1 //===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
8 // For best-case performance on Cortex-A57, we should try to use a balanced
9 // mix of odd and even D-registers when performing a critical sequence of
10 // independent, non-quadword FP/ASIMD floating-point multiply or
11 // multiply-accumulate operations.
13 // This pass attempts to detect situations where the register allocation may
14 // adversely affect this load balancing and to change the registers used so as
15 // to better utilize the CPU.
17 // Ideally we'd just take each multiply or multiply-accumulate in turn and
18 // allocate it alternating even or odd registers. However, multiply-accumulates
19 // are most efficiently performed in the same functional unit as their
20 // accumulation operand. Therefore this pass tries to find maximal sequences
21 // ("Chains") of multiply-accumulates linked via their accumulation operand,
22 // and assign them all the same "color" (oddness/evenness).
24 // This optimization affects S-register and D-register floating point
25 // multiplies and FMADD/FMAs, as well as vector (floating point only) muls and
26 // FMADD/FMA. Q register instructions (and 128-bit vector instructions) are
28 //===----------------------------------------------------------------------===//
31 #include "AArch64InstrInfo.h"
32 #include "AArch64Subtarget.h"
33 #include "llvm/ADT/EquivalenceClasses.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/RegisterClassInfo.h"
40 #include "llvm/CodeGen/RegisterScavenging.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
46 #define DEBUG_TYPE "aarch64-a57-fp-load-balancing"
48 // Enforce the algorithm to use the scavenged register even when the original
49 // destination register is the correct color. Used for testing.
51 TransformAll("aarch64-a57-fp-load-balancing-force-all",
52 cl::desc("Always modify dest registers regardless of color"),
53 cl::init(false), cl::Hidden
);
55 // Never use the balance information obtained from chains - return a specific
56 // color always. Used for testing.
57 static cl::opt
<unsigned>
58 OverrideBalance("aarch64-a57-fp-load-balancing-override",
59 cl::desc("Ignore balance information, always return "
60 "(1: Even, 2: Odd)."),
61 cl::init(0), cl::Hidden
);
63 //===----------------------------------------------------------------------===//
66 // Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs?
67 static bool isMul(MachineInstr
*MI
) {
68 switch (MI
->getOpcode()) {
69 case AArch64::FMULSrr
:
70 case AArch64::FNMULSrr
:
71 case AArch64::FMULDrr
:
72 case AArch64::FNMULDrr
:
79 // Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs?
80 static bool isMla(MachineInstr
*MI
) {
81 switch (MI
->getOpcode()) {
82 case AArch64::FMSUBSrrr
:
83 case AArch64::FMADDSrrr
:
84 case AArch64::FNMSUBSrrr
:
85 case AArch64::FNMADDSrrr
:
86 case AArch64::FMSUBDrrr
:
87 case AArch64::FMADDDrrr
:
88 case AArch64::FNMSUBDrrr
:
89 case AArch64::FNMADDDrrr
:
96 //===----------------------------------------------------------------------===//
99 /// A "color", which is either even or odd. Yes, these aren't really colors
100 /// but the algorithm is conceptually doing two-color graph coloring.
101 enum class Color
{ Even
, Odd
};
103 static const char *ColorNames
[2] = { "Even", "Odd" };
108 class AArch64A57FPLoadBalancing
: public MachineFunctionPass
{
109 MachineRegisterInfo
*MRI
;
110 const TargetRegisterInfo
*TRI
;
111 RegisterClassInfo RCI
;
115 explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID
) {
116 initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry());
119 bool runOnMachineFunction(MachineFunction
&F
) override
;
121 MachineFunctionProperties
getRequiredProperties() const override
{
122 return MachineFunctionProperties().set(
123 MachineFunctionProperties::Property::NoVRegs
);
126 StringRef
getPassName() const override
{
127 return "A57 FP Anti-dependency breaker";
130 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
131 AU
.setPreservesCFG();
132 MachineFunctionPass::getAnalysisUsage(AU
);
136 bool runOnBasicBlock(MachineBasicBlock
&MBB
);
137 bool colorChainSet(std::vector
<Chain
*> GV
, MachineBasicBlock
&MBB
,
139 bool colorChain(Chain
*G
, Color C
, MachineBasicBlock
&MBB
);
140 int scavengeRegister(Chain
*G
, Color C
, MachineBasicBlock
&MBB
);
141 void scanInstruction(MachineInstr
*MI
, unsigned Idx
,
142 std::map
<unsigned, Chain
*> &Active
,
143 std::vector
<std::unique_ptr
<Chain
>> &AllChains
);
144 void maybeKillChain(MachineOperand
&MO
, unsigned Idx
,
145 std::map
<unsigned, Chain
*> &RegChains
);
146 Color
getColor(unsigned Register
);
147 Chain
*getAndEraseNext(Color PreferredColor
, std::vector
<Chain
*> &L
);
151 char AArch64A57FPLoadBalancing::ID
= 0;
153 INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing
, DEBUG_TYPE
,
154 "AArch64 A57 FP Load-Balancing", false, false)
155 INITIALIZE_PASS_END(AArch64A57FPLoadBalancing
, DEBUG_TYPE
,
156 "AArch64 A57 FP Load-Balancing", false, false)
159 /// A Chain is a sequence of instructions that are linked together by
160 /// an accumulation operand. For example:
163 /// fmla def d1, ?, ?, killed d0
164 /// fmla def d2, ?, ?, killed d1
166 /// There may be other instructions interleaved in the sequence that
167 /// do not belong to the chain. These other instructions must not use
168 /// the "chain" register at any point.
170 /// We currently only support chains where the "chain" operand is killed
171 /// at each link in the chain for simplicity.
172 /// A chain has three important instructions - Start, Last and Kill.
173 /// * The start instruction is the first instruction in the chain.
174 /// * Last is the final instruction in the chain.
175 /// * Kill may or may not be defined. If defined, Kill is the instruction
176 /// where the outgoing value of the Last instruction is killed.
177 /// This information is important as if we know the outgoing value is
178 /// killed with no intervening uses, we can safely change its register.
180 /// Without a kill instruction, we must assume the outgoing value escapes
181 /// beyond our model and either must not change its register or must
182 /// create a fixup FMOV to keep the old register value consistent.
186 /// The important (marker) instructions.
187 MachineInstr
*StartInst
, *LastInst
, *KillInst
;
188 /// The index, from the start of the basic block, that each marker
189 /// appears. These are stored so we can do quick interval tests.
190 unsigned StartInstIdx
, LastInstIdx
, KillInstIdx
;
191 /// All instructions in the chain.
192 std::set
<MachineInstr
*> Insts
;
193 /// True if KillInst cannot be modified. If this is true,
194 /// we cannot change LastInst's outgoing register.
195 /// This will be true for tied values and regmasks.
196 bool KillIsImmutable
;
197 /// The "color" of LastInst. This will be the preferred chain color,
198 /// as changing intermediate nodes is easy but changing the last
199 /// instruction can be more tricky.
202 Chain(MachineInstr
*MI
, unsigned Idx
, Color C
)
203 : StartInst(MI
), LastInst(MI
), KillInst(nullptr),
204 StartInstIdx(Idx
), LastInstIdx(Idx
), KillInstIdx(0),
209 /// Add a new instruction into the chain. The instruction's dest operand
210 /// has the given color.
211 void add(MachineInstr
*MI
, unsigned Idx
, Color C
) {
215 assert((KillInstIdx
== 0 || LastInstIdx
< KillInstIdx
) &&
216 "Chain: broken invariant. A Chain can only be killed after its last "
222 /// Return true if MI is a member of the chain.
223 bool contains(MachineInstr
&MI
) { return Insts
.count(&MI
) > 0; }
225 /// Return the number of instructions in the chain.
226 unsigned size() const {
230 /// Inform the chain that its last active register (the dest register of
231 /// LastInst) is killed by MI with no intervening uses or defs.
232 void setKill(MachineInstr
*MI
, unsigned Idx
, bool Immutable
) {
235 KillIsImmutable
= Immutable
;
236 assert((KillInstIdx
== 0 || LastInstIdx
< KillInstIdx
) &&
237 "Chain: broken invariant. A Chain can only be killed after its last "
241 /// Return the first instruction in the chain.
242 MachineInstr
*getStart() const { return StartInst
; }
243 /// Return the last instruction in the chain.
244 MachineInstr
*getLast() const { return LastInst
; }
245 /// Return the "kill" instruction (as set with setKill()) or NULL.
246 MachineInstr
*getKill() const { return KillInst
; }
247 /// Return an instruction that can be used as an iterator for the end
248 /// of the chain. This is the maximum of KillInst (if set) and LastInst.
249 MachineBasicBlock::iterator
end() const {
250 return ++MachineBasicBlock::iterator(KillInst
? KillInst
: LastInst
);
252 MachineBasicBlock::iterator
begin() const { return getStart(); }
254 /// Can the Kill instruction (assuming one exists) be modified?
255 bool isKillImmutable() const { return KillIsImmutable
; }
257 /// Return the preferred color of this chain.
258 Color
getPreferredColor() {
259 if (OverrideBalance
!= 0)
260 return OverrideBalance
== 1 ? Color::Even
: Color::Odd
;
264 /// Return true if this chain (StartInst..KillInst) overlaps with Other.
265 bool rangeOverlapsWith(const Chain
&Other
) const {
266 unsigned End
= KillInst
? KillInstIdx
: LastInstIdx
;
267 unsigned OtherEnd
= Other
.KillInst
?
268 Other
.KillInstIdx
: Other
.LastInstIdx
;
270 return StartInstIdx
<= OtherEnd
&& Other
.StartInstIdx
<= End
;
273 /// Return true if this chain starts before Other.
274 bool startsBefore(const Chain
*Other
) const {
275 return StartInstIdx
< Other
->StartInstIdx
;
278 /// Return true if the group will require a fixup MOV at the end.
279 bool requiresFixup() const {
280 return (getKill() && isKillImmutable()) || !getKill();
283 /// Return a simple string representation of the chain.
284 std::string
str() const {
286 raw_string_ostream
OS(S
);
289 StartInst
->print(OS
, /* SkipOpers= */true);
291 LastInst
->print(OS
, /* SkipOpers= */true);
294 KillInst
->print(OS
, /* SkipOpers= */true);
304 } // end anonymous namespace
306 //===----------------------------------------------------------------------===//
308 bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction
&F
) {
309 if (skipFunction(F
.getFunction()))
312 if (!F
.getSubtarget
<AArch64Subtarget
>().balanceFPOps())
315 bool Changed
= false;
316 LLVM_DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n");
318 MRI
= &F
.getRegInfo();
319 TRI
= F
.getRegInfo().getTargetRegisterInfo();
320 RCI
.runOnMachineFunction(F
);
322 for (auto &MBB
: F
) {
323 Changed
|= runOnBasicBlock(MBB
);
329 bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock
&MBB
) {
330 bool Changed
= false;
331 LLVM_DEBUG(dbgs() << "Running on MBB: " << MBB
332 << " - scanning instructions...\n");
334 // First, scan the basic block producing a set of chains.
336 // The currently "active" chains - chains that can be added to and haven't
337 // been killed yet. This is keyed by register - all chains can only have one
338 // "link" register between each inst in the chain.
339 std::map
<unsigned, Chain
*> ActiveChains
;
340 std::vector
<std::unique_ptr
<Chain
>> AllChains
;
343 scanInstruction(&MI
, Idx
++, ActiveChains
, AllChains
);
345 LLVM_DEBUG(dbgs() << "Scan complete, " << AllChains
.size()
346 << " chains created.\n");
348 // Group the chains into disjoint sets based on their liveness range. This is
349 // a poor-man's version of graph coloring. Ideally we'd create an interference
350 // graph and perform full-on graph coloring on that, but;
351 // (a) That's rather heavyweight for only two colors.
352 // (b) We expect multiple disjoint interference regions - in practice the live
353 // range of chains is quite small and they are clustered between loads
355 EquivalenceClasses
<Chain
*> EC
;
356 for (auto &I
: AllChains
)
359 for (auto &I
: AllChains
)
360 for (auto &J
: AllChains
)
361 if (I
!= J
&& I
->rangeOverlapsWith(*J
))
362 EC
.unionSets(I
.get(), J
.get());
363 LLVM_DEBUG(dbgs() << "Created " << EC
.getNumClasses() << " disjoint sets.\n");
365 // Now we assume that every member of an equivalence class interferes
366 // with every other member of that class, and with no members of other classes.
368 // Convert the EquivalenceClasses to a simpler set of sets.
369 std::vector
<std::vector
<Chain
*> > V
;
370 for (auto I
= EC
.begin(), E
= EC
.end(); I
!= E
; ++I
) {
371 std::vector
<Chain
*> Cs(EC
.member_begin(I
), EC
.member_end());
372 if (Cs
.empty()) continue;
373 V
.push_back(std::move(Cs
));
376 // Now we have a set of sets, order them by start address so
377 // we can iterate over them sequentially.
379 [](const std::vector
<Chain
*> &A
, const std::vector
<Chain
*> &B
) {
380 return A
.front()->startsBefore(B
.front());
383 // As we only have two colors, we can track the global (BB-level) balance of
384 // odds versus evens. We aim to keep this near zero to keep both execution
386 // Positive means we're even-heavy, negative we're odd-heavy.
388 // FIXME: If chains have interdependencies, for example:
391 // We do not model this and may color each one differently, assuming we'll
392 // get ILP when we obviously can't. This hasn't been seen to be a problem
393 // in practice so far, so we simplify the algorithm by ignoring it.
397 Changed
|= colorChainSet(std::move(I
), MBB
, Parity
);
402 Chain
*AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor
,
403 std::vector
<Chain
*> &L
) {
407 // We try and get the best candidate from L to color next, given that our
408 // preferred color is "PreferredColor". L is ordered from larger to smaller
409 // chains. It is beneficial to color the large chains before the small chains,
410 // but if we can't find a chain of the maximum length with the preferred color,
411 // we fuzz the size and look for slightly smaller chains before giving up and
412 // returning a chain that must be recolored.
414 // FIXME: Does this need to be configurable?
415 const unsigned SizeFuzz
= 1;
416 unsigned MinSize
= L
.front()->size() - SizeFuzz
;
417 for (auto I
= L
.begin(), E
= L
.end(); I
!= E
; ++I
) {
418 if ((*I
)->size() <= MinSize
) {
419 // We've gone past the size limit. Return the previous item.
425 if ((*I
)->getPreferredColor() == PreferredColor
) {
432 // Bailout case - just return the first item.
433 Chain
*Ch
= L
.front();
438 bool AArch64A57FPLoadBalancing::colorChainSet(std::vector
<Chain
*> GV
,
439 MachineBasicBlock
&MBB
,
441 bool Changed
= false;
442 LLVM_DEBUG(dbgs() << "colorChainSet(): #sets=" << GV
.size() << "\n");
444 // Sort by descending size order so that we allocate the most important
446 // Tie-break equivalent sizes by sorting chains requiring fixups before
447 // those without fixups. The logic here is that we should look at the
448 // chains that we cannot change before we look at those we can,
449 // so the parity counter is updated and we know what color we should
451 // Final tie-break with instruction order so pass output is stable (i.e. not
452 // dependent on malloc'd pointer values).
453 llvm::sort(GV
, [](const Chain
*G1
, const Chain
*G2
) {
454 if (G1
->size() != G2
->size())
455 return G1
->size() > G2
->size();
456 if (G1
->requiresFixup() != G2
->requiresFixup())
457 return G1
->requiresFixup() > G2
->requiresFixup();
458 // Make sure startsBefore() produces a stable final order.
459 assert((G1
== G2
|| (G1
->startsBefore(G2
) ^ G2
->startsBefore(G1
))) &&
460 "Starts before not total order!");
461 return G1
->startsBefore(G2
);
464 Color PreferredColor
= Parity
< 0 ? Color::Even
: Color::Odd
;
465 while (Chain
*G
= getAndEraseNext(PreferredColor
, GV
)) {
466 // Start off by assuming we'll color to our own preferred color.
467 Color C
= PreferredColor
;
469 // But if we really don't care, use the chain's preferred color.
470 C
= G
->getPreferredColor();
472 LLVM_DEBUG(dbgs() << " - Parity=" << Parity
473 << ", Color=" << ColorNames
[(int)C
] << "\n");
475 // If we'll need a fixup FMOV, don't bother. Testing has shown that this
476 // happens infrequently and when it does it has at least a 50% chance of
477 // slowing code down instead of speeding it up.
478 if (G
->requiresFixup() && C
!= G
->getPreferredColor()) {
479 C
= G
->getPreferredColor();
480 LLVM_DEBUG(dbgs() << " - " << G
->str()
481 << " - not worthwhile changing; "
483 << ColorNames
[(int)C
] << "\n");
486 Changed
|= colorChain(G
, C
, MBB
);
488 Parity
+= (C
== Color::Even
) ? G
->size() : -G
->size();
489 PreferredColor
= Parity
< 0 ? Color::Even
: Color::Odd
;
495 int AArch64A57FPLoadBalancing::scavengeRegister(Chain
*G
, Color C
,
496 MachineBasicBlock
&MBB
) {
497 // Can we find an appropriate register that is available throughout the life
498 // of the chain? Simulate liveness backwards until the end of the chain.
499 LiveRegUnits
Units(*TRI
);
500 Units
.addLiveOuts(MBB
);
501 MachineBasicBlock::iterator I
= MBB
.end();
502 MachineBasicBlock::iterator ChainEnd
= G
->end();
503 while (I
!= ChainEnd
) {
505 Units
.stepBackward(*I
);
508 // Check which register units are alive throughout the chain.
509 MachineBasicBlock::iterator ChainBegin
= G
->begin();
510 assert(ChainBegin
!= ChainEnd
&& "Chain should contain instructions");
513 Units
.accumulate(*I
);
514 } while (I
!= ChainBegin
);
516 // Make sure we allocate in-order, to get the cheapest registers first.
517 unsigned RegClassID
= ChainBegin
->getDesc().operands()[0].RegClass
;
518 auto Ord
= RCI
.getOrder(TRI
->getRegClass(RegClassID
));
519 for (auto Reg
: Ord
) {
520 if (!Units
.available(Reg
))
522 if (C
== getColor(Reg
))
529 bool AArch64A57FPLoadBalancing::colorChain(Chain
*G
, Color C
,
530 MachineBasicBlock
&MBB
) {
531 bool Changed
= false;
532 LLVM_DEBUG(dbgs() << " - colorChain(" << G
->str() << ", "
533 << ColorNames
[(int)C
] << ")\n");
535 // Try and obtain a free register of the right class. Without a register
536 // to play with we cannot continue.
537 int Reg
= scavengeRegister(G
, C
, MBB
);
539 LLVM_DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n");
542 LLVM_DEBUG(dbgs() << " - Scavenged register: " << printReg(Reg
, TRI
) << "\n");
544 std::map
<unsigned, unsigned> Substs
;
545 for (MachineInstr
&I
: *G
) {
546 if (!G
->contains(I
) && (&I
!= G
->getKill() || G
->isKillImmutable()))
549 // I is a member of G, or I is a mutable instruction that kills G.
551 std::vector
<unsigned> ToErase
;
552 for (auto &U
: I
.operands()) {
553 if (U
.isReg() && U
.isUse() && Substs
.find(U
.getReg()) != Substs
.end()) {
554 Register OrigReg
= U
.getReg();
555 U
.setReg(Substs
[OrigReg
]);
557 // Don't erase straight away, because there may be other operands
558 // that also reference this substitution!
559 ToErase
.push_back(OrigReg
);
560 } else if (U
.isRegMask()) {
561 for (auto J
: Substs
) {
562 if (U
.clobbersPhysReg(J
.first
))
563 ToErase
.push_back(J
.first
);
567 // Now it's safe to remove the substs identified earlier.
568 for (auto J
: ToErase
)
571 // Only change the def if this isn't the last instruction.
572 if (&I
!= G
->getKill()) {
573 MachineOperand
&MO
= I
.getOperand(0);
575 bool Change
= TransformAll
|| getColor(MO
.getReg()) != C
;
576 if (G
->requiresFixup() && &I
== G
->getLast())
580 Substs
[MO
.getReg()] = Reg
;
587 assert(Substs
.size() == 0 && "No substitutions should be left active!");
590 LLVM_DEBUG(dbgs() << " - Kill instruction seen.\n");
592 // We didn't have a kill instruction, but we didn't seem to need to change
593 // the destination register anyway.
594 LLVM_DEBUG(dbgs() << " - Destination register not changed.\n");
599 void AArch64A57FPLoadBalancing::scanInstruction(
600 MachineInstr
*MI
, unsigned Idx
, std::map
<unsigned, Chain
*> &ActiveChains
,
601 std::vector
<std::unique_ptr
<Chain
>> &AllChains
) {
602 // Inspect "MI", updating ActiveChains and AllChains.
606 for (auto &I
: MI
->uses())
607 maybeKillChain(I
, Idx
, ActiveChains
);
608 for (auto &I
: MI
->defs())
609 maybeKillChain(I
, Idx
, ActiveChains
);
611 // Create a new chain. Multiplies don't require forwarding so can go on any
613 Register DestReg
= MI
->getOperand(0).getReg();
615 LLVM_DEBUG(dbgs() << "New chain started for register "
616 << printReg(DestReg
, TRI
) << " at " << *MI
);
618 auto G
= std::make_unique
<Chain
>(MI
, Idx
, getColor(DestReg
));
619 ActiveChains
[DestReg
] = G
.get();
620 AllChains
.push_back(std::move(G
));
622 } else if (isMla(MI
)) {
624 // It is beneficial to keep MLAs on the same functional unit as their
625 // accumulator operand.
626 Register DestReg
= MI
->getOperand(0).getReg();
627 Register AccumReg
= MI
->getOperand(3).getReg();
629 maybeKillChain(MI
->getOperand(1), Idx
, ActiveChains
);
630 maybeKillChain(MI
->getOperand(2), Idx
, ActiveChains
);
631 if (DestReg
!= AccumReg
)
632 maybeKillChain(MI
->getOperand(0), Idx
, ActiveChains
);
634 if (ActiveChains
.find(AccumReg
) != ActiveChains
.end()) {
635 LLVM_DEBUG(dbgs() << "Chain found for accumulator register "
636 << printReg(AccumReg
, TRI
) << " in MI " << *MI
);
638 // For simplicity we only chain together sequences of MULs/MLAs where the
639 // accumulator register is killed on each instruction. This means we don't
640 // need to track other uses of the registers we want to rewrite.
642 // FIXME: We could extend to handle the non-kill cases for more coverage.
643 if (MI
->getOperand(3).isKill()) {
645 LLVM_DEBUG(dbgs() << "Instruction was successfully added to chain.\n");
646 ActiveChains
[AccumReg
]->add(MI
, Idx
, getColor(DestReg
));
647 // Handle cases where the destination is not the same as the accumulator.
648 if (DestReg
!= AccumReg
) {
649 ActiveChains
[DestReg
] = ActiveChains
[AccumReg
];
650 ActiveChains
.erase(AccumReg
);
656 dbgs() << "Cannot add to chain because accumulator operand wasn't "
657 << "marked <kill>!\n");
658 maybeKillChain(MI
->getOperand(3), Idx
, ActiveChains
);
661 LLVM_DEBUG(dbgs() << "Creating new chain for dest register "
662 << printReg(DestReg
, TRI
) << "\n");
663 auto G
= std::make_unique
<Chain
>(MI
, Idx
, getColor(DestReg
));
664 ActiveChains
[DestReg
] = G
.get();
665 AllChains
.push_back(std::move(G
));
669 // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs
671 for (auto &I
: MI
->uses())
672 maybeKillChain(I
, Idx
, ActiveChains
);
673 for (auto &I
: MI
->defs())
674 maybeKillChain(I
, Idx
, ActiveChains
);
679 void AArch64A57FPLoadBalancing::
680 maybeKillChain(MachineOperand
&MO
, unsigned Idx
,
681 std::map
<unsigned, Chain
*> &ActiveChains
) {
682 // Given an operand and the set of active chains (keyed by register),
683 // determine if a chain should be ended and remove from ActiveChains.
684 MachineInstr
*MI
= MO
.getParent();
688 // If this is a KILL of a current chain, record it.
689 if (MO
.isKill() && ActiveChains
.find(MO
.getReg()) != ActiveChains
.end()) {
690 LLVM_DEBUG(dbgs() << "Kill seen for chain " << printReg(MO
.getReg(), TRI
)
692 ActiveChains
[MO
.getReg()]->setKill(MI
, Idx
, /*Immutable=*/MO
.isTied());
694 ActiveChains
.erase(MO
.getReg());
696 } else if (MO
.isRegMask()) {
698 for (auto I
= ActiveChains
.begin(), E
= ActiveChains
.end();
700 if (MO
.clobbersPhysReg(I
->first
)) {
701 LLVM_DEBUG(dbgs() << "Kill (regmask) seen for chain "
702 << printReg(I
->first
, TRI
) << "\n");
703 I
->second
->setKill(MI
, Idx
, /*Immutable=*/true);
704 ActiveChains
.erase(I
++);
712 Color
AArch64A57FPLoadBalancing::getColor(unsigned Reg
) {
713 if ((TRI
->getEncodingValue(Reg
) % 2) == 0)
719 // Factory function used by AArch64TargetMachine to add the pass to the passmanager.
720 FunctionPass
*llvm::createAArch64A57FPLoadBalancing() {
721 return new AArch64A57FPLoadBalancing();