[SampleProfileLoader] Fix integer overflow in generateMDProfMetadata (#90217)
[llvm-project.git] / libclc / generic / lib / math / clc_rootn.cl
blob0a2c98d3787cff079a9b6bdb0aa4bf79504e6eaa
1 /*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
23 #include <clc/clc.h>
25 #include "config.h"
26 #include "math.h"
27 #include "tables.h"
28 #include "../clcmacro.h"
30 // compute pow using log and exp
31 // x^y = exp(y * log(x))
33 // we take care not to lose precision in the intermediate steps
35 // When computing log, calculate it in splits,
37 // r = f * (p_invead + p_inv_tail)
38 // r = rh + rt
40 // calculate log polynomial using r, in end addition, do
41 // poly = poly + ((rh-r) + rt)
43 // lth = -r
44 // ltt = ((xexp * log2_t) - poly) + logT
45 // lt = lth + ltt
47 // lh = (xexp * log2_h) + logH
48 // l = lh + lt
50 // Calculate final log answer as gh and gt,
51 // gh = l & higher-half bits
52 // gt = (((ltt - (lt - lth)) + ((lh - l) + lt)) + (l - gh))
54 // yh = y & higher-half bits
55 // yt = y - yh
57 // Before entering computation of exp,
58 // vs = ((yt*gt + yt*gh) + yh*gt)
59 // v = vs + yh*gh
60 // vt = ((yh*gh - v) + vs)
62 // In calculation of exp, add vt to r that is used for poly
63 // At the end of exp, do
64 // ((((expT * poly) + expT) + expH*poly) + expH)
66 _CLC_DEF _CLC_OVERLOAD float __clc_rootn(float x, int ny)
68 float y = MATH_RECIP((float)ny);
70 int ix = as_int(x);
71 int ax = ix & EXSIGNBIT_SP32;
72 int xpos = ix == ax;
74 int iy = as_int(y);
75 int ay = iy & EXSIGNBIT_SP32;
76 int ypos = iy == ay;
78 // Extra precise log calculation
79 // First handle case that x is close to 1
80 float r = 1.0f - as_float(ax);
81 int near1 = fabs(r) < 0x1.0p-4f;
82 float r2 = r*r;
84 // Coefficients are just 1/3, 1/4, 1/5 and 1/6
85 float poly = mad(r,
86 mad(r,
87 mad(r,
88 mad(r, 0x1.24924ap-3f, 0x1.555556p-3f),
89 0x1.99999ap-3f),
90 0x1.000000p-2f),
91 0x1.555556p-2f);
93 poly *= r2*r;
95 float lth_near1 = -r2 * 0.5f;
96 float ltt_near1 = -poly;
97 float lt_near1 = lth_near1 + ltt_near1;
98 float lh_near1 = -r;
99 float l_near1 = lh_near1 + lt_near1;
101 // Computations for x not near 1
102 int m = (int)(ax >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
103 float mf = (float)m;
104 int ixs = as_int(as_float(ax | 0x3f800000) - 1.0f);
105 float mfs = (float)((ixs >> EXPSHIFTBITS_SP32) - 253);
106 int c = m == -127;
107 int ixn = c ? ixs : ax;
108 float mfn = c ? mfs : mf;
110 int indx = (ixn & 0x007f0000) + ((ixn & 0x00008000) << 1);
112 // F - Y
113 float f = as_float(0x3f000000 | indx) - as_float(0x3f000000 | (ixn & MANTBITS_SP32));
115 indx = indx >> 16;
116 float2 tv = USE_TABLE(log_inv_tbl_ep, indx);
117 float rh = f * tv.s0;
118 float rt = f * tv.s1;
119 r = rh + rt;
121 poly = mad(r, mad(r, 0x1.0p-2f, 0x1.555556p-2f), 0x1.0p-1f) * (r*r);
122 poly += (rh - r) + rt;
124 const float LOG2_HEAD = 0x1.62e000p-1f; // 0.693115234
125 const float LOG2_TAIL = 0x1.0bfbe8p-15f; // 0.0000319461833
126 tv = USE_TABLE(loge_tbl, indx);
127 float lth = -r;
128 float ltt = mad(mfn, LOG2_TAIL, -poly) + tv.s1;
129 float lt = lth + ltt;
130 float lh = mad(mfn, LOG2_HEAD, tv.s0);
131 float l = lh + lt;
133 // Select near 1 or not
134 lth = near1 ? lth_near1 : lth;
135 ltt = near1 ? ltt_near1 : ltt;
136 lt = near1 ? lt_near1 : lt;
137 lh = near1 ? lh_near1 : lh;
138 l = near1 ? l_near1 : l;
140 float gh = as_float(as_int(l) & 0xfffff000);
141 float gt = ((ltt - (lt - lth)) + ((lh - l) + lt)) + (l - gh);
143 float yh = as_float(iy & 0xfffff000);
145 float fny = (float)ny;
146 float fnyh = as_float(as_int(fny) & 0xfffff000);
147 float fnyt = (float)(ny - (int)fnyh);
148 float yt = MATH_DIVIDE(mad(-fnyt, yh, mad(-fnyh, yh, 1.0f)), fny);
150 float ylogx_s = mad(gt, yh, mad(gh, yt, yt*gt));
151 float ylogx = mad(yh, gh, ylogx_s);
152 float ylogx_t = mad(yh, gh, -ylogx) + ylogx_s;
154 // Extra precise exp of ylogx
155 const float R_64_BY_LOG2 = 0x1.715476p+6f; // 64/log2 : 92.332482616893657
156 int n = convert_int(ylogx * R_64_BY_LOG2);
157 float nf = (float) n;
159 int j = n & 0x3f;
160 m = n >> 6;
161 int m2 = m << EXPSHIFTBITS_SP32;
163 const float R_LOG2_BY_64_LD = 0x1.620000p-7f; // log2/64 lead: 0.0108032227
164 const float R_LOG2_BY_64_TL = 0x1.c85fdep-16f; // log2/64 tail: 0.0000272020388
165 r = mad(nf, -R_LOG2_BY_64_TL, mad(nf, -R_LOG2_BY_64_LD, ylogx)) + ylogx_t;
167 // Truncated Taylor series for e^r
168 poly = mad(mad(mad(r, 0x1.555556p-5f, 0x1.555556p-3f), r, 0x1.000000p-1f), r*r, r);
170 tv = USE_TABLE(exp_tbl_ep, j);
172 float expylogx = mad(tv.s0, poly, mad(tv.s1, poly, tv.s1)) + tv.s0;
173 float sexpylogx = __clc_fp32_subnormals_supported() ? expylogx * as_float(0x1 << (m + 149)) : 0.0f;
175 float texpylogx = as_float(as_int(expylogx) + m2);
176 expylogx = m < -125 ? sexpylogx : texpylogx;
178 // Result is +-Inf if (ylogx + ylogx_t) > 128*log2
179 expylogx = ((ylogx > 0x1.62e430p+6f) | (ylogx == 0x1.62e430p+6f & ylogx_t > -0x1.05c610p-22f)) ? as_float(PINFBITPATT_SP32) : expylogx;
181 // Result is 0 if ylogx < -149*log2
182 expylogx = ylogx < -0x1.9d1da0p+6f ? 0.0f : expylogx;
184 // Classify y:
185 // inty = 0 means not an integer.
186 // inty = 1 means odd integer.
187 // inty = 2 means even integer.
189 int inty = 2 - (ny & 1);
191 float signval = as_float((as_uint(expylogx) ^ SIGNBIT_SP32));
192 expylogx = ((inty == 1) & !xpos) ? signval : expylogx;
193 int ret = as_int(expylogx);
195 // Corner case handling
196 ret = (!xpos & (inty == 2)) ? QNANBITPATT_SP32 : ret;
197 int xinf = xpos ? PINFBITPATT_SP32 : NINFBITPATT_SP32;
198 ret = ((ax == 0) & !ypos & (inty == 1)) ? xinf : ret;
199 ret = ((ax == 0) & !ypos & (inty == 2)) ? PINFBITPATT_SP32 : ret;
200 ret = ((ax == 0) & ypos & (inty == 2)) ? 0 : ret;
201 int xzero = xpos ? 0 : 0x80000000;
202 ret = ((ax == 0) & ypos & (inty == 1)) ? xzero : ret;
203 ret = ((ix == NINFBITPATT_SP32) & ypos & (inty == 1)) ? NINFBITPATT_SP32 : ret;
204 ret = ((ix == NINFBITPATT_SP32) & !ypos & (inty == 1)) ? 0x80000000 : ret;
205 ret = ((ix == PINFBITPATT_SP32) & !ypos) ? 0 : ret;
206 ret = ((ix == PINFBITPATT_SP32) & ypos) ? PINFBITPATT_SP32 : ret;
207 ret = ax > PINFBITPATT_SP32 ? ix : ret;
208 ret = ny == 0 ? QNANBITPATT_SP32 : ret;
210 return as_float(ret);
212 _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_rootn, float, int)
214 #ifdef cl_khr_fp64
215 _CLC_DEF _CLC_OVERLOAD double __clc_rootn(double x, int ny)
217 const double real_log2_tail = 5.76999904754328540596e-08;
218 const double real_log2_lead = 6.93147122859954833984e-01;
220 double dny = (double)ny;
221 double y = 1.0 / dny;
223 long ux = as_long(x);
224 long ax = ux & (~SIGNBIT_DP64);
225 int xpos = ax == ux;
227 long uy = as_long(y);
228 long ay = uy & (~SIGNBIT_DP64);
229 int ypos = ay == uy;
231 // Extended precision log
232 double v, vt;
234 int exp = (int)(ax >> 52) - 1023;
235 int mask_exp_1023 = exp == -1023;
236 double xexp = (double) exp;
237 long mantissa = ax & 0x000FFFFFFFFFFFFFL;
239 long temp_ux = as_long(as_double(0x3ff0000000000000L | mantissa) - 1.0);
240 exp = ((temp_ux & 0x7FF0000000000000L) >> 52) - 2045;
241 double xexp1 = (double) exp;
242 long mantissa1 = temp_ux & 0x000FFFFFFFFFFFFFL;
244 xexp = mask_exp_1023 ? xexp1 : xexp;
245 mantissa = mask_exp_1023 ? mantissa1 : mantissa;
247 long rax = (mantissa & 0x000ff00000000000) + ((mantissa & 0x0000080000000000) << 1);
248 int index = rax >> 44;
250 double F = as_double(rax | 0x3FE0000000000000L);
251 double Y = as_double(mantissa | 0x3FE0000000000000L);
252 double f = F - Y;
253 double2 tv = USE_TABLE(log_f_inv_tbl, index);
254 double log_h = tv.s0;
255 double log_t = tv.s1;
256 double f_inv = (log_h + log_t) * f;
257 double r1 = as_double(as_long(f_inv) & 0xfffffffff8000000L);
258 double r2 = fma(-F, r1, f) * (log_h + log_t);
259 double r = r1 + r2;
261 double poly = fma(r,
262 fma(r,
263 fma(r,
264 fma(r, 1.0/7.0, 1.0/6.0),
265 1.0/5.0),
266 1.0/4.0),
267 1.0/3.0);
268 poly = poly * r * r * r;
270 double hr1r1 = 0.5*r1*r1;
271 double poly0h = r1 + hr1r1;
272 double poly0t = r1 - poly0h + hr1r1;
273 poly = fma(r1, r2, fma(0.5*r2, r2, poly)) + r2 + poly0t;
275 tv = USE_TABLE(powlog_tbl, index);
276 log_h = tv.s0;
277 log_t = tv.s1;
279 double resT_t = fma(xexp, real_log2_tail, + log_t) - poly;
280 double resT = resT_t - poly0h;
281 double resH = fma(xexp, real_log2_lead, log_h);
282 double resT_h = poly0h;
284 double H = resT + resH;
285 double H_h = as_double(as_long(H) & 0xfffffffff8000000L);
286 double T = (resH - H + resT) + (resT_t - (resT + resT_h)) + (H - H_h);
287 H = H_h;
289 double y_head = as_double(uy & 0xfffffffff8000000L);
290 double y_tail = y - y_head;
292 double fnyh = as_double(as_long(dny) & 0xfffffffffff00000);
293 double fnyt = (double)(ny - (int)fnyh);
294 y_tail = fma(-fnyt, y_head, fma(-fnyh, y_head, 1.0))/ dny;
296 double temp = fma(y_tail, H, fma(y_head, T, y_tail*T));
297 v = fma(y_head, H, temp);
298 vt = fma(y_head, H, -v) + temp;
301 // Now calculate exp of (v,vt)
303 double expv;
305 const double max_exp_arg = 709.782712893384;
306 const double min_exp_arg = -745.1332191019411;
307 const double sixtyfour_by_lnof2 = 92.33248261689366;
308 const double lnof2_by_64_head = 0.010830424260348081;
309 const double lnof2_by_64_tail = -4.359010638708991e-10;
311 double temp = v * sixtyfour_by_lnof2;
312 int n = (int)temp;
313 double dn = (double)n;
314 int j = n & 0x0000003f;
315 int m = n >> 6;
317 double2 tv = USE_TABLE(two_to_jby64_ep_tbl, j);
318 double f1 = tv.s0;
319 double f2 = tv.s1;
320 double f = f1 + f2;
322 double r1 = fma(dn, -lnof2_by_64_head, v);
323 double r2 = dn * lnof2_by_64_tail;
324 double r = (r1 + r2) + vt;
326 double q = fma(r,
327 fma(r,
328 fma(r,
329 fma(r, 1.38889490863777199667e-03, 8.33336798434219616221e-03),
330 4.16666666662260795726e-02),
331 1.66666666665260878863e-01),
332 5.00000000000000008883e-01);
333 q = fma(r*r, q, r);
335 expv = fma(f, q, f2) + f1;
336 expv = ldexp(expv, m);
338 expv = v > max_exp_arg ? as_double(0x7FF0000000000000L) : expv;
339 expv = v < min_exp_arg ? 0.0 : expv;
342 // See whether y is an integer.
343 // inty = 0 means not an integer.
344 // inty = 1 means odd integer.
345 // inty = 2 means even integer.
347 int inty = 2 - (ny & 1);
349 expv *= ((inty == 1) & !xpos) ? -1.0 : 1.0;
351 long ret = as_long(expv);
353 // Now all the edge cases
354 ret = (!xpos & (inty == 2)) ? QNANBITPATT_DP64 : ret;
355 long xinf = xpos ? PINFBITPATT_DP64 : NINFBITPATT_DP64;
356 ret = ((ax == 0L) & !ypos & (inty == 1)) ? xinf : ret;
357 ret = ((ax == 0L) & !ypos & (inty == 2)) ? PINFBITPATT_DP64 : ret;
358 ret = ((ax == 0L) & ypos & (inty == 2)) ? 0L : ret;
359 long xzero = xpos ? 0L : 0x8000000000000000L;
360 ret = ((ax == 0L) & ypos & (inty == 1)) ? xzero : ret;
361 ret = ((ux == NINFBITPATT_DP64) & ypos & (inty == 1)) ? NINFBITPATT_DP64 : ret;
362 ret = ((ux == NINFBITPATT_DP64) & !ypos & (inty == 1)) ? 0x8000000000000000L : ret;
363 ret = ((ux == PINFBITPATT_DP64) & !ypos) ? 0L : ret;
364 ret = ((ux == PINFBITPATT_DP64) & ypos) ? PINFBITPATT_DP64 : ret;
365 ret = ax > PINFBITPATT_DP64 ? ux : ret;
366 ret = ny == 0 ? QNANBITPATT_DP64 : ret;
367 return as_double(ret);
369 _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_rootn, double, int)
370 #endif