[SampleProfileLoader] Fix integer overflow in generateMDProfMetadata (#90217)
[llvm-project.git] / llvm / lib / Target / AArch64 / AArch64A57FPLoadBalancing.cpp
blobc27ec8e6dc6b3482d0463e6ceee86c9746b34823
1 //===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // For best-case performance on Cortex-A57, we should try to use a balanced
9 // mix of odd and even D-registers when performing a critical sequence of
10 // independent, non-quadword FP/ASIMD floating-point multiply or
11 // multiply-accumulate operations.
13 // This pass attempts to detect situations where the register allocation may
14 // adversely affect this load balancing and to change the registers used so as
15 // to better utilize the CPU.
17 // Ideally we'd just take each multiply or multiply-accumulate in turn and
18 // allocate it alternating even or odd registers. However, multiply-accumulates
19 // are most efficiently performed in the same functional unit as their
20 // accumulation operand. Therefore this pass tries to find maximal sequences
21 // ("Chains") of multiply-accumulates linked via their accumulation operand,
22 // and assign them all the same "color" (oddness/evenness).
24 // This optimization affects S-register and D-register floating point
25 // multiplies and FMADD/FMAs, as well as vector (floating point only) muls and
26 // FMADD/FMA. Q register instructions (and 128-bit vector instructions) are
27 // not affected.
28 //===----------------------------------------------------------------------===//
30 #include "AArch64.h"
31 #include "AArch64InstrInfo.h"
32 #include "AArch64Subtarget.h"
33 #include "llvm/ADT/EquivalenceClasses.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/RegisterClassInfo.h"
40 #include "llvm/CodeGen/RegisterScavenging.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 using namespace llvm;
46 #define DEBUG_TYPE "aarch64-a57-fp-load-balancing"
48 // Enforce the algorithm to use the scavenged register even when the original
49 // destination register is the correct color. Used for testing.
50 static cl::opt<bool>
51 TransformAll("aarch64-a57-fp-load-balancing-force-all",
52 cl::desc("Always modify dest registers regardless of color"),
53 cl::init(false), cl::Hidden);
55 // Never use the balance information obtained from chains - return a specific
56 // color always. Used for testing.
57 static cl::opt<unsigned>
58 OverrideBalance("aarch64-a57-fp-load-balancing-override",
59 cl::desc("Ignore balance information, always return "
60 "(1: Even, 2: Odd)."),
61 cl::init(0), cl::Hidden);
63 //===----------------------------------------------------------------------===//
64 // Helper functions
66 // Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs?
67 static bool isMul(MachineInstr *MI) {
68 switch (MI->getOpcode()) {
69 case AArch64::FMULSrr:
70 case AArch64::FNMULSrr:
71 case AArch64::FMULDrr:
72 case AArch64::FNMULDrr:
73 return true;
74 default:
75 return false;
79 // Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs?
80 static bool isMla(MachineInstr *MI) {
81 switch (MI->getOpcode()) {
82 case AArch64::FMSUBSrrr:
83 case AArch64::FMADDSrrr:
84 case AArch64::FNMSUBSrrr:
85 case AArch64::FNMADDSrrr:
86 case AArch64::FMSUBDrrr:
87 case AArch64::FMADDDrrr:
88 case AArch64::FNMSUBDrrr:
89 case AArch64::FNMADDDrrr:
90 return true;
91 default:
92 return false;
96 //===----------------------------------------------------------------------===//
98 namespace {
99 /// A "color", which is either even or odd. Yes, these aren't really colors
100 /// but the algorithm is conceptually doing two-color graph coloring.
101 enum class Color { Even, Odd };
102 #ifndef NDEBUG
103 static const char *ColorNames[2] = { "Even", "Odd" };
104 #endif
106 class Chain;
108 class AArch64A57FPLoadBalancing : public MachineFunctionPass {
109 MachineRegisterInfo *MRI;
110 const TargetRegisterInfo *TRI;
111 RegisterClassInfo RCI;
113 public:
114 static char ID;
115 explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) {
116 initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry());
119 bool runOnMachineFunction(MachineFunction &F) override;
121 MachineFunctionProperties getRequiredProperties() const override {
122 return MachineFunctionProperties().set(
123 MachineFunctionProperties::Property::NoVRegs);
126 StringRef getPassName() const override {
127 return "A57 FP Anti-dependency breaker";
130 void getAnalysisUsage(AnalysisUsage &AU) const override {
131 AU.setPreservesCFG();
132 MachineFunctionPass::getAnalysisUsage(AU);
135 private:
136 bool runOnBasicBlock(MachineBasicBlock &MBB);
137 bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB,
138 int &Balance);
139 bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB);
140 int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB);
141 void scanInstruction(MachineInstr *MI, unsigned Idx,
142 std::map<unsigned, Chain*> &Active,
143 std::vector<std::unique_ptr<Chain>> &AllChains);
144 void maybeKillChain(MachineOperand &MO, unsigned Idx,
145 std::map<unsigned, Chain*> &RegChains);
146 Color getColor(unsigned Register);
147 Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L);
151 char AArch64A57FPLoadBalancing::ID = 0;
153 INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing, DEBUG_TYPE,
154 "AArch64 A57 FP Load-Balancing", false, false)
155 INITIALIZE_PASS_END(AArch64A57FPLoadBalancing, DEBUG_TYPE,
156 "AArch64 A57 FP Load-Balancing", false, false)
158 namespace {
159 /// A Chain is a sequence of instructions that are linked together by
160 /// an accumulation operand. For example:
162 /// fmul def d0, ?
163 /// fmla def d1, ?, ?, killed d0
164 /// fmla def d2, ?, ?, killed d1
166 /// There may be other instructions interleaved in the sequence that
167 /// do not belong to the chain. These other instructions must not use
168 /// the "chain" register at any point.
170 /// We currently only support chains where the "chain" operand is killed
171 /// at each link in the chain for simplicity.
172 /// A chain has three important instructions - Start, Last and Kill.
173 /// * The start instruction is the first instruction in the chain.
174 /// * Last is the final instruction in the chain.
175 /// * Kill may or may not be defined. If defined, Kill is the instruction
176 /// where the outgoing value of the Last instruction is killed.
177 /// This information is important as if we know the outgoing value is
178 /// killed with no intervening uses, we can safely change its register.
180 /// Without a kill instruction, we must assume the outgoing value escapes
181 /// beyond our model and either must not change its register or must
182 /// create a fixup FMOV to keep the old register value consistent.
184 class Chain {
185 public:
186 /// The important (marker) instructions.
187 MachineInstr *StartInst, *LastInst, *KillInst;
188 /// The index, from the start of the basic block, that each marker
189 /// appears. These are stored so we can do quick interval tests.
190 unsigned StartInstIdx, LastInstIdx, KillInstIdx;
191 /// All instructions in the chain.
192 std::set<MachineInstr*> Insts;
193 /// True if KillInst cannot be modified. If this is true,
194 /// we cannot change LastInst's outgoing register.
195 /// This will be true for tied values and regmasks.
196 bool KillIsImmutable;
197 /// The "color" of LastInst. This will be the preferred chain color,
198 /// as changing intermediate nodes is easy but changing the last
199 /// instruction can be more tricky.
200 Color LastColor;
202 Chain(MachineInstr *MI, unsigned Idx, Color C)
203 : StartInst(MI), LastInst(MI), KillInst(nullptr),
204 StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0),
205 LastColor(C) {
206 Insts.insert(MI);
209 /// Add a new instruction into the chain. The instruction's dest operand
210 /// has the given color.
211 void add(MachineInstr *MI, unsigned Idx, Color C) {
212 LastInst = MI;
213 LastInstIdx = Idx;
214 LastColor = C;
215 assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
216 "Chain: broken invariant. A Chain can only be killed after its last "
217 "def");
219 Insts.insert(MI);
222 /// Return true if MI is a member of the chain.
223 bool contains(MachineInstr &MI) { return Insts.count(&MI) > 0; }
225 /// Return the number of instructions in the chain.
226 unsigned size() const {
227 return Insts.size();
230 /// Inform the chain that its last active register (the dest register of
231 /// LastInst) is killed by MI with no intervening uses or defs.
232 void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) {
233 KillInst = MI;
234 KillInstIdx = Idx;
235 KillIsImmutable = Immutable;
236 assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
237 "Chain: broken invariant. A Chain can only be killed after its last "
238 "def");
241 /// Return the first instruction in the chain.
242 MachineInstr *getStart() const { return StartInst; }
243 /// Return the last instruction in the chain.
244 MachineInstr *getLast() const { return LastInst; }
245 /// Return the "kill" instruction (as set with setKill()) or NULL.
246 MachineInstr *getKill() const { return KillInst; }
247 /// Return an instruction that can be used as an iterator for the end
248 /// of the chain. This is the maximum of KillInst (if set) and LastInst.
249 MachineBasicBlock::iterator end() const {
250 return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst);
252 MachineBasicBlock::iterator begin() const { return getStart(); }
254 /// Can the Kill instruction (assuming one exists) be modified?
255 bool isKillImmutable() const { return KillIsImmutable; }
257 /// Return the preferred color of this chain.
258 Color getPreferredColor() {
259 if (OverrideBalance != 0)
260 return OverrideBalance == 1 ? Color::Even : Color::Odd;
261 return LastColor;
264 /// Return true if this chain (StartInst..KillInst) overlaps with Other.
265 bool rangeOverlapsWith(const Chain &Other) const {
266 unsigned End = KillInst ? KillInstIdx : LastInstIdx;
267 unsigned OtherEnd = Other.KillInst ?
268 Other.KillInstIdx : Other.LastInstIdx;
270 return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End;
273 /// Return true if this chain starts before Other.
274 bool startsBefore(const Chain *Other) const {
275 return StartInstIdx < Other->StartInstIdx;
278 /// Return true if the group will require a fixup MOV at the end.
279 bool requiresFixup() const {
280 return (getKill() && isKillImmutable()) || !getKill();
283 /// Return a simple string representation of the chain.
284 std::string str() const {
285 std::string S;
286 raw_string_ostream OS(S);
288 OS << "{";
289 StartInst->print(OS, /* SkipOpers= */true);
290 OS << " -> ";
291 LastInst->print(OS, /* SkipOpers= */true);
292 if (KillInst) {
293 OS << " (kill @ ";
294 KillInst->print(OS, /* SkipOpers= */true);
295 OS << ")";
297 OS << "}";
299 return OS.str();
304 } // end anonymous namespace
306 //===----------------------------------------------------------------------===//
308 bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) {
309 if (skipFunction(F.getFunction()))
310 return false;
312 if (!F.getSubtarget<AArch64Subtarget>().balanceFPOps())
313 return false;
315 bool Changed = false;
316 LLVM_DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n");
318 MRI = &F.getRegInfo();
319 TRI = F.getRegInfo().getTargetRegisterInfo();
320 RCI.runOnMachineFunction(F);
322 for (auto &MBB : F) {
323 Changed |= runOnBasicBlock(MBB);
326 return Changed;
329 bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) {
330 bool Changed = false;
331 LLVM_DEBUG(dbgs() << "Running on MBB: " << MBB
332 << " - scanning instructions...\n");
334 // First, scan the basic block producing a set of chains.
336 // The currently "active" chains - chains that can be added to and haven't
337 // been killed yet. This is keyed by register - all chains can only have one
338 // "link" register between each inst in the chain.
339 std::map<unsigned, Chain*> ActiveChains;
340 std::vector<std::unique_ptr<Chain>> AllChains;
341 unsigned Idx = 0;
342 for (auto &MI : MBB)
343 scanInstruction(&MI, Idx++, ActiveChains, AllChains);
345 LLVM_DEBUG(dbgs() << "Scan complete, " << AllChains.size()
346 << " chains created.\n");
348 // Group the chains into disjoint sets based on their liveness range. This is
349 // a poor-man's version of graph coloring. Ideally we'd create an interference
350 // graph and perform full-on graph coloring on that, but;
351 // (a) That's rather heavyweight for only two colors.
352 // (b) We expect multiple disjoint interference regions - in practice the live
353 // range of chains is quite small and they are clustered between loads
354 // and stores.
355 EquivalenceClasses<Chain*> EC;
356 for (auto &I : AllChains)
357 EC.insert(I.get());
359 for (auto &I : AllChains)
360 for (auto &J : AllChains)
361 if (I != J && I->rangeOverlapsWith(*J))
362 EC.unionSets(I.get(), J.get());
363 LLVM_DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n");
365 // Now we assume that every member of an equivalence class interferes
366 // with every other member of that class, and with no members of other classes.
368 // Convert the EquivalenceClasses to a simpler set of sets.
369 std::vector<std::vector<Chain*> > V;
370 for (auto I = EC.begin(), E = EC.end(); I != E; ++I) {
371 std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end());
372 if (Cs.empty()) continue;
373 V.push_back(std::move(Cs));
376 // Now we have a set of sets, order them by start address so
377 // we can iterate over them sequentially.
378 llvm::sort(V,
379 [](const std::vector<Chain *> &A, const std::vector<Chain *> &B) {
380 return A.front()->startsBefore(B.front());
383 // As we only have two colors, we can track the global (BB-level) balance of
384 // odds versus evens. We aim to keep this near zero to keep both execution
385 // units fed.
386 // Positive means we're even-heavy, negative we're odd-heavy.
388 // FIXME: If chains have interdependencies, for example:
389 // mul r0, r1, r2
390 // mul r3, r0, r1
391 // We do not model this and may color each one differently, assuming we'll
392 // get ILP when we obviously can't. This hasn't been seen to be a problem
393 // in practice so far, so we simplify the algorithm by ignoring it.
394 int Parity = 0;
396 for (auto &I : V)
397 Changed |= colorChainSet(std::move(I), MBB, Parity);
399 return Changed;
402 Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor,
403 std::vector<Chain*> &L) {
404 if (L.empty())
405 return nullptr;
407 // We try and get the best candidate from L to color next, given that our
408 // preferred color is "PreferredColor". L is ordered from larger to smaller
409 // chains. It is beneficial to color the large chains before the small chains,
410 // but if we can't find a chain of the maximum length with the preferred color,
411 // we fuzz the size and look for slightly smaller chains before giving up and
412 // returning a chain that must be recolored.
414 // FIXME: Does this need to be configurable?
415 const unsigned SizeFuzz = 1;
416 unsigned MinSize = L.front()->size() - SizeFuzz;
417 for (auto I = L.begin(), E = L.end(); I != E; ++I) {
418 if ((*I)->size() <= MinSize) {
419 // We've gone past the size limit. Return the previous item.
420 Chain *Ch = *--I;
421 L.erase(I);
422 return Ch;
425 if ((*I)->getPreferredColor() == PreferredColor) {
426 Chain *Ch = *I;
427 L.erase(I);
428 return Ch;
432 // Bailout case - just return the first item.
433 Chain *Ch = L.front();
434 L.erase(L.begin());
435 return Ch;
438 bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV,
439 MachineBasicBlock &MBB,
440 int &Parity) {
441 bool Changed = false;
442 LLVM_DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n");
444 // Sort by descending size order so that we allocate the most important
445 // sets first.
446 // Tie-break equivalent sizes by sorting chains requiring fixups before
447 // those without fixups. The logic here is that we should look at the
448 // chains that we cannot change before we look at those we can,
449 // so the parity counter is updated and we know what color we should
450 // change them to!
451 // Final tie-break with instruction order so pass output is stable (i.e. not
452 // dependent on malloc'd pointer values).
453 llvm::sort(GV, [](const Chain *G1, const Chain *G2) {
454 if (G1->size() != G2->size())
455 return G1->size() > G2->size();
456 if (G1->requiresFixup() != G2->requiresFixup())
457 return G1->requiresFixup() > G2->requiresFixup();
458 // Make sure startsBefore() produces a stable final order.
459 assert((G1 == G2 || (G1->startsBefore(G2) ^ G2->startsBefore(G1))) &&
460 "Starts before not total order!");
461 return G1->startsBefore(G2);
464 Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
465 while (Chain *G = getAndEraseNext(PreferredColor, GV)) {
466 // Start off by assuming we'll color to our own preferred color.
467 Color C = PreferredColor;
468 if (Parity == 0)
469 // But if we really don't care, use the chain's preferred color.
470 C = G->getPreferredColor();
472 LLVM_DEBUG(dbgs() << " - Parity=" << Parity
473 << ", Color=" << ColorNames[(int)C] << "\n");
475 // If we'll need a fixup FMOV, don't bother. Testing has shown that this
476 // happens infrequently and when it does it has at least a 50% chance of
477 // slowing code down instead of speeding it up.
478 if (G->requiresFixup() && C != G->getPreferredColor()) {
479 C = G->getPreferredColor();
480 LLVM_DEBUG(dbgs() << " - " << G->str()
481 << " - not worthwhile changing; "
482 "color remains "
483 << ColorNames[(int)C] << "\n");
486 Changed |= colorChain(G, C, MBB);
488 Parity += (C == Color::Even) ? G->size() : -G->size();
489 PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
492 return Changed;
495 int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C,
496 MachineBasicBlock &MBB) {
497 // Can we find an appropriate register that is available throughout the life
498 // of the chain? Simulate liveness backwards until the end of the chain.
499 LiveRegUnits Units(*TRI);
500 Units.addLiveOuts(MBB);
501 MachineBasicBlock::iterator I = MBB.end();
502 MachineBasicBlock::iterator ChainEnd = G->end();
503 while (I != ChainEnd) {
504 --I;
505 Units.stepBackward(*I);
508 // Check which register units are alive throughout the chain.
509 MachineBasicBlock::iterator ChainBegin = G->begin();
510 assert(ChainBegin != ChainEnd && "Chain should contain instructions");
511 do {
512 --I;
513 Units.accumulate(*I);
514 } while (I != ChainBegin);
516 // Make sure we allocate in-order, to get the cheapest registers first.
517 unsigned RegClassID = ChainBegin->getDesc().operands()[0].RegClass;
518 auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID));
519 for (auto Reg : Ord) {
520 if (!Units.available(Reg))
521 continue;
522 if (C == getColor(Reg))
523 return Reg;
526 return -1;
529 bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C,
530 MachineBasicBlock &MBB) {
531 bool Changed = false;
532 LLVM_DEBUG(dbgs() << " - colorChain(" << G->str() << ", "
533 << ColorNames[(int)C] << ")\n");
535 // Try and obtain a free register of the right class. Without a register
536 // to play with we cannot continue.
537 int Reg = scavengeRegister(G, C, MBB);
538 if (Reg == -1) {
539 LLVM_DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n");
540 return false;
542 LLVM_DEBUG(dbgs() << " - Scavenged register: " << printReg(Reg, TRI) << "\n");
544 std::map<unsigned, unsigned> Substs;
545 for (MachineInstr &I : *G) {
546 if (!G->contains(I) && (&I != G->getKill() || G->isKillImmutable()))
547 continue;
549 // I is a member of G, or I is a mutable instruction that kills G.
551 std::vector<unsigned> ToErase;
552 for (auto &U : I.operands()) {
553 if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) {
554 Register OrigReg = U.getReg();
555 U.setReg(Substs[OrigReg]);
556 if (U.isKill())
557 // Don't erase straight away, because there may be other operands
558 // that also reference this substitution!
559 ToErase.push_back(OrigReg);
560 } else if (U.isRegMask()) {
561 for (auto J : Substs) {
562 if (U.clobbersPhysReg(J.first))
563 ToErase.push_back(J.first);
567 // Now it's safe to remove the substs identified earlier.
568 for (auto J : ToErase)
569 Substs.erase(J);
571 // Only change the def if this isn't the last instruction.
572 if (&I != G->getKill()) {
573 MachineOperand &MO = I.getOperand(0);
575 bool Change = TransformAll || getColor(MO.getReg()) != C;
576 if (G->requiresFixup() && &I == G->getLast())
577 Change = false;
579 if (Change) {
580 Substs[MO.getReg()] = Reg;
581 MO.setReg(Reg);
583 Changed = true;
587 assert(Substs.size() == 0 && "No substitutions should be left active!");
589 if (G->getKill()) {
590 LLVM_DEBUG(dbgs() << " - Kill instruction seen.\n");
591 } else {
592 // We didn't have a kill instruction, but we didn't seem to need to change
593 // the destination register anyway.
594 LLVM_DEBUG(dbgs() << " - Destination register not changed.\n");
596 return Changed;
599 void AArch64A57FPLoadBalancing::scanInstruction(
600 MachineInstr *MI, unsigned Idx, std::map<unsigned, Chain *> &ActiveChains,
601 std::vector<std::unique_ptr<Chain>> &AllChains) {
602 // Inspect "MI", updating ActiveChains and AllChains.
604 if (isMul(MI)) {
606 for (auto &I : MI->uses())
607 maybeKillChain(I, Idx, ActiveChains);
608 for (auto &I : MI->defs())
609 maybeKillChain(I, Idx, ActiveChains);
611 // Create a new chain. Multiplies don't require forwarding so can go on any
612 // unit.
613 Register DestReg = MI->getOperand(0).getReg();
615 LLVM_DEBUG(dbgs() << "New chain started for register "
616 << printReg(DestReg, TRI) << " at " << *MI);
618 auto G = std::make_unique<Chain>(MI, Idx, getColor(DestReg));
619 ActiveChains[DestReg] = G.get();
620 AllChains.push_back(std::move(G));
622 } else if (isMla(MI)) {
624 // It is beneficial to keep MLAs on the same functional unit as their
625 // accumulator operand.
626 Register DestReg = MI->getOperand(0).getReg();
627 Register AccumReg = MI->getOperand(3).getReg();
629 maybeKillChain(MI->getOperand(1), Idx, ActiveChains);
630 maybeKillChain(MI->getOperand(2), Idx, ActiveChains);
631 if (DestReg != AccumReg)
632 maybeKillChain(MI->getOperand(0), Idx, ActiveChains);
634 if (ActiveChains.find(AccumReg) != ActiveChains.end()) {
635 LLVM_DEBUG(dbgs() << "Chain found for accumulator register "
636 << printReg(AccumReg, TRI) << " in MI " << *MI);
638 // For simplicity we only chain together sequences of MULs/MLAs where the
639 // accumulator register is killed on each instruction. This means we don't
640 // need to track other uses of the registers we want to rewrite.
642 // FIXME: We could extend to handle the non-kill cases for more coverage.
643 if (MI->getOperand(3).isKill()) {
644 // Add to chain.
645 LLVM_DEBUG(dbgs() << "Instruction was successfully added to chain.\n");
646 ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg));
647 // Handle cases where the destination is not the same as the accumulator.
648 if (DestReg != AccumReg) {
649 ActiveChains[DestReg] = ActiveChains[AccumReg];
650 ActiveChains.erase(AccumReg);
652 return;
655 LLVM_DEBUG(
656 dbgs() << "Cannot add to chain because accumulator operand wasn't "
657 << "marked <kill>!\n");
658 maybeKillChain(MI->getOperand(3), Idx, ActiveChains);
661 LLVM_DEBUG(dbgs() << "Creating new chain for dest register "
662 << printReg(DestReg, TRI) << "\n");
663 auto G = std::make_unique<Chain>(MI, Idx, getColor(DestReg));
664 ActiveChains[DestReg] = G.get();
665 AllChains.push_back(std::move(G));
667 } else {
669 // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs
670 // lists.
671 for (auto &I : MI->uses())
672 maybeKillChain(I, Idx, ActiveChains);
673 for (auto &I : MI->defs())
674 maybeKillChain(I, Idx, ActiveChains);
679 void AArch64A57FPLoadBalancing::
680 maybeKillChain(MachineOperand &MO, unsigned Idx,
681 std::map<unsigned, Chain*> &ActiveChains) {
682 // Given an operand and the set of active chains (keyed by register),
683 // determine if a chain should be ended and remove from ActiveChains.
684 MachineInstr *MI = MO.getParent();
686 if (MO.isReg()) {
688 // If this is a KILL of a current chain, record it.
689 if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) {
690 LLVM_DEBUG(dbgs() << "Kill seen for chain " << printReg(MO.getReg(), TRI)
691 << "\n");
692 ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied());
694 ActiveChains.erase(MO.getReg());
696 } else if (MO.isRegMask()) {
698 for (auto I = ActiveChains.begin(), E = ActiveChains.end();
699 I != E;) {
700 if (MO.clobbersPhysReg(I->first)) {
701 LLVM_DEBUG(dbgs() << "Kill (regmask) seen for chain "
702 << printReg(I->first, TRI) << "\n");
703 I->second->setKill(MI, Idx, /*Immutable=*/true);
704 ActiveChains.erase(I++);
705 } else
706 ++I;
712 Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) {
713 if ((TRI->getEncodingValue(Reg) % 2) == 0)
714 return Color::Even;
715 else
716 return Color::Odd;
719 // Factory function used by AArch64TargetMachine to add the pass to the passmanager.
720 FunctionPass *llvm::createAArch64A57FPLoadBalancing() {
721 return new AArch64A57FPLoadBalancing();