1 //===- Local.cpp - Functions to perform local transformations -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This family of functions perform various local transformations to the
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
88 using namespace llvm::PatternMatch
;
90 #define DEBUG_TYPE "local"
92 STATISTIC(NumRemoved
, "Number of unreachable basic blocks removed");
94 // Max recursion depth for collectBitParts used when detecting bswap and
96 static const unsigned BitPartRecursionMaxDepth
= 64;
98 //===----------------------------------------------------------------------===//
99 // Local constant propagation.
102 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
103 /// constant value, convert it into an unconditional branch to the constant
104 /// destination. This is a nontrivial operation because the successors of this
105 /// basic block must have their PHI nodes updated.
106 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
107 /// conditions and indirectbr addresses this might make dead if
108 /// DeleteDeadConditions is true.
109 bool llvm::ConstantFoldTerminator(BasicBlock
*BB
, bool DeleteDeadConditions
,
110 const TargetLibraryInfo
*TLI
,
111 DomTreeUpdater
*DTU
) {
112 Instruction
*T
= BB
->getTerminator();
113 IRBuilder
<> Builder(T
);
115 // Branch - See if we are conditional jumping on constant
116 if (auto *BI
= dyn_cast
<BranchInst
>(T
)) {
117 if (BI
->isUnconditional()) return false; // Can't optimize uncond branch
118 BasicBlock
*Dest1
= BI
->getSuccessor(0);
119 BasicBlock
*Dest2
= BI
->getSuccessor(1);
121 if (auto *Cond
= dyn_cast
<ConstantInt
>(BI
->getCondition())) {
122 // Are we branching on constant?
123 // YES. Change to unconditional branch...
124 BasicBlock
*Destination
= Cond
->getZExtValue() ? Dest1
: Dest2
;
125 BasicBlock
*OldDest
= Cond
->getZExtValue() ? Dest2
: Dest1
;
127 // Let the basic block know that we are letting go of it. Based on this,
128 // it will adjust it's PHI nodes.
129 OldDest
->removePredecessor(BB
);
131 // Replace the conditional branch with an unconditional one.
132 Builder
.CreateBr(Destination
);
133 BI
->eraseFromParent();
135 DTU
->applyUpdatesPermissive({{DominatorTree::Delete
, BB
, OldDest
}});
139 if (Dest2
== Dest1
) { // Conditional branch to same location?
140 // This branch matches something like this:
141 // br bool %cond, label %Dest, label %Dest
142 // and changes it into: br label %Dest
144 // Let the basic block know that we are letting go of one copy of it.
145 assert(BI
->getParent() && "Terminator not inserted in block!");
146 Dest1
->removePredecessor(BI
->getParent());
148 // Replace the conditional branch with an unconditional one.
149 Builder
.CreateBr(Dest1
);
150 Value
*Cond
= BI
->getCondition();
151 BI
->eraseFromParent();
152 if (DeleteDeadConditions
)
153 RecursivelyDeleteTriviallyDeadInstructions(Cond
, TLI
);
159 if (auto *SI
= dyn_cast
<SwitchInst
>(T
)) {
160 // If we are switching on a constant, we can convert the switch to an
161 // unconditional branch.
162 auto *CI
= dyn_cast
<ConstantInt
>(SI
->getCondition());
163 BasicBlock
*DefaultDest
= SI
->getDefaultDest();
164 BasicBlock
*TheOnlyDest
= DefaultDest
;
166 // If the default is unreachable, ignore it when searching for TheOnlyDest.
167 if (isa
<UnreachableInst
>(DefaultDest
->getFirstNonPHIOrDbg()) &&
168 SI
->getNumCases() > 0) {
169 TheOnlyDest
= SI
->case_begin()->getCaseSuccessor();
172 // Figure out which case it goes to.
173 for (auto i
= SI
->case_begin(), e
= SI
->case_end(); i
!= e
;) {
174 // Found case matching a constant operand?
175 if (i
->getCaseValue() == CI
) {
176 TheOnlyDest
= i
->getCaseSuccessor();
180 // Check to see if this branch is going to the same place as the default
181 // dest. If so, eliminate it as an explicit compare.
182 if (i
->getCaseSuccessor() == DefaultDest
) {
183 MDNode
*MD
= SI
->getMetadata(LLVMContext::MD_prof
);
184 unsigned NCases
= SI
->getNumCases();
185 // Fold the case metadata into the default if there will be any branches
186 // left, unless the metadata doesn't match the switch.
187 if (NCases
> 1 && MD
&& MD
->getNumOperands() == 2 + NCases
) {
188 // Collect branch weights into a vector.
189 SmallVector
<uint32_t, 8> Weights
;
190 for (unsigned MD_i
= 1, MD_e
= MD
->getNumOperands(); MD_i
< MD_e
;
192 auto *CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(MD_i
));
193 Weights
.push_back(CI
->getValue().getZExtValue());
195 // Merge weight of this case to the default weight.
196 unsigned idx
= i
->getCaseIndex();
197 Weights
[0] += Weights
[idx
+1];
198 // Remove weight for this case.
199 std::swap(Weights
[idx
+1], Weights
.back());
201 SI
->setMetadata(LLVMContext::MD_prof
,
202 MDBuilder(BB
->getContext()).
203 createBranchWeights(Weights
));
205 // Remove this entry.
206 BasicBlock
*ParentBB
= SI
->getParent();
207 DefaultDest
->removePredecessor(ParentBB
);
208 i
= SI
->removeCase(i
);
211 DTU
->applyUpdatesPermissive(
212 {{DominatorTree::Delete
, ParentBB
, DefaultDest
}});
216 // Otherwise, check to see if the switch only branches to one destination.
217 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
219 if (i
->getCaseSuccessor() != TheOnlyDest
)
220 TheOnlyDest
= nullptr;
222 // Increment this iterator as we haven't removed the case.
226 if (CI
&& !TheOnlyDest
) {
227 // Branching on a constant, but not any of the cases, go to the default
229 TheOnlyDest
= SI
->getDefaultDest();
232 // If we found a single destination that we can fold the switch into, do so
235 // Insert the new branch.
236 Builder
.CreateBr(TheOnlyDest
);
237 BasicBlock
*BB
= SI
->getParent();
238 std::vector
<DominatorTree::UpdateType
> Updates
;
240 Updates
.reserve(SI
->getNumSuccessors() - 1);
242 // Remove entries from PHI nodes which we no longer branch to...
243 for (BasicBlock
*Succ
: successors(SI
)) {
244 // Found case matching a constant operand?
245 if (Succ
== TheOnlyDest
) {
246 TheOnlyDest
= nullptr; // Don't modify the first branch to TheOnlyDest
248 Succ
->removePredecessor(BB
);
250 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
254 // Delete the old switch.
255 Value
*Cond
= SI
->getCondition();
256 SI
->eraseFromParent();
257 if (DeleteDeadConditions
)
258 RecursivelyDeleteTriviallyDeadInstructions(Cond
, TLI
);
260 DTU
->applyUpdatesPermissive(Updates
);
264 if (SI
->getNumCases() == 1) {
265 // Otherwise, we can fold this switch into a conditional branch
266 // instruction if it has only one non-default destination.
267 auto FirstCase
= *SI
->case_begin();
268 Value
*Cond
= Builder
.CreateICmpEQ(SI
->getCondition(),
269 FirstCase
.getCaseValue(), "cond");
271 // Insert the new branch.
272 BranchInst
*NewBr
= Builder
.CreateCondBr(Cond
,
273 FirstCase
.getCaseSuccessor(),
274 SI
->getDefaultDest());
275 MDNode
*MD
= SI
->getMetadata(LLVMContext::MD_prof
);
276 if (MD
&& MD
->getNumOperands() == 3) {
277 ConstantInt
*SICase
=
278 mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(2));
280 mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(1));
281 assert(SICase
&& SIDef
);
282 // The TrueWeight should be the weight for the single case of SI.
283 NewBr
->setMetadata(LLVMContext::MD_prof
,
284 MDBuilder(BB
->getContext()).
285 createBranchWeights(SICase
->getValue().getZExtValue(),
286 SIDef
->getValue().getZExtValue()));
289 // Update make.implicit metadata to the newly-created conditional branch.
290 MDNode
*MakeImplicitMD
= SI
->getMetadata(LLVMContext::MD_make_implicit
);
292 NewBr
->setMetadata(LLVMContext::MD_make_implicit
, MakeImplicitMD
);
294 // Delete the old switch.
295 SI
->eraseFromParent();
301 if (auto *IBI
= dyn_cast
<IndirectBrInst
>(T
)) {
302 // indirectbr blockaddress(@F, @BB) -> br label @BB
304 dyn_cast
<BlockAddress
>(IBI
->getAddress()->stripPointerCasts())) {
305 BasicBlock
*TheOnlyDest
= BA
->getBasicBlock();
306 std::vector
<DominatorTree::UpdateType
> Updates
;
308 Updates
.reserve(IBI
->getNumDestinations() - 1);
310 // Insert the new branch.
311 Builder
.CreateBr(TheOnlyDest
);
313 for (unsigned i
= 0, e
= IBI
->getNumDestinations(); i
!= e
; ++i
) {
314 if (IBI
->getDestination(i
) == TheOnlyDest
) {
315 TheOnlyDest
= nullptr;
317 BasicBlock
*ParentBB
= IBI
->getParent();
318 BasicBlock
*DestBB
= IBI
->getDestination(i
);
319 DestBB
->removePredecessor(ParentBB
);
321 Updates
.push_back({DominatorTree::Delete
, ParentBB
, DestBB
});
324 Value
*Address
= IBI
->getAddress();
325 IBI
->eraseFromParent();
326 if (DeleteDeadConditions
)
327 // Delete pointer cast instructions.
328 RecursivelyDeleteTriviallyDeadInstructions(Address
, TLI
);
330 // Also zap the blockaddress constant if there are no users remaining,
331 // otherwise the destination is still marked as having its address taken.
333 BA
->destroyConstant();
335 // If we didn't find our destination in the IBI successor list, then we
336 // have undefined behavior. Replace the unconditional branch with an
337 // 'unreachable' instruction.
339 BB
->getTerminator()->eraseFromParent();
340 new UnreachableInst(BB
->getContext(), BB
);
344 DTU
->applyUpdatesPermissive(Updates
);
352 //===----------------------------------------------------------------------===//
353 // Local dead code elimination.
356 /// isInstructionTriviallyDead - Return true if the result produced by the
357 /// instruction is not used, and the instruction has no side effects.
359 bool llvm::isInstructionTriviallyDead(Instruction
*I
,
360 const TargetLibraryInfo
*TLI
) {
363 return wouldInstructionBeTriviallyDead(I
, TLI
);
366 bool llvm::wouldInstructionBeTriviallyDead(Instruction
*I
,
367 const TargetLibraryInfo
*TLI
) {
368 if (I
->isTerminator())
371 // We don't want the landingpad-like instructions removed by anything this
376 // We don't want debug info removed by anything this general, unless
377 // debug info is empty.
378 if (DbgDeclareInst
*DDI
= dyn_cast
<DbgDeclareInst
>(I
)) {
379 if (DDI
->getAddress())
383 if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(I
)) {
388 if (DbgLabelInst
*DLI
= dyn_cast
<DbgLabelInst
>(I
)) {
394 if (!I
->mayHaveSideEffects())
397 // Special case intrinsics that "may have side effects" but can be deleted
399 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
400 // Safe to delete llvm.stacksave and launder.invariant.group if dead.
401 if (II
->getIntrinsicID() == Intrinsic::stacksave
||
402 II
->getIntrinsicID() == Intrinsic::launder_invariant_group
)
405 // Lifetime intrinsics are dead when their right-hand is undef.
406 if (II
->isLifetimeStartOrEnd())
407 return isa
<UndefValue
>(II
->getArgOperand(1));
409 // Assumptions are dead if their condition is trivially true. Guards on
410 // true are operationally no-ops. In the future we can consider more
411 // sophisticated tradeoffs for guards considering potential for check
412 // widening, but for now we keep things simple.
413 if (II
->getIntrinsicID() == Intrinsic::assume
||
414 II
->getIntrinsicID() == Intrinsic::experimental_guard
) {
415 if (ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(II
->getArgOperand(0)))
416 return !Cond
->isZero();
422 if (isAllocLikeFn(I
, TLI
))
425 if (CallInst
*CI
= isFreeCall(I
, TLI
))
426 if (Constant
*C
= dyn_cast
<Constant
>(CI
->getArgOperand(0)))
427 return C
->isNullValue() || isa
<UndefValue
>(C
);
429 if (auto *Call
= dyn_cast
<CallBase
>(I
))
430 if (isMathLibCallNoop(Call
, TLI
))
436 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
437 /// trivially dead instruction, delete it. If that makes any of its operands
438 /// trivially dead, delete them too, recursively. Return true if any
439 /// instructions were deleted.
440 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
441 Value
*V
, const TargetLibraryInfo
*TLI
, MemorySSAUpdater
*MSSAU
) {
442 Instruction
*I
= dyn_cast
<Instruction
>(V
);
443 if (!I
|| !isInstructionTriviallyDead(I
, TLI
))
446 SmallVector
<Instruction
*, 16> DeadInsts
;
447 DeadInsts
.push_back(I
);
448 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts
, TLI
, MSSAU
);
453 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
454 SmallVectorImpl
<Instruction
*> &DeadInsts
, const TargetLibraryInfo
*TLI
,
455 MemorySSAUpdater
*MSSAU
) {
456 // Process the dead instruction list until empty.
457 while (!DeadInsts
.empty()) {
458 Instruction
&I
= *DeadInsts
.pop_back_val();
459 assert(I
.use_empty() && "Instructions with uses are not dead.");
460 assert(isInstructionTriviallyDead(&I
, TLI
) &&
461 "Live instruction found in dead worklist!");
463 // Don't lose the debug info while deleting the instructions.
466 // Null out all of the instruction's operands to see if any operand becomes
468 for (Use
&OpU
: I
.operands()) {
469 Value
*OpV
= OpU
.get();
472 if (!OpV
->use_empty())
475 // If the operand is an instruction that became dead as we nulled out the
476 // operand, and if it is 'trivially' dead, delete it in a future loop
478 if (Instruction
*OpI
= dyn_cast
<Instruction
>(OpV
))
479 if (isInstructionTriviallyDead(OpI
, TLI
))
480 DeadInsts
.push_back(OpI
);
483 MSSAU
->removeMemoryAccess(&I
);
489 bool llvm::replaceDbgUsesWithUndef(Instruction
*I
) {
490 SmallVector
<DbgVariableIntrinsic
*, 1> DbgUsers
;
491 findDbgUsers(DbgUsers
, I
);
492 for (auto *DII
: DbgUsers
) {
493 Value
*Undef
= UndefValue::get(I
->getType());
494 DII
->setOperand(0, MetadataAsValue::get(DII
->getContext(),
495 ValueAsMetadata::get(Undef
)));
497 return !DbgUsers
.empty();
500 /// areAllUsesEqual - Check whether the uses of a value are all the same.
501 /// This is similar to Instruction::hasOneUse() except this will also return
502 /// true when there are no uses or multiple uses that all refer to the same
504 static bool areAllUsesEqual(Instruction
*I
) {
505 Value::user_iterator UI
= I
->user_begin();
506 Value::user_iterator UE
= I
->user_end();
511 for (++UI
; UI
!= UE
; ++UI
) {
518 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
519 /// dead PHI node, due to being a def-use chain of single-use nodes that
520 /// either forms a cycle or is terminated by a trivially dead instruction,
521 /// delete it. If that makes any of its operands trivially dead, delete them
522 /// too, recursively. Return true if a change was made.
523 bool llvm::RecursivelyDeleteDeadPHINode(PHINode
*PN
,
524 const TargetLibraryInfo
*TLI
) {
525 SmallPtrSet
<Instruction
*, 4> Visited
;
526 for (Instruction
*I
= PN
; areAllUsesEqual(I
) && !I
->mayHaveSideEffects();
527 I
= cast
<Instruction
>(*I
->user_begin())) {
529 return RecursivelyDeleteTriviallyDeadInstructions(I
, TLI
);
531 // If we find an instruction more than once, we're on a cycle that
532 // won't prove fruitful.
533 if (!Visited
.insert(I
).second
) {
534 // Break the cycle and delete the instruction and its operands.
535 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
536 (void)RecursivelyDeleteTriviallyDeadInstructions(I
, TLI
);
544 simplifyAndDCEInstruction(Instruction
*I
,
545 SmallSetVector
<Instruction
*, 16> &WorkList
,
546 const DataLayout
&DL
,
547 const TargetLibraryInfo
*TLI
) {
548 if (isInstructionTriviallyDead(I
, TLI
)) {
549 salvageDebugInfo(*I
);
551 // Null out all of the instruction's operands to see if any operand becomes
553 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
554 Value
*OpV
= I
->getOperand(i
);
555 I
->setOperand(i
, nullptr);
557 if (!OpV
->use_empty() || I
== OpV
)
560 // If the operand is an instruction that became dead as we nulled out the
561 // operand, and if it is 'trivially' dead, delete it in a future loop
563 if (Instruction
*OpI
= dyn_cast
<Instruction
>(OpV
))
564 if (isInstructionTriviallyDead(OpI
, TLI
))
565 WorkList
.insert(OpI
);
568 I
->eraseFromParent();
573 if (Value
*SimpleV
= SimplifyInstruction(I
, DL
)) {
574 // Add the users to the worklist. CAREFUL: an instruction can use itself,
575 // in the case of a phi node.
576 for (User
*U
: I
->users()) {
578 WorkList
.insert(cast
<Instruction
>(U
));
582 // Replace the instruction with its simplified value.
583 bool Changed
= false;
584 if (!I
->use_empty()) {
585 I
->replaceAllUsesWith(SimpleV
);
588 if (isInstructionTriviallyDead(I
, TLI
)) {
589 I
->eraseFromParent();
597 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
598 /// simplify any instructions in it and recursively delete dead instructions.
600 /// This returns true if it changed the code, note that it can delete
601 /// instructions in other blocks as well in this block.
602 bool llvm::SimplifyInstructionsInBlock(BasicBlock
*BB
,
603 const TargetLibraryInfo
*TLI
) {
604 bool MadeChange
= false;
605 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
608 // In debug builds, ensure that the terminator of the block is never replaced
609 // or deleted by these simplifications. The idea of simplification is that it
610 // cannot introduce new instructions, and there is no way to replace the
611 // terminator of a block without introducing a new instruction.
612 AssertingVH
<Instruction
> TerminatorVH(&BB
->back());
615 SmallSetVector
<Instruction
*, 16> WorkList
;
616 // Iterate over the original function, only adding insts to the worklist
617 // if they actually need to be revisited. This avoids having to pre-init
618 // the worklist with the entire function's worth of instructions.
619 for (BasicBlock::iterator BI
= BB
->begin(), E
= std::prev(BB
->end());
621 assert(!BI
->isTerminator());
622 Instruction
*I
= &*BI
;
625 // We're visiting this instruction now, so make sure it's not in the
626 // worklist from an earlier visit.
627 if (!WorkList
.count(I
))
628 MadeChange
|= simplifyAndDCEInstruction(I
, WorkList
, DL
, TLI
);
631 while (!WorkList
.empty()) {
632 Instruction
*I
= WorkList
.pop_back_val();
633 MadeChange
|= simplifyAndDCEInstruction(I
, WorkList
, DL
, TLI
);
638 //===----------------------------------------------------------------------===//
639 // Control Flow Graph Restructuring.
642 void llvm::RemovePredecessorAndSimplify(BasicBlock
*BB
, BasicBlock
*Pred
,
643 DomTreeUpdater
*DTU
) {
644 // This only adjusts blocks with PHI nodes.
645 if (!isa
<PHINode
>(BB
->begin()))
648 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
649 // them down. This will leave us with single entry phi nodes and other phis
650 // that can be removed.
651 BB
->removePredecessor(Pred
, true);
653 WeakTrackingVH PhiIt
= &BB
->front();
654 while (PHINode
*PN
= dyn_cast
<PHINode
>(PhiIt
)) {
655 PhiIt
= &*++BasicBlock::iterator(cast
<Instruction
>(PhiIt
));
656 Value
*OldPhiIt
= PhiIt
;
658 if (!recursivelySimplifyInstruction(PN
))
661 // If recursive simplification ended up deleting the next PHI node we would
662 // iterate to, then our iterator is invalid, restart scanning from the top
664 if (PhiIt
!= OldPhiIt
) PhiIt
= &BB
->front();
667 DTU
->applyUpdatesPermissive({{DominatorTree::Delete
, Pred
, BB
}});
670 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock
*DestBB
,
671 DomTreeUpdater
*DTU
) {
673 // If BB has single-entry PHI nodes, fold them.
674 while (PHINode
*PN
= dyn_cast
<PHINode
>(DestBB
->begin())) {
675 Value
*NewVal
= PN
->getIncomingValue(0);
676 // Replace self referencing PHI with undef, it must be dead.
677 if (NewVal
== PN
) NewVal
= UndefValue::get(PN
->getType());
678 PN
->replaceAllUsesWith(NewVal
);
679 PN
->eraseFromParent();
682 BasicBlock
*PredBB
= DestBB
->getSinglePredecessor();
683 assert(PredBB
&& "Block doesn't have a single predecessor!");
685 bool ReplaceEntryBB
= false;
686 if (PredBB
== &DestBB
->getParent()->getEntryBlock())
687 ReplaceEntryBB
= true;
689 // DTU updates: Collect all the edges that enter
690 // PredBB. These dominator edges will be redirected to DestBB.
691 SmallVector
<DominatorTree::UpdateType
, 32> Updates
;
694 Updates
.push_back({DominatorTree::Delete
, PredBB
, DestBB
});
695 for (auto I
= pred_begin(PredBB
), E
= pred_end(PredBB
); I
!= E
; ++I
) {
696 Updates
.push_back({DominatorTree::Delete
, *I
, PredBB
});
697 // This predecessor of PredBB may already have DestBB as a successor.
698 if (llvm::find(successors(*I
), DestBB
) == succ_end(*I
))
699 Updates
.push_back({DominatorTree::Insert
, *I
, DestBB
});
703 // Zap anything that took the address of DestBB. Not doing this will give the
704 // address an invalid value.
705 if (DestBB
->hasAddressTaken()) {
706 BlockAddress
*BA
= BlockAddress::get(DestBB
);
707 Constant
*Replacement
=
708 ConstantInt::get(Type::getInt32Ty(BA
->getContext()), 1);
709 BA
->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement
,
711 BA
->destroyConstant();
714 // Anything that branched to PredBB now branches to DestBB.
715 PredBB
->replaceAllUsesWith(DestBB
);
717 // Splice all the instructions from PredBB to DestBB.
718 PredBB
->getTerminator()->eraseFromParent();
719 DestBB
->getInstList().splice(DestBB
->begin(), PredBB
->getInstList());
720 new UnreachableInst(PredBB
->getContext(), PredBB
);
722 // If the PredBB is the entry block of the function, move DestBB up to
723 // become the entry block after we erase PredBB.
725 DestBB
->moveAfter(PredBB
);
728 assert(PredBB
->getInstList().size() == 1 &&
729 isa
<UnreachableInst
>(PredBB
->getTerminator()) &&
730 "The successor list of PredBB isn't empty before "
731 "applying corresponding DTU updates.");
732 DTU
->applyUpdatesPermissive(Updates
);
733 DTU
->deleteBB(PredBB
);
734 // Recalculation of DomTree is needed when updating a forward DomTree and
735 // the Entry BB is replaced.
736 if (ReplaceEntryBB
&& DTU
->hasDomTree()) {
737 // The entry block was removed and there is no external interface for
738 // the dominator tree to be notified of this change. In this corner-case
739 // we recalculate the entire tree.
740 DTU
->recalculate(*(DestBB
->getParent()));
745 PredBB
->eraseFromParent(); // Nuke BB if DTU is nullptr.
749 /// Return true if we can choose one of these values to use in place of the
750 /// other. Note that we will always choose the non-undef value to keep.
751 static bool CanMergeValues(Value
*First
, Value
*Second
) {
752 return First
== Second
|| isa
<UndefValue
>(First
) || isa
<UndefValue
>(Second
);
755 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
756 /// branch to Succ, into Succ.
758 /// Assumption: Succ is the single successor for BB.
759 static bool CanPropagatePredecessorsForPHIs(BasicBlock
*BB
, BasicBlock
*Succ
) {
760 assert(*succ_begin(BB
) == Succ
&& "Succ is not successor of BB!");
762 LLVM_DEBUG(dbgs() << "Looking to fold " << BB
->getName() << " into "
763 << Succ
->getName() << "\n");
764 // Shortcut, if there is only a single predecessor it must be BB and merging
766 if (Succ
->getSinglePredecessor()) return true;
768 // Make a list of the predecessors of BB
769 SmallPtrSet
<BasicBlock
*, 16> BBPreds(pred_begin(BB
), pred_end(BB
));
771 // Look at all the phi nodes in Succ, to see if they present a conflict when
772 // merging these blocks
773 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
774 PHINode
*PN
= cast
<PHINode
>(I
);
776 // If the incoming value from BB is again a PHINode in
777 // BB which has the same incoming value for *PI as PN does, we can
778 // merge the phi nodes and then the blocks can still be merged
779 PHINode
*BBPN
= dyn_cast
<PHINode
>(PN
->getIncomingValueForBlock(BB
));
780 if (BBPN
&& BBPN
->getParent() == BB
) {
781 for (unsigned PI
= 0, PE
= PN
->getNumIncomingValues(); PI
!= PE
; ++PI
) {
782 BasicBlock
*IBB
= PN
->getIncomingBlock(PI
);
783 if (BBPreds
.count(IBB
) &&
784 !CanMergeValues(BBPN
->getIncomingValueForBlock(IBB
),
785 PN
->getIncomingValue(PI
))) {
787 << "Can't fold, phi node " << PN
->getName() << " in "
788 << Succ
->getName() << " is conflicting with "
789 << BBPN
->getName() << " with regard to common predecessor "
790 << IBB
->getName() << "\n");
795 Value
* Val
= PN
->getIncomingValueForBlock(BB
);
796 for (unsigned PI
= 0, PE
= PN
->getNumIncomingValues(); PI
!= PE
; ++PI
) {
797 // See if the incoming value for the common predecessor is equal to the
798 // one for BB, in which case this phi node will not prevent the merging
800 BasicBlock
*IBB
= PN
->getIncomingBlock(PI
);
801 if (BBPreds
.count(IBB
) &&
802 !CanMergeValues(Val
, PN
->getIncomingValue(PI
))) {
803 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN
->getName()
804 << " in " << Succ
->getName()
805 << " is conflicting with regard to common "
806 << "predecessor " << IBB
->getName() << "\n");
816 using PredBlockVector
= SmallVector
<BasicBlock
*, 16>;
817 using IncomingValueMap
= DenseMap
<BasicBlock
*, Value
*>;
819 /// Determines the value to use as the phi node input for a block.
821 /// Select between \p OldVal any value that we know flows from \p BB
822 /// to a particular phi on the basis of which one (if either) is not
823 /// undef. Update IncomingValues based on the selected value.
825 /// \param OldVal The value we are considering selecting.
826 /// \param BB The block that the value flows in from.
827 /// \param IncomingValues A map from block-to-value for other phi inputs
828 /// that we have examined.
830 /// \returns the selected value.
831 static Value
*selectIncomingValueForBlock(Value
*OldVal
, BasicBlock
*BB
,
832 IncomingValueMap
&IncomingValues
) {
833 if (!isa
<UndefValue
>(OldVal
)) {
834 assert((!IncomingValues
.count(BB
) ||
835 IncomingValues
.find(BB
)->second
== OldVal
) &&
836 "Expected OldVal to match incoming value from BB!");
838 IncomingValues
.insert(std::make_pair(BB
, OldVal
));
842 IncomingValueMap::const_iterator It
= IncomingValues
.find(BB
);
843 if (It
!= IncomingValues
.end()) return It
->second
;
848 /// Create a map from block to value for the operands of a
851 /// Create a map from block to value for each non-undef value flowing
854 /// \param PN The phi we are collecting the map for.
855 /// \param IncomingValues [out] The map from block to value for this phi.
856 static void gatherIncomingValuesToPhi(PHINode
*PN
,
857 IncomingValueMap
&IncomingValues
) {
858 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
859 BasicBlock
*BB
= PN
->getIncomingBlock(i
);
860 Value
*V
= PN
->getIncomingValue(i
);
862 if (!isa
<UndefValue
>(V
))
863 IncomingValues
.insert(std::make_pair(BB
, V
));
867 /// Replace the incoming undef values to a phi with the values
868 /// from a block-to-value map.
870 /// \param PN The phi we are replacing the undefs in.
871 /// \param IncomingValues A map from block to value.
872 static void replaceUndefValuesInPhi(PHINode
*PN
,
873 const IncomingValueMap
&IncomingValues
) {
874 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
875 Value
*V
= PN
->getIncomingValue(i
);
877 if (!isa
<UndefValue
>(V
)) continue;
879 BasicBlock
*BB
= PN
->getIncomingBlock(i
);
880 IncomingValueMap::const_iterator It
= IncomingValues
.find(BB
);
881 if (It
== IncomingValues
.end()) continue;
883 PN
->setIncomingValue(i
, It
->second
);
887 /// Replace a value flowing from a block to a phi with
888 /// potentially multiple instances of that value flowing from the
889 /// block's predecessors to the phi.
891 /// \param BB The block with the value flowing into the phi.
892 /// \param BBPreds The predecessors of BB.
893 /// \param PN The phi that we are updating.
894 static void redirectValuesFromPredecessorsToPhi(BasicBlock
*BB
,
895 const PredBlockVector
&BBPreds
,
897 Value
*OldVal
= PN
->removeIncomingValue(BB
, false);
898 assert(OldVal
&& "No entry in PHI for Pred BB!");
900 IncomingValueMap IncomingValues
;
902 // We are merging two blocks - BB, and the block containing PN - and
903 // as a result we need to redirect edges from the predecessors of BB
904 // to go to the block containing PN, and update PN
905 // accordingly. Since we allow merging blocks in the case where the
906 // predecessor and successor blocks both share some predecessors,
907 // and where some of those common predecessors might have undef
908 // values flowing into PN, we want to rewrite those values to be
909 // consistent with the non-undef values.
911 gatherIncomingValuesToPhi(PN
, IncomingValues
);
913 // If this incoming value is one of the PHI nodes in BB, the new entries
914 // in the PHI node are the entries from the old PHI.
915 if (isa
<PHINode
>(OldVal
) && cast
<PHINode
>(OldVal
)->getParent() == BB
) {
916 PHINode
*OldValPN
= cast
<PHINode
>(OldVal
);
917 for (unsigned i
= 0, e
= OldValPN
->getNumIncomingValues(); i
!= e
; ++i
) {
918 // Note that, since we are merging phi nodes and BB and Succ might
919 // have common predecessors, we could end up with a phi node with
920 // identical incoming branches. This will be cleaned up later (and
921 // will trigger asserts if we try to clean it up now, without also
922 // simplifying the corresponding conditional branch).
923 BasicBlock
*PredBB
= OldValPN
->getIncomingBlock(i
);
924 Value
*PredVal
= OldValPN
->getIncomingValue(i
);
925 Value
*Selected
= selectIncomingValueForBlock(PredVal
, PredBB
,
928 // And add a new incoming value for this predecessor for the
929 // newly retargeted branch.
930 PN
->addIncoming(Selected
, PredBB
);
933 for (unsigned i
= 0, e
= BBPreds
.size(); i
!= e
; ++i
) {
934 // Update existing incoming values in PN for this
935 // predecessor of BB.
936 BasicBlock
*PredBB
= BBPreds
[i
];
937 Value
*Selected
= selectIncomingValueForBlock(OldVal
, PredBB
,
940 // And add a new incoming value for this predecessor for the
941 // newly retargeted branch.
942 PN
->addIncoming(Selected
, PredBB
);
946 replaceUndefValuesInPhi(PN
, IncomingValues
);
949 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock
*BB
,
950 DomTreeUpdater
*DTU
) {
951 assert(BB
!= &BB
->getParent()->getEntryBlock() &&
952 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
954 // We can't eliminate infinite loops.
955 BasicBlock
*Succ
= cast
<BranchInst
>(BB
->getTerminator())->getSuccessor(0);
956 if (BB
== Succ
) return false;
958 // Check to see if merging these blocks would cause conflicts for any of the
959 // phi nodes in BB or Succ. If not, we can safely merge.
960 if (!CanPropagatePredecessorsForPHIs(BB
, Succ
)) return false;
962 // Check for cases where Succ has multiple predecessors and a PHI node in BB
963 // has uses which will not disappear when the PHI nodes are merged. It is
964 // possible to handle such cases, but difficult: it requires checking whether
965 // BB dominates Succ, which is non-trivial to calculate in the case where
966 // Succ has multiple predecessors. Also, it requires checking whether
967 // constructing the necessary self-referential PHI node doesn't introduce any
968 // conflicts; this isn't too difficult, but the previous code for doing this
971 // Note that if this check finds a live use, BB dominates Succ, so BB is
972 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
973 // folding the branch isn't profitable in that case anyway.
974 if (!Succ
->getSinglePredecessor()) {
975 BasicBlock::iterator BBI
= BB
->begin();
976 while (isa
<PHINode
>(*BBI
)) {
977 for (Use
&U
: BBI
->uses()) {
978 if (PHINode
* PN
= dyn_cast
<PHINode
>(U
.getUser())) {
979 if (PN
->getIncomingBlock(U
) != BB
)
989 // We cannot fold the block if it's a branch to an already present callbr
990 // successor because that creates duplicate successors.
991 for (auto I
= pred_begin(BB
), E
= pred_end(BB
); I
!= E
; ++I
) {
992 if (auto *CBI
= dyn_cast
<CallBrInst
>((*I
)->getTerminator())) {
993 if (Succ
== CBI
->getDefaultDest())
995 for (unsigned i
= 0, e
= CBI
->getNumIndirectDests(); i
!= e
; ++i
)
996 if (Succ
== CBI
->getIndirectDest(i
))
1001 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB
);
1003 SmallVector
<DominatorTree::UpdateType
, 32> Updates
;
1005 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
1006 // All predecessors of BB will be moved to Succ.
1007 for (auto I
= pred_begin(BB
), E
= pred_end(BB
); I
!= E
; ++I
) {
1008 Updates
.push_back({DominatorTree::Delete
, *I
, BB
});
1009 // This predecessor of BB may already have Succ as a successor.
1010 if (llvm::find(successors(*I
), Succ
) == succ_end(*I
))
1011 Updates
.push_back({DominatorTree::Insert
, *I
, Succ
});
1015 if (isa
<PHINode
>(Succ
->begin())) {
1016 // If there is more than one pred of succ, and there are PHI nodes in
1017 // the successor, then we need to add incoming edges for the PHI nodes
1019 const PredBlockVector
BBPreds(pred_begin(BB
), pred_end(BB
));
1021 // Loop over all of the PHI nodes in the successor of BB.
1022 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
1023 PHINode
*PN
= cast
<PHINode
>(I
);
1025 redirectValuesFromPredecessorsToPhi(BB
, BBPreds
, PN
);
1029 if (Succ
->getSinglePredecessor()) {
1030 // BB is the only predecessor of Succ, so Succ will end up with exactly
1031 // the same predecessors BB had.
1033 // Copy over any phi, debug or lifetime instruction.
1034 BB
->getTerminator()->eraseFromParent();
1035 Succ
->getInstList().splice(Succ
->getFirstNonPHI()->getIterator(),
1038 while (PHINode
*PN
= dyn_cast
<PHINode
>(&BB
->front())) {
1039 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1040 assert(PN
->use_empty() && "There shouldn't be any uses here!");
1041 PN
->eraseFromParent();
1045 // If the unconditional branch we replaced contains llvm.loop metadata, we
1046 // add the metadata to the branch instructions in the predecessors.
1047 unsigned LoopMDKind
= BB
->getContext().getMDKindID("llvm.loop");
1048 Instruction
*TI
= BB
->getTerminator();
1050 if (MDNode
*LoopMD
= TI
->getMetadata(LoopMDKind
))
1051 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
1052 BasicBlock
*Pred
= *PI
;
1053 Pred
->getTerminator()->setMetadata(LoopMDKind
, LoopMD
);
1056 // Everything that jumped to BB now goes to Succ.
1057 BB
->replaceAllUsesWith(Succ
);
1058 if (!Succ
->hasName()) Succ
->takeName(BB
);
1060 // Clear the successor list of BB to match updates applying to DTU later.
1061 if (BB
->getTerminator())
1062 BB
->getInstList().pop_back();
1063 new UnreachableInst(BB
->getContext(), BB
);
1064 assert(succ_empty(BB
) && "The successor list of BB isn't empty before "
1065 "applying corresponding DTU updates.");
1068 DTU
->applyUpdatesPermissive(Updates
);
1071 BB
->eraseFromParent(); // Delete the old basic block.
1076 bool llvm::EliminateDuplicatePHINodes(BasicBlock
*BB
) {
1077 // This implementation doesn't currently consider undef operands
1078 // specially. Theoretically, two phis which are identical except for
1079 // one having an undef where the other doesn't could be collapsed.
1081 struct PHIDenseMapInfo
{
1082 static PHINode
*getEmptyKey() {
1083 return DenseMapInfo
<PHINode
*>::getEmptyKey();
1086 static PHINode
*getTombstoneKey() {
1087 return DenseMapInfo
<PHINode
*>::getTombstoneKey();
1090 static unsigned getHashValue(PHINode
*PN
) {
1091 // Compute a hash value on the operands. Instcombine will likely have
1092 // sorted them, which helps expose duplicates, but we have to check all
1093 // the operands to be safe in case instcombine hasn't run.
1094 return static_cast<unsigned>(hash_combine(
1095 hash_combine_range(PN
->value_op_begin(), PN
->value_op_end()),
1096 hash_combine_range(PN
->block_begin(), PN
->block_end())));
1099 static bool isEqual(PHINode
*LHS
, PHINode
*RHS
) {
1100 if (LHS
== getEmptyKey() || LHS
== getTombstoneKey() ||
1101 RHS
== getEmptyKey() || RHS
== getTombstoneKey())
1103 return LHS
->isIdenticalTo(RHS
);
1107 // Set of unique PHINodes.
1108 DenseSet
<PHINode
*, PHIDenseMapInfo
> PHISet
;
1110 // Examine each PHI.
1111 bool Changed
= false;
1112 for (auto I
= BB
->begin(); PHINode
*PN
= dyn_cast
<PHINode
>(I
++);) {
1113 auto Inserted
= PHISet
.insert(PN
);
1114 if (!Inserted
.second
) {
1115 // A duplicate. Replace this PHI with its duplicate.
1116 PN
->replaceAllUsesWith(*Inserted
.first
);
1117 PN
->eraseFromParent();
1120 // The RAUW can change PHIs that we already visited. Start over from the
1130 /// enforceKnownAlignment - If the specified pointer points to an object that
1131 /// we control, modify the object's alignment to PrefAlign. This isn't
1132 /// often possible though. If alignment is important, a more reliable approach
1133 /// is to simply align all global variables and allocation instructions to
1134 /// their preferred alignment from the beginning.
1135 static unsigned enforceKnownAlignment(Value
*V
, unsigned Alignment
,
1137 const DataLayout
&DL
) {
1138 assert(PrefAlign
> Alignment
);
1140 V
= V
->stripPointerCasts();
1142 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
1143 // TODO: ideally, computeKnownBits ought to have used
1144 // AllocaInst::getAlignment() in its computation already, making
1145 // the below max redundant. But, as it turns out,
1146 // stripPointerCasts recurses through infinite layers of bitcasts,
1147 // while computeKnownBits is not allowed to traverse more than 6
1149 Alignment
= std::max(AI
->getAlignment(), Alignment
);
1150 if (PrefAlign
<= Alignment
)
1153 // If the preferred alignment is greater than the natural stack alignment
1154 // then don't round up. This avoids dynamic stack realignment.
1155 if (DL
.exceedsNaturalStackAlignment(Align(PrefAlign
)))
1157 AI
->setAlignment(MaybeAlign(PrefAlign
));
1161 if (auto *GO
= dyn_cast
<GlobalObject
>(V
)) {
1162 // TODO: as above, this shouldn't be necessary.
1163 Alignment
= std::max(GO
->getAlignment(), Alignment
);
1164 if (PrefAlign
<= Alignment
)
1167 // If there is a large requested alignment and we can, bump up the alignment
1168 // of the global. If the memory we set aside for the global may not be the
1169 // memory used by the final program then it is impossible for us to reliably
1170 // enforce the preferred alignment.
1171 if (!GO
->canIncreaseAlignment())
1174 GO
->setAlignment(MaybeAlign(PrefAlign
));
1181 unsigned llvm::getOrEnforceKnownAlignment(Value
*V
, unsigned PrefAlign
,
1182 const DataLayout
&DL
,
1183 const Instruction
*CxtI
,
1184 AssumptionCache
*AC
,
1185 const DominatorTree
*DT
) {
1186 assert(V
->getType()->isPointerTy() &&
1187 "getOrEnforceKnownAlignment expects a pointer!");
1189 KnownBits Known
= computeKnownBits(V
, DL
, 0, AC
, CxtI
, DT
);
1190 unsigned TrailZ
= Known
.countMinTrailingZeros();
1192 // Avoid trouble with ridiculously large TrailZ values, such as
1193 // those computed from a null pointer.
1194 TrailZ
= std::min(TrailZ
, unsigned(sizeof(unsigned) * CHAR_BIT
- 1));
1196 unsigned Align
= 1u << std::min(Known
.getBitWidth() - 1, TrailZ
);
1198 // LLVM doesn't support alignments larger than this currently.
1199 Align
= std::min(Align
, +Value::MaximumAlignment
);
1201 if (PrefAlign
> Align
)
1202 Align
= enforceKnownAlignment(V
, Align
, PrefAlign
, DL
);
1204 // We don't need to make any adjustment.
1208 ///===---------------------------------------------------------------------===//
1209 /// Dbg Intrinsic utilities
1212 /// See if there is a dbg.value intrinsic for DIVar before I.
1213 static bool LdStHasDebugValue(DILocalVariable
*DIVar
, DIExpression
*DIExpr
,
1215 // Since we can't guarantee that the original dbg.declare instrinsic
1216 // is removed by LowerDbgDeclare(), we need to make sure that we are
1217 // not inserting the same dbg.value intrinsic over and over.
1218 BasicBlock::InstListType::iterator
PrevI(I
);
1219 if (PrevI
!= I
->getParent()->getInstList().begin()) {
1221 if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(PrevI
))
1222 if (DVI
->getValue() == I
->getOperand(0) &&
1223 DVI
->getVariable() == DIVar
&&
1224 DVI
->getExpression() == DIExpr
)
1230 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1231 static bool PhiHasDebugValue(DILocalVariable
*DIVar
,
1232 DIExpression
*DIExpr
,
1234 // Since we can't guarantee that the original dbg.declare instrinsic
1235 // is removed by LowerDbgDeclare(), we need to make sure that we are
1236 // not inserting the same dbg.value intrinsic over and over.
1237 SmallVector
<DbgValueInst
*, 1> DbgValues
;
1238 findDbgValues(DbgValues
, APN
);
1239 for (auto *DVI
: DbgValues
) {
1240 assert(DVI
->getValue() == APN
);
1241 if ((DVI
->getVariable() == DIVar
) && (DVI
->getExpression() == DIExpr
))
1247 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1248 /// (or fragment of the variable) described by \p DII.
1250 /// This is primarily intended as a helper for the different
1251 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1252 /// converted describes an alloca'd variable, so we need to use the
1253 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1254 /// identified as covering an n-bit fragment, if the store size of i1 is at
1256 static bool valueCoversEntireFragment(Type
*ValTy
, DbgVariableIntrinsic
*DII
) {
1257 const DataLayout
&DL
= DII
->getModule()->getDataLayout();
1258 uint64_t ValueSize
= DL
.getTypeAllocSizeInBits(ValTy
);
1259 if (auto FragmentSize
= DII
->getFragmentSizeInBits())
1260 return ValueSize
>= *FragmentSize
;
1261 // We can't always calculate the size of the DI variable (e.g. if it is a
1262 // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1264 if (DII
->isAddressOfVariable())
1265 if (auto *AI
= dyn_cast_or_null
<AllocaInst
>(DII
->getVariableLocation()))
1266 if (auto FragmentSize
= AI
->getAllocationSizeInBits(DL
))
1267 return ValueSize
>= *FragmentSize
;
1268 // Could not determine size of variable. Conservatively return false.
1272 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1273 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1274 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1275 /// case this DebugLoc leaks into any adjacent instructions.
1276 static DebugLoc
getDebugValueLoc(DbgVariableIntrinsic
*DII
, Instruction
*Src
) {
1277 // Original dbg.declare must have a location.
1278 DebugLoc DeclareLoc
= DII
->getDebugLoc();
1279 MDNode
*Scope
= DeclareLoc
.getScope();
1280 DILocation
*InlinedAt
= DeclareLoc
.getInlinedAt();
1281 // Produce an unknown location with the correct scope / inlinedAt fields.
1282 return DebugLoc::get(0, 0, Scope
, InlinedAt
);
1285 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1286 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1287 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic
*DII
,
1288 StoreInst
*SI
, DIBuilder
&Builder
) {
1289 assert(DII
->isAddressOfVariable());
1290 auto *DIVar
= DII
->getVariable();
1291 assert(DIVar
&& "Missing variable");
1292 auto *DIExpr
= DII
->getExpression();
1293 Value
*DV
= SI
->getValueOperand();
1295 DebugLoc NewLoc
= getDebugValueLoc(DII
, SI
);
1297 if (!valueCoversEntireFragment(DV
->getType(), DII
)) {
1298 // FIXME: If storing to a part of the variable described by the dbg.declare,
1299 // then we want to insert a dbg.value for the corresponding fragment.
1300 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1302 // For now, when there is a store to parts of the variable (but we do not
1303 // know which part) we insert an dbg.value instrinsic to indicate that we
1304 // know nothing about the variable's content.
1305 DV
= UndefValue::get(DV
->getType());
1306 if (!LdStHasDebugValue(DIVar
, DIExpr
, SI
))
1307 Builder
.insertDbgValueIntrinsic(DV
, DIVar
, DIExpr
, NewLoc
, SI
);
1311 if (!LdStHasDebugValue(DIVar
, DIExpr
, SI
))
1312 Builder
.insertDbgValueIntrinsic(DV
, DIVar
, DIExpr
, NewLoc
, SI
);
1315 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1316 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1317 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic
*DII
,
1318 LoadInst
*LI
, DIBuilder
&Builder
) {
1319 auto *DIVar
= DII
->getVariable();
1320 auto *DIExpr
= DII
->getExpression();
1321 assert(DIVar
&& "Missing variable");
1323 if (LdStHasDebugValue(DIVar
, DIExpr
, LI
))
1326 if (!valueCoversEntireFragment(LI
->getType(), DII
)) {
1327 // FIXME: If only referring to a part of the variable described by the
1328 // dbg.declare, then we want to insert a dbg.value for the corresponding
1330 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1335 DebugLoc NewLoc
= getDebugValueLoc(DII
, nullptr);
1337 // We are now tracking the loaded value instead of the address. In the
1338 // future if multi-location support is added to the IR, it might be
1339 // preferable to keep tracking both the loaded value and the original
1340 // address in case the alloca can not be elided.
1341 Instruction
*DbgValue
= Builder
.insertDbgValueIntrinsic(
1342 LI
, DIVar
, DIExpr
, NewLoc
, (Instruction
*)nullptr);
1343 DbgValue
->insertAfter(LI
);
1346 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1347 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1348 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic
*DII
,
1349 PHINode
*APN
, DIBuilder
&Builder
) {
1350 auto *DIVar
= DII
->getVariable();
1351 auto *DIExpr
= DII
->getExpression();
1352 assert(DIVar
&& "Missing variable");
1354 if (PhiHasDebugValue(DIVar
, DIExpr
, APN
))
1357 if (!valueCoversEntireFragment(APN
->getType(), DII
)) {
1358 // FIXME: If only referring to a part of the variable described by the
1359 // dbg.declare, then we want to insert a dbg.value for the corresponding
1361 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1366 BasicBlock
*BB
= APN
->getParent();
1367 auto InsertionPt
= BB
->getFirstInsertionPt();
1369 DebugLoc NewLoc
= getDebugValueLoc(DII
, nullptr);
1371 // The block may be a catchswitch block, which does not have a valid
1373 // FIXME: Insert dbg.value markers in the successors when appropriate.
1374 if (InsertionPt
!= BB
->end())
1375 Builder
.insertDbgValueIntrinsic(APN
, DIVar
, DIExpr
, NewLoc
, &*InsertionPt
);
1378 /// Determine whether this alloca is either a VLA or an array.
1379 static bool isArray(AllocaInst
*AI
) {
1380 return AI
->isArrayAllocation() ||
1381 (AI
->getAllocatedType() && AI
->getAllocatedType()->isArrayTy());
1384 /// Determine whether this alloca is a structure.
1385 static bool isStructure(AllocaInst
*AI
) {
1386 return AI
->getAllocatedType() && AI
->getAllocatedType()->isStructTy();
1389 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1390 /// of llvm.dbg.value intrinsics.
1391 bool llvm::LowerDbgDeclare(Function
&F
) {
1392 DIBuilder
DIB(*F
.getParent(), /*AllowUnresolved*/ false);
1393 SmallVector
<DbgDeclareInst
*, 4> Dbgs
;
1395 for (Instruction
&BI
: FI
)
1396 if (auto DDI
= dyn_cast
<DbgDeclareInst
>(&BI
))
1397 Dbgs
.push_back(DDI
);
1402 for (auto &I
: Dbgs
) {
1403 DbgDeclareInst
*DDI
= I
;
1404 AllocaInst
*AI
= dyn_cast_or_null
<AllocaInst
>(DDI
->getAddress());
1405 // If this is an alloca for a scalar variable, insert a dbg.value
1406 // at each load and store to the alloca and erase the dbg.declare.
1407 // The dbg.values allow tracking a variable even if it is not
1408 // stored on the stack, while the dbg.declare can only describe
1409 // the stack slot (and at a lexical-scope granularity). Later
1410 // passes will attempt to elide the stack slot.
1411 if (!AI
|| isArray(AI
) || isStructure(AI
))
1414 // A volatile load/store means that the alloca can't be elided anyway.
1415 if (llvm::any_of(AI
->users(), [](User
*U
) -> bool {
1416 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
))
1417 return LI
->isVolatile();
1418 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
))
1419 return SI
->isVolatile();
1424 SmallVector
<const Value
*, 8> WorkList
;
1425 WorkList
.push_back(AI
);
1426 while (!WorkList
.empty()) {
1427 const Value
*V
= WorkList
.pop_back_val();
1428 for (auto &AIUse
: V
->uses()) {
1429 User
*U
= AIUse
.getUser();
1430 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
1431 if (AIUse
.getOperandNo() == 1)
1432 ConvertDebugDeclareToDebugValue(DDI
, SI
, DIB
);
1433 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
1434 ConvertDebugDeclareToDebugValue(DDI
, LI
, DIB
);
1435 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(U
)) {
1436 // This is a call by-value or some other instruction that takes a
1437 // pointer to the variable. Insert a *value* intrinsic that describes
1438 // the variable by dereferencing the alloca.
1439 if (!CI
->isLifetimeStartOrEnd()) {
1440 DebugLoc NewLoc
= getDebugValueLoc(DDI
, nullptr);
1442 DIExpression::append(DDI
->getExpression(), dwarf::DW_OP_deref
);
1443 DIB
.insertDbgValueIntrinsic(AI
, DDI
->getVariable(), DerefExpr
,
1446 } else if (BitCastInst
*BI
= dyn_cast
<BitCastInst
>(U
)) {
1447 if (BI
->getType()->isPointerTy())
1448 WorkList
.push_back(BI
);
1452 DDI
->eraseFromParent();
1457 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1458 void llvm::insertDebugValuesForPHIs(BasicBlock
*BB
,
1459 SmallVectorImpl
<PHINode
*> &InsertedPHIs
) {
1460 assert(BB
&& "No BasicBlock to clone dbg.value(s) from.");
1461 if (InsertedPHIs
.size() == 0)
1464 // Map existing PHI nodes to their dbg.values.
1465 ValueToValueMapTy DbgValueMap
;
1466 for (auto &I
: *BB
) {
1467 if (auto DbgII
= dyn_cast
<DbgVariableIntrinsic
>(&I
)) {
1468 if (auto *Loc
= dyn_cast_or_null
<PHINode
>(DbgII
->getVariableLocation()))
1469 DbgValueMap
.insert({Loc
, DbgII
});
1472 if (DbgValueMap
.size() == 0)
1475 // Then iterate through the new PHIs and look to see if they use one of the
1476 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1477 // propagate the info through the new PHI.
1478 LLVMContext
&C
= BB
->getContext();
1479 for (auto PHI
: InsertedPHIs
) {
1480 BasicBlock
*Parent
= PHI
->getParent();
1481 // Avoid inserting an intrinsic into an EH block.
1482 if (Parent
->getFirstNonPHI()->isEHPad())
1484 auto PhiMAV
= MetadataAsValue::get(C
, ValueAsMetadata::get(PHI
));
1485 for (auto VI
: PHI
->operand_values()) {
1486 auto V
= DbgValueMap
.find(VI
);
1487 if (V
!= DbgValueMap
.end()) {
1488 auto *DbgII
= cast
<DbgVariableIntrinsic
>(V
->second
);
1489 Instruction
*NewDbgII
= DbgII
->clone();
1490 NewDbgII
->setOperand(0, PhiMAV
);
1491 auto InsertionPt
= Parent
->getFirstInsertionPt();
1492 assert(InsertionPt
!= Parent
->end() && "Ill-formed basic block");
1493 NewDbgII
->insertBefore(&*InsertionPt
);
1499 /// Finds all intrinsics declaring local variables as living in the memory that
1500 /// 'V' points to. This may include a mix of dbg.declare and
1501 /// dbg.addr intrinsics.
1502 TinyPtrVector
<DbgVariableIntrinsic
*> llvm::FindDbgAddrUses(Value
*V
) {
1503 // This function is hot. Check whether the value has any metadata to avoid a
1505 if (!V
->isUsedByMetadata())
1507 auto *L
= LocalAsMetadata::getIfExists(V
);
1510 auto *MDV
= MetadataAsValue::getIfExists(V
->getContext(), L
);
1514 TinyPtrVector
<DbgVariableIntrinsic
*> Declares
;
1515 for (User
*U
: MDV
->users()) {
1516 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(U
))
1517 if (DII
->isAddressOfVariable())
1518 Declares
.push_back(DII
);
1524 void llvm::findDbgValues(SmallVectorImpl
<DbgValueInst
*> &DbgValues
, Value
*V
) {
1525 // This function is hot. Check whether the value has any metadata to avoid a
1527 if (!V
->isUsedByMetadata())
1529 if (auto *L
= LocalAsMetadata::getIfExists(V
))
1530 if (auto *MDV
= MetadataAsValue::getIfExists(V
->getContext(), L
))
1531 for (User
*U
: MDV
->users())
1532 if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(U
))
1533 DbgValues
.push_back(DVI
);
1536 void llvm::findDbgUsers(SmallVectorImpl
<DbgVariableIntrinsic
*> &DbgUsers
,
1538 // This function is hot. Check whether the value has any metadata to avoid a
1540 if (!V
->isUsedByMetadata())
1542 if (auto *L
= LocalAsMetadata::getIfExists(V
))
1543 if (auto *MDV
= MetadataAsValue::getIfExists(V
->getContext(), L
))
1544 for (User
*U
: MDV
->users())
1545 if (DbgVariableIntrinsic
*DII
= dyn_cast
<DbgVariableIntrinsic
>(U
))
1546 DbgUsers
.push_back(DII
);
1549 bool llvm::replaceDbgDeclare(Value
*Address
, Value
*NewAddress
,
1550 Instruction
*InsertBefore
, DIBuilder
&Builder
,
1551 uint8_t DIExprFlags
, int Offset
) {
1552 auto DbgAddrs
= FindDbgAddrUses(Address
);
1553 for (DbgVariableIntrinsic
*DII
: DbgAddrs
) {
1554 DebugLoc Loc
= DII
->getDebugLoc();
1555 auto *DIVar
= DII
->getVariable();
1556 auto *DIExpr
= DII
->getExpression();
1557 assert(DIVar
&& "Missing variable");
1558 DIExpr
= DIExpression::prepend(DIExpr
, DIExprFlags
, Offset
);
1559 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1560 // llvm.dbg.declare.
1561 Builder
.insertDeclare(NewAddress
, DIVar
, DIExpr
, Loc
, InsertBefore
);
1562 if (DII
== InsertBefore
)
1563 InsertBefore
= InsertBefore
->getNextNode();
1564 DII
->eraseFromParent();
1566 return !DbgAddrs
.empty();
1569 bool llvm::replaceDbgDeclareForAlloca(AllocaInst
*AI
, Value
*NewAllocaAddress
,
1570 DIBuilder
&Builder
, uint8_t DIExprFlags
,
1572 return replaceDbgDeclare(AI
, NewAllocaAddress
, AI
->getNextNode(), Builder
,
1573 DIExprFlags
, Offset
);
1576 static void replaceOneDbgValueForAlloca(DbgValueInst
*DVI
, Value
*NewAddress
,
1577 DIBuilder
&Builder
, int Offset
) {
1578 DebugLoc Loc
= DVI
->getDebugLoc();
1579 auto *DIVar
= DVI
->getVariable();
1580 auto *DIExpr
= DVI
->getExpression();
1581 assert(DIVar
&& "Missing variable");
1583 // This is an alloca-based llvm.dbg.value. The first thing it should do with
1584 // the alloca pointer is dereference it. Otherwise we don't know how to handle
1586 if (!DIExpr
|| DIExpr
->getNumElements() < 1 ||
1587 DIExpr
->getElement(0) != dwarf::DW_OP_deref
)
1590 // Insert the offset before the first deref.
1591 // We could just change the offset argument of dbg.value, but it's unsigned...
1593 DIExpr
= DIExpression::prepend(DIExpr
, 0, Offset
);
1595 Builder
.insertDbgValueIntrinsic(NewAddress
, DIVar
, DIExpr
, Loc
, DVI
);
1596 DVI
->eraseFromParent();
1599 void llvm::replaceDbgValueForAlloca(AllocaInst
*AI
, Value
*NewAllocaAddress
,
1600 DIBuilder
&Builder
, int Offset
) {
1601 if (auto *L
= LocalAsMetadata::getIfExists(AI
))
1602 if (auto *MDV
= MetadataAsValue::getIfExists(AI
->getContext(), L
))
1603 for (auto UI
= MDV
->use_begin(), UE
= MDV
->use_end(); UI
!= UE
;) {
1605 if (auto *DVI
= dyn_cast
<DbgValueInst
>(U
.getUser()))
1606 replaceOneDbgValueForAlloca(DVI
, NewAllocaAddress
, Builder
, Offset
);
1610 /// Wrap \p V in a ValueAsMetadata instance.
1611 static MetadataAsValue
*wrapValueInMetadata(LLVMContext
&C
, Value
*V
) {
1612 return MetadataAsValue::get(C
, ValueAsMetadata::get(V
));
1615 bool llvm::salvageDebugInfo(Instruction
&I
) {
1616 SmallVector
<DbgVariableIntrinsic
*, 1> DbgUsers
;
1617 findDbgUsers(DbgUsers
, &I
);
1618 if (DbgUsers
.empty())
1621 return salvageDebugInfoForDbgValues(I
, DbgUsers
);
1624 void llvm::salvageDebugInfoOrMarkUndef(Instruction
&I
) {
1625 if (!salvageDebugInfo(I
))
1626 replaceDbgUsesWithUndef(&I
);
1629 bool llvm::salvageDebugInfoForDbgValues(
1630 Instruction
&I
, ArrayRef
<DbgVariableIntrinsic
*> DbgUsers
) {
1631 auto &Ctx
= I
.getContext();
1632 auto wrapMD
= [&](Value
*V
) { return wrapValueInMetadata(Ctx
, V
); };
1634 for (auto *DII
: DbgUsers
) {
1635 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1636 // are implicitly pointing out the value as a DWARF memory location
1638 bool StackValue
= isa
<DbgValueInst
>(DII
);
1640 DIExpression
*DIExpr
=
1641 salvageDebugInfoImpl(I
, DII
->getExpression(), StackValue
);
1643 // salvageDebugInfoImpl should fail on examining the first element of
1644 // DbgUsers, or none of them.
1648 DII
->setOperand(0, wrapMD(I
.getOperand(0)));
1649 DII
->setOperand(2, MetadataAsValue::get(Ctx
, DIExpr
));
1650 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII
<< '\n');
1656 DIExpression
*llvm::salvageDebugInfoImpl(Instruction
&I
,
1657 DIExpression
*SrcDIExpr
,
1658 bool WithStackValue
) {
1659 auto &M
= *I
.getModule();
1660 auto &DL
= M
.getDataLayout();
1662 // Apply a vector of opcodes to the source DIExpression.
1663 auto doSalvage
= [&](SmallVectorImpl
<uint64_t> &Ops
) -> DIExpression
* {
1664 DIExpression
*DIExpr
= SrcDIExpr
;
1666 DIExpr
= DIExpression::prependOpcodes(DIExpr
, Ops
, WithStackValue
);
1671 // Apply the given offset to the source DIExpression.
1672 auto applyOffset
= [&](uint64_t Offset
) -> DIExpression
* {
1673 SmallVector
<uint64_t, 8> Ops
;
1674 DIExpression::appendOffset(Ops
, Offset
);
1675 return doSalvage(Ops
);
1678 // initializer-list helper for applying operators to the source DIExpression.
1679 auto applyOps
= [&](ArrayRef
<uint64_t> Opcodes
) -> DIExpression
* {
1680 SmallVector
<uint64_t, 8> Ops(Opcodes
.begin(), Opcodes
.end());
1681 return doSalvage(Ops
);
1684 if (auto *CI
= dyn_cast
<CastInst
>(&I
)) {
1685 // No-op casts and zexts are irrelevant for debug info.
1686 if (CI
->isNoopCast(DL
) || isa
<ZExtInst
>(&I
))
1689 Type
*Type
= CI
->getType();
1690 // Casts other than Trunc or SExt to scalar types cannot be salvaged.
1691 if (Type
->isVectorTy() || (!isa
<TruncInst
>(&I
) && !isa
<SExtInst
>(&I
)))
1694 Value
*FromValue
= CI
->getOperand(0);
1695 unsigned FromTypeBitSize
= FromValue
->getType()->getScalarSizeInBits();
1696 unsigned ToTypeBitSize
= Type
->getScalarSizeInBits();
1698 return applyOps(DIExpression::getExtOps(FromTypeBitSize
, ToTypeBitSize
,
1699 isa
<SExtInst
>(&I
)));
1702 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(&I
)) {
1704 M
.getDataLayout().getIndexSizeInBits(GEP
->getPointerAddressSpace());
1705 // Rewrite a constant GEP into a DIExpression.
1706 APInt
Offset(BitWidth
, 0);
1707 if (GEP
->accumulateConstantOffset(M
.getDataLayout(), Offset
)) {
1708 return applyOffset(Offset
.getSExtValue());
1712 } else if (auto *BI
= dyn_cast
<BinaryOperator
>(&I
)) {
1713 // Rewrite binary operations with constant integer operands.
1714 auto *ConstInt
= dyn_cast
<ConstantInt
>(I
.getOperand(1));
1715 if (!ConstInt
|| ConstInt
->getBitWidth() > 64)
1718 uint64_t Val
= ConstInt
->getSExtValue();
1719 switch (BI
->getOpcode()) {
1720 case Instruction::Add
:
1721 return applyOffset(Val
);
1722 case Instruction::Sub
:
1723 return applyOffset(-int64_t(Val
));
1724 case Instruction::Mul
:
1725 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_mul
});
1726 case Instruction::SDiv
:
1727 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_div
});
1728 case Instruction::SRem
:
1729 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_mod
});
1730 case Instruction::Or
:
1731 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_or
});
1732 case Instruction::And
:
1733 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_and
});
1734 case Instruction::Xor
:
1735 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_xor
});
1736 case Instruction::Shl
:
1737 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_shl
});
1738 case Instruction::LShr
:
1739 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_shr
});
1740 case Instruction::AShr
:
1741 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_shra
});
1743 // TODO: Salvage constants from each kind of binop we know about.
1746 // *Not* to do: we should not attempt to salvage load instructions,
1747 // because the validity and lifetime of a dbg.value containing
1748 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1753 /// A replacement for a dbg.value expression.
1754 using DbgValReplacement
= Optional
<DIExpression
*>;
1756 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1757 /// possibly moving/undefing users to prevent use-before-def. Returns true if
1758 /// changes are made.
1759 static bool rewriteDebugUsers(
1760 Instruction
&From
, Value
&To
, Instruction
&DomPoint
, DominatorTree
&DT
,
1761 function_ref
<DbgValReplacement(DbgVariableIntrinsic
&DII
)> RewriteExpr
) {
1762 // Find debug users of From.
1763 SmallVector
<DbgVariableIntrinsic
*, 1> Users
;
1764 findDbgUsers(Users
, &From
);
1768 // Prevent use-before-def of To.
1769 bool Changed
= false;
1770 SmallPtrSet
<DbgVariableIntrinsic
*, 1> UndefOrSalvage
;
1771 if (isa
<Instruction
>(&To
)) {
1772 bool DomPointAfterFrom
= From
.getNextNonDebugInstruction() == &DomPoint
;
1774 for (auto *DII
: Users
) {
1775 // It's common to see a debug user between From and DomPoint. Move it
1776 // after DomPoint to preserve the variable update without any reordering.
1777 if (DomPointAfterFrom
&& DII
->getNextNonDebugInstruction() == &DomPoint
) {
1778 LLVM_DEBUG(dbgs() << "MOVE: " << *DII
<< '\n');
1779 DII
->moveAfter(&DomPoint
);
1782 // Users which otherwise aren't dominated by the replacement value must
1783 // be salvaged or deleted.
1784 } else if (!DT
.dominates(&DomPoint
, DII
)) {
1785 UndefOrSalvage
.insert(DII
);
1790 // Update debug users without use-before-def risk.
1791 for (auto *DII
: Users
) {
1792 if (UndefOrSalvage
.count(DII
))
1795 LLVMContext
&Ctx
= DII
->getContext();
1796 DbgValReplacement DVR
= RewriteExpr(*DII
);
1800 DII
->setOperand(0, wrapValueInMetadata(Ctx
, &To
));
1801 DII
->setOperand(2, MetadataAsValue::get(Ctx
, *DVR
));
1802 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII
<< '\n');
1806 if (!UndefOrSalvage
.empty()) {
1807 // Try to salvage the remaining debug users.
1808 salvageDebugInfoOrMarkUndef(From
);
1815 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1816 /// losslessly preserve the bits and semantics of the value. This predicate is
1817 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1819 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1820 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1821 /// and also does not allow lossless pointer <-> integer conversions.
1822 static bool isBitCastSemanticsPreserving(const DataLayout
&DL
, Type
*FromTy
,
1824 // Trivially compatible types.
1828 // Handle compatible pointer <-> integer conversions.
1829 if (FromTy
->isIntOrPtrTy() && ToTy
->isIntOrPtrTy()) {
1830 bool SameSize
= DL
.getTypeSizeInBits(FromTy
) == DL
.getTypeSizeInBits(ToTy
);
1831 bool LosslessConversion
= !DL
.isNonIntegralPointerType(FromTy
) &&
1832 !DL
.isNonIntegralPointerType(ToTy
);
1833 return SameSize
&& LosslessConversion
;
1836 // TODO: This is not exhaustive.
1840 bool llvm::replaceAllDbgUsesWith(Instruction
&From
, Value
&To
,
1841 Instruction
&DomPoint
, DominatorTree
&DT
) {
1842 // Exit early if From has no debug users.
1843 if (!From
.isUsedByMetadata())
1846 assert(&From
!= &To
&& "Can't replace something with itself");
1848 Type
*FromTy
= From
.getType();
1849 Type
*ToTy
= To
.getType();
1851 auto Identity
= [&](DbgVariableIntrinsic
&DII
) -> DbgValReplacement
{
1852 return DII
.getExpression();
1855 // Handle no-op conversions.
1856 Module
&M
= *From
.getModule();
1857 const DataLayout
&DL
= M
.getDataLayout();
1858 if (isBitCastSemanticsPreserving(DL
, FromTy
, ToTy
))
1859 return rewriteDebugUsers(From
, To
, DomPoint
, DT
, Identity
);
1861 // Handle integer-to-integer widening and narrowing.
1862 // FIXME: Use DW_OP_convert when it's available everywhere.
1863 if (FromTy
->isIntegerTy() && ToTy
->isIntegerTy()) {
1864 uint64_t FromBits
= FromTy
->getPrimitiveSizeInBits();
1865 uint64_t ToBits
= ToTy
->getPrimitiveSizeInBits();
1866 assert(FromBits
!= ToBits
&& "Unexpected no-op conversion");
1868 // When the width of the result grows, assume that a debugger will only
1869 // access the low `FromBits` bits when inspecting the source variable.
1870 if (FromBits
< ToBits
)
1871 return rewriteDebugUsers(From
, To
, DomPoint
, DT
, Identity
);
1873 // The width of the result has shrunk. Use sign/zero extension to describe
1874 // the source variable's high bits.
1875 auto SignOrZeroExt
= [&](DbgVariableIntrinsic
&DII
) -> DbgValReplacement
{
1876 DILocalVariable
*Var
= DII
.getVariable();
1878 // Without knowing signedness, sign/zero extension isn't possible.
1879 auto Signedness
= Var
->getSignedness();
1883 bool Signed
= *Signedness
== DIBasicType::Signedness::Signed
;
1884 return DIExpression::appendExt(DII
.getExpression(), ToBits
, FromBits
,
1887 return rewriteDebugUsers(From
, To
, DomPoint
, DT
, SignOrZeroExt
);
1890 // TODO: Floating-point conversions, vectors.
1894 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock
*BB
) {
1895 unsigned NumDeadInst
= 0;
1896 // Delete the instructions backwards, as it has a reduced likelihood of
1897 // having to update as many def-use and use-def chains.
1898 Instruction
*EndInst
= BB
->getTerminator(); // Last not to be deleted.
1899 while (EndInst
!= &BB
->front()) {
1900 // Delete the next to last instruction.
1901 Instruction
*Inst
= &*--EndInst
->getIterator();
1902 if (!Inst
->use_empty() && !Inst
->getType()->isTokenTy())
1903 Inst
->replaceAllUsesWith(UndefValue::get(Inst
->getType()));
1904 if (Inst
->isEHPad() || Inst
->getType()->isTokenTy()) {
1908 if (!isa
<DbgInfoIntrinsic
>(Inst
))
1910 Inst
->eraseFromParent();
1915 unsigned llvm::changeToUnreachable(Instruction
*I
, bool UseLLVMTrap
,
1916 bool PreserveLCSSA
, DomTreeUpdater
*DTU
,
1917 MemorySSAUpdater
*MSSAU
) {
1918 BasicBlock
*BB
= I
->getParent();
1919 std::vector
<DominatorTree::UpdateType
> Updates
;
1922 MSSAU
->changeToUnreachable(I
);
1924 // Loop over all of the successors, removing BB's entry from any PHI
1927 Updates
.reserve(BB
->getTerminator()->getNumSuccessors());
1928 for (BasicBlock
*Successor
: successors(BB
)) {
1929 Successor
->removePredecessor(BB
, PreserveLCSSA
);
1931 Updates
.push_back({DominatorTree::Delete
, BB
, Successor
});
1933 // Insert a call to llvm.trap right before this. This turns the undefined
1934 // behavior into a hard fail instead of falling through into random code.
1937 Intrinsic::getDeclaration(BB
->getParent()->getParent(), Intrinsic::trap
);
1938 CallInst
*CallTrap
= CallInst::Create(TrapFn
, "", I
);
1939 CallTrap
->setDebugLoc(I
->getDebugLoc());
1941 auto *UI
= new UnreachableInst(I
->getContext(), I
);
1942 UI
->setDebugLoc(I
->getDebugLoc());
1944 // All instructions after this are dead.
1945 unsigned NumInstrsRemoved
= 0;
1946 BasicBlock::iterator BBI
= I
->getIterator(), BBE
= BB
->end();
1947 while (BBI
!= BBE
) {
1948 if (!BBI
->use_empty())
1949 BBI
->replaceAllUsesWith(UndefValue::get(BBI
->getType()));
1950 BB
->getInstList().erase(BBI
++);
1954 DTU
->applyUpdatesPermissive(Updates
);
1955 return NumInstrsRemoved
;
1958 CallInst
*llvm::createCallMatchingInvoke(InvokeInst
*II
) {
1959 SmallVector
<Value
*, 8> Args(II
->arg_begin(), II
->arg_end());
1960 SmallVector
<OperandBundleDef
, 1> OpBundles
;
1961 II
->getOperandBundlesAsDefs(OpBundles
);
1962 CallInst
*NewCall
= CallInst::Create(II
->getFunctionType(),
1963 II
->getCalledValue(), Args
, OpBundles
);
1964 NewCall
->setCallingConv(II
->getCallingConv());
1965 NewCall
->setAttributes(II
->getAttributes());
1966 NewCall
->setDebugLoc(II
->getDebugLoc());
1967 NewCall
->copyMetadata(*II
);
1971 /// changeToCall - Convert the specified invoke into a normal call.
1972 void llvm::changeToCall(InvokeInst
*II
, DomTreeUpdater
*DTU
) {
1973 CallInst
*NewCall
= createCallMatchingInvoke(II
);
1974 NewCall
->takeName(II
);
1975 NewCall
->insertBefore(II
);
1976 II
->replaceAllUsesWith(NewCall
);
1978 // Follow the call by a branch to the normal destination.
1979 BasicBlock
*NormalDestBB
= II
->getNormalDest();
1980 BranchInst::Create(NormalDestBB
, II
);
1982 // Update PHI nodes in the unwind destination
1983 BasicBlock
*BB
= II
->getParent();
1984 BasicBlock
*UnwindDestBB
= II
->getUnwindDest();
1985 UnwindDestBB
->removePredecessor(BB
);
1986 II
->eraseFromParent();
1988 DTU
->applyUpdatesPermissive({{DominatorTree::Delete
, BB
, UnwindDestBB
}});
1991 BasicBlock
*llvm::changeToInvokeAndSplitBasicBlock(CallInst
*CI
,
1992 BasicBlock
*UnwindEdge
) {
1993 BasicBlock
*BB
= CI
->getParent();
1995 // Convert this function call into an invoke instruction. First, split the
1998 BB
->splitBasicBlock(CI
->getIterator(), CI
->getName() + ".noexc");
2000 // Delete the unconditional branch inserted by splitBasicBlock
2001 BB
->getInstList().pop_back();
2003 // Create the new invoke instruction.
2004 SmallVector
<Value
*, 8> InvokeArgs(CI
->arg_begin(), CI
->arg_end());
2005 SmallVector
<OperandBundleDef
, 1> OpBundles
;
2007 CI
->getOperandBundlesAsDefs(OpBundles
);
2009 // Note: we're round tripping operand bundles through memory here, and that
2010 // can potentially be avoided with a cleverer API design that we do not have
2014 InvokeInst::Create(CI
->getFunctionType(), CI
->getCalledValue(), Split
,
2015 UnwindEdge
, InvokeArgs
, OpBundles
, CI
->getName(), BB
);
2016 II
->setDebugLoc(CI
->getDebugLoc());
2017 II
->setCallingConv(CI
->getCallingConv());
2018 II
->setAttributes(CI
->getAttributes());
2020 // Make sure that anything using the call now uses the invoke! This also
2021 // updates the CallGraph if present, because it uses a WeakTrackingVH.
2022 CI
->replaceAllUsesWith(II
);
2024 // Delete the original call
2025 Split
->getInstList().pop_front();
2029 static bool markAliveBlocks(Function
&F
,
2030 SmallPtrSetImpl
<BasicBlock
*> &Reachable
,
2031 DomTreeUpdater
*DTU
= nullptr) {
2032 SmallVector
<BasicBlock
*, 128> Worklist
;
2033 BasicBlock
*BB
= &F
.front();
2034 Worklist
.push_back(BB
);
2035 Reachable
.insert(BB
);
2036 bool Changed
= false;
2038 BB
= Worklist
.pop_back_val();
2040 // Do a quick scan of the basic block, turning any obviously unreachable
2041 // instructions into LLVM unreachable insts. The instruction combining pass
2042 // canonicalizes unreachable insts into stores to null or undef.
2043 for (Instruction
&I
: *BB
) {
2044 if (auto *CI
= dyn_cast
<CallInst
>(&I
)) {
2045 Value
*Callee
= CI
->getCalledValue();
2046 // Handle intrinsic calls.
2047 if (Function
*F
= dyn_cast
<Function
>(Callee
)) {
2048 auto IntrinsicID
= F
->getIntrinsicID();
2049 // Assumptions that are known to be false are equivalent to
2050 // unreachable. Also, if the condition is undefined, then we make the
2051 // choice most beneficial to the optimizer, and choose that to also be
2053 if (IntrinsicID
== Intrinsic::assume
) {
2054 if (match(CI
->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2055 // Don't insert a call to llvm.trap right before the unreachable.
2056 changeToUnreachable(CI
, false, false, DTU
);
2060 } else if (IntrinsicID
== Intrinsic::experimental_guard
) {
2061 // A call to the guard intrinsic bails out of the current
2062 // compilation unit if the predicate passed to it is false. If the
2063 // predicate is a constant false, then we know the guard will bail
2064 // out of the current compile unconditionally, so all code following
2067 // Note: unlike in llvm.assume, it is not "obviously profitable" for
2068 // guards to treat `undef` as `false` since a guard on `undef` can
2069 // still be useful for widening.
2070 if (match(CI
->getArgOperand(0), m_Zero()))
2071 if (!isa
<UnreachableInst
>(CI
->getNextNode())) {
2072 changeToUnreachable(CI
->getNextNode(), /*UseLLVMTrap=*/false,
2078 } else if ((isa
<ConstantPointerNull
>(Callee
) &&
2079 !NullPointerIsDefined(CI
->getFunction())) ||
2080 isa
<UndefValue
>(Callee
)) {
2081 changeToUnreachable(CI
, /*UseLLVMTrap=*/false, false, DTU
);
2085 if (CI
->doesNotReturn() && !CI
->isMustTailCall()) {
2086 // If we found a call to a no-return function, insert an unreachable
2087 // instruction after it. Make sure there isn't *already* one there
2089 if (!isa
<UnreachableInst
>(CI
->getNextNode())) {
2090 // Don't insert a call to llvm.trap right before the unreachable.
2091 changeToUnreachable(CI
->getNextNode(), false, false, DTU
);
2096 } else if (auto *SI
= dyn_cast
<StoreInst
>(&I
)) {
2097 // Store to undef and store to null are undefined and used to signal
2098 // that they should be changed to unreachable by passes that can't
2101 // Don't touch volatile stores.
2102 if (SI
->isVolatile()) continue;
2104 Value
*Ptr
= SI
->getOperand(1);
2106 if (isa
<UndefValue
>(Ptr
) ||
2107 (isa
<ConstantPointerNull
>(Ptr
) &&
2108 !NullPointerIsDefined(SI
->getFunction(),
2109 SI
->getPointerAddressSpace()))) {
2110 changeToUnreachable(SI
, true, false, DTU
);
2117 Instruction
*Terminator
= BB
->getTerminator();
2118 if (auto *II
= dyn_cast
<InvokeInst
>(Terminator
)) {
2119 // Turn invokes that call 'nounwind' functions into ordinary calls.
2120 Value
*Callee
= II
->getCalledValue();
2121 if ((isa
<ConstantPointerNull
>(Callee
) &&
2122 !NullPointerIsDefined(BB
->getParent())) ||
2123 isa
<UndefValue
>(Callee
)) {
2124 changeToUnreachable(II
, true, false, DTU
);
2126 } else if (II
->doesNotThrow() && canSimplifyInvokeNoUnwind(&F
)) {
2127 if (II
->use_empty() && II
->onlyReadsMemory()) {
2128 // jump to the normal destination branch.
2129 BasicBlock
*NormalDestBB
= II
->getNormalDest();
2130 BasicBlock
*UnwindDestBB
= II
->getUnwindDest();
2131 BranchInst::Create(NormalDestBB
, II
);
2132 UnwindDestBB
->removePredecessor(II
->getParent());
2133 II
->eraseFromParent();
2135 DTU
->applyUpdatesPermissive(
2136 {{DominatorTree::Delete
, BB
, UnwindDestBB
}});
2138 changeToCall(II
, DTU
);
2141 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(Terminator
)) {
2142 // Remove catchpads which cannot be reached.
2143 struct CatchPadDenseMapInfo
{
2144 static CatchPadInst
*getEmptyKey() {
2145 return DenseMapInfo
<CatchPadInst
*>::getEmptyKey();
2148 static CatchPadInst
*getTombstoneKey() {
2149 return DenseMapInfo
<CatchPadInst
*>::getTombstoneKey();
2152 static unsigned getHashValue(CatchPadInst
*CatchPad
) {
2153 return static_cast<unsigned>(hash_combine_range(
2154 CatchPad
->value_op_begin(), CatchPad
->value_op_end()));
2157 static bool isEqual(CatchPadInst
*LHS
, CatchPadInst
*RHS
) {
2158 if (LHS
== getEmptyKey() || LHS
== getTombstoneKey() ||
2159 RHS
== getEmptyKey() || RHS
== getTombstoneKey())
2161 return LHS
->isIdenticalTo(RHS
);
2165 // Set of unique CatchPads.
2166 SmallDenseMap
<CatchPadInst
*, detail::DenseSetEmpty
, 4,
2167 CatchPadDenseMapInfo
, detail::DenseSetPair
<CatchPadInst
*>>
2169 detail::DenseSetEmpty Empty
;
2170 for (CatchSwitchInst::handler_iterator I
= CatchSwitch
->handler_begin(),
2171 E
= CatchSwitch
->handler_end();
2173 BasicBlock
*HandlerBB
= *I
;
2174 auto *CatchPad
= cast
<CatchPadInst
>(HandlerBB
->getFirstNonPHI());
2175 if (!HandlerSet
.insert({CatchPad
, Empty
}).second
) {
2176 CatchSwitch
->removeHandler(I
);
2184 Changed
|= ConstantFoldTerminator(BB
, true, nullptr, DTU
);
2185 for (BasicBlock
*Successor
: successors(BB
))
2186 if (Reachable
.insert(Successor
).second
)
2187 Worklist
.push_back(Successor
);
2188 } while (!Worklist
.empty());
2192 void llvm::removeUnwindEdge(BasicBlock
*BB
, DomTreeUpdater
*DTU
) {
2193 Instruction
*TI
= BB
->getTerminator();
2195 if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
2196 changeToCall(II
, DTU
);
2201 BasicBlock
*UnwindDest
;
2203 if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(TI
)) {
2204 NewTI
= CleanupReturnInst::Create(CRI
->getCleanupPad(), nullptr, CRI
);
2205 UnwindDest
= CRI
->getUnwindDest();
2206 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(TI
)) {
2207 auto *NewCatchSwitch
= CatchSwitchInst::Create(
2208 CatchSwitch
->getParentPad(), nullptr, CatchSwitch
->getNumHandlers(),
2209 CatchSwitch
->getName(), CatchSwitch
);
2210 for (BasicBlock
*PadBB
: CatchSwitch
->handlers())
2211 NewCatchSwitch
->addHandler(PadBB
);
2213 NewTI
= NewCatchSwitch
;
2214 UnwindDest
= CatchSwitch
->getUnwindDest();
2216 llvm_unreachable("Could not find unwind successor");
2219 NewTI
->takeName(TI
);
2220 NewTI
->setDebugLoc(TI
->getDebugLoc());
2221 UnwindDest
->removePredecessor(BB
);
2222 TI
->replaceAllUsesWith(NewTI
);
2223 TI
->eraseFromParent();
2225 DTU
->applyUpdatesPermissive({{DominatorTree::Delete
, BB
, UnwindDest
}});
2228 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2229 /// if they are in a dead cycle. Return true if a change was made, false
2231 bool llvm::removeUnreachableBlocks(Function
&F
, DomTreeUpdater
*DTU
,
2232 MemorySSAUpdater
*MSSAU
) {
2233 SmallPtrSet
<BasicBlock
*, 16> Reachable
;
2234 bool Changed
= markAliveBlocks(F
, Reachable
, DTU
);
2236 // If there are unreachable blocks in the CFG...
2237 if (Reachable
.size() == F
.size())
2240 assert(Reachable
.size() < F
.size());
2241 NumRemoved
+= F
.size() - Reachable
.size();
2243 SmallSetVector
<BasicBlock
*, 8> DeadBlockSet
;
2244 for (BasicBlock
&BB
: F
) {
2245 // Skip reachable basic blocks
2246 if (Reachable
.find(&BB
) != Reachable
.end())
2248 DeadBlockSet
.insert(&BB
);
2252 MSSAU
->removeBlocks(DeadBlockSet
);
2254 // Loop over all of the basic blocks that are not reachable, dropping all of
2255 // their internal references. Update DTU if available.
2256 std::vector
<DominatorTree::UpdateType
> Updates
;
2257 for (auto *BB
: DeadBlockSet
) {
2258 for (BasicBlock
*Successor
: successors(BB
)) {
2259 if (!DeadBlockSet
.count(Successor
))
2260 Successor
->removePredecessor(BB
);
2262 Updates
.push_back({DominatorTree::Delete
, BB
, Successor
});
2264 BB
->dropAllReferences();
2266 Instruction
*TI
= BB
->getTerminator();
2267 assert(TI
&& "Basic block should have a terminator");
2268 // Terminators like invoke can have users. We have to replace their users,
2269 // before removing them.
2270 if (!TI
->use_empty())
2271 TI
->replaceAllUsesWith(UndefValue::get(TI
->getType()));
2272 TI
->eraseFromParent();
2273 new UnreachableInst(BB
->getContext(), BB
);
2274 assert(succ_empty(BB
) && "The successor list of BB isn't empty before "
2275 "applying corresponding DTU updates.");
2280 DTU
->applyUpdatesPermissive(Updates
);
2281 bool Deleted
= false;
2282 for (auto *BB
: DeadBlockSet
) {
2283 if (DTU
->isBBPendingDeletion(BB
))
2292 for (auto *BB
: DeadBlockSet
)
2293 BB
->eraseFromParent();
2299 void llvm::combineMetadata(Instruction
*K
, const Instruction
*J
,
2300 ArrayRef
<unsigned> KnownIDs
, bool DoesKMove
) {
2301 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> Metadata
;
2302 K
->dropUnknownNonDebugMetadata(KnownIDs
);
2303 K
->getAllMetadataOtherThanDebugLoc(Metadata
);
2304 for (const auto &MD
: Metadata
) {
2305 unsigned Kind
= MD
.first
;
2306 MDNode
*JMD
= J
->getMetadata(Kind
);
2307 MDNode
*KMD
= MD
.second
;
2311 K
->setMetadata(Kind
, nullptr); // Remove unknown metadata
2313 case LLVMContext::MD_dbg
:
2314 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2315 case LLVMContext::MD_tbaa
:
2316 K
->setMetadata(Kind
, MDNode::getMostGenericTBAA(JMD
, KMD
));
2318 case LLVMContext::MD_alias_scope
:
2319 K
->setMetadata(Kind
, MDNode::getMostGenericAliasScope(JMD
, KMD
));
2321 case LLVMContext::MD_noalias
:
2322 case LLVMContext::MD_mem_parallel_loop_access
:
2323 K
->setMetadata(Kind
, MDNode::intersect(JMD
, KMD
));
2325 case LLVMContext::MD_access_group
:
2326 K
->setMetadata(LLVMContext::MD_access_group
,
2327 intersectAccessGroups(K
, J
));
2329 case LLVMContext::MD_range
:
2331 // If K does move, use most generic range. Otherwise keep the range of
2334 // FIXME: If K does move, we should drop the range info and nonnull.
2335 // Currently this function is used with DoesKMove in passes
2336 // doing hoisting/sinking and the current behavior of using the
2337 // most generic range is correct in those cases.
2338 K
->setMetadata(Kind
, MDNode::getMostGenericRange(JMD
, KMD
));
2340 case LLVMContext::MD_fpmath
:
2341 K
->setMetadata(Kind
, MDNode::getMostGenericFPMath(JMD
, KMD
));
2343 case LLVMContext::MD_invariant_load
:
2344 // Only set the !invariant.load if it is present in both instructions.
2345 K
->setMetadata(Kind
, JMD
);
2347 case LLVMContext::MD_nonnull
:
2348 // If K does move, keep nonull if it is present in both instructions.
2350 K
->setMetadata(Kind
, JMD
);
2352 case LLVMContext::MD_invariant_group
:
2353 // Preserve !invariant.group in K.
2355 case LLVMContext::MD_align
:
2356 K
->setMetadata(Kind
,
2357 MDNode::getMostGenericAlignmentOrDereferenceable(JMD
, KMD
));
2359 case LLVMContext::MD_dereferenceable
:
2360 case LLVMContext::MD_dereferenceable_or_null
:
2361 K
->setMetadata(Kind
,
2362 MDNode::getMostGenericAlignmentOrDereferenceable(JMD
, KMD
));
2364 case LLVMContext::MD_preserve_access_index
:
2365 // Preserve !preserve.access.index in K.
2369 // Set !invariant.group from J if J has it. If both instructions have it
2370 // then we will just pick it from J - even when they are different.
2371 // Also make sure that K is load or store - f.e. combining bitcast with load
2372 // could produce bitcast with invariant.group metadata, which is invalid.
2373 // FIXME: we should try to preserve both invariant.group md if they are
2374 // different, but right now instruction can only have one invariant.group.
2375 if (auto *JMD
= J
->getMetadata(LLVMContext::MD_invariant_group
))
2376 if (isa
<LoadInst
>(K
) || isa
<StoreInst
>(K
))
2377 K
->setMetadata(LLVMContext::MD_invariant_group
, JMD
);
2380 void llvm::combineMetadataForCSE(Instruction
*K
, const Instruction
*J
,
2382 unsigned KnownIDs
[] = {
2383 LLVMContext::MD_tbaa
, LLVMContext::MD_alias_scope
,
2384 LLVMContext::MD_noalias
, LLVMContext::MD_range
,
2385 LLVMContext::MD_invariant_load
, LLVMContext::MD_nonnull
,
2386 LLVMContext::MD_invariant_group
, LLVMContext::MD_align
,
2387 LLVMContext::MD_dereferenceable
,
2388 LLVMContext::MD_dereferenceable_or_null
,
2389 LLVMContext::MD_access_group
, LLVMContext::MD_preserve_access_index
};
2390 combineMetadata(K
, J
, KnownIDs
, KDominatesJ
);
2393 void llvm::copyMetadataForLoad(LoadInst
&Dest
, const LoadInst
&Source
) {
2394 SmallVector
<std::pair
<unsigned, MDNode
*>, 8> MD
;
2395 Source
.getAllMetadata(MD
);
2396 MDBuilder
MDB(Dest
.getContext());
2397 Type
*NewType
= Dest
.getType();
2398 const DataLayout
&DL
= Source
.getModule()->getDataLayout();
2399 for (const auto &MDPair
: MD
) {
2400 unsigned ID
= MDPair
.first
;
2401 MDNode
*N
= MDPair
.second
;
2402 // Note, essentially every kind of metadata should be preserved here! This
2403 // routine is supposed to clone a load instruction changing *only its type*.
2404 // The only metadata it makes sense to drop is metadata which is invalidated
2405 // when the pointer type changes. This should essentially never be the case
2406 // in LLVM, but we explicitly switch over only known metadata to be
2407 // conservatively correct. If you are adding metadata to LLVM which pertains
2408 // to loads, you almost certainly want to add it here.
2410 case LLVMContext::MD_dbg
:
2411 case LLVMContext::MD_tbaa
:
2412 case LLVMContext::MD_prof
:
2413 case LLVMContext::MD_fpmath
:
2414 case LLVMContext::MD_tbaa_struct
:
2415 case LLVMContext::MD_invariant_load
:
2416 case LLVMContext::MD_alias_scope
:
2417 case LLVMContext::MD_noalias
:
2418 case LLVMContext::MD_nontemporal
:
2419 case LLVMContext::MD_mem_parallel_loop_access
:
2420 case LLVMContext::MD_access_group
:
2421 // All of these directly apply.
2422 Dest
.setMetadata(ID
, N
);
2425 case LLVMContext::MD_nonnull
:
2426 copyNonnullMetadata(Source
, N
, Dest
);
2429 case LLVMContext::MD_align
:
2430 case LLVMContext::MD_dereferenceable
:
2431 case LLVMContext::MD_dereferenceable_or_null
:
2432 // These only directly apply if the new type is also a pointer.
2433 if (NewType
->isPointerTy())
2434 Dest
.setMetadata(ID
, N
);
2437 case LLVMContext::MD_range
:
2438 copyRangeMetadata(DL
, Source
, N
, Dest
);
2444 void llvm::patchReplacementInstruction(Instruction
*I
, Value
*Repl
) {
2445 auto *ReplInst
= dyn_cast
<Instruction
>(Repl
);
2449 // Patch the replacement so that it is not more restrictive than the value
2451 // Note that if 'I' is a load being replaced by some operation,
2452 // for example, by an arithmetic operation, then andIRFlags()
2453 // would just erase all math flags from the original arithmetic
2454 // operation, which is clearly not wanted and not needed.
2455 if (!isa
<LoadInst
>(I
))
2456 ReplInst
->andIRFlags(I
);
2458 // FIXME: If both the original and replacement value are part of the
2459 // same control-flow region (meaning that the execution of one
2460 // guarantees the execution of the other), then we can combine the
2461 // noalias scopes here and do better than the general conservative
2462 // answer used in combineMetadata().
2464 // In general, GVN unifies expressions over different control-flow
2465 // regions, and so we need a conservative combination of the noalias
2467 static const unsigned KnownIDs
[] = {
2468 LLVMContext::MD_tbaa
, LLVMContext::MD_alias_scope
,
2469 LLVMContext::MD_noalias
, LLVMContext::MD_range
,
2470 LLVMContext::MD_fpmath
, LLVMContext::MD_invariant_load
,
2471 LLVMContext::MD_invariant_group
, LLVMContext::MD_nonnull
,
2472 LLVMContext::MD_access_group
, LLVMContext::MD_preserve_access_index
};
2473 combineMetadata(ReplInst
, I
, KnownIDs
, false);
2476 template <typename RootType
, typename DominatesFn
>
2477 static unsigned replaceDominatedUsesWith(Value
*From
, Value
*To
,
2478 const RootType
&Root
,
2479 const DominatesFn
&Dominates
) {
2480 assert(From
->getType() == To
->getType());
2483 for (Value::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
2486 if (!Dominates(Root
, U
))
2489 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From
->getName()
2490 << "' as " << *To
<< " in " << *U
<< "\n");
2496 unsigned llvm::replaceNonLocalUsesWith(Instruction
*From
, Value
*To
) {
2497 assert(From
->getType() == To
->getType());
2498 auto *BB
= From
->getParent();
2501 for (Value::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
2504 auto *I
= cast
<Instruction
>(U
.getUser());
2505 if (I
->getParent() == BB
)
2513 unsigned llvm::replaceDominatedUsesWith(Value
*From
, Value
*To
,
2515 const BasicBlockEdge
&Root
) {
2516 auto Dominates
= [&DT
](const BasicBlockEdge
&Root
, const Use
&U
) {
2517 return DT
.dominates(Root
, U
);
2519 return ::replaceDominatedUsesWith(From
, To
, Root
, Dominates
);
2522 unsigned llvm::replaceDominatedUsesWith(Value
*From
, Value
*To
,
2524 const BasicBlock
*BB
) {
2525 auto ProperlyDominates
= [&DT
](const BasicBlock
*BB
, const Use
&U
) {
2526 auto *I
= cast
<Instruction
>(U
.getUser())->getParent();
2527 return DT
.properlyDominates(BB
, I
);
2529 return ::replaceDominatedUsesWith(From
, To
, BB
, ProperlyDominates
);
2532 bool llvm::callsGCLeafFunction(const CallBase
*Call
,
2533 const TargetLibraryInfo
&TLI
) {
2534 // Check if the function is specifically marked as a gc leaf function.
2535 if (Call
->hasFnAttr("gc-leaf-function"))
2537 if (const Function
*F
= Call
->getCalledFunction()) {
2538 if (F
->hasFnAttribute("gc-leaf-function"))
2541 if (auto IID
= F
->getIntrinsicID())
2542 // Most LLVM intrinsics do not take safepoints.
2543 return IID
!= Intrinsic::experimental_gc_statepoint
&&
2544 IID
!= Intrinsic::experimental_deoptimize
;
2547 // Lib calls can be materialized by some passes, and won't be
2548 // marked as 'gc-leaf-function.' All available Libcalls are
2551 if (TLI
.getLibFunc(ImmutableCallSite(Call
), LF
)) {
2558 void llvm::copyNonnullMetadata(const LoadInst
&OldLI
, MDNode
*N
,
2560 auto *NewTy
= NewLI
.getType();
2562 // This only directly applies if the new type is also a pointer.
2563 if (NewTy
->isPointerTy()) {
2564 NewLI
.setMetadata(LLVMContext::MD_nonnull
, N
);
2568 // The only other translation we can do is to integral loads with !range
2570 if (!NewTy
->isIntegerTy())
2573 MDBuilder
MDB(NewLI
.getContext());
2574 const Value
*Ptr
= OldLI
.getPointerOperand();
2575 auto *ITy
= cast
<IntegerType
>(NewTy
);
2576 auto *NullInt
= ConstantExpr::getPtrToInt(
2577 ConstantPointerNull::get(cast
<PointerType
>(Ptr
->getType())), ITy
);
2578 auto *NonNullInt
= ConstantExpr::getAdd(NullInt
, ConstantInt::get(ITy
, 1));
2579 NewLI
.setMetadata(LLVMContext::MD_range
,
2580 MDB
.createRange(NonNullInt
, NullInt
));
2583 void llvm::copyRangeMetadata(const DataLayout
&DL
, const LoadInst
&OldLI
,
2584 MDNode
*N
, LoadInst
&NewLI
) {
2585 auto *NewTy
= NewLI
.getType();
2587 // Give up unless it is converted to a pointer where there is a single very
2588 // valuable mapping we can do reliably.
2589 // FIXME: It would be nice to propagate this in more ways, but the type
2590 // conversions make it hard.
2591 if (!NewTy
->isPointerTy())
2594 unsigned BitWidth
= DL
.getPointerTypeSizeInBits(NewTy
);
2595 if (!getConstantRangeFromMetadata(*N
).contains(APInt(BitWidth
, 0))) {
2596 MDNode
*NN
= MDNode::get(OldLI
.getContext(), None
);
2597 NewLI
.setMetadata(LLVMContext::MD_nonnull
, NN
);
2601 void llvm::dropDebugUsers(Instruction
&I
) {
2602 SmallVector
<DbgVariableIntrinsic
*, 1> DbgUsers
;
2603 findDbgUsers(DbgUsers
, &I
);
2604 for (auto *DII
: DbgUsers
)
2605 DII
->eraseFromParent();
2608 void llvm::hoistAllInstructionsInto(BasicBlock
*DomBlock
, Instruction
*InsertPt
,
2610 // Since we are moving the instructions out of its basic block, we do not
2611 // retain their original debug locations (DILocations) and debug intrinsic
2614 // Doing so would degrade the debugging experience and adversely affect the
2615 // accuracy of profiling information.
2617 // Currently, when hoisting the instructions, we take the following actions:
2618 // - Remove their debug intrinsic instructions.
2619 // - Set their debug locations to the values from the insertion point.
2621 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2622 // need to be deleted, is because there will not be any instructions with a
2623 // DILocation in either branch left after performing the transformation. We
2624 // can only insert a dbg.value after the two branches are joined again.
2626 // See PR38762, PR39243 for more details.
2628 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2629 // encode predicated DIExpressions that yield different results on different
2631 for (BasicBlock::iterator II
= BB
->begin(), IE
= BB
->end(); II
!= IE
;) {
2632 Instruction
*I
= &*II
;
2633 I
->dropUnknownNonDebugMetadata();
2634 if (I
->isUsedByMetadata())
2636 if (isa
<DbgInfoIntrinsic
>(I
)) {
2637 // Remove DbgInfo Intrinsics.
2638 II
= I
->eraseFromParent();
2641 I
->setDebugLoc(InsertPt
->getDebugLoc());
2644 DomBlock
->getInstList().splice(InsertPt
->getIterator(), BB
->getInstList(),
2646 BB
->getTerminator()->getIterator());
2651 /// A potential constituent of a bitreverse or bswap expression. See
2652 /// collectBitParts for a fuller explanation.
2654 BitPart(Value
*P
, unsigned BW
) : Provider(P
) {
2655 Provenance
.resize(BW
);
2658 /// The Value that this is a bitreverse/bswap of.
2661 /// The "provenance" of each bit. Provenance[A] = B means that bit A
2662 /// in Provider becomes bit B in the result of this expression.
2663 SmallVector
<int8_t, 32> Provenance
; // int8_t means max size is i128.
2665 enum { Unset
= -1 };
2668 } // end anonymous namespace
2670 /// Analyze the specified subexpression and see if it is capable of providing
2671 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2672 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2673 /// the output of the expression came from a corresponding bit in some other
2674 /// value. This function is recursive, and the end result is a mapping of
2675 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2676 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2678 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2679 /// that the expression deposits the low byte of %X into the high byte of the
2680 /// result and that all other bits are zero. This expression is accepted and a
2681 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2684 /// To avoid revisiting values, the BitPart results are memoized into the
2685 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2686 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2687 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2688 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2689 /// type instead to provide the same functionality.
2691 /// Because we pass around references into \c BPS, we must use a container that
2692 /// does not invalidate internal references (std::map instead of DenseMap).
2693 static const Optional
<BitPart
> &
2694 collectBitParts(Value
*V
, bool MatchBSwaps
, bool MatchBitReversals
,
2695 std::map
<Value
*, Optional
<BitPart
>> &BPS
, int Depth
) {
2696 auto I
= BPS
.find(V
);
2700 auto &Result
= BPS
[V
] = None
;
2701 auto BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
2703 // Prevent stack overflow by limiting the recursion depth
2704 if (Depth
== BitPartRecursionMaxDepth
) {
2705 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2709 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
2710 // If this is an or instruction, it may be an inner node of the bswap.
2711 if (I
->getOpcode() == Instruction::Or
) {
2712 auto &A
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2713 MatchBitReversals
, BPS
, Depth
+ 1);
2714 auto &B
= collectBitParts(I
->getOperand(1), MatchBSwaps
,
2715 MatchBitReversals
, BPS
, Depth
+ 1);
2719 // Try and merge the two together.
2720 if (!A
->Provider
|| A
->Provider
!= B
->Provider
)
2723 Result
= BitPart(A
->Provider
, BitWidth
);
2724 for (unsigned i
= 0; i
< A
->Provenance
.size(); ++i
) {
2725 if (A
->Provenance
[i
] != BitPart::Unset
&&
2726 B
->Provenance
[i
] != BitPart::Unset
&&
2727 A
->Provenance
[i
] != B
->Provenance
[i
])
2728 return Result
= None
;
2730 if (A
->Provenance
[i
] == BitPart::Unset
)
2731 Result
->Provenance
[i
] = B
->Provenance
[i
];
2733 Result
->Provenance
[i
] = A
->Provenance
[i
];
2739 // If this is a logical shift by a constant, recurse then shift the result.
2740 if (I
->isLogicalShift() && isa
<ConstantInt
>(I
->getOperand(1))) {
2742 cast
<ConstantInt
>(I
->getOperand(1))->getLimitedValue(~0U);
2743 // Ensure the shift amount is defined.
2744 if (BitShift
> BitWidth
)
2747 auto &Res
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2748 MatchBitReversals
, BPS
, Depth
+ 1);
2753 // Perform the "shift" on BitProvenance.
2754 auto &P
= Result
->Provenance
;
2755 if (I
->getOpcode() == Instruction::Shl
) {
2756 P
.erase(std::prev(P
.end(), BitShift
), P
.end());
2757 P
.insert(P
.begin(), BitShift
, BitPart::Unset
);
2759 P
.erase(P
.begin(), std::next(P
.begin(), BitShift
));
2760 P
.insert(P
.end(), BitShift
, BitPart::Unset
);
2766 // If this is a logical 'and' with a mask that clears bits, recurse then
2767 // unset the appropriate bits.
2768 if (I
->getOpcode() == Instruction::And
&&
2769 isa
<ConstantInt
>(I
->getOperand(1))) {
2770 APInt
Bit(I
->getType()->getPrimitiveSizeInBits(), 1);
2771 const APInt
&AndMask
= cast
<ConstantInt
>(I
->getOperand(1))->getValue();
2773 // Check that the mask allows a multiple of 8 bits for a bswap, for an
2775 unsigned NumMaskedBits
= AndMask
.countPopulation();
2776 if (!MatchBitReversals
&& NumMaskedBits
% 8 != 0)
2779 auto &Res
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2780 MatchBitReversals
, BPS
, Depth
+ 1);
2785 for (unsigned i
= 0; i
< BitWidth
; ++i
, Bit
<<= 1)
2786 // If the AndMask is zero for this bit, clear the bit.
2787 if ((AndMask
& Bit
) == 0)
2788 Result
->Provenance
[i
] = BitPart::Unset
;
2792 // If this is a zext instruction zero extend the result.
2793 if (I
->getOpcode() == Instruction::ZExt
) {
2794 auto &Res
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2795 MatchBitReversals
, BPS
, Depth
+ 1);
2799 Result
= BitPart(Res
->Provider
, BitWidth
);
2800 auto NarrowBitWidth
=
2801 cast
<IntegerType
>(cast
<ZExtInst
>(I
)->getSrcTy())->getBitWidth();
2802 for (unsigned i
= 0; i
< NarrowBitWidth
; ++i
)
2803 Result
->Provenance
[i
] = Res
->Provenance
[i
];
2804 for (unsigned i
= NarrowBitWidth
; i
< BitWidth
; ++i
)
2805 Result
->Provenance
[i
] = BitPart::Unset
;
2810 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
2811 // the input value to the bswap/bitreverse.
2812 Result
= BitPart(V
, BitWidth
);
2813 for (unsigned i
= 0; i
< BitWidth
; ++i
)
2814 Result
->Provenance
[i
] = i
;
2818 static bool bitTransformIsCorrectForBSwap(unsigned From
, unsigned To
,
2819 unsigned BitWidth
) {
2820 if (From
% 8 != To
% 8)
2822 // Convert from bit indices to byte indices and check for a byte reversal.
2826 return From
== BitWidth
- To
- 1;
2829 static bool bitTransformIsCorrectForBitReverse(unsigned From
, unsigned To
,
2830 unsigned BitWidth
) {
2831 return From
== BitWidth
- To
- 1;
2834 bool llvm::recognizeBSwapOrBitReverseIdiom(
2835 Instruction
*I
, bool MatchBSwaps
, bool MatchBitReversals
,
2836 SmallVectorImpl
<Instruction
*> &InsertedInsts
) {
2837 if (Operator::getOpcode(I
) != Instruction::Or
)
2839 if (!MatchBSwaps
&& !MatchBitReversals
)
2841 IntegerType
*ITy
= dyn_cast
<IntegerType
>(I
->getType());
2842 if (!ITy
|| ITy
->getBitWidth() > 128)
2843 return false; // Can't do vectors or integers > 128 bits.
2844 unsigned BW
= ITy
->getBitWidth();
2846 unsigned DemandedBW
= BW
;
2847 IntegerType
*DemandedTy
= ITy
;
2848 if (I
->hasOneUse()) {
2849 if (TruncInst
*Trunc
= dyn_cast
<TruncInst
>(I
->user_back())) {
2850 DemandedTy
= cast
<IntegerType
>(Trunc
->getType());
2851 DemandedBW
= DemandedTy
->getBitWidth();
2855 // Try to find all the pieces corresponding to the bswap.
2856 std::map
<Value
*, Optional
<BitPart
>> BPS
;
2857 auto Res
= collectBitParts(I
, MatchBSwaps
, MatchBitReversals
, BPS
, 0);
2860 auto &BitProvenance
= Res
->Provenance
;
2862 // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2863 // only byteswap values with an even number of bytes.
2864 bool OKForBSwap
= DemandedBW
% 16 == 0, OKForBitReverse
= true;
2865 for (unsigned i
= 0; i
< DemandedBW
; ++i
) {
2867 bitTransformIsCorrectForBSwap(BitProvenance
[i
], i
, DemandedBW
);
2869 bitTransformIsCorrectForBitReverse(BitProvenance
[i
], i
, DemandedBW
);
2872 Intrinsic::ID Intrin
;
2873 if (OKForBSwap
&& MatchBSwaps
)
2874 Intrin
= Intrinsic::bswap
;
2875 else if (OKForBitReverse
&& MatchBitReversals
)
2876 Intrin
= Intrinsic::bitreverse
;
2880 if (ITy
!= DemandedTy
) {
2881 Function
*F
= Intrinsic::getDeclaration(I
->getModule(), Intrin
, DemandedTy
);
2882 Value
*Provider
= Res
->Provider
;
2883 IntegerType
*ProviderTy
= cast
<IntegerType
>(Provider
->getType());
2884 // We may need to truncate the provider.
2885 if (DemandedTy
!= ProviderTy
) {
2886 auto *Trunc
= CastInst::Create(Instruction::Trunc
, Provider
, DemandedTy
,
2888 InsertedInsts
.push_back(Trunc
);
2891 auto *CI
= CallInst::Create(F
, Provider
, "rev", I
);
2892 InsertedInsts
.push_back(CI
);
2893 auto *ExtInst
= CastInst::Create(Instruction::ZExt
, CI
, ITy
, "zext", I
);
2894 InsertedInsts
.push_back(ExtInst
);
2898 Function
*F
= Intrinsic::getDeclaration(I
->getModule(), Intrin
, ITy
);
2899 InsertedInsts
.push_back(CallInst::Create(F
, Res
->Provider
, "rev", I
));
2903 // CodeGen has special handling for some string functions that may replace
2904 // them with target-specific intrinsics. Since that'd skip our interceptors
2905 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2906 // we mark affected calls as NoBuiltin, which will disable optimization
2908 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2909 CallInst
*CI
, const TargetLibraryInfo
*TLI
) {
2910 Function
*F
= CI
->getCalledFunction();
2912 if (F
&& !F
->hasLocalLinkage() && F
->hasName() &&
2913 TLI
->getLibFunc(F
->getName(), Func
) && TLI
->hasOptimizedCodeGen(Func
) &&
2914 !F
->doesNotAccessMemory())
2915 CI
->addAttribute(AttributeList::FunctionIndex
, Attribute::NoBuiltin
);
2918 bool llvm::canReplaceOperandWithVariable(const Instruction
*I
, unsigned OpIdx
) {
2919 // We can't have a PHI with a metadata type.
2920 if (I
->getOperand(OpIdx
)->getType()->isMetadataTy())
2924 if (!isa
<Constant
>(I
->getOperand(OpIdx
)))
2927 switch (I
->getOpcode()) {
2930 case Instruction::Call
:
2931 case Instruction::Invoke
:
2932 // Can't handle inline asm. Skip it.
2933 if (isa
<InlineAsm
>(ImmutableCallSite(I
).getCalledValue()))
2935 // Many arithmetic intrinsics have no issue taking a
2936 // variable, however it's hard to distingish these from
2937 // specials such as @llvm.frameaddress that require a constant.
2938 if (isa
<IntrinsicInst
>(I
))
2941 // Constant bundle operands may need to retain their constant-ness for
2943 if (ImmutableCallSite(I
).isBundleOperand(OpIdx
))
2946 case Instruction::ShuffleVector
:
2947 // Shufflevector masks are constant.
2949 case Instruction::Switch
:
2950 case Instruction::ExtractValue
:
2951 // All operands apart from the first are constant.
2953 case Instruction::InsertValue
:
2954 // All operands apart from the first and the second are constant.
2956 case Instruction::Alloca
:
2957 // Static allocas (constant size in the entry block) are handled by
2958 // prologue/epilogue insertion so they're free anyway. We definitely don't
2959 // want to make them non-constant.
2960 return !cast
<AllocaInst
>(I
)->isStaticAlloca();
2961 case Instruction::GetElementPtr
:
2964 gep_type_iterator It
= gep_type_begin(I
);
2965 for (auto E
= std::next(It
, OpIdx
); It
!= E
; ++It
)
2972 using AllocaForValueMapTy
= DenseMap
<Value
*, AllocaInst
*>;
2973 AllocaInst
*llvm::findAllocaForValue(Value
*V
,
2974 AllocaForValueMapTy
&AllocaForValue
) {
2975 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
))
2977 // See if we've already calculated (or started to calculate) alloca for a
2979 AllocaForValueMapTy::iterator I
= AllocaForValue
.find(V
);
2980 if (I
!= AllocaForValue
.end())
2982 // Store 0 while we're calculating alloca for value V to avoid
2983 // infinite recursion if the value references itself.
2984 AllocaForValue
[V
] = nullptr;
2985 AllocaInst
*Res
= nullptr;
2986 if (CastInst
*CI
= dyn_cast
<CastInst
>(V
))
2987 Res
= findAllocaForValue(CI
->getOperand(0), AllocaForValue
);
2988 else if (PHINode
*PN
= dyn_cast
<PHINode
>(V
)) {
2989 for (Value
*IncValue
: PN
->incoming_values()) {
2990 // Allow self-referencing phi-nodes.
2993 AllocaInst
*IncValueAI
= findAllocaForValue(IncValue
, AllocaForValue
);
2994 // AI for incoming values should exist and should all be equal.
2995 if (IncValueAI
== nullptr || (Res
!= nullptr && IncValueAI
!= Res
))
2999 } else if (GetElementPtrInst
*EP
= dyn_cast
<GetElementPtrInst
>(V
)) {
3000 Res
= findAllocaForValue(EP
->getPointerOperand(), AllocaForValue
);
3002 LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: "
3006 AllocaForValue
[V
] = Res
;