[SampleProfileLoader] Fix integer overflow in generateMDProfMetadata (#90217)
[llvm-project.git] / libclc / generic / lib / math / asinh.cl
blobcfddb31c68c35caf55bcb7d114c2822703793463
1 /*
2 * Copyright (c) 2014,2015 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
23 #include <clc/clc.h>
25 #include "math.h"
26 #include "ep_log.h"
27 #include "../clcmacro.h"
29 _CLC_OVERLOAD _CLC_DEF float asinh(float x) {
30 uint ux = as_uint(x);
31 uint ax = ux & EXSIGNBIT_SP32;
32 uint xsgn = ax ^ ux;
34 // |x| <= 2
35 float t = x * x;
36 float a = mad(t,
37 mad(t,
38 mad(t,
39 mad(t, -1.177198915954942694e-4f, -4.162727710583425360e-2f),
40 -5.063201055468483248e-1f),
41 -1.480204186473758321f),
42 -1.152965835871758072f);
43 float b = mad(t,
44 mad(t,
45 mad(t,
46 mad(t, 6.284381367285534560e-2f, 1.260024978680227945f),
47 6.582362487198468066f),
48 11.99423176003939087f),
49 6.917795026025976739f);
51 float q = MATH_DIVIDE(a, b);
52 float z1 = mad(x*t, q, x);
54 // |x| > 2
56 // Arguments greater than 1/sqrt(epsilon) in magnitude are
57 // approximated by asinh(x) = ln(2) + ln(abs(x)), with sign of x
58 // Arguments such that 4.0 <= abs(x) <= 1/sqrt(epsilon) are
59 // approximated by asinhf(x) = ln(abs(x) + sqrt(x*x+1))
60 // with the sign of x (see Abramowitz and Stegun 4.6.20)
62 float absx = as_float(ax);
63 int hi = ax > 0x46000000U;
64 float y = MATH_SQRT(absx * absx + 1.0f) + absx;
65 y = hi ? absx : y;
66 float r = log(y) + (hi ? 0x1.62e430p-1f : 0.0f);
67 float z2 = as_float(xsgn | as_uint(r));
69 float z = ax <= 0x40000000 ? z1 : z2;
70 z = ax < 0x39800000U | ax >= PINFBITPATT_SP32 ? x : z;
72 return z;
75 _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, asinh, float)
77 #ifdef cl_khr_fp64
78 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
80 #define NA0 -0.12845379283524906084997e0
81 #define NA1 -0.21060688498409799700819e0
82 #define NA2 -0.10188951822578188309186e0
83 #define NA3 -0.13891765817243625541799e-1
84 #define NA4 -0.10324604871728082428024e-3
86 #define DA0 0.77072275701149440164511e0
87 #define DA1 0.16104665505597338100747e1
88 #define DA2 0.11296034614816689554875e1
89 #define DA3 0.30079351943799465092429e0
90 #define DA4 0.235224464765951442265117e-1
92 #define NB0 -0.12186605129448852495563e0
93 #define NB1 -0.19777978436593069928318e0
94 #define NB2 -0.94379072395062374824320e-1
95 #define NB3 -0.12620141363821680162036e-1
96 #define NB4 -0.903396794842691998748349e-4
98 #define DB0 0.73119630776696495279434e0
99 #define DB1 0.15157170446881616648338e1
100 #define DB2 0.10524909506981282725413e1
101 #define DB3 0.27663713103600182193817e0
102 #define DB4 0.21263492900663656707646e-1
104 #define NC0 -0.81210026327726247622500e-1
105 #define NC1 -0.12327355080668808750232e0
106 #define NC2 -0.53704925162784720405664e-1
107 #define NC3 -0.63106739048128554465450e-2
108 #define NC4 -0.35326896180771371053534e-4
110 #define DC0 0.48726015805581794231182e0
111 #define DC1 0.95890837357081041150936e0
112 #define DC2 0.62322223426940387752480e0
113 #define DC3 0.15028684818508081155141e0
114 #define DC4 0.10302171620320141529445e-1
116 #define ND0 -0.4638179204422665073e-1
117 #define ND1 -0.7162729496035415183e-1
118 #define ND2 -0.3247795155696775148e-1
119 #define ND3 -0.4225785421291932164e-2
120 #define ND4 -0.3808984717603160127e-4
121 #define ND5 0.8023464184964125826e-6
123 #define DD0 0.2782907534642231184e0
124 #define DD1 0.5549945896829343308e0
125 #define DD2 0.3700732511330698879e0
126 #define DD3 0.9395783438240780722e-1
127 #define DD4 0.7200057974217143034e-2
129 #define NE0 -0.121224194072430701e-4
130 #define NE1 -0.273145455834305218e-3
131 #define NE2 -0.152866982560895737e-2
132 #define NE3 -0.292231744584913045e-2
133 #define NE4 -0.174670900236060220e-2
134 #define NE5 -0.891754209521081538e-12
136 #define DE0 0.499426632161317606e-4
137 #define DE1 0.139591210395547054e-2
138 #define DE2 0.107665231109108629e-1
139 #define DE3 0.325809818749873406e-1
140 #define DE4 0.415222526655158363e-1
141 #define DE5 0.186315628774716763e-1
143 #define NF0 -0.195436610112717345e-4
144 #define NF1 -0.233315515113382977e-3
145 #define NF2 -0.645380957611087587e-3
146 #define NF3 -0.478948863920281252e-3
147 #define NF4 -0.805234112224091742e-12
148 #define NF5 0.246428598194879283e-13
150 #define DF0 0.822166621698664729e-4
151 #define DF1 0.135346265620413852e-2
152 #define DF2 0.602739242861830658e-2
153 #define DF3 0.972227795510722956e-2
154 #define DF4 0.510878800983771167e-2
156 #define NG0 -0.209689451648100728e-6
157 #define NG1 -0.219252358028695992e-5
158 #define NG2 -0.551641756327550939e-5
159 #define NG3 -0.382300259826830258e-5
160 #define NG4 -0.421182121910667329e-17
161 #define NG5 0.492236019998237684e-19
163 #define DG0 0.889178444424237735e-6
164 #define DG1 0.131152171690011152e-4
165 #define DG2 0.537955850185616847e-4
166 #define DG3 0.814966175170941864e-4
167 #define DG4 0.407786943832260752e-4
169 #define NH0 -0.178284193496441400e-6
170 #define NH1 -0.928734186616614974e-6
171 #define NH2 -0.923318925566302615e-6
172 #define NH3 -0.776417026702577552e-19
173 #define NH4 0.290845644810826014e-21
175 #define DH0 0.786694697277890964e-6
176 #define DH1 0.685435665630965488e-5
177 #define DH2 0.153780175436788329e-4
178 #define DH3 0.984873520613417917e-5
180 #define NI0 -0.538003743384069117e-10
181 #define NI1 -0.273698654196756169e-9
182 #define NI2 -0.268129826956403568e-9
183 #define NI3 -0.804163374628432850e-29
185 #define DI0 0.238083376363471960e-9
186 #define DI1 0.203579344621125934e-8
187 #define DI2 0.450836980450693209e-8
188 #define DI3 0.286005148753497156e-8
190 _CLC_OVERLOAD _CLC_DEF double asinh(double x) {
191 const double rteps = 0x1.6a09e667f3bcdp-27;
192 const double recrteps = 0x1.6a09e667f3bcdp+26;
194 // log2_lead and log2_tail sum to an extra-precise version of log(2)
195 const double log2_lead = 0x1.62e42ep-1;
196 const double log2_tail = 0x1.efa39ef35793cp-25;
198 ulong ux = as_ulong(x);
199 ulong ax = ux & ~SIGNBIT_DP64;
200 double absx = as_double(ax);
202 double t = x * x;
203 double pn, tn, pd, td;
205 // XXX we are betting here that we can evaluate 8 pairs of
206 // polys faster than we can grab 12 coefficients from a table
207 // This also uses fewer registers
209 // |x| >= 8
210 pn = fma(t, fma(t, fma(t, NI3, NI2), NI1), NI0);
211 pd = fma(t, fma(t, fma(t, DI3, DI2), DI1), DI0);
213 tn = fma(t, fma(t, fma(t, fma(t, NH4, NH3), NH2), NH1), NH0);
214 td = fma(t, fma(t, fma(t, DH3, DH2), DH1), DH0);
215 pn = absx < 8.0 ? tn : pn;
216 pd = absx < 8.0 ? td : pd;
218 tn = fma(t, fma(t, fma(t, fma(t, fma(t, NG5, NG4), NG3), NG2), NG1), NG0);
219 td = fma(t, fma(t, fma(t, fma(t, DG4, DG3), DG2), DG1), DG0);
220 pn = absx < 4.0 ? tn : pn;
221 pd = absx < 4.0 ? td : pd;
223 tn = fma(t, fma(t, fma(t, fma(t, fma(t, NF5, NF4), NF3), NF2), NF1), NF0);
224 td = fma(t, fma(t, fma(t, fma(t, DF4, DF3), DF2), DF1), DF0);
225 pn = absx < 2.0 ? tn : pn;
226 pd = absx < 2.0 ? td : pd;
228 tn = fma(t, fma(t, fma(t, fma(t, fma(t, NE5, NE4), NE3), NE2), NE1), NE0);
229 td = fma(t, fma(t, fma(t, fma(t, fma(t, DE5, DE4), DE3), DE2), DE1), DE0);
230 pn = absx < 1.5 ? tn : pn;
231 pd = absx < 1.5 ? td : pd;
233 tn = fma(t, fma(t, fma(t, fma(t, fma(t, ND5, ND4), ND3), ND2), ND1), ND0);
234 td = fma(t, fma(t, fma(t, fma(t, DD4, DD3), DD2), DD1), DD0);
235 pn = absx <= 1.0 ? tn : pn;
236 pd = absx <= 1.0 ? td : pd;
238 tn = fma(t, fma(t, fma(t, fma(t, NC4, NC3), NC2), NC1), NC0);
239 td = fma(t, fma(t, fma(t, fma(t, DC4, DC3), DC2), DC1), DC0);
240 pn = absx < 0.75 ? tn : pn;
241 pd = absx < 0.75 ? td : pd;
243 tn = fma(t, fma(t, fma(t, fma(t, NB4, NB3), NB2), NB1), NB0);
244 td = fma(t, fma(t, fma(t, fma(t, DB4, DB3), DB2), DB1), DB0);
245 pn = absx < 0.5 ? tn : pn;
246 pd = absx < 0.5 ? td : pd;
248 tn = fma(t, fma(t, fma(t, fma(t, NA4, NA3), NA2), NA1), NA0);
249 td = fma(t, fma(t, fma(t, fma(t, DA4, DA3), DA2), DA1), DA0);
250 pn = absx < 0.25 ? tn : pn;
251 pd = absx < 0.25 ? td : pd;
253 double pq = MATH_DIVIDE(pn, pd);
255 // |x| <= 1
256 double result1 = fma(absx*t, pq, absx);
258 // Other ranges
259 int xout = absx <= 32.0 | absx > recrteps;
260 double y = absx + sqrt(fma(absx, absx, 1.0));
261 y = xout ? absx : y;
263 double r1, r2;
264 int xexp;
265 __clc_ep_log(y, &xexp, &r1, &r2);
267 double dxexp = (double)(xexp + xout);
268 r1 = fma(dxexp, log2_lead, r1);
269 r2 = fma(dxexp, log2_tail, r2);
271 // 1 < x <= 32
272 double v2 = (pq + 0.25) / t;
273 double r = v2 + r1;
274 double s = ((r1 - r) + v2) + r2;
275 double v1 = r + s;
276 v2 = (r - v1) + s;
277 double result2 = v1 + v2;
279 // x > 32
280 double result3 = r1 + r2;
282 double ret = absx > 1.0 ? result2 : result1;
283 ret = absx > 32.0 ? result3 : ret;
284 ret = x < 0.0 ? -ret : ret;
286 // NaN, +-Inf, or x small enough that asinh(x) = x
287 ret = ax >= PINFBITPATT_DP64 | absx < rteps ? x : ret;
288 return ret;
291 _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, asinh, double)
293 #endif