograms() override
;
678 void printCGProfile() override
;
679 void printBBAddrMaps() override
;
680 void printAddrsig() override
;
681 void printNotes() override
;
682 void printELFLinkerOptions() override
;
683 void printStackSizes() override
;
686 void printRelrReloc(const Elf_Relr
&R
) override
;
687 void printRelRelaReloc(const Relocation
<ELFT
> &R
,
688 const RelSymbol
<ELFT
> &RelSym
) override
;
690 void printSymbolSection(const Elf_Sym
&Symbol
, unsigned SymIndex
,
691 DataRegion
<Elf_Word
> ShndxTable
) const;
692 void printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
693 DataRegion
<Elf_Word
> ShndxTable
,
694 Optional
<StringRef
> StrTable
, bool IsDynamic
,
695 bool /*NonVisibilityBitsUsed*/) const override
;
696 void printProgramHeaders() override
;
697 void printSectionMapping() override
{}
698 void printStackSizeEntry(uint64_t Size
,
699 ArrayRef
<std::string
> FuncNames
) override
;
701 void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) override
;
702 void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) override
;
703 void printMipsABIFlags() override
;
709 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except
710 // it uses a JSONScopedPrinter.
711 template <typename ELFT
> class JSONELFDumper
: public LLVMELFDumper
<ELFT
> {
713 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
715 JSONELFDumper(const object::ELFObjectFile
<ELFT
> &ObjF
, ScopedPrinter
&Writer
)
716 : LLVMELFDumper
<ELFT
>(ObjF
, Writer
) {}
718 void printFileSummary(StringRef FileStr
, ObjectFile
&Obj
,
719 ArrayRef
<std::string
> InputFilenames
,
720 const Archive
*A
) override
;
723 std::unique_ptr
<DictScope
> FileScope
;
726 } // end anonymous namespace
730 template <class ELFT
>
731 static std::unique_ptr
<ObjDumper
>
732 createELFDumper(const ELFObjectFile
<ELFT
> &Obj
, ScopedPrinter
&Writer
) {
733 if (opts::Output
== opts::GNU
)
734 return std::make_unique
<GNUELFDumper
<ELFT
>>(Obj
, Writer
);
735 else if (opts::Output
== opts::JSON
)
736 return std::make_unique
<JSONELFDumper
<ELFT
>>(Obj
, Writer
);
737 return std::make_unique
<LLVMELFDumper
<ELFT
>>(Obj
, Writer
);
740 std::unique_ptr
<ObjDumper
> createELFDumper(const object::ELFObjectFileBase
&Obj
,
741 ScopedPrinter
&Writer
) {
742 // Little-endian 32-bit
743 if (const ELF32LEObjectFile
*ELFObj
= dyn_cast
<ELF32LEObjectFile
>(&Obj
))
744 return createELFDumper(*ELFObj
, Writer
);
747 if (const ELF32BEObjectFile
*ELFObj
= dyn_cast
<ELF32BEObjectFile
>(&Obj
))
748 return createELFDumper(*ELFObj
, Writer
);
750 // Little-endian 64-bit
751 if (const ELF64LEObjectFile
*ELFObj
= dyn_cast
<ELF64LEObjectFile
>(&Obj
))
752 return createELFDumper(*ELFObj
, Writer
);
755 return createELFDumper(*cast
<ELF64BEObjectFile
>(&Obj
), Writer
);
758 } // end namespace llvm
760 template <class ELFT
>
761 Expected
<SmallVector
<Optional
<VersionEntry
>, 0> *>
762 ELFDumper
<ELFT
>::getVersionMap() const {
763 // If the VersionMap has already been loaded or if there is no dynamic symtab
764 // or version table, there is nothing to do.
765 if (!VersionMap
.empty() || !DynSymRegion
|| !SymbolVersionSection
)
768 Expected
<SmallVector
<Optional
<VersionEntry
>, 0>> MapOrErr
=
769 Obj
.loadVersionMap(SymbolVersionNeedSection
, SymbolVersionDefSection
);
771 VersionMap
= *MapOrErr
;
773 return MapOrErr
.takeError();
778 template <typename ELFT
>
779 Expected
<StringRef
> ELFDumper
<ELFT
>::getSymbolVersion(const Elf_Sym
&Sym
,
780 bool &IsDefault
) const {
781 // This is a dynamic symbol. Look in the GNU symbol version table.
782 if (!SymbolVersionSection
) {
788 assert(DynSymRegion
&& "DynSymRegion has not been initialised");
789 // Determine the position in the symbol table of this entry.
790 size_t EntryIndex
= (reinterpret_cast<uintptr_t>(&Sym
) -
791 reinterpret_cast<uintptr_t>(DynSymRegion
->Addr
)) /
794 // Get the corresponding version index entry.
795 Expected
<const Elf_Versym
*> EntryOrErr
=
796 Obj
.template getEntry
<Elf_Versym
>(*SymbolVersionSection
, EntryIndex
);
798 return EntryOrErr
.takeError();
800 unsigned Version
= (*EntryOrErr
)->vs_index
;
801 if (Version
== VER_NDX_LOCAL
|| Version
== VER_NDX_GLOBAL
) {
806 Expected
<SmallVector
<Optional
<VersionEntry
>, 0> *> MapOrErr
=
809 return MapOrErr
.takeError();
811 return Obj
.getSymbolVersionByIndex(Version
, IsDefault
, **MapOrErr
,
812 Sym
.st_shndx
== ELF::SHN_UNDEF
);
815 template <typename ELFT
>
816 Expected
<RelSymbol
<ELFT
>>
817 ELFDumper
<ELFT
>::getRelocationTarget(const Relocation
<ELFT
> &R
,
818 const Elf_Shdr
*SymTab
) const {
820 return RelSymbol
<ELFT
>(nullptr, "");
822 Expected
<const Elf_Sym
*> SymOrErr
=
823 Obj
.template getEntry
<Elf_Sym
>(*SymTab
, R
.Symbol
);
825 return createError("unable to read an entry with index " + Twine(R
.Symbol
) +
826 " from " + describe(*SymTab
) + ": " +
827 toString(SymOrErr
.takeError()));
828 const Elf_Sym
*Sym
= *SymOrErr
;
830 return RelSymbol
<ELFT
>(nullptr, "");
832 Expected
<StringRef
> StrTableOrErr
= Obj
.getStringTableForSymtab(*SymTab
);
834 return StrTableOrErr
.takeError();
836 const Elf_Sym
*FirstSym
=
837 cantFail(Obj
.template getEntry
<Elf_Sym
>(*SymTab
, 0));
838 std::string SymbolName
=
839 getFullSymbolName(*Sym
, Sym
- FirstSym
, getShndxTable(SymTab
),
840 *StrTableOrErr
, SymTab
->sh_type
== SHT_DYNSYM
);
841 return RelSymbol
<ELFT
>(Sym
, SymbolName
);
844 template <typename ELFT
>
845 ArrayRef
<typename
ELFT::Word
>
846 ELFDumper
<ELFT
>::getShndxTable(const Elf_Shdr
*Symtab
) const {
848 auto It
= ShndxTables
.find(Symtab
);
849 if (It
!= ShndxTables
.end())
855 static std::string
maybeDemangle(StringRef Name
) {
856 return opts::Demangle
? demangle(std::string(Name
)) : Name
.str();
859 template <typename ELFT
>
860 std::string ELFDumper
<ELFT
>::getStaticSymbolName(uint32_t Index
) const {
861 auto Warn
= [&](Error E
) -> std::string
{
862 reportUniqueWarning("unable to read the name of symbol with index " +
863 Twine(Index
) + ": " + toString(std::move(E
)));
867 Expected
<const typename
ELFT::Sym
*> SymOrErr
=
868 Obj
.getSymbol(DotSymtabSec
, Index
);
870 return Warn(SymOrErr
.takeError());
872 Expected
<StringRef
> StrTabOrErr
= Obj
.getStringTableForSymtab(*DotSymtabSec
);
874 return Warn(StrTabOrErr
.takeError());
876 Expected
<StringRef
> NameOrErr
= (*SymOrErr
)->getName(*StrTabOrErr
);
878 return Warn(NameOrErr
.takeError());
879 return maybeDemangle(*NameOrErr
);
882 template <typename ELFT
>
883 std::string ELFDumper
<ELFT
>::getFullSymbolName(const Elf_Sym
&Symbol
,
885 DataRegion
<Elf_Word
> ShndxTable
,
886 Optional
<StringRef
> StrTable
,
887 bool IsDynamic
) const {
891 std::string SymbolName
;
892 if (Expected
<StringRef
> NameOrErr
= Symbol
.getName(*StrTable
)) {
893 SymbolName
= maybeDemangle(*NameOrErr
);
895 reportUniqueWarning(NameOrErr
.takeError());
899 if (SymbolName
.empty() && Symbol
.getType() == ELF::STT_SECTION
) {
900 Expected
<unsigned> SectionIndex
=
901 getSymbolSectionIndex(Symbol
, SymIndex
, ShndxTable
);
903 reportUniqueWarning(SectionIndex
.takeError());
906 Expected
<StringRef
> NameOrErr
= getSymbolSectionName(Symbol
, *SectionIndex
);
908 reportUniqueWarning(NameOrErr
.takeError());
909 return ("<section " + Twine(*SectionIndex
) + ">").str();
911 return std::string(*NameOrErr
);
918 Expected
<StringRef
> VersionOrErr
= getSymbolVersion(Symbol
, IsDefault
);
920 reportUniqueWarning(VersionOrErr
.takeError());
921 return SymbolName
+ "@<corrupt>";
924 if (!VersionOrErr
->empty()) {
925 SymbolName
+= (IsDefault
? "@@" : "@");
926 SymbolName
+= *VersionOrErr
;
931 template <typename ELFT
>
933 ELFDumper
<ELFT
>::getSymbolSectionIndex(const Elf_Sym
&Symbol
, unsigned SymIndex
,
934 DataRegion
<Elf_Word
> ShndxTable
) const {
935 unsigned Ndx
= Symbol
.st_shndx
;
936 if (Ndx
== SHN_XINDEX
)
937 return object::getExtendedSymbolTableIndex
<ELFT
>(Symbol
, SymIndex
,
939 if (Ndx
!= SHN_UNDEF
&& Ndx
< SHN_LORESERVE
)
942 auto CreateErr
= [&](const Twine
&Name
, Optional
<unsigned> Offset
= None
) {
945 Desc
= (Name
+ "+0x" + Twine::utohexstr(*Offset
)).str();
949 "unable to get section index for symbol with st_shndx = 0x" +
950 Twine::utohexstr(Ndx
) + " (" + Desc
+ ")");
953 if (Ndx
>= ELF::SHN_LOPROC
&& Ndx
<= ELF::SHN_HIPROC
)
954 return CreateErr("SHN_LOPROC", Ndx
- ELF::SHN_LOPROC
);
955 if (Ndx
>= ELF::SHN_LOOS
&& Ndx
<= ELF::SHN_HIOS
)
956 return CreateErr("SHN_LOOS", Ndx
- ELF::SHN_LOOS
);
957 if (Ndx
== ELF::SHN_UNDEF
)
958 return CreateErr("SHN_UNDEF");
959 if (Ndx
== ELF::SHN_ABS
)
960 return CreateErr("SHN_ABS");
961 if (Ndx
== ELF::SHN_COMMON
)
962 return CreateErr("SHN_COMMON");
963 return CreateErr("SHN_LORESERVE", Ndx
- SHN_LORESERVE
);
966 template <typename ELFT
>
968 ELFDumper
<ELFT
>::getSymbolSectionName(const Elf_Sym
&Symbol
,
969 unsigned SectionIndex
) const {
970 Expected
<const Elf_Shdr
*> SecOrErr
= Obj
.getSection(SectionIndex
);
972 return SecOrErr
.takeError();
973 return Obj
.getSectionName(**SecOrErr
);
976 template <class ELFO
>
977 static const typename
ELFO::Elf_Shdr
*
978 findNotEmptySectionByAddress(const ELFO
&Obj
, StringRef FileName
,
980 for (const typename
ELFO::Elf_Shdr
&Shdr
: cantFail(Obj
.sections()))
981 if (Shdr
.sh_addr
== Addr
&& Shdr
.sh_size
> 0)
986 const EnumEntry
<unsigned> ElfClass
[] = {
987 {"None", "none", ELF::ELFCLASSNONE
},
988 {"32-bit", "ELF32", ELF::ELFCLASS32
},
989 {"64-bit", "ELF64", ELF::ELFCLASS64
},
992 const EnumEntry
<unsigned> ElfDataEncoding
[] = {
993 {"None", "none", ELF::ELFDATANONE
},
994 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB
},
995 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB
},
998 const EnumEntry
<unsigned> ElfObjectFileType
[] = {
999 {"None", "NONE (none)", ELF::ET_NONE
},
1000 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL
},
1001 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC
},
1002 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN
},
1003 {"Core", "CORE (Core file)", ELF::ET_CORE
},
1006 const EnumEntry
<unsigned> ElfOSABI
[] = {
1007 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE
},
1008 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX
},
1009 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD
},
1010 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX
},
1011 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD
},
1012 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS
},
1013 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX
},
1014 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX
},
1015 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD
},
1016 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64
},
1017 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO
},
1018 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD
},
1019 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS
},
1020 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK
},
1021 {"AROS", "AROS", ELF::ELFOSABI_AROS
},
1022 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS
},
1023 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI
},
1024 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE
}
1027 const EnumEntry
<unsigned> AMDGPUElfOSABI
[] = {
1028 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA
},
1029 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL
},
1030 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D
}
1033 const EnumEntry
<unsigned> ARMElfOSABI
[] = {
1034 {"ARM", "ARM", ELF::ELFOSABI_ARM
}
1037 const EnumEntry
<unsigned> C6000ElfOSABI
[] = {
1038 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI
},
1039 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX
}
1042 const EnumEntry
<unsigned> ElfMachineType
[] = {
1043 ENUM_ENT(EM_NONE
, "None"),
1044 ENUM_ENT(EM_M32
, "WE32100"),
1045 ENUM_ENT(EM_SPARC
, "Sparc"),
1046 ENUM_ENT(EM_386
, "Intel 80386"),
1047 ENUM_ENT(EM_68K
, "MC68000"),
1048 ENUM_ENT(EM_88K
, "MC88000"),
1049 ENUM_ENT(EM_IAMCU
, "EM_IAMCU"),
1050 ENUM_ENT(EM_860
, "Intel 80860"),
1051 ENUM_ENT(EM_MIPS
, "MIPS R3000"),
1052 ENUM_ENT(EM_S370
, "IBM System/370"),
1053 ENUM_ENT(EM_MIPS_RS3_LE
, "MIPS R3000 little-endian"),
1054 ENUM_ENT(EM_PARISC
, "HPPA"),
1055 ENUM_ENT(EM_VPP500
, "Fujitsu VPP500"),
1056 ENUM_ENT(EM_SPARC32PLUS
, "Sparc v8+"),
1057 ENUM_ENT(EM_960
, "Intel 80960"),
1058 ENUM_ENT(EM_PPC
, "PowerPC"),
1059 ENUM_ENT(EM_PPC64
, "PowerPC64"),
1060 ENUM_ENT(EM_S390
, "IBM S/390"),
1061 ENUM_ENT(EM_SPU
, "SPU"),
1062 ENUM_ENT(EM_V800
, "NEC V800 series"),
1063 ENUM_ENT(EM_FR20
, "Fujistsu FR20"),
1064 ENUM_ENT(EM_RH32
, "TRW RH-32"),
1065 ENUM_ENT(EM_RCE
, "Motorola RCE"),
1066 ENUM_ENT(EM_ARM
, "ARM"),
1067 ENUM_ENT(EM_ALPHA
, "EM_ALPHA"),
1068 ENUM_ENT(EM_SH
, "Hitachi SH"),
1069 ENUM_ENT(EM_SPARCV9
, "Sparc v9"),
1070 ENUM_ENT(EM_TRICORE
, "Siemens Tricore"),
1071 ENUM_ENT(EM_ARC
, "ARC"),
1072 ENUM_ENT(EM_H8_300
, "Hitachi H8/300"),
1073 ENUM_ENT(EM_H8_300H
, "Hitachi H8/300H"),
1074 ENUM_ENT(EM_H8S
, "Hitachi H8S"),
1075 ENUM_ENT(EM_H8_500
, "Hitachi H8/500"),
1076 ENUM_ENT(EM_IA_64
, "Intel IA-64"),
1077 ENUM_ENT(EM_MIPS_X
, "Stanford MIPS-X"),
1078 ENUM_ENT(EM_COLDFIRE
, "Motorola Coldfire"),
1079 ENUM_ENT(EM_68HC12
, "Motorola MC68HC12 Microcontroller"),
1080 ENUM_ENT(EM_MMA
, "Fujitsu Multimedia Accelerator"),
1081 ENUM_ENT(EM_PCP
, "Siemens PCP"),
1082 ENUM_ENT(EM_NCPU
, "Sony nCPU embedded RISC processor"),
1083 ENUM_ENT(EM_NDR1
, "Denso NDR1 microprocesspr"),
1084 ENUM_ENT(EM_STARCORE
, "Motorola Star*Core processor"),
1085 ENUM_ENT(EM_ME16
, "Toyota ME16 processor"),
1086 ENUM_ENT(EM_ST100
, "STMicroelectronics ST100 processor"),
1087 ENUM_ENT(EM_TINYJ
, "Advanced Logic Corp. TinyJ embedded processor"),
1088 ENUM_ENT(EM_X86_64
, "Advanced Micro Devices X86-64"),
1089 ENUM_ENT(EM_PDSP
, "Sony DSP processor"),
1090 ENUM_ENT(EM_PDP10
, "Digital Equipment Corp. PDP-10"),
1091 ENUM_ENT(EM_PDP11
, "Digital Equipment Corp. PDP-11"),
1092 ENUM_ENT(EM_FX66
, "Siemens FX66 microcontroller"),
1093 ENUM_ENT(EM_ST9PLUS
, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1094 ENUM_ENT(EM_ST7
, "STMicroelectronics ST7 8-bit microcontroller"),
1095 ENUM_ENT(EM_68HC16
, "Motorola MC68HC16 Microcontroller"),
1096 ENUM_ENT(EM_68HC11
, "Motorola MC68HC11 Microcontroller"),
1097 ENUM_ENT(EM_68HC08
, "Motorola MC68HC08 Microcontroller"),
1098 ENUM_ENT(EM_68HC05
, "Motorola MC68HC05 Microcontroller"),
1099 ENUM_ENT(EM_SVX
, "Silicon Graphics SVx"),
1100 ENUM_ENT(EM_ST19
, "STMicroelectronics ST19 8-bit microcontroller"),
1101 ENUM_ENT(EM_VAX
, "Digital VAX"),
1102 ENUM_ENT(EM_CRIS
, "Axis Communications 32-bit embedded processor"),
1103 ENUM_ENT(EM_JAVELIN
, "Infineon Technologies 32-bit embedded cpu"),
1104 ENUM_ENT(EM_FIREPATH
, "Element 14 64-bit DSP processor"),
1105 ENUM_ENT(EM_ZSP
, "LSI Logic's 16-bit DSP processor"),
1106 ENUM_ENT(EM_MMIX
, "Donald Knuth's educational 64-bit processor"),
1107 ENUM_ENT(EM_HUANY
, "Harvard Universitys's machine-independent object format"),
1108 ENUM_ENT(EM_PRISM
, "Vitesse Prism"),
1109 ENUM_ENT(EM_AVR
, "Atmel AVR 8-bit microcontroller"),
1110 ENUM_ENT(EM_FR30
, "Fujitsu FR30"),
1111 ENUM_ENT(EM_D10V
, "Mitsubishi D10V"),
1112 ENUM_ENT(EM_D30V
, "Mitsubishi D30V"),
1113 ENUM_ENT(EM_V850
, "NEC v850"),
1114 ENUM_ENT(EM_M32R
, "Renesas M32R (formerly Mitsubishi M32r)"),
1115 ENUM_ENT(EM_MN10300
, "Matsushita MN10300"),
1116 ENUM_ENT(EM_MN10200
, "Matsushita MN10200"),
1117 ENUM_ENT(EM_PJ
, "picoJava"),
1118 ENUM_ENT(EM_OPENRISC
, "OpenRISC 32-bit embedded processor"),
1119 ENUM_ENT(EM_ARC_COMPACT
, "EM_ARC_COMPACT"),
1120 ENUM_ENT(EM_XTENSA
, "Tensilica Xtensa Processor"),
1121 ENUM_ENT(EM_VIDEOCORE
, "Alphamosaic VideoCore processor"),
1122 ENUM_ENT(EM_TMM_GPP
, "Thompson Multimedia General Purpose Processor"),
1123 ENUM_ENT(EM_NS32K
, "National Semiconductor 32000 series"),
1124 ENUM_ENT(EM_TPC
, "Tenor Network TPC processor"),
1125 ENUM_ENT(EM_SNP1K
, "EM_SNP1K"),
1126 ENUM_ENT(EM_ST200
, "STMicroelectronics ST200 microcontroller"),
1127 ENUM_ENT(EM_IP2K
, "Ubicom IP2xxx 8-bit microcontrollers"),
1128 ENUM_ENT(EM_MAX
, "MAX Processor"),
1129 ENUM_ENT(EM_CR
, "National Semiconductor CompactRISC"),
1130 ENUM_ENT(EM_F2MC16
, "Fujitsu F2MC16"),
1131 ENUM_ENT(EM_MSP430
, "Texas Instruments msp430 microcontroller"),
1132 ENUM_ENT(EM_BLACKFIN
, "Analog Devices Blackfin"),
1133 ENUM_ENT(EM_SE_C33
, "S1C33 Family of Seiko Epson processors"),
1134 ENUM_ENT(EM_SEP
, "Sharp embedded microprocessor"),
1135 ENUM_ENT(EM_ARCA
, "Arca RISC microprocessor"),
1136 ENUM_ENT(EM_UNICORE
, "Unicore"),
1137 ENUM_ENT(EM_EXCESS
, "eXcess 16/32/64-bit configurable embedded CPU"),
1138 ENUM_ENT(EM_DXP
, "Icera Semiconductor Inc. Deep Execution Processor"),
1139 ENUM_ENT(EM_ALTERA_NIOS2
, "Altera Nios"),
1140 ENUM_ENT(EM_CRX
, "National Semiconductor CRX microprocessor"),
1141 ENUM_ENT(EM_XGATE
, "Motorola XGATE embedded processor"),
1142 ENUM_ENT(EM_C166
, "Infineon Technologies xc16x"),
1143 ENUM_ENT(EM_M16C
, "Renesas M16C"),
1144 ENUM_ENT(EM_DSPIC30F
, "Microchip Technology dsPIC30F Digital Signal Controller"),
1145 ENUM_ENT(EM_CE
, "Freescale Communication Engine RISC core"),
1146 ENUM_ENT(EM_M32C
, "Renesas M32C"),
1147 ENUM_ENT(EM_TSK3000
, "Altium TSK3000 core"),
1148 ENUM_ENT(EM_RS08
, "Freescale RS08 embedded processor"),
1149 ENUM_ENT(EM_SHARC
, "EM_SHARC"),
1150 ENUM_ENT(EM_ECOG2
, "Cyan Technology eCOG2 microprocessor"),
1151 ENUM_ENT(EM_SCORE7
, "SUNPLUS S+Core"),
1152 ENUM_ENT(EM_DSP24
, "New Japan Radio (NJR) 24-bit DSP Processor"),
1153 ENUM_ENT(EM_VIDEOCORE3
, "Broadcom VideoCore III processor"),
1154 ENUM_ENT(EM_LATTICEMICO32
, "Lattice Mico32"),
1155 ENUM_ENT(EM_SE_C17
, "Seiko Epson C17 family"),
1156 ENUM_ENT(EM_TI_C6000
, "Texas Instruments TMS320C6000 DSP family"),
1157 ENUM_ENT(EM_TI_C2000
, "Texas Instruments TMS320C2000 DSP family"),
1158 ENUM_ENT(EM_TI_C5500
, "Texas Instruments TMS320C55x DSP family"),
1159 ENUM_ENT(EM_MMDSP_PLUS
, "STMicroelectronics 64bit VLIW Data Signal Processor"),
1160 ENUM_ENT(EM_CYPRESS_M8C
, "Cypress M8C microprocessor"),
1161 ENUM_ENT(EM_R32C
, "Renesas R32C series microprocessors"),
1162 ENUM_ENT(EM_TRIMEDIA
, "NXP Semiconductors TriMedia architecture family"),
1163 ENUM_ENT(EM_HEXAGON
, "Qualcomm Hexagon"),
1164 ENUM_ENT(EM_8051
, "Intel 8051 and variants"),
1165 ENUM_ENT(EM_STXP7X
, "STMicroelectronics STxP7x family"),
1166 ENUM_ENT(EM_NDS32
, "Andes Technology compact code size embedded RISC processor family"),
1167 ENUM_ENT(EM_ECOG1
, "Cyan Technology eCOG1 microprocessor"),
1168 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1169 // an identical number to EM_ECOG1.
1170 ENUM_ENT(EM_ECOG1X
, "Cyan Technology eCOG1X family"),
1171 ENUM_ENT(EM_MAXQ30
, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1172 ENUM_ENT(EM_XIMO16
, "New Japan Radio (NJR) 16-bit DSP Processor"),
1173 ENUM_ENT(EM_MANIK
, "M2000 Reconfigurable RISC Microprocessor"),
1174 ENUM_ENT(EM_CRAYNV2
, "Cray Inc. NV2 vector architecture"),
1175 ENUM_ENT(EM_RX
, "Renesas RX"),
1176 ENUM_ENT(EM_METAG
, "Imagination Technologies Meta processor architecture"),
1177 ENUM_ENT(EM_MCST_ELBRUS
, "MCST Elbrus general purpose hardware architecture"),
1178 ENUM_ENT(EM_ECOG16
, "Cyan Technology eCOG16 family"),
1179 ENUM_ENT(EM_CR16
, "National Semiconductor CompactRISC 16-bit processor"),
1180 ENUM_ENT(EM_ETPU
, "Freescale Extended Time Processing Unit"),
1181 ENUM_ENT(EM_SLE9X
, "Infineon Technologies SLE9X core"),
1182 ENUM_ENT(EM_L10M
, "EM_L10M"),
1183 ENUM_ENT(EM_K10M
, "EM_K10M"),
1184 ENUM_ENT(EM_AARCH64
, "AArch64"),
1185 ENUM_ENT(EM_AVR32
, "Atmel Corporation 32-bit microprocessor family"),
1186 ENUM_ENT(EM_STM8
, "STMicroeletronics STM8 8-bit microcontroller"),
1187 ENUM_ENT(EM_TILE64
, "Tilera TILE64 multicore architecture family"),
1188 ENUM_ENT(EM_TILEPRO
, "Tilera TILEPro multicore architecture family"),
1189 ENUM_ENT(EM_MICROBLAZE
, "Xilinx MicroBlaze 32-bit RISC soft processor core"),
1190 ENUM_ENT(EM_CUDA
, "NVIDIA CUDA architecture"),
1191 ENUM_ENT(EM_TILEGX
, "Tilera TILE-Gx multicore architecture family"),
1192 ENUM_ENT(EM_CLOUDSHIELD
, "EM_CLOUDSHIELD"),
1193 ENUM_ENT(EM_COREA_1ST
, "EM_COREA_1ST"),
1194 ENUM_ENT(EM_COREA_2ND
, "EM_COREA_2ND"),
1195 ENUM_ENT(EM_ARC_COMPACT2
, "EM_ARC_COMPACT2"),
1196 ENUM_ENT(EM_OPEN8
, "EM_OPEN8"),
1197 ENUM_ENT(EM_RL78
, "Renesas RL78"),
1198 ENUM_ENT(EM_VIDEOCORE5
, "Broadcom VideoCore V processor"),
1199 ENUM_ENT(EM_78KOR
, "EM_78KOR"),
1200 ENUM_ENT(EM_56800EX
, "EM_56800EX"),
1201 ENUM_ENT(EM_AMDGPU
, "EM_AMDGPU"),
1202 ENUM_ENT(EM_RISCV
, "RISC-V"),
1203 ENUM_ENT(EM_LANAI
, "EM_LANAI"),
1204 ENUM_ENT(EM_BPF
, "EM_BPF"),
1205 ENUM_ENT(EM_VE
, "NEC SX-Aurora Vector Engine"),
1208 const EnumEntry
<unsigned> ElfSymbolBindings
[] = {
1209 {"Local", "LOCAL", ELF::STB_LOCAL
},
1210 {"Global", "GLOBAL", ELF::STB_GLOBAL
},
1211 {"Weak", "WEAK", ELF::STB_WEAK
},
1212 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE
}};
1214 const EnumEntry
<unsigned> ElfSymbolVisibilities
[] = {
1215 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT
},
1216 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL
},
1217 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN
},
1218 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED
}};
1220 const EnumEntry
<unsigned> AMDGPUSymbolTypes
[] = {
1221 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL
}
1224 static const char *getGroupType(uint32_t Flag
) {
1225 if (Flag
& ELF::GRP_COMDAT
)
1231 const EnumEntry
<unsigned> ElfSectionFlags
[] = {
1232 ENUM_ENT(SHF_WRITE
, "W"),
1233 ENUM_ENT(SHF_ALLOC
, "A"),
1234 ENUM_ENT(SHF_EXECINSTR
, "X"),
1235 ENUM_ENT(SHF_MERGE
, "M"),
1236 ENUM_ENT(SHF_STRINGS
, "S"),
1237 ENUM_ENT(SHF_INFO_LINK
, "I"),
1238 ENUM_ENT(SHF_LINK_ORDER
, "L"),
1239 ENUM_ENT(SHF_OS_NONCONFORMING
, "O"),
1240 ENUM_ENT(SHF_GROUP
, "G"),
1241 ENUM_ENT(SHF_TLS
, "T"),
1242 ENUM_ENT(SHF_COMPRESSED
, "C"),
1243 ENUM_ENT(SHF_GNU_RETAIN
, "R"),
1244 ENUM_ENT(SHF_EXCLUDE
, "E"),
1247 const EnumEntry
<unsigned> ElfXCoreSectionFlags
[] = {
1248 ENUM_ENT(XCORE_SHF_CP_SECTION
, ""),
1249 ENUM_ENT(XCORE_SHF_DP_SECTION
, "")
1252 const EnumEntry
<unsigned> ElfARMSectionFlags
[] = {
1253 ENUM_ENT(SHF_ARM_PURECODE
, "y")
1256 const EnumEntry
<unsigned> ElfHexagonSectionFlags
[] = {
1257 ENUM_ENT(SHF_HEX_GPREL
, "")
1260 const EnumEntry
<unsigned> ElfMipsSectionFlags
[] = {
1261 ENUM_ENT(SHF_MIPS_NODUPES
, ""),
1262 ENUM_ENT(SHF_MIPS_NAMES
, ""),
1263 ENUM_ENT(SHF_MIPS_LOCAL
, ""),
1264 ENUM_ENT(SHF_MIPS_NOSTRIP
, ""),
1265 ENUM_ENT(SHF_MIPS_GPREL
, ""),
1266 ENUM_ENT(SHF_MIPS_MERGE
, ""),
1267 ENUM_ENT(SHF_MIPS_ADDR
, ""),
1268 ENUM_ENT(SHF_MIPS_STRING
, "")
1271 const EnumEntry
<unsigned> ElfX86_64SectionFlags
[] = {
1272 ENUM_ENT(SHF_X86_64_LARGE
, "l")
1275 static std::vector
<EnumEntry
<unsigned>>
1276 getSectionFlagsForTarget(unsigned EMachine
) {
1277 std::vector
<EnumEntry
<unsigned>> Ret(std::begin(ElfSectionFlags
),
1278 std::end(ElfSectionFlags
));
1281 Ret
.insert(Ret
.end(), std::begin(ElfARMSectionFlags
),
1282 std::end(ElfARMSectionFlags
));
1285 Ret
.insert(Ret
.end(), std::begin(ElfHexagonSectionFlags
),
1286 std::end(ElfHexagonSectionFlags
));
1289 Ret
.insert(Ret
.end(), std::begin(ElfMipsSectionFlags
),
1290 std::end(ElfMipsSectionFlags
));
1293 Ret
.insert(Ret
.end(), std::begin(ElfX86_64SectionFlags
),
1294 std::end(ElfX86_64SectionFlags
));
1297 Ret
.insert(Ret
.end(), std::begin(ElfXCoreSectionFlags
),
1298 std::end(ElfXCoreSectionFlags
));
1306 static std::string
getGNUFlags(unsigned EMachine
, uint64_t Flags
) {
1307 // Here we are trying to build the flags string in the same way as GNU does.
1308 // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1309 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1310 // GNU readelf will not print "E" or "Ep" in this case, but will print just
1311 // "p". It only will print "E" when no other processor flag is set.
1313 bool HasUnknownFlag
= false;
1314 bool HasOSFlag
= false;
1315 bool HasProcFlag
= false;
1316 std::vector
<EnumEntry
<unsigned>> FlagsList
=
1317 getSectionFlagsForTarget(EMachine
);
1319 // Take the least significant bit as a flag.
1320 uint64_t Flag
= Flags
& -Flags
;
1323 // Find the flag in the known flags list.
1324 auto I
= llvm::find_if(FlagsList
, [=](const EnumEntry
<unsigned> &E
) {
1325 // Flags with empty names are not printed in GNU style output.
1326 return E
.Value
== Flag
&& !E
.AltName
.empty();
1328 if (I
!= FlagsList
.end()) {
1333 // If we did not find a matching regular flag, then we deal with an OS
1334 // specific flag, processor specific flag or an unknown flag.
1335 if (Flag
& ELF::SHF_MASKOS
) {
1337 Flags
&= ~ELF::SHF_MASKOS
;
1338 } else if (Flag
& ELF::SHF_MASKPROC
) {
1340 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1341 // bit if set so that it doesn't also get printed.
1342 Flags
&= ~ELF::SHF_MASKPROC
;
1344 HasUnknownFlag
= true;
1348 // "o", "p" and "x" are printed last.
1358 static StringRef
segmentTypeToString(unsigned Arch
, unsigned Type
) {
1359 // Check potentially overlapped processor-specific program header type.
1362 switch (Type
) { LLVM_READOBJ_ENUM_CASE(ELF
, PT_ARM_EXIDX
); }
1365 case ELF::EM_MIPS_RS3_LE
:
1367 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_REGINFO
);
1368 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_RTPROC
);
1369 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_OPTIONS
);
1370 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_ABIFLAGS
);
1376 LLVM_READOBJ_ENUM_CASE(ELF
, PT_NULL
);
1377 LLVM_READOBJ_ENUM_CASE(ELF
, PT_LOAD
);
1378 LLVM_READOBJ_ENUM_CASE(ELF
, PT_DYNAMIC
);
1379 LLVM_READOBJ_ENUM_CASE(ELF
, PT_INTERP
);
1380 LLVM_READOBJ_ENUM_CASE(ELF
, PT_NOTE
);
1381 LLVM_READOBJ_ENUM_CASE(ELF
, PT_SHLIB
);
1382 LLVM_READOBJ_ENUM_CASE(ELF
, PT_PHDR
);
1383 LLVM_READOBJ_ENUM_CASE(ELF
, PT_TLS
);
1385 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_EH_FRAME
);
1386 LLVM_READOBJ_ENUM_CASE(ELF
, PT_SUNW_UNWIND
);
1388 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_STACK
);
1389 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_RELRO
);
1390 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_PROPERTY
);
1392 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_RANDOMIZE
);
1393 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_WXNEEDED
);
1394 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_BOOTDATA
);
1400 static std::string
getGNUPtType(unsigned Arch
, unsigned Type
) {
1401 StringRef Seg
= segmentTypeToString(Arch
, Type
);
1403 return std::string("<unknown>: ") + to_string(format_hex(Type
, 1));
1405 // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1406 if (Seg
.startswith("PT_ARM_"))
1407 return Seg
.drop_front(7).str();
1409 // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1410 if (Seg
.startswith("PT_MIPS_"))
1411 return Seg
.drop_front(8).str();
1413 // E.g. "PT_LOAD" -> "LOAD".
1414 assert(Seg
.startswith("PT_"));
1415 return Seg
.drop_front(3).str();
1418 const EnumEntry
<unsigned> ElfSegmentFlags
[] = {
1419 LLVM_READOBJ_ENUM_ENT(ELF
, PF_X
),
1420 LLVM_READOBJ_ENUM_ENT(ELF
, PF_W
),
1421 LLVM_READOBJ_ENUM_ENT(ELF
, PF_R
)
1424 const EnumEntry
<unsigned> ElfHeaderMipsFlags
[] = {
1425 ENUM_ENT(EF_MIPS_NOREORDER
, "noreorder"),
1426 ENUM_ENT(EF_MIPS_PIC
, "pic"),
1427 ENUM_ENT(EF_MIPS_CPIC
, "cpic"),
1428 ENUM_ENT(EF_MIPS_ABI2
, "abi2"),
1429 ENUM_ENT(EF_MIPS_32BITMODE
, "32bitmode"),
1430 ENUM_ENT(EF_MIPS_FP64
, "fp64"),
1431 ENUM_ENT(EF_MIPS_NAN2008
, "nan2008"),
1432 ENUM_ENT(EF_MIPS_ABI_O32
, "o32"),
1433 ENUM_ENT(EF_MIPS_ABI_O64
, "o64"),
1434 ENUM_ENT(EF_MIPS_ABI_EABI32
, "eabi32"),
1435 ENUM_ENT(EF_MIPS_ABI_EABI64
, "eabi64"),
1436 ENUM_ENT(EF_MIPS_MACH_3900
, "3900"),
1437 ENUM_ENT(EF_MIPS_MACH_4010
, "4010"),
1438 ENUM_ENT(EF_MIPS_MACH_4100
, "4100"),
1439 ENUM_ENT(EF_MIPS_MACH_4650
, "4650"),
1440 ENUM_ENT(EF_MIPS_MACH_4120
, "4120"),
1441 ENUM_ENT(EF_MIPS_MACH_4111
, "4111"),
1442 ENUM_ENT(EF_MIPS_MACH_SB1
, "sb1"),
1443 ENUM_ENT(EF_MIPS_MACH_OCTEON
, "octeon"),
1444 ENUM_ENT(EF_MIPS_MACH_XLR
, "xlr"),
1445 ENUM_ENT(EF_MIPS_MACH_OCTEON2
, "octeon2"),
1446 ENUM_ENT(EF_MIPS_MACH_OCTEON3
, "octeon3"),
1447 ENUM_ENT(EF_MIPS_MACH_5400
, "5400"),
1448 ENUM_ENT(EF_MIPS_MACH_5900
, "5900"),
1449 ENUM_ENT(EF_MIPS_MACH_5500
, "5500"),
1450 ENUM_ENT(EF_MIPS_MACH_9000
, "9000"),
1451 ENUM_ENT(EF_MIPS_MACH_LS2E
, "loongson-2e"),
1452 ENUM_ENT(EF_MIPS_MACH_LS2F
, "loongson-2f"),
1453 ENUM_ENT(EF_MIPS_MACH_LS3A
, "loongson-3a"),
1454 ENUM_ENT(EF_MIPS_MICROMIPS
, "micromips"),
1455 ENUM_ENT(EF_MIPS_ARCH_ASE_M16
, "mips16"),
1456 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX
, "mdmx"),
1457 ENUM_ENT(EF_MIPS_ARCH_1
, "mips1"),
1458 ENUM_ENT(EF_MIPS_ARCH_2
, "mips2"),
1459 ENUM_ENT(EF_MIPS_ARCH_3
, "mips3"),
1460 ENUM_ENT(EF_MIPS_ARCH_4
, "mips4"),
1461 ENUM_ENT(EF_MIPS_ARCH_5
, "mips5"),
1462 ENUM_ENT(EF_MIPS_ARCH_32
, "mips32"),
1463 ENUM_ENT(EF_MIPS_ARCH_64
, "mips64"),
1464 ENUM_ENT(EF_MIPS_ARCH_32R2
, "mips32r2"),
1465 ENUM_ENT(EF_MIPS_ARCH_64R2
, "mips64r2"),
1466 ENUM_ENT(EF_MIPS_ARCH_32R6
, "mips32r6"),
1467 ENUM_ENT(EF_MIPS_ARCH_64R6
, "mips64r6")
1470 const EnumEntry
<unsigned> ElfHeaderAMDGPUFlagsABIVersion3
[] = {
1471 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_NONE
),
1472 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R600
),
1473 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R630
),
1474 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RS880
),
1475 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV670
),
1476 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV710
),
1477 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV730
),
1478 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV770
),
1479 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CEDAR
),
1480 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CYPRESS
),
1481 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_JUNIPER
),
1482 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_REDWOOD
),
1483 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_SUMO
),
1484 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_BARTS
),
1485 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAICOS
),
1486 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAYMAN
),
1487 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_TURKS
),
1488 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX600
),
1489 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX601
),
1490 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX602
),
1491 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX700
),
1492 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX701
),
1493 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX702
),
1494 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX703
),
1495 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX704
),
1496 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX705
),
1497 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX801
),
1498 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX802
),
1499 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX803
),
1500 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX805
),
1501 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX810
),
1502 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX900
),
1503 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX902
),
1504 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX904
),
1505 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX906
),
1506 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX908
),
1507 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX909
),
1508 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX90A
),
1509 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX90C
),
1510 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1010
),
1511 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1011
),
1512 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1012
),
1513 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1013
),
1514 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1030
),
1515 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1031
),
1516 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1032
),
1517 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1033
),
1518 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1034
),
1519 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1035
),
1520 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_FEATURE_XNACK_V3
),
1521 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_FEATURE_SRAMECC_V3
)
1524 const EnumEntry
<unsigned> ElfHeaderAMDGPUFlagsABIVersion4
[] = {
1525 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_NONE
),
1526 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R600
),
1527 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R630
),
1528 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RS880
),
1529 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV670
),
1530 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV710
),
1531 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV730
),
1532 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV770
),
1533 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CEDAR
),
1534 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CYPRESS
),
1535 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_JUNIPER
),
1536 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_REDWOOD
),
1537 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_SUMO
),
1538 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_BARTS
),
1539 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAICOS
),
1540 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAYMAN
),
1541 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_TURKS
),
1542 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX600
),
1543 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX601
),
1544 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX602
),
1545 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX700
),
1546 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX701
),
1547 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX702
),
1548 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX703
),
1549 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX704
),
1550 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX705
),
1551 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX801
),
1552 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX802
),
1553 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX803
),
1554 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX805
),
1555 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX810
),
1556 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX900
),
1557 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX902
),
1558 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX904
),
1559 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX906
),
1560 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX908
),
1561 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX909
),
1562 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX90A
),
1563 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX90C
),
1564 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1010
),
1565 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1011
),
1566 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1012
),
1567 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1013
),
1568 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1030
),
1569 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1031
),
1570 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1032
),
1571 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1033
),
1572 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1034
),
1573 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1035
),
1574 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_FEATURE_XNACK_ANY_V4
),
1575 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_FEATURE_XNACK_OFF_V4
),
1576 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_FEATURE_XNACK_ON_V4
),
1577 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4
),
1578 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4
),
1579 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_FEATURE_SRAMECC_ON_V4
)
1582 const EnumEntry
<unsigned> ElfHeaderRISCVFlags
[] = {
1583 ENUM_ENT(EF_RISCV_RVC
, "RVC"),
1584 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE
, "single-float ABI"),
1585 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE
, "double-float ABI"),
1586 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD
, "quad-float ABI"),
1587 ENUM_ENT(EF_RISCV_RVE
, "RVE"),
1588 ENUM_ENT(EF_RISCV_TSO
, "TSO"),
1591 const EnumEntry
<unsigned> ElfHeaderAVRFlags
[] = {
1592 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR1
),
1593 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR2
),
1594 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR25
),
1595 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR3
),
1596 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR31
),
1597 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR35
),
1598 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR4
),
1599 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR5
),
1600 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR51
),
1601 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR6
),
1602 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVRTINY
),
1603 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA1
),
1604 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA2
),
1605 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA3
),
1606 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA4
),
1607 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA5
),
1608 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA6
),
1609 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA7
),
1610 ENUM_ENT(EF_AVR_LINKRELAX_PREPARED
, "relaxable"),
1614 const EnumEntry
<unsigned> ElfSymOtherFlags
[] = {
1615 LLVM_READOBJ_ENUM_ENT(ELF
, STV_INTERNAL
),
1616 LLVM_READOBJ_ENUM_ENT(ELF
, STV_HIDDEN
),
1617 LLVM_READOBJ_ENUM_ENT(ELF
, STV_PROTECTED
)
1620 const EnumEntry
<unsigned> ElfMipsSymOtherFlags
[] = {
1621 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_OPTIONAL
),
1622 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PLT
),
1623 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PIC
),
1624 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_MICROMIPS
)
1627 const EnumEntry
<unsigned> ElfAArch64SymOtherFlags
[] = {
1628 LLVM_READOBJ_ENUM_ENT(ELF
, STO_AARCH64_VARIANT_PCS
)
1631 const EnumEntry
<unsigned> ElfMips16SymOtherFlags
[] = {
1632 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_OPTIONAL
),
1633 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PLT
),
1634 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_MIPS16
)
1637 const EnumEntry
<unsigned> ElfRISCVSymOtherFlags
[] = {
1638 LLVM_READOBJ_ENUM_ENT(ELF
, STO_RISCV_VARIANT_CC
)};
1640 static const char *getElfMipsOptionsOdkType(unsigned Odk
) {
1642 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_NULL
);
1643 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_REGINFO
);
1644 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_EXCEPTIONS
);
1645 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_PAD
);
1646 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWPATCH
);
1647 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_FILL
);
1648 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_TAGS
);
1649 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWAND
);
1650 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWOR
);
1651 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_GP_GROUP
);
1652 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_IDENT
);
1653 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_PAGESIZE
);
1659 template <typename ELFT
>
1660 std::pair
<const typename
ELFT::Phdr
*, const typename
ELFT::Shdr
*>
1661 ELFDumper
<ELFT
>::findDynamic() {
1662 // Try to locate the PT_DYNAMIC header.
1663 const Elf_Phdr
*DynamicPhdr
= nullptr;
1664 if (Expected
<ArrayRef
<Elf_Phdr
>> PhdrsOrErr
= Obj
.program_headers()) {
1665 for (const Elf_Phdr
&Phdr
: *PhdrsOrErr
) {
1666 if (Phdr
.p_type
!= ELF::PT_DYNAMIC
)
1668 DynamicPhdr
= &Phdr
;
1672 reportUniqueWarning(
1673 "unable to read program headers to locate the PT_DYNAMIC segment: " +
1674 toString(PhdrsOrErr
.takeError()));
1677 // Try to locate the .dynamic section in the sections header table.
1678 const Elf_Shdr
*DynamicSec
= nullptr;
1679 for (const Elf_Shdr
&Sec
: cantFail(Obj
.sections())) {
1680 if (Sec
.sh_type
!= ELF::SHT_DYNAMIC
)
1686 if (DynamicPhdr
&& ((DynamicPhdr
->p_offset
+ DynamicPhdr
->p_filesz
>
1687 ObjF
.getMemoryBufferRef().getBufferSize()) ||
1688 (DynamicPhdr
->p_offset
+ DynamicPhdr
->p_filesz
<
1689 DynamicPhdr
->p_offset
))) {
1690 reportUniqueWarning(
1691 "PT_DYNAMIC segment offset (0x" +
1692 Twine::utohexstr(DynamicPhdr
->p_offset
) + ") + file size (0x" +
1693 Twine::utohexstr(DynamicPhdr
->p_filesz
) +
1694 ") exceeds the size of the file (0x" +
1695 Twine::utohexstr(ObjF
.getMemoryBufferRef().getBufferSize()) + ")");
1696 // Don't use the broken dynamic header.
1697 DynamicPhdr
= nullptr;
1700 if (DynamicPhdr
&& DynamicSec
) {
1701 if (DynamicSec
->sh_addr
+ DynamicSec
->sh_size
>
1702 DynamicPhdr
->p_vaddr
+ DynamicPhdr
->p_memsz
||
1703 DynamicSec
->sh_addr
< DynamicPhdr
->p_vaddr
)
1704 reportUniqueWarning(describe(*DynamicSec
) +
1705 " is not contained within the "
1706 "PT_DYNAMIC segment");
1708 if (DynamicSec
->sh_addr
!= DynamicPhdr
->p_vaddr
)
1709 reportUniqueWarning(describe(*DynamicSec
) + " is not at the start of "
1710 "PT_DYNAMIC segment");
1713 return std::make_pair(DynamicPhdr
, DynamicSec
);
1716 template <typename ELFT
>
1717 void ELFDumper
<ELFT
>::loadDynamicTable() {
1718 const Elf_Phdr
*DynamicPhdr
;
1719 const Elf_Shdr
*DynamicSec
;
1720 std::tie(DynamicPhdr
, DynamicSec
) = findDynamic();
1721 if (!DynamicPhdr
&& !DynamicSec
)
1724 DynRegionInfo
FromPhdr(ObjF
, *this);
1725 bool IsPhdrTableValid
= false;
1727 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1728 // validated in findDynamic() and so createDRI() is not expected to fail.
1729 FromPhdr
= cantFail(createDRI(DynamicPhdr
->p_offset
, DynamicPhdr
->p_filesz
,
1731 FromPhdr
.SizePrintName
= "PT_DYNAMIC size";
1732 FromPhdr
.EntSizePrintName
= "";
1733 IsPhdrTableValid
= !FromPhdr
.template getAsArrayRef
<Elf_Dyn
>().empty();
1736 // Locate the dynamic table described in a section header.
1737 // Ignore sh_entsize and use the expected value for entry size explicitly.
1738 // This allows us to dump dynamic sections with a broken sh_entsize
1740 DynRegionInfo
FromSec(ObjF
, *this);
1741 bool IsSecTableValid
= false;
1743 Expected
<DynRegionInfo
> RegOrErr
=
1744 createDRI(DynamicSec
->sh_offset
, DynamicSec
->sh_size
, sizeof(Elf_Dyn
));
1746 FromSec
= *RegOrErr
;
1747 FromSec
.Context
= describe(*DynamicSec
);
1748 FromSec
.EntSizePrintName
= "";
1749 IsSecTableValid
= !FromSec
.template getAsArrayRef
<Elf_Dyn
>().empty();
1751 reportUniqueWarning("unable to read the dynamic table from " +
1752 describe(*DynamicSec
) + ": " +
1753 toString(RegOrErr
.takeError()));
1757 // When we only have information from one of the SHT_DYNAMIC section header or
1758 // PT_DYNAMIC program header, just use that.
1759 if (!DynamicPhdr
|| !DynamicSec
) {
1760 if ((DynamicPhdr
&& IsPhdrTableValid
) || (DynamicSec
&& IsSecTableValid
)) {
1761 DynamicTable
= DynamicPhdr
? FromPhdr
: FromSec
;
1762 parseDynamicTable();
1764 reportUniqueWarning("no valid dynamic table was found");
1769 // At this point we have tables found from the section header and from the
1770 // dynamic segment. Usually they match, but we have to do sanity checks to
1773 if (FromPhdr
.Addr
!= FromSec
.Addr
)
1774 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1775 "program header disagree about "
1776 "the location of the dynamic table");
1778 if (!IsPhdrTableValid
&& !IsSecTableValid
) {
1779 reportUniqueWarning("no valid dynamic table was found");
1783 // Information in the PT_DYNAMIC program header has priority over the
1784 // information in a section header.
1785 if (IsPhdrTableValid
) {
1786 if (!IsSecTableValid
)
1787 reportUniqueWarning(
1788 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1789 DynamicTable
= FromPhdr
;
1791 reportUniqueWarning(
1792 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1793 DynamicTable
= FromSec
;
1796 parseDynamicTable();
1799 template <typename ELFT
>
1800 ELFDumper
<ELFT
>::ELFDumper(const object::ELFObjectFile
<ELFT
> &O
,
1801 ScopedPrinter
&Writer
)
1802 : ObjDumper(Writer
, O
.getFileName()), ObjF(O
), Obj(O
.getELFFile()),
1803 FileName(O
.getFileName()), DynRelRegion(O
, *this),
1804 DynRelaRegion(O
, *this), DynRelrRegion(O
, *this),
1805 DynPLTRelRegion(O
, *this), DynSymTabShndxRegion(O
, *this),
1806 DynamicTable(O
, *this) {
1807 if (!O
.IsContentValid())
1810 typename
ELFT::ShdrRange Sections
= cantFail(Obj
.sections());
1811 for (const Elf_Shdr
&Sec
: Sections
) {
1812 switch (Sec
.sh_type
) {
1813 case ELF::SHT_SYMTAB
:
1815 DotSymtabSec
= &Sec
;
1817 case ELF::SHT_DYNSYM
:
1819 DotDynsymSec
= &Sec
;
1821 if (!DynSymRegion
) {
1822 Expected
<DynRegionInfo
> RegOrErr
=
1823 createDRI(Sec
.sh_offset
, Sec
.sh_size
, Sec
.sh_entsize
);
1825 DynSymRegion
= *RegOrErr
;
1826 DynSymRegion
->Context
= describe(Sec
);
1828 if (Expected
<StringRef
> E
= Obj
.getStringTableForSymtab(Sec
))
1829 DynamicStringTable
= *E
;
1831 reportUniqueWarning("unable to get the string table for the " +
1832 describe(Sec
) + ": " + toString(E
.takeError()));
1834 reportUniqueWarning("unable to read dynamic symbols from " +
1835 describe(Sec
) + ": " +
1836 toString(RegOrErr
.takeError()));
1840 case ELF::SHT_SYMTAB_SHNDX
: {
1841 uint32_t SymtabNdx
= Sec
.sh_link
;
1842 if (SymtabNdx
>= Sections
.size()) {
1843 reportUniqueWarning(
1844 "unable to get the associated symbol table for " + describe(Sec
) +
1845 ": sh_link (" + Twine(SymtabNdx
) +
1846 ") is greater than or equal to the total number of sections (" +
1847 Twine(Sections
.size()) + ")");
1851 if (Expected
<ArrayRef
<Elf_Word
>> ShndxTableOrErr
=
1852 Obj
.getSHNDXTable(Sec
)) {
1853 if (!ShndxTables
.insert({&Sections
[SymtabNdx
], *ShndxTableOrErr
})
1855 reportUniqueWarning(
1856 "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1859 reportUniqueWarning(ShndxTableOrErr
.takeError());
1863 case ELF::SHT_GNU_versym
:
1864 if (!SymbolVersionSection
)
1865 SymbolVersionSection
= &Sec
;
1867 case ELF::SHT_GNU_verdef
:
1868 if (!SymbolVersionDefSection
)
1869 SymbolVersionDefSection
= &Sec
;
1871 case ELF::SHT_GNU_verneed
:
1872 if (!SymbolVersionNeedSection
)
1873 SymbolVersionNeedSection
= &Sec
;
1875 case ELF::SHT_LLVM_ADDRSIG
:
1877 DotAddrsigSec
= &Sec
;
1885 template <typename ELFT
> void ELFDumper
<ELFT
>::parseDynamicTable() {
1886 auto toMappedAddr
= [&](uint64_t Tag
, uint64_t VAddr
) -> const uint8_t * {
1887 auto MappedAddrOrError
= Obj
.toMappedAddr(VAddr
, [&](const Twine
&Msg
) {
1888 this->reportUniqueWarning(Msg
);
1889 return Error::success();
1891 if (!MappedAddrOrError
) {
1892 this->reportUniqueWarning("unable to parse DT_" +
1893 Obj
.getDynamicTagAsString(Tag
) + ": " +
1894 llvm::toString(MappedAddrOrError
.takeError()));
1897 return MappedAddrOrError
.get();
1900 const char *StringTableBegin
= nullptr;
1901 uint64_t StringTableSize
= 0;
1902 Optional
<DynRegionInfo
> DynSymFromTable
;
1903 for (const Elf_Dyn
&Dyn
: dynamic_table()) {
1904 switch (Dyn
.d_tag
) {
1906 HashTable
= reinterpret_cast<const Elf_Hash
*>(
1907 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
1909 case ELF::DT_GNU_HASH
:
1910 GnuHashTable
= reinterpret_cast<const Elf_GnuHash
*>(
1911 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
1913 case ELF::DT_STRTAB
:
1914 StringTableBegin
= reinterpret_cast<const char *>(
1915 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
1918 StringTableSize
= Dyn
.getVal();
1920 case ELF::DT_SYMTAB
: {
1921 // If we can't map the DT_SYMTAB value to an address (e.g. when there are
1922 // no program headers), we ignore its value.
1923 if (const uint8_t *VA
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr())) {
1924 DynSymFromTable
.emplace(ObjF
, *this);
1925 DynSymFromTable
->Addr
= VA
;
1926 DynSymFromTable
->EntSize
= sizeof(Elf_Sym
);
1927 DynSymFromTable
->EntSizePrintName
= "";
1931 case ELF::DT_SYMENT
: {
1932 uint64_t Val
= Dyn
.getVal();
1933 if (Val
!= sizeof(Elf_Sym
))
1934 this->reportUniqueWarning("DT_SYMENT value of 0x" +
1935 Twine::utohexstr(Val
) +
1936 " is not the size of a symbol (0x" +
1937 Twine::utohexstr(sizeof(Elf_Sym
)) + ")");
1941 DynRelaRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
1943 case ELF::DT_RELASZ
:
1944 DynRelaRegion
.Size
= Dyn
.getVal();
1945 DynRelaRegion
.SizePrintName
= "DT_RELASZ value";
1947 case ELF::DT_RELAENT
:
1948 DynRelaRegion
.EntSize
= Dyn
.getVal();
1949 DynRelaRegion
.EntSizePrintName
= "DT_RELAENT value";
1951 case ELF::DT_SONAME
:
1952 SONameOffset
= Dyn
.getVal();
1955 DynRelRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
1958 DynRelRegion
.Size
= Dyn
.getVal();
1959 DynRelRegion
.SizePrintName
= "DT_RELSZ value";
1961 case ELF::DT_RELENT
:
1962 DynRelRegion
.EntSize
= Dyn
.getVal();
1963 DynRelRegion
.EntSizePrintName
= "DT_RELENT value";
1966 case ELF::DT_ANDROID_RELR
:
1967 DynRelrRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
1969 case ELF::DT_RELRSZ
:
1970 case ELF::DT_ANDROID_RELRSZ
:
1971 DynRelrRegion
.Size
= Dyn
.getVal();
1972 DynRelrRegion
.SizePrintName
= Dyn
.d_tag
== ELF::DT_RELRSZ
1974 : "DT_ANDROID_RELRSZ value";
1976 case ELF::DT_RELRENT
:
1977 case ELF::DT_ANDROID_RELRENT
:
1978 DynRelrRegion
.EntSize
= Dyn
.getVal();
1979 DynRelrRegion
.EntSizePrintName
= Dyn
.d_tag
== ELF::DT_RELRENT
1980 ? "DT_RELRENT value"
1981 : "DT_ANDROID_RELRENT value";
1983 case ELF::DT_PLTREL
:
1984 if (Dyn
.getVal() == DT_REL
)
1985 DynPLTRelRegion
.EntSize
= sizeof(Elf_Rel
);
1986 else if (Dyn
.getVal() == DT_RELA
)
1987 DynPLTRelRegion
.EntSize
= sizeof(Elf_Rela
);
1989 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
1990 Twine((uint64_t)Dyn
.getVal()));
1991 DynPLTRelRegion
.EntSizePrintName
= "PLTREL entry size";
1993 case ELF::DT_JMPREL
:
1994 DynPLTRelRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
1996 case ELF::DT_PLTRELSZ
:
1997 DynPLTRelRegion
.Size
= Dyn
.getVal();
1998 DynPLTRelRegion
.SizePrintName
= "DT_PLTRELSZ value";
2000 case ELF::DT_SYMTAB_SHNDX
:
2001 DynSymTabShndxRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
2002 DynSymTabShndxRegion
.EntSize
= sizeof(Elf_Word
);
2007 if (StringTableBegin
) {
2008 const uint64_t FileSize
= Obj
.getBufSize();
2009 const uint64_t Offset
= (const uint8_t *)StringTableBegin
- Obj
.base();
2010 if (StringTableSize
> FileSize
- Offset
)
2011 reportUniqueWarning(
2012 "the dynamic string table at 0x" + Twine::utohexstr(Offset
) +
2013 " goes past the end of the file (0x" + Twine::utohexstr(FileSize
) +
2014 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize
));
2016 DynamicStringTable
= StringRef(StringTableBegin
, StringTableSize
);
2019 const bool IsHashTableSupported
= getHashTableEntSize() == 4;
2021 // Often we find the information about the dynamic symbol table
2022 // location in the SHT_DYNSYM section header. However, the value in
2023 // DT_SYMTAB has priority, because it is used by dynamic loaders to
2024 // locate .dynsym at runtime. The location we find in the section header
2025 // and the location we find here should match.
2026 if (DynSymFromTable
&& DynSymFromTable
->Addr
!= DynSymRegion
->Addr
)
2027 reportUniqueWarning(
2028 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2029 "the location of the dynamic symbol table"));
2031 // According to the ELF gABI: "The number of symbol table entries should
2032 // equal nchain". Check to see if the DT_HASH hash table nchain value
2033 // conflicts with the number of symbols in the dynamic symbol table
2034 // according to the section header.
2035 if (HashTable
&& IsHashTableSupported
) {
2036 if (DynSymRegion
->EntSize
== 0)
2037 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2038 else if (HashTable
->nchain
!= DynSymRegion
->Size
/ DynSymRegion
->EntSize
)
2039 reportUniqueWarning(
2040 "hash table nchain (" + Twine(HashTable
->nchain
) +
2041 ") differs from symbol count derived from SHT_DYNSYM section "
2043 Twine(DynSymRegion
->Size
/ DynSymRegion
->EntSize
) + ")");
2047 // Delay the creation of the actual dynamic symbol table until now, so that
2048 // checks can always be made against the section header-based properties,
2049 // without worrying about tag order.
2050 if (DynSymFromTable
) {
2051 if (!DynSymRegion
) {
2052 DynSymRegion
= DynSymFromTable
;
2054 DynSymRegion
->Addr
= DynSymFromTable
->Addr
;
2055 DynSymRegion
->EntSize
= DynSymFromTable
->EntSize
;
2056 DynSymRegion
->EntSizePrintName
= DynSymFromTable
->EntSizePrintName
;
2060 // Derive the dynamic symbol table size from the DT_HASH hash table, if
2062 if (HashTable
&& IsHashTableSupported
&& DynSymRegion
) {
2063 const uint64_t FileSize
= Obj
.getBufSize();
2064 const uint64_t DerivedSize
=
2065 (uint64_t)HashTable
->nchain
* DynSymRegion
->EntSize
;
2066 const uint64_t Offset
= (const uint8_t *)DynSymRegion
->Addr
- Obj
.base();
2067 if (DerivedSize
> FileSize
- Offset
)
2068 reportUniqueWarning(
2069 "the size (0x" + Twine::utohexstr(DerivedSize
) +
2070 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset
) +
2071 ", derived from the hash table, goes past the end of the file (0x" +
2072 Twine::utohexstr(FileSize
) + ") and will be ignored");
2074 DynSymRegion
->Size
= HashTable
->nchain
* DynSymRegion
->EntSize
;
2078 template <typename ELFT
> void ELFDumper
<ELFT
>::printVersionInfo() {
2079 // Dump version symbol section.
2080 printVersionSymbolSection(SymbolVersionSection
);
2082 // Dump version definition section.
2083 printVersionDefinitionSection(SymbolVersionDefSection
);
2085 // Dump version dependency section.
2086 printVersionDependencySection(SymbolVersionNeedSection
);
2089 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
2090 { #enum, prefix##_##enum }
2092 const EnumEntry
<unsigned> ElfDynamicDTFlags
[] = {
2093 LLVM_READOBJ_DT_FLAG_ENT(DF
, ORIGIN
),
2094 LLVM_READOBJ_DT_FLAG_ENT(DF
, SYMBOLIC
),
2095 LLVM_READOBJ_DT_FLAG_ENT(DF
, TEXTREL
),
2096 LLVM_READOBJ_DT_FLAG_ENT(DF
, BIND_NOW
),
2097 LLVM_READOBJ_DT_FLAG_ENT(DF
, STATIC_TLS
)
2100 const EnumEntry
<unsigned> ElfDynamicDTFlags1
[] = {
2101 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOW
),
2102 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GLOBAL
),
2103 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GROUP
),
2104 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODELETE
),
2105 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, LOADFLTR
),
2106 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, INITFIRST
),
2107 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOOPEN
),
2108 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, ORIGIN
),
2109 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DIRECT
),
2110 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, TRANS
),
2111 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, INTERPOSE
),
2112 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODEFLIB
),
2113 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODUMP
),
2114 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, CONFALT
),
2115 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, ENDFILTEE
),
2116 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DISPRELDNE
),
2117 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DISPRELPND
),
2118 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODIRECT
),
2119 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, IGNMULDEF
),
2120 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOKSYMS
),
2121 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOHDR
),
2122 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, EDITED
),
2123 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NORELOC
),
2124 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, SYMINTPOSE
),
2125 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GLOBAUDIT
),
2126 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, SINGLETON
),
2127 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, PIE
),
2130 const EnumEntry
<unsigned> ElfDynamicDTMipsFlags
[] = {
2131 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NONE
),
2132 LLVM_READOBJ_DT_FLAG_ENT(RHF
, QUICKSTART
),
2133 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NOTPOT
),
2134 LLVM_READOBJ_DT_FLAG_ENT(RHS
, NO_LIBRARY_REPLACEMENT
),
2135 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NO_MOVE
),
2136 LLVM_READOBJ_DT_FLAG_ENT(RHF
, SGI_ONLY
),
2137 LLVM_READOBJ_DT_FLAG_ENT(RHF
, GUARANTEE_INIT
),
2138 LLVM_READOBJ_DT_FLAG_ENT(RHF
, DELTA_C_PLUS_PLUS
),
2139 LLVM_READOBJ_DT_FLAG_ENT(RHF
, GUARANTEE_START_INIT
),
2140 LLVM_READOBJ_DT_FLAG_ENT(RHF
, PIXIE
),
2141 LLVM_READOBJ_DT_FLAG_ENT(RHF
, DEFAULT_DELAY_LOAD
),
2142 LLVM_READOBJ_DT_FLAG_ENT(RHF
, REQUICKSTART
),
2143 LLVM_READOBJ_DT_FLAG_ENT(RHF
, REQUICKSTARTED
),
2144 LLVM_READOBJ_DT_FLAG_ENT(RHF
, CORD
),
2145 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NO_UNRES_UNDEF
),
2146 LLVM_READOBJ_DT_FLAG_ENT(RHF
, RLD_ORDER_SAFE
)
2149 #undef LLVM_READOBJ_DT_FLAG_ENT
2151 template <typename T
, typename TFlag
>
2152 void printFlags(T Value
, ArrayRef
<EnumEntry
<TFlag
>> Flags
, raw_ostream
&OS
) {
2153 SmallVector
<EnumEntry
<TFlag
>, 10> SetFlags
;
2154 for (const EnumEntry
<TFlag
> &Flag
: Flags
)
2155 if (Flag
.Value
!= 0 && (Value
& Flag
.Value
) == Flag
.Value
)
2156 SetFlags
.push_back(Flag
);
2158 for (const EnumEntry
<TFlag
> &Flag
: SetFlags
)
2159 OS
<< Flag
.Name
<< " ";
2162 template <class ELFT
>
2163 const typename
ELFT::Shdr
*
2164 ELFDumper
<ELFT
>::findSectionByName(StringRef Name
) const {
2165 for (const Elf_Shdr
&Shdr
: cantFail(Obj
.sections())) {
2166 if (Expected
<StringRef
> NameOrErr
= Obj
.getSectionName(Shdr
)) {
2167 if (*NameOrErr
== Name
)
2170 reportUniqueWarning("unable to read the name of " + describe(Shdr
) +
2171 ": " + toString(NameOrErr
.takeError()));
2177 template <class ELFT
>
2178 std::string ELFDumper
<ELFT
>::getDynamicEntry(uint64_t Type
,
2179 uint64_t Value
) const {
2180 auto FormatHexValue
= [](uint64_t V
) {
2182 raw_string_ostream
OS(Str
);
2183 const char *ConvChar
=
2184 (opts::Output
== opts::GNU
) ? "0x%" PRIx64
: "0x%" PRIX64
;
2185 OS
<< format(ConvChar
, V
);
2189 auto FormatFlags
= [](uint64_t V
,
2190 llvm::ArrayRef
<llvm::EnumEntry
<unsigned int>> Array
) {
2192 raw_string_ostream
OS(Str
);
2193 printFlags(V
, Array
, OS
);
2197 // Handle custom printing of architecture specific tags
2198 switch (Obj
.getHeader().e_machine
) {
2201 case DT_AARCH64_BTI_PLT
:
2202 case DT_AARCH64_PAC_PLT
:
2203 case DT_AARCH64_VARIANT_PCS
:
2204 return std::to_string(Value
);
2211 case DT_HEXAGON_VER
:
2212 return std::to_string(Value
);
2213 case DT_HEXAGON_SYMSZ
:
2214 case DT_HEXAGON_PLT
:
2215 return FormatHexValue(Value
);
2222 case DT_MIPS_RLD_VERSION
:
2223 case DT_MIPS_LOCAL_GOTNO
:
2224 case DT_MIPS_SYMTABNO
:
2225 case DT_MIPS_UNREFEXTNO
:
2226 return std::to_string(Value
);
2227 case DT_MIPS_TIME_STAMP
:
2228 case DT_MIPS_ICHECKSUM
:
2229 case DT_MIPS_IVERSION
:
2230 case DT_MIPS_BASE_ADDRESS
:
2232 case DT_MIPS_CONFLICT
:
2233 case DT_MIPS_LIBLIST
:
2234 case DT_MIPS_CONFLICTNO
:
2235 case DT_MIPS_LIBLISTNO
:
2236 case DT_MIPS_GOTSYM
:
2237 case DT_MIPS_HIPAGENO
:
2238 case DT_MIPS_RLD_MAP
:
2239 case DT_MIPS_DELTA_CLASS
:
2240 case DT_MIPS_DELTA_CLASS_NO
:
2241 case DT_MIPS_DELTA_INSTANCE
:
2242 case DT_MIPS_DELTA_RELOC
:
2243 case DT_MIPS_DELTA_RELOC_NO
:
2244 case DT_MIPS_DELTA_SYM
:
2245 case DT_MIPS_DELTA_SYM_NO
:
2246 case DT_MIPS_DELTA_CLASSSYM
:
2247 case DT_MIPS_DELTA_CLASSSYM_NO
:
2248 case DT_MIPS_CXX_FLAGS
:
2249 case DT_MIPS_PIXIE_INIT
:
2250 case DT_MIPS_SYMBOL_LIB
:
2251 case DT_MIPS_LOCALPAGE_GOTIDX
:
2252 case DT_MIPS_LOCAL_GOTIDX
:
2253 case DT_MIPS_HIDDEN_GOTIDX
:
2254 case DT_MIPS_PROTECTED_GOTIDX
:
2255 case DT_MIPS_OPTIONS
:
2256 case DT_MIPS_INTERFACE
:
2257 case DT_MIPS_DYNSTR_ALIGN
:
2258 case DT_MIPS_INTERFACE_SIZE
:
2259 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR
:
2260 case DT_MIPS_PERF_SUFFIX
:
2261 case DT_MIPS_COMPACT_SIZE
:
2262 case DT_MIPS_GP_VALUE
:
2263 case DT_MIPS_AUX_DYNAMIC
:
2264 case DT_MIPS_PLTGOT
:
2266 case DT_MIPS_RLD_MAP_REL
:
2267 return FormatHexValue(Value
);
2269 return FormatFlags(Value
, makeArrayRef(ElfDynamicDTMipsFlags
));
2280 if (Value
== DT_REL
)
2282 if (Value
== DT_RELA
)
2296 case DT_PREINIT_ARRAY
:
2303 return FormatHexValue(Value
);
2308 return std::to_string(Value
);
2316 case DT_INIT_ARRAYSZ
:
2317 case DT_FINI_ARRAYSZ
:
2318 case DT_PREINIT_ARRAYSZ
:
2321 case DT_ANDROID_RELSZ
:
2322 case DT_ANDROID_RELASZ
:
2323 return std::to_string(Value
) + " (bytes)";
2331 const std::map
<uint64_t, const char *> TagNames
= {
2332 {DT_NEEDED
, "Shared library"}, {DT_SONAME
, "Library soname"},
2333 {DT_AUXILIARY
, "Auxiliary library"}, {DT_USED
, "Not needed object"},
2334 {DT_FILTER
, "Filter library"}, {DT_RPATH
, "Library rpath"},
2335 {DT_RUNPATH
, "Library runpath"},
2338 return (Twine(TagNames
.at(Type
)) + ": [" + getDynamicString(Value
) + "]")
2342 return FormatFlags(Value
, makeArrayRef(ElfDynamicDTFlags
));
2344 return FormatFlags(Value
, makeArrayRef(ElfDynamicDTFlags1
));
2346 return FormatHexValue(Value
);
2350 template <class ELFT
>
2351 StringRef ELFDumper
<ELFT
>::getDynamicString(uint64_t Value
) const {
2352 if (DynamicStringTable
.empty() && !DynamicStringTable
.data()) {
2353 reportUniqueWarning("string table was not found");
2357 auto WarnAndReturn
= [this](const Twine
&Msg
, uint64_t Offset
) {
2358 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset
) +
2363 const uint64_t FileSize
= Obj
.getBufSize();
2364 const uint64_t Offset
=
2365 (const uint8_t *)DynamicStringTable
.data() - Obj
.base();
2366 if (DynamicStringTable
.size() > FileSize
- Offset
)
2367 return WarnAndReturn(" with size 0x" +
2368 Twine::utohexstr(DynamicStringTable
.size()) +
2369 " goes past the end of the file (0x" +
2370 Twine::utohexstr(FileSize
) + ")",
2373 if (Value
>= DynamicStringTable
.size())
2374 return WarnAndReturn(
2375 ": unable to read the string at 0x" + Twine::utohexstr(Offset
+ Value
) +
2376 ": it goes past the end of the table (0x" +
2377 Twine::utohexstr(Offset
+ DynamicStringTable
.size()) + ")",
2380 if (DynamicStringTable
.back() != '\0')
2381 return WarnAndReturn(": unable to read the string at 0x" +
2382 Twine::utohexstr(Offset
+ Value
) +
2383 ": the string table is not null-terminated",
2386 return DynamicStringTable
.data() + Value
;
2389 template <class ELFT
> void ELFDumper
<ELFT
>::printUnwindInfo() {
2390 DwarfCFIEH::PrinterContext
<ELFT
> Ctx(W
, ObjF
);
2391 Ctx
.printUnwindInformation();
2394 // The namespace is needed to fix the compilation with GCC older than 7.0+.
2396 template <> void ELFDumper
<ELF32LE
>::printUnwindInfo() {
2397 if (Obj
.getHeader().e_machine
== EM_ARM
) {
2398 ARM::EHABI::PrinterContext
<ELF32LE
> Ctx(W
, Obj
, ObjF
.getFileName(),
2400 Ctx
.PrintUnwindInformation();
2402 DwarfCFIEH::PrinterContext
<ELF32LE
> Ctx(W
, ObjF
);
2403 Ctx
.printUnwindInformation();
2407 template <class ELFT
> void ELFDumper
<ELFT
>::printNeededLibraries() {
2408 ListScope
D(W
, "NeededLibraries");
2410 std::vector
<StringRef
> Libs
;
2411 for (const auto &Entry
: dynamic_table())
2412 if (Entry
.d_tag
== ELF::DT_NEEDED
)
2413 Libs
.push_back(getDynamicString(Entry
.d_un
.d_val
));
2417 for (StringRef L
: Libs
)
2418 W
.startLine() << L
<< "\n";
2421 template <class ELFT
>
2422 static Error
checkHashTable(const ELFDumper
<ELFT
> &Dumper
,
2423 const typename
ELFT::Hash
*H
,
2424 bool *IsHeaderValid
= nullptr) {
2425 const ELFFile
<ELFT
> &Obj
= Dumper
.getElfObject().getELFFile();
2426 const uint64_t SecOffset
= (const uint8_t *)H
- Obj
.base();
2427 if (Dumper
.getHashTableEntSize() == 8) {
2428 auto It
= llvm::find_if(ElfMachineType
, [&](const EnumEntry
<unsigned> &E
) {
2429 return E
.Value
== Obj
.getHeader().e_machine
;
2432 *IsHeaderValid
= false;
2433 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset
) +
2434 " is not supported: it contains non-standard 8 "
2435 "byte entries on " +
2436 It
->AltName
+ " platform");
2439 auto MakeError
= [&](const Twine
&Msg
= "") {
2440 return createError("the hash table at offset 0x" +
2441 Twine::utohexstr(SecOffset
) +
2442 " goes past the end of the file (0x" +
2443 Twine::utohexstr(Obj
.getBufSize()) + ")" + Msg
);
2446 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2447 const unsigned HeaderSize
= 2 * sizeof(typename
ELFT::Word
);
2450 *IsHeaderValid
= Obj
.getBufSize() - SecOffset
>= HeaderSize
;
2452 if (Obj
.getBufSize() - SecOffset
< HeaderSize
)
2455 if (Obj
.getBufSize() - SecOffset
- HeaderSize
<
2456 ((uint64_t)H
->nbucket
+ H
->nchain
) * sizeof(typename
ELFT::Word
))
2457 return MakeError(", nbucket = " + Twine(H
->nbucket
) +
2458 ", nchain = " + Twine(H
->nchain
));
2459 return Error::success();
2462 template <class ELFT
>
2463 static Error
checkGNUHashTable(const ELFFile
<ELFT
> &Obj
,
2464 const typename
ELFT::GnuHash
*GnuHashTable
,
2465 bool *IsHeaderValid
= nullptr) {
2466 const uint8_t *TableData
= reinterpret_cast<const uint8_t *>(GnuHashTable
);
2467 assert(TableData
>= Obj
.base() && TableData
< Obj
.base() + Obj
.getBufSize() &&
2468 "GnuHashTable must always point to a location inside the file");
2470 uint64_t TableOffset
= TableData
- Obj
.base();
2472 *IsHeaderValid
= TableOffset
+ /*Header size:*/ 16 < Obj
.getBufSize();
2473 if (TableOffset
+ 16 + (uint64_t)GnuHashTable
->nbuckets
* 4 +
2474 (uint64_t)GnuHashTable
->maskwords
* sizeof(typename
ELFT::Off
) >=
2476 return createError("unable to dump the SHT_GNU_HASH "
2478 Twine::utohexstr(TableOffset
) +
2479 ": it goes past the end of the file");
2480 return Error::success();
2483 template <typename ELFT
> void ELFDumper
<ELFT
>::printHashTable() {
2484 DictScope
D(W
, "HashTable");
2489 Error Err
= checkHashTable(*this, HashTable
, &IsHeaderValid
);
2490 if (IsHeaderValid
) {
2491 W
.printNumber("Num Buckets", HashTable
->nbucket
);
2492 W
.printNumber("Num Chains", HashTable
->nchain
);
2496 reportUniqueWarning(std::move(Err
));
2500 W
.printList("Buckets", HashTable
->buckets());
2501 W
.printList("Chains", HashTable
->chains());
2504 template <class ELFT
>
2505 static Expected
<ArrayRef
<typename
ELFT::Word
>>
2506 getGnuHashTableChains(Optional
<DynRegionInfo
> DynSymRegion
,
2507 const typename
ELFT::GnuHash
*GnuHashTable
) {
2509 return createError("no dynamic symbol table found");
2511 ArrayRef
<typename
ELFT::Sym
> DynSymTable
=
2512 DynSymRegion
->template getAsArrayRef
<typename
ELFT::Sym
>();
2513 size_t NumSyms
= DynSymTable
.size();
2515 return createError("the dynamic symbol table is empty");
2517 if (GnuHashTable
->symndx
< NumSyms
)
2518 return GnuHashTable
->values(NumSyms
);
2520 // A normal empty GNU hash table section produced by linker might have
2521 // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2522 // and have dummy null values in the Bloom filter and in the buckets
2523 // vector (or no values at all). It happens because the value of symndx is not
2524 // important for dynamic loaders when the GNU hash table is empty. They just
2525 // skip the whole object during symbol lookup. In such cases, the symndx value
2526 // is irrelevant and we should not report a warning.
2527 ArrayRef
<typename
ELFT::Word
> Buckets
= GnuHashTable
->buckets();
2528 if (!llvm::all_of(Buckets
, [](typename
ELFT::Word V
) { return V
== 0; }))
2530 "the first hashed symbol index (" + Twine(GnuHashTable
->symndx
) +
2531 ") is greater than or equal to the number of dynamic symbols (" +
2532 Twine(NumSyms
) + ")");
2533 // There is no way to represent an array of (dynamic symbols count - symndx)
2535 return ArrayRef
<typename
ELFT::Word
>();
2538 template <typename ELFT
>
2539 void ELFDumper
<ELFT
>::printGnuHashTable() {
2540 DictScope
D(W
, "GnuHashTable");
2545 Error Err
= checkGNUHashTable
<ELFT
>(Obj
, GnuHashTable
, &IsHeaderValid
);
2546 if (IsHeaderValid
) {
2547 W
.printNumber("Num Buckets", GnuHashTable
->nbuckets
);
2548 W
.printNumber("First Hashed Symbol Index", GnuHashTable
->symndx
);
2549 W
.printNumber("Num Mask Words", GnuHashTable
->maskwords
);
2550 W
.printNumber("Shift Count", GnuHashTable
->shift2
);
2554 reportUniqueWarning(std::move(Err
));
2558 ArrayRef
<typename
ELFT::Off
> BloomFilter
= GnuHashTable
->filter();
2559 W
.printHexList("Bloom Filter", BloomFilter
);
2561 ArrayRef
<Elf_Word
> Buckets
= GnuHashTable
->buckets();
2562 W
.printList("Buckets", Buckets
);
2564 Expected
<ArrayRef
<Elf_Word
>> Chains
=
2565 getGnuHashTableChains
<ELFT
>(DynSymRegion
, GnuHashTable
);
2567 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2569 toString(Chains
.takeError()));
2573 W
.printHexList("Values", *Chains
);
2576 template <typename ELFT
> void ELFDumper
<ELFT
>::printLoadName() {
2577 StringRef SOName
= "<Not found>";
2579 SOName
= getDynamicString(*SONameOffset
);
2580 W
.printString("LoadName", SOName
);
2583 template <class ELFT
> void ELFDumper
<ELFT
>::printArchSpecificInfo() {
2584 switch (Obj
.getHeader().e_machine
) {
2587 printAttributes(ELF::SHT_ARM_ATTRIBUTES
,
2588 std::make_unique
<ARMAttributeParser
>(&W
),
2591 reportUniqueWarning("attribute printing not implemented for big-endian "
2596 printAttributes(ELF::SHT_RISCV_ATTRIBUTES
,
2597 std::make_unique
<RISCVAttributeParser
>(&W
),
2600 reportUniqueWarning("attribute printing not implemented for big-endian "
2604 printAttributes(ELF::SHT_MSP430_ATTRIBUTES
,
2605 std::make_unique
<MSP430AttributeParser
>(&W
),
2609 printMipsABIFlags();
2612 MipsGOTParser
<ELFT
> Parser(*this);
2613 if (Error E
= Parser
.findGOT(dynamic_table(), dynamic_symbols()))
2614 reportUniqueWarning(std::move(E
));
2615 else if (!Parser
.isGotEmpty())
2616 printMipsGOT(Parser
);
2618 if (Error E
= Parser
.findPLT(dynamic_table()))
2619 reportUniqueWarning(std::move(E
));
2620 else if (!Parser
.isPltEmpty())
2621 printMipsPLT(Parser
);
2629 template <class ELFT
>
2630 void ELFDumper
<ELFT
>::printAttributes(
2631 unsigned AttrShType
, std::unique_ptr
<ELFAttributeParser
> AttrParser
,
2632 support::endianness Endianness
) {
2633 assert((AttrShType
!= ELF::SHT_NULL
) && AttrParser
&&
2634 "Incomplete ELF attribute implementation");
2635 DictScope
BA(W
, "BuildAttributes");
2636 for (const Elf_Shdr
&Sec
: cantFail(Obj
.sections())) {
2637 if (Sec
.sh_type
!= AttrShType
)
2640 ArrayRef
<uint8_t> Contents
;
2641 if (Expected
<ArrayRef
<uint8_t>> ContentOrErr
=
2642 Obj
.getSectionContents(Sec
)) {
2643 Contents
= *ContentOrErr
;
2644 if (Contents
.empty()) {
2645 reportUniqueWarning("the " + describe(Sec
) + " is empty");
2649 reportUniqueWarning("unable to read the content of the " + describe(Sec
) +
2650 ": " + toString(ContentOrErr
.takeError()));
2654 W
.printHex("FormatVersion", Contents
[0]);
2656 if (Error E
= AttrParser
->parse(Contents
, Endianness
))
2657 reportUniqueWarning("unable to dump attributes from the " +
2658 describe(Sec
) + ": " + toString(std::move(E
)));
2664 template <class ELFT
> class MipsGOTParser
{
2666 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
2667 using Entry
= typename
ELFT::Addr
;
2668 using Entries
= ArrayRef
<Entry
>;
2670 const bool IsStatic
;
2671 const ELFFile
<ELFT
> &Obj
;
2672 const ELFDumper
<ELFT
> &Dumper
;
2674 MipsGOTParser(const ELFDumper
<ELFT
> &D
);
2675 Error
findGOT(Elf_Dyn_Range DynTable
, Elf_Sym_Range DynSyms
);
2676 Error
findPLT(Elf_Dyn_Range DynTable
);
2678 bool isGotEmpty() const { return GotEntries
.empty(); }
2679 bool isPltEmpty() const { return PltEntries
.empty(); }
2681 uint64_t getGp() const;
2683 const Entry
*getGotLazyResolver() const;
2684 const Entry
*getGotModulePointer() const;
2685 const Entry
*getPltLazyResolver() const;
2686 const Entry
*getPltModulePointer() const;
2688 Entries
getLocalEntries() const;
2689 Entries
getGlobalEntries() const;
2690 Entries
getOtherEntries() const;
2691 Entries
getPltEntries() const;
2693 uint64_t getGotAddress(const Entry
* E
) const;
2694 int64_t getGotOffset(const Entry
* E
) const;
2695 const Elf_Sym
*getGotSym(const Entry
*E
) const;
2697 uint64_t getPltAddress(const Entry
* E
) const;
2698 const Elf_Sym
*getPltSym(const Entry
*E
) const;
2700 StringRef
getPltStrTable() const { return PltStrTable
; }
2701 const Elf_Shdr
*getPltSymTable() const { return PltSymTable
; }
2704 const Elf_Shdr
*GotSec
;
2708 const Elf_Shdr
*PltSec
;
2709 const Elf_Shdr
*PltRelSec
;
2710 const Elf_Shdr
*PltSymTable
;
2713 Elf_Sym_Range GotDynSyms
;
2714 StringRef PltStrTable
;
2720 } // end anonymous namespace
2722 template <class ELFT
>
2723 MipsGOTParser
<ELFT
>::MipsGOTParser(const ELFDumper
<ELFT
> &D
)
2724 : IsStatic(D
.dynamic_table().empty()), Obj(D
.getElfObject().getELFFile()),
2725 Dumper(D
), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2726 PltRelSec(nullptr), PltSymTable(nullptr),
2727 FileName(D
.getElfObject().getFileName()) {}
2729 template <class ELFT
>
2730 Error MipsGOTParser
<ELFT
>::findGOT(Elf_Dyn_Range DynTable
,
2731 Elf_Sym_Range DynSyms
) {
2732 // See "Global Offset Table" in Chapter 5 in the following document
2733 // for detailed GOT description.
2734 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2736 // Find static GOT secton.
2738 GotSec
= Dumper
.findSectionByName(".got");
2740 return Error::success();
2742 ArrayRef
<uint8_t> Content
=
2743 unwrapOrError(FileName
, Obj
.getSectionContents(*GotSec
));
2744 GotEntries
= Entries(reinterpret_cast<const Entry
*>(Content
.data()),
2745 Content
.size() / sizeof(Entry
));
2746 LocalNum
= GotEntries
.size();
2747 return Error::success();
2750 // Lookup dynamic table tags which define the GOT layout.
2751 Optional
<uint64_t> DtPltGot
;
2752 Optional
<uint64_t> DtLocalGotNum
;
2753 Optional
<uint64_t> DtGotSym
;
2754 for (const auto &Entry
: DynTable
) {
2755 switch (Entry
.getTag()) {
2756 case ELF::DT_PLTGOT
:
2757 DtPltGot
= Entry
.getVal();
2759 case ELF::DT_MIPS_LOCAL_GOTNO
:
2760 DtLocalGotNum
= Entry
.getVal();
2762 case ELF::DT_MIPS_GOTSYM
:
2763 DtGotSym
= Entry
.getVal();
2768 if (!DtPltGot
&& !DtLocalGotNum
&& !DtGotSym
)
2769 return Error::success();
2772 return createError("cannot find PLTGOT dynamic tag");
2774 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
2776 return createError("cannot find MIPS_GOTSYM dynamic tag");
2778 size_t DynSymTotal
= DynSyms
.size();
2779 if (*DtGotSym
> DynSymTotal
)
2780 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym
) +
2781 ") exceeds the number of dynamic symbols (" +
2782 Twine(DynSymTotal
) + ")");
2784 GotSec
= findNotEmptySectionByAddress(Obj
, FileName
, *DtPltGot
);
2786 return createError("there is no non-empty GOT section at 0x" +
2787 Twine::utohexstr(*DtPltGot
));
2789 LocalNum
= *DtLocalGotNum
;
2790 GlobalNum
= DynSymTotal
- *DtGotSym
;
2792 ArrayRef
<uint8_t> Content
=
2793 unwrapOrError(FileName
, Obj
.getSectionContents(*GotSec
));
2794 GotEntries
= Entries(reinterpret_cast<const Entry
*>(Content
.data()),
2795 Content
.size() / sizeof(Entry
));
2796 GotDynSyms
= DynSyms
.drop_front(*DtGotSym
);
2798 return Error::success();
2801 template <class ELFT
>
2802 Error MipsGOTParser
<ELFT
>::findPLT(Elf_Dyn_Range DynTable
) {
2803 // Lookup dynamic table tags which define the PLT layout.
2804 Optional
<uint64_t> DtMipsPltGot
;
2805 Optional
<uint64_t> DtJmpRel
;
2806 for (const auto &Entry
: DynTable
) {
2807 switch (Entry
.getTag()) {
2808 case ELF::DT_MIPS_PLTGOT
:
2809 DtMipsPltGot
= Entry
.getVal();
2811 case ELF::DT_JMPREL
:
2812 DtJmpRel
= Entry
.getVal();
2817 if (!DtMipsPltGot
&& !DtJmpRel
)
2818 return Error::success();
2820 // Find PLT section.
2822 return createError("cannot find MIPS_PLTGOT dynamic tag");
2824 return createError("cannot find JMPREL dynamic tag");
2826 PltSec
= findNotEmptySectionByAddress(Obj
, FileName
, *DtMipsPltGot
);
2828 return createError("there is no non-empty PLTGOT section at 0x" +
2829 Twine::utohexstr(*DtMipsPltGot
));
2831 PltRelSec
= findNotEmptySectionByAddress(Obj
, FileName
, *DtJmpRel
);
2833 return createError("there is no non-empty RELPLT section at 0x" +
2834 Twine::utohexstr(*DtJmpRel
));
2836 if (Expected
<ArrayRef
<uint8_t>> PltContentOrErr
=
2837 Obj
.getSectionContents(*PltSec
))
2839 Entries(reinterpret_cast<const Entry
*>(PltContentOrErr
->data()),
2840 PltContentOrErr
->size() / sizeof(Entry
));
2842 return createError("unable to read PLTGOT section content: " +
2843 toString(PltContentOrErr
.takeError()));
2845 if (Expected
<const Elf_Shdr
*> PltSymTableOrErr
=
2846 Obj
.getSection(PltRelSec
->sh_link
))
2847 PltSymTable
= *PltSymTableOrErr
;
2849 return createError("unable to get a symbol table linked to the " +
2850 describe(Obj
, *PltRelSec
) + ": " +
2851 toString(PltSymTableOrErr
.takeError()));
2853 if (Expected
<StringRef
> StrTabOrErr
=
2854 Obj
.getStringTableForSymtab(*PltSymTable
))
2855 PltStrTable
= *StrTabOrErr
;
2857 return createError("unable to get a string table for the " +
2858 describe(Obj
, *PltSymTable
) + ": " +
2859 toString(StrTabOrErr
.takeError()));
2861 return Error::success();
2864 template <class ELFT
> uint64_t MipsGOTParser
<ELFT
>::getGp() const {
2865 return GotSec
->sh_addr
+ 0x7ff0;
2868 template <class ELFT
>
2869 const typename MipsGOTParser
<ELFT
>::Entry
*
2870 MipsGOTParser
<ELFT
>::getGotLazyResolver() const {
2871 return LocalNum
> 0 ? &GotEntries
[0] : nullptr;
2874 template <class ELFT
>
2875 const typename MipsGOTParser
<ELFT
>::Entry
*
2876 MipsGOTParser
<ELFT
>::getGotModulePointer() const {
2879 const Entry
&E
= GotEntries
[1];
2880 if ((E
>> (sizeof(Entry
) * 8 - 1)) == 0)
2885 template <class ELFT
>
2886 typename MipsGOTParser
<ELFT
>::Entries
2887 MipsGOTParser
<ELFT
>::getLocalEntries() const {
2888 size_t Skip
= getGotModulePointer() ? 2 : 1;
2889 if (LocalNum
- Skip
<= 0)
2891 return GotEntries
.slice(Skip
, LocalNum
- Skip
);
2894 template <class ELFT
>
2895 typename MipsGOTParser
<ELFT
>::Entries
2896 MipsGOTParser
<ELFT
>::getGlobalEntries() const {
2899 return GotEntries
.slice(LocalNum
, GlobalNum
);
2902 template <class ELFT
>
2903 typename MipsGOTParser
<ELFT
>::Entries
2904 MipsGOTParser
<ELFT
>::getOtherEntries() const {
2905 size_t OtherNum
= GotEntries
.size() - LocalNum
- GlobalNum
;
2908 return GotEntries
.slice(LocalNum
+ GlobalNum
, OtherNum
);
2911 template <class ELFT
>
2912 uint64_t MipsGOTParser
<ELFT
>::getGotAddress(const Entry
*E
) const {
2913 int64_t Offset
= std::distance(GotEntries
.data(), E
) * sizeof(Entry
);
2914 return GotSec
->sh_addr
+ Offset
;
2917 template <class ELFT
>
2918 int64_t MipsGOTParser
<ELFT
>::getGotOffset(const Entry
*E
) const {
2919 int64_t Offset
= std::distance(GotEntries
.data(), E
) * sizeof(Entry
);
2920 return Offset
- 0x7ff0;
2923 template <class ELFT
>
2924 const typename MipsGOTParser
<ELFT
>::Elf_Sym
*
2925 MipsGOTParser
<ELFT
>::getGotSym(const Entry
*E
) const {
2926 int64_t Offset
= std::distance(GotEntries
.data(), E
);
2927 return &GotDynSyms
[Offset
- LocalNum
];
2930 template <class ELFT
>
2931 const typename MipsGOTParser
<ELFT
>::Entry
*
2932 MipsGOTParser
<ELFT
>::getPltLazyResolver() const {
2933 return PltEntries
.empty() ? nullptr : &PltEntries
[0];
2936 template <class ELFT
>
2937 const typename MipsGOTParser
<ELFT
>::Entry
*
2938 MipsGOTParser
<ELFT
>::getPltModulePointer() const {
2939 return PltEntries
.size() < 2 ? nullptr : &PltEntries
[1];
2942 template <class ELFT
>
2943 typename MipsGOTParser
<ELFT
>::Entries
2944 MipsGOTParser
<ELFT
>::getPltEntries() const {
2945 if (PltEntries
.size() <= 2)
2947 return PltEntries
.slice(2, PltEntries
.size() - 2);
2950 template <class ELFT
>
2951 uint64_t MipsGOTParser
<ELFT
>::getPltAddress(const Entry
*E
) const {
2952 int64_t Offset
= std::distance(PltEntries
.data(), E
) * sizeof(Entry
);
2953 return PltSec
->sh_addr
+ Offset
;
2956 template <class ELFT
>
2957 const typename MipsGOTParser
<ELFT
>::Elf_Sym
*
2958 MipsGOTParser
<ELFT
>::getPltSym(const Entry
*E
) const {
2959 int64_t Offset
= std::distance(getPltEntries().data(), E
);
2960 if (PltRelSec
->sh_type
== ELF::SHT_REL
) {
2961 Elf_Rel_Range Rels
= unwrapOrError(FileName
, Obj
.rels(*PltRelSec
));
2962 return unwrapOrError(FileName
,
2963 Obj
.getRelocationSymbol(Rels
[Offset
], PltSymTable
));
2965 Elf_Rela_Range Rels
= unwrapOrError(FileName
, Obj
.relas(*PltRelSec
));
2966 return unwrapOrError(FileName
,
2967 Obj
.getRelocationSymbol(Rels
[Offset
], PltSymTable
));
2971 const EnumEntry
<unsigned> ElfMipsISAExtType
[] = {
2972 {"None", Mips::AFL_EXT_NONE
},
2973 {"Broadcom SB-1", Mips::AFL_EXT_SB1
},
2974 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON
},
2975 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2
},
2976 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP
},
2977 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3
},
2978 {"LSI R4010", Mips::AFL_EXT_4010
},
2979 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E
},
2980 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F
},
2981 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A
},
2982 {"MIPS R4650", Mips::AFL_EXT_4650
},
2983 {"MIPS R5900", Mips::AFL_EXT_5900
},
2984 {"MIPS R10000", Mips::AFL_EXT_10000
},
2985 {"NEC VR4100", Mips::AFL_EXT_4100
},
2986 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111
},
2987 {"NEC VR4120", Mips::AFL_EXT_4120
},
2988 {"NEC VR5400", Mips::AFL_EXT_5400
},
2989 {"NEC VR5500", Mips::AFL_EXT_5500
},
2990 {"RMI Xlr", Mips::AFL_EXT_XLR
},
2991 {"Toshiba R3900", Mips::AFL_EXT_3900
}
2994 const EnumEntry
<unsigned> ElfMipsASEFlags
[] = {
2995 {"DSP", Mips::AFL_ASE_DSP
},
2996 {"DSPR2", Mips::AFL_ASE_DSPR2
},
2997 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA
},
2998 {"MCU", Mips::AFL_ASE_MCU
},
2999 {"MDMX", Mips::AFL_ASE_MDMX
},
3000 {"MIPS-3D", Mips::AFL_ASE_MIPS3D
},
3001 {"MT", Mips::AFL_ASE_MT
},
3002 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS
},
3003 {"VZ", Mips::AFL_ASE_VIRT
},
3004 {"MSA", Mips::AFL_ASE_MSA
},
3005 {"MIPS16", Mips::AFL_ASE_MIPS16
},
3006 {"microMIPS", Mips::AFL_ASE_MICROMIPS
},
3007 {"XPA", Mips::AFL_ASE_XPA
},
3008 {"CRC", Mips::AFL_ASE_CRC
},
3009 {"GINV", Mips::AFL_ASE_GINV
},
3012 const EnumEntry
<unsigned> ElfMipsFpABIType
[] = {
3013 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY
},
3014 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE
},
3015 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE
},
3016 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT
},
3017 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3018 Mips::Val_GNU_MIPS_ABI_FP_OLD_64
},
3019 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX
},
3020 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64
},
3021 {"Hard float compat (32-bit CPU, 64-bit FPU)",
3022 Mips::Val_GNU_MIPS_ABI_FP_64A
}
3025 static const EnumEntry
<unsigned> ElfMipsFlags1
[] {
3026 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG
},
3029 static int getMipsRegisterSize(uint8_t Flag
) {
3031 case Mips::AFL_REG_NONE
:
3033 case Mips::AFL_REG_32
:
3035 case Mips::AFL_REG_64
:
3037 case Mips::AFL_REG_128
:
3044 template <class ELFT
>
3045 static void printMipsReginfoData(ScopedPrinter
&W
,
3046 const Elf_Mips_RegInfo
<ELFT
> &Reginfo
) {
3047 W
.printHex("GP", Reginfo
.ri_gp_value
);
3048 W
.printHex("General Mask", Reginfo
.ri_gprmask
);
3049 W
.printHex("Co-Proc Mask0", Reginfo
.ri_cprmask
[0]);
3050 W
.printHex("Co-Proc Mask1", Reginfo
.ri_cprmask
[1]);
3051 W
.printHex("Co-Proc Mask2", Reginfo
.ri_cprmask
[2]);
3052 W
.printHex("Co-Proc Mask3", Reginfo
.ri_cprmask
[3]);
3055 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsReginfo() {
3056 const Elf_Shdr
*RegInfoSec
= findSectionByName(".reginfo");
3058 W
.startLine() << "There is no .reginfo section in the file.\n";
3062 Expected
<ArrayRef
<uint8_t>> ContentsOrErr
=
3063 Obj
.getSectionContents(*RegInfoSec
);
3064 if (!ContentsOrErr
) {
3065 this->reportUniqueWarning(
3066 "unable to read the content of the .reginfo section (" +
3067 describe(*RegInfoSec
) + "): " + toString(ContentsOrErr
.takeError()));
3071 if (ContentsOrErr
->size() < sizeof(Elf_Mips_RegInfo
<ELFT
>)) {
3072 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3073 Twine::utohexstr(ContentsOrErr
->size()) + ")");
3077 DictScope
GS(W
, "MIPS RegInfo");
3078 printMipsReginfoData(W
, *reinterpret_cast<const Elf_Mips_RegInfo
<ELFT
> *>(
3079 ContentsOrErr
->data()));
3082 template <class ELFT
>
3083 static Expected
<const Elf_Mips_Options
<ELFT
> *>
3084 readMipsOptions(const uint8_t *SecBegin
, ArrayRef
<uint8_t> &SecData
,
3085 bool &IsSupported
) {
3086 if (SecData
.size() < sizeof(Elf_Mips_Options
<ELFT
>))
3087 return createError("the .MIPS.options section has an invalid size (0x" +
3088 Twine::utohexstr(SecData
.size()) + ")");
3090 const Elf_Mips_Options
<ELFT
> *O
=
3091 reinterpret_cast<const Elf_Mips_Options
<ELFT
> *>(SecData
.data());
3092 const uint8_t Size
= O
->size
;
3093 if (Size
> SecData
.size()) {
3094 const uint64_t Offset
= SecData
.data() - SecBegin
;
3095 const uint64_t SecSize
= Offset
+ SecData
.size();
3096 return createError("a descriptor of size 0x" + Twine::utohexstr(Size
) +
3097 " at offset 0x" + Twine::utohexstr(Offset
) +
3098 " goes past the end of the .MIPS.options "
3099 "section of size 0x" +
3100 Twine::utohexstr(SecSize
));
3103 IsSupported
= O
->kind
== ODK_REGINFO
;
3104 const size_t ExpectedSize
=
3105 sizeof(Elf_Mips_Options
<ELFT
>) + sizeof(Elf_Mips_RegInfo
<ELFT
>);
3108 if (Size
< ExpectedSize
)
3110 "a .MIPS.options entry of kind " +
3111 Twine(getElfMipsOptionsOdkType(O
->kind
)) +
3112 " has an invalid size (0x" + Twine::utohexstr(Size
) +
3113 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize
));
3115 SecData
= SecData
.drop_front(Size
);
3119 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsOptions() {
3120 const Elf_Shdr
*MipsOpts
= findSectionByName(".MIPS.options");
3122 W
.startLine() << "There is no .MIPS.options section in the file.\n";
3126 DictScope
GS(W
, "MIPS Options");
3128 ArrayRef
<uint8_t> Data
=
3129 unwrapOrError(ObjF
.getFileName(), Obj
.getSectionContents(*MipsOpts
));
3130 const uint8_t *const SecBegin
= Data
.begin();
3131 while (!Data
.empty()) {
3133 Expected
<const Elf_Mips_Options
<ELFT
> *> OptsOrErr
=
3134 readMipsOptions
<ELFT
>(SecBegin
, Data
, IsSupported
);
3136 reportUniqueWarning(OptsOrErr
.takeError());
3140 unsigned Kind
= (*OptsOrErr
)->kind
;
3141 const char *Type
= getElfMipsOptionsOdkType(Kind
);
3143 W
.startLine() << "Unsupported MIPS options tag: " << Type
<< " (" << Kind
3148 DictScope
GS(W
, Type
);
3149 if (Kind
== ODK_REGINFO
)
3150 printMipsReginfoData(W
, (*OptsOrErr
)->getRegInfo());
3152 llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3156 template <class ELFT
> void ELFDumper
<ELFT
>::printStackMap() const {
3157 const Elf_Shdr
*StackMapSection
= findSectionByName(".llvm_stackmaps");
3158 if (!StackMapSection
)
3161 auto Warn
= [&](Error
&&E
) {
3162 this->reportUniqueWarning("unable to read the stack map from " +
3163 describe(*StackMapSection
) + ": " +
3164 toString(std::move(E
)));
3167 Expected
<ArrayRef
<uint8_t>> ContentOrErr
=
3168 Obj
.getSectionContents(*StackMapSection
);
3169 if (!ContentOrErr
) {
3170 Warn(ContentOrErr
.takeError());
3174 if (Error E
= StackMapParser
<ELFT::TargetEndianness
>::validateHeader(
3180 prettyPrintStackMap(W
, StackMapParser
<ELFT::TargetEndianness
>(*ContentOrErr
));
3183 template <class ELFT
>
3184 void ELFDumper
<ELFT
>::printReloc(const Relocation
<ELFT
> &R
, unsigned RelIndex
,
3185 const Elf_Shdr
&Sec
, const Elf_Shdr
*SymTab
) {
3186 Expected
<RelSymbol
<ELFT
>> Target
= getRelocationTarget(R
, SymTab
);
3188 reportUniqueWarning("unable to print relocation " + Twine(RelIndex
) +
3189 " in " + describe(Sec
) + ": " +
3190 toString(Target
.takeError()));
3192 printRelRelaReloc(R
, *Target
);
3195 static inline void printFields(formatted_raw_ostream
&OS
, StringRef Str1
,
3199 OS
.PadToColumn(37u);
3204 template <class ELFT
>
3205 static std::string
getSectionHeadersNumString(const ELFFile
<ELFT
> &Obj
,
3206 StringRef FileName
) {
3207 const typename
ELFT::Ehdr
&ElfHeader
= Obj
.getHeader();
3208 if (ElfHeader
.e_shnum
!= 0)
3209 return to_string(ElfHeader
.e_shnum
);
3211 Expected
<ArrayRef
<typename
ELFT::Shdr
>> ArrOrErr
= Obj
.sections();
3213 // In this case we can ignore an error, because we have already reported a
3214 // warning about the broken section header table earlier.
3215 consumeError(ArrOrErr
.takeError());
3219 if (ArrOrErr
->empty())
3221 return "0 (" + to_string((*ArrOrErr
)[0].sh_size
) + ")";
3224 template <class ELFT
>
3225 static std::string
getSectionHeaderTableIndexString(const ELFFile
<ELFT
> &Obj
,
3226 StringRef FileName
) {
3227 const typename
ELFT::Ehdr
&ElfHeader
= Obj
.getHeader();
3228 if (ElfHeader
.e_shstrndx
!= SHN_XINDEX
)
3229 return to_string(ElfHeader
.e_shstrndx
);
3231 Expected
<ArrayRef
<typename
ELFT::Shdr
>> ArrOrErr
= Obj
.sections();
3233 // In this case we can ignore an error, because we have already reported a
3234 // warning about the broken section header table earlier.
3235 consumeError(ArrOrErr
.takeError());
3239 if (ArrOrErr
->empty())
3240 return "65535 (corrupt: out of range)";
3241 return to_string(ElfHeader
.e_shstrndx
) + " (" +
3242 to_string((*ArrOrErr
)[0].sh_link
) + ")";
3245 static const EnumEntry
<unsigned> *getObjectFileEnumEntry(unsigned Type
) {
3246 auto It
= llvm::find_if(ElfObjectFileType
, [&](const EnumEntry
<unsigned> &E
) {
3247 return E
.Value
== Type
;
3249 if (It
!= makeArrayRef(ElfObjectFileType
).end())
3254 template <class ELFT
>
3255 void GNUELFDumper
<ELFT
>::printFileSummary(StringRef FileStr
, ObjectFile
&Obj
,
3256 ArrayRef
<std::string
> InputFilenames
,
3258 if (InputFilenames
.size() > 1 || A
) {
3259 this->W
.startLine() << "\n";
3260 this->W
.printString("File", FileStr
);
3264 template <class ELFT
> void GNUELFDumper
<ELFT
>::printFileHeaders() {
3265 const Elf_Ehdr
&e
= this->Obj
.getHeader();
3266 OS
<< "ELF Header:\n";
3269 for (int i
= 0; i
< ELF::EI_NIDENT
; i
++)
3270 OS
<< format(" %02x", static_cast<int>(e
.e_ident
[i
]));
3272 Str
= enumToString(e
.e_ident
[ELF::EI_CLASS
], makeArrayRef(ElfClass
));
3273 printFields(OS
, "Class:", Str
);
3274 Str
= enumToString(e
.e_ident
[ELF::EI_DATA
], makeArrayRef(ElfDataEncoding
));
3275 printFields(OS
, "Data:", Str
);
3278 OS
.PadToColumn(37u);
3279 OS
<< to_hexString(e
.e_ident
[ELF::EI_VERSION
]);
3280 if (e
.e_version
== ELF::EV_CURRENT
)
3283 Str
= enumToString(e
.e_ident
[ELF::EI_OSABI
], makeArrayRef(ElfOSABI
));
3284 printFields(OS
, "OS/ABI:", Str
);
3286 "ABI Version:", std::to_string(e
.e_ident
[ELF::EI_ABIVERSION
]));
3288 if (const EnumEntry
<unsigned> *E
= getObjectFileEnumEntry(e
.e_type
)) {
3289 Str
= E
->AltName
.str();
3291 if (e
.e_type
>= ET_LOPROC
)
3292 Str
= "Processor Specific: (" + to_hexString(e
.e_type
, false) + ")";
3293 else if (e
.e_type
>= ET_LOOS
)
3294 Str
= "OS Specific: (" + to_hexString(e
.e_type
, false) + ")";
3296 Str
= "<unknown>: " + to_hexString(e
.e_type
, false);
3298 printFields(OS
, "Type:", Str
);
3300 Str
= enumToString(e
.e_machine
, makeArrayRef(ElfMachineType
));
3301 printFields(OS
, "Machine:", Str
);
3302 Str
= "0x" + to_hexString(e
.e_version
);
3303 printFields(OS
, "Version:", Str
);
3304 Str
= "0x" + to_hexString(e
.e_entry
);
3305 printFields(OS
, "Entry point address:", Str
);
3306 Str
= to_string(e
.e_phoff
) + " (bytes into file)";
3307 printFields(OS
, "Start of program headers:", Str
);
3308 Str
= to_string(e
.e_shoff
) + " (bytes into file)";
3309 printFields(OS
, "Start of section headers:", Str
);
3310 std::string ElfFlags
;
3311 if (e
.e_machine
== EM_MIPS
)
3313 printFlags(e
.e_flags
, makeArrayRef(ElfHeaderMipsFlags
),
3314 unsigned(ELF::EF_MIPS_ARCH
), unsigned(ELF::EF_MIPS_ABI
),
3315 unsigned(ELF::EF_MIPS_MACH
));
3316 else if (e
.e_machine
== EM_RISCV
)
3317 ElfFlags
= printFlags(e
.e_flags
, makeArrayRef(ElfHeaderRISCVFlags
));
3318 else if (e
.e_machine
== EM_AVR
)
3319 ElfFlags
= printFlags(e
.e_flags
, makeArrayRef(ElfHeaderAVRFlags
),
3320 unsigned(ELF::EF_AVR_ARCH_MASK
));
3321 Str
= "0x" + to_hexString(e
.e_flags
);
3322 if (!ElfFlags
.empty())
3323 Str
= Str
+ ", " + ElfFlags
;
3324 printFields(OS
, "Flags:", Str
);
3325 Str
= to_string(e
.e_ehsize
) + " (bytes)";
3326 printFields(OS
, "Size of this header:", Str
);
3327 Str
= to_string(e
.e_phentsize
) + " (bytes)";
3328 printFields(OS
, "Size of program headers:", Str
);
3329 Str
= to_string(e
.e_phnum
);
3330 printFields(OS
, "Number of program headers:", Str
);
3331 Str
= to_string(e
.e_shentsize
) + " (bytes)";
3332 printFields(OS
, "Size of section headers:", Str
);
3333 Str
= getSectionHeadersNumString(this->Obj
, this->FileName
);
3334 printFields(OS
, "Number of section headers:", Str
);
3335 Str
= getSectionHeaderTableIndexString(this->Obj
, this->FileName
);
3336 printFields(OS
, "Section header string table index:", Str
);
3339 template <class ELFT
> std::vector
<GroupSection
> ELFDumper
<ELFT
>::getGroups() {
3340 auto GetSignature
= [&](const Elf_Sym
&Sym
, unsigned SymNdx
,
3341 const Elf_Shdr
&Symtab
) -> StringRef
{
3342 Expected
<StringRef
> StrTableOrErr
= Obj
.getStringTableForSymtab(Symtab
);
3343 if (!StrTableOrErr
) {
3344 reportUniqueWarning("unable to get the string table for " +
3345 describe(Symtab
) + ": " +
3346 toString(StrTableOrErr
.takeError()));
3350 StringRef Strings
= *StrTableOrErr
;
3351 if (Sym
.st_name
>= Strings
.size()) {
3352 reportUniqueWarning("unable to get the name of the symbol with index " +
3353 Twine(SymNdx
) + ": st_name (0x" +
3354 Twine::utohexstr(Sym
.st_name
) +
3355 ") is past the end of the string table of size 0x" +
3356 Twine::utohexstr(Strings
.size()));
3360 return StrTableOrErr
->data() + Sym
.st_name
;
3363 std::vector
<GroupSection
> Ret
;
3365 for (const Elf_Shdr
&Sec
: cantFail(Obj
.sections())) {
3367 if (Sec
.sh_type
!= ELF::SHT_GROUP
)
3370 StringRef Signature
= "<?>";
3371 if (Expected
<const Elf_Shdr
*> SymtabOrErr
= Obj
.getSection(Sec
.sh_link
)) {
3372 if (Expected
<const Elf_Sym
*> SymOrErr
=
3373 Obj
.template getEntry
<Elf_Sym
>(**SymtabOrErr
, Sec
.sh_info
))
3374 Signature
= GetSignature(**SymOrErr
, Sec
.sh_info
, **SymtabOrErr
);
3376 reportUniqueWarning("unable to get the signature symbol for " +
3377 describe(Sec
) + ": " +
3378 toString(SymOrErr
.takeError()));
3380 reportUniqueWarning("unable to get the symbol table for " +
3381 describe(Sec
) + ": " +
3382 toString(SymtabOrErr
.takeError()));
3385 ArrayRef
<Elf_Word
> Data
;
3386 if (Expected
<ArrayRef
<Elf_Word
>> ContentsOrErr
=
3387 Obj
.template getSectionContentsAsArray
<Elf_Word
>(Sec
)) {
3388 if (ContentsOrErr
->empty())
3389 reportUniqueWarning("unable to read the section group flag from the " +
3390 describe(Sec
) + ": the section is empty");
3392 Data
= *ContentsOrErr
;
3394 reportUniqueWarning("unable to get the content of the " + describe(Sec
) +
3395 ": " + toString(ContentsOrErr
.takeError()));
3398 Ret
.push_back({getPrintableSectionName(Sec
),
3399 maybeDemangle(Signature
),
3404 Data
.empty() ? Elf_Word(0) : Data
[0],
3410 std::vector
<GroupMember
> &GM
= Ret
.back().Members
;
3411 for (uint32_t Ndx
: Data
.slice(1)) {
3412 if (Expected
<const Elf_Shdr
*> SecOrErr
= Obj
.getSection(Ndx
)) {
3413 GM
.push_back({getPrintableSectionName(**SecOrErr
), Ndx
});
3415 reportUniqueWarning("unable to get the section with index " +
3416 Twine(Ndx
) + " when dumping the " + describe(Sec
) +
3417 ": " + toString(SecOrErr
.takeError()));
3418 GM
.push_back({"<?>", Ndx
});
3425 static DenseMap
<uint64_t, const GroupSection
*>
3426 mapSectionsToGroups(ArrayRef
<GroupSection
> Groups
) {
3427 DenseMap
<uint64_t, const GroupSection
*> Ret
;
3428 for (const GroupSection
&G
: Groups
)
3429 for (const GroupMember
&GM
: G
.Members
)
3430 Ret
.insert({GM
.Index
, &G
});
3434 template <class ELFT
> void GNUELFDumper
<ELFT
>::printGroupSections() {
3435 std::vector
<GroupSection
> V
= this->getGroups();
3436 DenseMap
<uint64_t, const GroupSection
*> Map
= mapSectionsToGroups(V
);
3437 for (const GroupSection
&G
: V
) {
3439 << getGroupType(G
.Type
) << " group section ["
3440 << format_decimal(G
.Index
, 5) << "] `" << G
.Name
<< "' [" << G
.Signature
3441 << "] contains " << G
.Members
.size() << " sections:\n"
3442 << " [Index] Name\n";
3443 for (const GroupMember
&GM
: G
.Members
) {
3444 const GroupSection
*MainGroup
= Map
[GM
.Index
];
3445 if (MainGroup
!= &G
)
3446 this->reportUniqueWarning(
3447 "section with index " + Twine(GM
.Index
) +
3448 ", included in the group section with index " +
3449 Twine(MainGroup
->Index
) +
3450 ", was also found in the group section with index " +
3452 OS
<< " [" << format_decimal(GM
.Index
, 5) << "] " << GM
.Name
<< "\n";
3457 OS
<< "There are no section groups in this file.\n";
3460 template <class ELFT
>
3461 void GNUELFDumper
<ELFT
>::printRelrReloc(const Elf_Relr
&R
) {
3462 OS
<< to_string(format_hex_no_prefix(R
, ELFT::Is64Bits
? 16 : 8)) << "\n";
3465 template <class ELFT
>
3466 void GNUELFDumper
<ELFT
>::printRelRelaReloc(const Relocation
<ELFT
> &R
,
3467 const RelSymbol
<ELFT
> &RelSym
) {
3468 // First two fields are bit width dependent. The rest of them are fixed width.
3469 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
3470 Field Fields
[5] = {0, 10 + Bias
, 19 + 2 * Bias
, 42 + 2 * Bias
, 53 + 2 * Bias
};
3471 unsigned Width
= ELFT::Is64Bits
? 16 : 8;
3473 Fields
[0].Str
= to_string(format_hex_no_prefix(R
.Offset
, Width
));
3474 Fields
[1].Str
= to_string(format_hex_no_prefix(R
.Info
, Width
));
3476 SmallString
<32> RelocName
;
3477 this->Obj
.getRelocationTypeName(R
.Type
, RelocName
);
3478 Fields
[2].Str
= RelocName
.c_str();
3482 to_string(format_hex_no_prefix(RelSym
.Sym
->getValue(), Width
));
3484 Fields
[4].Str
= std::string(RelSym
.Name
);
3485 for (const Field
&F
: Fields
)
3489 if (Optional
<int64_t> A
= R
.Addend
) {
3490 int64_t RelAddend
= *A
;
3491 if (!RelSym
.Name
.empty()) {
3492 if (RelAddend
< 0) {
3494 RelAddend
= std::abs(RelAddend
);
3499 Addend
+= to_hexString(RelAddend
, false);
3501 OS
<< Addend
<< "\n";
3504 template <class ELFT
>
3505 static void printRelocHeaderFields(formatted_raw_ostream
&OS
, unsigned SType
) {
3506 bool IsRela
= SType
== ELF::SHT_RELA
|| SType
== ELF::SHT_ANDROID_RELA
;
3507 bool IsRelr
= SType
== ELF::SHT_RELR
|| SType
== ELF::SHT_ANDROID_RELR
;
3512 if (IsRelr
&& opts::RawRelr
)
3518 << " Symbol's Value Symbol's Name";
3520 OS
<< " Info Type Sym. Value Symbol's Name";
3526 template <class ELFT
>
3527 void GNUELFDumper
<ELFT
>::printDynamicRelocHeader(unsigned Type
, StringRef Name
,
3528 const DynRegionInfo
&Reg
) {
3529 uint64_t Offset
= Reg
.Addr
- this->Obj
.base();
3530 OS
<< "\n'" << Name
.str().c_str() << "' relocation section at offset 0x"
3531 << to_hexString(Offset
, false) << " contains " << Reg
.Size
<< " bytes:\n";
3532 printRelocHeaderFields
<ELFT
>(OS
, Type
);
3535 template <class ELFT
>
3536 static bool isRelocationSec(const typename
ELFT::Shdr
&Sec
) {
3537 return Sec
.sh_type
== ELF::SHT_REL
|| Sec
.sh_type
== ELF::SHT_RELA
||
3538 Sec
.sh_type
== ELF::SHT_RELR
|| Sec
.sh_type
== ELF::SHT_ANDROID_REL
||
3539 Sec
.sh_type
== ELF::SHT_ANDROID_RELA
||
3540 Sec
.sh_type
== ELF::SHT_ANDROID_RELR
;
3543 template <class ELFT
> void GNUELFDumper
<ELFT
>::printRelocations() {
3544 auto GetEntriesNum
= [&](const Elf_Shdr
&Sec
) -> Expected
<size_t> {
3545 // Android's packed relocation section needs to be unpacked first
3546 // to get the actual number of entries.
3547 if (Sec
.sh_type
== ELF::SHT_ANDROID_REL
||
3548 Sec
.sh_type
== ELF::SHT_ANDROID_RELA
) {
3549 Expected
<std::vector
<typename
ELFT::Rela
>> RelasOrErr
=
3550 this->Obj
.android_relas(Sec
);
3552 return RelasOrErr
.takeError();
3553 return RelasOrErr
->size();
3556 if (!opts::RawRelr
&& (Sec
.sh_type
== ELF::SHT_RELR
||
3557 Sec
.sh_type
== ELF::SHT_ANDROID_RELR
)) {
3558 Expected
<Elf_Relr_Range
> RelrsOrErr
= this->Obj
.relrs(Sec
);
3560 return RelrsOrErr
.takeError();
3561 return this->Obj
.decode_relrs(*RelrsOrErr
).size();
3564 return Sec
.getEntityCount();
3567 bool HasRelocSections
= false;
3568 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
3569 if (!isRelocationSec
<ELFT
>(Sec
))
3571 HasRelocSections
= true;
3573 std::string EntriesNum
= "<?>";
3574 if (Expected
<size_t> NumOrErr
= GetEntriesNum(Sec
))
3575 EntriesNum
= std::to_string(*NumOrErr
);
3577 this->reportUniqueWarning("unable to get the number of relocations in " +
3578 this->describe(Sec
) + ": " +
3579 toString(NumOrErr
.takeError()));
3581 uintX_t Offset
= Sec
.sh_offset
;
3582 StringRef Name
= this->getPrintableSectionName(Sec
);
3583 OS
<< "\nRelocation section '" << Name
<< "' at offset 0x"
3584 << to_hexString(Offset
, false) << " contains " << EntriesNum
3586 printRelocHeaderFields
<ELFT
>(OS
, Sec
.sh_type
);
3587 this->printRelocationsHelper(Sec
);
3589 if (!HasRelocSections
)
3590 OS
<< "\nThere are no relocations in this file.\n";
3593 // Print the offset of a particular section from anyone of the ranges:
3594 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3595 // If 'Type' does not fall within any of those ranges, then a string is
3596 // returned as '<unknown>' followed by the type value.
3597 static std::string
getSectionTypeOffsetString(unsigned Type
) {
3598 if (Type
>= SHT_LOOS
&& Type
<= SHT_HIOS
)
3599 return "LOOS+0x" + to_hexString(Type
- SHT_LOOS
);
3600 else if (Type
>= SHT_LOPROC
&& Type
<= SHT_HIPROC
)
3601 return "LOPROC+0x" + to_hexString(Type
- SHT_LOPROC
);
3602 else if (Type
>= SHT_LOUSER
&& Type
<= SHT_HIUSER
)
3603 return "LOUSER+0x" + to_hexString(Type
- SHT_LOUSER
);
3604 return "0x" + to_hexString(Type
) + ": <unknown>";
3607 static std::string
getSectionTypeString(unsigned Machine
, unsigned Type
) {
3608 StringRef Name
= getELFSectionTypeName(Machine
, Type
);
3610 // Handle SHT_GNU_* type names.
3611 if (Name
.startswith("SHT_GNU_")) {
3612 if (Name
== "SHT_GNU_HASH")
3614 // E.g. SHT_GNU_verneed -> VERNEED.
3615 return Name
.drop_front(8).upper();
3618 if (Name
== "SHT_SYMTAB_SHNDX")
3619 return "SYMTAB SECTION INDICES";
3621 if (Name
.startswith("SHT_"))
3622 return Name
.drop_front(4).str();
3623 return getSectionTypeOffsetString(Type
);
3626 static void printSectionDescription(formatted_raw_ostream
&OS
,
3627 unsigned EMachine
) {
3628 OS
<< "Key to Flags:\n";
3629 OS
<< " W (write), A (alloc), X (execute), M (merge), S (strings), I "
3631 OS
<< " L (link order), O (extra OS processing required), G (group), T "
3633 OS
<< " C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3634 OS
<< " R (retain)";
3636 if (EMachine
== EM_X86_64
)
3637 OS
<< ", l (large)";
3638 else if (EMachine
== EM_ARM
)
3639 OS
<< ", y (purecode)";
3641 OS
<< ", p (processor specific)\n";
3644 template <class ELFT
> void GNUELFDumper
<ELFT
>::printSectionHeaders() {
3645 unsigned Bias
= ELFT::Is64Bits
? 0 : 8;
3646 ArrayRef
<Elf_Shdr
> Sections
= cantFail(this->Obj
.sections());
3647 OS
<< "There are " << to_string(Sections
.size())
3648 << " section headers, starting at offset "
3649 << "0x" << to_hexString(this->Obj
.getHeader().e_shoff
, false) << ":\n\n";
3650 OS
<< "Section Headers:\n";
3651 Field Fields
[11] = {
3652 {"[Nr]", 2}, {"Name", 7}, {"Type", 25},
3653 {"Address", 41}, {"Off", 58 - Bias
}, {"Size", 65 - Bias
},
3654 {"ES", 72 - Bias
}, {"Flg", 75 - Bias
}, {"Lk", 79 - Bias
},
3655 {"Inf", 82 - Bias
}, {"Al", 86 - Bias
}};
3656 for (const Field
&F
: Fields
)
3660 StringRef SecStrTable
;
3661 if (Expected
<StringRef
> SecStrTableOrErr
=
3662 this->Obj
.getSectionStringTable(Sections
, this->WarningHandler
))
3663 SecStrTable
= *SecStrTableOrErr
;
3665 this->reportUniqueWarning(SecStrTableOrErr
.takeError());
3667 size_t SectionIndex
= 0;
3668 for (const Elf_Shdr
&Sec
: Sections
) {
3669 Fields
[0].Str
= to_string(SectionIndex
);
3670 if (SecStrTable
.empty())
3671 Fields
[1].Str
= "<no-strings>";
3673 Fields
[1].Str
= std::string(unwrapOrError
<StringRef
>(
3674 this->FileName
, this->Obj
.getSectionName(Sec
, SecStrTable
)));
3676 getSectionTypeString(this->Obj
.getHeader().e_machine
, Sec
.sh_type
);
3678 to_string(format_hex_no_prefix(Sec
.sh_addr
, ELFT::Is64Bits
? 16 : 8));
3679 Fields
[4].Str
= to_string(format_hex_no_prefix(Sec
.sh_offset
, 6));
3680 Fields
[5].Str
= to_string(format_hex_no_prefix(Sec
.sh_size
, 6));
3681 Fields
[6].Str
= to_string(format_hex_no_prefix(Sec
.sh_entsize
, 2));
3682 Fields
[7].Str
= getGNUFlags(this->Obj
.getHeader().e_machine
, Sec
.sh_flags
);
3683 Fields
[8].Str
= to_string(Sec
.sh_link
);
3684 Fields
[9].Str
= to_string(Sec
.sh_info
);
3685 Fields
[10].Str
= to_string(Sec
.sh_addralign
);
3687 OS
.PadToColumn(Fields
[0].Column
);
3688 OS
<< "[" << right_justify(Fields
[0].Str
, 2) << "]";
3689 for (int i
= 1; i
< 7; i
++)
3690 printField(Fields
[i
]);
3691 OS
.PadToColumn(Fields
[7].Column
);
3692 OS
<< right_justify(Fields
[7].Str
, 3);
3693 OS
.PadToColumn(Fields
[8].Column
);
3694 OS
<< right_justify(Fields
[8].Str
, 2);
3695 OS
.PadToColumn(Fields
[9].Column
);
3696 OS
<< right_justify(Fields
[9].Str
, 3);
3697 OS
.PadToColumn(Fields
[10].Column
);
3698 OS
<< right_justify(Fields
[10].Str
, 2);
3702 printSectionDescription(OS
, this->Obj
.getHeader().e_machine
);
3705 template <class ELFT
>
3706 void GNUELFDumper
<ELFT
>::printSymtabMessage(const Elf_Shdr
*Symtab
,
3708 bool NonVisibilityBitsUsed
) const {
3711 Name
= this->getPrintableSectionName(*Symtab
);
3713 OS
<< "\nSymbol table '" << Name
<< "'";
3715 OS
<< "\nSymbol table for image";
3716 OS
<< " contains " << Entries
<< " entries:\n";
3719 OS
<< " Num: Value Size Type Bind Vis";
3721 OS
<< " Num: Value Size Type Bind Vis";
3723 if (NonVisibilityBitsUsed
)
3725 OS
<< " Ndx Name\n";
3728 template <class ELFT
>
3730 GNUELFDumper
<ELFT
>::getSymbolSectionNdx(const Elf_Sym
&Symbol
,
3732 DataRegion
<Elf_Word
> ShndxTable
) const {
3733 unsigned SectionIndex
= Symbol
.st_shndx
;
3734 switch (SectionIndex
) {
3735 case ELF::SHN_UNDEF
:
3739 case ELF::SHN_COMMON
:
3741 case ELF::SHN_XINDEX
: {
3742 Expected
<uint32_t> IndexOrErr
=
3743 object::getExtendedSymbolTableIndex
<ELFT
>(Symbol
, SymIndex
, ShndxTable
);
3745 assert(Symbol
.st_shndx
== SHN_XINDEX
&&
3746 "getExtendedSymbolTableIndex should only fail due to an invalid "
3747 "SHT_SYMTAB_SHNDX table/reference");
3748 this->reportUniqueWarning(IndexOrErr
.takeError());
3749 return "RSV[0xffff]";
3751 return to_string(format_decimal(*IndexOrErr
, 3));
3755 // Processor specific
3756 if (SectionIndex
>= ELF::SHN_LOPROC
&& SectionIndex
<= ELF::SHN_HIPROC
)
3757 return std::string("PRC[0x") +
3758 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
3760 if (SectionIndex
>= ELF::SHN_LOOS
&& SectionIndex
<= ELF::SHN_HIOS
)
3761 return std::string("OS[0x") +
3762 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
3763 // Architecture reserved:
3764 if (SectionIndex
>= ELF::SHN_LORESERVE
&&
3765 SectionIndex
<= ELF::SHN_HIRESERVE
)
3766 return std::string("RSV[0x") +
3767 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
3768 // A normal section with an index
3769 return to_string(format_decimal(SectionIndex
, 3));
3773 template <class ELFT
>
3774 void GNUELFDumper
<ELFT
>::printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
3775 DataRegion
<Elf_Word
> ShndxTable
,
3776 Optional
<StringRef
> StrTable
,
3778 bool NonVisibilityBitsUsed
) const {
3779 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
3780 Field Fields
[8] = {0, 8, 17 + Bias
, 23 + Bias
,
3781 31 + Bias
, 38 + Bias
, 48 + Bias
, 51 + Bias
};
3782 Fields
[0].Str
= to_string(format_decimal(SymIndex
, 6)) + ":";
3784 to_string(format_hex_no_prefix(Symbol
.st_value
, ELFT::Is64Bits
? 16 : 8));
3785 Fields
[2].Str
= to_string(format_decimal(Symbol
.st_size
, 5));
3787 unsigned char SymbolType
= Symbol
.getType();
3788 if (this->Obj
.getHeader().e_machine
== ELF::EM_AMDGPU
&&
3789 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
3790 Fields
[3].Str
= enumToString(SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
3792 Fields
[3].Str
= enumToString(SymbolType
, makeArrayRef(ElfSymbolTypes
));
3795 enumToString(Symbol
.getBinding(), makeArrayRef(ElfSymbolBindings
));
3797 enumToString(Symbol
.getVisibility(), makeArrayRef(ElfSymbolVisibilities
));
3799 if (Symbol
.st_other
& ~0x3) {
3800 if (this->Obj
.getHeader().e_machine
== ELF::EM_AARCH64
) {
3801 uint8_t Other
= Symbol
.st_other
& ~0x3;
3802 if (Other
& STO_AARCH64_VARIANT_PCS
) {
3803 Other
&= ~STO_AARCH64_VARIANT_PCS
;
3804 Fields
[5].Str
+= " [VARIANT_PCS";
3806 Fields
[5].Str
.append(" | " + to_hexString(Other
, false));
3807 Fields
[5].Str
.append("]");
3809 } else if (this->Obj
.getHeader().e_machine
== ELF::EM_RISCV
) {
3810 uint8_t Other
= Symbol
.st_other
& ~0x3;
3811 if (Other
& STO_RISCV_VARIANT_CC
) {
3812 Other
&= ~STO_RISCV_VARIANT_CC
;
3813 Fields
[5].Str
+= " [VARIANT_CC";
3815 Fields
[5].Str
.append(" | " + to_hexString(Other
, false));
3816 Fields
[5].Str
.append("]");
3820 " [<other: " + to_string(format_hex(Symbol
.st_other
, 2)) + ">]";
3824 Fields
[6].Column
+= NonVisibilityBitsUsed
? 13 : 0;
3825 Fields
[6].Str
= getSymbolSectionNdx(Symbol
, SymIndex
, ShndxTable
);
3827 Fields
[7].Str
= this->getFullSymbolName(Symbol
, SymIndex
, ShndxTable
,
3828 StrTable
, IsDynamic
);
3829 for (const Field
&Entry
: Fields
)
3834 template <class ELFT
>
3835 void GNUELFDumper
<ELFT
>::printHashedSymbol(const Elf_Sym
*Symbol
,
3837 DataRegion
<Elf_Word
> ShndxTable
,
3840 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
3841 Field Fields
[9] = {0, 6, 11, 20 + Bias
, 25 + Bias
,
3842 34 + Bias
, 41 + Bias
, 49 + Bias
, 53 + Bias
};
3843 Fields
[0].Str
= to_string(format_decimal(SymIndex
, 5));
3844 Fields
[1].Str
= to_string(format_decimal(Bucket
, 3)) + ":";
3846 Fields
[2].Str
= to_string(
3847 format_hex_no_prefix(Symbol
->st_value
, ELFT::Is64Bits
? 16 : 8));
3848 Fields
[3].Str
= to_string(format_decimal(Symbol
->st_size
, 5));
3850 unsigned char SymbolType
= Symbol
->getType();
3851 if (this->Obj
.getHeader().e_machine
== ELF::EM_AMDGPU
&&
3852 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
3853 Fields
[4].Str
= enumToString(SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
3855 Fields
[4].Str
= enumToString(SymbolType
, makeArrayRef(ElfSymbolTypes
));
3858 enumToString(Symbol
->getBinding(), makeArrayRef(ElfSymbolBindings
));
3859 Fields
[6].Str
= enumToString(Symbol
->getVisibility(),
3860 makeArrayRef(ElfSymbolVisibilities
));
3861 Fields
[7].Str
= getSymbolSectionNdx(*Symbol
, SymIndex
, ShndxTable
);
3863 this->getFullSymbolName(*Symbol
, SymIndex
, ShndxTable
, StrTable
, true);
3865 for (const Field
&Entry
: Fields
)
3870 template <class ELFT
>
3871 void GNUELFDumper
<ELFT
>::printSymbols(bool PrintSymbols
,
3872 bool PrintDynamicSymbols
) {
3873 if (!PrintSymbols
&& !PrintDynamicSymbols
)
3875 // GNU readelf prints both the .dynsym and .symtab with --symbols.
3876 this->printSymbolsHelper(true);
3878 this->printSymbolsHelper(false);
3881 template <class ELFT
>
3882 void GNUELFDumper
<ELFT
>::printHashTableSymbols(const Elf_Hash
&SysVHash
) {
3883 if (this->DynamicStringTable
.empty())
3887 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3889 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3892 Elf_Sym_Range DynSyms
= this->dynamic_symbols();
3893 const Elf_Sym
*FirstSym
= DynSyms
.empty() ? nullptr : &DynSyms
[0];
3895 this->reportUniqueWarning(
3896 Twine("unable to print symbols for the .hash table: the "
3897 "dynamic symbol table ") +
3898 (this->DynSymRegion
? "is empty" : "was not found"));
3902 DataRegion
<Elf_Word
> ShndxTable(
3903 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
, this->Obj
.end());
3904 auto Buckets
= SysVHash
.buckets();
3905 auto Chains
= SysVHash
.chains();
3906 for (uint32_t Buc
= 0; Buc
< SysVHash
.nbucket
; Buc
++) {
3907 if (Buckets
[Buc
] == ELF::STN_UNDEF
)
3909 BitVector
Visited(SysVHash
.nchain
);
3910 for (uint32_t Ch
= Buckets
[Buc
]; Ch
< SysVHash
.nchain
; Ch
= Chains
[Ch
]) {
3911 if (Ch
== ELF::STN_UNDEF
)
3915 this->reportUniqueWarning(".hash section is invalid: bucket " +
3917 ": a cycle was detected in the linked chain");
3921 printHashedSymbol(FirstSym
+ Ch
, Ch
, ShndxTable
, this->DynamicStringTable
,
3928 template <class ELFT
>
3929 void GNUELFDumper
<ELFT
>::printGnuHashTableSymbols(const Elf_GnuHash
&GnuHash
) {
3930 if (this->DynamicStringTable
.empty())
3933 Elf_Sym_Range DynSyms
= this->dynamic_symbols();
3934 const Elf_Sym
*FirstSym
= DynSyms
.empty() ? nullptr : &DynSyms
[0];
3936 this->reportUniqueWarning(
3937 Twine("unable to print symbols for the .gnu.hash table: the "
3938 "dynamic symbol table ") +
3939 (this->DynSymRegion
? "is empty" : "was not found"));
3943 auto GetSymbol
= [&](uint64_t SymIndex
,
3944 uint64_t SymsTotal
) -> const Elf_Sym
* {
3945 if (SymIndex
>= SymsTotal
) {
3946 this->reportUniqueWarning(
3947 "unable to print hashed symbol with index " + Twine(SymIndex
) +
3948 ", which is greater than or equal to the number of dynamic symbols "
3950 Twine::utohexstr(SymsTotal
) + ")");
3953 return FirstSym
+ SymIndex
;
3956 Expected
<ArrayRef
<Elf_Word
>> ValuesOrErr
=
3957 getGnuHashTableChains
<ELFT
>(this->DynSymRegion
, &GnuHash
);
3958 ArrayRef
<Elf_Word
> Values
;
3960 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
3962 toString(ValuesOrErr
.takeError()));
3964 Values
= *ValuesOrErr
;
3966 DataRegion
<Elf_Word
> ShndxTable(
3967 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
, this->Obj
.end());
3968 ArrayRef
<Elf_Word
> Buckets
= GnuHash
.buckets();
3969 for (uint32_t Buc
= 0; Buc
< GnuHash
.nbuckets
; Buc
++) {
3970 if (Buckets
[Buc
] == ELF::STN_UNDEF
)
3972 uint32_t Index
= Buckets
[Buc
];
3973 // Print whole chain.
3975 uint32_t SymIndex
= Index
++;
3976 if (const Elf_Sym
*Sym
= GetSymbol(SymIndex
, DynSyms
.size()))
3977 printHashedSymbol(Sym
, SymIndex
, ShndxTable
, this->DynamicStringTable
,
3982 if (SymIndex
< GnuHash
.symndx
) {
3983 this->reportUniqueWarning(
3984 "unable to read the hash value for symbol with index " +
3986 ", which is less than the index of the first hashed symbol (" +
3987 Twine(GnuHash
.symndx
) + ")");
3991 // Chain ends at symbol with stopper bit.
3992 if ((Values
[SymIndex
- GnuHash
.symndx
] & 1) == 1)
3998 template <class ELFT
> void GNUELFDumper
<ELFT
>::printHashSymbols() {
3999 if (this->HashTable
) {
4000 OS
<< "\n Symbol table of .hash for image:\n";
4001 if (Error E
= checkHashTable
<ELFT
>(*this, this->HashTable
))
4002 this->reportUniqueWarning(std::move(E
));
4004 printHashTableSymbols(*this->HashTable
);
4007 // Try printing the .gnu.hash table.
4008 if (this->GnuHashTable
) {
4009 OS
<< "\n Symbol table of .gnu.hash for image:\n";
4011 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
4013 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
4016 if (Error E
= checkGNUHashTable
<ELFT
>(this->Obj
, this->GnuHashTable
))
4017 this->reportUniqueWarning(std::move(E
));
4019 printGnuHashTableSymbols(*this->GnuHashTable
);
4023 template <class ELFT
> void GNUELFDumper
<ELFT
>::printSectionDetails() {
4024 ArrayRef
<Elf_Shdr
> Sections
= cantFail(this->Obj
.sections());
4025 OS
<< "There are " << to_string(Sections
.size())
4026 << " section headers, starting at offset "
4027 << "0x" << to_hexString(this->Obj
.getHeader().e_shoff
, false) << ":\n\n";
4029 OS
<< "Section Headers:\n";
4031 auto PrintFields
= [&](ArrayRef
<Field
> V
) {
4032 for (const Field
&F
: V
)
4037 PrintFields({{"[Nr]", 2}, {"Name", 7}});
4039 constexpr bool Is64
= ELFT::Is64Bits
;
4040 PrintFields({{"Type", 7},
4041 {Is64
? "Address" : "Addr", 23},
4042 {"Off", Is64
? 40 : 32},
4043 {"Size", Is64
? 47 : 39},
4044 {"ES", Is64
? 54 : 46},
4045 {"Lk", Is64
? 59 : 51},
4046 {"Inf", Is64
? 62 : 54},
4047 {"Al", Is64
? 66 : 57}});
4048 PrintFields({{"Flags", 7}});
4050 StringRef SecStrTable
;
4051 if (Expected
<StringRef
> SecStrTableOrErr
=
4052 this->Obj
.getSectionStringTable(Sections
, this->WarningHandler
))
4053 SecStrTable
= *SecStrTableOrErr
;
4055 this->reportUniqueWarning(SecStrTableOrErr
.takeError());
4057 size_t SectionIndex
= 0;
4058 const unsigned AddrSize
= Is64
? 16 : 8;
4059 for (const Elf_Shdr
&S
: Sections
) {
4060 StringRef Name
= "<?>";
4061 if (Expected
<StringRef
> NameOrErr
=
4062 this->Obj
.getSectionName(S
, SecStrTable
))
4065 this->reportUniqueWarning(NameOrErr
.takeError());
4068 OS
<< "[" << right_justify(to_string(SectionIndex
), 2) << "]";
4069 PrintFields({{Name
, 7}});
4071 {{getSectionTypeString(this->Obj
.getHeader().e_machine
, S
.sh_type
), 7},
4072 {to_string(format_hex_no_prefix(S
.sh_addr
, AddrSize
)), 23},
4073 {to_string(format_hex_no_prefix(S
.sh_offset
, 6)), Is64
? 39 : 32},
4074 {to_string(format_hex_no_prefix(S
.sh_size
, 6)), Is64
? 47 : 39},
4075 {to_string(format_hex_no_prefix(S
.sh_entsize
, 2)), Is64
? 54 : 46},
4076 {to_string(S
.sh_link
), Is64
? 59 : 51},
4077 {to_string(S
.sh_info
), Is64
? 63 : 55},
4078 {to_string(S
.sh_addralign
), Is64
? 66 : 58}});
4081 OS
<< "[" << to_string(format_hex_no_prefix(S
.sh_flags
, AddrSize
)) << "]: ";
4083 DenseMap
<unsigned, StringRef
> FlagToName
= {
4084 {SHF_WRITE
, "WRITE"}, {SHF_ALLOC
, "ALLOC"},
4085 {SHF_EXECINSTR
, "EXEC"}, {SHF_MERGE
, "MERGE"},
4086 {SHF_STRINGS
, "STRINGS"}, {SHF_INFO_LINK
, "INFO LINK"},
4087 {SHF_LINK_ORDER
, "LINK ORDER"}, {SHF_OS_NONCONFORMING
, "OS NONCONF"},
4088 {SHF_GROUP
, "GROUP"}, {SHF_TLS
, "TLS"},
4089 {SHF_COMPRESSED
, "COMPRESSED"}, {SHF_EXCLUDE
, "EXCLUDE"}};
4091 uint64_t Flags
= S
.sh_flags
;
4092 uint64_t UnknownFlags
= 0;
4095 // Take the least significant bit as a flag.
4096 uint64_t Flag
= Flags
& -Flags
;
4099 auto It
= FlagToName
.find(Flag
);
4100 if (It
!= FlagToName
.end())
4101 OS
<< LS
<< It
->second
;
4103 UnknownFlags
|= Flag
;
4106 auto PrintUnknownFlags
= [&](uint64_t Mask
, StringRef Name
) {
4107 uint64_t FlagsToPrint
= UnknownFlags
& Mask
;
4111 OS
<< LS
<< Name
<< " ("
4112 << to_string(format_hex_no_prefix(FlagsToPrint
, AddrSize
)) << ")";
4113 UnknownFlags
&= ~Mask
;
4116 PrintUnknownFlags(SHF_MASKOS
, "OS");
4117 PrintUnknownFlags(SHF_MASKPROC
, "PROC");
4118 PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4125 static inline std::string
printPhdrFlags(unsigned Flag
) {
4127 Str
= (Flag
& PF_R
) ? "R" : " ";
4128 Str
+= (Flag
& PF_W
) ? "W" : " ";
4129 Str
+= (Flag
& PF_X
) ? "E" : " ";
4133 template <class ELFT
>
4134 static bool checkTLSSections(const typename
ELFT::Phdr
&Phdr
,
4135 const typename
ELFT::Shdr
&Sec
) {
4136 if (Sec
.sh_flags
& ELF::SHF_TLS
) {
4137 // .tbss must only be shown in the PT_TLS segment.
4138 if (Sec
.sh_type
== ELF::SHT_NOBITS
)
4139 return Phdr
.p_type
== ELF::PT_TLS
;
4141 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4143 return (Phdr
.p_type
== ELF::PT_TLS
) || (Phdr
.p_type
== ELF::PT_LOAD
) ||
4144 (Phdr
.p_type
== ELF::PT_GNU_RELRO
);
4147 // PT_TLS must only have SHF_TLS sections.
4148 return Phdr
.p_type
!= ELF::PT_TLS
;
4151 template <class ELFT
>
4152 static bool checkOffsets(const typename
ELFT::Phdr
&Phdr
,
4153 const typename
ELFT::Shdr
&Sec
) {
4154 // SHT_NOBITS sections don't need to have an offset inside the segment.
4155 if (Sec
.sh_type
== ELF::SHT_NOBITS
)
4158 if (Sec
.sh_offset
< Phdr
.p_offset
)
4161 // Only non-empty sections can be at the end of a segment.
4162 if (Sec
.sh_size
== 0)
4163 return (Sec
.sh_offset
+ 1 <= Phdr
.p_offset
+ Phdr
.p_filesz
);
4164 return Sec
.sh_offset
+ Sec
.sh_size
<= Phdr
.p_offset
+ Phdr
.p_filesz
;
4167 // Check that an allocatable section belongs to a virtual address
4168 // space of a segment.
4169 template <class ELFT
>
4170 static bool checkVMA(const typename
ELFT::Phdr
&Phdr
,
4171 const typename
ELFT::Shdr
&Sec
) {
4172 if (!(Sec
.sh_flags
& ELF::SHF_ALLOC
))
4175 if (Sec
.sh_addr
< Phdr
.p_vaddr
)
4179 (Sec
.sh_type
== ELF::SHT_NOBITS
) && ((Sec
.sh_flags
& ELF::SHF_TLS
) != 0);
4180 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4181 bool IsTbssInNonTLS
= IsTbss
&& Phdr
.p_type
!= ELF::PT_TLS
;
4182 // Only non-empty sections can be at the end of a segment.
4183 if (Sec
.sh_size
== 0 || IsTbssInNonTLS
)
4184 return Sec
.sh_addr
+ 1 <= Phdr
.p_vaddr
+ Phdr
.p_memsz
;
4185 return Sec
.sh_addr
+ Sec
.sh_size
<= Phdr
.p_vaddr
+ Phdr
.p_memsz
;
4188 template <class ELFT
>
4189 static bool checkPTDynamic(const typename
ELFT::Phdr
&Phdr
,
4190 const typename
ELFT::Shdr
&Sec
) {
4191 if (Phdr
.p_type
!= ELF::PT_DYNAMIC
|| Phdr
.p_memsz
== 0 || Sec
.sh_size
!= 0)
4194 // We get here when we have an empty section. Only non-empty sections can be
4195 // at the start or at the end of PT_DYNAMIC.
4196 // Is section within the phdr both based on offset and VMA?
4197 bool CheckOffset
= (Sec
.sh_type
== ELF::SHT_NOBITS
) ||
4198 (Sec
.sh_offset
> Phdr
.p_offset
&&
4199 Sec
.sh_offset
< Phdr
.p_offset
+ Phdr
.p_filesz
);
4200 bool CheckVA
= !(Sec
.sh_flags
& ELF::SHF_ALLOC
) ||
4201 (Sec
.sh_addr
> Phdr
.p_vaddr
&& Sec
.sh_addr
< Phdr
.p_memsz
);
4202 return CheckOffset
&& CheckVA
;
4205 template <class ELFT
>
4206 void GNUELFDumper
<ELFT
>::printProgramHeaders(
4207 bool PrintProgramHeaders
, cl::boolOrDefault PrintSectionMapping
) {
4208 if (PrintProgramHeaders
)
4209 printProgramHeaders();
4211 // Display the section mapping along with the program headers, unless
4212 // -section-mapping is explicitly set to false.
4213 if (PrintSectionMapping
!= cl::BOU_FALSE
)
4214 printSectionMapping();
4217 template <class ELFT
> void GNUELFDumper
<ELFT
>::printProgramHeaders() {
4218 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
4219 const Elf_Ehdr
&Header
= this->Obj
.getHeader();
4220 Field Fields
[8] = {2, 17, 26, 37 + Bias
,
4221 48 + Bias
, 56 + Bias
, 64 + Bias
, 68 + Bias
};
4222 OS
<< "\nElf file type is "
4223 << enumToString(Header
.e_type
, makeArrayRef(ElfObjectFileType
)) << "\n"
4224 << "Entry point " << format_hex(Header
.e_entry
, 3) << "\n"
4225 << "There are " << Header
.e_phnum
<< " program headers,"
4226 << " starting at offset " << Header
.e_phoff
<< "\n\n"
4227 << "Program Headers:\n";
4229 OS
<< " Type Offset VirtAddr PhysAddr "
4230 << " FileSiz MemSiz Flg Align\n";
4232 OS
<< " Type Offset VirtAddr PhysAddr FileSiz "
4233 << "MemSiz Flg Align\n";
4235 unsigned Width
= ELFT::Is64Bits
? 18 : 10;
4236 unsigned SizeWidth
= ELFT::Is64Bits
? 8 : 7;
4238 Expected
<ArrayRef
<Elf_Phdr
>> PhdrsOrErr
= this->Obj
.program_headers();
4240 this->reportUniqueWarning("unable to dump program headers: " +
4241 toString(PhdrsOrErr
.takeError()));
4245 for (const Elf_Phdr
&Phdr
: *PhdrsOrErr
) {
4246 Fields
[0].Str
= getGNUPtType(Header
.e_machine
, Phdr
.p_type
);
4247 Fields
[1].Str
= to_string(format_hex(Phdr
.p_offset
, 8));
4248 Fields
[2].Str
= to_string(format_hex(Phdr
.p_vaddr
, Width
));
4249 Fields
[3].Str
= to_string(format_hex(Phdr
.p_paddr
, Width
));
4250 Fields
[4].Str
= to_string(format_hex(Phdr
.p_filesz
, SizeWidth
));
4251 Fields
[5].Str
= to_string(format_hex(Phdr
.p_memsz
, SizeWidth
));
4252 Fields
[6].Str
= printPhdrFlags(Phdr
.p_flags
);
4253 Fields
[7].Str
= to_string(format_hex(Phdr
.p_align
, 1));
4254 for (const Field
&F
: Fields
)
4256 if (Phdr
.p_type
== ELF::PT_INTERP
) {
4258 auto ReportBadInterp
= [&](const Twine
&Msg
) {
4259 this->reportUniqueWarning(
4260 "unable to read program interpreter name at offset 0x" +
4261 Twine::utohexstr(Phdr
.p_offset
) + ": " + Msg
);
4264 if (Phdr
.p_offset
>= this->Obj
.getBufSize()) {
4265 ReportBadInterp("it goes past the end of the file (0x" +
4266 Twine::utohexstr(this->Obj
.getBufSize()) + ")");
4271 reinterpret_cast<const char *>(this->Obj
.base()) + Phdr
.p_offset
;
4272 size_t MaxSize
= this->Obj
.getBufSize() - Phdr
.p_offset
;
4273 size_t Len
= strnlen(Data
, MaxSize
);
4274 if (Len
== MaxSize
) {
4275 ReportBadInterp("it is not null-terminated");
4279 OS
<< " [Requesting program interpreter: ";
4280 OS
<< StringRef(Data
, Len
) << "]";
4286 template <class ELFT
> void GNUELFDumper
<ELFT
>::printSectionMapping() {
4287 OS
<< "\n Section to Segment mapping:\n Segment Sections...\n";
4288 DenseSet
<const Elf_Shdr
*> BelongsToSegment
;
4291 Expected
<ArrayRef
<Elf_Phdr
>> PhdrsOrErr
= this->Obj
.program_headers();
4293 this->reportUniqueWarning(
4294 "can't read program headers to build section to segment mapping: " +
4295 toString(PhdrsOrErr
.takeError()));
4299 for (const Elf_Phdr
&Phdr
: *PhdrsOrErr
) {
4300 std::string Sections
;
4301 OS
<< format(" %2.2d ", Phnum
++);
4302 // Check if each section is in a segment and then print mapping.
4303 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
4304 if (Sec
.sh_type
== ELF::SHT_NULL
)
4307 // readelf additionally makes sure it does not print zero sized sections
4308 // at end of segments and for PT_DYNAMIC both start and end of section
4309 // .tbss must only be shown in PT_TLS section.
4310 if (checkTLSSections
<ELFT
>(Phdr
, Sec
) && checkOffsets
<ELFT
>(Phdr
, Sec
) &&
4311 checkVMA
<ELFT
>(Phdr
, Sec
) && checkPTDynamic
<ELFT
>(Phdr
, Sec
)) {
4313 unwrapOrError(this->FileName
, this->Obj
.getSectionName(Sec
)).str() +
4315 BelongsToSegment
.insert(&Sec
);
4318 OS
<< Sections
<< "\n";
4322 // Display sections that do not belong to a segment.
4323 std::string Sections
;
4324 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
4325 if (BelongsToSegment
.find(&Sec
) == BelongsToSegment
.end())
4327 unwrapOrError(this->FileName
, this->Obj
.getSectionName(Sec
)).str() +
4330 if (!Sections
.empty()) {
4331 OS
<< " None " << Sections
<< '\n';
4338 template <class ELFT
>
4339 RelSymbol
<ELFT
> getSymbolForReloc(const ELFDumper
<ELFT
> &Dumper
,
4340 const Relocation
<ELFT
> &Reloc
) {
4341 using Elf_Sym
= typename
ELFT::Sym
;
4342 auto WarnAndReturn
= [&](const Elf_Sym
*Sym
,
4343 const Twine
&Reason
) -> RelSymbol
<ELFT
> {
4344 Dumper
.reportUniqueWarning(
4345 "unable to get name of the dynamic symbol with index " +
4346 Twine(Reloc
.Symbol
) + ": " + Reason
);
4347 return {Sym
, "<corrupt>"};
4350 ArrayRef
<Elf_Sym
> Symbols
= Dumper
.dynamic_symbols();
4351 const Elf_Sym
*FirstSym
= Symbols
.begin();
4353 return WarnAndReturn(nullptr, "no dynamic symbol table found");
4355 // We might have an object without a section header. In this case the size of
4356 // Symbols is zero, because there is no way to know the size of the dynamic
4357 // table. We should allow this case and not print a warning.
4358 if (!Symbols
.empty() && Reloc
.Symbol
>= Symbols
.size())
4359 return WarnAndReturn(
4361 "index is greater than or equal to the number of dynamic symbols (" +
4362 Twine(Symbols
.size()) + ")");
4364 const ELFFile
<ELFT
> &Obj
= Dumper
.getElfObject().getELFFile();
4365 const uint64_t FileSize
= Obj
.getBufSize();
4366 const uint64_t SymOffset
= ((const uint8_t *)FirstSym
- Obj
.base()) +
4367 (uint64_t)Reloc
.Symbol
* sizeof(Elf_Sym
);
4368 if (SymOffset
+ sizeof(Elf_Sym
) > FileSize
)
4369 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset
) +
4370 " goes past the end of the file (0x" +
4371 Twine::utohexstr(FileSize
) + ")");
4373 const Elf_Sym
*Sym
= FirstSym
+ Reloc
.Symbol
;
4374 Expected
<StringRef
> ErrOrName
= Sym
->getName(Dumper
.getDynamicStringTable());
4376 return WarnAndReturn(Sym
, toString(ErrOrName
.takeError()));
4378 return {Sym
== FirstSym
? nullptr : Sym
, maybeDemangle(*ErrOrName
)};
4382 template <class ELFT
>
4383 static size_t getMaxDynamicTagSize(const ELFFile
<ELFT
> &Obj
,
4384 typename
ELFT::DynRange Tags
) {
4386 for (const typename
ELFT::Dyn
&Dyn
: Tags
)
4387 Max
= std::max(Max
, Obj
.getDynamicTagAsString(Dyn
.d_tag
).size());
4391 template <class ELFT
> void GNUELFDumper
<ELFT
>::printDynamicTable() {
4392 Elf_Dyn_Range Table
= this->dynamic_table();
4396 OS
<< "Dynamic section at offset "
4397 << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable
.Addr
) -
4400 << " contains " << Table
.size() << " entries:\n";
4402 // The type name is surrounded with round brackets, hence add 2.
4403 size_t MaxTagSize
= getMaxDynamicTagSize(this->Obj
, Table
) + 2;
4404 // The "Name/Value" column should be indented from the "Type" column by N
4405 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4407 OS
<< " Tag" + std::string(ELFT::Is64Bits
? 16 : 8, ' ') + "Type"
4408 << std::string(MaxTagSize
- 3, ' ') << "Name/Value\n";
4410 std::string ValueFmt
= " %-" + std::to_string(MaxTagSize
) + "s ";
4411 for (auto Entry
: Table
) {
4412 uintX_t Tag
= Entry
.getTag();
4414 std::string("(") + this->Obj
.getDynamicTagAsString(Tag
) + ")";
4415 std::string Value
= this->getDynamicEntry(Tag
, Entry
.getVal());
4416 OS
<< " " << format_hex(Tag
, ELFT::Is64Bits
? 18 : 10)
4417 << format(ValueFmt
.c_str(), Type
.c_str()) << Value
<< "\n";
4421 template <class ELFT
> void GNUELFDumper
<ELFT
>::printDynamicRelocations() {
4422 this->printDynamicRelocationsHelper();
4425 template <class ELFT
>
4426 void ELFDumper
<ELFT
>::printDynamicReloc(const Relocation
<ELFT
> &R
) {
4427 printRelRelaReloc(R
, getSymbolForReloc(*this, R
));
4430 template <class ELFT
>
4431 void ELFDumper
<ELFT
>::printRelocationsHelper(const Elf_Shdr
&Sec
) {
4432 this->forEachRelocationDo(
4434 [&](const Relocation
<ELFT
> &R
, unsigned Ndx
, const Elf_Shdr
&Sec
,
4435 const Elf_Shdr
*SymTab
) { printReloc(R
, Ndx
, Sec
, SymTab
); },
4436 [&](const Elf_Relr
&R
) { printRelrReloc(R
); });
4439 template <class ELFT
> void ELFDumper
<ELFT
>::printDynamicRelocationsHelper() {
4440 const bool IsMips64EL
= this->Obj
.isMips64EL();
4441 if (this->DynRelaRegion
.Size
> 0) {
4442 printDynamicRelocHeader(ELF::SHT_RELA
, "RELA", this->DynRelaRegion
);
4443 for (const Elf_Rela
&Rela
:
4444 this->DynRelaRegion
.template getAsArrayRef
<Elf_Rela
>())
4445 printDynamicReloc(Relocation
<ELFT
>(Rela
, IsMips64EL
));
4448 if (this->DynRelRegion
.Size
> 0) {
4449 printDynamicRelocHeader(ELF::SHT_REL
, "REL", this->DynRelRegion
);
4450 for (const Elf_Rel
&Rel
:
4451 this->DynRelRegion
.template getAsArrayRef
<Elf_Rel
>())
4452 printDynamicReloc(Relocation
<ELFT
>(Rel
, IsMips64EL
));
4455 if (this->DynRelrRegion
.Size
> 0) {
4456 printDynamicRelocHeader(ELF::SHT_REL
, "RELR", this->DynRelrRegion
);
4457 Elf_Relr_Range Relrs
=
4458 this->DynRelrRegion
.template getAsArrayRef
<Elf_Relr
>();
4459 for (const Elf_Rel
&Rel
: Obj
.decode_relrs(Relrs
))
4460 printDynamicReloc(Relocation
<ELFT
>(Rel
, IsMips64EL
));
4463 if (this->DynPLTRelRegion
.Size
) {
4464 if (this->DynPLTRelRegion
.EntSize
== sizeof(Elf_Rela
)) {
4465 printDynamicRelocHeader(ELF::SHT_RELA
, "PLT", this->DynPLTRelRegion
);
4466 for (const Elf_Rela
&Rela
:
4467 this->DynPLTRelRegion
.template getAsArrayRef
<Elf_Rela
>())
4468 printDynamicReloc(Relocation
<ELFT
>(Rela
, IsMips64EL
));
4470 printDynamicRelocHeader(ELF::SHT_REL
, "PLT", this->DynPLTRelRegion
);
4471 for (const Elf_Rel
&Rel
:
4472 this->DynPLTRelRegion
.template getAsArrayRef
<Elf_Rel
>())
4473 printDynamicReloc(Relocation
<ELFT
>(Rel
, IsMips64EL
));
4478 template <class ELFT
>
4479 void GNUELFDumper
<ELFT
>::printGNUVersionSectionProlog(
4480 const typename
ELFT::Shdr
&Sec
, const Twine
&Label
, unsigned EntriesNum
) {
4481 // Don't inline the SecName, because it might report a warning to stderr and
4482 // corrupt the output.
4483 StringRef SecName
= this->getPrintableSectionName(Sec
);
4484 OS
<< Label
<< " section '" << SecName
<< "' "
4485 << "contains " << EntriesNum
<< " entries:\n";
4487 StringRef LinkedSecName
= "<corrupt>";
4488 if (Expected
<const typename
ELFT::Shdr
*> LinkedSecOrErr
=
4489 this->Obj
.getSection(Sec
.sh_link
))
4490 LinkedSecName
= this->getPrintableSectionName(**LinkedSecOrErr
);
4492 this->reportUniqueWarning("invalid section linked to " +
4493 this->describe(Sec
) + ": " +
4494 toString(LinkedSecOrErr
.takeError()));
4496 OS
<< " Addr: " << format_hex_no_prefix(Sec
.sh_addr
, 16)
4497 << " Offset: " << format_hex(Sec
.sh_offset
, 8)
4498 << " Link: " << Sec
.sh_link
<< " (" << LinkedSecName
<< ")\n";
4501 template <class ELFT
>
4502 void GNUELFDumper
<ELFT
>::printVersionSymbolSection(const Elf_Shdr
*Sec
) {
4506 printGNUVersionSectionProlog(*Sec
, "Version symbols",
4507 Sec
->sh_size
/ sizeof(Elf_Versym
));
4508 Expected
<ArrayRef
<Elf_Versym
>> VerTableOrErr
=
4509 this->getVersionTable(*Sec
, /*SymTab=*/nullptr,
4510 /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4511 if (!VerTableOrErr
) {
4512 this->reportUniqueWarning(VerTableOrErr
.takeError());
4516 SmallVector
<Optional
<VersionEntry
>, 0> *VersionMap
= nullptr;
4517 if (Expected
<SmallVector
<Optional
<VersionEntry
>, 0> *> MapOrErr
=
4518 this->getVersionMap())
4519 VersionMap
= *MapOrErr
;
4521 this->reportUniqueWarning(MapOrErr
.takeError());
4523 ArrayRef
<Elf_Versym
> VerTable
= *VerTableOrErr
;
4524 std::vector
<StringRef
> Versions
;
4525 for (size_t I
= 0, E
= VerTable
.size(); I
< E
; ++I
) {
4526 unsigned Ndx
= VerTable
[I
].vs_index
;
4527 if (Ndx
== VER_NDX_LOCAL
|| Ndx
== VER_NDX_GLOBAL
) {
4528 Versions
.emplace_back(Ndx
== VER_NDX_LOCAL
? "*local*" : "*global*");
4533 Versions
.emplace_back("<corrupt>");
4538 Expected
<StringRef
> NameOrErr
= this->Obj
.getSymbolVersionByIndex(
4539 Ndx
, IsDefault
, *VersionMap
, /*IsSymHidden=*/None
);
4541 this->reportUniqueWarning("unable to get a version for entry " +
4542 Twine(I
) + " of " + this->describe(*Sec
) +
4543 ": " + toString(NameOrErr
.takeError()));
4544 Versions
.emplace_back("<corrupt>");
4547 Versions
.emplace_back(*NameOrErr
);
4550 // readelf prints 4 entries per line.
4551 uint64_t Entries
= VerTable
.size();
4552 for (uint64_t VersymRow
= 0; VersymRow
< Entries
; VersymRow
+= 4) {
4553 OS
<< " " << format_hex_no_prefix(VersymRow
, 3) << ":";
4554 for (uint64_t I
= 0; (I
< 4) && (I
+ VersymRow
) < Entries
; ++I
) {
4555 unsigned Ndx
= VerTable
[VersymRow
+ I
].vs_index
;
4556 OS
<< format("%4x%c", Ndx
& VERSYM_VERSION
,
4557 Ndx
& VERSYM_HIDDEN
? 'h' : ' ');
4558 OS
<< left_justify("(" + std::string(Versions
[VersymRow
+ I
]) + ")", 13);
4565 static std::string
versionFlagToString(unsigned Flags
) {
4570 auto AddFlag
= [&Ret
, &Flags
](unsigned Flag
, StringRef Name
) {
4571 if (!(Flags
& Flag
))
4579 AddFlag(VER_FLG_BASE
, "BASE");
4580 AddFlag(VER_FLG_WEAK
, "WEAK");
4581 AddFlag(VER_FLG_INFO
, "INFO");
4582 AddFlag(~0, "<unknown>");
4586 template <class ELFT
>
4587 void GNUELFDumper
<ELFT
>::printVersionDefinitionSection(const Elf_Shdr
*Sec
) {
4591 printGNUVersionSectionProlog(*Sec
, "Version definition", Sec
->sh_info
);
4593 Expected
<std::vector
<VerDef
>> V
= this->Obj
.getVersionDefinitions(*Sec
);
4595 this->reportUniqueWarning(V
.takeError());
4599 for (const VerDef
&Def
: *V
) {
4600 OS
<< format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n",
4601 Def
.Offset
, Def
.Version
,
4602 versionFlagToString(Def
.Flags
).c_str(), Def
.Ndx
, Def
.Cnt
,
4605 for (const VerdAux
&Aux
: Def
.AuxV
)
4606 OS
<< format(" 0x%04x: Parent %u: %s\n", Aux
.Offset
, ++I
,
4613 template <class ELFT
>
4614 void GNUELFDumper
<ELFT
>::printVersionDependencySection(const Elf_Shdr
*Sec
) {
4618 unsigned VerneedNum
= Sec
->sh_info
;
4619 printGNUVersionSectionProlog(*Sec
, "Version needs", VerneedNum
);
4621 Expected
<std::vector
<VerNeed
>> V
=
4622 this->Obj
.getVersionDependencies(*Sec
, this->WarningHandler
);
4624 this->reportUniqueWarning(V
.takeError());
4628 for (const VerNeed
&VN
: *V
) {
4629 OS
<< format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN
.Offset
,
4630 VN
.Version
, VN
.File
.data(), VN
.Cnt
);
4631 for (const VernAux
&Aux
: VN
.AuxV
)
4632 OS
<< format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux
.Offset
,
4633 Aux
.Name
.data(), versionFlagToString(Aux
.Flags
).c_str(),
4639 template <class ELFT
>
4640 void GNUELFDumper
<ELFT
>::printHashHistogram(const Elf_Hash
&HashTable
) {
4641 size_t NBucket
= HashTable
.nbucket
;
4642 size_t NChain
= HashTable
.nchain
;
4643 ArrayRef
<Elf_Word
> Buckets
= HashTable
.buckets();
4644 ArrayRef
<Elf_Word
> Chains
= HashTable
.chains();
4645 size_t TotalSyms
= 0;
4646 // If hash table is correct, we have at least chains with 0 length
4647 size_t MaxChain
= 1;
4648 size_t CumulativeNonZero
= 0;
4650 if (NChain
== 0 || NBucket
== 0)
4653 std::vector
<size_t> ChainLen(NBucket
, 0);
4654 // Go over all buckets and and note chain lengths of each bucket (total
4655 // unique chain lengths).
4656 for (size_t B
= 0; B
< NBucket
; B
++) {
4657 BitVector
Visited(NChain
);
4658 for (size_t C
= Buckets
[B
]; C
< NChain
; C
= Chains
[C
]) {
4659 if (C
== ELF::STN_UNDEF
)
4662 this->reportUniqueWarning(".hash section is invalid: bucket " +
4664 ": a cycle was detected in the linked chain");
4668 if (MaxChain
<= ++ChainLen
[B
])
4671 TotalSyms
+= ChainLen
[B
];
4677 std::vector
<size_t> Count(MaxChain
, 0);
4678 // Count how long is the chain for each bucket
4679 for (size_t B
= 0; B
< NBucket
; B
++)
4680 ++Count
[ChainLen
[B
]];
4681 // Print Number of buckets with each chain lengths and their cumulative
4682 // coverage of the symbols
4683 OS
<< "Histogram for bucket list length (total of " << NBucket
4685 << " Length Number % of total Coverage\n";
4686 for (size_t I
= 0; I
< MaxChain
; I
++) {
4687 CumulativeNonZero
+= Count
[I
] * I
;
4688 OS
<< format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I
, Count
[I
],
4689 (Count
[I
] * 100.0) / NBucket
,
4690 (CumulativeNonZero
* 100.0) / TotalSyms
);
4694 template <class ELFT
>
4695 void GNUELFDumper
<ELFT
>::printGnuHashHistogram(
4696 const Elf_GnuHash
&GnuHashTable
) {
4697 Expected
<ArrayRef
<Elf_Word
>> ChainsOrErr
=
4698 getGnuHashTableChains
<ELFT
>(this->DynSymRegion
, &GnuHashTable
);
4700 this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
4701 toString(ChainsOrErr
.takeError()));
4705 ArrayRef
<Elf_Word
> Chains
= *ChainsOrErr
;
4706 size_t Symndx
= GnuHashTable
.symndx
;
4707 size_t TotalSyms
= 0;
4708 size_t MaxChain
= 1;
4709 size_t CumulativeNonZero
= 0;
4711 size_t NBucket
= GnuHashTable
.nbuckets
;
4712 if (Chains
.empty() || NBucket
== 0)
4715 ArrayRef
<Elf_Word
> Buckets
= GnuHashTable
.buckets();
4716 std::vector
<size_t> ChainLen(NBucket
, 0);
4717 for (size_t B
= 0; B
< NBucket
; B
++) {
4721 for (size_t C
= Buckets
[B
] - Symndx
;
4722 C
< Chains
.size() && (Chains
[C
] & 1) == 0; C
++)
4723 if (MaxChain
< ++Len
)
4733 std::vector
<size_t> Count(MaxChain
, 0);
4734 for (size_t B
= 0; B
< NBucket
; B
++)
4735 ++Count
[ChainLen
[B
]];
4736 // Print Number of buckets with each chain lengths and their cumulative
4737 // coverage of the symbols
4738 OS
<< "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4740 << " Length Number % of total Coverage\n";
4741 for (size_t I
= 0; I
< MaxChain
; I
++) {
4742 CumulativeNonZero
+= Count
[I
] * I
;
4743 OS
<< format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I
, Count
[I
],
4744 (Count
[I
] * 100.0) / NBucket
,
4745 (CumulativeNonZero
* 100.0) / TotalSyms
);
4749 // Hash histogram shows statistics of how efficient the hash was for the
4750 // dynamic symbol table. The table shows the number of hash buckets for
4751 // different lengths of chains as an absolute number and percentage of the total
4752 // buckets, and the cumulative coverage of symbols for each set of buckets.
4753 template <class ELFT
> void GNUELFDumper
<ELFT
>::printHashHistograms() {
4754 // Print histogram for the .hash section.
4755 if (this->HashTable
) {
4756 if (Error E
= checkHashTable
<ELFT
>(*this, this->HashTable
))
4757 this->reportUniqueWarning(std::move(E
));
4759 printHashHistogram(*this->HashTable
);
4762 // Print histogram for the .gnu.hash section.
4763 if (this->GnuHashTable
) {
4764 if (Error E
= checkGNUHashTable
<ELFT
>(this->Obj
, this->GnuHashTable
))
4765 this->reportUniqueWarning(std::move(E
));
4767 printGnuHashHistogram(*this->GnuHashTable
);
4771 template <class ELFT
> void GNUELFDumper
<ELFT
>::printCGProfile() {
4772 OS
<< "GNUStyle::printCGProfile not implemented\n";
4775 template <class ELFT
> void GNUELFDumper
<ELFT
>::printBBAddrMaps() {
4776 OS
<< "GNUStyle::printBBAddrMaps not implemented\n";
4779 static Expected
<std::vector
<uint64_t>> toULEB128Array(ArrayRef
<uint8_t> Data
) {
4780 std::vector
<uint64_t> Ret
;
4781 const uint8_t *Cur
= Data
.begin();
4782 const uint8_t *End
= Data
.end();
4783 while (Cur
!= End
) {
4786 Ret
.push_back(decodeULEB128(Cur
, &Size
, End
, &Err
));
4788 return createError(Err
);
4794 template <class ELFT
>
4795 static Expected
<std::vector
<uint64_t>>
4796 decodeAddrsigSection(const ELFFile
<ELFT
> &Obj
, const typename
ELFT::Shdr
&Sec
) {
4797 Expected
<ArrayRef
<uint8_t>> ContentsOrErr
= Obj
.getSectionContents(Sec
);
4799 return ContentsOrErr
.takeError();
4801 if (Expected
<std::vector
<uint64_t>> SymsOrErr
=
4802 toULEB128Array(*ContentsOrErr
))
4805 return createError("unable to decode " + describe(Obj
, Sec
) + ": " +
4806 toString(SymsOrErr
.takeError()));
4809 template <class ELFT
> void GNUELFDumper
<ELFT
>::printAddrsig() {
4810 if (!this->DotAddrsigSec
)
4813 Expected
<std::vector
<uint64_t>> SymsOrErr
=
4814 decodeAddrsigSection(this->Obj
, *this->DotAddrsigSec
);
4816 this->reportUniqueWarning(SymsOrErr
.takeError());
4820 StringRef Name
= this->getPrintableSectionName(*this->DotAddrsigSec
);
4821 OS
<< "\nAddress-significant symbols section '" << Name
<< "'"
4822 << " contains " << SymsOrErr
->size() << " entries:\n";
4823 OS
<< " Num: Name\n";
4825 Field Fields
[2] = {0, 8};
4826 size_t SymIndex
= 0;
4827 for (uint64_t Sym
: *SymsOrErr
) {
4828 Fields
[0].Str
= to_string(format_decimal(++SymIndex
, 6)) + ":";
4829 Fields
[1].Str
= this->getStaticSymbolName(Sym
);
4830 for (const Field
&Entry
: Fields
)
4836 template <typename ELFT
>
4837 static std::string
getGNUProperty(uint32_t Type
, uint32_t DataSize
,
4838 ArrayRef
<uint8_t> Data
) {
4840 raw_string_ostream
OS(str
);
4842 auto DumpBit
= [&](uint32_t Flag
, StringRef Name
) {
4843 if (PrData
& Flag
) {
4853 OS
<< format("<application-specific type 0x%x>", Type
);
4855 case GNU_PROPERTY_STACK_SIZE
: {
4856 OS
<< "stack size: ";
4857 if (DataSize
== sizeof(typename
ELFT::uint
))
4858 OS
<< formatv("{0:x}",
4859 (uint64_t)(*(const typename
ELFT::Addr
*)Data
.data()));
4861 OS
<< format("<corrupt length: 0x%x>", DataSize
);
4864 case GNU_PROPERTY_NO_COPY_ON_PROTECTED
:
4865 OS
<< "no copy on protected";
4867 OS
<< format(" <corrupt length: 0x%x>", DataSize
);
4869 case GNU_PROPERTY_AARCH64_FEATURE_1_AND
:
4870 case GNU_PROPERTY_X86_FEATURE_1_AND
:
4871 OS
<< ((Type
== GNU_PROPERTY_AARCH64_FEATURE_1_AND
) ? "aarch64 feature: "
4873 if (DataSize
!= 4) {
4874 OS
<< format("<corrupt length: 0x%x>", DataSize
);
4877 PrData
= support::endian::read32
<ELFT::TargetEndianness
>(Data
.data());
4882 if (Type
== GNU_PROPERTY_AARCH64_FEATURE_1_AND
) {
4883 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI
, "BTI");
4884 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC
, "PAC");
4886 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT
, "IBT");
4887 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK
, "SHSTK");
4890 OS
<< format("<unknown flags: 0x%x>", PrData
);
4892 case GNU_PROPERTY_X86_FEATURE_2_NEEDED
:
4893 case GNU_PROPERTY_X86_FEATURE_2_USED
:
4894 OS
<< "x86 feature "
4895 << (Type
== GNU_PROPERTY_X86_FEATURE_2_NEEDED
? "needed: " : "used: ");
4896 if (DataSize
!= 4) {
4897 OS
<< format("<corrupt length: 0x%x>", DataSize
);
4900 PrData
= support::endian::read32
<ELFT::TargetEndianness
>(Data
.data());
4905 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86
, "x86");
4906 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87
, "x87");
4907 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX
, "MMX");
4908 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM
, "XMM");
4909 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM
, "YMM");
4910 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM
, "ZMM");
4911 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR
, "FXSR");
4912 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE
, "XSAVE");
4913 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT
, "XSAVEOPT");
4914 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC
, "XSAVEC");
4916 OS
<< format("<unknown flags: 0x%x>", PrData
);
4918 case GNU_PROPERTY_X86_ISA_1_NEEDED
:
4919 case GNU_PROPERTY_X86_ISA_1_USED
:
4921 << (Type
== GNU_PROPERTY_X86_ISA_1_NEEDED
? "needed: " : "used: ");
4922 if (DataSize
!= 4) {
4923 OS
<< format("<corrupt length: 0x%x>", DataSize
);
4926 PrData
= support::endian::read32
<ELFT::TargetEndianness
>(Data
.data());
4931 DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE
, "x86-64-baseline");
4932 DumpBit(GNU_PROPERTY_X86_ISA_1_V2
, "x86-64-v2");
4933 DumpBit(GNU_PROPERTY_X86_ISA_1_V3
, "x86-64-v3");
4934 DumpBit(GNU_PROPERTY_X86_ISA_1_V4
, "x86-64-v4");
4936 OS
<< format("<unknown flags: 0x%x>", PrData
);
4941 template <typename ELFT
>
4942 static SmallVector
<std::string
, 4> getGNUPropertyList(ArrayRef
<uint8_t> Arr
) {
4943 using Elf_Word
= typename
ELFT::Word
;
4945 SmallVector
<std::string
, 4> Properties
;
4946 while (Arr
.size() >= 8) {
4947 uint32_t Type
= *reinterpret_cast<const Elf_Word
*>(Arr
.data());
4948 uint32_t DataSize
= *reinterpret_cast<const Elf_Word
*>(Arr
.data() + 4);
4949 Arr
= Arr
.drop_front(8);
4951 // Take padding size into account if present.
4952 uint64_t PaddedSize
= alignTo(DataSize
, sizeof(typename
ELFT::uint
));
4954 raw_string_ostream
OS(str
);
4955 if (Arr
.size() < PaddedSize
) {
4956 OS
<< format("<corrupt type (0x%x) datasz: 0x%x>", Type
, DataSize
);
4957 Properties
.push_back(OS
.str());
4960 Properties
.push_back(
4961 getGNUProperty
<ELFT
>(Type
, DataSize
, Arr
.take_front(PaddedSize
)));
4962 Arr
= Arr
.drop_front(PaddedSize
);
4966 Properties
.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
4977 template <typename ELFT
> static GNUAbiTag
getGNUAbiTag(ArrayRef
<uint8_t> Desc
) {
4978 typedef typename
ELFT::Word Elf_Word
;
4980 ArrayRef
<Elf_Word
> Words(reinterpret_cast<const Elf_Word
*>(Desc
.begin()),
4981 reinterpret_cast<const Elf_Word
*>(Desc
.end()));
4983 if (Words
.size() < 4)
4984 return {"", "", /*IsValid=*/false};
4986 static const char *OSNames
[] = {
4987 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
4989 StringRef OSName
= "Unknown";
4990 if (Words
[0] < array_lengthof(OSNames
))
4991 OSName
= OSNames
[Words
[0]];
4992 uint32_t Major
= Words
[1], Minor
= Words
[2], Patch
= Words
[3];
4994 raw_string_ostream
ABI(str
);
4995 ABI
<< Major
<< "." << Minor
<< "." << Patch
;
4996 return {std::string(OSName
), ABI
.str(), /*IsValid=*/true};
4999 static std::string
getGNUBuildId(ArrayRef
<uint8_t> Desc
) {
5001 raw_string_ostream
OS(str
);
5002 for (uint8_t B
: Desc
)
5003 OS
<< format_hex_no_prefix(B
, 2);
5007 static StringRef
getDescAsStringRef(ArrayRef
<uint8_t> Desc
) {
5008 return StringRef(reinterpret_cast<const char *>(Desc
.data()), Desc
.size());
5011 template <typename ELFT
>
5012 static bool printGNUNote(raw_ostream
&OS
, uint32_t NoteType
,
5013 ArrayRef
<uint8_t> Desc
) {
5014 // Return true if we were able to pretty-print the note, false otherwise.
5018 case ELF::NT_GNU_ABI_TAG
: {
5019 const GNUAbiTag
&AbiTag
= getGNUAbiTag
<ELFT
>(Desc
);
5020 if (!AbiTag
.IsValid
)
5021 OS
<< " <corrupt GNU_ABI_TAG>";
5023 OS
<< " OS: " << AbiTag
.OSName
<< ", ABI: " << AbiTag
.ABI
;
5026 case ELF::NT_GNU_BUILD_ID
: {
5027 OS
<< " Build ID: " << getGNUBuildId(Desc
);
5030 case ELF::NT_GNU_GOLD_VERSION
:
5031 OS
<< " Version: " << getDescAsStringRef(Desc
);
5033 case ELF::NT_GNU_PROPERTY_TYPE_0
:
5034 OS
<< " Properties:";
5035 for (const std::string
&Property
: getGNUPropertyList
<ELFT
>(Desc
))
5036 OS
<< " " << Property
<< "\n";
5043 template <typename ELFT
>
5044 static bool printLLVMOMPOFFLOADNote(raw_ostream
&OS
, uint32_t NoteType
,
5045 ArrayRef
<uint8_t> Desc
) {
5049 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION
:
5050 OS
<< " Version: " << getDescAsStringRef(Desc
);
5052 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER
:
5053 OS
<< " Producer: " << getDescAsStringRef(Desc
);
5055 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION
:
5056 OS
<< " Producer version: " << getDescAsStringRef(Desc
);
5063 const EnumEntry
<unsigned> FreeBSDFeatureCtlFlags
[] = {
5064 {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE
},
5065 {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE
},
5066 {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE
},
5067 {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED
},
5068 {"LA48", NT_FREEBSD_FCTL_LA48
},
5069 {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE
},
5072 struct FreeBSDNote
{
5077 template <typename ELFT
>
5078 static Optional
<FreeBSDNote
>
5079 getFreeBSDNote(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
, bool IsCore
) {
5081 return None
; // No pretty-printing yet.
5083 case ELF::NT_FREEBSD_ABI_TAG
:
5084 if (Desc
.size() != 4)
5088 utostr(support::endian::read32
<ELFT::TargetEndianness
>(Desc
.data()))};
5089 case ELF::NT_FREEBSD_ARCH_TAG
:
5090 return FreeBSDNote
{"Arch tag", toStringRef(Desc
).str()};
5091 case ELF::NT_FREEBSD_FEATURE_CTL
: {
5092 if (Desc
.size() != 4)
5095 support::endian::read32
<ELFT::TargetEndianness
>(Desc
.data());
5096 std::string FlagsStr
;
5097 raw_string_ostream
OS(FlagsStr
);
5098 printFlags(Value
, makeArrayRef(FreeBSDFeatureCtlFlags
), OS
);
5099 if (OS
.str().empty())
5100 OS
<< "0x" << utohexstr(Value
);
5102 OS
<< "(0x" << utohexstr(Value
) << ")";
5103 return FreeBSDNote
{"Feature flags", OS
.str()};
5115 template <typename ELFT
>
5116 static AMDNote
getAMDNote(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
) {
5120 case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION
: {
5121 struct CodeObjectVersion
{
5122 uint32_t MajorVersion
;
5123 uint32_t MinorVersion
;
5125 if (Desc
.size() != sizeof(CodeObjectVersion
))
5126 return {"AMD HSA Code Object Version",
5127 "Invalid AMD HSA Code Object Version"};
5128 std::string VersionString
;
5129 raw_string_ostream
StrOS(VersionString
);
5130 auto Version
= reinterpret_cast<const CodeObjectVersion
*>(Desc
.data());
5131 StrOS
<< "[Major: " << Version
->MajorVersion
5132 << ", Minor: " << Version
->MinorVersion
<< "]";
5133 return {"AMD HSA Code Object Version", VersionString
};
5135 case ELF::NT_AMD_HSA_HSAIL
: {
5136 struct HSAILProperties
{
5137 uint32_t HSAILMajorVersion
;
5138 uint32_t HSAILMinorVersion
;
5140 uint8_t MachineModel
;
5141 uint8_t DefaultFloatRound
;
5143 if (Desc
.size() != sizeof(HSAILProperties
))
5144 return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5145 auto Properties
= reinterpret_cast<const HSAILProperties
*>(Desc
.data());
5146 std::string HSAILPropetiesString
;
5147 raw_string_ostream
StrOS(HSAILPropetiesString
);
5148 StrOS
<< "[HSAIL Major: " << Properties
->HSAILMajorVersion
5149 << ", HSAIL Minor: " << Properties
->HSAILMinorVersion
5150 << ", Profile: " << uint32_t(Properties
->Profile
)
5151 << ", Machine Model: " << uint32_t(Properties
->MachineModel
)
5152 << ", Default Float Round: "
5153 << uint32_t(Properties
->DefaultFloatRound
) << "]";
5154 return {"AMD HSA HSAIL Properties", HSAILPropetiesString
};
5156 case ELF::NT_AMD_HSA_ISA_VERSION
: {
5158 uint16_t VendorNameSize
;
5159 uint16_t ArchitectureNameSize
;
5164 if (Desc
.size() < sizeof(IsaVersion
))
5165 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5166 auto Isa
= reinterpret_cast<const IsaVersion
*>(Desc
.data());
5167 if (Desc
.size() < sizeof(IsaVersion
) +
5168 Isa
->VendorNameSize
+ Isa
->ArchitectureNameSize
||
5169 Isa
->VendorNameSize
== 0 || Isa
->ArchitectureNameSize
== 0)
5170 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5171 std::string IsaString
;
5172 raw_string_ostream
StrOS(IsaString
);
5173 StrOS
<< "[Vendor: "
5174 << StringRef((const char*)Desc
.data() + sizeof(IsaVersion
), Isa
->VendorNameSize
- 1)
5175 << ", Architecture: "
5176 << StringRef((const char*)Desc
.data() + sizeof(IsaVersion
) + Isa
->VendorNameSize
,
5177 Isa
->ArchitectureNameSize
- 1)
5178 << ", Major: " << Isa
->Major
<< ", Minor: " << Isa
->Minor
5179 << ", Stepping: " << Isa
->Stepping
<< "]";
5180 return {"AMD HSA ISA Version", IsaString
};
5182 case ELF::NT_AMD_HSA_METADATA
: {
5183 if (Desc
.size() == 0)
5184 return {"AMD HSA Metadata", ""};
5187 std::string(reinterpret_cast<const char *>(Desc
.data()), Desc
.size() - 1)};
5189 case ELF::NT_AMD_HSA_ISA_NAME
: {
5190 if (Desc
.size() == 0)
5191 return {"AMD HSA ISA Name", ""};
5194 std::string(reinterpret_cast<const char *>(Desc
.data()), Desc
.size())};
5196 case ELF::NT_AMD_PAL_METADATA
: {
5197 struct PALMetadata
{
5201 if (Desc
.size() % sizeof(PALMetadata
) != 0)
5202 return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5203 auto Isa
= reinterpret_cast<const PALMetadata
*>(Desc
.data());
5204 std::string MetadataString
;
5205 raw_string_ostream
StrOS(MetadataString
);
5206 for (size_t I
= 0, E
= Desc
.size() / sizeof(PALMetadata
); I
< E
; ++I
) {
5207 StrOS
<< "[" << Isa
[I
].Key
<< ": " << Isa
[I
].Value
<< "]";
5209 return {"AMD PAL Metadata", MetadataString
};
5219 template <typename ELFT
>
5220 static AMDGPUNote
getAMDGPUNote(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
) {
5224 case ELF::NT_AMDGPU_METADATA
: {
5225 StringRef MsgPackString
=
5226 StringRef(reinterpret_cast<const char *>(Desc
.data()), Desc
.size());
5227 msgpack::Document MsgPackDoc
;
5228 if (!MsgPackDoc
.readFromBlob(MsgPackString
, /*Multi=*/false))
5231 AMDGPU::HSAMD::V3::MetadataVerifier
Verifier(true);
5232 std::string MetadataString
;
5233 if (!Verifier
.verify(MsgPackDoc
.getRoot()))
5234 MetadataString
= "Invalid AMDGPU Metadata\n";
5236 raw_string_ostream
StrOS(MetadataString
);
5237 if (MsgPackDoc
.getRoot().isScalar()) {
5238 // TODO: passing a scalar root to toYAML() asserts:
5239 // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5240 // "plain scalar documents are not supported")
5241 // To avoid this crash we print the raw data instead.
5244 MsgPackDoc
.toYAML(StrOS
);
5245 return {"AMDGPU Metadata", StrOS
.str()};
5250 struct CoreFileMapping
{
5251 uint64_t Start
, End
, Offset
;
5257 std::vector
<CoreFileMapping
> Mappings
;
5260 static Expected
<CoreNote
> readCoreNote(DataExtractor Desc
) {
5261 // Expected format of the NT_FILE note description:
5262 // 1. # of file mappings (call it N)
5264 // 3. N (start, end, offset) triples
5265 // 4. N packed filenames (null delimited)
5266 // Each field is an Elf_Addr, except for filenames which are char* strings.
5269 const int Bytes
= Desc
.getAddressSize();
5271 if (!Desc
.isValidOffsetForAddress(2))
5272 return createError("the note of size 0x" + Twine::utohexstr(Desc
.size()) +
5273 " is too short, expected at least 0x" +
5274 Twine::utohexstr(Bytes
* 2));
5275 if (Desc
.getData().back() != 0)
5276 return createError("the note is not NUL terminated");
5278 uint64_t DescOffset
= 0;
5279 uint64_t FileCount
= Desc
.getAddress(&DescOffset
);
5280 Ret
.PageSize
= Desc
.getAddress(&DescOffset
);
5282 if (!Desc
.isValidOffsetForAddress(3 * FileCount
* Bytes
))
5283 return createError("unable to read file mappings (found " +
5284 Twine(FileCount
) + "): the note of size 0x" +
5285 Twine::utohexstr(Desc
.size()) + " is too short");
5287 uint64_t FilenamesOffset
= 0;
5288 DataExtractor
Filenames(
5289 Desc
.getData().drop_front(DescOffset
+ 3 * FileCount
* Bytes
),
5290 Desc
.isLittleEndian(), Desc
.getAddressSize());
5292 Ret
.Mappings
.resize(FileCount
);
5294 for (CoreFileMapping
&Mapping
: Ret
.Mappings
) {
5296 if (!Filenames
.isValidOffsetForDataOfSize(FilenamesOffset
, 1))
5298 "unable to read the file name for the mapping with index " +
5299 Twine(I
) + ": the note of size 0x" + Twine::utohexstr(Desc
.size()) +
5301 Mapping
.Start
= Desc
.getAddress(&DescOffset
);
5302 Mapping
.End
= Desc
.getAddress(&DescOffset
);
5303 Mapping
.Offset
= Desc
.getAddress(&DescOffset
);
5304 Mapping
.Filename
= Filenames
.getCStrRef(&FilenamesOffset
);
5310 template <typename ELFT
>
5311 static void printCoreNote(raw_ostream
&OS
, const CoreNote
&Note
) {
5312 // Length of "0x<address>" string.
5313 const int FieldWidth
= ELFT::Is64Bits
? 18 : 10;
5315 OS
<< " Page size: " << format_decimal(Note
.PageSize
, 0) << '\n';
5316 OS
<< " " << right_justify("Start", FieldWidth
) << " "
5317 << right_justify("End", FieldWidth
) << " "
5318 << right_justify("Page Offset", FieldWidth
) << '\n';
5319 for (const CoreFileMapping
&Mapping
: Note
.Mappings
) {
5320 OS
<< " " << format_hex(Mapping
.Start
, FieldWidth
) << " "
5321 << format_hex(Mapping
.End
, FieldWidth
) << " "
5322 << format_hex(Mapping
.Offset
, FieldWidth
) << "\n "
5323 << Mapping
.Filename
<< '\n';
5327 const NoteType GenericNoteTypes
[] = {
5328 {ELF::NT_VERSION
, "NT_VERSION (version)"},
5329 {ELF::NT_ARCH
, "NT_ARCH (architecture)"},
5330 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN
, "OPEN"},
5331 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC
, "func"},
5334 const NoteType GNUNoteTypes
[] = {
5335 {ELF::NT_GNU_ABI_TAG
, "NT_GNU_ABI_TAG (ABI version tag)"},
5336 {ELF::NT_GNU_HWCAP
, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5337 {ELF::NT_GNU_BUILD_ID
, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5338 {ELF::NT_GNU_GOLD_VERSION
, "NT_GNU_GOLD_VERSION (gold version)"},
5339 {ELF::NT_GNU_PROPERTY_TYPE_0
, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5342 const NoteType FreeBSDCoreNoteTypes
[] = {
5343 {ELF::NT_FREEBSD_THRMISC
, "NT_THRMISC (thrmisc structure)"},
5344 {ELF::NT_FREEBSD_PROCSTAT_PROC
, "NT_PROCSTAT_PROC (proc data)"},
5345 {ELF::NT_FREEBSD_PROCSTAT_FILES
, "NT_PROCSTAT_FILES (files data)"},
5346 {ELF::NT_FREEBSD_PROCSTAT_VMMAP
, "NT_PROCSTAT_VMMAP (vmmap data)"},
5347 {ELF::NT_FREEBSD_PROCSTAT_GROUPS
, "NT_PROCSTAT_GROUPS (groups data)"},
5348 {ELF::NT_FREEBSD_PROCSTAT_UMASK
, "NT_PROCSTAT_UMASK (umask data)"},
5349 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT
, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5350 {ELF::NT_FREEBSD_PROCSTAT_OSREL
, "NT_PROCSTAT_OSREL (osreldate data)"},
5351 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS
,
5352 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5353 {ELF::NT_FREEBSD_PROCSTAT_AUXV
, "NT_PROCSTAT_AUXV (auxv data)"},
5356 const NoteType FreeBSDNoteTypes
[] = {
5357 {ELF::NT_FREEBSD_ABI_TAG
, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5358 {ELF::NT_FREEBSD_NOINIT_TAG
, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5359 {ELF::NT_FREEBSD_ARCH_TAG
, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5360 {ELF::NT_FREEBSD_FEATURE_CTL
,
5361 "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5364 const NoteType NetBSDCoreNoteTypes
[] = {
5365 {ELF::NT_NETBSDCORE_PROCINFO
,
5366 "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5367 {ELF::NT_NETBSDCORE_AUXV
, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5368 {ELF::NT_NETBSDCORE_LWPSTATUS
, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5371 const NoteType OpenBSDCoreNoteTypes
[] = {
5372 {ELF::NT_OPENBSD_PROCINFO
, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5373 {ELF::NT_OPENBSD_AUXV
, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5374 {ELF::NT_OPENBSD_REGS
, "NT_OPENBSD_REGS (regular registers)"},
5375 {ELF::NT_OPENBSD_FPREGS
, "NT_OPENBSD_FPREGS (floating point registers)"},
5376 {ELF::NT_OPENBSD_WCOOKIE
, "NT_OPENBSD_WCOOKIE (window cookie)"},
5379 const NoteType AMDNoteTypes
[] = {
5380 {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION
,
5381 "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5382 {ELF::NT_AMD_HSA_HSAIL
, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5383 {ELF::NT_AMD_HSA_ISA_VERSION
, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5384 {ELF::NT_AMD_HSA_METADATA
, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5385 {ELF::NT_AMD_HSA_ISA_NAME
, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5386 {ELF::NT_AMD_PAL_METADATA
, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5389 const NoteType AMDGPUNoteTypes
[] = {
5390 {ELF::NT_AMDGPU_METADATA
, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5393 const NoteType LLVMOMPOFFLOADNoteTypes
[] = {
5394 {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION
,
5395 "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5396 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER
,
5397 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5398 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION
,
5399 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5402 const NoteType CoreNoteTypes
[] = {
5403 {ELF::NT_PRSTATUS
, "NT_PRSTATUS (prstatus structure)"},
5404 {ELF::NT_FPREGSET
, "NT_FPREGSET (floating point registers)"},
5405 {ELF::NT_PRPSINFO
, "NT_PRPSINFO (prpsinfo structure)"},
5406 {ELF::NT_TASKSTRUCT
, "NT_TASKSTRUCT (task structure)"},
5407 {ELF::NT_AUXV
, "NT_AUXV (auxiliary vector)"},
5408 {ELF::NT_PSTATUS
, "NT_PSTATUS (pstatus structure)"},
5409 {ELF::NT_FPREGS
, "NT_FPREGS (floating point registers)"},
5410 {ELF::NT_PSINFO
, "NT_PSINFO (psinfo structure)"},
5411 {ELF::NT_LWPSTATUS
, "NT_LWPSTATUS (lwpstatus_t structure)"},
5412 {ELF::NT_LWPSINFO
, "NT_LWPSINFO (lwpsinfo_t structure)"},
5413 {ELF::NT_WIN32PSTATUS
, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5415 {ELF::NT_PPC_VMX
, "NT_PPC_VMX (ppc Altivec registers)"},
5416 {ELF::NT_PPC_VSX
, "NT_PPC_VSX (ppc VSX registers)"},
5417 {ELF::NT_PPC_TAR
, "NT_PPC_TAR (ppc TAR register)"},
5418 {ELF::NT_PPC_PPR
, "NT_PPC_PPR (ppc PPR register)"},
5419 {ELF::NT_PPC_DSCR
, "NT_PPC_DSCR (ppc DSCR register)"},
5420 {ELF::NT_PPC_EBB
, "NT_PPC_EBB (ppc EBB registers)"},
5421 {ELF::NT_PPC_PMU
, "NT_PPC_PMU (ppc PMU registers)"},
5422 {ELF::NT_PPC_TM_CGPR
, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5423 {ELF::NT_PPC_TM_CFPR
,
5424 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5425 {ELF::NT_PPC_TM_CVMX
,
5426 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5427 {ELF::NT_PPC_TM_CVSX
, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5428 {ELF::NT_PPC_TM_SPR
, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5429 {ELF::NT_PPC_TM_CTAR
, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5430 {ELF::NT_PPC_TM_CPPR
, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5431 {ELF::NT_PPC_TM_CDSCR
, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5433 {ELF::NT_386_TLS
, "NT_386_TLS (x86 TLS information)"},
5434 {ELF::NT_386_IOPERM
, "NT_386_IOPERM (x86 I/O permissions)"},
5435 {ELF::NT_X86_XSTATE
, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5437 {ELF::NT_S390_HIGH_GPRS
, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5438 {ELF::NT_S390_TIMER
, "NT_S390_TIMER (s390 timer register)"},
5439 {ELF::NT_S390_TODCMP
, "NT_S390_TODCMP (s390 TOD comparator register)"},
5440 {ELF::NT_S390_TODPREG
, "NT_S390_TODPREG (s390 TOD programmable register)"},
5441 {ELF::NT_S390_CTRS
, "NT_S390_CTRS (s390 control registers)"},
5442 {ELF::NT_S390_PREFIX
, "NT_S390_PREFIX (s390 prefix register)"},
5443 {ELF::NT_S390_LAST_BREAK
,
5444 "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5445 {ELF::NT_S390_SYSTEM_CALL
,
5446 "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5447 {ELF::NT_S390_TDB
, "NT_S390_TDB (s390 transaction diagnostic block)"},
5448 {ELF::NT_S390_VXRS_LOW
,
5449 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5450 {ELF::NT_S390_VXRS_HIGH
, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5451 {ELF::NT_S390_GS_CB
, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5452 {ELF::NT_S390_GS_BC
,
5453 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5455 {ELF::NT_ARM_VFP
, "NT_ARM_VFP (arm VFP registers)"},
5456 {ELF::NT_ARM_TLS
, "NT_ARM_TLS (AArch TLS registers)"},
5457 {ELF::NT_ARM_HW_BREAK
,
5458 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5459 {ELF::NT_ARM_HW_WATCH
,
5460 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5462 {ELF::NT_FILE
, "NT_FILE (mapped files)"},
5463 {ELF::NT_PRXFPREG
, "NT_PRXFPREG (user_xfpregs structure)"},
5464 {ELF::NT_SIGINFO
, "NT_SIGINFO (siginfo_t data)"},
5467 template <class ELFT
>
5468 StringRef
getNoteTypeName(const typename
ELFT::Note
&Note
, unsigned ELFType
) {
5469 uint32_t Type
= Note
.getType();
5470 auto FindNote
= [&](ArrayRef
<NoteType
> V
) -> StringRef
{
5471 for (const NoteType
&N
: V
)
5477 StringRef Name
= Note
.getName();
5479 return FindNote(GNUNoteTypes
);
5480 if (Name
== "FreeBSD") {
5481 if (ELFType
== ELF::ET_CORE
) {
5482 // FreeBSD also places the generic core notes in the FreeBSD namespace.
5483 StringRef Result
= FindNote(FreeBSDCoreNoteTypes
);
5484 if (!Result
.empty())
5486 return FindNote(CoreNoteTypes
);
5488 return FindNote(FreeBSDNoteTypes
);
5491 if (ELFType
== ELF::ET_CORE
&& Name
.startswith("NetBSD-CORE")) {
5492 StringRef Result
= FindNote(NetBSDCoreNoteTypes
);
5493 if (!Result
.empty())
5495 return FindNote(CoreNoteTypes
);
5497 if (ELFType
== ELF::ET_CORE
&& Name
.startswith("OpenBSD")) {
5498 // OpenBSD also places the generic core notes in the OpenBSD namespace.
5499 StringRef Result
= FindNote(OpenBSDCoreNoteTypes
);
5500 if (!Result
.empty())
5502 return FindNote(CoreNoteTypes
);
5505 return FindNote(AMDNoteTypes
);
5506 if (Name
== "AMDGPU")
5507 return FindNote(AMDGPUNoteTypes
);
5508 if (Name
== "LLVMOMPOFFLOAD")
5509 return FindNote(LLVMOMPOFFLOADNoteTypes
);
5511 if (ELFType
== ELF::ET_CORE
)
5512 return FindNote(CoreNoteTypes
);
5513 return FindNote(GenericNoteTypes
);
5516 template <class ELFT
>
5517 static void printNotesHelper(
5518 const ELFDumper
<ELFT
> &Dumper
,
5519 llvm::function_ref
<void(Optional
<StringRef
>, typename
ELFT::Off
,
5520 typename
ELFT::Addr
)>
5522 llvm::function_ref
<Error(const typename
ELFT::Note
&, bool)> ProcessNoteFn
,
5523 llvm::function_ref
<void()> FinishNotesFn
) {
5524 const ELFFile
<ELFT
> &Obj
= Dumper
.getElfObject().getELFFile();
5525 bool IsCoreFile
= Obj
.getHeader().e_type
== ELF::ET_CORE
;
5527 ArrayRef
<typename
ELFT::Shdr
> Sections
= cantFail(Obj
.sections());
5528 if (!IsCoreFile
&& !Sections
.empty()) {
5529 for (const typename
ELFT::Shdr
&S
: Sections
) {
5530 if (S
.sh_type
!= SHT_NOTE
)
5532 StartNotesFn(expectedToOptional(Obj
.getSectionName(S
)), S
.sh_offset
,
5534 Error Err
= Error::success();
5536 for (const typename
ELFT::Note Note
: Obj
.notes(S
, Err
)) {
5537 if (Error E
= ProcessNoteFn(Note
, IsCoreFile
))
5538 Dumper
.reportUniqueWarning(
5539 "unable to read note with index " + Twine(I
) + " from the " +
5540 describe(Obj
, S
) + ": " + toString(std::move(E
)));
5544 Dumper
.reportUniqueWarning("unable to read notes from the " +
5545 describe(Obj
, S
) + ": " +
5546 toString(std::move(Err
)));
5552 Expected
<ArrayRef
<typename
ELFT::Phdr
>> PhdrsOrErr
= Obj
.program_headers();
5554 Dumper
.reportUniqueWarning(
5555 "unable to read program headers to locate the PT_NOTE segment: " +
5556 toString(PhdrsOrErr
.takeError()));
5560 for (size_t I
= 0, E
= (*PhdrsOrErr
).size(); I
!= E
; ++I
) {
5561 const typename
ELFT::Phdr
&P
= (*PhdrsOrErr
)[I
];
5562 if (P
.p_type
!= PT_NOTE
)
5564 StartNotesFn(/*SecName=*/None
, P
.p_offset
, P
.p_filesz
);
5565 Error Err
= Error::success();
5567 for (const typename
ELFT::Note Note
: Obj
.notes(P
, Err
)) {
5568 if (Error E
= ProcessNoteFn(Note
, IsCoreFile
))
5569 Dumper
.reportUniqueWarning("unable to read note with index " +
5571 " from the PT_NOTE segment with index " +
5572 Twine(I
) + ": " + toString(std::move(E
)));
5576 Dumper
.reportUniqueWarning(
5577 "unable to read notes from the PT_NOTE segment with index " +
5578 Twine(I
) + ": " + toString(std::move(Err
)));
5583 template <class ELFT
> void GNUELFDumper
<ELFT
>::printNotes() {
5584 bool IsFirstHeader
= true;
5585 auto PrintHeader
= [&](Optional
<StringRef
> SecName
,
5586 const typename
ELFT::Off Offset
,
5587 const typename
ELFT::Addr Size
) {
5588 // Print a newline between notes sections to match GNU readelf.
5589 if (!IsFirstHeader
) {
5592 IsFirstHeader
= false;
5595 OS
<< "Displaying notes found ";
5598 OS
<< "in: " << *SecName
<< "\n";
5600 OS
<< "at file offset " << format_hex(Offset
, 10) << " with length "
5601 << format_hex(Size
, 10) << ":\n";
5603 OS
<< " Owner Data size \tDescription\n";
5606 auto ProcessNote
= [&](const Elf_Note
&Note
, bool IsCore
) -> Error
{
5607 StringRef Name
= Note
.getName();
5608 ArrayRef
<uint8_t> Descriptor
= Note
.getDesc();
5609 Elf_Word Type
= Note
.getType();
5611 // Print the note owner/type.
5612 OS
<< " " << left_justify(Name
, 20) << ' '
5613 << format_hex(Descriptor
.size(), 10) << '\t';
5615 StringRef NoteType
=
5616 getNoteTypeName
<ELFT
>(Note
, this->Obj
.getHeader().e_type
);
5617 if (!NoteType
.empty())
5618 OS
<< NoteType
<< '\n';
5620 OS
<< "Unknown note type: (" << format_hex(Type
, 10) << ")\n";
5622 // Print the description, or fallback to printing raw bytes for unknown
5623 // owners/if we fail to pretty-print the contents.
5624 if (Name
== "GNU") {
5625 if (printGNUNote
<ELFT
>(OS
, Type
, Descriptor
))
5626 return Error::success();
5627 } else if (Name
== "FreeBSD") {
5628 if (Optional
<FreeBSDNote
> N
=
5629 getFreeBSDNote
<ELFT
>(Type
, Descriptor
, IsCore
)) {
5630 OS
<< " " << N
->Type
<< ": " << N
->Value
<< '\n';
5631 return Error::success();
5633 } else if (Name
== "AMD") {
5634 const AMDNote N
= getAMDNote
<ELFT
>(Type
, Descriptor
);
5635 if (!N
.Type
.empty()) {
5636 OS
<< " " << N
.Type
<< ":\n " << N
.Value
<< '\n';
5637 return Error::success();
5639 } else if (Name
== "AMDGPU") {
5640 const AMDGPUNote N
= getAMDGPUNote
<ELFT
>(Type
, Descriptor
);
5641 if (!N
.Type
.empty()) {
5642 OS
<< " " << N
.Type
<< ":\n " << N
.Value
<< '\n';
5643 return Error::success();
5645 } else if (Name
== "LLVMOMPOFFLOAD") {
5646 if (printLLVMOMPOFFLOADNote
<ELFT
>(OS
, Type
, Descriptor
))
5647 return Error::success();
5648 } else if (Name
== "CORE") {
5649 if (Type
== ELF::NT_FILE
) {
5650 DataExtractor
DescExtractor(Descriptor
,
5651 ELFT::TargetEndianness
== support::little
,
5653 if (Expected
<CoreNote
> NoteOrErr
= readCoreNote(DescExtractor
)) {
5654 printCoreNote
<ELFT
>(OS
, *NoteOrErr
);
5655 return Error::success();
5657 return NoteOrErr
.takeError();
5661 if (!Descriptor
.empty()) {
5662 OS
<< " description data:";
5663 for (uint8_t B
: Descriptor
)
5664 OS
<< " " << format("%02x", B
);
5667 return Error::success();
5670 printNotesHelper(*this, PrintHeader
, ProcessNote
, []() {});
5673 template <class ELFT
> void GNUELFDumper
<ELFT
>::printELFLinkerOptions() {
5674 OS
<< "printELFLinkerOptions not implemented!\n";
5677 template <class ELFT
>
5678 void ELFDumper
<ELFT
>::printDependentLibsHelper(
5679 function_ref
<void(const Elf_Shdr
&)> OnSectionStart
,
5680 function_ref
<void(StringRef
, uint64_t)> OnLibEntry
) {
5681 auto Warn
= [this](unsigned SecNdx
, StringRef Msg
) {
5682 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
5683 Twine(SecNdx
) + " is broken: " + Msg
);
5687 for (const Elf_Shdr
&Shdr
: cantFail(Obj
.sections())) {
5689 if (Shdr
.sh_type
!= ELF::SHT_LLVM_DEPENDENT_LIBRARIES
)
5692 OnSectionStart(Shdr
);
5694 Expected
<ArrayRef
<uint8_t>> ContentsOrErr
= Obj
.getSectionContents(Shdr
);
5695 if (!ContentsOrErr
) {
5696 Warn(I
, toString(ContentsOrErr
.takeError()));
5700 ArrayRef
<uint8_t> Contents
= *ContentsOrErr
;
5701 if (!Contents
.empty() && Contents
.back() != 0) {
5702 Warn(I
, "the content is not null-terminated");
5706 for (const uint8_t *I
= Contents
.begin(), *E
= Contents
.end(); I
< E
;) {
5707 StringRef
Lib((const char *)I
);
5708 OnLibEntry(Lib
, I
- Contents
.begin());
5709 I
+= Lib
.size() + 1;
5714 template <class ELFT
>
5715 void ELFDumper
<ELFT
>::forEachRelocationDo(
5716 const Elf_Shdr
&Sec
, bool RawRelr
,
5717 llvm::function_ref
<void(const Relocation
<ELFT
> &, unsigned,
5718 const Elf_Shdr
&, const Elf_Shdr
*)>
5720 llvm::function_ref
<void(const Elf_Relr
&)> RelrFn
) {
5721 auto Warn
= [&](Error
&&E
,
5722 const Twine
&Prefix
= "unable to read relocations from") {
5723 this->reportUniqueWarning(Prefix
+ " " + describe(Sec
) + ": " +
5724 toString(std::move(E
)));
5727 // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
5728 // For them we should not treat the value of the sh_link field as an index of
5730 const Elf_Shdr
*SymTab
;
5731 if (Sec
.sh_type
!= ELF::SHT_RELR
&& Sec
.sh_type
!= ELF::SHT_ANDROID_RELR
) {
5732 Expected
<const Elf_Shdr
*> SymTabOrErr
= Obj
.getSection(Sec
.sh_link
);
5734 Warn(SymTabOrErr
.takeError(), "unable to locate a symbol table for");
5737 SymTab
= *SymTabOrErr
;
5740 unsigned RelNdx
= 0;
5741 const bool IsMips64EL
= this->Obj
.isMips64EL();
5742 switch (Sec
.sh_type
) {
5744 if (Expected
<Elf_Rel_Range
> RangeOrErr
= Obj
.rels(Sec
)) {
5745 for (const Elf_Rel
&R
: *RangeOrErr
)
5746 RelRelaFn(Relocation
<ELFT
>(R
, IsMips64EL
), RelNdx
++, Sec
, SymTab
);
5748 Warn(RangeOrErr
.takeError());
5752 if (Expected
<Elf_Rela_Range
> RangeOrErr
= Obj
.relas(Sec
)) {
5753 for (const Elf_Rela
&R
: *RangeOrErr
)
5754 RelRelaFn(Relocation
<ELFT
>(R
, IsMips64EL
), RelNdx
++, Sec
, SymTab
);
5756 Warn(RangeOrErr
.takeError());
5760 case ELF::SHT_ANDROID_RELR
: {
5761 Expected
<Elf_Relr_Range
> RangeOrErr
= Obj
.relrs(Sec
);
5763 Warn(RangeOrErr
.takeError());
5767 for (const Elf_Relr
&R
: *RangeOrErr
)
5772 for (const Elf_Rel
&R
: Obj
.decode_relrs(*RangeOrErr
))
5773 RelRelaFn(Relocation
<ELFT
>(R
, IsMips64EL
), RelNdx
++, Sec
,
5774 /*SymTab=*/nullptr);
5777 case ELF::SHT_ANDROID_REL
:
5778 case ELF::SHT_ANDROID_RELA
:
5779 if (Expected
<std::vector
<Elf_Rela
>> RelasOrErr
= Obj
.android_relas(Sec
)) {
5780 for (const Elf_Rela
&R
: *RelasOrErr
)
5781 RelRelaFn(Relocation
<ELFT
>(R
, IsMips64EL
), RelNdx
++, Sec
, SymTab
);
5783 Warn(RelasOrErr
.takeError());
5789 template <class ELFT
>
5790 StringRef ELFDumper
<ELFT
>::getPrintableSectionName(const Elf_Shdr
&Sec
) const {
5791 StringRef Name
= "<?>";
5792 if (Expected
<StringRef
> SecNameOrErr
=
5793 Obj
.getSectionName(Sec
, this->WarningHandler
))
5794 Name
= *SecNameOrErr
;
5796 this->reportUniqueWarning("unable to get the name of " + describe(Sec
) +
5797 ": " + toString(SecNameOrErr
.takeError()));
5801 template <class ELFT
> void GNUELFDumper
<ELFT
>::printDependentLibs() {
5802 bool SectionStarted
= false;
5807 std::vector
<NameOffset
> SecEntries
;
5809 auto PrintSection
= [&]() {
5810 OS
<< "Dependent libraries section " << Current
.Name
<< " at offset "
5811 << format_hex(Current
.Offset
, 1) << " contains " << SecEntries
.size()
5813 for (NameOffset Entry
: SecEntries
)
5814 OS
<< " [" << format("%6" PRIx64
, Entry
.Offset
) << "] " << Entry
.Name
5820 auto OnSectionStart
= [&](const Elf_Shdr
&Shdr
) {
5823 SectionStarted
= true;
5824 Current
.Offset
= Shdr
.sh_offset
;
5825 Current
.Name
= this->getPrintableSectionName(Shdr
);
5827 auto OnLibEntry
= [&](StringRef Lib
, uint64_t Offset
) {
5828 SecEntries
.push_back(NameOffset
{Lib
, Offset
});
5831 this->printDependentLibsHelper(OnSectionStart
, OnLibEntry
);
5836 template <class ELFT
>
5837 SmallVector
<uint32_t> ELFDumper
<ELFT
>::getSymbolIndexesForFunctionAddress(
5838 uint64_t SymValue
, Optional
<const Elf_Shdr
*> FunctionSec
) {
5839 SmallVector
<uint32_t> SymbolIndexes
;
5840 if (!this->AddressToIndexMap
.hasValue()) {
5841 // Populate the address to index map upon the first invocation of this
5843 this->AddressToIndexMap
.emplace();
5844 if (this->DotSymtabSec
) {
5845 if (Expected
<Elf_Sym_Range
> SymsOrError
=
5846 Obj
.symbols(this->DotSymtabSec
)) {
5847 uint32_t Index
= (uint32_t)-1;
5848 for (const Elf_Sym
&Sym
: *SymsOrError
) {
5851 if (Sym
.st_shndx
== ELF::SHN_UNDEF
|| Sym
.getType() != ELF::STT_FUNC
)
5854 Expected
<uint64_t> SymAddrOrErr
=
5855 ObjF
.toSymbolRef(this->DotSymtabSec
, Index
).getAddress();
5856 if (!SymAddrOrErr
) {
5857 std::string Name
= this->getStaticSymbolName(Index
);
5858 reportUniqueWarning("unable to get address of symbol '" + Name
+
5859 "': " + toString(SymAddrOrErr
.takeError()));
5860 return SymbolIndexes
;
5863 (*this->AddressToIndexMap
)[*SymAddrOrErr
].push_back(Index
);
5866 reportUniqueWarning("unable to read the symbol table: " +
5867 toString(SymsOrError
.takeError()));
5872 auto Symbols
= this->AddressToIndexMap
->find(SymValue
);
5873 if (Symbols
== this->AddressToIndexMap
->end())
5874 return SymbolIndexes
;
5876 for (uint32_t Index
: Symbols
->second
) {
5877 // Check if the symbol is in the right section. FunctionSec == None
5878 // means "any section".
5880 const Elf_Sym
&Sym
= *cantFail(Obj
.getSymbol(this->DotSymtabSec
, Index
));
5881 if (Expected
<const Elf_Shdr
*> SecOrErr
=
5882 Obj
.getSection(Sym
, this->DotSymtabSec
,
5883 this->getShndxTable(this->DotSymtabSec
))) {
5884 if (*FunctionSec
!= *SecOrErr
)
5887 std::string Name
= this->getStaticSymbolName(Index
);
5888 // Note: it is impossible to trigger this error currently, it is
5890 reportUniqueWarning("unable to get section of symbol '" + Name
+
5891 "': " + toString(SecOrErr
.takeError()));
5892 return SymbolIndexes
;
5896 SymbolIndexes
.push_back(Index
);
5899 return SymbolIndexes
;
5902 template <class ELFT
>
5903 bool ELFDumper
<ELFT
>::printFunctionStackSize(
5904 uint64_t SymValue
, Optional
<const Elf_Shdr
*> FunctionSec
,
5905 const Elf_Shdr
&StackSizeSec
, DataExtractor Data
, uint64_t *Offset
) {
5906 SmallVector
<uint32_t> FuncSymIndexes
=
5907 this->getSymbolIndexesForFunctionAddress(SymValue
, FunctionSec
);
5908 if (FuncSymIndexes
.empty())
5909 reportUniqueWarning(
5910 "could not identify function symbol for stack size entry in " +
5911 describe(StackSizeSec
));
5913 // Extract the size. The expectation is that Offset is pointing to the right
5914 // place, i.e. past the function address.
5915 Error Err
= Error::success();
5916 uint64_t StackSize
= Data
.getULEB128(Offset
, &Err
);
5918 reportUniqueWarning("could not extract a valid stack size from " +
5919 describe(StackSizeSec
) + ": " +
5920 toString(std::move(Err
)));
5924 if (FuncSymIndexes
.empty()) {
5925 printStackSizeEntry(StackSize
, {"?"});
5927 SmallVector
<std::string
> FuncSymNames
;
5928 for (uint32_t Index
: FuncSymIndexes
)
5929 FuncSymNames
.push_back(this->getStaticSymbolName(Index
));
5930 printStackSizeEntry(StackSize
, FuncSymNames
);
5936 template <class ELFT
>
5937 void GNUELFDumper
<ELFT
>::printStackSizeEntry(uint64_t Size
,
5938 ArrayRef
<std::string
> FuncNames
) {
5940 OS
<< format_decimal(Size
, 11);
5943 OS
<< join(FuncNames
.begin(), FuncNames
.end(), ", ") << "\n";
5946 template <class ELFT
>
5947 void ELFDumper
<ELFT
>::printStackSize(const Relocation
<ELFT
> &R
,
5948 const Elf_Shdr
&RelocSec
, unsigned Ndx
,
5949 const Elf_Shdr
*SymTab
,
5950 const Elf_Shdr
*FunctionSec
,
5951 const Elf_Shdr
&StackSizeSec
,
5952 const RelocationResolver
&Resolver
,
5953 DataExtractor Data
) {
5954 // This function ignores potentially erroneous input, unless it is directly
5955 // related to stack size reporting.
5956 const Elf_Sym
*Sym
= nullptr;
5957 Expected
<RelSymbol
<ELFT
>> TargetOrErr
= this->getRelocationTarget(R
, SymTab
);
5959 reportUniqueWarning("unable to get the target of relocation with index " +
5960 Twine(Ndx
) + " in " + describe(RelocSec
) + ": " +
5961 toString(TargetOrErr
.takeError()));
5963 Sym
= TargetOrErr
->Sym
;
5965 uint64_t RelocSymValue
= 0;
5967 Expected
<const Elf_Shdr
*> SectionOrErr
=
5968 this->Obj
.getSection(*Sym
, SymTab
, this->getShndxTable(SymTab
));
5969 if (!SectionOrErr
) {
5970 reportUniqueWarning(
5971 "cannot identify the section for relocation symbol '" +
5972 (*TargetOrErr
).Name
+ "': " + toString(SectionOrErr
.takeError()));
5973 } else if (*SectionOrErr
!= FunctionSec
) {
5974 reportUniqueWarning("relocation symbol '" + (*TargetOrErr
).Name
+
5975 "' is not in the expected section");
5976 // Pretend that the symbol is in the correct section and report its
5977 // stack size anyway.
5978 FunctionSec
= *SectionOrErr
;
5981 RelocSymValue
= Sym
->st_value
;
5984 uint64_t Offset
= R
.Offset
;
5985 if (!Data
.isValidOffsetForDataOfSize(Offset
, sizeof(Elf_Addr
) + 1)) {
5986 reportUniqueWarning("found invalid relocation offset (0x" +
5987 Twine::utohexstr(Offset
) + ") into " +
5988 describe(StackSizeSec
) +
5989 " while trying to extract a stack size entry");
5994 Resolver(R
.Type
, Offset
, RelocSymValue
, Data
.getAddress(&Offset
),
5995 R
.Addend
.getValueOr(0));
5996 this->printFunctionStackSize(SymValue
, FunctionSec
, StackSizeSec
, Data
,
6000 template <class ELFT
>
6001 void ELFDumper
<ELFT
>::printNonRelocatableStackSizes(
6002 std::function
<void()> PrintHeader
) {
6003 // This function ignores potentially erroneous input, unless it is directly
6004 // related to stack size reporting.
6005 for (const Elf_Shdr
&Sec
: cantFail(Obj
.sections())) {
6006 if (this->getPrintableSectionName(Sec
) != ".stack_sizes")
6009 ArrayRef
<uint8_t> Contents
=
6010 unwrapOrError(this->FileName
, Obj
.getSectionContents(Sec
));
6011 DataExtractor
Data(Contents
, Obj
.isLE(), sizeof(Elf_Addr
));
6012 uint64_t Offset
= 0;
6013 while (Offset
< Contents
.size()) {
6014 // The function address is followed by a ULEB representing the stack
6015 // size. Check for an extra byte before we try to process the entry.
6016 if (!Data
.isValidOffsetForDataOfSize(Offset
, sizeof(Elf_Addr
) + 1)) {
6017 reportUniqueWarning(
6019 " ended while trying to extract a stack size entry");
6022 uint64_t SymValue
= Data
.getAddress(&Offset
);
6023 if (!printFunctionStackSize(SymValue
, /*FunctionSec=*/None
, Sec
, Data
,
6030 template <class ELFT
>
6031 void ELFDumper
<ELFT
>::getSectionAndRelocations(
6032 std::function
<bool(const Elf_Shdr
&)> IsMatch
,
6033 llvm::MapVector
<const Elf_Shdr
*, const Elf_Shdr
*> &SecToRelocMap
) {
6034 for (const Elf_Shdr
&Sec
: cantFail(Obj
.sections())) {
6036 if (SecToRelocMap
.insert(std::make_pair(&Sec
, (const Elf_Shdr
*)nullptr))
6040 if (Sec
.sh_type
!= ELF::SHT_RELA
&& Sec
.sh_type
!= ELF::SHT_REL
)
6043 Expected
<const Elf_Shdr
*> RelSecOrErr
= Obj
.getSection(Sec
.sh_info
);
6045 reportUniqueWarning(describe(Sec
) +
6046 ": failed to get a relocated section: " +
6047 toString(RelSecOrErr
.takeError()));
6050 const Elf_Shdr
*ContentsSec
= *RelSecOrErr
;
6051 if (IsMatch(*ContentsSec
))
6052 SecToRelocMap
[ContentsSec
] = &Sec
;
6056 template <class ELFT
>
6057 void ELFDumper
<ELFT
>::printRelocatableStackSizes(
6058 std::function
<void()> PrintHeader
) {
6059 // Build a map between stack size sections and their corresponding relocation
6061 llvm::MapVector
<const Elf_Shdr
*, const Elf_Shdr
*> StackSizeRelocMap
;
6062 auto IsMatch
= [&](const Elf_Shdr
&Sec
) -> bool {
6063 StringRef SectionName
;
6064 if (Expected
<StringRef
> NameOrErr
= Obj
.getSectionName(Sec
))
6065 SectionName
= *NameOrErr
;
6067 consumeError(NameOrErr
.takeError());
6069 return SectionName
== ".stack_sizes";
6071 getSectionAndRelocations(IsMatch
, StackSizeRelocMap
);
6073 for (const auto &StackSizeMapEntry
: StackSizeRelocMap
) {
6075 const Elf_Shdr
*StackSizesELFSec
= StackSizeMapEntry
.first
;
6076 const Elf_Shdr
*RelocSec
= StackSizeMapEntry
.second
;
6078 // Warn about stack size sections without a relocation section.
6080 reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec
) +
6081 ") does not have a corresponding "
6082 "relocation section"),
6087 // A .stack_sizes section header's sh_link field is supposed to point
6088 // to the section that contains the functions whose stack sizes are
6090 const Elf_Shdr
*FunctionSec
= unwrapOrError(
6091 this->FileName
, Obj
.getSection(StackSizesELFSec
->sh_link
));
6093 SupportsRelocation IsSupportedFn
;
6094 RelocationResolver Resolver
;
6095 std::tie(IsSupportedFn
, Resolver
) = getRelocationResolver(this->ObjF
);
6096 ArrayRef
<uint8_t> Contents
=
6097 unwrapOrError(this->FileName
, Obj
.getSectionContents(*StackSizesELFSec
));
6098 DataExtractor
Data(Contents
, Obj
.isLE(), sizeof(Elf_Addr
));
6100 forEachRelocationDo(
6101 *RelocSec
, /*RawRelr=*/false,
6102 [&](const Relocation
<ELFT
> &R
, unsigned Ndx
, const Elf_Shdr
&Sec
,
6103 const Elf_Shdr
*SymTab
) {
6104 if (!IsSupportedFn
|| !IsSupportedFn(R
.Type
)) {
6105 reportUniqueWarning(
6106 describe(*RelocSec
) +
6107 " contains an unsupported relocation with index " + Twine(Ndx
) +
6108 ": " + Obj
.getRelocationTypeName(R
.Type
));
6112 this->printStackSize(R
, *RelocSec
, Ndx
, SymTab
, FunctionSec
,
6113 *StackSizesELFSec
, Resolver
, Data
);
6115 [](const Elf_Relr
&) {
6116 llvm_unreachable("can't get here, because we only support "
6117 "SHT_REL/SHT_RELA sections");
6122 template <class ELFT
>
6123 void GNUELFDumper
<ELFT
>::printStackSizes() {
6124 bool HeaderHasBeenPrinted
= false;
6125 auto PrintHeader
= [&]() {
6126 if (HeaderHasBeenPrinted
)
6128 OS
<< "\nStack Sizes:\n";
6132 OS
<< "Functions\n";
6133 HeaderHasBeenPrinted
= true;
6136 // For non-relocatable objects, look directly for sections whose name starts
6137 // with .stack_sizes and process the contents.
6138 if (this->Obj
.getHeader().e_type
== ELF::ET_REL
)
6139 this->printRelocatableStackSizes(PrintHeader
);
6141 this->printNonRelocatableStackSizes(PrintHeader
);
6144 template <class ELFT
>
6145 void GNUELFDumper
<ELFT
>::printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) {
6146 size_t Bias
= ELFT::Is64Bits
? 8 : 0;
6147 auto PrintEntry
= [&](const Elf_Addr
*E
, StringRef Purpose
) {
6149 OS
<< format_hex_no_prefix(Parser
.getGotAddress(E
), 8 + Bias
);
6150 OS
.PadToColumn(11 + Bias
);
6151 OS
<< format_decimal(Parser
.getGotOffset(E
), 6) << "(gp)";
6152 OS
.PadToColumn(22 + Bias
);
6153 OS
<< format_hex_no_prefix(*E
, 8 + Bias
);
6154 OS
.PadToColumn(31 + 2 * Bias
);
6155 OS
<< Purpose
<< "\n";
6158 OS
<< (Parser
.IsStatic
? "Static GOT:\n" : "Primary GOT:\n");
6159 OS
<< " Canonical gp value: "
6160 << format_hex_no_prefix(Parser
.getGp(), 8 + Bias
) << "\n\n";
6162 OS
<< " Reserved entries:\n";
6164 OS
<< " Address Access Initial Purpose\n";
6166 OS
<< " Address Access Initial Purpose\n";
6167 PrintEntry(Parser
.getGotLazyResolver(), "Lazy resolver");
6168 if (Parser
.getGotModulePointer())
6169 PrintEntry(Parser
.getGotModulePointer(), "Module pointer (GNU extension)");
6171 if (!Parser
.getLocalEntries().empty()) {
6173 OS
<< " Local entries:\n";
6175 OS
<< " Address Access Initial\n";
6177 OS
<< " Address Access Initial\n";
6178 for (auto &E
: Parser
.getLocalEntries())
6182 if (Parser
.IsStatic
)
6185 if (!Parser
.getGlobalEntries().empty()) {
6187 OS
<< " Global entries:\n";
6189 OS
<< " Address Access Initial Sym.Val."
6190 << " Type Ndx Name\n";
6192 OS
<< " Address Access Initial Sym.Val. Type Ndx Name\n";
6194 DataRegion
<Elf_Word
> ShndxTable(
6195 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
, this->Obj
.end());
6196 for (auto &E
: Parser
.getGlobalEntries()) {
6197 const Elf_Sym
&Sym
= *Parser
.getGotSym(&E
);
6198 const Elf_Sym
&FirstSym
= this->dynamic_symbols()[0];
6199 std::string SymName
= this->getFullSymbolName(
6200 Sym
, &Sym
- &FirstSym
, ShndxTable
, this->DynamicStringTable
, false);
6203 OS
<< to_string(format_hex_no_prefix(Parser
.getGotAddress(&E
), 8 + Bias
));
6204 OS
.PadToColumn(11 + Bias
);
6205 OS
<< to_string(format_decimal(Parser
.getGotOffset(&E
), 6)) + "(gp)";
6206 OS
.PadToColumn(22 + Bias
);
6207 OS
<< to_string(format_hex_no_prefix(E
, 8 + Bias
));
6208 OS
.PadToColumn(31 + 2 * Bias
);
6209 OS
<< to_string(format_hex_no_prefix(Sym
.st_value
, 8 + Bias
));
6210 OS
.PadToColumn(40 + 3 * Bias
);
6211 OS
<< enumToString(Sym
.getType(), makeArrayRef(ElfSymbolTypes
));
6212 OS
.PadToColumn(48 + 3 * Bias
);
6213 OS
<< getSymbolSectionNdx(Sym
, &Sym
- this->dynamic_symbols().begin(),
6215 OS
.PadToColumn(52 + 3 * Bias
);
6216 OS
<< SymName
<< "\n";
6220 if (!Parser
.getOtherEntries().empty())
6221 OS
<< "\n Number of TLS and multi-GOT entries "
6222 << Parser
.getOtherEntries().size() << "\n";
6225 template <class ELFT
>
6226 void GNUELFDumper
<ELFT
>::printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) {
6227 size_t Bias
= ELFT::Is64Bits
? 8 : 0;
6228 auto PrintEntry
= [&](const Elf_Addr
*E
, StringRef Purpose
) {
6230 OS
<< format_hex_no_prefix(Parser
.getPltAddress(E
), 8 + Bias
);
6231 OS
.PadToColumn(11 + Bias
);
6232 OS
<< format_hex_no_prefix(*E
, 8 + Bias
);
6233 OS
.PadToColumn(20 + 2 * Bias
);
6234 OS
<< Purpose
<< "\n";
6237 OS
<< "PLT GOT:\n\n";
6239 OS
<< " Reserved entries:\n";
6240 OS
<< " Address Initial Purpose\n";
6241 PrintEntry(Parser
.getPltLazyResolver(), "PLT lazy resolver");
6242 if (Parser
.getPltModulePointer())
6243 PrintEntry(Parser
.getPltModulePointer(), "Module pointer");
6245 if (!Parser
.getPltEntries().empty()) {
6247 OS
<< " Entries:\n";
6248 OS
<< " Address Initial Sym.Val. Type Ndx Name\n";
6249 DataRegion
<Elf_Word
> ShndxTable(
6250 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
, this->Obj
.end());
6251 for (auto &E
: Parser
.getPltEntries()) {
6252 const Elf_Sym
&Sym
= *Parser
.getPltSym(&E
);
6253 const Elf_Sym
&FirstSym
= *cantFail(
6254 this->Obj
.template getEntry
<Elf_Sym
>(*Parser
.getPltSymTable(), 0));
6255 std::string SymName
= this->getFullSymbolName(
6256 Sym
, &Sym
- &FirstSym
, ShndxTable
, this->DynamicStringTable
, false);
6259 OS
<< to_string(format_hex_no_prefix(Parser
.getPltAddress(&E
), 8 + Bias
));
6260 OS
.PadToColumn(11 + Bias
);
6261 OS
<< to_string(format_hex_no_prefix(E
, 8 + Bias
));
6262 OS
.PadToColumn(20 + 2 * Bias
);
6263 OS
<< to_string(format_hex_no_prefix(Sym
.st_value
, 8 + Bias
));
6264 OS
.PadToColumn(29 + 3 * Bias
);
6265 OS
<< enumToString(Sym
.getType(), makeArrayRef(ElfSymbolTypes
));
6266 OS
.PadToColumn(37 + 3 * Bias
);
6267 OS
<< getSymbolSectionNdx(Sym
, &Sym
- this->dynamic_symbols().begin(),
6269 OS
.PadToColumn(41 + 3 * Bias
);
6270 OS
<< SymName
<< "\n";
6275 template <class ELFT
>
6276 Expected
<const Elf_Mips_ABIFlags
<ELFT
> *>
6277 getMipsAbiFlagsSection(const ELFDumper
<ELFT
> &Dumper
) {
6278 const typename
ELFT::Shdr
*Sec
= Dumper
.findSectionByName(".MIPS.abiflags");
6282 constexpr StringRef ErrPrefix
= "unable to read the .MIPS.abiflags section: ";
6283 Expected
<ArrayRef
<uint8_t>> DataOrErr
=
6284 Dumper
.getElfObject().getELFFile().getSectionContents(*Sec
);
6286 return createError(ErrPrefix
+ toString(DataOrErr
.takeError()));
6288 if (DataOrErr
->size() != sizeof(Elf_Mips_ABIFlags
<ELFT
>))
6289 return createError(ErrPrefix
+ "it has a wrong size (" +
6290 Twine(DataOrErr
->size()) + ")");
6291 return reinterpret_cast<const Elf_Mips_ABIFlags
<ELFT
> *>(DataOrErr
->data());
6294 template <class ELFT
> void GNUELFDumper
<ELFT
>::printMipsABIFlags() {
6295 const Elf_Mips_ABIFlags
<ELFT
> *Flags
= nullptr;
6296 if (Expected
<const Elf_Mips_ABIFlags
<ELFT
> *> SecOrErr
=
6297 getMipsAbiFlagsSection(*this))
6300 this->reportUniqueWarning(SecOrErr
.takeError());
6304 OS
<< "MIPS ABI Flags Version: " << Flags
->version
<< "\n\n";
6305 OS
<< "ISA: MIPS" << int(Flags
->isa_level
);
6306 if (Flags
->isa_rev
> 1)
6307 OS
<< "r" << int(Flags
->isa_rev
);
6309 OS
<< "GPR size: " << getMipsRegisterSize(Flags
->gpr_size
) << "\n";
6310 OS
<< "CPR1 size: " << getMipsRegisterSize(Flags
->cpr1_size
) << "\n";
6311 OS
<< "CPR2 size: " << getMipsRegisterSize(Flags
->cpr2_size
) << "\n";
6313 << enumToString(Flags
->fp_abi
, makeArrayRef(ElfMipsFpABIType
)) << "\n";
6314 OS
<< "ISA Extension: "
6315 << enumToString(Flags
->isa_ext
, makeArrayRef(ElfMipsISAExtType
)) << "\n";
6316 if (Flags
->ases
== 0)
6317 OS
<< "ASEs: None\n";
6319 // FIXME: Print each flag on a separate line.
6320 OS
<< "ASEs: " << printFlags(Flags
->ases
, makeArrayRef(ElfMipsASEFlags
))
6322 OS
<< "FLAGS 1: " << format_hex_no_prefix(Flags
->flags1
, 8, false) << "\n";
6323 OS
<< "FLAGS 2: " << format_hex_no_prefix(Flags
->flags2
, 8, false) << "\n";
6327 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printFileHeaders() {
6328 const Elf_Ehdr
&E
= this->Obj
.getHeader();
6330 DictScope
D(W
, "ElfHeader");
6332 DictScope
D(W
, "Ident");
6333 W
.printBinary("Magic", makeArrayRef(E
.e_ident
).slice(ELF::EI_MAG0
, 4));
6334 W
.printEnum("Class", E
.e_ident
[ELF::EI_CLASS
], makeArrayRef(ElfClass
));
6335 W
.printEnum("DataEncoding", E
.e_ident
[ELF::EI_DATA
],
6336 makeArrayRef(ElfDataEncoding
));
6337 W
.printNumber("FileVersion", E
.e_ident
[ELF::EI_VERSION
]);
6339 auto OSABI
= makeArrayRef(ElfOSABI
);
6340 if (E
.e_ident
[ELF::EI_OSABI
] >= ELF::ELFOSABI_FIRST_ARCH
&&
6341 E
.e_ident
[ELF::EI_OSABI
] <= ELF::ELFOSABI_LAST_ARCH
) {
6342 switch (E
.e_machine
) {
6343 case ELF::EM_AMDGPU
:
6344 OSABI
= makeArrayRef(AMDGPUElfOSABI
);
6347 OSABI
= makeArrayRef(ARMElfOSABI
);
6349 case ELF::EM_TI_C6000
:
6350 OSABI
= makeArrayRef(C6000ElfOSABI
);
6354 W
.printEnum("OS/ABI", E
.e_ident
[ELF::EI_OSABI
], OSABI
);
6355 W
.printNumber("ABIVersion", E
.e_ident
[ELF::EI_ABIVERSION
]);
6356 W
.printBinary("Unused", makeArrayRef(E
.e_ident
).slice(ELF::EI_PAD
));
6359 std::string TypeStr
;
6360 if (const EnumEntry
<unsigned> *Ent
= getObjectFileEnumEntry(E
.e_type
)) {
6361 TypeStr
= Ent
->Name
.str();
6363 if (E
.e_type
>= ET_LOPROC
)
6364 TypeStr
= "Processor Specific";
6365 else if (E
.e_type
>= ET_LOOS
)
6366 TypeStr
= "OS Specific";
6368 TypeStr
= "Unknown";
6370 W
.printString("Type", TypeStr
+ " (0x" + to_hexString(E
.e_type
) + ")");
6372 W
.printEnum("Machine", E
.e_machine
, makeArrayRef(ElfMachineType
));
6373 W
.printNumber("Version", E
.e_version
);
6374 W
.printHex("Entry", E
.e_entry
);
6375 W
.printHex("ProgramHeaderOffset", E
.e_phoff
);
6376 W
.printHex("SectionHeaderOffset", E
.e_shoff
);
6377 if (E
.e_machine
== EM_MIPS
)
6378 W
.printFlags("Flags", E
.e_flags
, makeArrayRef(ElfHeaderMipsFlags
),
6379 unsigned(ELF::EF_MIPS_ARCH
), unsigned(ELF::EF_MIPS_ABI
),
6380 unsigned(ELF::EF_MIPS_MACH
));
6381 else if (E
.e_machine
== EM_AMDGPU
) {
6382 switch (E
.e_ident
[ELF::EI_ABIVERSION
]) {
6384 W
.printHex("Flags", E
.e_flags
);
6387 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6389 case ELF::ELFABIVERSION_AMDGPU_HSA_V3
:
6390 W
.printFlags("Flags", E
.e_flags
,
6391 makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion3
),
6392 unsigned(ELF::EF_AMDGPU_MACH
));
6394 case ELF::ELFABIVERSION_AMDGPU_HSA_V4
:
6395 W
.printFlags("Flags", E
.e_flags
,
6396 makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion4
),
6397 unsigned(ELF::EF_AMDGPU_MACH
),
6398 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4
),
6399 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4
));
6402 } else if (E
.e_machine
== EM_RISCV
)
6403 W
.printFlags("Flags", E
.e_flags
, makeArrayRef(ElfHeaderRISCVFlags
));
6404 else if (E
.e_machine
== EM_AVR
)
6405 W
.printFlags("Flags", E
.e_flags
, makeArrayRef(ElfHeaderAVRFlags
),
6406 unsigned(ELF::EF_AVR_ARCH_MASK
));
6408 W
.printFlags("Flags", E
.e_flags
);
6409 W
.printNumber("HeaderSize", E
.e_ehsize
);
6410 W
.printNumber("ProgramHeaderEntrySize", E
.e_phentsize
);
6411 W
.printNumber("ProgramHeaderCount", E
.e_phnum
);
6412 W
.printNumber("SectionHeaderEntrySize", E
.e_shentsize
);
6413 W
.printString("SectionHeaderCount",
6414 getSectionHeadersNumString(this->Obj
, this->FileName
));
6415 W
.printString("StringTableSectionIndex",
6416 getSectionHeaderTableIndexString(this->Obj
, this->FileName
));
6420 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printGroupSections() {
6421 DictScope
Lists(W
, "Groups");
6422 std::vector
<GroupSection
> V
= this->getGroups();
6423 DenseMap
<uint64_t, const GroupSection
*> Map
= mapSectionsToGroups(V
);
6424 for (const GroupSection
&G
: V
) {
6425 DictScope
D(W
, "Group");
6426 W
.printNumber("Name", G
.Name
, G
.ShName
);
6427 W
.printNumber("Index", G
.Index
);
6428 W
.printNumber("Link", G
.Link
);
6429 W
.printNumber("Info", G
.Info
);
6430 W
.printHex("Type", getGroupType(G
.Type
), G
.Type
);
6431 W
.startLine() << "Signature: " << G
.Signature
<< "\n";
6433 ListScope
L(W
, "Section(s) in group");
6434 for (const GroupMember
&GM
: G
.Members
) {
6435 const GroupSection
*MainGroup
= Map
[GM
.Index
];
6436 if (MainGroup
!= &G
)
6437 this->reportUniqueWarning(
6438 "section with index " + Twine(GM
.Index
) +
6439 ", included in the group section with index " +
6440 Twine(MainGroup
->Index
) +
6441 ", was also found in the group section with index " +
6443 W
.startLine() << GM
.Name
<< " (" << GM
.Index
<< ")\n";
6448 W
.startLine() << "There are no group sections in the file.\n";
6451 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printRelocations() {
6452 ListScope
D(W
, "Relocations");
6454 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
6455 if (!isRelocationSec
<ELFT
>(Sec
))
6458 StringRef Name
= this->getPrintableSectionName(Sec
);
6459 unsigned SecNdx
= &Sec
- &cantFail(this->Obj
.sections()).front();
6460 W
.startLine() << "Section (" << SecNdx
<< ") " << Name
<< " {\n";
6462 this->printRelocationsHelper(Sec
);
6464 W
.startLine() << "}\n";
6468 template <class ELFT
>
6469 void LLVMELFDumper
<ELFT
>::printRelrReloc(const Elf_Relr
&R
) {
6470 W
.startLine() << W
.hex(R
) << "\n";
6473 template <class ELFT
>
6474 void LLVMELFDumper
<ELFT
>::printRelRelaReloc(const Relocation
<ELFT
> &R
,
6475 const RelSymbol
<ELFT
> &RelSym
) {
6476 StringRef SymbolName
= RelSym
.Name
;
6477 SmallString
<32> RelocName
;
6478 this->Obj
.getRelocationTypeName(R
.Type
, RelocName
);
6480 if (opts::ExpandRelocs
) {
6481 DictScope
Group(W
, "Relocation");
6482 W
.printHex("Offset", R
.Offset
);
6483 W
.printNumber("Type", RelocName
, R
.Type
);
6484 W
.printNumber("Symbol", !SymbolName
.empty() ? SymbolName
: "-", R
.Symbol
);
6486 W
.printHex("Addend", (uintX_t
)*R
.Addend
);
6488 raw_ostream
&OS
= W
.startLine();
6489 OS
<< W
.hex(R
.Offset
) << " " << RelocName
<< " "
6490 << (!SymbolName
.empty() ? SymbolName
: "-");
6492 OS
<< " " << W
.hex((uintX_t
)*R
.Addend
);
6497 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printSectionHeaders() {
6498 ListScope
SectionsD(W
, "Sections");
6500 int SectionIndex
= -1;
6501 std::vector
<EnumEntry
<unsigned>> FlagsList
=
6502 getSectionFlagsForTarget(this->Obj
.getHeader().e_machine
);
6503 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
6504 DictScope
SectionD(W
, "Section");
6505 W
.printNumber("Index", ++SectionIndex
);
6506 W
.printNumber("Name", this->getPrintableSectionName(Sec
), Sec
.sh_name
);
6508 object::getELFSectionTypeName(this->Obj
.getHeader().e_machine
,
6511 W
.printFlags("Flags", Sec
.sh_flags
, makeArrayRef(FlagsList
));
6512 W
.printHex("Address", Sec
.sh_addr
);
6513 W
.printHex("Offset", Sec
.sh_offset
);
6514 W
.printNumber("Size", Sec
.sh_size
);
6515 W
.printNumber("Link", Sec
.sh_link
);
6516 W
.printNumber("Info", Sec
.sh_info
);
6517 W
.printNumber("AddressAlignment", Sec
.sh_addralign
);
6518 W
.printNumber("EntrySize", Sec
.sh_entsize
);
6520 if (opts::SectionRelocations
) {
6521 ListScope
D(W
, "Relocations");
6522 this->printRelocationsHelper(Sec
);
6525 if (opts::SectionSymbols
) {
6526 ListScope
D(W
, "Symbols");
6527 if (this->DotSymtabSec
) {
6528 StringRef StrTable
= unwrapOrError(
6530 this->Obj
.getStringTableForSymtab(*this->DotSymtabSec
));
6531 ArrayRef
<Elf_Word
> ShndxTable
= this->getShndxTable(this->DotSymtabSec
);
6533 typename
ELFT::SymRange Symbols
= unwrapOrError(
6534 this->FileName
, this->Obj
.symbols(this->DotSymtabSec
));
6535 for (const Elf_Sym
&Sym
: Symbols
) {
6536 const Elf_Shdr
*SymSec
= unwrapOrError(
6538 this->Obj
.getSection(Sym
, this->DotSymtabSec
, ShndxTable
));
6540 printSymbol(Sym
, &Sym
- &Symbols
[0], ShndxTable
, StrTable
, false,
6546 if (opts::SectionData
&& Sec
.sh_type
!= ELF::SHT_NOBITS
) {
6547 ArrayRef
<uint8_t> Data
=
6548 unwrapOrError(this->FileName
, this->Obj
.getSectionContents(Sec
));
6551 StringRef(reinterpret_cast<const char *>(Data
.data()), Data
.size()));
6556 template <class ELFT
>
6557 void LLVMELFDumper
<ELFT
>::printSymbolSection(
6558 const Elf_Sym
&Symbol
, unsigned SymIndex
,
6559 DataRegion
<Elf_Word
> ShndxTable
) const {
6560 auto GetSectionSpecialType
= [&]() -> Optional
<StringRef
> {
6561 if (Symbol
.isUndefined())
6562 return StringRef("Undefined");
6563 if (Symbol
.isProcessorSpecific())
6564 return StringRef("Processor Specific");
6565 if (Symbol
.isOSSpecific())
6566 return StringRef("Operating System Specific");
6567 if (Symbol
.isAbsolute())
6568 return StringRef("Absolute");
6569 if (Symbol
.isCommon())
6570 return StringRef("Common");
6571 if (Symbol
.isReserved() && Symbol
.st_shndx
!= SHN_XINDEX
)
6572 return StringRef("Reserved");
6576 if (Optional
<StringRef
> Type
= GetSectionSpecialType()) {
6577 W
.printHex("Section", *Type
, Symbol
.st_shndx
);
6581 Expected
<unsigned> SectionIndex
=
6582 this->getSymbolSectionIndex(Symbol
, SymIndex
, ShndxTable
);
6583 if (!SectionIndex
) {
6584 assert(Symbol
.st_shndx
== SHN_XINDEX
&&
6585 "getSymbolSectionIndex should only fail due to an invalid "
6586 "SHT_SYMTAB_SHNDX table/reference");
6587 this->reportUniqueWarning(SectionIndex
.takeError());
6588 W
.printHex("Section", "Reserved", SHN_XINDEX
);
6592 Expected
<StringRef
> SectionName
=
6593 this->getSymbolSectionName(Symbol
, *SectionIndex
);
6595 // Don't report an invalid section name if the section headers are missing.
6596 // In such situations, all sections will be "invalid".
6597 if (!this->ObjF
.sections().empty())
6598 this->reportUniqueWarning(SectionName
.takeError());
6600 consumeError(SectionName
.takeError());
6601 W
.printHex("Section", "<?>", *SectionIndex
);
6603 W
.printHex("Section", *SectionName
, *SectionIndex
);
6607 template <class ELFT
>
6608 void LLVMELFDumper
<ELFT
>::printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
6609 DataRegion
<Elf_Word
> ShndxTable
,
6610 Optional
<StringRef
> StrTable
,
6612 bool /*NonVisibilityBitsUsed*/) const {
6613 std::string FullSymbolName
= this->getFullSymbolName(
6614 Symbol
, SymIndex
, ShndxTable
, StrTable
, IsDynamic
);
6615 unsigned char SymbolType
= Symbol
.getType();
6617 DictScope
D(W
, "Symbol");
6618 W
.printNumber("Name", FullSymbolName
, Symbol
.st_name
);
6619 W
.printHex("Value", Symbol
.st_value
);
6620 W
.printNumber("Size", Symbol
.st_size
);
6621 W
.printEnum("Binding", Symbol
.getBinding(), makeArrayRef(ElfSymbolBindings
));
6622 if (this->Obj
.getHeader().e_machine
== ELF::EM_AMDGPU
&&
6623 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
6624 W
.printEnum("Type", SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
6626 W
.printEnum("Type", SymbolType
, makeArrayRef(ElfSymbolTypes
));
6627 if (Symbol
.st_other
== 0)
6628 // Usually st_other flag is zero. Do not pollute the output
6629 // by flags enumeration in that case.
6630 W
.printNumber("Other", 0);
6632 std::vector
<EnumEntry
<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags
),
6633 std::end(ElfSymOtherFlags
));
6634 if (this->Obj
.getHeader().e_machine
== EM_MIPS
) {
6635 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
6636 // flag overlapped with other ST_MIPS_xxx flags. So consider both
6637 // cases separately.
6638 if ((Symbol
.st_other
& STO_MIPS_MIPS16
) == STO_MIPS_MIPS16
)
6639 SymOtherFlags
.insert(SymOtherFlags
.end(),
6640 std::begin(ElfMips16SymOtherFlags
),
6641 std::end(ElfMips16SymOtherFlags
));
6643 SymOtherFlags
.insert(SymOtherFlags
.end(),
6644 std::begin(ElfMipsSymOtherFlags
),
6645 std::end(ElfMipsSymOtherFlags
));
6646 } else if (this->Obj
.getHeader().e_machine
== EM_AARCH64
) {
6647 SymOtherFlags
.insert(SymOtherFlags
.end(),
6648 std::begin(ElfAArch64SymOtherFlags
),
6649 std::end(ElfAArch64SymOtherFlags
));
6650 } else if (this->Obj
.getHeader().e_machine
== EM_RISCV
) {
6651 SymOtherFlags
.insert(SymOtherFlags
.end(),
6652 std::begin(ElfRISCVSymOtherFlags
),
6653 std::end(ElfRISCVSymOtherFlags
));
6655 W
.printFlags("Other", Symbol
.st_other
, makeArrayRef(SymOtherFlags
), 0x3u
);
6657 printSymbolSection(Symbol
, SymIndex
, ShndxTable
);
6660 template <class ELFT
>
6661 void LLVMELFDumper
<ELFT
>::printSymbols(bool PrintSymbols
,
6662 bool PrintDynamicSymbols
) {
6664 ListScope
Group(W
, "Symbols");
6665 this->printSymbolsHelper(false);
6667 if (PrintDynamicSymbols
) {
6668 ListScope
Group(W
, "DynamicSymbols");
6669 this->printSymbolsHelper(true);
6673 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printDynamicTable() {
6674 Elf_Dyn_Range Table
= this->dynamic_table();
6678 W
.startLine() << "DynamicSection [ (" << Table
.size() << " entries)\n";
6680 size_t MaxTagSize
= getMaxDynamicTagSize(this->Obj
, Table
);
6681 // The "Name/Value" column should be indented from the "Type" column by N
6682 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
6684 W
.startLine() << " Tag" << std::string(ELFT::Is64Bits
? 16 : 8, ' ')
6685 << "Type" << std::string(MaxTagSize
- 3, ' ') << "Name/Value\n";
6687 std::string ValueFmt
= "%-" + std::to_string(MaxTagSize
) + "s ";
6688 for (auto Entry
: Table
) {
6689 uintX_t Tag
= Entry
.getTag();
6690 std::string Value
= this->getDynamicEntry(Tag
, Entry
.getVal());
6691 W
.startLine() << " " << format_hex(Tag
, ELFT::Is64Bits
? 18 : 10, true)
6693 << format(ValueFmt
.c_str(),
6694 this->Obj
.getDynamicTagAsString(Tag
).c_str())
6697 W
.startLine() << "]\n";
6700 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printDynamicRelocations() {
6701 W
.startLine() << "Dynamic Relocations {\n";
6703 this->printDynamicRelocationsHelper();
6705 W
.startLine() << "}\n";
6708 template <class ELFT
>
6709 void LLVMELFDumper
<ELFT
>::printProgramHeaders(
6710 bool PrintProgramHeaders
, cl::boolOrDefault PrintSectionMapping
) {
6711 if (PrintProgramHeaders
)
6712 printProgramHeaders();
6713 if (PrintSectionMapping
== cl::BOU_TRUE
)
6714 printSectionMapping();
6717 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printProgramHeaders() {
6718 ListScope
L(W
, "ProgramHeaders");
6720 Expected
<ArrayRef
<Elf_Phdr
>> PhdrsOrErr
= this->Obj
.program_headers();
6722 this->reportUniqueWarning("unable to dump program headers: " +
6723 toString(PhdrsOrErr
.takeError()));
6727 for (const Elf_Phdr
&Phdr
: *PhdrsOrErr
) {
6728 DictScope
P(W
, "ProgramHeader");
6730 segmentTypeToString(this->Obj
.getHeader().e_machine
, Phdr
.p_type
);
6732 W
.printHex("Type", Type
.empty() ? "Unknown" : Type
, Phdr
.p_type
);
6733 W
.printHex("Offset", Phdr
.p_offset
);
6734 W
.printHex("VirtualAddress", Phdr
.p_vaddr
);
6735 W
.printHex("PhysicalAddress", Phdr
.p_paddr
);
6736 W
.printNumber("FileSize", Phdr
.p_filesz
);
6737 W
.printNumber("MemSize", Phdr
.p_memsz
);
6738 W
.printFlags("Flags", Phdr
.p_flags
, makeArrayRef(ElfSegmentFlags
));
6739 W
.printNumber("Alignment", Phdr
.p_align
);
6743 template <class ELFT
>
6744 void LLVMELFDumper
<ELFT
>::printVersionSymbolSection(const Elf_Shdr
*Sec
) {
6745 ListScope
SS(W
, "VersionSymbols");
6750 ArrayRef
<Elf_Sym
> Syms
;
6751 const Elf_Shdr
*SymTabSec
;
6752 Expected
<ArrayRef
<Elf_Versym
>> VerTableOrErr
=
6753 this->getVersionTable(*Sec
, &Syms
, &StrTable
, &SymTabSec
);
6754 if (!VerTableOrErr
) {
6755 this->reportUniqueWarning(VerTableOrErr
.takeError());
6759 if (StrTable
.empty() || Syms
.empty() || Syms
.size() != VerTableOrErr
->size())
6762 ArrayRef
<Elf_Word
> ShNdxTable
= this->getShndxTable(SymTabSec
);
6763 for (size_t I
= 0, E
= Syms
.size(); I
< E
; ++I
) {
6764 DictScope
S(W
, "Symbol");
6765 W
.printNumber("Version", (*VerTableOrErr
)[I
].vs_index
& VERSYM_VERSION
);
6766 W
.printString("Name",
6767 this->getFullSymbolName(Syms
[I
], I
, ShNdxTable
, StrTable
,
6768 /*IsDynamic=*/true));
6772 const EnumEntry
<unsigned> SymVersionFlags
[] = {
6773 {"Base", "BASE", VER_FLG_BASE
},
6774 {"Weak", "WEAK", VER_FLG_WEAK
},
6775 {"Info", "INFO", VER_FLG_INFO
}};
6777 template <class ELFT
>
6778 void LLVMELFDumper
<ELFT
>::printVersionDefinitionSection(const Elf_Shdr
*Sec
) {
6779 ListScope
SD(W
, "VersionDefinitions");
6783 Expected
<std::vector
<VerDef
>> V
= this->Obj
.getVersionDefinitions(*Sec
);
6785 this->reportUniqueWarning(V
.takeError());
6789 for (const VerDef
&D
: *V
) {
6790 DictScope
Def(W
, "Definition");
6791 W
.printNumber("Version", D
.Version
);
6792 W
.printFlags("Flags", D
.Flags
, makeArrayRef(SymVersionFlags
));
6793 W
.printNumber("Index", D
.Ndx
);
6794 W
.printNumber("Hash", D
.Hash
);
6795 W
.printString("Name", D
.Name
.c_str());
6797 "Predecessors", D
.AuxV
,
6798 [](raw_ostream
&OS
, const VerdAux
&Aux
) { OS
<< Aux
.Name
.c_str(); });
6802 template <class ELFT
>
6803 void LLVMELFDumper
<ELFT
>::printVersionDependencySection(const Elf_Shdr
*Sec
) {
6804 ListScope
SD(W
, "VersionRequirements");
6808 Expected
<std::vector
<VerNeed
>> V
=
6809 this->Obj
.getVersionDependencies(*Sec
, this->WarningHandler
);
6811 this->reportUniqueWarning(V
.takeError());
6815 for (const VerNeed
&VN
: *V
) {
6816 DictScope
Entry(W
, "Dependency");
6817 W
.printNumber("Version", VN
.Version
);
6818 W
.printNumber("Count", VN
.Cnt
);
6819 W
.printString("FileName", VN
.File
.c_str());
6821 ListScope
L(W
, "Entries");
6822 for (const VernAux
&Aux
: VN
.AuxV
) {
6823 DictScope
Entry(W
, "Entry");
6824 W
.printNumber("Hash", Aux
.Hash
);
6825 W
.printFlags("Flags", Aux
.Flags
, makeArrayRef(SymVersionFlags
));
6826 W
.printNumber("Index", Aux
.Other
);
6827 W
.printString("Name", Aux
.Name
.c_str());
6832 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printHashHistograms() {
6833 W
.startLine() << "Hash Histogram not implemented!\n";
6836 // Returns true if rel/rela section exists, and populates SymbolIndices.
6837 // Otherwise returns false.
6838 template <class ELFT
>
6839 static bool getSymbolIndices(const typename
ELFT::Shdr
*CGRelSection
,
6840 const ELFFile
<ELFT
> &Obj
,
6841 const LLVMELFDumper
<ELFT
> *Dumper
,
6842 SmallVector
<uint32_t, 128> &SymbolIndices
) {
6843 if (!CGRelSection
) {
6844 Dumper
->reportUniqueWarning(
6845 "relocation section for a call graph section doesn't exist");
6849 if (CGRelSection
->sh_type
== SHT_REL
) {
6850 typename
ELFT::RelRange CGProfileRel
;
6851 Expected
<typename
ELFT::RelRange
> CGProfileRelOrError
=
6852 Obj
.rels(*CGRelSection
);
6853 if (!CGProfileRelOrError
) {
6854 Dumper
->reportUniqueWarning("unable to load relocations for "
6855 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6856 toString(CGProfileRelOrError
.takeError()));
6860 CGProfileRel
= *CGProfileRelOrError
;
6861 for (const typename
ELFT::Rel
&Rel
: CGProfileRel
)
6862 SymbolIndices
.push_back(Rel
.getSymbol(Obj
.isMips64EL()));
6864 // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
6865 // the format to SHT_RELA
6866 // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
6867 typename
ELFT::RelaRange CGProfileRela
;
6868 Expected
<typename
ELFT::RelaRange
> CGProfileRelaOrError
=
6869 Obj
.relas(*CGRelSection
);
6870 if (!CGProfileRelaOrError
) {
6871 Dumper
->reportUniqueWarning("unable to load relocations for "
6872 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6873 toString(CGProfileRelaOrError
.takeError()));
6877 CGProfileRela
= *CGProfileRelaOrError
;
6878 for (const typename
ELFT::Rela
&Rela
: CGProfileRela
)
6879 SymbolIndices
.push_back(Rela
.getSymbol(Obj
.isMips64EL()));
6885 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printCGProfile() {
6886 llvm::MapVector
<const Elf_Shdr
*, const Elf_Shdr
*> SecToRelocMap
;
6888 auto IsMatch
= [](const Elf_Shdr
&Sec
) -> bool {
6889 return Sec
.sh_type
== ELF::SHT_LLVM_CALL_GRAPH_PROFILE
;
6891 this->getSectionAndRelocations(IsMatch
, SecToRelocMap
);
6893 for (const auto &CGMapEntry
: SecToRelocMap
) {
6894 const Elf_Shdr
*CGSection
= CGMapEntry
.first
;
6895 const Elf_Shdr
*CGRelSection
= CGMapEntry
.second
;
6897 Expected
<ArrayRef
<Elf_CGProfile
>> CGProfileOrErr
=
6898 this->Obj
.template getSectionContentsAsArray
<Elf_CGProfile
>(*CGSection
);
6899 if (!CGProfileOrErr
) {
6900 this->reportUniqueWarning(
6901 "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6902 toString(CGProfileOrErr
.takeError()));
6906 SmallVector
<uint32_t, 128> SymbolIndices
;
6908 getSymbolIndices
<ELFT
>(CGRelSection
, this->Obj
, this, SymbolIndices
);
6909 if (UseReloc
&& SymbolIndices
.size() != CGProfileOrErr
->size() * 2) {
6910 this->reportUniqueWarning(
6911 "number of from/to pairs does not match number of frequencies");
6915 ListScope
L(W
, "CGProfile");
6916 for (uint32_t I
= 0, Size
= CGProfileOrErr
->size(); I
!= Size
; ++I
) {
6917 const Elf_CGProfile
&CGPE
= (*CGProfileOrErr
)[I
];
6918 DictScope
D(W
, "CGProfileEntry");
6920 uint32_t From
= SymbolIndices
[I
* 2];
6921 uint32_t To
= SymbolIndices
[I
* 2 + 1];
6922 W
.printNumber("From", this->getStaticSymbolName(From
), From
);
6923 W
.printNumber("To", this->getStaticSymbolName(To
), To
);
6925 W
.printNumber("Weight", CGPE
.cgp_weight
);
6930 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printBBAddrMaps() {
6931 bool IsRelocatable
= this->Obj
.getHeader().e_type
== ELF::ET_REL
;
6932 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
6933 if (Sec
.sh_type
!= SHT_LLVM_BB_ADDR_MAP
)
6935 Optional
<const Elf_Shdr
*> FunctionSec
= None
;
6938 unwrapOrError(this->FileName
, this->Obj
.getSection(Sec
.sh_link
));
6939 ListScope
L(W
, "BBAddrMap");
6940 Expected
<std::vector
<BBAddrMap
>> BBAddrMapOrErr
=
6941 this->Obj
.decodeBBAddrMap(Sec
);
6942 if (!BBAddrMapOrErr
) {
6943 this->reportUniqueWarning("unable to dump " + this->describe(Sec
) + ": " +
6944 toString(BBAddrMapOrErr
.takeError()));
6947 for (const BBAddrMap
&AM
: *BBAddrMapOrErr
) {
6948 DictScope
D(W
, "Function");
6949 W
.printHex("At", AM
.Addr
);
6950 SmallVector
<uint32_t> FuncSymIndex
=
6951 this->getSymbolIndexesForFunctionAddress(AM
.Addr
, FunctionSec
);
6952 std::string FuncName
= "<?>";
6953 if (FuncSymIndex
.empty())
6954 this->reportUniqueWarning(
6955 "could not identify function symbol for address (0x" +
6956 Twine::utohexstr(AM
.Addr
) + ") in " + this->describe(Sec
));
6958 FuncName
= this->getStaticSymbolName(FuncSymIndex
.front());
6959 W
.printString("Name", FuncName
);
6961 ListScope
L(W
, "BB entries");
6962 for (const BBAddrMap::BBEntry
&BBE
: AM
.BBEntries
) {
6964 W
.printHex("Offset", BBE
.Offset
);
6965 W
.printHex("Size", BBE
.Size
);
6966 W
.printBoolean("HasReturn", BBE
.HasReturn
);
6967 W
.printBoolean("HasTailCall", BBE
.HasTailCall
);
6968 W
.printBoolean("IsEHPad", BBE
.IsEHPad
);
6969 W
.printBoolean("CanFallThrough", BBE
.CanFallThrough
);
6975 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printAddrsig() {
6976 ListScope
L(W
, "Addrsig");
6977 if (!this->DotAddrsigSec
)
6980 Expected
<std::vector
<uint64_t>> SymsOrErr
=
6981 decodeAddrsigSection(this->Obj
, *this->DotAddrsigSec
);
6983 this->reportUniqueWarning(SymsOrErr
.takeError());
6987 for (uint64_t Sym
: *SymsOrErr
)
6988 W
.printNumber("Sym", this->getStaticSymbolName(Sym
), Sym
);
6991 template <typename ELFT
>
6992 static bool printGNUNoteLLVMStyle(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
,
6994 // Return true if we were able to pretty-print the note, false otherwise.
6998 case ELF::NT_GNU_ABI_TAG
: {
6999 const GNUAbiTag
&AbiTag
= getGNUAbiTag
<ELFT
>(Desc
);
7000 if (!AbiTag
.IsValid
) {
7001 W
.printString("ABI", "<corrupt GNU_ABI_TAG>");
7004 W
.printString("OS", AbiTag
.OSName
);
7005 W
.printString("ABI", AbiTag
.ABI
);
7009 case ELF::NT_GNU_BUILD_ID
: {
7010 W
.printString("Build ID", getGNUBuildId(Desc
));
7013 case ELF::NT_GNU_GOLD_VERSION
:
7014 W
.printString("Version", getDescAsStringRef(Desc
));
7016 case ELF::NT_GNU_PROPERTY_TYPE_0
:
7017 ListScope
D(W
, "Property");
7018 for (const std::string
&Property
: getGNUPropertyList
<ELFT
>(Desc
))
7019 W
.printString(Property
);
7025 template <typename ELFT
>
7026 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType
,
7027 ArrayRef
<uint8_t> Desc
,
7032 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION
:
7033 W
.printString("Version", getDescAsStringRef(Desc
));
7035 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER
:
7036 W
.printString("Producer", getDescAsStringRef(Desc
));
7038 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION
:
7039 W
.printString("Producer version", getDescAsStringRef(Desc
));
7045 static void printCoreNoteLLVMStyle(const CoreNote
&Note
, ScopedPrinter
&W
) {
7046 W
.printNumber("Page Size", Note
.PageSize
);
7047 for (const CoreFileMapping
&Mapping
: Note
.Mappings
) {
7048 ListScope
D(W
, "Mapping");
7049 W
.printHex("Start", Mapping
.Start
);
7050 W
.printHex("End", Mapping
.End
);
7051 W
.printHex("Offset", Mapping
.Offset
);
7052 W
.printString("Filename", Mapping
.Filename
);
7056 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printNotes() {
7057 ListScope
L(W
, "Notes");
7059 std::unique_ptr
<DictScope
> NoteScope
;
7060 auto StartNotes
= [&](Optional
<StringRef
> SecName
,
7061 const typename
ELFT::Off Offset
,
7062 const typename
ELFT::Addr Size
) {
7063 NoteScope
= std::make_unique
<DictScope
>(W
, "NoteSection");
7064 W
.printString("Name", SecName
? *SecName
: "<?>");
7065 W
.printHex("Offset", Offset
);
7066 W
.printHex("Size", Size
);
7069 auto EndNotes
= [&] { NoteScope
.reset(); };
7071 auto ProcessNote
= [&](const Elf_Note
&Note
, bool IsCore
) -> Error
{
7072 DictScope
D2(W
, "Note");
7073 StringRef Name
= Note
.getName();
7074 ArrayRef
<uint8_t> Descriptor
= Note
.getDesc();
7075 Elf_Word Type
= Note
.getType();
7077 // Print the note owner/type.
7078 W
.printString("Owner", Name
);
7079 W
.printHex("Data size", Descriptor
.size());
7081 StringRef NoteType
=
7082 getNoteTypeName
<ELFT
>(Note
, this->Obj
.getHeader().e_type
);
7083 if (!NoteType
.empty())
7084 W
.printString("Type", NoteType
);
7086 W
.printString("Type",
7087 "Unknown (" + to_string(format_hex(Type
, 10)) + ")");
7089 // Print the description, or fallback to printing raw bytes for unknown
7090 // owners/if we fail to pretty-print the contents.
7091 if (Name
== "GNU") {
7092 if (printGNUNoteLLVMStyle
<ELFT
>(Type
, Descriptor
, W
))
7093 return Error::success();
7094 } else if (Name
== "FreeBSD") {
7095 if (Optional
<FreeBSDNote
> N
=
7096 getFreeBSDNote
<ELFT
>(Type
, Descriptor
, IsCore
)) {
7097 W
.printString(N
->Type
, N
->Value
);
7098 return Error::success();
7100 } else if (Name
== "AMD") {
7101 const AMDNote N
= getAMDNote
<ELFT
>(Type
, Descriptor
);
7102 if (!N
.Type
.empty()) {
7103 W
.printString(N
.Type
, N
.Value
);
7104 return Error::success();
7106 } else if (Name
== "AMDGPU") {
7107 const AMDGPUNote N
= getAMDGPUNote
<ELFT
>(Type
, Descriptor
);
7108 if (!N
.Type
.empty()) {
7109 W
.printString(N
.Type
, N
.Value
);
7110 return Error::success();
7112 } else if (Name
== "LLVMOMPOFFLOAD") {
7113 if (printLLVMOMPOFFLOADNoteLLVMStyle
<ELFT
>(Type
, Descriptor
, W
))
7114 return Error::success();
7115 } else if (Name
== "CORE") {
7116 if (Type
== ELF::NT_FILE
) {
7117 DataExtractor
DescExtractor(Descriptor
,
7118 ELFT::TargetEndianness
== support::little
,
7120 if (Expected
<CoreNote
> N
= readCoreNote(DescExtractor
)) {
7121 printCoreNoteLLVMStyle(*N
, W
);
7122 return Error::success();
7124 return N
.takeError();
7128 if (!Descriptor
.empty()) {
7129 W
.printBinaryBlock("Description data", Descriptor
);
7131 return Error::success();
7134 printNotesHelper(*this, StartNotes
, ProcessNote
, EndNotes
);
7137 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printELFLinkerOptions() {
7138 ListScope
L(W
, "LinkerOptions");
7141 for (const Elf_Shdr
&Shdr
: cantFail(this->Obj
.sections())) {
7143 if (Shdr
.sh_type
!= ELF::SHT_LLVM_LINKER_OPTIONS
)
7146 Expected
<ArrayRef
<uint8_t>> ContentsOrErr
=
7147 this->Obj
.getSectionContents(Shdr
);
7148 if (!ContentsOrErr
) {
7149 this->reportUniqueWarning("unable to read the content of the "
7150 "SHT_LLVM_LINKER_OPTIONS section: " +
7151 toString(ContentsOrErr
.takeError()));
7154 if (ContentsOrErr
->empty())
7157 if (ContentsOrErr
->back() != 0) {
7158 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
7161 "content is not null-terminated");
7165 SmallVector
<StringRef
, 16> Strings
;
7166 toStringRef(ContentsOrErr
->drop_back()).split(Strings
, '\0');
7167 if (Strings
.size() % 2 != 0) {
7168 this->reportUniqueWarning(
7169 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I
) +
7170 " is broken: an incomplete "
7171 "key-value pair was found. The last possible key was: \"" +
7172 Strings
.back() + "\"");
7176 for (size_t I
= 0; I
< Strings
.size(); I
+= 2)
7177 W
.printString(Strings
[I
], Strings
[I
+ 1]);
7181 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printDependentLibs() {
7182 ListScope
L(W
, "DependentLibs");
7183 this->printDependentLibsHelper(
7184 [](const Elf_Shdr
&) {},
7185 [this](StringRef Lib
, uint64_t) { W
.printString(Lib
); });
7188 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printStackSizes() {
7189 ListScope
L(W
, "StackSizes");
7190 if (this->Obj
.getHeader().e_type
== ELF::ET_REL
)
7191 this->printRelocatableStackSizes([]() {});
7193 this->printNonRelocatableStackSizes([]() {});
7196 template <class ELFT
>
7197 void LLVMELFDumper
<ELFT
>::printStackSizeEntry(uint64_t Size
,
7198 ArrayRef
<std::string
> FuncNames
) {
7199 DictScope
D(W
, "Entry");
7200 W
.printList("Functions", FuncNames
);
7201 W
.printHex("Size", Size
);
7204 template <class ELFT
>
7205 void LLVMELFDumper
<ELFT
>::printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) {
7206 auto PrintEntry
= [&](const Elf_Addr
*E
) {
7207 W
.printHex("Address", Parser
.getGotAddress(E
));
7208 W
.printNumber("Access", Parser
.getGotOffset(E
));
7209 W
.printHex("Initial", *E
);
7212 DictScope
GS(W
, Parser
.IsStatic
? "Static GOT" : "Primary GOT");
7214 W
.printHex("Canonical gp value", Parser
.getGp());
7216 ListScope
RS(W
, "Reserved entries");
7218 DictScope
D(W
, "Entry");
7219 PrintEntry(Parser
.getGotLazyResolver());
7220 W
.printString("Purpose", StringRef("Lazy resolver"));
7223 if (Parser
.getGotModulePointer()) {
7224 DictScope
D(W
, "Entry");
7225 PrintEntry(Parser
.getGotModulePointer());
7226 W
.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7230 ListScope
LS(W
, "Local entries");
7231 for (auto &E
: Parser
.getLocalEntries()) {
7232 DictScope
D(W
, "Entry");
7237 if (Parser
.IsStatic
)
7241 ListScope
GS(W
, "Global entries");
7242 for (auto &E
: Parser
.getGlobalEntries()) {
7243 DictScope
D(W
, "Entry");
7247 const Elf_Sym
&Sym
= *Parser
.getGotSym(&E
);
7248 W
.printHex("Value", Sym
.st_value
);
7249 W
.printEnum("Type", Sym
.getType(), makeArrayRef(ElfSymbolTypes
));
7251 const unsigned SymIndex
= &Sym
- this->dynamic_symbols().begin();
7252 DataRegion
<Elf_Word
> ShndxTable(
7253 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
, this->Obj
.end());
7254 printSymbolSection(Sym
, SymIndex
, ShndxTable
);
7256 std::string SymName
= this->getFullSymbolName(
7257 Sym
, SymIndex
, ShndxTable
, this->DynamicStringTable
, true);
7258 W
.printNumber("Name", SymName
, Sym
.st_name
);
7262 W
.printNumber("Number of TLS and multi-GOT entries",
7263 uint64_t(Parser
.getOtherEntries().size()));
7266 template <class ELFT
>
7267 void LLVMELFDumper
<ELFT
>::printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) {
7268 auto PrintEntry
= [&](const Elf_Addr
*E
) {
7269 W
.printHex("Address", Parser
.getPltAddress(E
));
7270 W
.printHex("Initial", *E
);
7273 DictScope
GS(W
, "PLT GOT");
7276 ListScope
RS(W
, "Reserved entries");
7278 DictScope
D(W
, "Entry");
7279 PrintEntry(Parser
.getPltLazyResolver());
7280 W
.printString("Purpose", StringRef("PLT lazy resolver"));
7283 if (auto E
= Parser
.getPltModulePointer()) {
7284 DictScope
D(W
, "Entry");
7286 W
.printString("Purpose", StringRef("Module pointer"));
7290 ListScope
LS(W
, "Entries");
7291 DataRegion
<Elf_Word
> ShndxTable(
7292 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
, this->Obj
.end());
7293 for (auto &E
: Parser
.getPltEntries()) {
7294 DictScope
D(W
, "Entry");
7297 const Elf_Sym
&Sym
= *Parser
.getPltSym(&E
);
7298 W
.printHex("Value", Sym
.st_value
);
7299 W
.printEnum("Type", Sym
.getType(), makeArrayRef(ElfSymbolTypes
));
7300 printSymbolSection(Sym
, &Sym
- this->dynamic_symbols().begin(),
7303 const Elf_Sym
*FirstSym
= cantFail(
7304 this->Obj
.template getEntry
<Elf_Sym
>(*Parser
.getPltSymTable(), 0));
7305 std::string SymName
= this->getFullSymbolName(
7306 Sym
, &Sym
- FirstSym
, ShndxTable
, Parser
.getPltStrTable(), true);
7307 W
.printNumber("Name", SymName
, Sym
.st_name
);
7312 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printMipsABIFlags() {
7313 const Elf_Mips_ABIFlags
<ELFT
> *Flags
;
7314 if (Expected
<const Elf_Mips_ABIFlags
<ELFT
> *> SecOrErr
=
7315 getMipsAbiFlagsSection(*this)) {
7318 W
.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7322 this->reportUniqueWarning(SecOrErr
.takeError());
7326 raw_ostream
&OS
= W
.getOStream();
7327 DictScope
GS(W
, "MIPS ABI Flags");
7329 W
.printNumber("Version", Flags
->version
);
7330 W
.startLine() << "ISA: ";
7331 if (Flags
->isa_rev
<= 1)
7332 OS
<< format("MIPS%u", Flags
->isa_level
);
7334 OS
<< format("MIPS%ur%u", Flags
->isa_level
, Flags
->isa_rev
);
7336 W
.printEnum("ISA Extension", Flags
->isa_ext
, makeArrayRef(ElfMipsISAExtType
));
7337 W
.printFlags("ASEs", Flags
->ases
, makeArrayRef(ElfMipsASEFlags
));
7338 W
.printEnum("FP ABI", Flags
->fp_abi
, makeArrayRef(ElfMipsFpABIType
));
7339 W
.printNumber("GPR size", getMipsRegisterSize(Flags
->gpr_size
));
7340 W
.printNumber("CPR1 size", getMipsRegisterSize(Flags
->cpr1_size
));
7341 W
.printNumber("CPR2 size", getMipsRegisterSize(Flags
->cpr2_size
));
7342 W
.printFlags("Flags 1", Flags
->flags1
, makeArrayRef(ElfMipsFlags1
));
7343 W
.printHex("Flags 2", Flags
->flags2
);
7346 template <class ELFT
>
7347 void JSONELFDumper
<ELFT
>::printFileSummary(StringRef FileStr
, ObjectFile
&Obj
,
7348 ArrayRef
<std::string
> InputFilenames
,
7350 FileScope
= std::make_unique
<DictScope
>(this->W
, FileStr
);
7351 DictScope
D(this->W
, "FileSummary");
7352 this->W
.printString("File", FileStr
);
7353 this->W
.printString("Format", Obj
.getFileFormatName());
7354 this->W
.printString("Arch", Triple::getArchTypeName(Obj
.getArch()));
7355 this->W
.printString(
7357 std::string(formatv("{0}bit", 8 * Obj
.getBytesInAddress())));
7358 this->printLoadName();