2 * Copyright
(c) 2014 Advanced Micro Devices
, Inc.
4 * Permission is hereby granted
, free of charge
, to any person obtaining a copy
5 * of this software and associated documentation files
(the "Software"), to deal
6 * in the Software without restriction
, including without limitation the rights
7 * to use
, copy
, modify
, merge
, publish
, distribute
, sublicense
, and
/or sell
8 * copies of the Software
, and to permit persons to whom the Software is
9 * furnished to do so
, subject to the following conditions
:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED
"AS IS", WITHOUT WARRANTY OF ANY KIND
, EXPRESS OR
15 * IMPLIED
, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM
, DAMAGES OR OTHER
18 * LIABILITY
, WHETHER IN AN ACTION OF CONTRACT
, TORT OR OTHERWISE
, ARISING FROM
,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
28 #include
"../clcmacro.h"
30 // compute pow using log and exp
31 // x^y
= exp
(y * log
(x))
33 // we take care not to lose precision in the intermediate steps
35 // When computing log
, calculate it in splits
,
37 // r
= f
* (p_invead + p_inv_tail
)
40 // calculate log polynomial using r
, in end addition
, do
41 // poly
= poly
+ ((rh-r) + rt
)
44 // ltt
= ((xexp * log2_t
) - poly
) + logT
47 // lh
= (xexp * log2_h
) + logH
50 // Calculate final log answer as gh and gt
,
51 // gh
= l
& higher-half bits
52 // gt
= (((ltt -
(lt - lth
)) + ((lh - l
) + lt
)) + (l - gh
))
54 // yh
= y
& higher-half bits
57 // Before entering computation of exp
,
58 // vs
= ((yt*gt
+ yt
*gh
) + yh
*gt
)
60 // vt
= ((yh*gh - v
) + vs
)
62 // In calculation of exp
, add vt to r that is used for poly
63 // At the end of exp
, do
64 // ((((expT * poly
) + expT
) + expH
*poly
) + expH
)
66 _CLC_DEF _CLC_OVERLOAD float __clc_rootn
(float x
, int ny
)
68 float y
= MATH_RECIP
((float)ny
);
71 int ax
= ix
& EXSIGNBIT_SP32
;
75 int ay
= iy
& EXSIGNBIT_SP32
;
78 // Extra precise log calculation
79 // First handle case that x is close to
1
80 float r
= 1.0f - as_float
(ax);
81 int near1
= fabs
(r) < 0x1.0p-4f
;
84 // Coefficients are just
1/3, 1/4, 1/5 and
1/6
88 mad
(r, 0x1.24924ap-3f
, 0x1.555556p-3f
),
95 float lth_near1
= -r2
* 0.5f
;
96 float ltt_near1
= -poly
;
97 float lt_near1
= lth_near1
+ ltt_near1
;
99 float l_near1
= lh_near1
+ lt_near1
;
101 // Computations for x not near
1
102 int m
= (int)(ax >> EXPSHIFTBITS_SP32
) - EXPBIAS_SP32
;
104 int ixs
= as_int
(as_float(ax |
0x3f800000) -
1.0f
);
105 float mfs
= (float)((ixs >> EXPSHIFTBITS_SP32
) -
253);
107 int ixn
= c ? ixs
: ax
;
108 float mfn
= c ? mfs
: mf
;
110 int indx
= (ixn & 0x007f0000) + ((ixn & 0x00008000) << 1);
113 float f
= as_float
(0x3f000000 | indx
) - as_float
(0x3f000000 |
(ixn & MANTBITS_SP32
));
116 float2 tv
= USE_TABLE
(log_inv_tbl_ep, indx
);
117 float rh
= f
* tv.s0
;
118 float rt
= f
* tv.s1
;
121 poly
= mad
(r, mad
(r, 0x1.0p-2f
, 0x1.555556p-2f
), 0x1.0p-1f
) * (r*r
);
122 poly
+= (rh - r
) + rt
;
124 const float LOG2_HEAD
= 0x1.62e000p-1f
; // 0.693115234
125 const float LOG2_TAIL
= 0x1.0bfbe8p-15f
; // 0.0000319461833
126 tv
= USE_TABLE
(loge_tbl, indx
);
128 float ltt
= mad
(mfn, LOG2_TAIL
, -poly
) + tv.s1
;
129 float lt
= lth
+ ltt
;
130 float lh
= mad
(mfn, LOG2_HEAD
, tv.s0
);
133 // Select near
1 or not
134 lth
= near1 ? lth_near1
: lth
;
135 ltt
= near1 ? ltt_near1
: ltt
;
136 lt
= near1 ? lt_near1
: lt
;
137 lh
= near1 ? lh_near1
: lh
;
138 l
= near1 ? l_near1
: l
;
140 float gh
= as_float
(as_int(l) & 0xfffff000);
141 float gt
= ((ltt -
(lt - lth
)) + ((lh - l
) + lt
)) + (l - gh
);
143 float yh
= as_float
(iy & 0xfffff000);
145 float fny
= (float)ny
;
146 float fnyh
= as_float
(as_int(fny) & 0xfffff000);
147 float fnyt
= (float)(ny -
(int)fnyh
);
148 float yt
= MATH_DIVIDE
(mad(-fnyt, yh
, mad
(-fnyh, yh
, 1.0f
)), fny
);
150 float ylogx_s
= mad
(gt, yh
, mad
(gh, yt
, yt
*gt
));
151 float ylogx
= mad
(yh, gh
, ylogx_s
);
152 float ylogx_t
= mad
(yh, gh
, -ylogx
) + ylogx_s
;
154 // Extra precise exp of ylogx
155 const float R_64_BY_LOG2
= 0x1.715476p
+6f
; // 64/log2 : 92.332482616893657
156 int n
= convert_int
(ylogx * R_64_BY_LOG2
);
157 float nf
= (float) n
;
161 int m2
= m
<< EXPSHIFTBITS_SP32
;
163 const float R_LOG2_BY_64_LD
= 0x1.620000p-7f
; // log2/64 lead: 0.0108032227
164 const float R_LOG2_BY_64_TL
= 0x1.c85fdep-16f
; // log2/64 tail: 0.0000272020388
165 r
= mad
(nf, -R_LOG2_BY_64_TL
, mad
(nf, -R_LOG2_BY_64_LD
, ylogx
)) + ylogx_t
;
167 // Truncated Taylor series for e^r
168 poly
= mad
(mad(mad(r, 0x1.555556p-5f
, 0x1.555556p-3f
), r
, 0x1.000000p-1f
), r
*r
, r
);
170 tv
= USE_TABLE
(exp_tbl_ep, j
);
172 float expylogx
= mad
(tv.s0
, poly
, mad
(tv.s1
, poly
, tv.s1
)) + tv.s0
;
173 float sexpylogx
= __clc_fp32_subnormals_supported
() ? expylogx
* as_float
(0x1 << (m + 149)) : 0.0f
;
175 float texpylogx
= as_float
(as_int(expylogx) + m2
);
176 expylogx
= m
< -
125 ? sexpylogx
: texpylogx
;
178 // Result is
+-Inf if
(ylogx + ylogx_t
) > 128*log2
179 expylogx
= ((ylogx > 0x1.62e430p
+6f
) |
(ylogx == 0x1.62e430p
+6f
& ylogx_t
> -
0x1.05c610p-22f
)) ? as_float
(PINFBITPATT_SP32) : expylogx
;
181 // Result is
0 if ylogx
< -
149*log2
182 expylogx
= ylogx
< -
0x1.9d1da0p
+6f ?
0.0f
: expylogx
;
185 // inty
= 0 means not an integer.
186 // inty
= 1 means odd integer.
187 // inty
= 2 means even integer.
189 int inty
= 2 -
(ny & 1);
191 float signval
= as_float
((as_uint(expylogx) ^ SIGNBIT_SP32
));
192 expylogx
= ((inty == 1) & !xpos
) ? signval
: expylogx
;
193 int ret
= as_int
(expylogx);
195 // Corner case handling
196 ret
= (!xpos
& (inty == 2)) ? QNANBITPATT_SP32
: ret
;
197 int xinf
= xpos ? PINFBITPATT_SP32
: NINFBITPATT_SP32
;
198 ret
= ((ax == 0) & !ypos
& (inty == 1)) ? xinf
: ret
;
199 ret
= ((ax == 0) & !ypos
& (inty == 2)) ? PINFBITPATT_SP32
: ret
;
200 ret
= ((ax == 0) & ypos
& (inty == 2)) ?
0 : ret
;
201 int xzero
= xpos ?
0 : 0x80000000;
202 ret
= ((ax == 0) & ypos
& (inty == 1)) ? xzero
: ret
;
203 ret
= ((ix == NINFBITPATT_SP32
) & ypos
& (inty == 1)) ? NINFBITPATT_SP32
: ret
;
204 ret
= ((ix == NINFBITPATT_SP32
) & !ypos
& (inty == 1)) ?
0x80000000 : ret
;
205 ret
= ((ix == PINFBITPATT_SP32
) & !ypos
) ?
0 : ret
;
206 ret
= ((ix == PINFBITPATT_SP32
) & ypos
) ? PINFBITPATT_SP32
: ret
;
207 ret
= ax
> PINFBITPATT_SP32 ? ix
: ret
;
208 ret
= ny
== 0 ? QNANBITPATT_SP32
: ret
;
210 return as_float
(ret);
212 _CLC_BINARY_VECTORIZE
(_CLC_DEF _CLC_OVERLOAD
, float
, __clc_rootn
, float
, int
)
215 _CLC_DEF _CLC_OVERLOAD double __clc_rootn
(double x
, int ny
)
217 const double real_log2_tail
= 5.76999904754328540596e-08;
218 const double real_log2_lead
= 6.93147122859954833984e-01;
220 double dny
= (double)ny
;
221 double y
= 1.0 / dny
;
223 long ux
= as_long
(x);
224 long ax
= ux
& (~SIGNBIT_DP64
);
227 long uy
= as_long
(y);
228 long ay
= uy
& (~SIGNBIT_DP64
);
231 // Extended precision log
234 int exp
= (int)(ax >> 52) -
1023;
235 int mask_exp_1023
= exp
== -
1023;
236 double xexp
= (double) exp
;
237 long mantissa
= ax
& 0x000FFFFFFFFFFFFFL
;
239 long temp_ux
= as_long
(as_double(0x3ff0000000000000L | mantissa
) -
1.0);
240 exp
= ((temp_ux & 0x7FF0000000000000L
) >> 52) -
2045;
241 double xexp1
= (double) exp
;
242 long mantissa1
= temp_ux
& 0x000FFFFFFFFFFFFFL
;
244 xexp
= mask_exp_1023 ? xexp1
: xexp
;
245 mantissa
= mask_exp_1023 ? mantissa1
: mantissa
;
247 long rax
= (mantissa & 0x000ff00000000000) + ((mantissa & 0x0000080000000000) << 1);
248 int index
= rax
>> 44;
250 double F
= as_double
(rax |
0x3FE0000000000000L
);
251 double Y
= as_double
(mantissa |
0x3FE0000000000000L
);
253 double2 tv
= USE_TABLE
(log_f_inv_tbl, index
);
254 double log_h
= tv.s0
;
255 double log_t
= tv.s1
;
256 double f_inv
= (log_h + log_t
) * f
;
257 double r1
= as_double
(as_long(f_inv) & 0xfffffffff8000000L
);
258 double r2
= fma
(-F, r1
, f
) * (log_h + log_t
);
264 fma
(r, 1.0/7.0, 1.0/6.0),
268 poly
= poly
* r
* r
* r
;
270 double hr1r1
= 0.5*r1
*r1
;
271 double poly0h
= r1
+ hr1r1
;
272 double poly0t
= r1 - poly0h
+ hr1r1
;
273 poly
= fma
(r1, r2
, fma
(0.5
*r2
, r2
, poly
)) + r2
+ poly0t
;
275 tv
= USE_TABLE
(powlog_tbl, index
);
279 double resT_t
= fma
(xexp, real_log2_tail
, + log_t
) - poly
;
280 double resT
= resT_t - poly0h
;
281 double resH
= fma
(xexp, real_log2_lead
, log_h
);
282 double resT_h
= poly0h
;
284 double H
= resT
+ resH
;
285 double H_h
= as_double
(as_long(H) & 0xfffffffff8000000L
);
286 double T
= (resH - H
+ resT
) + (resT_t -
(resT + resT_h
)) + (H - H_h
);
289 double y_head
= as_double
(uy & 0xfffffffff8000000L
);
290 double y_tail
= y - y_head
;
292 double fnyh
= as_double
(as_long(dny) & 0xfffffffffff00000);
293 double fnyt
= (double)(ny -
(int)fnyh
);
294 y_tail
= fma
(-fnyt, y_head
, fma
(-fnyh, y_head
, 1.0))/ dny
;
296 double temp
= fma
(y_tail, H
, fma
(y_head, T
, y_tail
*T
));
297 v
= fma
(y_head, H
, temp
);
298 vt
= fma
(y_head, H
, -v
) + temp
;
301 // Now calculate exp of
(v,vt
)
305 const double max_exp_arg
= 709.782712893384;
306 const double min_exp_arg
= -
745.1332191019411;
307 const double sixtyfour_by_lnof2
= 92.33248261689366;
308 const double lnof2_by_64_head
= 0.010830424260348081;
309 const double lnof2_by_64_tail
= -
4.359010638708991e-10;
311 double temp
= v
* sixtyfour_by_lnof2
;
313 double dn
= (double)n
;
314 int j
= n
& 0x0000003f;
317 double2 tv
= USE_TABLE
(two_to_jby64_ep_tbl, j
);
322 double r1
= fma
(dn, -lnof2_by_64_head
, v
);
323 double r2
= dn
* lnof2_by_64_tail
;
324 double r
= (r1 + r2
) + vt
;
329 fma
(r, 1.38889490863777199667e-03, 8.33336798434219616221e-03),
330 4.16666666662260795726e-02),
331 1.66666666665260878863e-01),
332 5.00000000000000008883e-01);
335 expv
= fma
(f, q
, f2
) + f1
;
336 expv
= ldexp
(expv, m
);
338 expv
= v
> max_exp_arg ? as_double
(0x7FF0000000000000L) : expv
;
339 expv
= v
< min_exp_arg ?
0.0 : expv
;
342 // See whether y is an integer.
343 // inty
= 0 means not an integer.
344 // inty
= 1 means odd integer.
345 // inty
= 2 means even integer.
347 int inty
= 2 -
(ny & 1);
349 expv
*= ((inty == 1) & !xpos
) ? -
1.0 : 1.0;
351 long ret
= as_long
(expv);
353 // Now all the edge cases
354 ret
= (!xpos
& (inty == 2)) ? QNANBITPATT_DP64
: ret
;
355 long xinf
= xpos ? PINFBITPATT_DP64
: NINFBITPATT_DP64
;
356 ret
= ((ax == 0L) & !ypos
& (inty == 1)) ? xinf
: ret
;
357 ret
= ((ax == 0L) & !ypos
& (inty == 2)) ? PINFBITPATT_DP64
: ret
;
358 ret
= ((ax == 0L) & ypos
& (inty == 2)) ?
0L : ret
;
359 long xzero
= xpos ?
0L : 0x8000000000000000L
;
360 ret
= ((ax == 0L) & ypos
& (inty == 1)) ? xzero
: ret
;
361 ret
= ((ux == NINFBITPATT_DP64
) & ypos
& (inty == 1)) ? NINFBITPATT_DP64
: ret
;
362 ret
= ((ux == NINFBITPATT_DP64
) & !ypos
& (inty == 1)) ?
0x8000000000000000L
: ret
;
363 ret
= ((ux == PINFBITPATT_DP64
) & !ypos
) ?
0L : ret
;
364 ret
= ((ux == PINFBITPATT_DP64
) & ypos
) ? PINFBITPATT_DP64
: ret
;
365 ret
= ax
> PINFBITPATT_DP64 ? ux
: ret
;
366 ret
= ny
== 0 ? QNANBITPATT_DP64
: ret
;
367 return as_double
(ret);
369 _CLC_BINARY_VECTORIZE
(_CLC_DEF _CLC_OVERLOAD
, double
, __clc_rootn
, double
, int
)