1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary. For example, it turns
11 // the left into the right code:
13 // for (...) for (...)
18 // X3 = phi(X1, X2) X3 = phi(X1, X2)
19 // ... = X3 + 4 X4 = phi(X3)
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine. The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/MemorySSA.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/PredIteratorCache.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Transforms/Utils.h"
50 #include "llvm/Transforms/Utils/Local.h"
51 #include "llvm/Transforms/Utils/LoopUtils.h"
52 #include "llvm/Transforms/Utils/SSAUpdater.h"
55 #define DEBUG_TYPE "lcssa"
57 STATISTIC(NumLCSSA
, "Number of live out of a loop variables");
59 #ifdef EXPENSIVE_CHECKS
60 static bool VerifyLoopLCSSA
= true;
62 static bool VerifyLoopLCSSA
= false;
64 static cl::opt
<bool, true>
65 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA
),
67 cl::desc("Verify loop lcssa form (time consuming)"));
69 /// Return true if the specified block is in the list.
70 static bool isExitBlock(BasicBlock
*BB
,
71 const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
) {
72 return is_contained(ExitBlocks
, BB
);
75 /// For every instruction from the worklist, check to see if it has any uses
76 /// that are outside the current loop. If so, insert LCSSA PHI nodes and
78 bool llvm::formLCSSAForInstructions(SmallVectorImpl
<Instruction
*> &Worklist
,
79 DominatorTree
&DT
, LoopInfo
&LI
,
80 ScalarEvolution
*SE
) {
81 SmallVector
<Use
*, 16> UsesToRewrite
;
82 SmallSetVector
<PHINode
*, 16> PHIsToRemove
;
83 PredIteratorCache PredCache
;
86 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of
87 // instructions within the same loops, computing the exit blocks is
88 // expensive, and we're not mutating the loop structure.
89 SmallDenseMap
<Loop
*, SmallVector
<BasicBlock
*,1>> LoopExitBlocks
;
91 while (!Worklist
.empty()) {
92 UsesToRewrite
.clear();
94 Instruction
*I
= Worklist
.pop_back_val();
95 assert(!I
->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
96 BasicBlock
*InstBB
= I
->getParent();
97 Loop
*L
= LI
.getLoopFor(InstBB
);
98 assert(L
&& "Instruction belongs to a BB that's not part of a loop");
99 if (!LoopExitBlocks
.count(L
))
100 L
->getExitBlocks(LoopExitBlocks
[L
]);
101 assert(LoopExitBlocks
.count(L
));
102 const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
= LoopExitBlocks
[L
];
104 if (ExitBlocks
.empty())
107 for (Use
&U
: I
->uses()) {
108 Instruction
*User
= cast
<Instruction
>(U
.getUser());
109 BasicBlock
*UserBB
= User
->getParent();
110 if (auto *PN
= dyn_cast
<PHINode
>(User
))
111 UserBB
= PN
->getIncomingBlock(U
);
113 if (InstBB
!= UserBB
&& !L
->contains(UserBB
))
114 UsesToRewrite
.push_back(&U
);
117 // If there are no uses outside the loop, exit with no change.
118 if (UsesToRewrite
.empty())
121 ++NumLCSSA
; // We are applying the transformation
123 // Invoke instructions are special in that their result value is not
124 // available along their unwind edge. The code below tests to see whether
125 // DomBB dominates the value, so adjust DomBB to the normal destination
126 // block, which is effectively where the value is first usable.
127 BasicBlock
*DomBB
= InstBB
;
128 if (auto *Inv
= dyn_cast
<InvokeInst
>(I
))
129 DomBB
= Inv
->getNormalDest();
131 DomTreeNode
*DomNode
= DT
.getNode(DomBB
);
133 SmallVector
<PHINode
*, 16> AddedPHIs
;
134 SmallVector
<PHINode
*, 8> PostProcessPHIs
;
136 SmallVector
<PHINode
*, 4> InsertedPHIs
;
137 SSAUpdater
SSAUpdate(&InsertedPHIs
);
138 SSAUpdate
.Initialize(I
->getType(), I
->getName());
140 // Force re-computation of I, as some users now need to use the new PHI
145 // Insert the LCSSA phi's into all of the exit blocks dominated by the
146 // value, and add them to the Phi's map.
147 for (BasicBlock
*ExitBB
: ExitBlocks
) {
148 if (!DT
.dominates(DomNode
, DT
.getNode(ExitBB
)))
151 // If we already inserted something for this BB, don't reprocess it.
152 if (SSAUpdate
.HasValueForBlock(ExitBB
))
155 PHINode
*PN
= PHINode::Create(I
->getType(), PredCache
.size(ExitBB
),
156 I
->getName() + ".lcssa", &ExitBB
->front());
157 // Get the debug location from the original instruction.
158 PN
->setDebugLoc(I
->getDebugLoc());
159 // Add inputs from inside the loop for this PHI.
160 for (BasicBlock
*Pred
: PredCache
.get(ExitBB
)) {
161 PN
->addIncoming(I
, Pred
);
163 // If the exit block has a predecessor not within the loop, arrange for
164 // the incoming value use corresponding to that predecessor to be
165 // rewritten in terms of a different LCSSA PHI.
166 if (!L
->contains(Pred
))
167 UsesToRewrite
.push_back(
168 &PN
->getOperandUse(PN
->getOperandNumForIncomingValue(
169 PN
->getNumIncomingValues() - 1)));
172 AddedPHIs
.push_back(PN
);
174 // Remember that this phi makes the value alive in this block.
175 SSAUpdate
.AddAvailableValue(ExitBB
, PN
);
177 // LoopSimplify might fail to simplify some loops (e.g. when indirect
178 // branches are involved). In such situations, it might happen that an
179 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
180 // create PHIs in such an exit block, we are also inserting PHIs into L2's
181 // header. This could break LCSSA form for L2 because these inserted PHIs
182 // can also have uses outside of L2. Remember all PHIs in such situation
183 // as to revisit than later on. FIXME: Remove this if indirectbr support
184 // into LoopSimplify gets improved.
185 if (auto *OtherLoop
= LI
.getLoopFor(ExitBB
))
186 if (!L
->contains(OtherLoop
))
187 PostProcessPHIs
.push_back(PN
);
190 // Rewrite all uses outside the loop in terms of the new PHIs we just
192 for (Use
*UseToRewrite
: UsesToRewrite
) {
193 // If this use is in an exit block, rewrite to use the newly inserted PHI.
194 // This is required for correctness because SSAUpdate doesn't handle uses
195 // in the same block. It assumes the PHI we inserted is at the end of the
197 Instruction
*User
= cast
<Instruction
>(UseToRewrite
->getUser());
198 BasicBlock
*UserBB
= User
->getParent();
199 if (auto *PN
= dyn_cast
<PHINode
>(User
))
200 UserBB
= PN
->getIncomingBlock(*UseToRewrite
);
202 if (isa
<PHINode
>(UserBB
->begin()) && isExitBlock(UserBB
, ExitBlocks
)) {
203 UseToRewrite
->set(&UserBB
->front());
207 // If we added a single PHI, it must dominate all uses and we can directly
209 if (AddedPHIs
.size() == 1) {
210 UseToRewrite
->set(AddedPHIs
[0]);
214 // Otherwise, do full PHI insertion.
215 SSAUpdate
.RewriteUse(*UseToRewrite
);
218 SmallVector
<DbgValueInst
*, 4> DbgValues
;
219 llvm::findDbgValues(DbgValues
, I
);
221 // Update pre-existing debug value uses that reside outside the loop.
222 auto &Ctx
= I
->getContext();
223 for (auto DVI
: DbgValues
) {
224 BasicBlock
*UserBB
= DVI
->getParent();
225 if (InstBB
== UserBB
|| L
->contains(UserBB
))
227 // We currently only handle debug values residing in blocks that were
228 // traversed while rewriting the uses. If we inserted just a single PHI,
229 // we will handle all relevant debug values.
230 Value
*V
= AddedPHIs
.size() == 1 ? AddedPHIs
[0]
231 : SSAUpdate
.FindValueForBlock(UserBB
);
233 DVI
->setOperand(0, MetadataAsValue::get(Ctx
, ValueAsMetadata::get(V
)));
236 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
237 // to post-process them to keep LCSSA form.
238 for (PHINode
*InsertedPN
: InsertedPHIs
) {
239 if (auto *OtherLoop
= LI
.getLoopFor(InsertedPN
->getParent()))
240 if (!L
->contains(OtherLoop
))
241 PostProcessPHIs
.push_back(InsertedPN
);
244 // Post process PHI instructions that were inserted into another disjoint
245 // loop and update their exits properly.
246 for (auto *PostProcessPN
: PostProcessPHIs
)
247 if (!PostProcessPN
->use_empty())
248 Worklist
.push_back(PostProcessPN
);
250 // Keep track of PHI nodes that we want to remove because they did not have
251 // any uses rewritten. If the new PHI is used, store it so that we can
252 // try to propagate dbg.value intrinsics to it.
253 SmallVector
<PHINode
*, 2> NeedDbgValues
;
254 for (PHINode
*PN
: AddedPHIs
)
256 PHIsToRemove
.insert(PN
);
258 NeedDbgValues
.push_back(PN
);
259 insertDebugValuesForPHIs(InstBB
, NeedDbgValues
);
262 // Remove PHI nodes that did not have any uses rewritten. We need to redo the
263 // use_empty() check here, because even if the PHI node wasn't used when added
264 // to PHIsToRemove, later added PHI nodes can be using it. This cleanup is
265 // not guaranteed to handle trees/cycles of PHI nodes that only are used by
266 // each other. Such situations has only been noticed when the input IR
267 // contains unreachable code, and leaving some extra redundant PHI nodes in
268 // such situations is considered a minor problem.
269 for (PHINode
*PN
: PHIsToRemove
)
271 PN
->eraseFromParent();
275 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
276 static void computeBlocksDominatingExits(
277 Loop
&L
, DominatorTree
&DT
, SmallVector
<BasicBlock
*, 8> &ExitBlocks
,
278 SmallSetVector
<BasicBlock
*, 8> &BlocksDominatingExits
) {
279 SmallVector
<BasicBlock
*, 8> BBWorklist
;
281 // We start from the exit blocks, as every block trivially dominates itself
283 for (BasicBlock
*BB
: ExitBlocks
)
284 BBWorklist
.push_back(BB
);
286 while (!BBWorklist
.empty()) {
287 BasicBlock
*BB
= BBWorklist
.pop_back_val();
289 // Check if this is a loop header. If this is the case, we're done.
290 if (L
.getHeader() == BB
)
293 // Otherwise, add its immediate predecessor in the dominator tree to the
294 // worklist, unless we visited it already.
295 BasicBlock
*IDomBB
= DT
.getNode(BB
)->getIDom()->getBlock();
297 // Exit blocks can have an immediate dominator not beloinging to the
298 // loop. For an exit block to be immediately dominated by another block
299 // outside the loop, it implies not all paths from that dominator, to the
300 // exit block, go through the loop.
311 // C is the exit block of the loop and it's immediately dominated by A,
312 // which doesn't belong to the loop.
313 if (!L
.contains(IDomBB
))
316 if (BlocksDominatingExits
.insert(IDomBB
))
317 BBWorklist
.push_back(IDomBB
);
321 bool llvm::formLCSSA(Loop
&L
, DominatorTree
&DT
, LoopInfo
*LI
,
322 ScalarEvolution
*SE
) {
323 bool Changed
= false;
325 #ifdef EXPENSIVE_CHECKS
326 // Verify all sub-loops are in LCSSA form already.
327 for (Loop
*SubLoop
: L
)
328 assert(SubLoop
->isRecursivelyLCSSAForm(DT
, *LI
) && "Subloop not in LCSSA!");
331 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
332 L
.getExitBlocks(ExitBlocks
);
333 if (ExitBlocks
.empty())
336 SmallSetVector
<BasicBlock
*, 8> BlocksDominatingExits
;
338 // We want to avoid use-scanning leveraging dominance informations.
339 // If a block doesn't dominate any of the loop exits, the none of the values
340 // defined in the loop can be used outside.
341 // We compute the set of blocks fullfilling the conditions in advance
342 // walking the dominator tree upwards until we hit a loop header.
343 computeBlocksDominatingExits(L
, DT
, ExitBlocks
, BlocksDominatingExits
);
345 SmallVector
<Instruction
*, 8> Worklist
;
347 // Look at all the instructions in the loop, checking to see if they have uses
348 // outside the loop. If so, put them into the worklist to rewrite those uses.
349 for (BasicBlock
*BB
: BlocksDominatingExits
) {
350 // Skip blocks that are part of any sub-loops, they must be in LCSSA
352 if (LI
->getLoopFor(BB
) != &L
)
354 for (Instruction
&I
: *BB
) {
355 // Reject two common cases fast: instructions with no uses (like stores)
356 // and instructions with one use that is in the same block as this.
358 (I
.hasOneUse() && I
.user_back()->getParent() == BB
&&
359 !isa
<PHINode
>(I
.user_back())))
362 // Tokens cannot be used in PHI nodes, so we skip over them.
363 // We can run into tokens which are live out of a loop with catchswitch
364 // instructions in Windows EH if the catchswitch has one catchpad which
365 // is inside the loop and another which is not.
366 if (I
.getType()->isTokenTy())
369 Worklist
.push_back(&I
);
372 Changed
= formLCSSAForInstructions(Worklist
, DT
, *LI
, SE
);
374 // If we modified the code, remove any caches about the loop from SCEV to
375 // avoid dangling entries.
376 // FIXME: This is a big hammer, can we clear the cache more selectively?
380 assert(L
.isLCSSAForm(DT
));
385 /// Process a loop nest depth first.
386 bool llvm::formLCSSARecursively(Loop
&L
, DominatorTree
&DT
, LoopInfo
*LI
,
387 ScalarEvolution
*SE
) {
388 bool Changed
= false;
390 // Recurse depth-first through inner loops.
391 for (Loop
*SubLoop
: L
.getSubLoops())
392 Changed
|= formLCSSARecursively(*SubLoop
, DT
, LI
, SE
);
394 Changed
|= formLCSSA(L
, DT
, LI
, SE
);
398 /// Process all loops in the function, inner-most out.
399 static bool formLCSSAOnAllLoops(LoopInfo
*LI
, DominatorTree
&DT
,
400 ScalarEvolution
*SE
) {
401 bool Changed
= false;
403 Changed
|= formLCSSARecursively(*L
, DT
, LI
, SE
);
408 struct LCSSAWrapperPass
: public FunctionPass
{
409 static char ID
; // Pass identification, replacement for typeid
410 LCSSAWrapperPass() : FunctionPass(ID
) {
411 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
414 // Cached analysis information for the current function.
419 bool runOnFunction(Function
&F
) override
;
420 void verifyAnalysis() const override
{
421 // This check is very expensive. On the loop intensive compiles it may cause
422 // up to 10x slowdown. Currently it's disabled by default. LPPassManager
423 // always does limited form of the LCSSA verification. Similar reasoning
424 // was used for the LoopInfo verifier.
425 if (VerifyLoopLCSSA
) {
428 return L
->isRecursivelyLCSSAForm(*DT
, *LI
);
430 "LCSSA form is broken!");
434 /// This transformation requires natural loop information & requires that
435 /// loop preheaders be inserted into the CFG. It maintains both of these,
436 /// as well as the CFG. It also requires dominator information.
437 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
438 AU
.setPreservesCFG();
440 AU
.addRequired
<DominatorTreeWrapperPass
>();
441 AU
.addRequired
<LoopInfoWrapperPass
>();
442 AU
.addPreservedID(LoopSimplifyID
);
443 AU
.addPreserved
<AAResultsWrapperPass
>();
444 AU
.addPreserved
<BasicAAWrapperPass
>();
445 AU
.addPreserved
<GlobalsAAWrapperPass
>();
446 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
447 AU
.addPreserved
<SCEVAAWrapperPass
>();
448 AU
.addPreserved
<BranchProbabilityInfoWrapperPass
>();
449 AU
.addPreserved
<MemorySSAWrapperPass
>();
451 // This is needed to perform LCSSA verification inside LPPassManager
452 AU
.addRequired
<LCSSAVerificationPass
>();
453 AU
.addPreserved
<LCSSAVerificationPass
>();
458 char LCSSAWrapperPass::ID
= 0;
459 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass
, "lcssa", "Loop-Closed SSA Form Pass",
461 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
462 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
463 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass
)
464 INITIALIZE_PASS_END(LCSSAWrapperPass
, "lcssa", "Loop-Closed SSA Form Pass",
467 Pass
*llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
468 char &llvm::LCSSAID
= LCSSAWrapperPass::ID
;
470 /// Transform \p F into loop-closed SSA form.
471 bool LCSSAWrapperPass::runOnFunction(Function
&F
) {
472 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
473 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
474 auto *SEWP
= getAnalysisIfAvailable
<ScalarEvolutionWrapperPass
>();
475 SE
= SEWP
? &SEWP
->getSE() : nullptr;
477 return formLCSSAOnAllLoops(LI
, *DT
, SE
);
480 PreservedAnalyses
LCSSAPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
481 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
482 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
483 auto *SE
= AM
.getCachedResult
<ScalarEvolutionAnalysis
>(F
);
484 if (!formLCSSAOnAllLoops(&LI
, DT
, SE
))
485 return PreservedAnalyses::all();
487 PreservedAnalyses PA
;
488 PA
.preserveSet
<CFGAnalyses
>();
489 PA
.preserve
<BasicAA
>();
490 PA
.preserve
<GlobalsAA
>();
491 PA
.preserve
<SCEVAA
>();
492 PA
.preserve
<ScalarEvolutionAnalysis
>();
493 // BPI maps terminators to probabilities, since we don't modify the CFG, no
494 // updates are needed to preserve it.
495 PA
.preserve
<BranchProbabilityAnalysis
>();
496 PA
.preserve
<MemorySSAAnalysis
>();