[SampleProfileLoader] Fix integer overflow in generateMDProfMetadata (#90217)
[llvm-project.git] / llvm / lib / Target / SPIRV / SPIRVModuleAnalysis.cpp
blob235f947901d837fe13fe2a558989593f84929156
1 //===- SPIRVModuleAnalysis.cpp - analysis of global instrs & regs - C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The analysis collects instructions that should be output at the module level
10 // and performs the global register numbering.
12 // The results of this analysis are used in AsmPrinter to rename registers
13 // globally and to output required instructions at the module level.
15 //===----------------------------------------------------------------------===//
17 #include "SPIRVModuleAnalysis.h"
18 #include "MCTargetDesc/SPIRVBaseInfo.h"
19 #include "MCTargetDesc/SPIRVMCTargetDesc.h"
20 #include "SPIRV.h"
21 #include "SPIRVSubtarget.h"
22 #include "SPIRVTargetMachine.h"
23 #include "SPIRVUtils.h"
24 #include "TargetInfo/SPIRVTargetInfo.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/TargetPassConfig.h"
29 using namespace llvm;
31 #define DEBUG_TYPE "spirv-module-analysis"
33 static cl::opt<bool>
34 SPVDumpDeps("spv-dump-deps",
35 cl::desc("Dump MIR with SPIR-V dependencies info"),
36 cl::Optional, cl::init(false));
38 static cl::list<SPIRV::Capability::Capability>
39 AvoidCapabilities("avoid-spirv-capabilities",
40 cl::desc("SPIR-V capabilities to avoid if there are "
41 "other options enabling a feature"),
42 cl::ZeroOrMore, cl::Hidden,
43 cl::values(clEnumValN(SPIRV::Capability::Shader, "Shader",
44 "SPIR-V Shader capability")));
45 // Use sets instead of cl::list to check "if contains" condition
46 struct AvoidCapabilitiesSet {
47 SmallSet<SPIRV::Capability::Capability, 4> S;
48 AvoidCapabilitiesSet() {
49 for (auto Cap : AvoidCapabilities)
50 S.insert(Cap);
54 char llvm::SPIRVModuleAnalysis::ID = 0;
56 namespace llvm {
57 void initializeSPIRVModuleAnalysisPass(PassRegistry &);
58 } // namespace llvm
60 INITIALIZE_PASS(SPIRVModuleAnalysis, DEBUG_TYPE, "SPIRV module analysis", true,
61 true)
63 // Retrieve an unsigned from an MDNode with a list of them as operands.
64 static unsigned getMetadataUInt(MDNode *MdNode, unsigned OpIndex,
65 unsigned DefaultVal = 0) {
66 if (MdNode && OpIndex < MdNode->getNumOperands()) {
67 const auto &Op = MdNode->getOperand(OpIndex);
68 return mdconst::extract<ConstantInt>(Op)->getZExtValue();
70 return DefaultVal;
73 static SPIRV::Requirements
74 getSymbolicOperandRequirements(SPIRV::OperandCategory::OperandCategory Category,
75 unsigned i, const SPIRVSubtarget &ST,
76 SPIRV::RequirementHandler &Reqs) {
77 static AvoidCapabilitiesSet
78 AvoidCaps; // contains capabilities to avoid if there is another option
80 VersionTuple ReqMinVer = getSymbolicOperandMinVersion(Category, i);
81 VersionTuple ReqMaxVer = getSymbolicOperandMaxVersion(Category, i);
82 VersionTuple SPIRVVersion = ST.getSPIRVVersion();
83 bool MinVerOK = SPIRVVersion.empty() || SPIRVVersion >= ReqMinVer;
84 bool MaxVerOK =
85 ReqMaxVer.empty() || SPIRVVersion.empty() || SPIRVVersion <= ReqMaxVer;
86 CapabilityList ReqCaps = getSymbolicOperandCapabilities(Category, i);
87 ExtensionList ReqExts = getSymbolicOperandExtensions(Category, i);
88 if (ReqCaps.empty()) {
89 if (ReqExts.empty()) {
90 if (MinVerOK && MaxVerOK)
91 return {true, {}, {}, ReqMinVer, ReqMaxVer};
92 return {false, {}, {}, VersionTuple(), VersionTuple()};
94 } else if (MinVerOK && MaxVerOK) {
95 if (ReqCaps.size() == 1) {
96 auto Cap = ReqCaps[0];
97 if (Reqs.isCapabilityAvailable(Cap))
98 return {true, {Cap}, {}, ReqMinVer, ReqMaxVer};
99 } else {
100 // By SPIR-V specification: "If an instruction, enumerant, or other
101 // feature specifies multiple enabling capabilities, only one such
102 // capability needs to be declared to use the feature." However, one
103 // capability may be preferred over another. We use command line
104 // argument(s) and AvoidCapabilities to avoid selection of certain
105 // capabilities if there are other options.
106 CapabilityList UseCaps;
107 for (auto Cap : ReqCaps)
108 if (Reqs.isCapabilityAvailable(Cap))
109 UseCaps.push_back(Cap);
110 for (size_t i = 0, Sz = UseCaps.size(); i < Sz; ++i) {
111 auto Cap = UseCaps[i];
112 if (i == Sz - 1 || !AvoidCaps.S.contains(Cap))
113 return {true, {Cap}, {}, ReqMinVer, ReqMaxVer};
117 // If there are no capabilities, or we can't satisfy the version or
118 // capability requirements, use the list of extensions (if the subtarget
119 // can handle them all).
120 if (llvm::all_of(ReqExts, [&ST](const SPIRV::Extension::Extension &Ext) {
121 return ST.canUseExtension(Ext);
122 })) {
123 return {true,
125 ReqExts,
126 VersionTuple(),
127 VersionTuple()}; // TODO: add versions to extensions.
129 return {false, {}, {}, VersionTuple(), VersionTuple()};
132 void SPIRVModuleAnalysis::setBaseInfo(const Module &M) {
133 MAI.MaxID = 0;
134 for (int i = 0; i < SPIRV::NUM_MODULE_SECTIONS; i++)
135 MAI.MS[i].clear();
136 MAI.RegisterAliasTable.clear();
137 MAI.InstrsToDelete.clear();
138 MAI.FuncMap.clear();
139 MAI.GlobalVarList.clear();
140 MAI.ExtInstSetMap.clear();
141 MAI.Reqs.clear();
142 MAI.Reqs.initAvailableCapabilities(*ST);
144 // TODO: determine memory model and source language from the configuratoin.
145 if (auto MemModel = M.getNamedMetadata("spirv.MemoryModel")) {
146 auto MemMD = MemModel->getOperand(0);
147 MAI.Addr = static_cast<SPIRV::AddressingModel::AddressingModel>(
148 getMetadataUInt(MemMD, 0));
149 MAI.Mem =
150 static_cast<SPIRV::MemoryModel::MemoryModel>(getMetadataUInt(MemMD, 1));
151 } else {
152 // TODO: Add support for VulkanMemoryModel.
153 MAI.Mem = ST->isOpenCLEnv() ? SPIRV::MemoryModel::OpenCL
154 : SPIRV::MemoryModel::GLSL450;
155 if (MAI.Mem == SPIRV::MemoryModel::OpenCL) {
156 unsigned PtrSize = ST->getPointerSize();
157 MAI.Addr = PtrSize == 32 ? SPIRV::AddressingModel::Physical32
158 : PtrSize == 64 ? SPIRV::AddressingModel::Physical64
159 : SPIRV::AddressingModel::Logical;
160 } else {
161 // TODO: Add support for PhysicalStorageBufferAddress.
162 MAI.Addr = SPIRV::AddressingModel::Logical;
165 // Get the OpenCL version number from metadata.
166 // TODO: support other source languages.
167 if (auto VerNode = M.getNamedMetadata("opencl.ocl.version")) {
168 MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_C;
169 // Construct version literal in accordance with SPIRV-LLVM-Translator.
170 // TODO: support multiple OCL version metadata.
171 assert(VerNode->getNumOperands() > 0 && "Invalid SPIR");
172 auto VersionMD = VerNode->getOperand(0);
173 unsigned MajorNum = getMetadataUInt(VersionMD, 0, 2);
174 unsigned MinorNum = getMetadataUInt(VersionMD, 1);
175 unsigned RevNum = getMetadataUInt(VersionMD, 2);
176 // Prevent Major part of OpenCL version to be 0
177 MAI.SrcLangVersion =
178 (std::max(1U, MajorNum) * 100 + MinorNum) * 1000 + RevNum;
179 } else {
180 // If there is no information about OpenCL version we are forced to generate
181 // OpenCL 1.0 by default for the OpenCL environment to avoid puzzling
182 // run-times with Unknown/0.0 version output. For a reference, LLVM-SPIRV
183 // Translator avoids potential issues with run-times in a similar manner.
184 if (ST->isOpenCLEnv()) {
185 MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_CPP;
186 MAI.SrcLangVersion = 100000;
187 } else {
188 MAI.SrcLang = SPIRV::SourceLanguage::Unknown;
189 MAI.SrcLangVersion = 0;
193 if (auto ExtNode = M.getNamedMetadata("opencl.used.extensions")) {
194 for (unsigned I = 0, E = ExtNode->getNumOperands(); I != E; ++I) {
195 MDNode *MD = ExtNode->getOperand(I);
196 if (!MD || MD->getNumOperands() == 0)
197 continue;
198 for (unsigned J = 0, N = MD->getNumOperands(); J != N; ++J)
199 MAI.SrcExt.insert(cast<MDString>(MD->getOperand(J))->getString());
203 // Update required capabilities for this memory model, addressing model and
204 // source language.
205 MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand,
206 MAI.Mem, *ST);
207 MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::SourceLanguageOperand,
208 MAI.SrcLang, *ST);
209 MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand,
210 MAI.Addr, *ST);
212 if (ST->isOpenCLEnv()) {
213 // TODO: check if it's required by default.
214 MAI.ExtInstSetMap[static_cast<unsigned>(
215 SPIRV::InstructionSet::OpenCL_std)] =
216 Register::index2VirtReg(MAI.getNextID());
220 // Collect MI which defines the register in the given machine function.
221 static void collectDefInstr(Register Reg, const MachineFunction *MF,
222 SPIRV::ModuleAnalysisInfo *MAI,
223 SPIRV::ModuleSectionType MSType,
224 bool DoInsert = true) {
225 assert(MAI->hasRegisterAlias(MF, Reg) && "Cannot find register alias");
226 MachineInstr *MI = MF->getRegInfo().getUniqueVRegDef(Reg);
227 assert(MI && "There should be an instruction that defines the register");
228 MAI->setSkipEmission(MI);
229 if (DoInsert)
230 MAI->MS[MSType].push_back(MI);
233 void SPIRVModuleAnalysis::collectGlobalEntities(
234 const std::vector<SPIRV::DTSortableEntry *> &DepsGraph,
235 SPIRV::ModuleSectionType MSType,
236 std::function<bool(const SPIRV::DTSortableEntry *)> Pred,
237 bool UsePreOrder = false) {
238 DenseSet<const SPIRV::DTSortableEntry *> Visited;
239 for (const auto *E : DepsGraph) {
240 std::function<void(const SPIRV::DTSortableEntry *)> RecHoistUtil;
241 // NOTE: here we prefer recursive approach over iterative because
242 // we don't expect depchains long enough to cause SO.
243 RecHoistUtil = [MSType, UsePreOrder, &Visited, &Pred,
244 &RecHoistUtil](const SPIRV::DTSortableEntry *E) {
245 if (Visited.count(E) || !Pred(E))
246 return;
247 Visited.insert(E);
249 // Traversing deps graph in post-order allows us to get rid of
250 // register aliases preprocessing.
251 // But pre-order is required for correct processing of function
252 // declaration and arguments processing.
253 if (!UsePreOrder)
254 for (auto *S : E->getDeps())
255 RecHoistUtil(S);
257 Register GlobalReg = Register::index2VirtReg(MAI.getNextID());
258 bool IsFirst = true;
259 for (auto &U : *E) {
260 const MachineFunction *MF = U.first;
261 Register Reg = U.second;
262 MAI.setRegisterAlias(MF, Reg, GlobalReg);
263 if (!MF->getRegInfo().getUniqueVRegDef(Reg))
264 continue;
265 collectDefInstr(Reg, MF, &MAI, MSType, IsFirst);
266 IsFirst = false;
267 if (E->getIsGV())
268 MAI.GlobalVarList.push_back(MF->getRegInfo().getUniqueVRegDef(Reg));
271 if (UsePreOrder)
272 for (auto *S : E->getDeps())
273 RecHoistUtil(S);
275 RecHoistUtil(E);
279 // The function initializes global register alias table for types, consts,
280 // global vars and func decls and collects these instruction for output
281 // at module level. Also it collects explicit OpExtension/OpCapability
282 // instructions.
283 void SPIRVModuleAnalysis::processDefInstrs(const Module &M) {
284 std::vector<SPIRV::DTSortableEntry *> DepsGraph;
286 GR->buildDepsGraph(DepsGraph, SPVDumpDeps ? MMI : nullptr);
288 collectGlobalEntities(
289 DepsGraph, SPIRV::MB_TypeConstVars,
290 [](const SPIRV::DTSortableEntry *E) { return !E->getIsFunc(); });
292 for (auto F = M.begin(), E = M.end(); F != E; ++F) {
293 MachineFunction *MF = MMI->getMachineFunction(*F);
294 if (!MF)
295 continue;
296 // Iterate through and collect OpExtension/OpCapability instructions.
297 for (MachineBasicBlock &MBB : *MF) {
298 for (MachineInstr &MI : MBB) {
299 if (MI.getOpcode() == SPIRV::OpExtension) {
300 // Here, OpExtension just has a single enum operand, not a string.
301 auto Ext = SPIRV::Extension::Extension(MI.getOperand(0).getImm());
302 MAI.Reqs.addExtension(Ext);
303 MAI.setSkipEmission(&MI);
304 } else if (MI.getOpcode() == SPIRV::OpCapability) {
305 auto Cap = SPIRV::Capability::Capability(MI.getOperand(0).getImm());
306 MAI.Reqs.addCapability(Cap);
307 MAI.setSkipEmission(&MI);
313 collectGlobalEntities(
314 DepsGraph, SPIRV::MB_ExtFuncDecls,
315 [](const SPIRV::DTSortableEntry *E) { return E->getIsFunc(); }, true);
318 // Look for IDs declared with Import linkage, and map the corresponding function
319 // to the register defining that variable (which will usually be the result of
320 // an OpFunction). This lets us call externally imported functions using
321 // the correct ID registers.
322 void SPIRVModuleAnalysis::collectFuncNames(MachineInstr &MI,
323 const Function *F) {
324 if (MI.getOpcode() == SPIRV::OpDecorate) {
325 // If it's got Import linkage.
326 auto Dec = MI.getOperand(1).getImm();
327 if (Dec == static_cast<unsigned>(SPIRV::Decoration::LinkageAttributes)) {
328 auto Lnk = MI.getOperand(MI.getNumOperands() - 1).getImm();
329 if (Lnk == static_cast<unsigned>(SPIRV::LinkageType::Import)) {
330 // Map imported function name to function ID register.
331 const Function *ImportedFunc =
332 F->getParent()->getFunction(getStringImm(MI, 2));
333 Register Target = MI.getOperand(0).getReg();
334 MAI.FuncMap[ImportedFunc] = MAI.getRegisterAlias(MI.getMF(), Target);
337 } else if (MI.getOpcode() == SPIRV::OpFunction) {
338 // Record all internal OpFunction declarations.
339 Register Reg = MI.defs().begin()->getReg();
340 Register GlobalReg = MAI.getRegisterAlias(MI.getMF(), Reg);
341 assert(GlobalReg.isValid());
342 MAI.FuncMap[F] = GlobalReg;
346 // References to a function via function pointers generate virtual
347 // registers without a definition. We are able to resolve this
348 // reference using Globar Register info into an OpFunction instruction
349 // and replace dummy operands by the corresponding global register references.
350 void SPIRVModuleAnalysis::collectFuncPtrs() {
351 for (auto &MI : MAI.MS[SPIRV::MB_TypeConstVars])
352 if (MI->getOpcode() == SPIRV::OpConstantFunctionPointerINTEL)
353 collectFuncPtrs(MI);
356 void SPIRVModuleAnalysis::collectFuncPtrs(MachineInstr *MI) {
357 const MachineOperand *FunUse = &MI->getOperand(2);
358 if (const MachineOperand *FunDef = GR->getFunctionDefinitionByUse(FunUse)) {
359 const MachineInstr *FunDefMI = FunDef->getParent();
360 assert(FunDefMI->getOpcode() == SPIRV::OpFunction &&
361 "Constant function pointer must refer to function definition");
362 Register FunDefReg = FunDef->getReg();
363 Register GlobalFunDefReg =
364 MAI.getRegisterAlias(FunDefMI->getMF(), FunDefReg);
365 assert(GlobalFunDefReg.isValid() &&
366 "Function definition must refer to a global register");
367 Register FunPtrReg = FunUse->getReg();
368 MAI.setRegisterAlias(MI->getMF(), FunPtrReg, GlobalFunDefReg);
372 using InstrSignature = SmallVector<size_t>;
373 using InstrTraces = std::set<InstrSignature>;
375 // Returns a representation of an instruction as a vector of MachineOperand
376 // hash values, see llvm::hash_value(const MachineOperand &MO) for details.
377 // This creates a signature of the instruction with the same content
378 // that MachineOperand::isIdenticalTo uses for comparison.
379 static InstrSignature instrToSignature(MachineInstr &MI,
380 SPIRV::ModuleAnalysisInfo &MAI) {
381 InstrSignature Signature;
382 for (unsigned i = 0; i < MI.getNumOperands(); ++i) {
383 const MachineOperand &MO = MI.getOperand(i);
384 size_t h;
385 if (MO.isReg()) {
386 Register RegAlias = MAI.getRegisterAlias(MI.getMF(), MO.getReg());
387 // mimic llvm::hash_value(const MachineOperand &MO)
388 h = hash_combine(MO.getType(), (unsigned)RegAlias, MO.getSubReg(),
389 MO.isDef());
390 } else {
391 h = hash_value(MO);
393 Signature.push_back(h);
395 return Signature;
398 // Collect the given instruction in the specified MS. We assume global register
399 // numbering has already occurred by this point. We can directly compare reg
400 // arguments when detecting duplicates.
401 static void collectOtherInstr(MachineInstr &MI, SPIRV::ModuleAnalysisInfo &MAI,
402 SPIRV::ModuleSectionType MSType, InstrTraces &IS,
403 bool Append = true) {
404 MAI.setSkipEmission(&MI);
405 InstrSignature MISign = instrToSignature(MI, MAI);
406 auto FoundMI = IS.insert(MISign);
407 if (!FoundMI.second)
408 return; // insert failed, so we found a duplicate; don't add it to MAI.MS
409 // No duplicates, so add it.
410 if (Append)
411 MAI.MS[MSType].push_back(&MI);
412 else
413 MAI.MS[MSType].insert(MAI.MS[MSType].begin(), &MI);
416 // Some global instructions make reference to function-local ID regs, so cannot
417 // be correctly collected until these registers are globally numbered.
418 void SPIRVModuleAnalysis::processOtherInstrs(const Module &M) {
419 InstrTraces IS;
420 for (auto F = M.begin(), E = M.end(); F != E; ++F) {
421 if ((*F).isDeclaration())
422 continue;
423 MachineFunction *MF = MMI->getMachineFunction(*F);
424 assert(MF);
425 for (MachineBasicBlock &MBB : *MF)
426 for (MachineInstr &MI : MBB) {
427 if (MAI.getSkipEmission(&MI))
428 continue;
429 const unsigned OpCode = MI.getOpcode();
430 if (OpCode == SPIRV::OpName || OpCode == SPIRV::OpMemberName) {
431 collectOtherInstr(MI, MAI, SPIRV::MB_DebugNames, IS);
432 } else if (OpCode == SPIRV::OpEntryPoint) {
433 collectOtherInstr(MI, MAI, SPIRV::MB_EntryPoints, IS);
434 } else if (TII->isDecorationInstr(MI)) {
435 collectOtherInstr(MI, MAI, SPIRV::MB_Annotations, IS);
436 collectFuncNames(MI, &*F);
437 } else if (TII->isConstantInstr(MI)) {
438 // Now OpSpecConstant*s are not in DT,
439 // but they need to be collected anyway.
440 collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS);
441 } else if (OpCode == SPIRV::OpFunction) {
442 collectFuncNames(MI, &*F);
443 } else if (OpCode == SPIRV::OpTypeForwardPointer) {
444 collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS, false);
450 // Number registers in all functions globally from 0 onwards and store
451 // the result in global register alias table. Some registers are already
452 // numbered in collectGlobalEntities.
453 void SPIRVModuleAnalysis::numberRegistersGlobally(const Module &M) {
454 for (auto F = M.begin(), E = M.end(); F != E; ++F) {
455 if ((*F).isDeclaration())
456 continue;
457 MachineFunction *MF = MMI->getMachineFunction(*F);
458 assert(MF);
459 for (MachineBasicBlock &MBB : *MF) {
460 for (MachineInstr &MI : MBB) {
461 for (MachineOperand &Op : MI.operands()) {
462 if (!Op.isReg())
463 continue;
464 Register Reg = Op.getReg();
465 if (MAI.hasRegisterAlias(MF, Reg))
466 continue;
467 Register NewReg = Register::index2VirtReg(MAI.getNextID());
468 MAI.setRegisterAlias(MF, Reg, NewReg);
470 if (MI.getOpcode() != SPIRV::OpExtInst)
471 continue;
472 auto Set = MI.getOperand(2).getImm();
473 if (!MAI.ExtInstSetMap.contains(Set))
474 MAI.ExtInstSetMap[Set] = Register::index2VirtReg(MAI.getNextID());
480 // RequirementHandler implementations.
481 void SPIRV::RequirementHandler::getAndAddRequirements(
482 SPIRV::OperandCategory::OperandCategory Category, uint32_t i,
483 const SPIRVSubtarget &ST) {
484 addRequirements(getSymbolicOperandRequirements(Category, i, ST, *this));
487 void SPIRV::RequirementHandler::recursiveAddCapabilities(
488 const CapabilityList &ToPrune) {
489 for (const auto &Cap : ToPrune) {
490 AllCaps.insert(Cap);
491 CapabilityList ImplicitDecls =
492 getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap);
493 recursiveAddCapabilities(ImplicitDecls);
497 void SPIRV::RequirementHandler::addCapabilities(const CapabilityList &ToAdd) {
498 for (const auto &Cap : ToAdd) {
499 bool IsNewlyInserted = AllCaps.insert(Cap).second;
500 if (!IsNewlyInserted) // Don't re-add if it's already been declared.
501 continue;
502 CapabilityList ImplicitDecls =
503 getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap);
504 recursiveAddCapabilities(ImplicitDecls);
505 MinimalCaps.push_back(Cap);
509 void SPIRV::RequirementHandler::addRequirements(
510 const SPIRV::Requirements &Req) {
511 if (!Req.IsSatisfiable)
512 report_fatal_error("Adding SPIR-V requirements this target can't satisfy.");
514 if (Req.Cap.has_value())
515 addCapabilities({Req.Cap.value()});
517 addExtensions(Req.Exts);
519 if (!Req.MinVer.empty()) {
520 if (!MaxVersion.empty() && Req.MinVer > MaxVersion) {
521 LLVM_DEBUG(dbgs() << "Conflicting version requirements: >= " << Req.MinVer
522 << " and <= " << MaxVersion << "\n");
523 report_fatal_error("Adding SPIR-V requirements that can't be satisfied.");
526 if (MinVersion.empty() || Req.MinVer > MinVersion)
527 MinVersion = Req.MinVer;
530 if (!Req.MaxVer.empty()) {
531 if (!MinVersion.empty() && Req.MaxVer < MinVersion) {
532 LLVM_DEBUG(dbgs() << "Conflicting version requirements: <= " << Req.MaxVer
533 << " and >= " << MinVersion << "\n");
534 report_fatal_error("Adding SPIR-V requirements that can't be satisfied.");
537 if (MaxVersion.empty() || Req.MaxVer < MaxVersion)
538 MaxVersion = Req.MaxVer;
542 void SPIRV::RequirementHandler::checkSatisfiable(
543 const SPIRVSubtarget &ST) const {
544 // Report as many errors as possible before aborting the compilation.
545 bool IsSatisfiable = true;
546 auto TargetVer = ST.getSPIRVVersion();
548 if (!MaxVersion.empty() && !TargetVer.empty() && MaxVersion < TargetVer) {
549 LLVM_DEBUG(
550 dbgs() << "Target SPIR-V version too high for required features\n"
551 << "Required max version: " << MaxVersion << " target version "
552 << TargetVer << "\n");
553 IsSatisfiable = false;
556 if (!MinVersion.empty() && !TargetVer.empty() && MinVersion > TargetVer) {
557 LLVM_DEBUG(dbgs() << "Target SPIR-V version too low for required features\n"
558 << "Required min version: " << MinVersion
559 << " target version " << TargetVer << "\n");
560 IsSatisfiable = false;
563 if (!MinVersion.empty() && !MaxVersion.empty() && MinVersion > MaxVersion) {
564 LLVM_DEBUG(
565 dbgs()
566 << "Version is too low for some features and too high for others.\n"
567 << "Required SPIR-V min version: " << MinVersion
568 << " required SPIR-V max version " << MaxVersion << "\n");
569 IsSatisfiable = false;
572 for (auto Cap : MinimalCaps) {
573 if (AvailableCaps.contains(Cap))
574 continue;
575 LLVM_DEBUG(dbgs() << "Capability not supported: "
576 << getSymbolicOperandMnemonic(
577 OperandCategory::CapabilityOperand, Cap)
578 << "\n");
579 IsSatisfiable = false;
582 for (auto Ext : AllExtensions) {
583 if (ST.canUseExtension(Ext))
584 continue;
585 LLVM_DEBUG(dbgs() << "Extension not supported: "
586 << getSymbolicOperandMnemonic(
587 OperandCategory::ExtensionOperand, Ext)
588 << "\n");
589 IsSatisfiable = false;
592 if (!IsSatisfiable)
593 report_fatal_error("Unable to meet SPIR-V requirements for this target.");
596 // Add the given capabilities and all their implicitly defined capabilities too.
597 void SPIRV::RequirementHandler::addAvailableCaps(const CapabilityList &ToAdd) {
598 for (const auto Cap : ToAdd)
599 if (AvailableCaps.insert(Cap).second)
600 addAvailableCaps(getSymbolicOperandCapabilities(
601 SPIRV::OperandCategory::CapabilityOperand, Cap));
604 void SPIRV::RequirementHandler::removeCapabilityIf(
605 const Capability::Capability ToRemove,
606 const Capability::Capability IfPresent) {
607 if (AllCaps.contains(IfPresent))
608 AllCaps.erase(ToRemove);
611 namespace llvm {
612 namespace SPIRV {
613 void RequirementHandler::initAvailableCapabilities(const SPIRVSubtarget &ST) {
614 if (ST.isOpenCLEnv()) {
615 initAvailableCapabilitiesForOpenCL(ST);
616 return;
619 if (ST.isVulkanEnv()) {
620 initAvailableCapabilitiesForVulkan(ST);
621 return;
624 report_fatal_error("Unimplemented environment for SPIR-V generation.");
627 void RequirementHandler::initAvailableCapabilitiesForOpenCL(
628 const SPIRVSubtarget &ST) {
629 // Add the min requirements for different OpenCL and SPIR-V versions.
630 addAvailableCaps({Capability::Addresses, Capability::Float16Buffer,
631 Capability::Int16, Capability::Int8, Capability::Kernel,
632 Capability::Linkage, Capability::Vector16,
633 Capability::Groups, Capability::GenericPointer,
634 Capability::Shader});
635 if (ST.hasOpenCLFullProfile())
636 addAvailableCaps({Capability::Int64, Capability::Int64Atomics});
637 if (ST.hasOpenCLImageSupport()) {
638 addAvailableCaps({Capability::ImageBasic, Capability::LiteralSampler,
639 Capability::Image1D, Capability::SampledBuffer,
640 Capability::ImageBuffer});
641 if (ST.isAtLeastOpenCLVer(VersionTuple(2, 0)))
642 addAvailableCaps({Capability::ImageReadWrite});
644 if (ST.isAtLeastSPIRVVer(VersionTuple(1, 1)) &&
645 ST.isAtLeastOpenCLVer(VersionTuple(2, 2)))
646 addAvailableCaps({Capability::SubgroupDispatch, Capability::PipeStorage});
647 if (ST.isAtLeastSPIRVVer(VersionTuple(1, 3)))
648 addAvailableCaps({Capability::GroupNonUniform,
649 Capability::GroupNonUniformVote,
650 Capability::GroupNonUniformArithmetic,
651 Capability::GroupNonUniformBallot,
652 Capability::GroupNonUniformClustered,
653 Capability::GroupNonUniformShuffle,
654 Capability::GroupNonUniformShuffleRelative});
655 if (ST.isAtLeastSPIRVVer(VersionTuple(1, 4)))
656 addAvailableCaps({Capability::DenormPreserve, Capability::DenormFlushToZero,
657 Capability::SignedZeroInfNanPreserve,
658 Capability::RoundingModeRTE,
659 Capability::RoundingModeRTZ});
660 // TODO: verify if this needs some checks.
661 addAvailableCaps({Capability::Float16, Capability::Float64});
663 // Add capabilities enabled by extensions.
664 for (auto Extension : ST.getAllAvailableExtensions()) {
665 CapabilityList EnabledCapabilities =
666 getCapabilitiesEnabledByExtension(Extension);
667 addAvailableCaps(EnabledCapabilities);
670 // TODO: add OpenCL extensions.
673 void RequirementHandler::initAvailableCapabilitiesForVulkan(
674 const SPIRVSubtarget &ST) {
675 addAvailableCaps({Capability::Shader, Capability::Linkage});
677 // Provided by all supported Vulkan versions.
678 addAvailableCaps({Capability::Int16, Capability::Int64, Capability::Float16,
679 Capability::Float64, Capability::GroupNonUniform});
682 } // namespace SPIRV
683 } // namespace llvm
685 // Add the required capabilities from a decoration instruction (including
686 // BuiltIns).
687 static void addOpDecorateReqs(const MachineInstr &MI, unsigned DecIndex,
688 SPIRV::RequirementHandler &Reqs,
689 const SPIRVSubtarget &ST) {
690 int64_t DecOp = MI.getOperand(DecIndex).getImm();
691 auto Dec = static_cast<SPIRV::Decoration::Decoration>(DecOp);
692 Reqs.addRequirements(getSymbolicOperandRequirements(
693 SPIRV::OperandCategory::DecorationOperand, Dec, ST, Reqs));
695 if (Dec == SPIRV::Decoration::BuiltIn) {
696 int64_t BuiltInOp = MI.getOperand(DecIndex + 1).getImm();
697 auto BuiltIn = static_cast<SPIRV::BuiltIn::BuiltIn>(BuiltInOp);
698 Reqs.addRequirements(getSymbolicOperandRequirements(
699 SPIRV::OperandCategory::BuiltInOperand, BuiltIn, ST, Reqs));
700 } else if (Dec == SPIRV::Decoration::LinkageAttributes) {
701 int64_t LinkageOp = MI.getOperand(MI.getNumOperands() - 1).getImm();
702 SPIRV::LinkageType::LinkageType LnkType =
703 static_cast<SPIRV::LinkageType::LinkageType>(LinkageOp);
704 if (LnkType == SPIRV::LinkageType::LinkOnceODR)
705 Reqs.addExtension(SPIRV::Extension::SPV_KHR_linkonce_odr);
709 // Add requirements for image handling.
710 static void addOpTypeImageReqs(const MachineInstr &MI,
711 SPIRV::RequirementHandler &Reqs,
712 const SPIRVSubtarget &ST) {
713 assert(MI.getNumOperands() >= 8 && "Insufficient operands for OpTypeImage");
714 // The operand indices used here are based on the OpTypeImage layout, which
715 // the MachineInstr follows as well.
716 int64_t ImgFormatOp = MI.getOperand(7).getImm();
717 auto ImgFormat = static_cast<SPIRV::ImageFormat::ImageFormat>(ImgFormatOp);
718 Reqs.getAndAddRequirements(SPIRV::OperandCategory::ImageFormatOperand,
719 ImgFormat, ST);
721 bool IsArrayed = MI.getOperand(4).getImm() == 1;
722 bool IsMultisampled = MI.getOperand(5).getImm() == 1;
723 bool NoSampler = MI.getOperand(6).getImm() == 2;
724 // Add dimension requirements.
725 assert(MI.getOperand(2).isImm());
726 switch (MI.getOperand(2).getImm()) {
727 case SPIRV::Dim::DIM_1D:
728 Reqs.addRequirements(NoSampler ? SPIRV::Capability::Image1D
729 : SPIRV::Capability::Sampled1D);
730 break;
731 case SPIRV::Dim::DIM_2D:
732 if (IsMultisampled && NoSampler)
733 Reqs.addRequirements(SPIRV::Capability::ImageMSArray);
734 break;
735 case SPIRV::Dim::DIM_Cube:
736 Reqs.addRequirements(SPIRV::Capability::Shader);
737 if (IsArrayed)
738 Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageCubeArray
739 : SPIRV::Capability::SampledCubeArray);
740 break;
741 case SPIRV::Dim::DIM_Rect:
742 Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageRect
743 : SPIRV::Capability::SampledRect);
744 break;
745 case SPIRV::Dim::DIM_Buffer:
746 Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageBuffer
747 : SPIRV::Capability::SampledBuffer);
748 break;
749 case SPIRV::Dim::DIM_SubpassData:
750 Reqs.addRequirements(SPIRV::Capability::InputAttachment);
751 break;
754 // Has optional access qualifier.
755 // TODO: check if it's OpenCL's kernel.
756 if (MI.getNumOperands() > 8 &&
757 MI.getOperand(8).getImm() == SPIRV::AccessQualifier::ReadWrite)
758 Reqs.addRequirements(SPIRV::Capability::ImageReadWrite);
759 else
760 Reqs.addRequirements(SPIRV::Capability::ImageBasic);
763 // Add requirements for handling atomic float instructions
764 #define ATOM_FLT_REQ_EXT_MSG(ExtName) \
765 "The atomic float instruction requires the following SPIR-V " \
766 "extension: SPV_EXT_shader_atomic_float" ExtName
767 static void AddAtomicFloatRequirements(const MachineInstr &MI,
768 SPIRV::RequirementHandler &Reqs,
769 const SPIRVSubtarget &ST) {
770 assert(MI.getOperand(1).isReg() &&
771 "Expect register operand in atomic float instruction");
772 Register TypeReg = MI.getOperand(1).getReg();
773 SPIRVType *TypeDef = MI.getMF()->getRegInfo().getVRegDef(TypeReg);
774 if (TypeDef->getOpcode() != SPIRV::OpTypeFloat)
775 report_fatal_error("Result type of an atomic float instruction must be a "
776 "floating-point type scalar");
778 unsigned BitWidth = TypeDef->getOperand(1).getImm();
779 unsigned Op = MI.getOpcode();
780 if (Op == SPIRV::OpAtomicFAddEXT) {
781 if (!ST.canUseExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add))
782 report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_add"), false);
783 Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add);
784 switch (BitWidth) {
785 case 16:
786 if (!ST.canUseExtension(
787 SPIRV::Extension::SPV_EXT_shader_atomic_float16_add))
788 report_fatal_error(ATOM_FLT_REQ_EXT_MSG("16_add"), false);
789 Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float16_add);
790 Reqs.addCapability(SPIRV::Capability::AtomicFloat16AddEXT);
791 break;
792 case 32:
793 Reqs.addCapability(SPIRV::Capability::AtomicFloat32AddEXT);
794 break;
795 case 64:
796 Reqs.addCapability(SPIRV::Capability::AtomicFloat64AddEXT);
797 break;
798 default:
799 report_fatal_error(
800 "Unexpected floating-point type width in atomic float instruction");
802 } else {
803 if (!ST.canUseExtension(
804 SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max))
805 report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_min_max"), false);
806 Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max);
807 switch (BitWidth) {
808 case 16:
809 Reqs.addCapability(SPIRV::Capability::AtomicFloat16MinMaxEXT);
810 break;
811 case 32:
812 Reqs.addCapability(SPIRV::Capability::AtomicFloat32MinMaxEXT);
813 break;
814 case 64:
815 Reqs.addCapability(SPIRV::Capability::AtomicFloat64MinMaxEXT);
816 break;
817 default:
818 report_fatal_error(
819 "Unexpected floating-point type width in atomic float instruction");
824 void addInstrRequirements(const MachineInstr &MI,
825 SPIRV::RequirementHandler &Reqs,
826 const SPIRVSubtarget &ST) {
827 switch (MI.getOpcode()) {
828 case SPIRV::OpMemoryModel: {
829 int64_t Addr = MI.getOperand(0).getImm();
830 Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand,
831 Addr, ST);
832 int64_t Mem = MI.getOperand(1).getImm();
833 Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand, Mem,
834 ST);
835 break;
837 case SPIRV::OpEntryPoint: {
838 int64_t Exe = MI.getOperand(0).getImm();
839 Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModelOperand,
840 Exe, ST);
841 break;
843 case SPIRV::OpExecutionMode:
844 case SPIRV::OpExecutionModeId: {
845 int64_t Exe = MI.getOperand(1).getImm();
846 Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModeOperand,
847 Exe, ST);
848 break;
850 case SPIRV::OpTypeMatrix:
851 Reqs.addCapability(SPIRV::Capability::Matrix);
852 break;
853 case SPIRV::OpTypeInt: {
854 unsigned BitWidth = MI.getOperand(1).getImm();
855 if (BitWidth == 64)
856 Reqs.addCapability(SPIRV::Capability::Int64);
857 else if (BitWidth == 16)
858 Reqs.addCapability(SPIRV::Capability::Int16);
859 else if (BitWidth == 8)
860 Reqs.addCapability(SPIRV::Capability::Int8);
861 break;
863 case SPIRV::OpTypeFloat: {
864 unsigned BitWidth = MI.getOperand(1).getImm();
865 if (BitWidth == 64)
866 Reqs.addCapability(SPIRV::Capability::Float64);
867 else if (BitWidth == 16)
868 Reqs.addCapability(SPIRV::Capability::Float16);
869 break;
871 case SPIRV::OpTypeVector: {
872 unsigned NumComponents = MI.getOperand(2).getImm();
873 if (NumComponents == 8 || NumComponents == 16)
874 Reqs.addCapability(SPIRV::Capability::Vector16);
875 break;
877 case SPIRV::OpTypePointer: {
878 auto SC = MI.getOperand(1).getImm();
879 Reqs.getAndAddRequirements(SPIRV::OperandCategory::StorageClassOperand, SC,
880 ST);
881 // If it's a type of pointer to float16 targeting OpenCL, add Float16Buffer
882 // capability.
883 if (!ST.isOpenCLEnv())
884 break;
885 assert(MI.getOperand(2).isReg());
886 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
887 SPIRVType *TypeDef = MRI.getVRegDef(MI.getOperand(2).getReg());
888 if (TypeDef->getOpcode() == SPIRV::OpTypeFloat &&
889 TypeDef->getOperand(1).getImm() == 16)
890 Reqs.addCapability(SPIRV::Capability::Float16Buffer);
891 break;
893 case SPIRV::OpBitReverse:
894 case SPIRV::OpBitFieldInsert:
895 case SPIRV::OpBitFieldSExtract:
896 case SPIRV::OpBitFieldUExtract:
897 if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_bit_instructions)) {
898 Reqs.addCapability(SPIRV::Capability::Shader);
899 break;
901 Reqs.addExtension(SPIRV::Extension::SPV_KHR_bit_instructions);
902 Reqs.addCapability(SPIRV::Capability::BitInstructions);
903 break;
904 case SPIRV::OpTypeRuntimeArray:
905 Reqs.addCapability(SPIRV::Capability::Shader);
906 break;
907 case SPIRV::OpTypeOpaque:
908 case SPIRV::OpTypeEvent:
909 Reqs.addCapability(SPIRV::Capability::Kernel);
910 break;
911 case SPIRV::OpTypePipe:
912 case SPIRV::OpTypeReserveId:
913 Reqs.addCapability(SPIRV::Capability::Pipes);
914 break;
915 case SPIRV::OpTypeDeviceEvent:
916 case SPIRV::OpTypeQueue:
917 case SPIRV::OpBuildNDRange:
918 Reqs.addCapability(SPIRV::Capability::DeviceEnqueue);
919 break;
920 case SPIRV::OpDecorate:
921 case SPIRV::OpDecorateId:
922 case SPIRV::OpDecorateString:
923 addOpDecorateReqs(MI, 1, Reqs, ST);
924 break;
925 case SPIRV::OpMemberDecorate:
926 case SPIRV::OpMemberDecorateString:
927 addOpDecorateReqs(MI, 2, Reqs, ST);
928 break;
929 case SPIRV::OpInBoundsPtrAccessChain:
930 Reqs.addCapability(SPIRV::Capability::Addresses);
931 break;
932 case SPIRV::OpConstantSampler:
933 Reqs.addCapability(SPIRV::Capability::LiteralSampler);
934 break;
935 case SPIRV::OpTypeImage:
936 addOpTypeImageReqs(MI, Reqs, ST);
937 break;
938 case SPIRV::OpTypeSampler:
939 Reqs.addCapability(SPIRV::Capability::ImageBasic);
940 break;
941 case SPIRV::OpTypeForwardPointer:
942 // TODO: check if it's OpenCL's kernel.
943 Reqs.addCapability(SPIRV::Capability::Addresses);
944 break;
945 case SPIRV::OpAtomicFlagTestAndSet:
946 case SPIRV::OpAtomicLoad:
947 case SPIRV::OpAtomicStore:
948 case SPIRV::OpAtomicExchange:
949 case SPIRV::OpAtomicCompareExchange:
950 case SPIRV::OpAtomicIIncrement:
951 case SPIRV::OpAtomicIDecrement:
952 case SPIRV::OpAtomicIAdd:
953 case SPIRV::OpAtomicISub:
954 case SPIRV::OpAtomicUMin:
955 case SPIRV::OpAtomicUMax:
956 case SPIRV::OpAtomicSMin:
957 case SPIRV::OpAtomicSMax:
958 case SPIRV::OpAtomicAnd:
959 case SPIRV::OpAtomicOr:
960 case SPIRV::OpAtomicXor: {
961 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
962 const MachineInstr *InstrPtr = &MI;
963 if (MI.getOpcode() == SPIRV::OpAtomicStore) {
964 assert(MI.getOperand(3).isReg());
965 InstrPtr = MRI.getVRegDef(MI.getOperand(3).getReg());
966 assert(InstrPtr && "Unexpected type instruction for OpAtomicStore");
968 assert(InstrPtr->getOperand(1).isReg() && "Unexpected operand in atomic");
969 Register TypeReg = InstrPtr->getOperand(1).getReg();
970 SPIRVType *TypeDef = MRI.getVRegDef(TypeReg);
971 if (TypeDef->getOpcode() == SPIRV::OpTypeInt) {
972 unsigned BitWidth = TypeDef->getOperand(1).getImm();
973 if (BitWidth == 64)
974 Reqs.addCapability(SPIRV::Capability::Int64Atomics);
976 break;
978 case SPIRV::OpGroupNonUniformIAdd:
979 case SPIRV::OpGroupNonUniformFAdd:
980 case SPIRV::OpGroupNonUniformIMul:
981 case SPIRV::OpGroupNonUniformFMul:
982 case SPIRV::OpGroupNonUniformSMin:
983 case SPIRV::OpGroupNonUniformUMin:
984 case SPIRV::OpGroupNonUniformFMin:
985 case SPIRV::OpGroupNonUniformSMax:
986 case SPIRV::OpGroupNonUniformUMax:
987 case SPIRV::OpGroupNonUniformFMax:
988 case SPIRV::OpGroupNonUniformBitwiseAnd:
989 case SPIRV::OpGroupNonUniformBitwiseOr:
990 case SPIRV::OpGroupNonUniformBitwiseXor:
991 case SPIRV::OpGroupNonUniformLogicalAnd:
992 case SPIRV::OpGroupNonUniformLogicalOr:
993 case SPIRV::OpGroupNonUniformLogicalXor: {
994 assert(MI.getOperand(3).isImm());
995 int64_t GroupOp = MI.getOperand(3).getImm();
996 switch (GroupOp) {
997 case SPIRV::GroupOperation::Reduce:
998 case SPIRV::GroupOperation::InclusiveScan:
999 case SPIRV::GroupOperation::ExclusiveScan:
1000 Reqs.addCapability(SPIRV::Capability::Kernel);
1001 Reqs.addCapability(SPIRV::Capability::GroupNonUniformArithmetic);
1002 Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot);
1003 break;
1004 case SPIRV::GroupOperation::ClusteredReduce:
1005 Reqs.addCapability(SPIRV::Capability::GroupNonUniformClustered);
1006 break;
1007 case SPIRV::GroupOperation::PartitionedReduceNV:
1008 case SPIRV::GroupOperation::PartitionedInclusiveScanNV:
1009 case SPIRV::GroupOperation::PartitionedExclusiveScanNV:
1010 Reqs.addCapability(SPIRV::Capability::GroupNonUniformPartitionedNV);
1011 break;
1013 break;
1015 case SPIRV::OpGroupNonUniformShuffle:
1016 case SPIRV::OpGroupNonUniformShuffleXor:
1017 Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffle);
1018 break;
1019 case SPIRV::OpGroupNonUniformShuffleUp:
1020 case SPIRV::OpGroupNonUniformShuffleDown:
1021 Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffleRelative);
1022 break;
1023 case SPIRV::OpGroupAll:
1024 case SPIRV::OpGroupAny:
1025 case SPIRV::OpGroupBroadcast:
1026 case SPIRV::OpGroupIAdd:
1027 case SPIRV::OpGroupFAdd:
1028 case SPIRV::OpGroupFMin:
1029 case SPIRV::OpGroupUMin:
1030 case SPIRV::OpGroupSMin:
1031 case SPIRV::OpGroupFMax:
1032 case SPIRV::OpGroupUMax:
1033 case SPIRV::OpGroupSMax:
1034 Reqs.addCapability(SPIRV::Capability::Groups);
1035 break;
1036 case SPIRV::OpGroupNonUniformElect:
1037 Reqs.addCapability(SPIRV::Capability::GroupNonUniform);
1038 break;
1039 case SPIRV::OpGroupNonUniformAll:
1040 case SPIRV::OpGroupNonUniformAny:
1041 case SPIRV::OpGroupNonUniformAllEqual:
1042 Reqs.addCapability(SPIRV::Capability::GroupNonUniformVote);
1043 break;
1044 case SPIRV::OpGroupNonUniformBroadcast:
1045 case SPIRV::OpGroupNonUniformBroadcastFirst:
1046 case SPIRV::OpGroupNonUniformBallot:
1047 case SPIRV::OpGroupNonUniformInverseBallot:
1048 case SPIRV::OpGroupNonUniformBallotBitExtract:
1049 case SPIRV::OpGroupNonUniformBallotBitCount:
1050 case SPIRV::OpGroupNonUniformBallotFindLSB:
1051 case SPIRV::OpGroupNonUniformBallotFindMSB:
1052 Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot);
1053 break;
1054 case SPIRV::OpSubgroupShuffleINTEL:
1055 case SPIRV::OpSubgroupShuffleDownINTEL:
1056 case SPIRV::OpSubgroupShuffleUpINTEL:
1057 case SPIRV::OpSubgroupShuffleXorINTEL:
1058 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
1059 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups);
1060 Reqs.addCapability(SPIRV::Capability::SubgroupShuffleINTEL);
1062 break;
1063 case SPIRV::OpSubgroupBlockReadINTEL:
1064 case SPIRV::OpSubgroupBlockWriteINTEL:
1065 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
1066 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups);
1067 Reqs.addCapability(SPIRV::Capability::SubgroupBufferBlockIOINTEL);
1069 break;
1070 case SPIRV::OpSubgroupImageBlockReadINTEL:
1071 case SPIRV::OpSubgroupImageBlockWriteINTEL:
1072 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
1073 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups);
1074 Reqs.addCapability(SPIRV::Capability::SubgroupImageBlockIOINTEL);
1076 break;
1077 case SPIRV::OpAssumeTrueKHR:
1078 case SPIRV::OpExpectKHR:
1079 if (ST.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume)) {
1080 Reqs.addExtension(SPIRV::Extension::SPV_KHR_expect_assume);
1081 Reqs.addCapability(SPIRV::Capability::ExpectAssumeKHR);
1083 break;
1084 case SPIRV::OpPtrCastToCrossWorkgroupINTEL:
1085 case SPIRV::OpCrossWorkgroupCastToPtrINTEL:
1086 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes)) {
1087 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes);
1088 Reqs.addCapability(SPIRV::Capability::USMStorageClassesINTEL);
1090 break;
1091 case SPIRV::OpConstantFunctionPointerINTEL:
1092 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) {
1093 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers);
1094 Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL);
1096 break;
1097 case SPIRV::OpGroupNonUniformRotateKHR:
1098 if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate))
1099 report_fatal_error("OpGroupNonUniformRotateKHR instruction requires the "
1100 "following SPIR-V extension: SPV_KHR_subgroup_rotate",
1101 false);
1102 Reqs.addExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate);
1103 Reqs.addCapability(SPIRV::Capability::GroupNonUniformRotateKHR);
1104 Reqs.addCapability(SPIRV::Capability::GroupNonUniform);
1105 break;
1106 case SPIRV::OpGroupIMulKHR:
1107 case SPIRV::OpGroupFMulKHR:
1108 case SPIRV::OpGroupBitwiseAndKHR:
1109 case SPIRV::OpGroupBitwiseOrKHR:
1110 case SPIRV::OpGroupBitwiseXorKHR:
1111 case SPIRV::OpGroupLogicalAndKHR:
1112 case SPIRV::OpGroupLogicalOrKHR:
1113 case SPIRV::OpGroupLogicalXorKHR:
1114 if (ST.canUseExtension(
1115 SPIRV::Extension::SPV_KHR_uniform_group_instructions)) {
1116 Reqs.addExtension(SPIRV::Extension::SPV_KHR_uniform_group_instructions);
1117 Reqs.addCapability(SPIRV::Capability::GroupUniformArithmeticKHR);
1119 break;
1120 case SPIRV::OpFunctionPointerCallINTEL:
1121 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) {
1122 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers);
1123 Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL);
1125 break;
1126 case SPIRV::OpAtomicFAddEXT:
1127 case SPIRV::OpAtomicFMinEXT:
1128 case SPIRV::OpAtomicFMaxEXT:
1129 AddAtomicFloatRequirements(MI, Reqs, ST);
1130 break;
1131 case SPIRV::OpConvertBF16ToFINTEL:
1132 case SPIRV::OpConvertFToBF16INTEL:
1133 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion)) {
1134 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion);
1135 Reqs.addCapability(SPIRV::Capability::BFloat16ConversionINTEL);
1137 break;
1138 case SPIRV::OpVariableLengthArrayINTEL:
1139 case SPIRV::OpSaveMemoryINTEL:
1140 case SPIRV::OpRestoreMemoryINTEL:
1141 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array)) {
1142 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_variable_length_array);
1143 Reqs.addCapability(SPIRV::Capability::VariableLengthArrayINTEL);
1145 break;
1146 default:
1147 break;
1150 // If we require capability Shader, then we can remove the requirement for
1151 // the BitInstructions capability, since Shader is a superset capability
1152 // of BitInstructions.
1153 Reqs.removeCapabilityIf(SPIRV::Capability::BitInstructions,
1154 SPIRV::Capability::Shader);
1157 static void collectReqs(const Module &M, SPIRV::ModuleAnalysisInfo &MAI,
1158 MachineModuleInfo *MMI, const SPIRVSubtarget &ST) {
1159 // Collect requirements for existing instructions.
1160 for (auto F = M.begin(), E = M.end(); F != E; ++F) {
1161 MachineFunction *MF = MMI->getMachineFunction(*F);
1162 if (!MF)
1163 continue;
1164 for (const MachineBasicBlock &MBB : *MF)
1165 for (const MachineInstr &MI : MBB)
1166 addInstrRequirements(MI, MAI.Reqs, ST);
1168 // Collect requirements for OpExecutionMode instructions.
1169 auto Node = M.getNamedMetadata("spirv.ExecutionMode");
1170 if (Node) {
1171 // SPV_KHR_float_controls is not available until v1.4
1172 bool RequireFloatControls = false,
1173 VerLower14 = !ST.isAtLeastSPIRVVer(VersionTuple(1, 4));
1174 for (unsigned i = 0; i < Node->getNumOperands(); i++) {
1175 MDNode *MDN = cast<MDNode>(Node->getOperand(i));
1176 const MDOperand &MDOp = MDN->getOperand(1);
1177 if (auto *CMeta = dyn_cast<ConstantAsMetadata>(MDOp)) {
1178 Constant *C = CMeta->getValue();
1179 if (ConstantInt *Const = dyn_cast<ConstantInt>(C)) {
1180 auto EM = Const->getZExtValue();
1181 MAI.Reqs.getAndAddRequirements(
1182 SPIRV::OperandCategory::ExecutionModeOperand, EM, ST);
1183 // add SPV_KHR_float_controls if the version is too low
1184 switch (EM) {
1185 case SPIRV::ExecutionMode::DenormPreserve:
1186 case SPIRV::ExecutionMode::DenormFlushToZero:
1187 case SPIRV::ExecutionMode::SignedZeroInfNanPreserve:
1188 case SPIRV::ExecutionMode::RoundingModeRTE:
1189 case SPIRV::ExecutionMode::RoundingModeRTZ:
1190 RequireFloatControls = VerLower14;
1191 break;
1196 if (RequireFloatControls &&
1197 ST.canUseExtension(SPIRV::Extension::SPV_KHR_float_controls))
1198 MAI.Reqs.addExtension(SPIRV::Extension::SPV_KHR_float_controls);
1200 for (auto FI = M.begin(), E = M.end(); FI != E; ++FI) {
1201 const Function &F = *FI;
1202 if (F.isDeclaration())
1203 continue;
1204 if (F.getMetadata("reqd_work_group_size"))
1205 MAI.Reqs.getAndAddRequirements(
1206 SPIRV::OperandCategory::ExecutionModeOperand,
1207 SPIRV::ExecutionMode::LocalSize, ST);
1208 if (F.getFnAttribute("hlsl.numthreads").isValid()) {
1209 MAI.Reqs.getAndAddRequirements(
1210 SPIRV::OperandCategory::ExecutionModeOperand,
1211 SPIRV::ExecutionMode::LocalSize, ST);
1213 if (F.getMetadata("work_group_size_hint"))
1214 MAI.Reqs.getAndAddRequirements(
1215 SPIRV::OperandCategory::ExecutionModeOperand,
1216 SPIRV::ExecutionMode::LocalSizeHint, ST);
1217 if (F.getMetadata("intel_reqd_sub_group_size"))
1218 MAI.Reqs.getAndAddRequirements(
1219 SPIRV::OperandCategory::ExecutionModeOperand,
1220 SPIRV::ExecutionMode::SubgroupSize, ST);
1221 if (F.getMetadata("vec_type_hint"))
1222 MAI.Reqs.getAndAddRequirements(
1223 SPIRV::OperandCategory::ExecutionModeOperand,
1224 SPIRV::ExecutionMode::VecTypeHint, ST);
1226 if (F.hasOptNone() &&
1227 ST.canUseExtension(SPIRV::Extension::SPV_INTEL_optnone)) {
1228 // Output OpCapability OptNoneINTEL.
1229 MAI.Reqs.addExtension(SPIRV::Extension::SPV_INTEL_optnone);
1230 MAI.Reqs.addCapability(SPIRV::Capability::OptNoneINTEL);
1235 static unsigned getFastMathFlags(const MachineInstr &I) {
1236 unsigned Flags = SPIRV::FPFastMathMode::None;
1237 if (I.getFlag(MachineInstr::MIFlag::FmNoNans))
1238 Flags |= SPIRV::FPFastMathMode::NotNaN;
1239 if (I.getFlag(MachineInstr::MIFlag::FmNoInfs))
1240 Flags |= SPIRV::FPFastMathMode::NotInf;
1241 if (I.getFlag(MachineInstr::MIFlag::FmNsz))
1242 Flags |= SPIRV::FPFastMathMode::NSZ;
1243 if (I.getFlag(MachineInstr::MIFlag::FmArcp))
1244 Flags |= SPIRV::FPFastMathMode::AllowRecip;
1245 if (I.getFlag(MachineInstr::MIFlag::FmReassoc))
1246 Flags |= SPIRV::FPFastMathMode::Fast;
1247 return Flags;
1250 static void handleMIFlagDecoration(MachineInstr &I, const SPIRVSubtarget &ST,
1251 const SPIRVInstrInfo &TII,
1252 SPIRV::RequirementHandler &Reqs) {
1253 if (I.getFlag(MachineInstr::MIFlag::NoSWrap) && TII.canUseNSW(I) &&
1254 getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand,
1255 SPIRV::Decoration::NoSignedWrap, ST, Reqs)
1256 .IsSatisfiable) {
1257 buildOpDecorate(I.getOperand(0).getReg(), I, TII,
1258 SPIRV::Decoration::NoSignedWrap, {});
1260 if (I.getFlag(MachineInstr::MIFlag::NoUWrap) && TII.canUseNUW(I) &&
1261 getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand,
1262 SPIRV::Decoration::NoUnsignedWrap, ST,
1263 Reqs)
1264 .IsSatisfiable) {
1265 buildOpDecorate(I.getOperand(0).getReg(), I, TII,
1266 SPIRV::Decoration::NoUnsignedWrap, {});
1268 if (!TII.canUseFastMathFlags(I))
1269 return;
1270 unsigned FMFlags = getFastMathFlags(I);
1271 if (FMFlags == SPIRV::FPFastMathMode::None)
1272 return;
1273 Register DstReg = I.getOperand(0).getReg();
1274 buildOpDecorate(DstReg, I, TII, SPIRV::Decoration::FPFastMathMode, {FMFlags});
1277 // Walk all functions and add decorations related to MI flags.
1278 static void addDecorations(const Module &M, const SPIRVInstrInfo &TII,
1279 MachineModuleInfo *MMI, const SPIRVSubtarget &ST,
1280 SPIRV::ModuleAnalysisInfo &MAI) {
1281 for (auto F = M.begin(), E = M.end(); F != E; ++F) {
1282 MachineFunction *MF = MMI->getMachineFunction(*F);
1283 if (!MF)
1284 continue;
1285 for (auto &MBB : *MF)
1286 for (auto &MI : MBB)
1287 handleMIFlagDecoration(MI, ST, TII, MAI.Reqs);
1291 struct SPIRV::ModuleAnalysisInfo SPIRVModuleAnalysis::MAI;
1293 void SPIRVModuleAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1294 AU.addRequired<TargetPassConfig>();
1295 AU.addRequired<MachineModuleInfoWrapperPass>();
1298 bool SPIRVModuleAnalysis::runOnModule(Module &M) {
1299 SPIRVTargetMachine &TM =
1300 getAnalysis<TargetPassConfig>().getTM<SPIRVTargetMachine>();
1301 ST = TM.getSubtargetImpl();
1302 GR = ST->getSPIRVGlobalRegistry();
1303 TII = ST->getInstrInfo();
1305 MMI = &getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
1307 setBaseInfo(M);
1309 addDecorations(M, *TII, MMI, *ST, MAI);
1311 collectReqs(M, MAI, MMI, *ST);
1313 // Process type/const/global var/func decl instructions, number their
1314 // destination registers from 0 to N, collect Extensions and Capabilities.
1315 processDefInstrs(M);
1317 // Number rest of registers from N+1 onwards.
1318 numberRegistersGlobally(M);
1320 // Update references to OpFunction instructions to use Global Registers
1321 if (GR->hasConstFunPtr())
1322 collectFuncPtrs();
1324 // Collect OpName, OpEntryPoint, OpDecorate etc, process other instructions.
1325 processOtherInstrs(M);
1327 // If there are no entry points, we need the Linkage capability.
1328 if (MAI.MS[SPIRV::MB_EntryPoints].empty())
1329 MAI.Reqs.addCapability(SPIRV::Capability::Linkage);
1331 // Set maximum ID used.
1332 GR->setBound(MAI.MaxID);
1334 return false;